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Abstract. Programming complex embedded systems involves reasoning through
intricate system interactions along paths between sensors, actuators and control
processors. This is a time-consuming and error-prone process. Furthermore, the
resulting code generally lacks modularity and robustness.Model-based program-
ming addresses these limitations, allowing engineers to program by specifying
high-level control strategies and by assembling common-sense models of the sys-
tem hardware and software. To execute a control strategy, model-based executives
reason about the models “on the fly”, to track system state, diagnose faults and
perform reconfigurations. This paper describes theReactive Model-based Pro-
gramming Language (RMPL)and its executive, calledTitan. RMPL provides the
features of synchronous reactive languages within a constraint-based modeling
framework, with the added ability of being able to read and write to state vari-
ables that are hidden within the physical plant.

1 Introduction

We envision a future with large networks of highly robust and increasingly autonomous
embedded systems. These visions include intelligent highways that reduce congestion,
cooperative networks of air vehicles for search and rescue, and fleets of intelligent space
probes that autonomously explore the far reaches of the solar system.

Many of these systems will need to perform robustly within extremely harsh and un-
certain environments, or operate for years with minimal attention. To accomplish this,
these embedded systems will need to radically reconfigure themselves in response to
failures, and then accommodate these failures during their remaining operational life-
time. We support the rapid prototyping of these systems by creating embedded program-
ming languages that are able to reason about how to control hardware from engineering
models. This approach, which combines constraint-based and Markov modeling with
the features of reactive programming, is calledmodel-based programming.

In the past, high levels of robustness under extreme uncertainty was largely the
realm of deep space exploration. Billion dollar space systems, like the Galileo Jupiter
probe, have achieved robustness by employing sizable software development and op-
erations teams. Efforts to make these missions highly capable at dramatically reduced



costs have proven extremely challenging, producing notable losses, such as the Mars
Polar Lander and Mars Climate Orbiter failures[1]. A primary contributor to these fail-
ures was the inability of the small software team to think through the large space of
potential interactions between the embedded software and its underlying hardware.

Our objective is to support future programmers with embedded languages that avoid
common-sense mistakes by automatically reasoning from hardware models. Our so-
lution to this challenge has two parts. First, we have created increasingly intelligent,
embedded systems that automatically diagnose and plan courses of action at reactive
timescales, based on models of themselves and their environment[2–6]. This paradigm,
calledmodel-based autonomy, has been demonstrated in space on NASA’s Deep Space
One probe[7], and on several subsequent space systems[8, 9]. Second, we elevate the
level at which an engineer programs through a language, called theReactive Model-
based Programming Language (RMPL), which enables the programmer to tap into and
guide the reasoning methods of model-based autonomy. This language allows the pro-
grammer to delegate, to the language’s compiler and run-time kernel, tasks involving
reasoning through system interactions, such as low-level commanding, monitoring, di-
agnosis and repair. The model-based execution kernel for RMPL is calledTitan.

This paper begins by describing the model-based programming paradigm in more
detail (Section 2). Section 3 then goes on to demonstrate model-based programming
as applied to a simple example. Section 4 introduces the RMPL language. Section 5
presents the semantics of model-based program execution. Section 6 describes Titan’s
control sequencer, which translates a control program written in RMPL into a sequence
of state configuration goals, based on the system’s estimated state trajectory. Finally,
Section 7 closes with related work.

2 Model-Based Programming

Engineers like to reason about embedded systems in terms of state evolutions. How-
ever, embedded programming languages, such as Esterel[10] and Statecharts[11], inter-
act with a physical plant by reading sensor variables and writing control variables (left,
Figure 1). Constraint programming languages, such as the Timed Concurrent Constraint
Language (TCC)[12], replace the traditional notion of a “store” as a valuation of vari-
ables with the notion of a store as a set of constraints on program variables. These
languages interact with the store by “telling” and “asking” constraints at consecutive
time points (middle, Figure 1). In both these cases, it is the programmer’s responsibil-
ity to perform the mapping between intended state and the sensors and actuators. This
mapping involves reasoning through a complex set of interactions under a range of pos-
sible failure situations. The complexity of the interactions and the number of possible
scenarios make this an error-prone process.

