
Generalized Conflict Learning for Hybrid
Discrete/Linear Optimization?

Hui Li and Brian Williams

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

{huili, williams}@mit.edu

Abstract. Conflict-directed search algorithms have formed the core of
practical, model-based reasoning systems for the last three decades. At
the core of many of these applications is a series of discrete constraint
optimization problems and a conflict-directed search algorithm, which
uses conflicts in the forward search step to focus search away from known
infeasibilities and towards the optimal feasible solution. In the arena of
model-based autonomy, deep space probes have given way to more agile
vehicles, such as coordinated vehicle control, which must robustly control
their continuous dynamics. Controlling these systems requires optimizing
over continuous, as well as discrete variables, using linear as well as logical
constraints.
This paper explores the development of algorithms for solving hybrid
discrete/linear optimization problems that use conflicts in the forward
search direction, carried from the conflict-directed search algorithm in
model-based reasoning. We introduce a novel algorithm called General-
ized Conflict-Directed Branch and Bound (GCD-BB). GCD-BB extends
traditional Branch and Bound (B&B), by first constructing conflicts
from nodes of the search tree that are found to be infeasible or sub-
optimal, and then by using these conflicts to guide the forward search
away from known infeasible and sub-optimal states. Evaluated empir-
ically on a range of test problems of coordinated air vehicle control,
GCD-BB demonstrates a substantial improvement in performance com-
pared to a traditional B&B algorithm applied to either disjunctive linear
programs or an equivalent binary integer programming encoding.

1 Introduction

Conflict-directed search algorithms have formed the core of practical, model-
based reasoning systems for the last three decades, including the analysis of
electrical circuits [1], the diagnosis of thousand-component circuits [5], and the
model-based autonomous control of a deep space probe [10]. A conflict, also
called nogood, is a partial assignment to a problem′s state variables, representing
sets of search states that are discovered to be infeasible, in the process of testing
candidate solutions.
? This research is funded by The Boeing Company grant MIT-BA-GTA-1 and by

NASA grant NNA04CK91A.



At the core of many of the above applications is a series of discrete constraint
optimization problems, whose constraints are expressed in propositional state
logic, and a set of conflict-directed algorithms, which use conflicts to focus search
away from known infeasibilities and towards the optimal feasible solution.

In the arena of model-based autonomy, deep space probes have given way
to more agile vehicles, including rovers, airplanes and legged robots [20], which
must robustly control their continuous dynamics according to some higher level
plan. Controlling these systems requires optimizing over continuous, as well as
discrete variables, using linear as well as logical constraints. In particular, [22]
introduces an approach for model-based execution of continuous, non-holonomic
systems, and demonstrates this capability for coordinated air vehicle search and
rescue, using a real-time hardware-in-the-loop testbed.

In this framework the air vehicle control trajectories are generated and up-
dated in real-time, by encoding the plan′s logical constraints and the vehicles
continuous dynamics as a disjunctive linear program (DLP). A DLP [3] general-
izes the constraints in linear programs (LPs) to clauses comprised of disjunctions
of linear inequalities. A DLP is one instance of a growing class of hybrid rep-
resentations that are used to encode mixed discrete/linear constraints, such as
mixed linear logic programs (MLLPs) [13] and LCNF [16], in addition to the well
known mixed integer programs (MIPs) and binary integer programs (BIPs).

In this paper we explore the development of algorithms for solving hybrid dis-
crete/linear optimization problems (HDLOPs) that use conflicts in the forward
search direction, similar to the conflict-directed A* algorithm [23]. We introduce
an algorithm called Generalized Conflict-Directed Branch and Bound (GCD-
BB) applied to the solution of DLPs. GCD-BB extends traditional Branch and
Bound (B&B), by first constructing a conflict from each search node that is
found to be infeasible or sub-optimal, and then by using these conflicts to guide
the forward search away from known infeasible and sub-optimal states.

In the next section we begin by reviewing the DLP formulation. Second, we
introduce the GCD-BB algorithm, including B&B for DLPs, generalized con-
flicts, conflict-directed search and the relaxation method. Third, we evaluate
GCD-BB empirically on the test problems generated by the coordinated air ve-
hicle path planner [22]. GCD-BB demonstrates a substantial improvement in
performance compared to a traditional B&B algorithm applied to either DLPs
or an equivalent BIP encoding. Finally, we conclude and discuss future work.

