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Abstract. Many problems in Artificial Intelligence, such as diagnosis,
control, and planning, can be framed as constraint optimization problems
where a limited number of leading solutions are needed. An important
class of optimization algorithms use A*, a variant of best first search, to
guide the search effectively, while employing a heuristic evaluation func-
tion that is computed using dynamic programming. A key bottleneck,
however, is that significant effort can be wasted precomputing bounds
that are not used to generate the leading solutions. This paper intro-
duces a method for solving semi-ring CSPs, based on a variant of A*
that generates on demand, only those bounds that are specifically re-
quired in order to generate a next best solution. On demand bound
computation is performed using “lazy”, best-first variants of constraint
projection and combination operators, and a scheme that coordinates
the computation of these operators by exploiting a decomposition of the
optimization problem into a tree structure. We demonstrate a significant
performance improvement over bound precomputation on randomly gen-
erated, semiring-based optimization problems.

1 Introduction

Algorithms for constraint optimization are key to many problems in Artificial
Intelligence, such as monitoring, diagnosis, autonomous control, or reconfigura-
tion. An important class of algorithms for constraint optimization finds solutions
by searching through the space of possible assignments, guided by a heuristic
evaluation function (bound) [16, 13, 11].

Often, the set of solutions is too large to explicitly enumerate all solutions.
Instead, for many applications only a limited number of leading solutions is
required. For instance, in fault diagnosis it might be sufficient to compute the
most likely diagnoses that cover most of the probability density space [15, 17].
In planning, it might be sufficient to compute the best plan and a few backup
plans in case the best plan cannot be executed.

When only a few solutions are generated, computing heuristics (bounds) for
all values prior to the search would be inefficient because only a few of these
bounds are typically needed to compute the best solutions. In this paper, we
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present a method called best-first search with on-demand bound computation
(BFOB) that interleaves bound computation and best-first search, such that
bounds are computed and assignments are expanded only as required to gen-
erate each next best solution. The approach involves a streamed computation
analogous to that of distributed database systems [5, 2]. It builds upon best-first
variants of the constraint combination and projection operators, and uses a coor-
dination architecture that exploits a decomposition of the optimization problem
into a tree structure.

This approach has a complexity that never exceeds those of performing bound
computation as a separate pre-processing step, yet it can derive the best solutions
faster. The solution improves on previous approaches [13] that compute bounds
using a separate pre-processing step, but can also outperform approaches that
are based on limited interleaving of bound computation and search [11].

We present the approach in the context of semiring-based constraint opti-
mization problems [3] and tree decompositions [8, 14], a decomposition method
that is more general than the bucket elimination framework considered in [13].
Experiments with randomly generated constraint optimization problems indicate
dramatic performance gains using on-demand bound function computation.

2 Semiring-based Constraint Optimization Problems

Definition 1 (Semiring [3]). A c-semiring is a tuple (A,+,×,0,1) such that

1. A is a set and 0,1 ∈ A;
2. + is a commutative, associative and idempotent (i.e., a ∈ A implies a + a =

a) operation with unit element 0 and absorbing element 1 (i.e., a + 0 = a
and a + 1 = 1);

3. × is a commutative, associative operation with unit element 1 and absorbing
element 0 (i.e., a× 1 = a and a× 0 = 0);

4. × distributes over + (i.e., a× (b + c) = (a× b) + (a× c)).

For instance, Sp = ([0, 1], max, ·, 0, 1) forms a probabilistic c-semiring. The
idempotency of the + operation induces a partial order ≤S over A as follows:
a ≤S b iff a + b = b (for Sp, ≤S ≡ ≤, and + ≡ max). In this paper, we assume
that ≤S is a total order. In this case, ≤S is equal to maximization [4].

Definition 2 (Semiring-based Constraint Optimization Problem). A
semiring-based constraint optimization problem (COP) over a c-semiring is a
triple (X, D,F ) where X = {x1, . . . , xn} is a set of variables, D = {D1, . . . ,
Dn} is a set of finite domains, and F = {f1, . . . , fm} is a set of constraints.
The constraints fj ∈ F are functions defined over var(fj) assigning to each tuple
a value in A.