A model-based programming language leverages the benefits of both embedded
programming and constraint programming, with the key difference that it interacts di-
rectly with the plant state (right, Figure 1). This is accomplished by allowing the pro-
grammer toread or write constraints on “hidden” state variables in the plant, i.e.
states that are not directly observable or controllable. It is then the responsibility of the
language’s execution kernel to map between hidden states and the plant sensors and
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Fig. 1. Model of interaction for traditional embedded languages (left), concurrent constraint pro-
gramming languages (middle) and model-based programming languages (right).

control variables. This mapping is performed automatically by employing a deductive
controller that reasons from a common-sense plant model.

A model-based program is comprised of two components. The first is acontrol pro-
gram,which uses standard programming constructs to codify specifications of desired
system behavior. In addition, to execute the control program, the execution kernel needs
a model of the system it must control. Hence the second component is aplant model,
which includes models of the plant’s nominal behavior and common failure modes. This
model unifies constraints, concurrency and Markov processes.

A model-based program is executed by automatically generating a control sequence
that moves the physical plant to the states specified by the control program (Figure 2).
We call these specified statesconfiguration goals. Program execution is performed us-
ing a model-based executive, such as Titan, which repeatedly generates the next con-
figuration goal, and then generates a sequence of control actions that achieve this goal,
based on knowledge of the current plant state and plant model.

The Titan model-based executive consists of two components, acontrol sequencer
and adeductive controller. The control sequencer is responsible for generating a se-
quence of configuration goals, using the control program and plant state estimates.
Each configuration goal specifies an abstract state for the plant to be placed in. The
deductive controller is responsible for estimating the plant’s most likely current state
based on observations from the plant (mode estimation), and for issuing commands to
move the plant through a sequence of states that achieve the configuration goals (mode
reconfiguration).
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Fig. 2.Architecture for a model-based executive.



3 A Model-Based Programming Example

Model-based programming enables a programmer to focus on specifying the desired
state evolutions of the system. For example, consider the task of inserting a spacecraft
into orbit around a planet. Our spacecraft includes a science camera and two identical
redundant engines (Engines A and B), as shown in Figure 3. An engineer thinks about
this maneuver in terms of state trajectories:

Heat up both engines (called “standby mode”). Meanwhile, turn the camera off,
in order to avoid plume contamination. When both are accomplished, thrust one
of the two engines, using the other as backup in case of primary engine failure.

This specification is far simpler than a control program that must turn on heaters and
valve drivers, open valves and interpret sensor readings for the engine. Thinking in
terms of more abstract hidden states makes the task of writing the control program
much easier, and avoids the error-prone process of reasoning through low-level system
interactions. In addition, it gives the program’s execution kernel the latitude to respond
to failures as they arise. This is essential for achieving high levels of robustness.

As an example, consider the model-based program for spacecraft orbital insertion.
The spacecraft dual main engine system (Figure 3) consists of two propellant tanks,
two main engines and redundant valves. The system offers a range of configurations for
establishing propellant paths to a main engine. When the propellants combine within
the engine they produce thrust. The flight computer controls the engine and camera by
sending commands. Sensors include an accelerometer, to confirm engine operation, and
a camera shutter position sensor, to confirm camera operation.

Control Program – The RMPL control program, shown in Figure 4, codifies the
informal specification we gave above as a set of state trajectories. The specific RMPL
constructs used in the program are introduced in Section 4. Recall that, to perform
orbital insertion, one of the two engines must be fired. We start by concurrently placing
the two engines in standby and by shutting off the camera. This is performed by lines
3-5, where the comma at the end of each line denotes parallel composition. We then fire
an engine, choosing to use Engine A as the primary engine (lines 6-9) and Engine B as
a backup, in the event that Engine A fails to fire correctly (lines 10-11). Engine A starts
trying to fire as soon as it achieves standby and the camera is off (line 7), but aborts if
at any time Engine A is found to be in a failure state (line 9). Engine B starts trying to
fire only if Engine A has failed, B is in standby and the camera is off (line 10).
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Fig. 3.Simple spacecraft for orbital insertion.



1  OrbitInsert ():: {
2 do
3        { EngineA = Standby,
4         EngineB = Standby,
5         Camera = Off,
6         do
7             when EngineA = Standby AND Camera = Off
8                 donext EngineA = Firing
9         watching EngineA = Failed,
10       when EngineA = Failed AND EngineB = Standby AND Camera = Off
11           donext EngineB = Firing}
12  watching EngineA = Firing OR EngineB = Firing
13 }

Fig. 4.RMPL control program for the orbital insertion scenario.

