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Active Estimation for
Jump Markov Linear Systems

Lars Blackmore∗, Senthooran Rajamanoharan and Brian C. Williams

Abstract—Jump Markov Linear Systems are convenient mod-
els for systems that exhibit both continuous dynamics and discrete
mode changes. Estimating the hybrid discrete-continuous state
of these systems is important for control and fault detection.
Existing solutions for hybrid estimation approximate the belief
state by maintaining a subset of the possible discrete mode
sequences. This approximation can cause the estimator to lose
track of the true mode sequence when the effects of discrete
mode changes are subtle.
In this paper we present a method for active hybrid estimation,

where control inputs can be designed to discriminate between
possible mode sequences. By probing the system for the purposes
of estimation, such a sequence of control inputs can greatly reduce
the probability of losing the true mode sequence compared to a
nominal control sequence. Furthermore, by using a constrained
finite horizon optimization formulation, we are able to guarantee
that a given control task is achieved, while optimally detecting
the hybrid state.
In order to achieve this, we present three main contributions.

First, we develop a method by which a sequence of control inputs
is designed in order to discriminate optimally between a finite
number of linear dynamic system models. These control inputs
minimize a novel, tractable upper bound on the probability of
model selection error. Second, we extend this approach to develop
an active estimation method for Jump Markov Linear Systems by
relating the probability of model selection error to the probability
of losing the true mode sequence. Finally, we make this method
tractable using a principled pruning technique.
Simulation results show that the new method applied to

an aircraft fault detection problem significantly decreases the
probability of a hybrid estimator losing the true mode sequence.

I. INTRODUCTION

STOCHASTIC hybrid discrete-continuous models have
been used to represent a large number of physical and

biological systems, from Mars rovers to dancing bees[1], [2],
[3], [4]. In these models, the system dynamics depend on
which discrete mode the system is in, and discrete mode
transitions occur stochastically. Typically the continuous and
discrete state is only partially observable, which means that
estimation of the hybrid system state is a challenging problem.
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However since tasks such as robot fault detection and pilot
intent recognition can be posed as hybrid state estimation
problems, it is a topic of great interest.
Exact state estimation in such systems is, in general,

intractable[5]. A number of tractable algorithms have been
proposed that approximate the true belief state[6], [7], [8].
One common approach is to store a finite subset of the possible
discrete mode sequences[9], [10]. However, by approximating
the true belief state it is possible to lose track of the true
mode sequence, at which point the estimator diverges. Previous
work has highlighted this problem and suggested a number of
solutions, for example [2], [9], [11], [12], [13], [14].
These approaches are ‘passive’ in the sense that they attempt

to do the best possible with the observations that are made
available during nominal operation. In many cases, however,
it is possible to to obtain a great deal more information about
the state of a hybrid system by issuing appropriate control
inputs. For example, in the case of detecting a fault in a drive
motor, a change in the motor dynamics will not be apparent
in the observations unless some effort is requested from that
motor.
In this paper we introduce an active hybrid estimation

approach that generates control inputs to minimize the prob-
ability of the estimator losing the true mode sequence. This
approach applies to Jump Markov Linear Systems; here the
system is described by a discrete-time stochastic linear dy-
namic model whose parameters depend on the discrete mode.
The system switches at random between modes; the discrete
mode is governed by a Markov process. Jump Markov Linear
Systems are an important class of hybrid discrete-continuous
systems that have been used in a number of applications, for
example [3], [4]. In order to develop the active hybrid esti-
mation capability approach we provide three main technical
contributions.
First, we develop a method by which a finite, constrained

sequence of control inputs is designed in order to discriminate
optimally between a finite number of linear dynamic system
models. The problem of control design for model discrimina-
tion has received a great deal of attention[15], [16], [17], [18],
[19], [20], [21]. Typical approaches, for example [16], [18],
[19], design auxiliary signals that are added to the nominal
control signal for the purpose of model discrimination. The
auxiliary signal has low power so that its effect on the system
state is limited. This, however, also restricts the discrimination
power of the signal. Our new approach, by contrast, designs
control inputs with respect to hard constraints. These con-
straints can be used to ensure that a certain task, defined in
terms of the system state, is fulfilled, or that hard constraints
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such as actuator saturation are not violated. By optimizing
subject to hard constraints, the method can generate signals
that are far more effective in discrimination than a limited
power auxiliary signal. In addition, control inputs are chosen
from a continuous set. This is in contrast with approaches such
as [21] that choose control inputs from a finite set.
Previous approaches to the problem of control design for

model discrimination have suggested a number of different
criteria for optimization; for example information gain, or
the distance between the observation distributions conditioned
on different models[18], [19]. These criteria typically do not
have a meaningful interpretation in the context of the model
selection problem. By contrast, consistent with a Bayesian
approach, we use an upper bound on the probability of
model selection error as the optimization criterion. While the
probability of model selection error cannot be calculated in
closed form, we derive a novel upper bound on this value that
applies to an arbitrary number of models. This extends existing
bounds that apply to selection between only two models[22].
Then we pose the problem of designing a finite sequence of
control inputs to minimize this bound, subject to constraints,
as a finite horizon trajectory design problem. We show that in
the case of linear constraints this problem can be solved using
existing nonlinear optimization techniques such as Sequential
Quadratic Programming[23].
Our second contribution is to extend this multiple-model

