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Abstract

Robotic and embedded systems have become increasingly pervasive in every-day ap-
plications, ranging from space probes and life support systems to autonomous rovers. In
order to act robustly in the physical world, robotic systems must handle the uncertainty
and partial observability inherent in most real-world situations. Probabilistic hybrid mod-
els are convenient modeling tool for many applications, including fault diagnosis and visual
tracking. In probabilistic hybrid models, the hidden state is represented with discrete and
continuous state variables that evolve probabilistically. The hidden state is observed indi-
rectly, through noisy observations. A challenge is that real-world systems are non-linear,
consist of a large collection of concurrently operating components, and exhibit autonomous
mode transitions, that is, discrete state transitions that depend on the continuous dynam-
ics.

In this paper, we introduce an efficient algorithm for hybrid state estimation that
combines Rao-Blackwellised particle filtering with a Gaussian representation. Conceptually,
our algorithm samples trajectories traced by the discrete variables over time and, for each
trajectory, estimates the continuous state with a Kalman Filter. A key insight to handling
the autonomous transitions is to reuse the continuous estimates in the importance sampling
step. We extended the class of autonomous transitions that can be efficiently handled
by Gaussian techniques and provide a detailed empirical evaluation of the algorithm on
a dynamical system with four continuous state variables. Our results indicate that our
algorithm is substantially more efficient than non-Rao-Blackwellised approaches. Though
not as good as a k-best filter in nominal scenarios, our algorithm outperforms a k-best filter
when the correct diagnosis has too low a probability to be included in the leading set of
trajectories. Through these accomplishments, the paper lays ground work for a unifying
stochastic search algorithm that shares the benefits of both methods.

1. Introduction

Robotic and embedded systems have become increasingly pervasive in a variety of applica-
tions. Space missions, such as Mars Science Laboratory (MSL) and the Jupiter Icy Moons
Orbiter (JIMO), have increasingly ambitious science goals, such as operating for longer pe-
riods of time and with increasing levels of onboard autonomy. Manned missions in space
and in polar environments will rely on life support systems, such as the Advanced Life
Support System developed at the NASA Johnson Space Center, to provide a renewable
supply of oxygen, water, and food. Here on Earth, robotic assistants, such as CMU’s Pearl
and iRobot’s Roomba, directly benefit people in ways ranging from providing health care
to routine services and rescue operations.
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In order to act robustly in the physical world, robotic systems must handle the uncer-
tainty and partial observability inherent in most real-world situations. Robotic systems
often face unpredictable, harsh physical environments and must continue performing their
tasks (perhaps at a reduced rate), even when some of their subsystems fail. For example, in
land rover missions, such as MSL, the robot needs to detect when one or more of its wheel
motors fail, which could jeopardize the safety of the mission. The rover can detect the
failure from a drift in its trajectory and then compensate for the failure, either by adjusting
the torque to its other wheels or by replanning its path to the desired goal.

In this paper, we investigate the problem of estimating the state of systems with proba-
bilistic hybrid models. Probabilistic hybrid models represent the system with both discrete
and continuous state variables that evolve probabilistically according to a known distribu-
tion. The discrete state variables typically represent a behavioral mode of the system, while
the continuous variables represent its continuous dynamics. Probabilistic hybrid models can
be thus thought of as extensions of discrete models, such as hidden Markov models (Russell
& Norvig, 2003) or dynamic Bayesian networks (Dean & Kanazawa, 1989), to continuous
dynamical models. Given a sequence of control inputs and noisy observations, our goal is
to estimate the discrete and continuous state of the hybrid model.

Probabilistic hybrid models often provide an appropriate level of modeling abstraction
when purely discrete, qualitative models are too coarse, while purely continuous, quanti-
tative models are too fine-grained. Probabilistic hybrid models are particularly useful for
fault diagnosis, the problem of determining the health state of a system. With hybrid
models, fault diagnosis can be framed as a state estimation problem, by representing the
nominal and fault modes with discrete variables and the state of the system dynamics with
continuous variables. Probabilistic hybrid models can thus be viewed as a natural successor
to discrete model-based diagnosis systems, such as Livingstone (Williams & Nayak, 1996)
and Titan (Williams, Ingham, Chung, & Elliott, 2003).

State estimation techniques for probabilistic hybrid models have traditionally focused
on a restricted subset of conditional linear Gaussian models, such as Switching Linear
Dynamical Systems(Shumway & Stoffer, 1991; Kim, 1994), in which the discrete state
d is a Markov chain with a known transition probability p(dt|dt−1), and the continuous
state evolves linearly, with system and observation matrices dependent on dt. Under such
conditions, the continuous estimate for each sequence of discrete state assignments can be
computed with a Kalman Filter. The number of tracked estimates can be kept down to an
acceptable level by using one of a variety of methods, including the well-known interactive
multiple model (IMM) algorithm (Blom & Bar-Shalom, 1988), Rao-Blackwellised particle
filtering (Akashi & Kumamoto, 1977; Doucet, 1998) and, more recently, efficient k-best
filtering (Lerner, Parr, Koller, & Biswas, 2000; Hofbaur & Williams, 2002a). Systems with
non-linear dynamics, such as a rover drive subsystem (Hutter & Dearden, 2003) can be
handled by employing variations of the Kalman Filter, such as an Extended Kalman Filter
(Anderson & Moore, 1979) or an Unscented Kalman Filter (Julier & Uhlmann, 1997).

In many domains, however, such as rocket propulsion systems (Koutsoukos, Kurien,
& Zhao, 2002) or life-support systems (Hofbaur & Williams, 2002a), simple Markovian
transitions p(dt|dt−1) are not sufficiently expressive. In these domains, the transitions of
the discrete variables often also need to depend on the continuous state. Such transitions
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are called autonomous1, and are substantially more challenging to address. Furthermore,
many systems consist of several interconnected components, each of which is in its own
behavioral mode. Representing the joint mode of all the components would be inefficient.
In these cases, it is desirable to represent the mode with several mode variables.

Two generalizations have recently been proposed that address the above deficiencies of
switching linear dynamical systems: hybrid dynamic Bayesian networks (hybrid DBNs) and
Concurrent Probabilistic Hybrid Automata (CPHA) (Hofbaur & Williams, 2002a; Hofbaur,
2003). Hybrid dynamic Bayesian networks provide a factored representation of the transi-
tion and observation distributions. In hybrid DBNs, the system is represented as a directed
acyclic graph, in which vertices represent the random variables in the system and edges
capture the conditional dependencies among them. CPHA represent the system as a collec-
tion of concurrently operating automata, one automaton for each component in the system.
Each mode in an automaton has an associated set of stochastic difference and algebraic
equations, which are solved to obtain a complete dynamical nodel of them system.

Recent advances in k-best Gaussian filtering (Hofbaur & Williams, 2002a; Lerner, 2002)
have shown great promise for hybrid state estimation. These methods represent the state
as a mixture of Gaussians that are enumerated in the decreasing order of likelihood. Owing
to their efficient representation and focused search, these methods have been succesfully
applied to large systems with as many as 450,000 discrete states. Excessive focusing during
search may, however, come at a price if the correct diagnosis is not among the leading set
of hypotheses.

In this paper, we present an alternative solution for CPHA, based on the technique
of Rao-Blackwellised particle filtering. The key principle of Rao-Blackwellised Particle
Filtering is to decrease the amount of sampled space by estimating a tractable subspace
with a closed-form solution. In the spirit of prior approaches to k-best filtering and Rao-
Blackwellised particle filtering, our algorithm tracks the sequences of mode assignments
and, for each sequence, estimates the state with an Extended Kalman Filter (Anderson &
Moore, 1979) or an Unscented Kalman Filter (Julier & Uhlmann, 1997). By sampling the
sequences of mode assignments, our algorithm is substantially mode efficient than tradi-
tional particle filters and improves upon the performance of a k-best filter in the cases when
the posterior consists of a large number of nominal sequences.

Applying Rao-Blackwellisation schemes to models with autonomous transitions is dif-
ficult, since the discrete and continuous state spaces of these models tend to be coupled.
The key innovation in our algorithm is that it reuses the continuous state estimates in
the importance sampling step of the particle filter. Specifically, the transition probabilities
are computed by integrating the Gaussian over the set, corresponding to each transition
guard, similar to (Hofbaur & Williams, 2002a). We provide a derivation of the transi-
tion probabilities when transition guards are linear. In order to perform state estimation
in multi-component systems, represented as a CPHA, we either evolve them according to
their priors or compute the optimal proposal distributions for single-component transitions
and then combine them as a proposal distribution for the overall model.

In this paper we demonstrate the algorithm on a highly nonlinear two-link dynamical
system, shown in Figure 1, and compare it to the corresponding k-best filtering algorithm

1. In the terminology of hybrid Bayesian networks, these correspond to discrete nodes with continuous
parents.
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(Hofbaur & Williams, 2002a) on a number of characteristic scenarios. We show that al-
though our algorithm is not as good as the k-best filter when most of the posterior is
concentrated in a small number of hypotheses, it outperforms the k-best filter when the
posterior is spread-out among a large number of similar nominal sequences that prevent
the correct hypothesis from being considered by the k-best filter. Our results thus lay the
ground work for a unifying approach, in which k-best filtering is interleaved with Gaussian
particle filtering to improve upon the performance of both.

2. Models and State Estimation Methods

Probabilistic hybrid models and hybrid estimation methods date back to the 1970s (Akashi
& Kumamoto, 1977) and are useful in many applications, including visual tracking (Pavlovic,
Rehg, Cham, & Murphy, 1999) and fault diagnosis (Hofbaur & Williams, 2002a). In this
section, we first define a simple hybrid model, called Switching Linear Dynamical Systems
(SLDS) (Shumway & Stoffer, 1991; Kim, 1994), and briefly summarize an extension to this
model, called Concurrent Probabilistic Hybrid Automata (Hofbaur & Williams, 2002a; Hof-
baur, 2003) to large, multi-component systems. We then define the hybrid state estimation
problem and lay out the basic techniques for addressing this problem.

2.1 Switching Linear Dynamical Systems

A switching linear dynamical system (SLDS) (Shumway & Stoffer, 1991; Kim, 1994), also
known as a jump Markov linear Gaussian model, is a special form of hybrid model, in which
the hidden state is represented by a finite Markov chain d, with transition distribution
p(dt|dt−1), and a continuous vector xc. The continuous vector evolves linearly, according to
mode-dependent system and input matrices A(d), B(d):

xc,t = A(d)xc,t−1 + B(d)uc,t−1 + vx(d). (1)

The hidden state is observed indirectly, with additive white Gaussian noise:

yt = C(d)xc,t + vy(d), (2)

where C(d) is a mode-dependent observation matrix and vy(d) is a normally-distributed
noise variable, with zero mean and a known covariance Λvy(d).