Several features of this control program reinforce our earlier points. First, the pro-
gram is stated in terms of state assignments to the engines and camera, such as “EngineB
= Firing”. Second, these state assignments appear both as assertions and as execution
conditions. For example, in lines 6-9, “EngineA = Firing” appears in an assertion (line
8), while “EngineA = Standby,” “Camera = Off” and “EngineA = Failed,” appear in
execution conditions (lines 7 and 9). Third, none of these state assignments are di-
rectly observable or controllable, only shutter position and acceleration may be directly
sensed, and only the flight computer command may be directly set. Finally, by refer-
ring to hidden states directly, the RMPL program is far simpler than a corresponding
program that operates on sensed and controlled variables. The added complexity of the
latter program is due to the need to fuse sensor information and generate command
sequences under a large space of possible operation and fault scenarios.

Plant Model – The plant model is used by a model-based executive to map sensed
variables in the control program to queried states and asserted states to specific con-
trol sequences. The plant model is specified as a concurrent transition system, com-
posed of probabilistic component automata[2]. Each component automaton is repre-
sented by a set of component modes, a set of constraints defining the behavior within
each mode, and a set of probabilistic transitions between modes. Constraints are used
to represent co-temporal interactions between state variables and inter-communication
between components. Probabilistic transitions are used to model the stochastic behavior
of components, such as failure and intermittency. Reward is used to assess the costs and
benefits associated with particular component modes. The component automata operate
concurrently and synchronously.

For example, we can model the spacecraft abstractly as a three component system
(2 engines and a camera), by supplying the models depicted graphically in Figure 5.
Nominally, an engine can be in one of three modes:off, standbyor firing. The behav-
ior within each of these modes is described by a set of constraints on plant variables,
namelythrustandpower in. In Figure 5 these constraints are specified in boxes next to
their respective modes. The engine also has afailed mode, capturing any off-nominal
behavior. We entertain the possibility of a novel engine failure by specifying no con-
straints for the engine’s behavior in thefailed mode[13].

Models include commanded and uncommanded transitions, both of which are prob-
abilistic. For example, the engine has uncommanded transitions fromoff, standbyand
firing to failed. These transitions have a 1% probability, indicated as arcs labeled 0.01.
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Fig. 5.State transition models for a simplified spacecraft.

Transitions between nominal modes are triggered on commands, and occur with prob-
ability 99%.

Executing the Model-Based Program– When the orbital insertion control pro-
gram is executed, the control sequencer starts by generating a configuration goal con-
sisting of the conjunction of three state assignments: “EngineA = Standby”, “EngineB
= Standby” and “Camera = Off” (lines 3-5). To determine how to achieve this goal, the
deductive controller considers the latest estimate of the state of the plant. For example,
suppose the deductive controller determines from its sensor measurements and previ-
ous commands that the two engines are already in standby, but the camera is on. The
deductive controller deduces from the model that it should send a command to the plant
to turn the camera off. After executing this command, it uses its shutter position sensor
to confirm that the camera is off. With “Camera = Off” and “EngineA = Standby”, the
control sequencer advances to the configuration goal of “EngineA = Firing” (line 8).
The deductive controller identifies an appropriate setting of valve states that achieves
this behavior, then it sends out the appropriate commands.

In the process of achieving goal “EngineA = Firing”, assume that a failure occurs:
an inlet valve to Engine A suddenly sticks closed. Given various sensor measurements
(e.g. flow and pressure measurements throughout the propulsion subsystem), the de-
ductive controller identifies the stuck valve as the most likely source of failure. It then
tries to execute an alternative control sequence for achieving the configuration goal, for
example, by repairing the valve. Presume that the valve is not repairable; Titan diag-
noses that “EngineA = Failed”. The control program specifies a configuration goal of
“EngineB = Firing” as a backup (lines 10-11), which is issued by the control sequencer
to the deductive controller.

4 The Reactive Model-Based Programming Language

RMPL is an object-oriented language, like Java. In general, RMPL constructs are con-
ditioned on the current state of the physical plant, and they act on the plant state in the
next time instant. State assertions are specified as constraints on plant state variables
that should be made true. RMPL’s model of interaction is in contrast to Esterel and
TCC, which both interact with the program memory, sensors and control variables, but
not with the plant state. Esterel interacts by emitting and detecting signals, while TCC
interacts bytelling andaskingconstraints on program variables. In contrast, RMPL con-
structsaskconstraints on plant state variables, and request that specified constraints on



state variables beachieved(as opposed totell, which asserts that a constraintis true).
State assertions in RMPL control programs are treated asachieveoperations, while state
condition checks areaskoperations.