discrimination method to develop an active estimation capa-
bility for Jump Markov Linear Systems. The key insight is
that for a given discrete mode sequence, the system dynamics,
although time-varying, are fully known. By extending the error
bound derived for discrimination between different models to
time-varying systems, we create a tractable upper bound on the
probability of a hybrid estimator losing track of the true mode
sequence. We then use a constrained finite horizon control
design approach to ensure that a given control task is achieved,
conditioned on nominal system operation.
A finite horizon control approach such as this suffers

from the fact that the number of possible mode sequences
is exponential in the number of discrete modes and in the
length of the design horizon. In practice this means that
an active hybrid estimation approach can only consider a
subset of the possible mode sequences. Our third contribution
is therefore to introduce an efficient pruning method. This
method ensures that the control design only takes into account
mode sequences that are a priori likely to contribute to the
probability of losing the true mode sequence. The result is
a tractable optimization problem that can be solved using
Sequential Quadratic Programming[23], for example.
The paper is organized as follows. In Section II we derive

the new method for multiple-model discrimination. In Sec-
tion III we extend this to Jump Markov Linear Systems. In
section IV we demonstrate the multiple-model discrimination
approach in simulation using an aircraft fault detection sce-
nario, and show empirically that the new method significantly
reduces the probability of model selection error. Finally, in
Section V we demonstrate the active estimation approach for
Jump Markov Linear Systems and show that the new method
reduces the probability of losing the true mode sequence.

II. FINITE HORIZON CONTROL DESIGN FOR OPTIMAL
MODEL DISCRIMINATION

A. Problem Statement
In this section we consider the linear discrete-time dynamic

system described by:

xc,τ+1 = Axc,τ + Buτ + ωτ

yτ+1 = Cxc,τ+1 + Duτ + ντ , (1)

where xc ∈ "nx is the system state and y ∈ "ny are
the observations. The variables ω ∈ "nx and ν ∈ "ny are
process and observation noise, respectively, which we restrict
to be zero-mean, Gaussian white noise with covariance Q and
R, respectively. The initial distribution p(xc,0) is a Gaussian
random variable with mean x̄0 and covariance V , and is
uncorrelated with the noise variables.

Definition 1. We use subscript notation to denote the value of
a variable at a given time, e.g. xτ is the value of x at time step
τ , where τ is an integer. We use x

′ to denote the transpose of
x. We use x0:N to denote the finite sequence 〈x0, . . . ,xN 〉.
We use P (A) to denote the probability of event A. If the
variable x takes continuous values, we use p(x) to denote its
probability density function. If x takes discrete values, p(x)
denotes its probability mass function. We use |M | to denote the
determinant when M is a matrix, and the number of members
of a set whenM is a set.
In the Multiple Model selection problem, the parameters

{A, B, C, D, Q, R, x̄0, V } are unknown, but we assume that
they take values from a finite set H of ‘models’ or ‘hy-
potheses’ . Under model Hi ∈ H, the system parameters
are {A(i),B(i),C(i),D(i),Q(i),R(i),x̄0(i), V (i)}. We assume
that for each i the parameters are fully known and that the
true model persists indefinitely. In other words, in this section
we do not allow switching between the different models;
switching dynamics are considered in Section III. Multiple
Model selection uses Bayesian hypothesis selection to deter-
mine the most likely system parameters given a sequence of
observations y0:h, a sequence of control inputs u0:h−1 and
a prior distribution over models. We review Multiple Model
selection in Section II-B. In this paper we aim to design control
inputs to aid model selection. The problem is stated formally
as follows:

Definition 2. At time step zero, given a set of modelsH and a
prior probability for each model Hi ∈ H, the Optimal Model
Discrimination Problem consists of designing a finite sequence
of control inputs u0:h−1 that minimizes the probability of
selection error when using Bayesian model selection.
For notational simplicity we assume, without loss of gener-
ality, that optimal model discrimination is invoked at time
step zero. In many scenarios it may be useful to start optimal
discrimination at some later time τ , for example when there
is a high level of uncertainty about which model is the true
one. In this case the prior probability of each model in Def. 2
is replaced by the probability (or belief state) of each model
given the observations y0:τ . This belief state is generated on-
line using a Multiple Model estimation scheme, for example
[24], [25], [26], [27], [28].
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Fig. 1. Bayesian hypothesis selection between multiple models given an
observation y, a control input u, and a prior[22]. In general, Bayesian
selection between multiple hypotheses yields a number of decision
regions in the space of possible observations; in each decision region a
particular hypothesis is most likely. If the observation y falls into set "i

then the classifier selects Hi. Even with Bayes optimal selection there
is a finite probability of error given by the Bayes Risk, denoted by the
shaded region.

In Section II-B we define Bayesian model selection and the
probability of model selection error. In Sections II-C and II-D
we show that, while the probability of model selection error
cannot be evaluated in closed form, it can be upper bounded.
In our approach to solving the Optimal Model Discrimination
Problem (Def. 2) we therefore minimize an upper bound on
the model selection error. The approach is described in detail
in Section II-E.

B. Hypothesis Selection and Bayes Risk
Bayesian hypothesis selection between an arbitrary number

of models, given a general vector of observations Y and a
vector of control inputs U, can be expressed as follows:

Select Hi where i = argmaxj P (Hj |Y, U).