2 Disjunctive Linear Programs

A DLP is defined in Eq.1 [3], where x is a vector of decision variables, f(x) is a
linear cost function, and the constraints are a conjunction of n clauses, each of
which (clause i) is a disjunction of (mi) linear inequalities, Cij(x) ≤ 0.

Minimize f(x)

Subject to
∧

i=1,...,n

(
∨

j=1,...,mi

Cij(x) ≤ 0) (1)



A DLP reduces to a standard Linear Program (LP) in the special case when
every clause in the DLP is a unit clause, that is mi = 1,∀i = 1, . . . , n. A clause
is a unit clause if it only contains one linear inequality. For a DLP to be feasible,
no clause in the DLP should be violated. A clause is violated if none of the linear
inequalities in the clause is satisfied.

For example, in Fig.1 a vehicle has to go from point A to C, without hitting
the obstacle B, while minimizing fuel use. Its DLP formulation is Eq. 2.

Fig. 1. A simple example of a hybrid discrete/linear optimization problem

Minimize f(x)
Subject to g(x) ≤ 0

xt ≤ xL ∨ xt ≥ xR ∨ yt ≤ yB ∨ yt ≥ yT ,

∀t = 1, . . . , n

(2)

Here ∨ denotes logical or, and x is a vector of decision variables that includes,
at each time step t(= 1, . . . , n), the position, velocity and acceleration of the
vehicle. f(x) is a linear cost function in terms of fuel use, and g(x) ≤ 0 is a
conjunction of linear inequalities on vehicle dynamics, and the last constraint
keeps the vehicle outside obstacle B, at each time step t.

Note that HDLOPs can also be formulated in other ways: BIPs [17, 15, 14],
MLLPs [13] and LCNF [16]. Our GCD-BB algorithm, though introduced in the
context of DLPs, can be generalized to other formulations. Our focus is on the
generalization of forward conflict-directed search to these hybrid problems, not
on the DLP encoding in particular.

3 The GCD-BB Algorithm

The GCD-BB algorithm builds upon B&B and incorporates three key innovative
features: first, Generalized Conflict Learning learns conflicts comprised of con-
straint sets that produce either infeasibility or sub-optimality; second, Forward
Conflict-Directed Search guides the forward step of the search away from regions
of state space corresponding to known conflicts; and third, Induced Unit Clause
Relaxation uses unit propagation to form a relaxed problem and reduce the
size of its unassigned problem. In addition, we compare different search orders:



Best-first Search (BFS) versus Depth-first Search (DFS). In the following sub-
sections, we develop these key features of GCD-BB in detail, including examples
and pseudo code.

3.1 Branch and Bound for DLPs

Alg. 1 BB-DLP(DLP )
1: upperBound← +∞
2: timestamp = 0
3: put DLP into a FILO queue
4: while queue is not empty do
5: node ← remove from queue
6: node.relaxedSolution ← solveLP(node.relaxedLP)
7: if node.relaxedLP is infeasible then
8: continue {node is deleted}
9: else if node.relaxedValue ≥ upperBound then

10: continue {node is deleted}
11: else
12: expand = False
13: for each clause in node.nonUnitClauses do
14: if Clause-Violated?(clause, node.relaxedSolution) then
15: expand ← True
16: break
17: end if
18: end for
19: if expand = False then
20: upperBound← node.relaxedValue {a new incumbent was found}
21: incumbent← node.relaxedSolution
22: else
23: put Expand-Node(node, timestamp) in queue
24: timestamp← timestamp + 1
25: end if
26: end if
27: end while
28: if upperBound < +∞ then
29: return incumbent
30: else
31: return INFEASIBLE
32: end if

GCD-BB builds upon B&B, which is frequently used by BIPs and MIPs,
to solve problems involving both discrete and continuous variables. Instead of
exploring the entire feasible set of a constrained problem, B&B uses bounds on
the optimal cost, in order to avoid exploring subsets of the feasible set that it
can prove are sub-optimal, that is, subsets whose optimal solution is not better



than the incumbent, which is the best solution found so far. The algorithm for
B&B applied to DLPs is Alg. 1.