For example, diagnosis of the full adder circuit shown in Fig. 1 can be framed
as a COP over Sp with variables X = {u, v, w, x, y, z, c, s, a1, a2, e1, e2, o1}. Vari-
ables u to s are Boolean variables with domain {0, 1}. We assume that variables



3

x, z, and s are observed to be 1, and variable c is observed to be 0 (therefore,
we omit them in the following). Variables a1 to o1 describe the mode of a com-
ponent, “Good” or “Broken,” and have domain {G,B}. If a component is good
(G) then it correctly performs its Boolean function. If a component is broken
(B) then no assumption is made about its behavior. We assume AND gates have
a 1% probability of failure, but OR gates and XOR gates have a 5% probability
of failure. Table 1 shows the resulting constraints for the example, where each
tuple is assigned the probability of its corresponding mode.

Fig. 1. The full adder example consists of two AND gates, one OR gate and two XOR
gates. Variables x, z, s, and c are observed as indicated.

A semi-ring CSP is solved by applying a series of combination and projection
operations to its constraints:

Definition 3 (Combination and Projection). Let f and g be two constraints
defined over var(f) and var(g), respectively. Let t ↓Y denote the projection of a
tuple on a subset Y of its variables. Then,

1. The combination of f and g, denoted f⊗g, is a new constraint over var(f)∪
var(g) where each tuple t has value f(t ↓var(f))× g(t ↓var(g));

2. The projection of f on a set of variables Y , denoted f ⇓Y , is a new constraint
over Y ∩var(f) where each tuple t has value f(t1)+f(t2)+ . . .+f(tk), where
t1, t2, . . . , tk are all the tuples of f for which ti ↓Y = t.

Given a COP (X,D, F ) over a c-semiring, the constraint optimization task
is to compute a function f over variables of interest Z ⊆ X such that f(t) is the
best value attainable by extending t to X, that is, f(t) = (

⊗m
j=1 fj) ⇓Z .

3 Best-First Optimization using Bound-Guided Search

An important class of algorithms for constraint optimization finds the best solu-
tions by searching through the space of possible assignments in best first order,
guided by a heuristic evaluation function [16, 13, 11]. In the A* framework [7],
the evaluation function is composed of the value of the partial assignment that
has been made so far, g, and a heuristic h that provides an optimistic estimate
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(bound) on the optimal value that can be achieved for the complete assignment.
In the case of semiring-CSPs, this is an upper bound:

Definition 4 (Upper Bound). For two functions f1, f2 with var(f1) = var(f1),
f2 is an upper bound of f1, written f1 ≤S f2, if f1(t) ≤S f2(t) for all t.

Kask and Dechter [13] show how the bounding function h can be derived
from a decomposition of the constraint network into an acyclic instance called a
bucket tree:

Definition 5 (Induced Graph [10]). Given a constraint graph G and an
ordering on its variables, the induced graph G∗ is obtained by processing the
variables from last to first, and interconnecting all the lower neighbors of each
variable xi.

Definition 6 (Bucket Tree Decomposition [14]). Given an induced graph
G∗, a bucket tree is a triple (T, χ, λ). T = (V, E) is a rooted tree that associates
a vertex vi with each variable xi, such that the parent of vi is vj if xj is the
closest lower neighbor of xi in G∗. χ and λ are labeling functions that associate
with each node vi, two sets χ(vi) ⊆ X and λ(vi) ⊆ F , such that

1. χ(vi) contains xi and every lower neighbor of xi in G∗;
2. λ(vi) contains every fj ∈ F such that xi is the highest variable in var(fj).

In this paper we derive a bounding function from a tree decomposition, which
is a generalization of a bucket tree decomposition:

Definition 7 (Tree Decomposition [12, 14]). A tree decomposition for a
problem (X, D,F ) is a triple (T, χ, λ), where T = (V, E) is a rooted tree, and
the labeling functions χ(vi) ⊆ X, and λ(vi) ⊆ F are defined such that

1. For each fj ∈ F , there exists exactly one vi such that fj ∈ λ(vi). For this
vi, var(fj) ⊆ χ(vi) (covering condition);

2. For each xi ∈ X, the set {vj ∈ V | xi ∈ χ(vj)} of vertices labeled with xi

induces a connected subtree of T (connectedness condition).