2.2 Concurrent Probabilistic Hybrid Automata

Modeling with SLDS is often insufficient, because they only allow a single variable to rep-
resent the discrete mode of the system. This is inefficient for modeling large systems with
many modes. In addition, it becomes cumbersome to specify the complete continuous model
in the standard transition and observation function format. To address these drawbacks, we
have previously developed Concurrent Probabilistic Hybrid Automata (CPHA) (Hofbaur &
Williams, 2002a; Hofbaur, 2003), a formalism for modeling engineered systems that consist
of a large number of concurrently operating components with non-linear dynamics.

A CPHA model consists of a network of concurrently operating Probabilistic Hybrid
Automata (PHA), connected through shared continuous input/output variables. Each PHA
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Figure 1: A two-link acrobatic robot.

represents one component in the system and has both discrete and continuous hidden state
variables. The automaton interacts with the other automata in the surrounding world
through shared continuous variables, and its discrete state determines the evolution of its
continuous variables.

Definition 1 A Probabilistic Hybrid Automaton is a tuple 〈x,w, F, T,X0,Xd,Ud〉 (Hofbaur
& Williams, 2002a; Hofbaur, 2003):

• x denotes the hybrid state of the automaton, which consists of discrete variables
xd ∈ Xd and continuous state variables xc ∈ R

nx .2

• w denotes the set of input/output variables, which consists of command (discrete
input) variables ud ∈ Ud, continuous input/output variables wc ∈ R

nw , and Gaussian
noise variables vc ∈ R

nv .

• F : Xd → 2FDE∪FAE specifies the continuous evolution of the automaton as set of
first-order discrete-time difference equations FDE ⊂ FDE and algebraic equations
FAE ⊂ FAE over the variables xc, wc, and vc.

• T : Xd → 2P ∪ C specifies the discrete transition distribution of the automaton as a
finite set of transition probabilities pτi ∈ P over the modes Xd and their associated
guard conditions ci ∈ C over xc ∪ ud, which form a partition of R

nx × Ud.

• X0 is a conditional Gaussian distribution for the initial state of the automaton.

To illustrate this definition, consider the two-link acrobot, shown in Figure 1. The robot
swings on a bar and may catch a ball of known mass whenever it is on the right side (θ1 > 0).
The goal is to estimate its continuous state and whether or not it holds a ball at any given
time step, by observing the angle between the two links.

A PHA model for this system has one discrete, binary variable and four continuous
real variables (see Figure 2). The continuous dynamics in each mode are derived using

2. We let lowercase bold symbols, such as v, denote both the set of variables {v1, . . . , vl} and the vector

[v1, . . . , vl]
T .
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Figure 2: A PHA for a two-link acrobot system. Left: transition model for the discrete
state of the system. Right: evolution of the automaton’s continuous state, one
set of equations for each mode.

Lagrangian mechanics (see Paul, 1982) and turned into a set of discrete-time difference
equations, using the Euler approximation. The transition function T (d), for some mode d,
specifies the transition distribution p(xd,t|xd,t−1 = d,xc,t−1,ud,t). Each tuple 〈pτ , c〉 ∈ T (d)
defines the transition distribution p(xd,t|xd,t−1 = d,xc,t−1,ud,t) to be pτ in the regions
satisfied by the guard c. For example, when has-ball = no, the probability of transitioning
to mode yes is 0.01 whenever θ1 > 0 and 0 otherwise. The transition function can thus
specify conditional distributions p(xd,t|xd,t−1 = d,xc,t−1), which changes sharply with the
continuous state xc,t−1. This can be viewed as a limiting case of the SoftMax distribution
(Koller, Lerner, & Angelov, 1999).

Most engineered systems consist of several concurrently operating components. Compo-
sition of PHA provides a method for specifying a model for the overall system, by specifying
PHA models for its components and then combining these models. Composed automata are
connected through shared continuous input/output variables, which corresponds to connect-
ing the system’s physical components through natural phenomena, such as forces, pressures,
and flows.

In order to compose PHA, we combine their hidden state variables and their discrete
and continuous evolution functions:
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Figure 3: A composed model for the acrobatic robot in Figure 1. Each component is mod-
eled with one Probabilistic Hybrid Automaton. The component automata are
shown in rectangles, with their state variables shown beneath.

Definition 2 The composition CA of two Probabilistic Hybrid Automata A1 and A2 is
defined as a tuple 〈x,w, F, T,X0,Xd,Ud〉, where

x = xd ∪ xc, with xd , xd 1 ∪ xd 2 and xc , xc 1 ∪ xc 2,

w , w1 ∪w2,

F (xd) , F1(xd 1) ∪ F2(xd 2),

T (xd) , T1(xd 1) × T2(xd 2),

X0(x) = X0 1(x2)X0 2(x2),

Xd , Xd1 ×Xd2, and

Ud , Ud1 ×Ud2.

As before, the overall continuous evolution of the composed model varies in each mode,
and is determined by taking the union of algebraic and difference equations for each compo-
nent PHA. The discrete transitions for CPHA are defined independently for each component,
conditioned on the continuous state. For example, the transition probability

p(actuatort = failed, ballt = no|actuatort−1 = ok, ballt−1 = no,xc,t−1) (3)

is defined as a product of independent transitions

p(actuatort = failed | actuatort−1 = ok,xc,t−1)

p(ballt = no | ballt−1 = no,xc,t−1) (4)

The composition of a set of PHA is well-defined, provided that they satisfy compatibility
conditions, see (Hofbaur, 2003) for an initial development of this topic. PHA are closed
under composition: composing two compatible automata results in a valid PHA. Neverthe-
less, due to historical reasons, we use the term Concurrent Probabilistic Hybrid Automaton
(CPHA) to refer to a composed model and reserve the term PHA for a single-automon
model.

One important aspect of PHA and CPHA is that, unlike in hybrid Bayesian net-
works(Lauritzen, 1992; Cowell, Dawid, Lauritzen, & Spiegelhalter, 1999), the causal re-
lationships among continuous variables are not explicitly represented in the model. In
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particular, the causal relationship among continuous variables can change, as function of
the discrete state of the system. The model only specifies the continuous input variables
uc ⊆ wc that drive the system and the observed variables yc ⊆ wc, along with the dis-
tributions of the Gaussian noise variables vc. The equations F (d) are then solved using
Groebner bases (Buchberger & Winkler, 1998) and causal analysis (Nayak, 1995) into the
standard form

xc,t = f(xc,t−1,uc,t−1,vx,t−1;xd,t)

yc,t = g(yc,t−1,uc,t−1,vy,t−1;xd,t). (5)

Typically, we further assume that the noise is additive, that is,

xc,t = f(xc,t−1,uc,t−1;xd,t) + vx,t−1

yc,t = g(yc,t−1,uc,t−1;xd,t) + vy,t−1. (6)

However, using the Unscented Kalman Filter (Wan & van der Merwe, 2000), it would be
possible to address the more general setting of Equation 5.

2.3 Hybrid State Estimation

Given a hybrid model of the system, our goal is to estimate its state from a sequence of
control inputs and observations:

Definition 3 Hybrid State Estimation Given a CPHA model of the system CA and the
sequence of control inputs u0, . . . ,ut and observed outputs y0, . . . ,yt, estimate the hybrid
state 〈xd,t,xc,t〉 at time t.

The hybrid estimate of 〈xd,t,xc,t〉 can take on several forms, depending on the task
addressed. In fault diagnosis, one is typically concerned about the most likely mode (MAP
mode estimate) of the system or the distribution over the set of possible modes. In tracking,
on the other hand, the primary goal is to filter out the continuous state of the system.
In general, we can frame the hybrid state estimation problem as that of approximating
the posterior distribution over 〈xd,t,xc,t〉 and use this distribution to compute the derived
characteristics, such as the MAP estimate.

2.4 Particle Filtering

Given a SLDS or a PHA model of a system, particle filters approximate the posterior of

the hybrid state xt with a set of sampled sequences {x(i)
0:t}. These samples are evolved

sequentially and approximate the posterior distribution p(xt|y0:t,u0:t) as the probability
density function

p̄N (x) =
1

N

N
∑

i=1

δx(i)(x). (7)

In the simplest solutions, the samples are taken from the complete hybrid state Xd×R
nx ,

and are evolved in three steps, as illustrated in Figure 4. In the first, initialization step,
the algorithm samples the initial distribution p(x0); thus, effectively approximating the
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{x0
(i)}

{x1
(i)}~

{w1
(i)}

{x1
(i)}

(1) Initialization

(2) Importance sampling

(3) Selection

m
ok

p(x
c,0,xd,0)

m
failed

p(y1| x1
(i))

Figure 4: The three steps of a simple particle filter for a PHA model with one discrete and
one continuous variable.

posterior at t = 0. Then, in each iteration, the sequences {x(i)
d,0:t,xc,0:t} are evolved by

taking one random sample x̃
(i)
t from the an appropriately-chosen proposal distribution, and

assigned importance weights that account for the differences between the proposal and
the posterior distributions. The final step selects a number of off-spring for each particle
according to its weight, thus duplicating the “good” ones and removing the “bad” ones.

In practice, sampling in high-dimensional spaces can be inefficient, since many particles
may be needed to cover the probability space and attain a sufficiently accurate estimate.
Several methods have been developed to reduce the variance of the estimates, including
decomposition (Ng, Peshkin, & Pfeffer, 2002) and abstraction (Verma, Thrun, & Simmons,
2003). One particularly effective method is Rao-Blackwellisation (Akashi & Kumamoto,
1977; Casella & Robert, 1996; Doucet, 1998). This method is based on a fundamental
observation that if the model has a tractable substructure, we may be able to factor it out
with an efficient solution and only sample the remaining variables. In this manner, fewer
samples are needed to obtain a given accuracy of the estimate.