RMPL currently uses propositional state logic for its constraint system. In propo-
sitional state logic each proposition is an assignment,x = v, where variablex ranges
over a finite domainD(x). Propositions are composed into formulae using the standard
logical connectives: and (∧), or (∨) and not (¬). The constantsTrue andFalseare also
valid constraints. A constraint isentailedif it is implied by the plant model and the most
likely current state of the physical plant.

We introduce RMPL by first highlighting its desired features. We then present the
RMPL constructs used to encode control programs. These constructs are fully orthogo-
nal, that is, they may be nested and combined arbitrarily. RMPL constructs are closely
related to the TCC programming language constructs[12].

The orbital insertion example highlights five design features of RMPL. First, the
program exploits full concurrency, by specifying parallel threads of execution; for ex-
ample, the camera is turned off and the engines are set to standby in parallel (lines 3-5).
Second, it involves conditional execution; for example, the control program must check
for two conditions, prior to firing Engine A: that the engine to be fired is in standby
mode, and that the camera is turned off (line 7). Third, it involves iteration; for exam-
ple, line 7 says to iteratively test until Engine A is in standby and the Camera is off,
and then to proceed. Fourth, the program involves preemption; for example, if the pri-
mary engine fails, the act of firing it should be preempted, in favor of firing the backup
engine (lines 6-9). These four features are common to most synchronous reactive pro-
gramming languages. As highlighted previously, the fifth and defining feature of RMPL
is the ability to reference hidden states of the physical plant within assertions and con-
dition checks, such as “when EngineA = Standby∧ Camera = Offdonext EngineA =
Firing” (lines 7-8).

The RMPL constructs are defined as follows. We use lower case letters, likec, to
denote constraints on variables of the physical plant, and upper case letters, likeA and
B, to denote well-formed RMPL expressions:

– g [maintaining m]. Asserts that the plant should progress towards a state that
achievesg, while maintainingm throughout. Ifm does not hold at any point,
then assertion ofg terminates immediately. “maintainingm” is optional (defaults
to True).

– if c thennext Athen[ elsenextAelse]. Starts executingAthen in the next instant,
if the most likely current plant state entailsc. The optional expressionAelse is
executed starting in the next instant ifc is not entailed by the most likely current
state.

– unlessc thennext A. Starts executingA in the next instant if the current theory
doesnotentailc.

– A, B. Concurrently executes A and B, starting in the current instant.
– alwaysA. Starts a new copy ofA at each instant of time, for all time.
– A; B. PerformsA until A is finished, then startsB.
– whenc donextA. Waits untilc is entailed by the most likely plant state, then starts

A in the next instant.



– wheneverc donextA. For every instant in whichc holds for the most likely state,
it starts a copy ofA in the next instant.

– do A watching c. ExecutesA, but if c becomes entailed by the most likely plant
state at any instant, it terminates execution ofA.

The above-mentioned RMPL constructs are used to encode control programs. This
subset is sufficient to implement most of the control constructs of the Esterel lan-
guage[4]. Note that RMPL can also be used to encode the probabilistic transition mod-
els capturing the behavior of the plant components. The additional constructs required
to encode such models are defined in [14].

5 Model-Based Program Execution Semantics

We define the execution of a model-based program in terms of legal state evolutions of
a physical plantP.

Plant Model – A plant P is modeled as apartially observable Markov decision
process(POMDP)M = 〈Π,Σ, T, PΘ, PT, PO, R〉. Π is a set ofvariables, each ranging
over a finite domain.Π is partitioned intostate variablesΠs, control variablesΠc,
observable variablesΠo, anddependent variablesΠd. A full assignmentσ is defined
as a set consisting of an assignment to each variable inΠ. Σ is the set of allfeasible
full assignments overΠ. A states is defined as an assignment to each variable inΠs.
The setΣs, the projection ofΣ on variables inΠs, is the set of all feasible states.

T is a finite set oftransitions. Each transitionτ ∈ T is a functionτ : Σ → Σs, i.e.
τ(σi) is the state obtained by applying transitionτ to any feasible full assignmentσi.
The transitionτn ∈ T models the system’s nominal behavior, while all other transitions
model failures. The probability of transitionτ , given full assignmentσi, is Pτ (σi), for
Pτ ∈ PT. PΘ(s0) is the probability that the plant has initial states0. The reward for
being in statesi is R(si), and the probability of observingoj in statesi is PO(si, oj).