Alg. 1 is special for DLPs, in mainly function Clause-Violated? and function
Expand-Node. Clause-Violated? checks if any clause is violated by the relaxed
solution. Note that a node in the search tree represents a set of unselected clauses
and a set of selected unit clauses. At each node in the search tree, the selected
unit clause set and the objective function form the relaxed LP to be solved1.
While the search tree of B&B for BIPs branches by assigning values to the binary
variables, in Expand-Node, B&B for DLPs branches by splitting clauses; that is,
a tree node is expanded by selecting one of the DLP clauses, and then selecting
one of the clauses′ disjuncts for each of the child nodes. More detailed pseudo
code can be found in [21].

3.2 Generalized Conflict Learning

Underlying the power of B&B is its ability to prune subsets of the search tree
that correspond to relaxed subproblems that are identified as inconsistent or
sub-optimal, as seen in line 7 and 9 in Alg.1. Hence two opportunities exist for
learning and pruning. We exploit these opportunities by introducing the concept
of generalized conflict learning, which extracts a description from each fathomed
subproblem that is infeasible or sub-optimal. This avoids exploring subproblems
with the same description in the future. To accomplish this we add functions
Extract-Infeasibility and Extract-Suboptimality after line 7 and 9 in Alg. 1,
respectively. It is valuable to have each conflict as compact as possible, so that
the subspace that can be pruned is as large as possible.

In the related fields of model-based reasoning and discrete constraint sat-
isfaction, conflict-directed methods, such as dependency-directed backtracking
[1], backjumping [2], conflict-directed backjumping [8] and dynamic backtracking
[7], dramatically improve the performance of backtrack (BT) search, by learning
the source of each inconsistency discovered and using this information, called
a conflict (or nogood), to prune additional subtrees that the conflict identifies
as inconsistent. Similarly nogood learning is a standard technique for improving
BT search, in CSP [6][19] and in SAT solvers [12].

Definition of a Conflict In the context of DLPs, each conflict can be one
of two types: an infeasibility conflict, or a sub-optimality conflict. An infeasibil-
ity conflict is a set of inconsistent constraints of an infeasible subproblem. An
example is the constraint set {a,b,c,d} in Fig. 2(a). A sub-optimality conflict
is a set of active constraints of a sub-optimal subproblem. An inequality con-
straint gi(x) ≤ 0 is active at a feasible point x̃ if gi(x̃) = 0. An example of a
sub-optimality conflict is the constraint set {a,b,d} in Fig. 2(b).

1 p′ is a relaxed LP of an optimization problem p, if the feasible region of p′ contains
the feasible region of p, and they have the same objective function. Therefore if p′ is
infeasible, then p is infeasible. Assuming minimization, if p′ is solved with an optimal



(a) Constraint set {a,b,c,d} is
inconsistent. It is an infeasibil-
ity conflict.

(b) The optimal solution is
X∗. Constraints a, b and d are
all active. Set {a,b,d} is a sub-
optimality conflict.

Fig. 2. Examples of conflicts

Definition of a Minimal Conflict A conflict is minimal if none of its proper
subsets is a conflict. For example, the constraint set {a,c,d} in Fig. 2(a) is a
minimal conflict, as it is an inconsistent constraint set and every proper subset
of it is consistent. Constraint set {a,d} in Fig. 2(b) is also a minimal conflict.
Note that there can be more than one minimal conflict (possibly with differ-
ent cardinalities) involved in one infeasibility or sub-optimality, and a minimal
conflict is not guaranteed to have the minimum cardinality. We extract minimal
conflicts instead of any conflicts, since minimal conflicts can prune larger portion
of the state space. However, we do not try to extract the minimum conflict of a
subproblem, because it is NP-complete.

Implementation Its important to extract minimal conflicts instead of any
conflicts so that larger portion of the state space can be pruned. We use methods
based on the duality theory to extract minimal conflicts for infeasibility and sub-
optimality. They are efficient because only one additional LP is incurred for each
conflict, regardless of the number of constraints in the conflict. More specifically,
minimal infeasibility sets are in 1-1 correspondence with the extreme rays of the
cone formed by the modified dual of the original LP [24].