Formally, if we partition the state variables into two sets, r and s, we can use the chain
rule to express the posterior distribution p(x0:t|y1:t,u0:t) as

p(x0:t|y1:t,u0:t) = p(s0:t, r0:t|y1:t,u0:t)

= p(s0:t|r0:t,y1:t,u0:t)p(r0:t|y1:t,u0:t) (8)

Thus, we expand the posterior in terms of the sequence of random variables r0:t and in
terms of the sequence s0:t conditioned on r0:t. The key to this formulation is that if we
can compute analytically the conditional distribution p(s0:t|r0:t,y1:t,u0:t) or its marginal
p(st|r0:t,y1:t,u0:t), then we only need to sample the sequences of variables r0:t, not 〈s0:t, r0:t〉.
Intuitively, far fewer particles will be needed in this way to reach a given precision of the
estimate, since for each sampled sequence r0:t, the corresponding state space s is covered
by an analytical solution, rather than a finite number of samples.
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1. Initialization

• For i = 1, . . . , N draw a random sample r
(i)
0 from the prior distribution p(r0) and let α

(i)
0 ← p(s0|r

(i)
0 )

2. For t = 1, 2, . . .

(a) Importance sampling step

• For i = 1, . . . , N

– draw a random sample r̃
(i)
t from the proposal q(rt|r

(i)
0:t−1,y0:t,u0:t)

– let r̃
(i)
0:t ← (r

(i)
0:t−1, r̃

(i)
t )

• For i = 1, . . . , N , compute the importance weights: w
(i)
t ←

p(yt|r̃
(i)
0:t,y0:t−1,u0:t)p(r̃

(i)
t

|r̃
(i)
0:t−1,y0:t−1,u0:t)

q(r̃
(i)
t

|r̃
(i)
0:t−1,y0:t,u0:t)

• For i = 1, . . . , N normalize the importance weights w
(i)
t

(b) Selection step

• Select N particles (with replacement) from {r̃
(i)
0:t} according to the normalized weights {w̃

(i)
t } to obtain samples {r

(i)
0:t}

(c) Exact step

• Update α
(i)
t given α

(i)
t−1, r

(i)
t , r

(i)
t−1, yt, ut−1, and ut with a domain-specific procedure (such as a Kalman Filter)

Figure 5: Generic RBPF algorithm. (Murphy & Russell, 2001)

In Rao-Blackwellised particle filtering (RBPF), each particle holds not only the samples

r
(i)
0:t, but also a parametric representation of the distribution p(st|r(i)

0:t,y1:t) for each sample

i, which we denote by α
(i)
t . This representation holds sufficient statistics for p(st|r(i)

0:t,y1:t),
such as the mean vector and the covariance matrix of the distribution. The posterior is

thus approximated as a mixture of the distributions α
(i)
t at the sampled points r

(i)
0:t:

p(s0:t, r0:t|y1:t,u0:t) ≈
N

∑

1

αt(i)δ
r
(i)
0:t

(r0:t). (9)

A generic RBPF method is outlined in Figure 5, and, except for the initialization and
the addition of the exact step, it is identical to the particle filter, illustrated in Figure 4.
Under weak assumptions, the Rao-Blackwellised estimate converges to the estimated value
as N → +∞, with a variance smaller than the generic particle filtering method (Doucet,
de Freitas, Murphy, & Russell, 2000). Therefore, at least based on a fixed number of samples,
it is beneficial to sample as small a subset of the state space as possible. In practice, the
run-time performance of the filter will depend on the relative cost of the exact update for

α
(i)
t .

2.5 Gaussian filtering in SLDS models

SLDS models have attractive properties that make them particularly amenable to Rao-
Blackwellisation. If we take an arbitrary (but fixed) assignment d0:t , d0, d1, . . . , dt to the
mode variables xd,0:t, then the initial distribution p(xc,0), the system matrices A,B, the
observation matrices C,D, and the noise models will each be fixed for all t′ = 1, . . . , t. This
means that once we fix the mode variables xd,0:t, we can construct an analytical estimate of
the continuous state of the system up to time t (Akashi & Kumamoto, 1977) with a Kalman
Filter (Anderson & Moore, 1979), see Figure 6.
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Figure 6: Structure in switching linear dynamical systems. Once we fix the mode up to
time t, we can estimate the continuous state at time t analytically.
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Figure 7: Pruning (left) and collapsing strategies (right).

Rao-Blackwellised particle filtering in SLDS models is a special case of a more general
approach, which we call Gaussian filtering (Ackerson & Fu, 1970; Tugnait, 1982; Blom
& Bar-Shalom, 1988; Hanlon & Maybeck, 2000; Lerner et al., 2000; Hofbaur & Williams,
2002a; Lerner, 2002; Funiak & Williams, 2003; Hutter & Dearden, 2003). The common
property of Gaussian filtering methods is that they represent the posterior distribution
compactly as a mixture of Gaussians. As in the RBPF for SLDS models, each Gaussian
has an associated sequence or sequences of discrete mode assignments and represents the
distribution of the continuous state, conditioned on this sequence.

Naturally, tracking all possible mode sequences is infeasible; the number of such se-
quences increases exponentially with time. Indeed, inference in probabilistic hybrid models,
including SLDS, hybrid Bayesian networks, and CPHA, has been shown to be NP-hard
(Lerner & Parr, 2001). Nevertheless, in many domains, such as fault diagnosis, where
the prior distributions are heavily biased towards nominal transitions, efficient inference is
possible, by employing two strategies: pruning (branching) and collapsing (merging) (see
Figure 7). Pruning removes some branches from the belief state, based on the evidence
observed so far, while collapsing combines sequences with the same mode at their fringe to
a single hypothesis (Blom & Bar-Shalom, 1988; Lerner et al., 2000).
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In recent years, k-best filtering methods (Lerner et al., 2000; Hofbaur & Williams,
2002a; Lerner, 2002) have shown great promise. K-best filtering methods focus the state
estimation on sequences with high posterior probability. Typically, a k-best filter starts with
a set of mode sequences at one time step and expands these sequences to obtain the set of
leading sequences at the next time step. One approach is to expand all the successors of
all sequences and compute their transition probabilities and observation likelihoods (Lerner
et al., 2000). With additional independence assumptions on the model, such as those in
CPHA, an efficient solution is to frame the expansions as a search and solve it using a
combination of branch and bound and A* algorithms (Hofbaur & Williams, 2002a).

3. Gaussian Particle Filtering for PHA

The key contribution of this chapter is an approximate Rao-Blackwellised particle filtering
(RBPF) algorithm for PHA that handles the nonlinearities and autonomous transitions,
that is, mode transitions dependent on the continuous state, present in PHA models. In
the spirit of prior approaches to RBPF (Akashi & Kumamoto, 1977; Morales-Menéndez,
de Freitas, & Poole, 2002) and k-best filtering (Lerner et al., 2000; Hofbaur & Williams,
2002a), our algorithm samples the mode sequences and, conditioned on each sampled se-
quence, estimates the associated continuous state with an Extended (Anderson & Moore,
1979) or an Unscented Kalman Filter (Julier & Uhlmann, 1997). Our key insight to address-
ing autonomous transitions for PHA is to reuse the continuous estimates in the importance
sampling step of the filter. We extend the class of autonomous transitions that can be ad-
dressed efficiently. In addition, we demonstrate how the algorithm bridges the prior work in
Rao-Blackwellised particle filtering and hybrid model-based diagnosis, laying the foundation
for a principled unification of RBPF and k-best PHA filtering methods.

3.1 Tractable substructure in PHA

Recall that for SLDS and PHA models, this structure typically takes the form of the con-
tinuous state, conditioned on sequences of mode assignments (Akashi & Kumamoto, 1977;
Hofbaur & Williams, 2002a). For a PHA, the continuous behavior of the system may change
at each time step, in a similar way as it does in SLDS models. However, PHA pose two
additional challenges to continuous state estimation: non-linearities and autonomous mode
transitions. These two challenges translate to two approximations:

1. When nonlinear functions are used in the transition or an observation function, the
posterior is typically nonlinear and non-Gaussian. This means that the continuous
state tracking will typically incur error whenever the system is propagated through
such equations.

2. When the PHA model has autonomous transitions, the posterior will be biased im-
mediately after the transition towards the regions of those guards cj , which have a

higher associated transition probability pτj
(x

(i)
d,t).

The first approximation will be accurate to the first degree if an Extended Kalman
Filter is used, or to the second degree if the Unscented Kalman Filter is used. In order to
understand the second approximation, consider the example in Figure 8. This figure shows
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Figure 8: The top two graphs show a Gaussian distribution p(x) (left) and a graph of
this distribution when it is propagated through a constraint x > 0 (right). The
bottom left graph shows the distribution of x when x is propagated through the
model x′ = x + N (0, 1) but ignores the constraint, while the bottom right graph
shows the true distribution when the constraint is accounted for (obtained by
importance sampling with a large number of samples).

the distribution N(0, 1) of variable x, when it is first propagated through a constraint
x > 0 (upper right-hand corner) and then is evolved according to the continuous model
x′ = x + N (0, 1) (lower right-hand corner). We see that by conditioning the variable on
the event x > 0, its distribution is slightly skewed to the right and has a smaller variance.
Nevertheless, the disitribution is still approximated well by a Gaussian, due to the normal
noise added after the distribution is propagated through the constraint.

In our current algorithm, we make no special arrangements in order to account for
the bias introduced by autonomous transitions. It may be possible, however, to compute
the true mean and variance of the distribution after it has been propagated through the
continuous constraint by numerical methods.

3.2 Overview of the algorithm

Since we can approximate the posterior distribution p(xc,t|xd,0:t,u0:t) efficiently in an ana-
lytical form, we can apply Rao-Blackwellisation to the hybrid estimation problem by taking

r = xd and s = xc. In other words, we sample the mode sequences x
(i)
d,0:t with a particle filter

and, for each sampled sequence x
(i)
d,0:t, we estimate the continuous state with a Kalman Fil-

ter. The result of Kalman Filtering for each sampled sequence x
(i)
d,0:t is the estimated mean

x̂
(i)
c,t and the error covariance matrix P

(i)
t . The samples x

(i)
d,0:t serve as an approximation of

the posterior distribution over the mode sequences, p(xd,0:t|y1:t,u0:t), while each continu-
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ous estimate 〈x̂(i)
c,t,P

(i)
t 〉 serves as a Gaussian approximation of the conditional distribution

p(xc,t|xd,0:t = x
(i)
d,0:t,y0:t;u0:t) , αi

t. Since the estimate 〈x̂(i)
c,t,P

(i)
t 〉 merely approximates αi

t,
we are not be performing a strict Rao-Blackwellisation; nevertheless, the results will be
accurate up to the approximations in the Extended or the Unscented Kalman Filter.

Our algorithm is illustrated in Figure 9. Each particle now holds a sample sequence x
(i)
d,0:t

and the corresponding continuous estimate 〈x̂(i)
c,t ,P

(i)
t 〉. The algorithm starts by taking a

fixed number of random samples from the initial distribution over the mode variables p(xd,0)

(Step 1). For each sampled mode x
(i)
d,0, the corresponding continuous distribution p(xc,0|x(i)

d,0)
is specified by the PHA model.

The algorithm then proceeds to expand the mode sequences and updates the corre-
sponding continuous estimates (see Figure 9, Step 2). In each time step, we first evolve

each particle by taking one random sample x
(i)
d,t, for each particle, from the proposal distri-

bution q(xd,t;x
(i)
d,0:t−1,y1:t,u0:t). This distribution takes into account the transition model

for the PHA from mode x
(i)
d,t−1 to xd,t and can be efficiently computed from the transition

model and the continuous estimates, as described in the next section. For each new mode

sequence x
(i)
d,0:t, we compute the importance weight w

(i)
t . These importance weights take into

account the latest observation yt and are akin to the observation function p(yt|xt) in a hid-
den Markov model. After we compute the importance weights, we resample the trajectories
according to their importance weights, using one of the selection schemes, such as residual
resampling (Higuchi, 1996; Liu & Chen, 1998) or stratified/systematic sampling (Kitagawa,
1996). This step will, in effect, direct the future expansion of the mode sequences into
relevant regions of the state space.