A plant trajectoryis a (finite or infinite) sequence of feasible statesS : s0, s1, . . .
such that for eachsi there is a feasible assignmentσi ∈ Σ which agrees withsi on
assignments to variables inΠs andsi+1 = τ(σi) for someτ ∈ T. A trajectory that in-
volves only the nominal transitionτn is called anominal trajectory. A simpletrajectory
does not repeat any state.

Model-Based Program Execution– A model-based program for plantP consists
of a modelM , described above, and a control programCP , described as a determinis-
tic automatonCP = 〈Σcp, θcp, τcp, gcp, Σs〉. Σcp is the set ofprogram locations, where
θcp ∈ Σcp is the program’s initial location. Transitionsτcp between locations are con-
ditioned on plant statesΣs of M , i.e. τcp is a functionτcp : Σcp × Σs → Σcp. Each
locationli ∈ Σcp has a correspondingconfiguration goalgcp(li) ⊂ Σs, which is the
set of legal plant target states associated with locationli.

A legal executionof a model-based program is a trajectory of feasible plant states,
S : s0, s1, . . . of M , and locationsL : l0, l1, . . . of CP such that: (a)s0 is a valid initial
plant state, that is,PΘ(s0) > 0; (b) for eachsi there is aσi ∈ Σ of M that agrees with
si andoi on the corresponding subsets of variables; (c)l0 is the initial program location
θcp; (d) 〈li, li+1〉 represents a legal control program transition,i.e. li+1 = τcp(li, si);
and (e) if plant statesi+1 is the result of a nominal transition fromσi, i.e.si+1 = τn(σi),



then eithersi+1 is the least-cost state ingcp(li), or 〈si, si+1〉 is the prefix of a simple
nominal trajectory that ends in a least-cost statesj ∈ gcp(li).

Model-Based Executive– A model-based program is executed by amodel-based
executive. We define a model-based executive as a high-levelcontrol sequencercoupled
to a low-leveldeductive controller.

A control sequencer takes as inputs a control programCP and a sequenceS :
s(0), s(1), . . . of plant state estimates. It generates a sequenceγ : g(0), g(1), . . . of con-
figuration goals. A complete definition of the control sequencer is given in Section 6.

A deductive controller takes as inputs the plant modelM , a sequence of config-
uration goalsγ : g(0), g(1), . . ., and a sequence of observationsO : o(0), o(1), . . .. It
generates a sequence of most likely plant state estimatesS : s(0), s(1), . . . and a se-
quence of control actionsµ : µ(0), µ(1), . . ..

The sequence of state estimates is generated by a process calledmode estimation
(ME). ME incrementally tracks the set of state trajectories that are consistent with the
plant model, the sequence of observations and the control actions. The ME process is
framed as an instance of POMDP belief state update, which computes the probability
associated with being in statesi at timet + 1 according to the following equations:

p(•t+1)[si] =
n∑

j=1

p(t•)[sj ]PT(σj 7→ si)

p(t+1•)[si] = p(•t+1)[si]
PO(si, ok)∑n

j=1 p(•t+1)[sj ]PO(sj , ok)

wherePT(σj 7→ si) is defined as the probability thatM transitions fromσj to state
si, and the probabilityp(•t+1)[si] is conditioned on all observations up too(t), while
p(t+1•)[si] is also conditioned on the latest observationo(t+1). The tracked state with
the highest belief state probability is selected as the most likely states(t).

The sequence of control actions is generated by a process calledmode reconfigu-
ration (MR). MR takes as inputs a configuration goal and the most likely current state
from ME, and it returns a series of commands that progress the plant towards a least-cost
state that achieves the configuration goal. MR accomplishes this through two capabil-
ities, thegoal interpreter(GI) andreactive planner(RP). GI uses the plant model and
the most likely current state to determine a reachable target state that achieves the con-
figuration goal, while minimizing cost (or maximizing reward)R(s). RP takes a target
state and a current mode estimate, and generates a command sequence that moves the
plant to this target. RP generates and executes this sequence one command at a time,
using ME to confirm the effects of each command.