The left-hand side of Fig. 2 shows a bucket tree for the full adder example,
given the variable ordering {u, v, w, x, y, a1, a2, e1, e2, o1}. The right-hand side of
Fig. 2 shows a tree decomposition for the example.

Table 1. Constraints for the example (tuples with value 0 are not shown).

fa1: a1 w y fa2: a2 u v fe1: e1 u y fe2: e2 u fo1: o1 v w

G 0 0 .99 G 0 0 .99 G 1 0 .95 G 0 .05 G 0 0 .95
G 1 1 .99 G 1 1 .99 G 0 1 .95 B 0 .05 B 0 0 .05
B 0 0 .01 B 0 0 .01 B 0 0 .05 B 1 .05 B 0 1 .05
B 0 1 .01 B 0 1 .01 B 0 1 .05 B 1 0 .05
B 1 0 .01 B 1 0 .01 B 1 0 .05 B 1 1 .05
B 1 1 .01 B 1 1 .01 B 1 1 .05
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Fig. 2. Bucket tree (left) and tree decomposition (right) for the example in Fig. 1. The
trees show the labels χ and λ for each node.

The tree T (bucket tree or tree decomposition) describes an equivalent,
acyclic instance of the COP. To compute the evaluation function h, this acyclic
instance can be evaluated by dynamic programming, implemented by a message-
passing algorithm (called cluster-tree elimination in [11]) that processes the
nodes of the tree bottom-up (that is, in post-order). At each node vi, the con-
straint

⊗
fk∈λ(vi)

fk is computed and combined with all constraints sent by the
children of vi (if any) to obtain a constraint hvi . If vi has a parent node vj , then
vi sends the constraint hvi ⇓χ(vj) to vj . Assume vroot is the root of the tree T .
After the dynamic programming algorithm has terminated, hvroot is the solution
to the constraint optimization task that consists of COP and the variables of
interest Z = χ(vroot).

The functions hvi computed by the dynamic programming algorithm can be
exploited to guide the search for solution assignments to the task where the
variables of interest are Z = X. In this paper we focus on an A* search strategy
that expands partial assignments in best first order on f = g + h, where g is the
value of the partial assignment, and h is the above evaluation function.

For the case of a bucket tree, Kask and Dechter [13] describe an algorithm
that extracts the best assignment by processing the tree top-down, that is, in
pre-order. Variables are assigned according to the variable order {x1, . . . , xn} of
the bucket tree. Consider a point in the search where the current assignment
is x1 = x0

1, . . . , xi = x0
i . Let function g(i) be defined as the combination of all

constraint functions in the λ-label of nodes v1, . . . , vi in the bucket tree:

g(i) =
i⊗

j=1

(
⊗

fk∈λ(vj)

fk).
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Let function h(i) be defined as the combination of all functions of the nodes
c1, . . . , cl that are children of v1, . . . , vi:

h(i) =
l⊗

j=1

hcj
.

Given an extension x1 = x0
1, . . . , xi = x0

i , xi+1 = x0
i+1 of the assignment, then

g(i)(x0
1, . . . , x

0
i ) × (h(i) ⇓xi+1)(x

0
i+1) is an upper bound (with respect to ≤S)

on the value that can be achieved for completing this extended assignment. In
addition, if the operator × is idempotent or has an inverse, then g(i) and h(i) can
be incrementally updated when going from variable xi to xi+1 using the recursive
scheme defined in [13]. For example, consider the bucket tree on the left-hand
side of Fig. 2 for the case where u to a1 have been assigned a value, that is, nodes
v1 to v5 have been traversed. Then g(5) = fa1, and h(5) = hv6 ⊗ hv7 ⊗ hv8 ⊗ hv9 .