Using Bayes’ rule, this selection is equivalently given by:

Select Hi where i = argmaxj p(Y|Hj , U)P (Hj).

The term P (Hj) represents the prior probability of model j.
As shown in Figure 1, Bayesian selection yields a number
of decision regions "i, in which Hi is the most probable
hypothesis:

"i =
{

Y|p(Hi, Y|U) > p(Hl, Y|U) ∀l &= i
}

. (2)

Model i is selected if the observation Y falls in region
"i. This Bayesian selection rule minimizes the likelihood of
selecting an incorrect model given the available information.
As shown in Figure 1, the Bayesian optimal classifier has a
finite probability of selecting the incorrect model, known as
the Bayes Risk. The Bayes risk is given by:

P (error) =
∑

i

∑

j #=i

P (Y ∈ "j , Hi|U)

=
∑

i

∑

j #=i

P (Y ∈ "j |Hi, U)P (Hi)

=
∑

i

∑

j #=i

∫

$j

p(Y|Hi, U)P (Hi)dY. (3)













 

 

 

 

 

 

Fig. 2. Graph showing p(y|H0, u), p(y|H1, u) and p(y|H2, u) for two
different choices of u. In the upper figure, the predicted distributions
overlap significantly, leading to a large Bayes risk. In the lower figure,
a different selection of u has separated the distributions, meaning that
when the observation y is made, the correct model can be selected with
high confidence. The Bayes risk is very low, meaning that the probability
of error is very low.

Since the Bayes Risk is the probability of error when using
the optimal classifier, we would like to optimize our control
inputs to the system to minimize this measure. The effect of
input choice on the Bayes Risk is illustrated in Figure 2.

C. Bounding the Bayes Risk for Two Models

The Bayes Risk is unsuitable as an optimization criterion,
since the finite integral in (3) cannot, in general, be evaluated
in closed form. It is, however, possible to bound the Bayes
Risk in closed form. For the special case of two modelsH0 and
H1, the Battacharyya Bound [22] applies, and we show in this
section that this leads to a quadratic cost function for model
discrimination. In Section II-D we develop a novel bound that
applies to more than two models.
The Battacharyya Bound is given by the integral:

P (error) ≤ P (H0)
1

2 P (H1)
1

2

∫

√

p(Y|H0)p(Y|H1)dY.

(4)
If the distributions are Gaussian such that p(Y|H0) has mean
µ(0) and variance Σ(0), and p(Y|H1) has mean µ(1) and
variance Σ(1), the above value can be calculated analytically
to give:

P (error) ≤ P (H0)
1

2 P (H1)
1

2 exp{−k},

where:

k =
1

4
(µ(1) − µ(0))′ [Σ(0) + Σ(1)]−1 (µ(1) − µ(0))

+
1

2
ln

∣

∣

Σ(0)+Σ(1)
2

∣

∣

√

|Σ(0)||Σ(1)|
. (5)

Since the logarithm is a monotonically increasing function,
the value of x that optimizes f(x) is also the value that
optimizes ln[f(x)]. We therefore take the logarithm of the
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Battacharyya bound for Gaussian distributions to yield the
following cost function:

J =
1

2
ln[P (H0)P (H1)] −

1

2
ln

∣

∣

Σ(0)+Σ(1)
2

∣

∣

√

|Σ(0)||Σ(1)|

−
1

4
(µ(1) − µ(0))′ [Σ(0) + Σ(1)]−1 (µ(1) − µ(0)). (6)

In Section II-E we use (6) to perform finite horizon control
design for discrimination between two models. This use of
the Battacharyya Bound in model discrimination is novel, and
furthermore the criterion is different from existing criteria for
optimal model discrimination that have been proposed by other
authors. The most similar criterion is the Kullback-Leibler
(KL) divergence, which was used by [18]. The KL diver-
gence from the distribution N (µ(0), Σ(0)) to the distribution
N (µ(1), Σ(1)) is given by:

1

2
ln

(

|Σ(1)|

|Σ(0)|

)

+
1

2
tr(Σ(1)−1Σ(0)) −

N

2

+
1

2
(µ(1) − µ(0))′Σ(1)−1(µ(1) − µ(0)),

(7)
where N is the dimensionality of the distribution. The ‘sym-
metrized’ KL divergence between two distributions is:

1

2
tr(Σ(1)−1Σ(0)) +

1

2
tr(Σ(0)−1Σ(1)) − 2N

+ (µ(1) − µ(0))′[Σ(1)−1 + Σ(0)−1](µ(1) − µ(0)). (8)

Clearly, both of these criteria are different from (6).

D. Bounding the Bayes Risk for Multiple Models
In this section we introduce a new bound on the probability

of model selection error that applies to an arbitrary number of
models, or hypotheses.