Since the size of the set of possible current states is exponential in the number
of components, computational resource limitations only allow a small fraction of the
state space to be explored in real time. ME tracks the most likely states using the OpSat
optimal constraint satisfaction engine[15]. GI also uses OpSat to search for a minimum-
cost target state. RP, also calledBurton[3], is a sound, complete planner that generates
a control action of a valid plan in average case constant time.

The deductive controller has been described extensively in [2, 3], in the remainder
of this paper we focus on the technical details of the control sequencer.



6 Control Sequencer

The RMPL control program is executed by Titan’s control sequencer. Executing a con-
trol program involves compiling it to a variant of hierarchical automata, calledhier-
archical constraint automata (HCA), and then executing the automata in coordination
with the deductive controller. In this section, we define HCA, their compilation and
execution.

6.1 Hierarchical Constraint Automata

To efficiently execute RMPL programs, we translate each of the constructs introduced
in Section 4 into an HCA. In the following we call the “states” of an HCAlocations,
to avoid confusion with the physical plant state. An HCA has five key attributes. First,
it composes sets of concurrently operating automata. Second, each location is labeled
with a constraint, called agoal constraint, which the physical plant must immediately
begin moving towards, whenever the automaton marks that location. Third, each lo-
cation is also labeled with a constraint, called amaintenance constraint, which must
hold for that location to remain active. Fourth, automata are arranged in a hierarchy –
a location of an automaton may itself be an automaton, which is invoked when marked
by its parent. This enables the initiation and termination of more complex concurrent
and sequential behaviors. Finally, each transition may have multiple target locations,
allowing an automaton to have several locations marked simultaneously. This enables a
compact representation for iterative behaviors, like RMPL’salwaysconstruct.

Hierarchical encodings form the basis for embedded reactive languages like Es-
terel[10] and State Charts[11]. A distinctive feature of an HCA is its use of constraints
on plant state, in the form of goal and maintenance constraints. We elaborate on this
point once we introduce HCA.

A hierarchical, constraint automaton (HCA)is a tuple〈Σ, Θ, Π, G, M, T〉, where:

– Σ is a set oflocations, partitioned intoprimitive locationsΣp andcomposite loca-
tionsΣc. Each composite location denotes a hierarchical constraint automaton.

– Θ ⊆ Σ is the set ofstart locations(also called theinitial marking).
– Π is the set of plant state variables, with eachxi ∈ Π ranging over a finite domain

D[xi]. C[Π] denotes the set of all finite domain constraints overΠ.
– G : Σp → C[Π], associates with each locationσp

i ∈ Σp a finite domain constraint
G(σp

i ) that the plant progresses towards wheneverσp
i is marked.G(σp

i ) is called
thegoal constraintof σp

i . Goal constraintsG(σp
i ) may be thought of as “set points”,

representing a set of states that the plant must evolve towards whenσp
i is marked.

– M : Σ → C[Π], associates with each locationσi ∈ Σ a finite domain constraint
M(σi) that must hold at the current instant forσi to be marked.M(σi) is called the
maintenance constraintof σi. Maintenance constraintsM(σi) may be viewed as
representing monitored constraints that must be maintained in order for execution
to progress towards achieving any goal constraints specified withinσi.

– T : Σ × C[Π] → 2Σ associates with each locationσi ∈ Σ a transition function

T(σi). EachT(σi) : C[Π] → 2Σ , specifies asetof locations to be marked at time
t + 1, given appropriate assignments toΠ at timet.



At any instantt, the “state” of an HCA is the set of marked locationsm(t) ⊆ Σ,
called amarking. M denotes the set of possible markings, whereM ⊆ 2Σ .

In the graphical representation of HCA, primitive locations are represented as cir-
cles, while composite locations are represented as rectangles. Goal and maintenance
constraints are written within the corresponding locations, with maintenance constraints
preceded by the keyword “maintain”. Maintenance constraints can be of the form|= c
or 6|= c, for somec ∈ C[Π]. For convenience, in our diagrams we usec to denote the
constraint|= c, andc to denote the constraint6|= c. Maintenance constraints associated
with composite locations are assumed to apply to all subautomata within the composite
location. When either a goal or a maintenance constraint is not specified, it is taken to
be implicitly True.

Transitions are conditioned on constraints that must be entailed by the conjunction
of the plant model and the most likely estimated state of the plant. For each location
σ, we represent the transition functionT(σ) as a set of transition pairs(li, σi), where
σi ∈ Σ, and li is a set of labels (also known asguard conditions) of the form |= c
(denotedc) or 6|= c (denotedc), for somec ∈ C[Π]. This corresponds to the traditional
representation of transitions as labeled arcs in a graph, whereσ andσi are the source
and target of an arc with labelli. Again, if no label is indicated, it is implicitlyTrue.