For sub-optimality, we use the dual method of LP to extract minimal con-
flicts. According to Complementary Slackness [11] from linear optimization the-
ory, the non-zero terms of the optimal dual vector correspond to the set of active
constraints (assuming with cardinality k) at the optimal solution (assuming with
dimension n) of the LP. When the optimal solution is non-degenerate, it is guar-
anteed that k ≤ n and the active constraint set is the minimal sub-optimality
conflict; when there is degeneracy, we take any min{k, n} constraints from the
active constraint set to form the minimal sub-optimality conflict.

value v, the optimal value of p is guaranteed to be greater than or equal to v. B&B
uses relaxed problems to obtain lower bounds of the original problem.



Once extracted, the minimal conflict is stored in a conflict database, con-
flictDB, indexed by a timestamp that marks its discovery time.

3.3 Forward Conflict-directed Search

We use forward conflict-directed search to guide the forward step of search away
from regions of the feasible space that are ruled out by known conflicts. Backward
search methods also use conflicts to direct search, such as dependency-directed
backtracking [1], backjumping [2], conflict-directed backjumping [8], dynamic
backtracking [7] and LPSAT [16]. These backtrack search methods use conflicts
both to select backtrack points and as a cache to prune nodes without testing
consistency. In contrast, methods like conflict-directed A* [23] use conflicts in
forward search, to move away from known bad states. Thus not only one conflict
is used to prune multiple subtrees, but also several conflicts can be combined as
one compact description to prune multiple subtrees. We generalize this idea to
guiding B&B away from regions of state space that the known conflicts indicate
as infeasible or sub-optimal. Our experimental results show that forward conflict-
directed search significantly outperforms backtrack search with conflicts on a
range of cooperative vehicle plan execution problems.

In terms of implementation, we replace function Expand-Node in Alg. 1 with
function General-Expand-Node (Alg. 2). When there is no unresolved conflict2,
the normal Expand-Node is used, and when unresolved conflicts exist, forward
conflict-directed search is performed. Forward conflict-directed search (Forward-

Alg. 2 General-Expand-Node(node, timestamp,conflictDB)
1: conflictSet← conflictDB(timestamp)
2: if conflictSet is empty then
3: Expand-Node(node, timestamp)
4: else
5: Forward-CD-Search(node, conflictSet)
6: end if

CD-Search as in Alg. 2) includes three steps: 1) Generate-Constituent-Kernels, 2)
Generate-Kernels (Alg. 3) and 3) Generate-And-Test-DLP-Candidates (Alg. 5).
An example is shown in Fig. 3.

A constituent kernel is a minimal description of the states that resolve a
conflict. In the context of DLPs, a constituent kernel of a conflict is a linear
inequality that is the negation of a linear inequality in the conflict. For example,
one constituent kernel of the minimal infeasibility conflict in Fig. 2(a) is {x−y ≤
0}3.
2 A node resolves conflict C if at least one of the C′s disjuncts is explicitly excluded

in the relaxed LP of the node.
3 It is not the strictly correct negation of x − y ≥ 0, but in the context of linear

programming, it is correct and convenient.



Fig. 3. Each conflict is mapped to a set of constituent kernels, which resolve that con-
flict alone. Kernels are generated by combining the constituent kernels using minimal
set covering. A DLP candidate is formed for each kernel, and is checked for consistency.

In [23] kernels are generated to resolve all known conflicts, by combining the
constituent kernels using minimal set covering. It views minimal set covering
as a search and uses A* to find the kernel containing the best utility state. In
the context of DLPs, we similarly build up a kernel by incrementally selecting
constituent kernels (which are linear inequalities) from discovered conflicts using
minimal set covering. However, we do not use A* search to identify the best
kernel. In order to evaluate the heuristic during A* search, we would need to solve
an LP at each step as we build the kernels; this can be very costly. Instead GCD-
BB generates a DLP candidate with each kernel, as shown in Fig. 3, and prunes
the DLPs that are propositionally unsatisfiable, using a fast unit propagation
test before solving any relaxed LP, as shown in Alg. 5.