Theorem 1. When performing hypothesis selection between
an arbitrary number of hypotheses, for Gaussian observa-
tion distributions such that p(Y|Hi) = N (µ(i), Σ(i)) and
p(Y|Hj) = N (µ(j), Σ(j)), the Bayes Risk is upper bounded
as follows:

P (error) ≤
∑

i

∑

j>i

P (Hi)
1

2 P (Hj)
1

2 e−k(i,j), (9)

where:

k(i, j) =
1

4
(µ(j) − µ(i))′ [Σ(i) + Σ(j)]−1 (µ(j) − µ(i))

+
1

2
ln

∣

∣

Σ(i)+Σ(j)
2

∣

∣

√

|Σ(i)||Σ(j)|
. (10)

Proof: The key idea is to express the n-hypothesis Bayes Risk
in terms of the Bayes Risk between pairs of hypotheses, and
then to bound the term for each pair in a manner analogous to
the Battacharyya bound. The n-hypothesis Bayes Risk given
by (3) can be expressed in terms of hypothesis pairs as follows:

P (error) =
∑

i

∑

j #=i

P (Y ∈ "j , Hi|U)

=
∑

i

∑

j>i

(

P (Y ∈ "j , Hi|U) + P (Y ∈ "i, Hj|U)
)

. (11)

Here, each term in the summation is the Bayes Risk between
hypothesis i and hypothesis j. This can be written exactly as:

(

P (Y ∈ "j , Hi|U) + P (Y ∈ "i, Hj |U)
)

=

∫

$j

p(Y|Hi, U)P (Hi)dY +

∫

$i

p(Y|Hj , U)P (Hj)dY.

(12)

We now define two regions "A and "B as follows:

"A =
{

Y|p(Hi, Y|U) > p(Hj , Y|U)
}

"B =
{

Y|p(Hj , Y|U) > p(Hi, Y|U)
}

. (13)

We can relate these regions to the decision regions "i and "j .
From the definition of hypothesis selection given in Section II-
B, decision region "i is where the likelihood of hypothesis i
is greater than all other hypotheses:

"i =
{

Y|p(Hi, Y|U) > p(Hl, Y|U) ∀l &= i
}

"j =
{

Y|p(Hj , Y|U) > p(Hl, Y|U) ∀l &= j
}

. (14)

It is clear from (13) and (14) that the decision regions are
subsets of the regions "A and "B , such that "i ⊆ "A and
"j ⊆ "B . We can therefore bound the 2-hypothesis Bayes
Risk term in (12) as follows:

∫

$j

p(Y|Hi, U)P (Hi)dY +

∫

$i

p(Y|Hj , U)P (Hj)dY ≤

∫

$B

p(Y|Hi, U)P (Hi)dY +

∫

$A

p(Y|Hj , U)P (Hj)dY.

(15)

Note that the union of the regions "A and "B is the entire
space of Y. Using the definitions in (13), we can therefore
write the integrals in (15) as a single integral over the entire
space of Y:

∫

$B

p(Y|Hi, U)P (Hi)dY +

∫

$A

p(Y|Hj , U)P (Hj)dY

=

∫

Y

min
{

p(Y|Hi, U)P (Hi), p(Y|Hj , U)P (Hj)
}

dY. (16)

We now use the following inequality[22]:

min{a, b} ≤ a
1

2 b
1

2 , (17)

which means that the integral over Y can be bounded as
follows:

∫

Y

min
{

p(Y|Hi, U)P (Hi), p(Y|Hj , U)P (Hj)
}

dY

≤ P (Hi)
1

2 P (Hj)
1

2

∫

Y

p
1

2 (Y|Hi, U)p
1

2 (Y|Hj , U)dY. (18)

Furthermore, if the distributions are Gaussian, such that
p(Y|Hi) = N (µ(i), Σ(i)) and p(Y|Hj) = N (µ(j), Σ(j)),
then this integral can be evaluated in closed form to give:

∫

Y

p
1

2 (Y|Hi, U)p
1

2 (Y|Hj , U)dY = e−k(i,j), (19)

where k(i, j) is defined in (10). We therefore have:

P (Y ∈ "j , Hi|U) + P (Y ∈ "i, Hj |U)

≤ P (Hi)
1

2 P (Hj)
1

2 e−k(i,j), (20)
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which leads to a new upper bound on the probability of model
selection error:

P (error) ≤
∑

i

∑

j>i

P (Hi)
1

2 P (Hj)
1

2 e−k(i,j), (21)

where k(i, j) is defined in (10). !

We have therefore introduced a new upper bound on the proba-
bility of model selection error between an arbitrary number of
models, which can be evaluated in closed form. Notice that in
the special case of only two hypotheses, the bound reduces to
the Battacharyya bound mentioned in Section II-C. We discuss
the properties of this bound in Appendix I. In Section II-E we
describe how the new bound can be used as an optimization
criterion for finite horizon control design.

E. Finite Horizon Formulation
In this section we pose the problem of model discrimination

between an arbitrary number of models as a finite horizon
trajectory design problem, and show that it can be solved using
Sequential Quadratic Programming (SQP)[23]. For the special
case of two models, the optimization problem can be solved
using Quadratic Programming (QP) to global optimality.
1) A Tractable Cost Function for Model Discrimination:

Optimal Model Discrimination Problem (Def. 2) consists of
planning a finite sequence of inputs in order to minimize the
probability of error. This form of planning is known as finite
horizon planning. In this case, if the horizon is of length h,
we are concerned with a sequence of observations y1, . . . ,yh

and a sequence of inputs u0, . . . ,uh−1. Since evaluation of
the probability of error is intractable, we instead minimize
an upper bound on the probability of error, described in
Section II-D. In this section we describe how this bound can
be used in a finite-horizon context. We define:

Y =
[

y1
′

y2
′ . . . yh

′
]′

U =
[

u0
′

u1
′ . . . uh−1

′
]′

. (22)

We assume that model selection is carried out by a Bayes
optimal classifier that makes its decision based on all h
observations within the horizon. Under the assumptions in
Section II-A, yτ is a normally distributed random variable
given a sequence of inputs U and given a modelHl. We define
µτ (l) and Στ (l) for time steps τ = 1, . . . , h and models Hl

such that:
p(yτ |Hl, U) = N (µτ (l), Σi(l)). (23)

Then the block vector of all observations Y = [y′
1, . . . ,y

′
h]′

is a vector of normally distributed random variables, given a
sequence of inputs and a model. We define µ(l) and Σ(l) to
be the mean and covariance of the vector of all observations
such that:

p(Y|Hl, U) = N (µ(l), Σ(l)). (24)

From the above definitions the distribution of Y(l) is given
by:

µ(l) = [µ1(l)
′, . . . , µh(l)′]

′ (25)

[Σ(l)]i,j = E
[

(

[Y]i − [µ(l)]i
)(

[Y]j − [µ(l)]j
)
∣

∣Hl

]

. (26)

Here [·]i denotes the value at index i into the vector, and
similarly [·]i,j denotes the value at index (i, j) into the matrix.
Having defined µ(l) and Σ(l) for all l, the bound given in

(9) provides an upper bound for the probability of error when
using the entire sequence of observations from time 1 to time
h. We therefore use this bound as a cost function on the finite
horizon optimization formulation:

J =
∑

i

∑

j>i

P (Hi)
1

2 P (Hj)
1

2 e−k(i,j), (27)

where k(i, j) is defined in (10).
Given a modelHl, the system equations (1) are fully known.

Hence the distribution p(Y|Hl, U) can be calculated for all l.
Applying the system equations (1) recursively we have:

yτ (l) = C(l)A(l)τ
x0 + D(l)uτ−1 + ντ−1

+ C(l)
τ−1
∑

γ=0

A(l)τ−γ−1(B(l)uγ + ωγ). (28)

Using (28) we can derive explicit expressions for the mean
µ(h) and covariance Σ(h) as defined in (25) and (26). First,
define:

f = ny(p − 1) + q, (29)

where:

1 ≤ q ≤ ny 1 ≤ p ≤ h p, q ∈ Z. (30)

Then following from (28):

[µ(l)]f = [µp(l)]q =

[

C(l)A(l)p
x̄0(l) + D(l)up−1

+ C(h)
p−1
∑

γ=0

A(l)p−γ−1B(l)uγ

]

q

(31)

Defining g = ny(r − 1) + s in a similar manner to (29), the
expression for the covariance is:

[Σ(l)]f,g = [R(l)(p, r) + C(l)A(l)pV (l)A(l)′rC(l)′]q,s

+

[

m−1
∑

γ=0

C(l)A(l)(p−γ−1)Q(l)A(l)′(r−γ−1)C(l)′
]

q,s

(32)

where m = min{p, r} and:

R(l)(p, r) =

{

R(l) p = r

0 p &= r.
(33)

The distribution of Y has two important properties:
• The equation for the mean of the predicted distribution
of Y is linear in the control inputs U.

• The covariance of the predicted distribution of Y is not
a function of the control inputs U.

These properties mean that the multiple model criterion
in (27) has a tractable form, enabling it to be used in a
constrained optimization formulation. Furthermore, for the
two-model case, these properties mean that the criterion in
(6) can be simplified to:

J ′ = −(µ(1) − µ(0))′ [Σ(0) + Σ(1)]−1 (µ(1) − µ(0)). (34)
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Since both µ(1) and µ(0) are linear functions of U, (34) is
quadratic in the control inputs U. This means that the two-
model discrimination problem subject to linear constraints
(Section II-E.2) can be solved using Quadratic Programming.

Remark 1. Since the covariance matrices Σ(0) and Σ(1) are
positive definite, the cost function given by (34) is a concave
function of (µ(1) − µ(0)). Both µ(1) and µ(0) are linear
functions of U, and hence (34) is also a concave function of
the control inputs U. This concavity makes (34) a particularly
tractable cost function for optimization, and guarantees that a
global optimum can be found in bounded time [29].
2) Linear Constraints: A powerful aspect of the con-

strained finite horizon formulation is that optimal input se-
quences can be found subject to hard constraints. This can be
used to model actuator saturation, for example, by constraining
umin < uτ < umax. The expected system state conditioned
on a model Hl is a linear function of the control inputs:

E[xτ |Hl] = A(l)τ
x̄0 +

τ−1
∑

j=0

A(l)τ−j−1(B(l)uj). (35)

Hence constraints on the expected system state of the form
E[xτ |Hl] = goal or xmin < E[xτ |Hl] < xmax are linear
constraints in the control inputs. By imposing such constraints,
we can:

• Ensure that a certain task, defined in terms of the expected
system state, is fulfilled

• Ensure that the expected system state stays within a ‘safe’
operating region or within a valid linearization region

• Ensure that the system state ends the experiment in the
same region as it started.