The final step in Figure 9 updates the continuous estimate for each new mode sequence

x
(i)
d,0:t. Since in a PHA, each mode assignment d over the variables xd is associated with

transition and observation distributions

xc,t = f(xc,t−1,ut−1;d) + vx(d) (10)

yc,t = g(xc,t,ut;d) + vy(d), (11)

we update each estimate x̂
(i)
c,t−1, P

(i)
t−1 with a Kalman Filter, using the transition func-

tion f(xc,t−1,ut−1;d), observation function g(xc,t,ut;d), and noise variables vx(x
(i)
d,t) and

vy(x
(i)
d,t), to obtain a new estimate 〈x̂(i)

c,t , P
(i)
t 〉.

3.3 Proposal distribution

In order to complete the algorithm outlined above, we need to specify the proposal dis-

tribution q(xd,t|x(i)
d,0:t−1,y1:t,u0:t), which determines how the discrete mode sequences are

evolved. For simplicity we choose the distribution p(xd,t|xd,0:t−1 = x
(i)
d,0:t−1,y1:t−1,u0:t).

This distribution expresses the probability of the transition from the mode x
(i)
d,0:t−1 to each

mode d ∈ Xd and is similar in its form to the transition distribution p(xt|xt−1) in a Markov
process. However, it is conditioned on a complete discrete state sequence and all previous
observations and control actions, rather than simply on the previous state. This is because
{xd,t} alone is not an HMM process: due to the autonomous transitions, knowing xd,t−1
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Figure 9: Gaussian particle filter for PHA.

xd,t-1
xd,t

xc,t-1 xc,t

yc,t

Figure 10: Conditional dependencies in PHA among the state variables xc,xd and the out-
put y, expressed as a dynamic Bayesian network (Dean & Kanazawa, 1989).
The edge from xc,t−1 to xd,t represents the dependence of xd,t on xc,t−1, that is,
autonomous transitions.

alone does not tell us what the distribution of xd,t is. The distribution of xd,t is known
only when conditioned on the mode and the continuous state for the previous time step
(see Figure 10).

The key idea is to compute the proposal distribution for each tracked mode sequence

x
(i)
d,0:t−1 using the corresponding continuous estimate 〈x̂(i)

c,t ,P
(i)
t 〉. Since the estimate 〈x̂(i)

c,t ,P
(i)
t 〉

captures the posterior distribution of the continuous state conditioned on the i-th sequence,

p(xc,t−1|x(i)
d,0:t−1,y1:t−1,u0:t), we can integrate it out to obtain a transition distribution con-
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Figure 11: Probability of a mode transition ball=no to ball=yes as a function of θ1,t−1.

ditioned on x
(i)
d,0:t−1, y0:t−1 and u0:t alone:

p(xd,t|x(i)
d,0:t−1,y1:t−1,u0:t)

=

∫

xc,t−1

p(xd,t,xc,t−1|x(i)
d,0:t−1,y1:t−1,u0:t) dxc,t−1

=

∫

xc,t−1

p(xd,t|x(i)
d,0:t−1,y1:t−1,xc,t−1,u0:t)p(xc,t−1|x(i)

d,0:t−1,y1:t−1,u0:t) dxc,t−1

=

∫

xc,t−1

p(xd,t|x(i)
d,t−1,xc,t−1,ut−1)p(xc,t−1|x(i)

d,0:t−1,y1:t−1,u0:t−1) dxc,t−1 (12)

The first equality follows from the total probability theorem. The second equality comes
from the independence assumptions made in the model: the distribution of xd,t is indepen-
dent of the observations y1:t−1 and mode assignments prior to time t − 1, given the state
at time t − 1.

Typically, when performing Rao-Blackwellisation, the integral in Equation 12 is difficult
to evaluate efficiently, as noted in (Murphy & Russell, 2001), since the integral in Equa-
tion 12 often does not have a closed form. For PHA, however, efficient evaluation of this
integral is possible. Recall that the distribution of the discrete evolution of a PHA for
one step is specified as a finite set of guards c and their associated transition probabilities
pτ . Each guard specifies a region over the continuous state and automaton’s input/output
variables, for which the transition distribution pτ holds. For example, the acrobot model
in Figure 2 has two guard conditions for the mode has-ball=no: θ1 < 0 and θ1 > 0, with
associated transition probabilities to mode yes 0 and 0.01, respectively. Since the transi-
tion probability is constant in intervals (−∞; 0) and (0;+∞), the transition distribution

p(xd,t|x(i)
d,t−1,xc,t−1,ut−1) takes on a finite number of values as a function of xc,t−1 (see

Figure 11).
To see how this observation aids in the evaluation of the proposal distribution, consider

the left term in the integral in Equation 12, p(xd,t|x(i)
d,t−1,xc,t−1,ut−1). Since this term takes

on only a finite number of values pτj(xd,t), we can split the integral domain into the sets
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Xj that satisfy the constraints cj and factor out the transition probability pτj:

∫

xc,t−1

p(xd,t|x(i)
d,t−1,xc,t−1,ut−1)p(xc,t−1|x(i)

d,0:t−1,y1:t−1,u0:t−1) dxc,t−1

=
∑

j

∫

Xj

p(xd,t|x(i)
d,t−1,xc,t−1,ut−1)p(xc,t−1|x(i)

d,0:t−1,y1:t−1,u0:t−1) dxc,t−1

=
∑

j

pτj(xd,t)

∫

Xj

p(xc,t−1|x(i)
d,0:t−1,y1:t−1,u0:t−1) dxc,t−1

=
∑

j

pτj(xd,t) Pr
α

(i)
t−1

[Xj ] (13)

The second equality holds because, for the region Xj , the conditional distribution

p(xd,t|x(i)
d,t−1,xc,t−1,ut−1) is fixed and equal to pτj. Therefore, in each summed term, we

multiply the transition distribution pτj by the probability of satisfying the guard cj in the

distribution α
(i)
t−1. Hence, the key contribution for PHA is that the discrete transition prob-

ability can be computed directly, by integrating the p.d.f distribution function α
(i)
t−1(xc,t−1)

for each sample i.

3.4 Evaluating the probability of a transition guard

Given the derivation in the previous section, the remaining challenge in computing the
proposal distribution is to evaluate the probability of satisfying the guard cj , given the

distribution α
(i)
t−1 = p(xc,t−1|x(i)

d,0:t−1,y1:t−1,u0:t−1). Without loss of generality, assume that
the guards are only over the continuous state. Guards of the form cc(xc) ∧ cd(ud) can be
handled by setting Pr

α
(i)
t−1

[Xj ] ≡ 0 whenever cd(ud) is not satisfied. More complex guards

can be transformed to a number of guards using elementary rules of logic.

Since computing the an integral over the posterior distribution α
(i)
t−1 exactly is often

intractable, we approximate α
(i)
t with a Gaussian distributions with the estimated mean

x̂
(i)
c,t−1 and covariance P

(i)
t−1. While this approximation will introduce estimation error in

the proposal, it allows us to compute the proposal distribution efficiently, since the problem

simplifies to computing an integral over a Gaussian distribution with mean x̂
(i)
c,t−1 and

covariance matrix P
(i)
t−1:

Pr
α

(i)
t

[Xj ] ≈
1

(2π)nc/2|P(i)
t−1|1/2

∫

Xj

e−
1
2
(xc−x̂

(i)
c,t−1)

T
P

(i)
t−1

−1
(xc−x̂

(i)
c,t−1) dxc (14)

This approach was suggested in (Hofbaur & Williams, 2002a) for single-variate guards
of the form x < c and x > c, where x ∈ x is a continuous state variable and c is a
real constant. In this section, we first summarize their procedure and then show how it
generalizes to multi-variate linear conditions.

Interval single-variate guards When the guards are of the form x < c or x ≤ c, for
some constant c, such as θ1 < 0.7, the integral in Equation 14 simplifies to evaluating the
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Figure 12: Evaluating single-variate guard conditions.

cumulative density function of the normal variable N (µ, σ2), where µ = (x̂
(i)
c,t−1)x is the

mean of variable x in x̂
(i)
c,t−1 and σ2 = (P

(i)
t )x is its variance (Figure 12):

D(c) ,
1

σ
√

2π

∫ c

−∞

e−(x−µ)2/(2σ2)dx. (15)

The cumulative density function D(c) can be evaluated using standard numerical methods,
such as a trapezoidal approximation or using a table lookup. In order to evaluate the
probability of the complementary guards x > c or x ≥ c, we take the complement of the
cumulative density function, 1 − D(c).

The above forms of guard conditions can be viewed as a special case of a more general
form, in which x falls into an interval [l;u].3, where l, u are in the extended set of real
numbers R

+ , R ∪ {−∞,+∞} that includes positive and negative infinity. In these cases,
the probability of satisfying a guard condition can be expressed as the difference of the c.d.f
at the endpoints of the interval, D(u)−D(l). Such guards are thus slightly more expressive,
while maintaining the same computational complexity.

Rectangular multi-variate guards Multivariate guards are often needed to represent
more complex constraints on transitions. For example, in a system with two tanks, con-
nected by a pipe at height h, the mode transitions for the flow between the two tanks
are constrained by how the heights h1 and h2 in the two tanks compare to h. In this
system, the transition into the no-flow mode with would be conditioned on the guard
(h1 < h) ∧ (h2 < h).

In general, the rectangular multi-variate guards will take the form
∧

i∈I(xi ∈ [li;ui]),

where xi are distinct continuous state variables and I , {i1, . . . , in} are their indices.
Evaluating the probability of such a multi-variate guard amounts to evaluating the multi-
dimensional (hyper)rectangular integral over a Gaussian distribution (see Figure 13):

Pr
α

(i)
t

[Xj ] ≈
1

(2π)nc/2|PI |1/2

∫ ui1

li1

∫ ui2

li2

· · ·
∫ uin

lin

e−
1
2
(xc−x̂c,I)T

PI
−1(xc−x̂c,I) dxc, (16)

where x̂c,I is the mean of guard values, selected from the continuous state estimate x̂
(i)
c,t−1,

and PI is the covariance matrix of guard values, selected from the estimate covariance

P
(i)
t−1. Rectangular integrals over Gaussian distributions can be evaluated efficiently using

3. Whether the interval is closed or open matters only if x can have a zero variance. It is straightforward
to generalize the discussion here to open and half-open intervals.
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Figure 13: Rectangular integral over a Gaussian approximation of the posterior density of

h1 and h2, p(h1, h2|x(i)
d,0:t−1,y1:t−1,u0:t−1).

numerical methods, such as those presented in (Joe, 1995; Genz & Kwong, 2000). As
an alternative, one could use Monte Carlo methods to evaluate the integral 16; however,
numerical methods tend to perform better.

Linear multi-variate guards Sometimes, transition guards are best represented by a
linear combinations of continuous variables. For example, in a two-tank system, the direc-
tion of the flow between the two tanks depends on the heights in the two tanks. Hence,
mode variable for the flow would be guarded by the linear guards h1−h2 > 0 and h1−h2 < 0
(see Figure 14). While it would be possible to include h1 − h2 as a derived state variable
in the model, doing so would increase the computational complexity of the Kalman Filter
update and would make the covariance matrix singular. Instead, the key idea is to apply
a linear transform to the Gaussian distribution and reduce the computation to one of the
previous two cases.