Our HCA encoding has four properties that distinguish it from the hierarchical au-
tomata employed by the above-mentioned reactive embedded languages[10, 11]. First,
multiple transitions may be simultaneously traversed. This permits an exceptionally
compact encoding of the state of the automaton as a set of markings. Second, transi-
tions are conditioned on what can be deduced from the estimated plant state, not just
what is explicitly observed or assigned. This provides a simple, but general, mechanism
for reasoning about the plant’s hidden state. Third, transitions are enabled based on
lack of information. This allows default executions to be pursued in the absence of bet-
ter information, enabling advanced preemption constructs. Finally, locations assert goal
constraints on the plant state. This allows the hidden state of the plant to be controlled
directly.

Each RMPL construct maps to an HCA, as shown in Figure 6. For example, the
RMPL code for orbital insertion (Figure 4) compiles to the HCA shown in Figure 7.

6.2 Executing HCA

To execute an HCAA, the control sequencer starts with an estimate of the current
state of the plant,s(0). It initializesA usingmF (Θ(A)), a function that marks the start
locations ofA and all subautomata of these start locations. It then repeatedly steps
automatonA using the functionStepHCA, which maps the current state estimate and
marking to a next marking and configuration goal.mF andStepHCA are defined below.

Given a set of automatam to be initialized,mF (m) creates afull marking, by
recursively marking the start locations ofm and all their starting subautomata:
mF (m) = m ∪

⋃
{mF (Θ(σ)) | σ ∈ m,σ is composite}.

StepHCA transitions an automatonA from the current full marking to the next full
marking and generates a new configuration goal, based on the current state estimate.
That is,StepHCA(A,m(t), s(t)) → 〈g(t),m(t+1), s(t+1)〉 is defined by the following
algorithm:
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Fig. 6.Corresponding HCA for various RMPL constructs.

1. Check maintenance constraints for marked composites.Unmark all subautomata
of any marked composite location inm(t) whose maintenance constraint is not en-
tailed bys(t).

2. Setup goal.Output, as the configuration goalg(t), the conjunction of goal con-
straints from currently marked primitive locations inm(t) whose maintenance con-
straints are entailed bys(t).

3. Take action. Request that mode reconfiguration issue a command that progresses
the plant towards a states that achieves the configuration goalg(t).

4. Read next state estimate.Once the command has been issued, obtain from mode
estimation the plant’s new most likely states(t+1).

5. Await incomplete goals.If the goal constraint of a primitive location marked in
m(t) is not entailed bys(t+1), and its maintenance constraint was not violated by
s(t), then include that location as marked inm(t+1).

MAINTAIN (EAR OR EBR)

EBS

CO

LEGEND:
EAS  (EngineA = Standby)
EAF  (EngineA = Failed)
EAR  (EngineA = Firing)
EBS  (EngineB = Standby)
EBF  (EngineB = Failed)
EBR  (EngineB = Firing)
CO    (Camera = Off)

MAINTAIN (EAF)

EAS

(EAS AND CO)

EAR
EAS AND CO

(EAF AND EBS AND CO)

EBR
EAF AND EBS

AND CO

1,2

1,2

1

1,2 3,4

1,2,3,4

1,2,3,4

1,2,3,4

Fig. 7.HCA model for the orbital insertion scenario.



6. Identify enabled transitions. A transition from a marked primitive locationσp
i in

m(t) is enabled if both of the following conditions hold true:
(a) σp

i ’s goal constraint is satisfied bys(t+1), or its maintenance constraint was
violated bys(t);

(b) the transition’s guard condition is satisfied bys(t+1).
A transition from a marked composite locationσc

i in m(t) is enabled if both of the
following conditions hold true:
(a) none ofσc

i ’s subautomata are marked inm(t+1) and none ofσc
i ’s subautomata

have enabled outgoing transitions;
(b) the transition’s guard condition is satisfied bys(t+1).

7. Take transitions. Mark and initialize inm(t+1) the target of each enabled transi-
tion. Re-mark inm(t+1) all composite locations with subautomata that are marked
in m(t+1).

A’s execution completes at timeτ if m(τ) is the empty marking, and there is no
t < τ such thatm(t) is the empty marking.