We generalize this idea from bucket tree decompositions to tree decomposi-
tions as follows. Let p = v1, . . . , vn be a pre-order of the tree nodes. The pre-order
defines an ordering on groups of variables G1, . . . , G|V | ⊆ X, by letting

G1 = χ(vroot), Gi+1 = χ(vi) \ (G1 ∪ . . . ∪Gi).

For example, for the tree on the right-hand side of Fig. 2, the pre-order
v1, v2, v3 induces an ordering on three groups of variables G1 = {u, v, w, y, a1, a2},
G2 = {e1, o1}, and G3 = {e2}.

The principle for deriving bounding functions from bucket trees carries over
to tree decompositions, except that the variables are assigned in groups. For
example, consider the tree on the right-hand side of Fig. 2 and the case where
the variables in the group G1 = {u, v, w, y, a1, a2} have been assigned a value,
that is, node v1 has been traversed. Then g(1) ⊗ h(1) with g(1) = fa1 ⊗ fa2 and
h(1) = hv2⊗hv3 is a bounding function for the values that can be achieved when
the assignment is extended by assigning the variables in the group G2 = {e1, o1}.

In the following, we develop a demand driven computation of the bounding
function h for this general case of tree decompositions.

4 On-Demand Bound Computation

A semiring-based COP will typically have many different solutions (if Z = X,
the number of solutions is | D1 | · | D2 | · . . . · | Dn |). In practice, many of
these solutions are uninteresting. When only a few best solutions are required,
computing bounding functions for all assignments is wasteful, since typically a
large percentage of the bounds are not needed in order to compute the best solu-
tions. The key to capturing this intuition formally is the following monotonicity
property of c-semirings, which is an instance of preferential independence [6]:

Proposition 1. If h0 ≤S h1 for h0, h1 ∈ A, then for g0 ∈ A, g0×h0 ≤S g0×h1.

Proof. Because × distributes over +, (g0 × h1) + (g0 × h0) = g0 × (h1 + h0).
Because h0 ≤S h1, h1 + h0 = h1. Thus, (g0 × h1) + (g0 × h0) = g0 × h1.
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Proposition 1 implies that in best-first search, rather than considering all
possible expansions of a node, it is sufficient to consider only the expansion with
the best value, while keeping a reference to its next best sibling. This is sufficient
because all other expansions cannot lead to solutions that have a better value
with respect to the order ≤S . The constraint-based A* algorithm in [17] exploits
this principle in order to significantly limit the nodes created at each expansion
step. In this paper we generalize upon this approach in order to avoid computing
bounds on all possible expansions of a node, instead computing only a bound on
the best expansion of a node.

Based on the above, the key idea pursued in this paper is to interleave best-
first search and the computation of a bounding function h, such that h is com-
puted only to an extent that it is actually needed in order to generate a next best
solution. We call this approach best-first search with on-demand bound computa-
tion (BFOB). BFOB exploits the above expansion scheme within the on-demand
computation of the evaluation function h itself, as well as during the best-first
search phase.

In the following we develop an algorithm for best-first, incremental computa-
tion of h using a tree-structured network. The approach is similar to pipelined,
on-demand computation in distributed database systems [5, 2]. It consists of
developing best-first variants of the constraint combination and projection oper-
ators, and connecting them through objects called streams [1]. Each constraint
is viewed as a stream that generates consistent assignments. Each constraint
in the network operates as a consumer of the steams of its children, and pro-
duces a stream for its parent. The elements of each stream are constructed only
as needed: if a consumer attempts to access an element of its stream that has
not yet been constructed, the stream will only perform the work necessary to
produce the required element.