Suppose that the guard condition c is expressed as a conjunction of clauses
∧n

i=1 li <

aixc < ui. Such guard conditions correspond to a convex space that is formed as an
intersection of hyper-planes li < aixc and aixc < ui and can be viewed as a limiting case

of SoftMax conditional distribution (Koller et al., 1999). Let A ,
[

a1 a2 . . . an

]T
be

the matrix of the guard coefficients and z , Axc,t−1 be the derived vector with n elements.
Then the guard c ,

∧n
i=1 li < aixc < ui is equivalent to the guard

∧n
i=1 li < zi < ui. The

probability of the guard c can thus be evaluated as an integral

∫ ui1

li1

∫ ui2

li2

· · ·
∫ uin

lin

p(zt|x(i)
d,0:t−1,y1:t−1,u0:t−1) dxc, (17)

over the rectangular region [l1;u1] × [l2;u2] × · · · × [ln;un].
In general, the posterior distribution of z is as intractable as the posterior distribution

α
(i)
t−1 of xc,t−1. Nevertheless, if we approximate α

(i)
t−1 with a Gaussian N (x̂

(i)
c,t−1,P

(i)
t−1), the
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Figure 14: Linear guard h2 < h1 over the Gaussian approximation of the posterior density
of h1 and h2.

distribution of z is Gaussian, with a mean Ax̂
(i)
c,t−1 and a covariance AP

(i)
t−1A

T . There-
fore, linear guards can once again be evaluated as a rectangular integral over a Gaussian
distribution.

3.5 Importance weights

Given our choice of the proposal distribution, the weights w
(i)
t simplify to

w
(i)
t ,

p(yt|x̃(i)
d,0:t,y0:t−1)p(x̃

(i)
d,t|x̃

(i)
d,0:t−1,y0:t−1)

q(x̃
(i)
d,t; x̃

(i)
d,0:t−1,y0:t)

= p(yt|x̃(i)
d,0:t,y0:t−1,u0:t) (18)

This expression represents the likelihood of the observation yt, given a complete mode

sequence x̃
(i)
d,0:t, inputs u0:t, and previous observations y0:t−1. PHA, like most hybrid models,

do not directly provide this likelihood and only provide the probability of an observation
y, conditioned on the discrete and continuous state (see Figure 10). Nevertheless, it is

possible to compute the likelihood from the continuous estimate 〈x̂(i)
c,t−1, P

(i)
t−1〉. In SLDS

models, one may propagate the Gaussian distribution α
(i)
t−1 = N (x̂

(i)
c,t−1,P

(i)
t−1), represented

by this estimate, through the continuous transition and observation functions for mode x
(i)
d,t

(Equation 11). The resulting distribution corresponds to the measurement innovation 〈r,S〉,
computed in the Kalman Filter, and can be used to compute the observation likelihood in
Equation 18 exactly as

w
(i)
t =

1

(2π)N/2|S(i)
t |1/2

e−0.5rT (S
(i)
t )−1

r (19)

(Blom & Bar-Shalom, 1988).
A similar approach leads to an efficient approximation of the weight in the case when the

model contains nonlinear dynamics and autonomous transitions. Due to the nonlinearities
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and autonomous transitions, the conditional distribution α
(i)
t−1 = p(xc,t−1|x̃(i)

d,0:t,y0:t−1,u0:t)
is no longer strictly Gaussian. Nevertheless, if we approximate it with the estimated Gaus-

sian N (x̂
(i)
c,t−1,P

(i)
t−1), as we have done in the previous subsections, it is still possible to

compute the weight in Equation 18 from the Extended or the Unscented Kalman Filter
measurement update. For example, with an Extended Kalman Filter, the observation like-

lihood is computed by first propagating the Gaussian distribution N (x̂
(i)
c,t−1,P

(i)
t−1) through

the system model in mode x
(i)
d,t:

x̂
(i−)
c,t = f(x̂

(i)
c,t−1,ut−1) (20)

A =
∂f

∂xc
|x̂(i)

c,t (21)

P
(i−)
t = AP

(i−)
t AT + Q, (22)

where Q = cov(vx(x
(i)
d,t)) is the system noise in mode x

(i)
d,t. This leads to the observation

prediction yp with covariance S
(i)
t :

yp = g(x̂
(i−)
c,t ,ut) (23)

C =
∂g

∂xc
|x̂(i−)

c,t (24)

S
(i)
t = CP

(i−)
t CT + R, (25)

where R = cov(vy(x
(i)
d,t)) is the observation noise in mode x

(i)
d,t. The observation likelihood

in Equation 18 can then be approximated with normal p.d.f.

w
(i)
t =

1

(2π)N/2|S(i)
t |1/2

e−0.5rT (S
(i)
t )−1r. (26)

3.6 Putting it all together

The final algorithm is shown in Figure 15. Note that the order of the Exact and Selection
step of the generic RBPF algorithm in Figure 5 has been switched, because the innovation
mean and covariance, computed in the Kalman Filter update step, are used to compute the
importance weight.

Several straightforward optimizations can be employed to further improve the perfor-
mance of the algorithm. First, since the algorithm is recursive and only depends on the
latest state estimate and the latest mode assignment in a mode sequence, it is sufficient to

maintain only the latest mode assignment x
(i)
d,t, rather than the complete mode sequences

x
(i)
d,0:t. Furthermore, the algorithm can compute the transition probability PT in the Im-

portance Sampling step only once for each unique sample. This can be accomplished by
maintaining the number of offspring Ni generated in the Selection step, and taking Ni

random samples from the computed transition probability PT .

4. Gaussian Particle Filtering for CPHA

In practice, a model will be composed of several concurrently operating automata that
represent individual components of the underlying system. In this manner, the design of
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1. Initialization

• For i = 1, . . . ,N

– draw a random sample x
(i)
d,0 from the prior distribution p(xd,0)

– initialize the estimate mean x̂
(i)
c,0 ← E[xc,0|x

(i)
d,0] and covariance P

(i)
0 ← Cov(xc,0|x

(i)
d,0)

2. For t = 1, 2, . . .

(a) Importance sampling step

• For i = 1, . . . ,N

– compute the transition distribution p(xd,t|x
(i)
d,0:t−1,y1:t−1,u0:t)

– sample x̃
(i)
d,t
∼ p(xd,t|x

(i)
d,0:t−1,y1:t−1,u0:t)

– let x̃
(i)
d,0:t ← (x

(i)
d,0:t−1, x̃

(i)
d,t)

(b) Exact step

• For i = 1, . . . ,N

– perform a KF update: x̃
(i)
c,t , P̃

(i)
t , r

(i)
t ,S

(i)
t ← UKF (x̂

(i)
c,t−1,P

(i)
t−1, x̃

(i)
d,t)

– compute the importance weight: w
(i)
t ← N (r

(i)
t ,S

(i)
t )

(c) Selection step

• normalize the importance weights w
(i)
t

• Select N particles (with replacement) from {〈x̃
(i)
d,0:t, x̃

(i)
c,t , P̃

(i)
t 〉} according to the normalized

weights {w̃
(i)
t } to obtain particles {〈x

(i)
d,0:t, x̂

(i)
c,t,P

(i)
t 〉}

Figure 15: Gaussian particle filter for PHA.

the models can be split on a component-by-component basis, thus enhancing the reusabiliy
of the models and reducing modeling costs. In this chapter we extend our Gaussian particle
filter, developed in the previous section, to handle composed CPHA models, see Section 2.2
for an overview of CPHA. In CPHA, components transition independently, conditioned
on the current discrete and continuous state. Therefore, it is possible to compute the

transition probabilities P
(i)
T

for each tracked mode sequence component-wise (Hofbaur &
Williams, 2002a). This property is exploited by our algorithm in the importance sampling
step, whereby the samples are evolved according to the transition distribution PT on a
component-by-component basis. We then show how sampling from the posterior (Akashi
& Kumamoto, 1977; Doucet et al., 2000) can be adapted to CPHA. The key idea is to
evaluate the observation function for mode transitions independently. This results in an
improved proposal q that incorporates some information in the latest observations, without
performing a Kalman Filter update for each successor mode.

4.1 Sampling from the prior

Recall that the algorithm in Section 3 sampled the mode sequences according to the proposal

distribution q(xd,t|x(i)
d,0:t−1,y1:t,u0:t) = p(xd,t|x(i)

d,0:t−1,y1:t−1,u0:t) , P
(i)
T ,t. This represents

the probability of being in the mode xd,t, conditioned on the previous sequence of modes

x
(i)
d,0:t−1 and observations y1:t−1, leading to that mode. Given this choice of the proposal,

the importance weights simplify to

w
(i)
t = p(yt|x(i)

d,0:t,y1:t−1,u0:t) , P
(i)
O,t. (27)
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1. Initialization

• For i = 1, . . . , N

– draw a random sample x
(i)
d,0 from the prior distribution p(xd,0)

– initialize the estimate mean x̂
(i)
c,0 ← E[xc,0|x

(i)
d,0]

– initialize the estimate covariance P
(i)
0 ← Cov(xc,0|x

(i)
d,0)

2. For t = 1, 2, . . .

(a) Importance sampling step

• For i = 1, . . . , N

– For each component k

∗ compute the transition distribution p(xd k,t|x
(i)
d k,0:t−1,y1:t−1,u0:t)

∗ sample x̃
(i)
d,t k ∼ p(xd k,t|x

(i)
d k,0:t−1,y1:t−1,u0:t)

– let x̃
(i)
d,0:t ← (x

(i)
d,0:t−1, 〈x̃

(i)
d,t 1, . . . , x̃

(i)
d,t nc

〉)

(b) Exact step

• For i = 1, . . . , N

– perform a KF update: x̃
(i)
c,t , P̃

(i)
t , r

(i)
t ,S

(i)
t ← UKF (x̂

(i)
c,t−1,P

(i)
t−1, x̃

(i)
d,t)

– compute the importance weight: w
(i)
t ← N (r

(i)
t ,S

(i)
t )

(c) Selection step

• normalize the importance weights w
(i)
t

• Select N particles (with replacement) from {〈x̃
(i)
d,0:t, x̃

(i)
c,t , P̃

(i)
t 〉} according to the normalized

weights {w̃
(i)
t } to obtain particles {〈x

(i)
d,0:t, x̂

(i)
c,t,P

(i)
t 〉}

Figure 16: Gaussian particle filter for CPHA.

When sampling mode sequences in CPHA, we use the same proposal distribution. The
only difference is that now, instead of computing the transition probability for every value in
the domain Xd of the discrete variables xd, we evaluate it only for the individual component’s

discrete domain Xd k, and obtain the joint transition distribution p(xd,t|x(i)
d,0:t−1,y1:t−1,u0:t)

as a product of component transition distributions
∏

k p(xd k,t|xd k,0:t−1,y1:t−1,u0:t), for all
components k in the model (see Section 3.3).

Figure 16 shows the pseudocode for the resulting algorithm. The algorithm is based
on the algorithm presented in Section 3, except that in the importance sampling step, we
compute the transition distribution and evolve the sampled mode sequences on a component-
by-component basis.