As shown in Generate-Kernels (Alg. 3), we use minimal set covering to gen-
erate the kernels. Fig. 4(b) demonstrates Generate-Kernels by continuing the
example from Fig. 3. In particular, in Fig. 4(b) the tree branches by splitting
on constituent kernels. In this example, each node represents a set of chosen
constituent kernels: the root node is an empty set, and the leaf node on the right
is {¬c1,¬c2}. At each node, consistency is checked (line 8 in Alg. 3), and then
Generate-Kernels checks whether any of the existing kernels is a subset of the
current node (line 10). If this is the case, there is no need to keep expanding
the node, and it is removed. In this event, the leaf node is marked with an X in
Fig. 4(b); otherwise, Generate-Kernels checks whether any conflict is unresolved
at the current node (line 16): if yes, the node is expanded by splitting on the
constituent kernels of the unresolved conflicts (line 17); otherwise, the node is
added to the kernel list, while removing from the list any node whose set of
constraints is a superset of another node (line 19). The node at the far left of
Fig. 4(b) resolves all the conflict and, therefore, is not expanded.

Finally, a timestamp is used to record the time that a node is created or a
conflict is discovered. We use timestamps to ensure that each node resolves all
conflicts, while avoiding repetition. This is accomplished through the following
rules: 1. if {conflict time = node time}, there is no need to resolve the conflict
when expanding the node. For example, in Fig. 4(a), node c3 and its children
(if any) are guaranteed to resolve the two conflicts {b1, c1} and {b1, c2}. 2. If



Alg. 3 Generate-Kernels(constituentKernelSet)
1: root ← {}
2: root.unresolved ← constituentKernelSet {initializes node.unresolved}
3: put root in a queue
4: kernelSet← {}
5: nodeDelete ← False {the flag to determine whether to delete a node}
6: while queue is not empty do
7: node ← remove from queue
8: if Consistent?(node) then
9: for each E in kernelSet do

10: if E ⊆ node then
11: nodeDelete ← True {checks whether any of the existing kernels is a

subset of the current node}
12: break
13: end if
14: end for
15: if nodeDelete = False then
16: if Unresolved-Conflict?(node, node.unresolved) then
17: put Expand-Conflict(node, node.unresolved) in queue {checks whether

any conflicts are unresolved by node}
18: else
19: Add-To-Minimal-Sets(kernelSet, node) {avoids any node that is a

superset of another in kernelSet}
20: end if
21: end if
22: end if
23: end while
24: return kernelSet

Alg. 4 Add-To-Minimal-Sets(Set, S)
1: for each E in Set do
2: if E ⊂ S then
3: return Set
4: else if S ⊂ E then
5: remove E from Set
6: end if
7: end for
8: return Set ∪ {S}



Fig. 4. (a) A partial tree of B&B for DLPs. The creation time of each node is shown
on the left of the node. Two conflicts are discovered at the bottom. (b) The search tree
for minimal set covering to generate kernels from constituent kernels.

Alg. 5 Generate-And-Test-DLP-Candidate(kernelSet,DLP )
1: S ← DLP.unitClauses
2: for each kernel in kernelSet do
3: if Consistent?(S ∪ kernel) then
4: DLP.unitClauses← S ∪ kernel {checks whether kernel is consistent with

the unit clause set of DLP}
5: add DLP in DLPList
6: end if
7: end for
8: return DLPList

{conflict time > node time}, we expand the node in order to resolve the conflict
using the conflict’s constituent kernels. For example, node b2 and a2 are to
be expanded using Forward-CD-Search. 3. If {conflict time < node time}, the
conflict is guaranteed to be resolved by an ancestor node of the current node,
and therefore, needs not to be resolved again.

3.4 Induced Unit Clause Relaxation

Relaxation is an essential tool for quickly characterizing a problem when the
original problem is hard to solve directly; it provides bounds on feasibility and
the optimal value of a problem, which are commonly used to prune the search
space. Previous research [18] typically solves DLPs by reformulating them as
BIPs, where a relaxed LP is formed by relaxing the binary constraint (x ∈ {0, 1})
to the continuous linear constraint (0 ≤ x ≤ 1).