Figure 3 shows a coordination network of functions and operators corre-
sponding to the tree decomposition in Fig. 2. Bold boxes correspond to given
constraints, whereas the other boxes correspond to constraints that need to be
computed. Function hv1 can be computed incrementally from the network by
applying the constraint operations only partially, that is, to the relevant sub-
sets of the tuples of the constraints. Consider the best tuple of the function fe2,
which is 〈e2 = G, u = 0〉 with value .95 (first tuple of fe2 in Table 1). The
projection of this tuple on u, which is 〈u = 0〉 with value .95, is necessarily a
best tuple of hv3 . Similarly, a best tuple of fa1 can be combined with a best
tuple of fa2, for instance the first tuples of fa1 and fa2 in Table 1. The resulting
tuple 〈u = 0, v = 0, w = 0, y = 0, a1 = G, a2 = G〉 with value .98 is necessar-
ily a best tuple of constraint f1. This tuple needs to be combined with a tuple
of hv2 . A best tuple for hv2 is generated by combining the best tuple of fo1

with a best tuple of fe1 and projecting the result onto u, v, w, and y, yielding
〈u = 1, v = 0, w = 0, y = 0〉 with value .90. Since this tuple does not combine
with the tuple found for f1 so far, generation of a next best tuple is triggered
for both hv2 and f1. The next best tuple of hv2 is 〈u = 0, v = 0, w = 0, y = 1〉
with value .90. This tuple also does not combine with any of the tuples for f1
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generated so far. The process continues until a third tuple for hv2 is generated;
for example, by combining the third tuple of fe1 in Table 1 with the best tuple
of fe2. The resulting tuple 〈u = 0, v = 0, w = 0, y = 0〉 for hv2 combines with the
first tuple that has been generated for f1 and the tuple in hv3 to a best tuple for
hv1 , 〈u = 0, v = 0, w = 0, y = 0, a1 = G, a2 = G〉 with value 0.044. Notice that
in order to compute this best tuple, large parts of the constraints fa1, fa2, fe1,
fe2, and fo1 never needed to be visited.

Fig. 3. Computational scheme for the tree decomposition in Fig. 2. The circled frag-
ments correspond to the nodes v1, v2 and v3 of the tree.

We formalize the concept of processing constraints partially, in best-first
order, based on a decomposition of each function into a partition of subfunctions,
where each subfunction is a set representing either enumerated or unenumerated
tuples of the function. A best-first decomposition of a function corresponds to
a partition of the function’s tuples into a sequence of elements, such that the
values of tuples in an element are better (with respect to ≤S) than those of all
elements that follow:

Definition 8 (Function Decomposition). A best-first decomposition of a
function f is a sequence of subfunctions f1, f2, . . . , fk such that

1. (fj ⇓∅) ≤S fi(t) for all t where fi(t) 6= 0, 1 ≤ i < j ≤ k;
2. f(t) = f1(t) + f2(t) + . . . + fk(t);
3. fi ⊗ fj ≡ 0 for 1 ≤ i < j ≤ k.

In the example above and for the scope of this paper, we consider only best-
first decompositions that correspond to partitions into single tuples, that is,
subfunctions f1, f2, . . . , fk where each fi(t) 6= 0 for at most one t.

The streams that hold the constraints are simply lists with a number of
procedures to manipulate them. List entries e consist of a subfunction f(e) and
a value v(e) ∈ A. In the case where the constraint is the input to a combination
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operator, entries also have an index i(e) pointing to an entry in the other input’s
stream.

Conceptually, each stream is a list of entries organized in decreasing order ac-
cording to their value v(e). Function pop() selects and deletes an entry from the
stream with the next best value. Function push() inserts an entry into a stream.
The set of streams are pipelined; functions producer() and consumer() return the
preceding (producing) and succeeding (consuming) operator of the stream, re-
spectively. producer() returns nil for streams corresponding to given constraints,
and consumer() returns nil for the stream corresponding to the constraint at the
root of the tree.

Based on the stream object, the two functions nextBestProj() and nextBest-
Comb() shown in Fig. 4 implement best-first variants of the constraint operators
⇓ and ⊗, respectively. Function nextBestProj() pops a subfunction from its input
stream and computes its projection. It then checks whether the resulting tuple
already exists on the output stream. If it does not already exist, it is a next best
tuple and pushed onto the output stream. Function nextBestComb() processes
two input streams input1 and input2 and combines the entries in input1 with
the entries in input2. Each entry ei in input1 points to an entry dj in input2,
and its value v(ei) is an upper bound on the value v = (f(ei) ⊗ f(dj)) ⇓∅ that
can be achieved for the combination.