4.2 Sampling with improved proposal

One possible drawback with using the transition distribution as a proposal in the fault
diagnosis domain is that fault transitions typically have a low prior probability, and many
particles may be needed to sample and detect the fault. If there is a significant amount of
information contained in the observations, it may be useful to incorporate this information
into the proposal, so that modes with high probability in the posterior distribution are
also likely in the proposal. It may be possible to use domain-specific heuristics to guide
the sampling process (Dearden & Clancy, 2002); however, such heuristics are difficult to
construct and can be very fragile. One systematic solution is to use the optimal proposal
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distribution4, q = p(xd,t|x(i)
0:t−1,y0:t,u0:t) (Akashi & Kumamoto, 1977; Doucet et al., 2000).

Let us expand it in terms of the transition distribution and the observation likelihood:

p(xd,t|x(i)
d,0:t−1,y1:t,u0:t) = (28)

=
p(xd,t,yt|x(i)

d,0:t−1,y1:t−1,u0:t)

p(yt|x(i)
d,0:t−1,y1:t−1,u0:t)

(29)

=
p(yt|xd,t,x

(i)
d,0:t−1,y1:t−1,u0:t)p(xd,t|x(i)

d,0:t−1,y1:t−1,u0:t)
∑

d∈Xd
p(yt,xd,t = d|x(i)

d,0:t−1,y1:t−1,u0:t)
(30)

Hence, the distribution represents the “increment” in the posterior distribution of the mode
sequence from time step t− 1 to time step t (the numerator of Equation 30), among all the

sequences extending x
(i)
d,0:t−1 (the denominator of Equation 30).

In hybrid models, the optimal proposal distribution is a double-edged sword: Although
the performance of the filter may improve on a per-sample basis, significantly more compu-
tation needs to be performed, in order to compute the proposal distribution. In practice,
the trade-off will depend on the amount of information in the observations and on the prior
probabilities of the faults. The reason is that, in order to compute the optimal proposal
distribution, the algorithm would need to evaluate the observation likelihood at each reach-
able successor mode. While this approach may work in a single-component system that
has only a few modes, its performance, as a function of the execution time, will degrade as
the number of mode assignment increases. With a total of 450,000 modes in the BIO-Plex
model (Hofbaur & Williams, 2004), the algorithm would have to perform 450,000 Kalman
Filter updates for each sample. With one Kalman Filter update taking as much as 1ms for
a four-variable continuous model, this approach would take at least ten hours to perform
one iteration, when taking 70 samples for the model described in (Hofbaur & Williams,
2004).

Instead, our second algorithm incorporates the latest observations into the sampling
process, but does not enumerate all the successor modes. The key idea is to compute the
observation likelihood, PO, for each individual component transition, and combine these
with the transition distribution, PT . In the importance sampling step, the algorithm now
computes the observation likelihood for each component k and each mode m in that com-
ponent. The transitions are treated independently: While we transition the component k

into mode m and compute the observation likelihood for the newly evolved sequence, all of
the other components remain in the same mode. Together with the transition distribution

P
(i)
T ,t k, this observation likelihood determines the probability of transitioning to mode m of

the proposal distribution q
(i)
t k, for the component k. This proposal distribution is used to

evolve the mode variables in the k-th component, in order to obtain the new sample x̃
(i)
d,t k.

In the Exact step, the algorithm updates the continuous state, using the newly sampled
mode, and computes the importance weights for the newly obtained samples. Recall from

4. This distribution is optimal in the sense that it minimizes the variance of importance weights (Doucet
et al., 2000).
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Section 2.4 that importance weights need to satisfy the following equality:

w
(i)
t =

p(yt|x(i)
d,0:t,y1:t−1,u0:t)p(x

(i)
d,t|x

(i)
d,0:t−1,y1:t−1,u0:t−1)

q(x
(i)
d,t;x

(i)
d,0:t−1,y1:t,u0:t)

. (31)

In this case, since the samples x
(i)
d,t k are evolved independently according to the proposal

distribution q
(i)
t k for each component k, the proposal distribution for the vector x̃

(i)
d,t becomes

q(x
(i)
d,t;x

(i)
d,0:t−1,y1:t,u0:t) =

∏

k

q
(i)
t k. (32)

Similarly, the prior transition distribution P
(i)
t for the sample x̃

(i)
d,t becomes

P
(i)
t =

∏

k

P
(i)
T ,t k. (33)

Therefore, the weights w
(i)
t in Equation 31 reduce to

w
(i)
t =

N (r,S
(i)
t )

∏

k P
(i)
T ,t k

∏

k q
(i)
t k

(34)

.
The algorithm works best when the effects of mode transitions are observed indepen-

dently, or nearly independently, among the component mode variables. This occurs, for ex-
ample, when the transitions occur in independent or weakly dependent components. In these
cases, the observation likelihood in one component is independent of, or weakly-dependent
on, the observation likelihoods in the other components. The proposal distribution q is then

near the optimal proposal q(x
(i)
d,t;x

(i)
d,0:t−1,y1:t,u0:t) = p(x

(i)
d,t;x

(i)
d,0:t−1,y1:t,u0:t).

5. Experimental Results

Having developed our Gaussian particle filter algorithm for CPHA in the previous two
sections, we now turn to evaluating its performance and comparing it to the k-best filter
(Hofbaur & Williams, 2002a). While significant attention has been given to comparing
the Gaussian and non-Gaussian particle filters (Doucet, Gordon, & Kroshnamurthy, 2001b;
Morales-Menéndez et al., 2002; Hutter & Dearden, 2003), little attention has been given
to comparing the relative performance of k-best and Gaussian particle filters. An initial
step was taken by Lerner (2002). In order to bridge this gap, we evaluate the performance
of the two algorithms on two principal scenarios that exhibit each method’s strengths and
weaknesses. We also evaluate the performance of sampling from the posterior, with the
algorithm described in Section 4.2.

We consider the acrobatic robot example, introduced in Section 2.2. In this model, the
system dynamics are represented by four continuous variables: θ1, the angle that the robot
holds with the vertical plane, θ2, the angle between the robot’s torso and its legs, and the
corresponding angular velocities ω1 and ω2. The discrete state of the hybrid model for
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Figure 17: The evolution of θ1 (left) and θ2 (right) for the nominal acrobot model scenarios.

this example consists of two variables, representing whether or not the robot holds a ball
on its lower link (variable has-ball) and whether or not its actuator has broken (variable
actuator). The complete discrete transition model is shown in Figures 2 and 3. The goal of
hybrid estimation in this example is to filter out the acrobot’s hybrid state from a sequence
of noisy observations of θ2.

While the acrobot model is small, it demonstrates interesting challenges for hybrid
state estimation. The dynamic model for two-link systems like the acrobatic robot is highly
nonlinear. Furthermore, with four continuous state variables, the hybrid model is already
too large to be handled by non-Gaussian particle filters in real time. Finally, the symptoms
exhibited by mode changes are very subtle. Over ten time steps, the difference in the
continuous trajectory between the actuator=ok and the actuator=failed modes is less
than 0.04rad, which is the standard deviation of our chosen observation noise.

5.1 Acrobot Model with Concentrated Posterior

We considered the following three scenarios for hybrid estimation with the acrobot model.

1. In the nominal scenario, the robot remains in the nominal mode 〈has-ball=no,
actuator=ok〉 for the duration of the experiment.

2. In the ball scenario, the robot captures a ball at time t = 1.3s and keeps it for the
rest of the experiment. Capturing a ball increases the weight m2 at the end of the
lower link and changes the resulting trajectory, as shown in Figure 17.

3. In the failure scenario, the robot’s actuator breaks at t = 1.8. This event causes the
actuator to stop exerting any torque, and alters the robot’s trajectory, as shown in
Figure 17.
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Figure 18: A single run for the nominal scenario using both the Gaussian particle filter
(rbpf) and the Gaussian k-best filter (kbest). Left: MAP estimate computed by
the Gaussian particle filter with 100 samples. Right: probability of the correct
(nominal) diagnosis.

We first present results for hybrid estimation with these scenarios for single executions
of the k-best algorithm and the Gaussian particle filter algorithm, and then compare the
overall performance of the two algorithms.

5.1.1 Single executions

Figure 18 shows the maximum a posteriori (MAP) estimate of the discrete state by the two
hybrid estimation filters for the nominal scenario. It can be seen that the Gaussian particle
filter algorithm estimates the most likely mode as 〈has-ball=no, actuator=ok〉, which is
in fact the ground truth, except for two timesteps between t = 4.86 and t = 4.87 seconds.

Figure 18 shows the estimated probability of the diagnosis corresponding to the ground
truth, relative to the other possible diagnoses at each time step. For example, for t < 0.5s,
all of the tracked particles correspond to the correct diagnosis, and so the probability
of the correct diagnosis is one in this region. Between t = 1 and t = 3, however, the
transition from mode has-ball=no to mode has-ball=yes is enabled. Since the likelihood
of alternative diagnoses is increased in this time period, the algorithm’s MAP estimate has
a lower confidence, around 0.7.

Figure 20 shows the results for the ball scenario where the robot catches the ball at
t = 1.3s. It can be seen that the Gaussian particle filter algorithm estimates the MAP
diagnosis correctly, except for an uncertain area close to the transition. It can be seen that
close to t = 1.3s, the probability of the correct diagnosis drops to around 0.5, indicating
that at this time, approximately half of the tracked sequences correspond to the correct
diagnosis at the fringe.

The reason for the delay between when the ball transition occurs, and when it is iden-
tified as the most likely diagnosis, is that the posterior probability of the 〈has-ball=yes,
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0. has-ball=no, actuator=ok
1. has-ball=yes, actuator=ok
2. has-ball=no, actuator=failed
3. has-ball=yes, actuator=failed

Figure 19: Numbers corresponding to the different mode assignments
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Figure 20: A single run for the ball capture scenario. Left: Maximum a posterior (MAP)
estimate computed by the Gaussian particle filter (rbpf) and the k-best filter
(kbest). Right: probability of the correct diagnosis has-ball=yes for t ≥ 1.3s.

actuator=ok〉 diagnosis builds up only over time. The low probability of a transition to
〈has-ball=yes, actuator=ok〉 biases the prior towards the 〈has-ball=no, actuator=ok〉
diagnosis. Since the system is noisy, only over time does the observation likelihood due to
the correct diagnosis build up to compensate for this bias.

Figure 21 shows the results for the failure scenario, where the actuator loses the ability
to exert any torque at t = 1.8 seconds. Again, it can be seen that after a delay, the
Gaussian particle filter algorithm estimates the MAP diagnosis correctly as (has-ball=no,
actuator=failed). In the failure scenario the delay is greater since the transition prior to
the actuator=failed mode is far lower than for the transition to the has-ball=no mode.

In all cases, the Gaussian particle filter tracked the continuous state of the acrobot
system very well, even for the continuous states θ1, ω1, and ω2 which were not directly
observed. Figure 22 shows the tracking of θ1 and θ2 for the nominal scenario. It can be
seen that the tracked estimate is very close to the omniscient UKF, where the discrete state
of the system is fully known.