Here, we have restricted our attention to linear constraints,
since these are straightforward to encode, and are guaranteed
to be convex; convexity simplifies the optimization problem
greatly. The general formulation, however, applies to nonlinear
constraints.
3) Summary: We have shown that the problem of designing

a sequence of optimal control inputs to discriminate between
an arbitrary number of models can be posed as a finite-horizon
trajectory design problem. The resulting AE-MM algorithm,
summarized in Table I, works by minimizing a novel, closed
form upper bound on the probability of model selection error,
and imposing constraints on the expected system state and
control inputs to ensure that a defined task is fulfilled and that
actuator limits are not violated. In this sense, the approach uses
constraints to perform control, while optimizing with regard
to estimation. The optimization can be solved using existing
methods such as Sequential Quadratic Programmming. In the
case of discrimination between two models, the optimization
can be solved using Quadratic Programming; furthermore in
this case the global optimum can be found in finite time.

III. ACTIVE ESTIMATION FOR JUMP MARKOV LINEAR
SYSTEMS

We now extend the multiple-model discrimination method
to develop an active estimation capability for Jump Markov
Linear Systems, which we call the AE-JMLS algorithm. By

Function ACTIVEMULTIPLEMODELMAIN(H,p(H),h) returns
u0:h−1

1) For each model Hi, calculate the mean µ(h) as a linear function
of the control inputs, according to (31).

2) For each Hi calculate the covariance Σ(h) according to (32).
3) Using SQP, minimize over u0:h−1:

X

i

X

j>i

P (Hi)
1

2 P (Hj)
1

2 e−k(i,j), (36)

where k(i, j) is defined in (10), in terms of µ(h) and Σ(h), subject
to:

• Constraints on the expected state, for example µτ (l) ≤
µmax or µτ (l) = µeq .

• Constraints on the control inputs, for example uτ ≤ umax.

TABLE I. AE-MM Algorithm for Optimal Discrimination between Multiple
Linear Models.

extending the error bound derived for discrimination between
different models, to time-varying systems, we create a closed
form upper bound on the probability of the true mode sequence
being pruned. We then use a constrained finite horizon control
design approach to minimize this bound, while ensuring that
a given control task is achieved.

A. Problem Statement
In this section we define a Jump Markov Linear System

(JMLS) and describe how approximate state estimation can
be carried out for such systems. The continuous dynamics of
a JMLS M are defined by:

xc,τ+1 = A(xd,τ )xc,τ + B(xd,τ )uτ + ωτ

yτ+1 = C(xd,τ )xc,τ+1 + D(xd,τ )uτ + ντ , (37)

where xc ∈ "nx is the continuous system state and y ∈ "ny

are the observations. The discrete system state (or mode)
xd,τ ∈ {1, . . . , |Xd|} is a Markov chain that evolves according
to a transition matrix T such that:

p(xd,τ+1 = j|xd,τ = i) = [T ]ij . (38)

The variables ωτ ∈ "nx and ντ ∈ "ny are zero-mean
Gaussian white noise processes with covariance Q(xd,τ )
and R(xd,τ ), respectively. The initial state distribution
p(xc,0,xd,0) is defined such that p(xd,0) = ρ(xd,0) and
p(xc,0|xd,0) ∼ N

(

x̄0(xd,0), V (xd,0)
)

, and is uncorrelated
with the noise variables. In the JMLS formulation, as opposed
to the multiple-model formulation, switching between models
is allowed; for example stochastic jumps can represent com-
ponent failures.
We define the problem of hybrid estimation in a JMLS as

that of estimating p(xc,τ ,xd,τ |y1:τ ,u0:τ−1), the probability
distribution of the hybrid discrete-continuous state, condi-
tioned on the sequence of all observations and control inputs.
This probability can be written as a sum over all possible mode
sequences that end in the mode xd,τ :

p(xc,τ ,xd,τ |y1:τ ,u0:τ−1)

=
∑

xd,0:τ−1

p(xc,τ ,xd,0:τ−1,xd,τ |y1:τ ,u0:τ−1). (39)

Each summand can be further expanded as a product of the
posterior probability of the discrete mode sequence xd,0:τ and
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the posterior distribution over the continuous state, conditioned
on this mode sequence:

p(xc,τ ,xd,0:τ−1,xd,τ |y1:τ ,u0:τ−1)

= p(xd,0:τ |y1:τ ,u0:τ−1)p(xc,τ |xd,0:τ ,y1:τ ,u0:τ−1). (40)

For a given mode sequence, the system dynamics are fully
known, although time-varying. This means that the probability
distribution p(xc,τ |xd,0:τ−1,y1:τ ,u0:τ−1) can be calculated
exactly using the Kalman Filter recursion[30]. The probability
of a given mode sequence p(xd,0:τ−1|y1:τ ,u0:τ−1) can also be
calculated using the residuals in the Kalman filter equations. In
principle, therefore, it is possible to calculate the distribution
over the hybrid state p(xc,τ ,xd,τ |y1:τ ,u0:τ−1) exactly, yield-
ing a sum-of-Gaussians expression. In practice, however, this
exact hybrid state estimation is infeasible since the number
of mode sequences xd,1:τ grows exponentially with time and
with the number of possible modes.