When nextBestComb() combines two entries ei and dj , three cases can occur,
depending on the value v of the result and the value v(ei+1) of the next best
entry ei+1 in input1:

1. If v = 0, then the result can be ignored;
2. If v(ei+1) <S v, then the result f(ei)⊗f(dj) is a tuple of the output stream.

However, it is not necessarily a next best tuple, and therefore put on hold in
the stream input1 (this is accomplished by setting its pointer i() to zero);

3. If v ≤S v(ei+1), then the result f(ei) ⊗ f(dj) is a next best tuple of the
output and pushed onto the output stream.

In addition, a next best sibling of the ei is generated that points to the next
entry on stream input2. An optimization is possible for the special case where
the constraint of input2 is defined over a subset of the variables of the constraint
of input1. In this case (known as semi-join), each tuple of input1 can combine
with at most one tuple of input2, hence, no next best sibling of ei needs to be
generated.

Functions nextBestProj() and nextBestComb() are based on functions at(),
next() and insert(), shown in Fig. 5. The function at(i) accesses the i-th best
subfunction of a stream and generates it, if necessary, using function next().
Function next() calls the constraint operator that produces the stream to gener-
ate a next best entry for the stream. Function insert() is a helper function that
computes the value of entries and pushes them onto streams.

Initially, constraints are decomposed into subfunctions and inserted at the
inputs (leafs) of the scheme. The function at the root of the scheme, hvroot , can
then be constructed incrementally in best-first order by calling at(1), at(2), etc.
for the root stream.
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function nextBestProj(op)
while at(input(op,1)) 6= nil do

e1 ← pop(input(op))
s ← f(e1) ⇓var(output(op))

for i ← 1 to | output(op) | do
if s ≤S f(at(output(op), i)) then goto while end if

end for
insert(output(op),s)
return true

end while
return false

function nextBestComb(op)
while at(input1(op,1)) 6= nil do

e1 ← pop(input1(op))
if i(e1) = 0 then

insert(output(op),f(e1))
return true

end if
if at(input2(op),i(e1)) 6= nil then

s ← f(e1)⊗ f(at(input2(op), i(e1)))
if not(var(input2) ⊆ var(input1)) or (s ≡ 0) then

insert(input1(op),f(e1),i(e1) + 1)
end if
if (s ≡ 0) then goto while end if
if at(input1(op,1)) 6= nil then

if s ⇓ ∅ <S v(at(input1(op, 1))) then
push(input1(op),s,s ⇓∅,0)
goto while

end if
end if
insert(output(op),s)
return true

end if
end while
return false

Fig. 4. Best-first variants of constraint projection and constraint combination.
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function at(stream,i)
if i ≤| stream | then

return stream[i]
else

if next(stream) then
return at(stream,i)

end if
return nil

function next(stream)
op ← producer(stream)
if op 6= nil then

case op
proj: return nextBestProj(op)
comb: return nextBestComb(op)

end case
end if
return false

function insert(stream,f ,optional i ← 1)
op ← consumer(stream)
if op 6= nil then

case op
comb:

if at(Input2(op),i) 6= nil then
push(stream,f ,f ⇓∅ ×v(at(Input2(op), i)), i)

end if
end case

end if
push(stream,f ,f ⇓∅)
return

Fig. 5. Functions for accessing and generating i-th best entries of streams and inserting
entries into streams.
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The best-first variants of the constraint operators have the same complexity
as their counterparts ⇓ and ⊗. Therefore, apart from overhead due to additional
data structures, on-demand function computation is not computationally more
complex than at-once function computation:

Theorem 1 (Complexity). Let (T, χ, λ) be a tree decomposition, T = (V,E).
Let w = maxvi∈V (| χ(vi) |) − 1 be the width of the tree decomposition. Then
both for the algorithm in Sec. 3 and the algorithm in Fig. 4 and 5, hvroot can be
computed in time O((| F | + | V |) · exp(w)) and space O((| V |) · exp(w)).

However, the average complexity of on-demand function computation can be
much lower if only some best tuples of the resulting function are required.