6.3 Example: Executing the Orbital Insertion Control Program

The control sequencer interacts tightly with the mode estimation and mode reconfigu-
ration capabilities of the deductive controller, which we demonstrate with a failure-free
execution trace for the orbital insertion scenario. Markings for each execution cycle are
represented in Figure 7 by the numerical labels associated with each location.

Initial State – Initially, all start locations are marked (locations labeled “1”, Fig-
ure 7). We assume mode estimation provides initial plant state estimatesEngineA=Off,
EngineB=Off, Camera=On.

Execution will continue as long as the maintenance constraint on the outermost
composite location,6|= (EngineA=Firing OR EngineB=Firing), remains true. It termi-
nates as soon as(EngineA=Firing OR EngineB=Firing)is entailed. Similarly, execution
of the inner composite location terminates if ever(EngineA=Failed)is entailed.

First Step – Since none of the maintenance constraints are violated for the initial
state estimate, all start locations remain marked. The goal constraints asserted by the
start locations consist ofEngineA=Standby, EngineB=StandbyandCamera=Off. These
state assignments are conjoined into a configuration goal, and passed to mode recon-
figuration. Mode reconfiguration issues the first command in a sequence that achieves
the configuration goal. In this example, mode estimation confirms thatCamera=Off is
achieved after a one-step operation.

The locations asserting(EngineA=Standby)and(EngineB=Standby)remain marked
in the next execution step, because these two configuration goals have not yet been
achieved. SinceCamera=Off has been achieved and there are no specified transitions
from the primitive location that asserted this state goal, this thread of execution termi-
nates. The other two marked primitives correspond to “when . . . donext . . .” expres-
sions in the RMPL control program, they both remain marked in the next execution
step, since the only enabled transitions from these locations are self-transitions. The
next execution step’s marking includes locations labeled with a “2” in Figure 7.



Second Step– The maintenance constraints are confirmed to hold for the cur-
rent state estimate. Next, the goal constraints of marked locations are collected,En-
gineA=Standby∧ EngineB=Standby, and passed to mode reconfiguration. Mode re-
configuration issues the first command towards achieving this goal.

Assume that a single command is required to set both engines to standby, and that
this action is successfully performed. Consequently, mode estimation indicates that the
new state estimate includes(EngineA=Standby)and(EngineB=Standby). This results
in termination of the two execution threads corresponding to these goal constraint asser-
tions. In addition, the transition labeled with condition(EngineA=Standby AND Cam-
era=Off) is enabled, and hence traversed. Thus, after taking the enabled transitions,
only two of the primitive locations remain marked, as shown by labels “3” in Figure 7.

Remaining Steps– The deductive controller issues and monitors a command se-
quence, given goal(EngineA=Firing), until a flow of fuel and oxidizer are established,
and mode estimation confirms that the engine is indeed firing. Since this violates the
outer maintenance condition, the entire block of Figure 7 is exited.

7 Discussion

Titan is implemented in C++. The performance of its deductive controller is docu-
mented in [3, 15]. Titan is being demonstrated on the MIT SPHERES mission, and
mission scenarios for NASA’s ST-7 and MESSENGER missions.

Turning to related work, the model-based programming paradigm synthesizes ideas
underlying synchronous programming, concurrent constraint programming, traditional
robotic execution and POMDPs. Synchronous programming languages [10, 11] were
developed for writing control code for reactive systems. Synchronous programming lan-
guages exhibit logical concurrency, orthogonal preemption, multiform time and deter-
minacy, which Berry has convincingly argued are necessary characteristics for reactive
programming. RMPL is a synchronous language, and satisfies all these characteristics.

Model-based programming and concurrent constraint programming share common
underlying principles, including the notion of computation as deduction over systems
of partial information[12, 16]. RMPL extends constraint programming with a paradigm
for exposing hidden states, a replacement of the constraint store with a deductive con-
troller, and a unification of constraint-based and Markov modeling. This provides a rich
approach to managing discrete processes, uncertainty, failure and repair.

RMPL and Titan also offer many of the goal-directed tasking and monitoring capa-
bilities of AI robotic execution languages, like ESL[17] and RAPS[18]. One key differ-
ence is that RMPL’s constructs fully cover synchronous programming, hence moving
towards a unification of a goal-directed AI executive with its underlying real-time lan-
guage. In addition, Titan’s deductive controller handles a rich set of system models,
moving execution languages towards a unification with model-based autonomy.
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