An alternative way of creating a relaxed LP is to operate on the DLP encod-
ing directly, by removing all non-unit clauses from the DLP. Prior work argues
for the reformulation of DLP as BIP relaxation, with the rationale that it main-
tains some of the constraints of the non-unit clauses through the continuous



relaxation from binary to real-valued variables, in contrast to ignoring all the
non-unit clauses. However, this benefit is at the cost of adding binary variables
and constraints, which increases the dimensionality of the search problem.

Our approach starts with the direct DLP relaxation. We overcome the weak-
ness of standard DLP relaxation (loss of non-unit clauses) by adding to the
relaxation unit clauses that are logically entailed by the original DLP. In the
experiment section we compare our induced unit clause relaxation with the BIP
relaxation and show a profound improvement on a range of cooperative vehicle
plan execution problems.

Alg. 6 Induce-Unit-Clause(DLP )
1: {DLP .unitClauses, DLP .nonUnitClauses} ←

Unit-Propagation({DLP .unitClauses, DLP .nonUnitClauses})
2: DLP .relaxedLP ←< DLP .objective, DLP .unitClauses>
3: return DLP

In terms of implementation, as seen in Alg.6 and the example in Fig. 5,
Induce-Unit-Clause performs unit propagation among the unit and non-unit
clauses to induce more unit clauses and simplify a DLP. A relaxed LP is also
formed by combining the objective function and the unit clause set (line 2).

Fig. 5. A simple example of induced unit clause relaxation

3.5 Search Order: Best-first versus Depth-first

Given a fixed set of heuristic information, [4] shows that best-first search is
the most efficient algorithm in terms of time efficiency. Intuitively, this is be-
cause BFS does not visit any node whose heuristic value is worse than the op-
timum, and all nodes better than the optimum must be visited to ensure that



the optimum is not missed. However, BFS can take dramatically more mem-
ory space than DFS. Nevertheless, with conflict learning and forward conflict-
directed search, the queue of the BFS search tree can be significantly reduced.
Our experimental results show that on a range of test problems BFS can take
memory space similar to DFS, while taking significantly less time to find the
optimum.

An additional issue for GCD-BB is that the concept of sub-optimality is
rooted in maintaining an incumbent. Hence, it can be applied to DFS but not to
BFS. To evaluate these tradeoffs, our experiments in the next section compare
the use of BFS and conflict learning from infeasibility only, with DFS and conflict
learning from both infeasibility and from suboptimality.

4 Experimental Performance Analysis

This section provides experimental results of the GCD-BB algorithm, compared
with the benchmark B&B algorithm applied either to DLPs or to an equivalent
BIP encoding, on a range of test problems of coordinated air vehicle control
[22]. We also compare the effect of several algorithmic variants, in particular,
BFS versus DFS, infeasibility conflict learning versus sub-optimality conflict
learning and forward search versus backtrack search. While each algorithmic
variant terminates with the same optimal solution, GCD-BB achieves an order
of magnitude speed-up over BIP-BB. In addition, the difference in performance
increases as the problem size increases.

As the bulk of the computational effort expended by these algorithms is de-
voted to solving relaxed LP problems, the total number and average size of these
LPs are representative of the total computational effort involved in solving the
HDLOPs. Note that extracting infeasibility conflicts and sub-optimality conflicts
can be achieved as by-products of solving the LPs, and therefore does not incur
any additional LP to solve. We use the total number of relaxed LPs solved and
the average LP size as our LP solver and hardware independent measures of
computation time. To measure memory space use, maximum queue size is used.

We programmed BIP-BB, GCD-BB and its variations in Java. All used the
commercial software CPLEX as the LP solver. Test problems were generated
using the model-based temporal planner [22], performing multi-vehicle search
and rescue missions. This planner takes as input a temporally flexible state
plan, which specifies the goals of a mission, and a continuous model of vehicle
dynamics, and encodes them in DLPs. The GCD-BB solver generates an opti-
mal vehicle control sequence that achieves the constraints in the temporal plan.
For each Clause/Variable set, 15 problems were generated and the average was
recorded in the tables.