5 Best-First Optimization with On-Demand Bounds

Figure 6 presents algorithm BFOB (best-first search with on-demand bound
computation). It maintains a list of search nodes and expands best elements of
this list. Variables are assigned in groups following a pre-order traversal of a
tree decomposition as described in Sec. 3. When expanding an element, instead
of computing all possible expansions of an element, only the best expansion
is computed. Bounds are computed on-demand for the best expansion and its
next best sibling using the function at() described in Sec. 4. A more detailed
description of the expansion scheme can be found in [17].

Algorithm BFOB
Input: A COP (X, D, F ) over a c-semiring.
Output: The optimal assignments to X in best-first order.
Initialize: Compute tree decomposition (T, χ, λ) to obtain scheme of streams and
operators. Compute variable groups G1, . . . , G|V | from pre-order traversal of T . De-
compose constraints into subfunctions and enqueue the subfunctions in streams. Insert
entry with empty assignment, node index i = 1, expansion index j = 1 into list.
Search: While not out of time and list not empty:
Pop entry e with best value from list. If node index i >| V |, then output assignment
as next best solution and goto search.
Expand: (Generate best expansion and next best sibling):
- Best expansion: Compute tuple s1 = at(stream(vi),j). If s1 is not nil then create
new assignment x1 = x0

1, . . . , xk = x0
k that extends the assignment of e by assigning

the variables in Gi the values of s1. Create new entry with the expanded assign-
ment, node index i + 1, and expansion index j = 1. Put new entry on list with value
g(i)(x0

1, . . . , x
0
k)× h(i) ⇓∅ as defined in Sec. 3.

- Next best sibling: Compute tuple s2 = at(stream(vi),j +1). If s2 is not nil, create
new entry with assignment of e, node index i, and expansion index j + 1. Put new
entry on list with value g(i−1)(x0

1, . . . , x
0
k−|Gi|) × v(s2) × h(i) ⇓∅ as defined in Sec. 3.

Goto search.

Fig. 6. Algorithm best-first search with on-demand bound computation.
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Table 2. Results for random Max-CSPs, sparse networks (5 instances).

T C N K BFPB (sec) BFOB (sec)

256 (25%) 20 20 32 0.15 0.046

512 (50%) 20 20 32 0.18 0.078

768 (75%) 20 20 32 0.19 0.14

Table 3. Results for random Max-CSPs, medium networks (5 instances).

T C N K BFPB (sec) BFOB (sec)

256 (25%) 30 20 32 6.4 0.34

512 (50%) 30 20 32 10.1 2.6

768 (75%) 30 20 32 12.3 6.9

6 Experimental Results

We evaluated the performance of BFOB on solving the task of generating a single
best solution to Max-CSP problems where Z = ∅. Experiments were performed
using randomly generated Max-CSP problems. Max-CSP can be formulated as
a constraint optimization problem over the c-semiring (N+

0 ∪ ∞,min, +,∞, 0),
where the tuples of a constraint fj ∈ F have value 0 if the tuple is allowed and
value 1 if the tuple is not allowed. To generate the constraints, we used a random,
binary constraint model with four parameters N , K, C, and T , where N is the
number of variables, K is the domain size, C is the number of constraints, and
T is the tightness of each constraint. The tightness of a constraint is the number
of tuples that have value 1.

We compared BFOB against an alternative algorithm that pre-computes all
functions hvi prior to search (as described in Sec. 3). We call this alternative
algorithm BFPB. BFPB is analogous to the algorithm BFMB in [13], extended
from bucket trees to tree decompositions. Tables 2 and 3 show the results of
experiments with two classes of Max-CSP problems, N=20, K=32, C=20, 256
≤ T ≤ 768 and N=20, K=32, C=30, 256 ≤ T ≤ 768. In each class, the search
space is KN = 2100. On each instance, we ran BFOB and BFPB and compared
their runtime. The runtime does not include the time for computing a tree de-
composition of the problem. All experiments were performed using a Pentium 4
CPU and 1 GB of RAM.