5.1.2 Performance metrics

One of the biggest obstacles to evaluating the performance of hybrid state estimation al-
gorithms is that inference with hybrid models is, in general, NP-hard (Lerner & Parr,
2001), and it is very difficult to obtain the true posterior distribution p(xc,t,xd,t|y1:t,u0:t).
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Figure 21: A single run for the actuator failure scenario. Left: Maximum a posterior (MAP)
estimate computed by the Gaussian particle filter and the k-best filter. Right:
probability of the correct diagnosis 〈has-ball=no, actuator=failed〉 for t ≥
1.8s.
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Figure 22: Filtered θ1 and θ2 for an execution of the nominal scenario.
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Sometimes, this distribution can be approximated by a particle filter with a large number of
samples; however, the accuracy of such approximations may not be bounded tightly enough.

Instead, we use the following two metrics for a given algorithm with a fixed number of
tracked sequences:

1. The percentage of the diagnostic faults, defined as # of wrong diagnoses
# time steps . Here, wrong

diagnoses are defined as estimates of the discrete state at the fringe which do not
correspond to the same discrete state as the ground truth.

2. The mean square estimation error of the continuous estimate corresponding to the
MAP diagnosis. This is defined as ((x̂c,t − xc,t)

T (x̂c,t − xc,t))
1/2, where x̂c,t is the

continuous estimate corresponding to the MAP diagnosis, and xc,t is the continuous
state ground truth. This measure is averaged over all time steps and experiments.

These metrics compare the MAP diagnosis to the ground truth; however it is not nec-
essarily the case that the true MAP hybrid estimate is the same as the ground truth. The
scenarios we use were verified to be such that the posterior distribution is concentrated in
a small number of hypotheses, and in such a way that the true MAP estimate is in fact the
ground truth for the most part (exceptions to this were discussed in section 5.1.1). Hence
these statistics are valid for the following experiments, and have also been employed in
prior literature (Hutter & Dearden, 2003). An alternative would be to use as a measure the
likelihood of the correct diagnosis for discrete estimates and the KL divergence from the
omniscient Kalman Filter for the continuous estimates (Lerner, 2002).

5.1.3 Performance Comparison

Figures 23 through 25 show the percentage of diagnostic errors and the mean square tracking
error for the three scenarios considered for the acrobot model. For each of the scenarios,
the algorithms were run on 20 random observation sequences with fixed mode assignments.

Figure 23 shows that for the nominal scenario, the k-best algorithm makes almost no
diagnostic errors. The Gaussian particle filter on the other hand, makes more than 30 per
cent diagnostic errors on average for small k; this decays to zero as the number of tracked
sequences increases.

The Gaussian particle filter gives a higher number of diagnostic errors because it approx-
imates the true posterior of a given hypothesis, storing some of the information about the
distribution in the particle count. Noise in the observations and variations in the random
sampling can cause the particles corresponding to the wrong diagnosis to be weighted far
greater than those corresponding the correct diagnosis. When this happens, if there are few
particles being tracked, all of the particles corresponding to the correct hypothesis can be
discarded. This process greatly approximates the true posterior distribution, and since the
model has a low transition prior, the resulting diagnostic error persists.

The k-best filter, on the other hand, tracks k distinct sequences and calculates the
posterior likelihood of these sequences exactly. In this experimental scenario, where there
are relatively few mode sequences with non-negligible posterior likelihood, the k-best filter
will continually track the sequence corresponding to the ground truth as well as alternative
sequences. Hence the k-best filter does not make as many diagnostic errors as the Gaussian
particle filter with the nominal scenario.
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Figure 23: Performance for the nominal scenario. Left: Percentage of diagnostic errors.
Right: Mean square estimation error of the continuous state

Figure 24 shows the average results for the ball scenario. The k-best algorithm again
consistently outperforms the Gaussian particle algorithm, although it now makes some
diagnostic errors. Again, both algorithms appear to converge to a minimum number of
diagnostic errors. Because the true posterior distribution is such that the MAP diagnosis is
not the same as the ground truth for a small fraction of the time steps in the experiment,
this minimum is non-zero.

Figure 25 shows a somewhat different trend for the failure scenario. For small k, the
Gaussian particle filter now makes fewer diagnostic errors on average; for k > 30, however,
the k-best algorithm outperforms the Gaussian particle filter as was the case with the
ball and nominal scenarios. Also, whereas the performance of the Gaussian particle filter
improves gradually as k increases, the k-best algorithm shows a large shift in performance
between k = 20 and k = 50.

The results show that for a given algorithm, the failure scenario requires a far higher
number of tracked sequences to achieve the same diagnostic accuracy. This is because the
failure transition has an extremely low prior probability; hence a large number of sequences
must be tracked for the true sequence to be included for long enough for the observation
probability to dominate the low transition prior.

In these scenarios, therefore, three interesting patterns emerge: Firstly, the k-best al-
gorithm undergoes a phase shift in performance, depending on whether or not k is large
enough for hypotheses similar to the ground truth to be tracked. The critical value of k

depends on the concentration of the posterior distribution. If the posterior distribution is
concentrated in a very small number of distinct sequences, as in the nominal and the ball
scenarios, then the k-best method will perform well even for small k. In the failure scenario
the posterior distribution was spread among a few more distinct sequences, hence the k-best
method gave a large fraction of diagnostic errors for small k. Note that in this case the
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Figure 24: Performance for the ball scenario. Left: Percentage of diagnostic errors. Right:
Mean square estimation error of the continuous state
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Figure 25: Performance for the actuator failure scenario. Left: Percentage of diagnostic
errors. Right: Mean square estimation error of the continuous state.
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Figure 26: Performance for the failure scenario with respect to run time. Left: Percentage
of diagnostic errors. Right: Mean square estimation error of the continuous state

k-best algorithm still only needed to track 50 sequences for the performance to converge to
its optimum.

Secondly, as long as k is greater than the critical value, k-best clearly outperforms
Gaussian particle filtering for the scenarios chosen. This is because in these scenarios, the
posterior likelihoods of all but a handful of mode sequences are negligible; hence the pos-
terior distribution can be approximated closely by tracking a small set of mode sequences.
The k-best method performs well when this is the case because it calculates the exact pos-
terior for a set of k distinct mode sequences. The Gaussian particle filter algorithm, on the
other hand, approximates the posterior probability of a given mode sequence, representing
some of the information in the number of samples for that mode sequence. It also uses
some of its k particles to store duplicate mode sequences, meaning that alternative mode
sequences tracked by the k-best enumeration methods are discarded by the particle filter.

Thirdly, the performance of the Gaussian particle filter converges less quickly than the k-
best filter to a low fraction of diagnostic errors (See Figure 25). Since the Gaussian particle
filter approximates the true posterior and duplicates high likelihood hypotheses, increasing
the number of particles simply makes the approximation closer to the true posterior. Hence
there is a gradual convergence and not the phase shift seen for k-best.

These results are the same when we compare the performance with respect to the run
time of the algorithms. Figure 26 shows this comparison. We found that the run time of
the k-best algorithm was no more than 50 per cent greater per time step than the Gaussian
particle filter. This has a negligible effect on the log scales against which we compare the
performance of the two algorithms.

These insights motivate a modified set of experiments. We would like to investigate sit-
uations where the posterior distribution is not concentrated in a small number of discrete
sequences. In these cases, k-best enumeration techniques will not track a mode sequence
which, although having a significant likelihood, is not within the k best mode sequences.
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Figure 27: Probabilistic hybrid automata for the body and actuator of the modified acrobot
example

Gaussian particle filtering on the other hand, which samples the mode transitions stochas-
tically according their transition priors, may in fact track the correct mode sequence long
enough for its observation probability to dominate. These experiments are discussed in the
next section.

5.2 Acrobot Model with Dispersed Posterior

The modified acrobot model has the same components as before, however the model pa-
rameters are different. Most importantly, the probability of the acrobot catching a ball has
changed from 0.05 to 0.5. An example of where this might be necessary is the case where
we have no information about the prior likelihood of the acrobot capturing a ball. The
increased transition probability means that whenever the transitions between has-ball=no

and has-ball=yes are enabled, the number of mode sequences with a high prior grows
exponentially. Secondly, the mass of the ball is decreased and the amplitude of the driving
torque is increased. This means that the has-ball=yes has less of an impact on the con-
tinuous dynamics, while the loss of driving torque due to the actuator=failed mode has
a more pronounced effect. Finally, the transition guard for the ball capture was changed
to θ1 ≥ 0.55. This means that transitions on the body component are enabled for fewer
timesteps, which makes the results easier to interpret.

The overall effect of these modifications is that the posterior distribution is no longer
concentrated in a small number of hypotheses. An exponential number of hypotheses with
high priors grows whenever θ1 ≥ 0.55. Since the mass of the ball has been decreased the
observation probabilities for each of these sequences are not significantly different in a short
time frame. Hence there are a very large number of distinct hypotheses to be tracked, all
of which initially have a high posterior probability.

The modified acrobot model is an example where the fair sampling of the Gaussian
particle filter can outperform the greedy search in the k-best filter. In a failure scenario, for
example, where the actuator stops exerting torque, over a small number of time steps the
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difference between the failure dynamics and the nominal dynamics is very subtle. The k-
best filter tracks the hypotheses in strictly best-first order and in this scenario the best-first
enumeration is dominated by the prior probability. Now that there are a very large number
of distinct hypotheses with high prior likelihoods, no sequences with transitions to the
actuator=failed mode will be tracked if k is too small. Gaussian particle filtering, on the
other hand, does not suffer from this problem since transitions are sampled stochastically.
This method may stochastically choose the correct mode sequence even if it is not strictly
among the k best hypotheses and hence will be more successful at tracking a system such
as this.

5.2.1 Performance Comparison

The following experiments compare the performance of the k-best algorithm and the Gaus-
sian particle filter when estimating the hybrid state of the modified acrobot model. A
scenario was used where the actuator loses the ability to exert any torque at t = 1.5 sec-
onds. Figure 28 shows the performance of the k-best and particle filtering algorithms for
this scenario.

Figure 28 shows that for the acrobot model with a dispersed posterior distribution, the
Gaussian particle filter clearly outperforms the k-best method both in terms of diagnostic
errors and mean square estimation error. The performance of the Gaussian particle filter
improves as the number of tracked sequences increases, while the the k-best method does
not. This is because the exponential explosion of sequences with a high posterior prevents
the strict enumeration of the k-best method from considering the initially less likely failure
sequence even with large k.

Figure 29 shows the estimated MAP diagnosis and the probability of the ground truth
diagnosis for a single experiment with k = 500. Even with this large number of tracked se-
quences, the k-best filter cannot detect the transition from actuator=ok to actuator=failed
at t = 1.5s. Due to the exponential number of sequences with either the mode 〈has-ball=no,
actuator=ok〉 or the mode 〈has-ball=yes, actuator=ok〉 at the fringe, the k-best filter
does not track any sequences with the failure transition, and hence makes spurious diag-
noses depending on which of these sequences happens to match the observations best. The
Gaussian particle filter, by contrast, samples the actuator failure transition fairly. When-
ever a particle samples the transition close to where it occurred in reality, the observation
likelihood of that particle grows until it dominates the hypothesis space, leading to the
correct diagnosis.