Table 1 records the number of relaxed LPs solved by each algorithm. In both
the DLP BFS and the DLP DFS cases, the algorithm with conflict learning per-
forms significantly better than the one without conflict learning. In addition, the
difference increases with the test problem size. The backtrack algorithm, based



Table 1. Comparison on the number of relaxed LPs

Clause/ 80/ 700/ 1492/ 2456/
Variable 36 144 300 480

BIP-BB 31.5 2009 4890 8133

DLP BFS
without Conflict Learning 24.3 735.6 1569 2651

Infeasibility Conflict 19.2 67.3 96.3 130.2
Conflict-directed Backtrack 23.1 396.7 887.8 1406

DLP DFS

without Conflict Learning 28.0 2014 3023 4662
Infeasibility Conflict 22.5 106.0 225.4 370.5

Conflict-directed Backtrack 25.9 596.9 1260 1994
Infeasibility+Suboptimality Conflict 22.1 76.4 84.4 102.9

Suboptimality Conflict 25.8 127.6 363.7 715.0

on dependency-directed backtracking [1], uses infeasibility conflicts as a cache
to check consistency of a relaxed LP before solving it. We observe that in both
the BFS and the DFS cases, the forward algorithm performs significantly better
than the backward algorithm. In order to show the reason for using our DLP re-
laxation instead of the continuous relaxation of BIP, we compare row “BIP-BB”
with row “DLP DFS without Conflict Learning”, and DLP performs significantly
better than BIP. To address the tradeoffs of BFS and DFS, we observe that in
terms of time efficiency, BFS performs better than DFS, in both the “without
Conflict Learning” and the “Infeasibility Conflict” cases. Finally, “BFS Infeasi-
bility Conflict” performs similar to “DFS Infeasibility+Suboptimality Conflict”;
for large test problems, DFS performs better than BFS.

Table 2. Comparison on the average size of relaxed LPs

Clause/ 80/ 700/ 1492/ 2456/
Variable 36 144 300 480

BIP-BB 90 889 1909 3911

DLP BFS
without Conflict Learning 72 685 1460 2406

Infeasibility Conflict 70 677 1457 2389
Conflict-directed Backtrack 72 691 1461 2397

DLP DFS

without Conflict Learning 76 692 1475 2421
Infeasibility Conflict 74 691 1470 2403

Conflict-directed Backtrack 75 692 1472 2427
Infeasibility+Suboptimality Conflict 73 691 1470 2403

Suboptimality Conflict 74 692 1471 2410

As seen in Table 2, the average size of LPs solved in BIP is much larger than
that of the LPs solved for DLPs, and the difference grows larger as the problem
size increases. Experiments also show that the average size of LPs solved by each
DLP algorithm variant is similar to one another.



Maximum queue size of the search tree of each algorithm is recorded in
Table 3. Our goal is to compare the memory use of BFS algorithms with that of
DFS algorithms. BFS without Conflict Learning takes significantly more memory
space than any other algorithm. Compared with DFS without Conflict Learning,
its maximum queue size is from 68% to 90% larger. However, it is notable that
using conflict learning, the memory taken by BFS is reduced to the same level
as DFS.

Table 3. Comparison on the maximum queue size

Clause/ 80/ 700/ 1492/ 2456/
Variable 36 144 300 480

BIP-BB 8.4 30.8 46.2 58.7

DLP BFS
without Conflict Learning 19.1 161.1 296.8 419.0

Infeasibility Conflict 6.4 18.3 38.4 52.5
Conflict-directed Backtrack 15.6 101.7 205.1 327.8

DLP DFS

without Conflict Learning 6.1 18.7 25.1 30.3
Infeasibility Conflict 6.5 21.4 45.0 57.3

Conflict-directed Backtrack 6.1 18.4 23.5 28.1
Infeasibility+Suboptimality Conflict 6.5 21.4 33.0 40.9

Suboptimality Conflict 6.5 21.6 38.7 47.0

5 Discussion

This paper presented a novel algorithm, Generalized Conflict-Directed Branch
and Bound, that efficiently solves DLP problems through a powerful three-fold
method, featuring generalized conflict learning, forward conflict-directed search
and induced unit clause relaxation. The key feature of the approach reasons
about infeasible or sub-optimal subsets of state space using conflicts, in order
to guide the forward step of search, by moving away from regions of state space
corresponding to known conflicts. Our experiments on model-based temporal
plan execution for cooperative vehicles demonstrated an order of magnitude
speed-up over BIP-BB.