Tables 2 and 3 show that BFOB outperforms BFPB in all cases. The time
savings can be dramatic especially for problems with low constraint tightness
and sparse to medium constraint networks. This is consistent with experiments
in [13], showing that pre-computing bounding functions is inefficient especially
for problems that have many solutions. We are currently working on larger prob-
lems and a more thorough comparison that includes the memory allocated. The
implementation used to derive the results above is limited to problems with a
relatively small number of variables and constraints due to an inefficient imple-
mentation of tree decomposition.
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7 Related Work and Discussion

We presented on-demand bound computation for the case of exact bounds, that
is, for the case where search is actually an enumeration (backtrack-free). How-
ever, even computing a best tuple of an exact bounding function from a tree
decomposition can be exponential in the tree width w. Dechter and Rish [9]
present a method to decrease the complexity of dynamic programming by defin-
ing an approximate version called mini-bucket elimination (called mini-clustering
[11] for the more general case of tree decompositions). The idea is to limit the
size of the computed functions by restricting their maximum arity to a fixed
value z. This is accomplished by partitioning functions f1, . . . , fk that need to
be combined into sets P1, . . . , Pm called mini-clusters, each having a combined
number of variables less than or equal to z. Then the function (

⊗k
i=1 fi) ⇓Y is

bounded by the function f =
⊗m

i=1(
⊗

fj∈Pi
⇓Y ) that applies projection early at

the level of mini-clusters. The accuracy of the approximation can be controlled
by varying the parameter z. The algorithm BFMB(z) in [13] combines mini-
clustering and best-first search. Lower values for z lead to loose bounds that are
easy to compute, but will guide the search less and therefore necessitate more
backtracking in order to find optimal solutions. Kask and Dechter [13] empir-
ically observe an U-shaped performance curve when varying the parameter z,
that is, a trade-off between bound accuracy and search. BFOB can be combined
with our approximate bound computation simply by replacing the scheme of
operators and functions (Fig. 3) with an approximate mini-clustering scheme.
Some preliminary experimentation indicates that augmenting BFMB(z) with on-
demand heuristics computation can turn its U-shaped performance curve into a
more J-shaped curve.

In this paper, we focused on best-first search. Branch-and-Bound is an alter-
native, anytime search algorithm that searches the space of assignments depth-
first. It requires less memory than best-first search, but is less efficient in terms of
the number of search nodes expanded [7]. BBMB(z) [13] is a variant of BFMB(z)
for Branch-and-Bound based on bucket trees. BBBT(z) [13] extends BBMB(z)
to tree decompositions. Each time a variable needs to be assigned during search,
BBBT(z) solves the single-variable optimization problem (Z = {xi}) for all
unassigned variables. That is, like BFOB, BBBT(z) interleaves dynamic pro-
gramming and search. Unlike BFOB, BBBT(z) can dynamically change the
variable order and prune domains during search. However, BBBT(z) does not
compute bounds incrementally on-demand, but instead starts a fresh dynamic
programming phase at each search node. This can lead to redundant computa-
tions, and therefore BBBT(z) and BBMB(z)/BFMB(z) do not dominate each
other [11]. Since the algorithm presented in this paper is essentially an improve-
ment of BFMB(z), BBBT(z) cannot dominate BFOB, either. However, variable
reordering based on smallest domain size as in BBBT(z) is not possible in BFOB
because the values of variables are only partially known. An interesting direction
for future work would be to evaluate the impact of on-demand bound computa-
tion within the Branch-and-Bound search paradigm.
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8 Summary and Conclusion

Focusing on leading solutions is an important requirement in many applications.
In this paper, we presented a semiring-based constraint optimization algorithm
called BFOB that guides best-first search by bounds computed using tree de-
compositions and dynamic programming. BFOB computes bounds on-demand
and only to an extent that it is necessary in order to generate a next best solu-
tion. It exploits preferential independence to limit the expansion of search nodes
to the best expansion and to compute bounding functions partially for the next
best expansion and its next best sibling only. On-demand bound function com-
putation is a key to optimally interleave heuristic computation and search and
can lead to considerable performance gains.
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