B. Approximate Hybrid Estimation

A large number of methods have been proposed that make
the hybrid estimation problem tractable by approximating
the probability p(xc,τ ,xd,τ |y1:τ ,u0:τ−1) [4], [28], [31]. One
common approach is to discard mode sequences that have a
low posterior probability p(xd,0:τ |y1:τ ,u0:τ−1). Such pruning
approaches typically ensure that a fixed number of mode
trajectories are tracked. In this paper, we assume that a pruning
approach is used so that K individual mode sequences are
tracked; this is calledK-best hybrid estimation. While pruning
is usually carried out at every time step, for the purposes
of finite-horizon control design, we assume that pruning is
carried out at the end of the control horizon; this is discussed
in Section VII. Figure 3 shows the pruning process for a time
horizon of h time steps and K = 4 tracked mode sequences.
It is possible for the true mode sequence to be discarded

in this pruning process. If this occurs, the hybrid estimator
typically diverges and the approximated state distribution no
longer resembles the true distribution. The goal of active
estimation for JMLS is to use control inputs to minimize the
probability of the true mode sequence being pruned.

Definition 3. At time step 0, given a JMLS M , the Active
Hybrid Estimation Problem consists of designing a finite se-
quence of control inputs u0:h−1 that minimizes the probability
of K-best hybrid estimation pruning (i.e. discarding) the true
mode sequence xd,0:h−1

∗.
As in Section II we assume that Active Hybrid Estimation
is invoked at time step zero, without loss of generality. The
true mode sequence is pruned at time step h if and only if its
posterior probability is not in the top K posteriors. We denote
this event prune:

prune ⇐⇒
{

p(xd,0:h−1
∗|y1:h,u0:h−1) <

p(xd,0:h−1(i)|y1:h,u0:h−1) for K or more i
}

. (41)

We must find the control inputs u0:h−1 that minimize the
probability of the event prune. We write this probability as
P (prune|u0:h−1). In order to calculate this value, we must































































Fig. 3. Pruning approach to approximate hybrid estimation. At time
step 0, the estimator is tracking K = 4 distinct mode sequences. We
assume that at time step h, the posterior probabilities of all possible
mode sequences xd,0:h−1 are calculated. The top K sequences are
retained, while the remaining sequences are pruned. The true mode
sequence is shown in bold.

marginalize over the observations y1:h and the true mode
sequence, since both are unknown at time step 0:

P (prune|u0:h−1) =
∑

xd,0:h−1
∗

∫

y1:h

P (prune|y1:h,u0:h−1)

∗ p(y1:h|xd,0:h−1
∗)dy1:hp(xd,0:h−1

∗).
(42)

We now look at the two terms in the integrand. First, the ob-
servation probability p(y1:h|xd,0:h−1

∗) can be calculated using
repeated application of the Kalman Filter prediction equations
(see Section III-C for details), and will yield a Gaussian func-
tion of y1:h. Second, we can evaluate P (prune|y1:h,u0:h−1),
in principle, since it is unity if condition (41) holds and
zero otherwise; however this involves calculating the poste-
rior probability of every possible mode sequence given the
observations y1:h. Note also that this will be a discontinuous
function of y1:h, moreover calculating even the location of the
discontinuities is non-trivial. Hence the integral (42) cannot
be evaluated in closed form. In the same spirit as the AE-
MM approach developed in Section II, we therefore derive
a tractable upper bound on the probability of pruning the
true mode sequence. We then approximate the Active Hybrid
Estimation Problem (Def. 3) by minimizing this bound instead
of the true probability of pruning.

C. Bounding the Probability of Pruning
In this section we extend the bound (9) to create a bound

on the probability of approximate hybrid estimation pruning
the true mode sequence.

Theorem 2. Denote the number of possible mode sequences
xd,0:h−1 as Nseqs. Enumerate all mode sequences xd,0:h−1(i)
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for i = 1, . . . , Nseqs. Define:

Y =
[

y
′
1 y

′
2 . . . y

′
h

]′

U =
[

u
′
0 u

′
1 . . . u

′
h−1

]′

µ(i) = [µ1(i)
′, . . . , µh(i)′]

′ where µj(i) = E[Y|xd,0:h−1(i)]

[Σ(i)]f,g = E
[

(

[Y]f − [µ(i)]f
)(

[Y]g − [µ(i)]g
)
∣

∣xd,0:h−1(i)
]

.

(43)

Then:

P (prune|u0:h−1)

≤
∑

i

∑

j>i

P (xd,0:h−1(i))
1

2 P (xd,0:h−1(j))
1

2 e−k(i,j), (44)

where k(i, j) is defined in (10) in terms of µ(·) and Σ(·).

Proof: The following implication holds:
{

∃i p(xd,0:h−1
∗|y1:h,u0:h−1) < p(xd,0:h−1(i)|y1:h,u0:h−1)

}

⇐=
{

p(xd,0:h−1
∗|y1:h,u0:h−1) < p(xd,0:h−1(i)|y1:h,u0:h−1)

for K or more i
}

⇐⇒ prune. (45)

Now consider each mode sequence as a hypothesis in
the sense of Bayesian hypothesis selection, as in Sec-
tion II-B. Then the event

{

p(xd,0:h−1
∗|y1:h,u0:h−1) <

p(xd,0:h−1(i)|y1:h,u0:h−1) for any i
}

is identical to the event
that Bayesian hypothesis selection makes an error, denoted
error. From (45) we have prune =⇒ error, and it follows
that:

P (prune|u0:h−1) ≤ P (error). (46)

Combining this with Theorem 1 we have:

P (prune|u0:h−1) ≤ P (error)

≤
∑

i

∑

j>i

P (xd,0:h−1(i))
1

2 P (xd,0:h−1(j))
1

2 e−k(i,j), (47)

which completes the proof. !