References

1. Stallman, R. and Sussman, G.J.: Forward Reasoning and Dependency-Directed
Backtracking in a System for Computer-Aided Circuit Analysis. J. of Artificial In-
telligence. 9 (1977) 135196

2. Gaschnig, J.: Experimental Case Studies of Backtrack vs. Waltz-type vs. New Al-
gorithms for Satisfying Assignment Problems. Proceedings of The 2nd Canadian
Conference on AI. (1978)

3. Balas, E.: Disjunctive programming. Annals of Discrete Math. 5 (1979) 3-51



4. Dechter, R. and Pearl, J.: Generalized Best-first Search Strategies and the Optimal-
ity of A*. J. of ACM. 32 (1985) 506-536

5. de Kleer, J. and Williams, B.: Diagnosis with Behavioral Modes. Proceedings of
IJCAI. (1989)

6. Dechter, R.: Enhancement Schemes for Constraint Processing: Backjumping, Learn-
ing and Cutset Decomposition. J. of Artificial Intelligence. 41 (1990) 273-312

7. Ginsberg, M.: Dynamic Backtracking. J. of Artificial Intelligence Research. 1 (1993)
25-46

8. Prosser, P.: Hybrid Algorithms for the Constraint Satisfaction Problem. J. of Com-
putational Intelligence. 9(3) (1993) 268-299

9. Williams, B. and Cagan, J.: Activity Analysis: The Qualitative Analysis of Station-
ary Points for Optimal Reasoning. Proceedings of AAAI. (1994)

10. Williams, B. and Nayak, P.: A Model-based Approach to Reactive Self-Configuring
Systems. Proceedings of AAAI. (1996)

11. Bertsimas, D. and Tsitsiklis, J.N.: Introduction to Linear Optimization. Athena
Scientific. (1997)

12. Bayardo, R. J. and Schrag, R. C.: Using CSP Look-back Techniques to Solve Real-
world SAT Instances. Proceedings of AAAI. (1997)

13. Hooker, J.N. and Osorio, M.A.: Mixed Logical/Linear Programming. J. of Discrete
Applied Math. 96-97 (1999) 395-442

14. Kautz, H. and Walser, J.P.: State space planning by integer optimization. Proceed-
ings of AAAI. (1999)

15. Vossen, T. and Ball, M. and Lotem, A. and Nau, D.: On the Use of Integer Pro-
gramming Models in AI Planning. Proceedings of IJCAI. (1999)

16. Wolfman, S. and Weld, D.: The LPSAT Engine & Its Application to Resource
Planning. Proceedings of IJCAI. (1999)

17. Schouwenaars, T. and de Moor, B. and Feron, E. and How, J.: Mixed Integer
Programming for Multi-Vehicle Path Planning. Proceedings of European Control
Conference. (2001)

18. Hooker, J.N.: Logic, Optimization and Constraint Programming. INFORMS J. on
Computing. 14 (2002) 295-321

19. Katsirelos, G. and Bacchus, F.: Unrestricted Nogood Recording in CSP Search.
Proceedings of CP. (2003)

20. Hofmann, A. and Williams, B.: Safe Execution of Temporally Flexible Plans for
Bipedal Walking Devices. Plan Execution Workshop of ICAPS. (2005)

21. Li, H.: Generalized Conflict Learning for Hybrid Discrete Linear Optimization.
Master’s Thesis, M.I.T. (2005)

22. Léauté, T. and Williams, B.: Coordinating Agile Systems Through The Model-
based Execution of Temporal Plans. Proceedings of AAAI. (2005)

23. Williams, B. and Ragno, R.: Conflict-directed A* and its Role in Model-based
Embedded Systems. J. of Discrete Applied Math. (to appear 2005)

24. J. Gleeson and J. Ryan: Identifying minimally inconsistent subsystems of inequal-
ities. ORSA J. Computing 2 (1990)