Figure 30 shows the continuous tracking of θ1 and θ2 for both k-best and Gaussian
particle filter algorithms. The Gaussian particle filter has much more accurate continuous
tracking than the k-best algorithm for this example as a direct result of its lower fraction
of diagnostic errors. Observations of θ2 are available to the filter, hence the tracking of this
variable is close in both cases, however the tracking of θ1 has large errors in the k-best case.
This is because without an accurate estimate of the discrete mode sequence, the continuous
dynamics of the system are unknown.

These results have therefore shown that for the modified acrobot model, the Gaussian
particle filter algorithm greatly outperforms the k-best method, in sharp contrast to the
original acrobot model tested in Section 5.1. By changing the parameters of the model, the
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Figure 28: Performance for the failure scenario with the modified acrobot model. Left:
Percentage of diagnostic errors. Right: Mean square estimation error of the
continuous state
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Figure 30: Continuous tracking of the MAP estimate with the modified acrobot model and
failure scenario

posterior distribution changed from being concentrated in a small number of hypotheses to
being dispersed over a number too great for a greedy enumeration scheme such as k-best
to track. The Gaussian particle filter on the other hand was able to track the system with
the dispersed posterior.

5.3 Sampling from the Posterior

We carried out experiments to compare the performance of the Gaussian particle filter when
sampling from the posterior (Section 4.2) to the performance of the Gaussian particle filter
when sampling from the prior (Figure 16). These tests used the original acrobot model,
described in Section 2.2, and the failure scenario described in Section 5.1.

Figure 31 shows that for the failure scenario with the acrobot model, sampling from the
posterior does not perform any better on average than sampling from the prior. The slight
differences in diagnostic error visible in Figure 31 are noise due to the inherent randomness in
any given experiment. Figure 31 also shows that sampling from the posterior is significantly
more costly in terms of running time per time step, and hence has a worse performance for
a given running time than sampling from the prior. Sampling from the posterior takes more
time, because, in order to compute the proposal distribution, the filter needs to perform
Kalman filter updates several times per particle, as discussed in Section 4.2.

Sampling from the posterior does not improve the diagnostic performance of the algo-
rithm because the effect of the discrete mode on the observed continuous state is delayed.
In the continuous acrobot dynamics, the mode of the system affects the accelerations θ̈1

and θ̈2 through the weight of the lower link (variable has-ball) or through the torque
exerted by the actuator (variable actuator). In the discretized model used by the particle
filter, this means that the mode at time t affects the angular velocities ω1 and ω2 at time
t, which in turn affects the observed state θ2 at time t + 1. Hence the effect of the mode
on the observed state is not manifested until the next time step later. This means that, in

the case of the acrobot model, all successor modes of the sequence x
(i)
d,0:t−1 have the same
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Figure 31: Percentage of diagnostic errors for the failure scenario, as a function of number
of tracked mode sequences (left) and running time per time step (right).

observation likelihood, and hence sampling from the posterior by incorporating the most
recent observation will not sample mode transitions more fairly than sampling from the
prior does.

This results have therefore shown that sampling from the posterior affords us no signifi-
cant advantage in a system where the effect of the discrete mode on the observed continuous
state is delayed in the discretized form. This is the case when the discrete mode affects the
derivative of the observed state, and not the observed state itself.

5.4 Discussion

We have carried out an experimental comparison of the k-best and Gaussian particle filter
methods with two versions of the acrobot model introduced in Section 2.2. Scenarios were
used where the acrobot swings normally, where it catches a ball, and where the actuator
fails.

In scenarios where the posterior distribution was concentrated in a small number of
distinct hypotheses, the k-best filter outperformed the Gaussian particle filter algorithm as
long as k was greater than a critical value, which was between 20 and 50 for the failure
scenario. In this case the fraction of diagnostic errors and the mean square error of the
continuous estimate were significantly lower for k-best, and in addition the performance of
the k-best filter converged much more quickly than for the Gaussian particle filter, exhibiting
a marked shift in performance at a critical value of k. The reason for the difference in
performance between the k-best method and the Gaussian particle filter is that the Gaussian
particle filter approximates the posterior distribution of individual sequences, representing
some of the information in the number of duplicated hypotheses, while the k-best algorithm
stores the posterior probability of a given mode sequence exactly. When the scenario has
a concentrated posterior, the k-best algorithm is able to track the relevant mode sequences
exactly, and hence performs better than the Gaussian particle filter.

When the posterior distribution is not concentrated in a small number of distinct hy-
potheses, the Gaussian particle filter performs much better than the k-best algorithm. In
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these cases, the k-best algorithm, by enumerating the different hypotheses in a strictly best-
first order, fails to track any hypotheses corresponding to a transition with a low prior, such
as a failure transition. The Gaussian particle filter samples such transitions according to
their prior probability and hence is able to detect them much more effectively.

These insights motivate a new algorithm which combines the exact, greedy search of
the k-best algorithm with the stochastic sampling of the Gaussian particle filter. This is
analogous to the trade-off between exploitation and exploration present in many Artificial
Intelligence techniques. This is a topic of ongoing research.

We have also presented an experimental comparison of the Gaussian particle filter algo-
rithm using sampling from prior, and using sampling from the posterior. The results showed
that sampling from the posterior is more costly in terms of computation time, and affords
no performance benefit for systems where the effect of the discrete mode on the observed
state is delayed by more than one time step.

6. Related work

Several algorithms have addressed the problem of the exponential growth of the Gaussian
mixtures. One class of solutions are multiple-model estimation schemes, which maintain a
pre-determined number of mode sequences. These include the generalized pseudo-Bayesian
algorithm (GPB) (Ackerson & Fu, 1970), the Detection/Estimation Algorithm (DEA) (Tug-
nait, 1982), the Interacting Multiple Model (IMM) algorithm (Blom & Bar-Shalom, 1988),
and residual correlation Kalman filter bank (Hanlon & Maybeck, 2000). All of these tech-
niques have a fixed-time, deterministic strategy for pruning discrete mode sequences.

More recently, Lerner et al. (2000) proposed a k-best filtering solution for SLDS models.
In addition to pruning, their algorithm implements several techniques not present in our
algorithm, including collapsing of the mode sequences, smoothing, and weak decomposition.
This approach was later extended in (Lerner, 2002), to the setting of hybrid dynamic
Bayesian networks with SoftMax transitions, using numerical integration techniques instead
of the Kalman Filter. Similarly to ours, their algorithm provides an any-time solution to
the hybrid state estimation problem.

Hofbaur and Williams (2002a) introduced autonomous transitions to the models in the
context of Concurrent Probabilistic Hybrid Automata. They introduced an any-time k-
best filtering algorithm for concurrent systems, based on the k-best filtering algorithm for
concurrent probabilistic constraint automata (Williams & Nayak, 1996). Their algorithm
extracts a leading set of sequences in the order of their priors using a combination of
branching and A* algorithm that exploits preferential independence and guarantees to find
the next set of k leading sequences at each time step.

In the particle filtering community, several papers (Avitzour, 1995; Kitagawa, 1996) have
proposed to use the bootstrap particle filter to perform state estimation in hybrid models.
An early application of the Rao-Blackwellisation method to reducing the variance of sam-
pling in SLDS models was introduced by Akashi and Kumamoto (1977). Their algorithm,
named the Random Sampling Algorithm (RSA), sampled the sequences of mode assign-
ments using the distribution p(xd,t|xd,0:t,y1:t,u0:t). Doucet (1997, 1998) introduced the
Selection Step, which is crucial for the convergence of sequential Monte Carlo methods and
framed the problem in the general particle filtering framework. In addition, he proved sev-
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eral properties on the convergence and variance reduction of Rao-Blackwellisation schemes.
Doucet, Freitas, and Gordon (2001a) further extended this work and described an algo-
rithm for fixed-lag smoothing with MCMC steps. Finally, Morales-Menéndez et al. (2002)
introduced a procedure, called one-step look-ahead, which computes the total probability
for the sequences stemming from a given sample and moves the selection step before the
importance sampling step, at the cost of evaluating the Kalman Filter residual for all suc-
cessor modes. All of these techniques were designed for linear switching models without
autonomous transitions.

Similar to, but independent from our work, Hutter and Dearden (2003) combined the
look-ahead Rao-Blackwellised particle filter with an Unscented Kalman Filter, in order to
improve the accuracy of the continuous estimates. In our work (Funiak & Williams, 2003),
we have introduced autonomous transitions and drew parallels to prior approaches in hybrid
model-based reasoning.

Two complementary approaches for improving the performance of particle filters were
proposed by Thrun, Langford, and Verma (2001) and Verma et al. (2003). The first one,
the Risk-sensitive Particle Filter, incorporates a model of cost into the sampling process.
The cost is implemented automatically using an MDP value function tracking. The second
approach improves the performance of particle filtering by automatically choosing an ap-
propriate level of abstraction in a multiple-resolution hybrid model. Maintaining samples
at a lower resolution prevents hypotheses from being eliminated due to a lack of samples.

7. Conclusion

In this paper, we investigated the problem of estimating the state of system represented
with probabilistic hybrid models. Our main accomplishment is an efficient Gaussian particle
filtering algorithm, developed in Sections 3 and 4, that handles autonomous mode transi-
tions, concurrency, and nonlinearities present in Concurrent Probabilistic Hybrid Automata
(CPHA). Through the technique of Rao-Blackwellised particle filtering, our algorithm sig-
nificantly reduces the dimensionality of the sampled space and improves the performance of
particle filtering. The key insight to addressing the autonomous transitions was reuse the
continuous estimates associated with the tracked mode sequences.

In Section 3, we presented significant contributions related to discrete state transitions
that depend on the continuous state (autonomous mode transitions). We extended the
class of models, for which transition probabilities can be computed efficiently and explored
the approximations that occur in the posterior of the continuous space when autonomous
transitions are present. Due to the similarities in the theoretical development of both
Gaussian particle filtering and k-best filtering, our results translate directly to prior k-best
filtering algorithms that allow sharp transition guards in the models (Hofbaur & Williams,
2002a, 2002b).

Our contributions are, however, not merely theoretical. In Section 5, we demonstrated
our algorithm on a simulated highly nonlinear system, and empirically compared its per-
formance with k-best filter (Hofbaur & Williams, 2002a; Lerner et al., 2000). When the
posterior is concentrated in a few nominal or single-fault sequences, a k-best filter is a clear
winner. However, when the correct diagnosis is repeatedly left out from the leading set of
mode sequences due to rapid branching and disparsity of the posterior, a Gaussian particle
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filter is more successful. This development suggests that it may be possible to unify the two
approaches in a stochastic search algorithm that shares the strengths of both methods.
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