The mean and covariance expressions defined in (43) can
be calculated explicitly in terms of the control inputs using
repeated application of the Kalman Filter prediction equations.
We first define:

f = ny(p−1)+q, where 1 ≤ q ≤ ny 1 ≤ p ≤ h p, q ∈ Z.
(48)

Then the mean is given by:

[µ(i)]f = [µp(i)]q

=

[

C(xd,p−1(i))
(

p−1
∏

l=0

A(xd,l(i))
)

x̄0(i) + D(xd,p−1(i))up−1

+ C(xd,p−1(i))
p−1
∑

l=0

(

p−1
∏

v=l+1

A(xd,v(i))
)

B(xd,l(i))ul

]

q

.

(49)

Defining g = ny(r−1)+s in the same manner as (48), the
expression for the covariance is:

[Σ(i)]f,g =

[

R(xd,p)(p, r) + C(xd,p−1(i))
(

p−1
∏

v=0

A(xd,v(i))
)

∗ V (xd,0(i))
(

A(xd,w(i))′
r−1
∏

w=0

)

C(xd,r−1(i))
′

]

q,s

+

[m−1
∑

l=0

C(xd,p−1(i))
(

p−1
∏

v=l+1

A(xd,v(i))
)

∗ Q(xd,l(i))
(

A(xd,w(i))′
r−1
∏

w=l+1

)

C(xd,r−1(i))
′

]

q,s

,

(50)

where m = min{p, r} and:

R(xd,τ )(p, r) =

{

R(xd,τ ) p = r

0 p &= r.
(51)

We use the following notation regarding matrix products.
Repeated right matrix products are denoted:

(

p
∏

i=1

A(xd,i)
)

= A(xd,1)A(xd,2), . . . , A(xd,p−1)A(xd,p),

(52)
while repeated left matrix products are denoted:

(

A(xd,i)
p

∏

i=1

)

= A(xd,p)A(xd,p−1), . . . , A(xd,2)A(xd,1).

(53)
In principle, therefore, we can use the bound in (44) as an
optimization criterion for active hybrid estimation. This is in
contrast to the exact value (42), which cannot be evaluated in
closed form.
However the new criterion requires evaluating O(|Xd|2h),

so even for a relatively short time horizon and a modest
number of possible modes, evaluating (44) is intractable. In
Section III-D we overcome this problem using a principled
bound relaxation approach.

D. Considering a Subset of Possible Mode Sequences
We aim to find a looser bound on the probability of pruning

that requires the evaluation of a fixed number of terms. In
deriving the looser bound, we make use of the Minkowski’s
Inequality[32]:

Lemma 1 (Minkowski’s Inequality). For all symmetric,
positive definite Σi and Σj :

|Σi+Σj

2 |
√

|Σi||Σj |
≥ 1.

Theorem 3. Define:

Fij(U) = P (Hi)
1

2 P (Hj)
1

2 e−k(i,j) , Gij = P (Hi)
1

2 P (Hj)
1

2 .
(54)

Then for any set of mode sequences S:

P (prune) ≤
∑

i∈S

∑

j>i,j∈S

Fij(U) +
∑

i/∈S

∑

j>i,j /∈S

Gij . (55)
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Proof: Following from Lemma 1, and the definition in (10),
it is clear that k(i, j) ≥ 0, and hence Gij ≥ Fij(U). We write
the bound on the probability of pruning (42) as:

P (prune) ≤
∑

i

∑

j>i

Fij(U). (56)

The inequality (55) follows from (56). !

Note that the Gij terms in (55) do not depend on the control
inputs U and hence can be dropped from the cost function.
By replacing Fij(U) terms in (56) with Gij terms, we have
obtained a looser upper bound on the probability of pruning
the true mode sequence with fewer terms. S is the set of mode
sequences for which the full bound is calculated as a function
of U. We would like the tightest such bound for a given size
of S. We achieve this as follows.
The difference between the bound Gij and the bound

Fij(U) is largest when the control inputs U drive the
value of Fij(U) to zero, at which point the difference is
P (Hi)

1

2 P (Hj)
1

2 . Since we do not have knowledge of U when
choosing which mode sequences to include in S, we assume
this worst case difference between Gij and Fij . In order to
find the tightest bound of the form (55), we therefore include
in S the mode sequences that maximize:

L =
∑

i∈S

∑

j>i,j∈S

P (Hi)
1

2 P (Hj)
1

2 . (57)

Intuitively, this means that optimization will concentrate on
reducing terms where the control inputs can have the greatest
effect on p(prune), and will ignore terms that do not con-
tribute significantly. It can be seen that in order to maximize
L, the set S must be chosen to contain hypotheses with the
greatest probability P (Hi); replacing any P (Hi) value with a
lower one can only reduce, or have no effect on, terms in the
summation (57).
Although we consider only the |S| mode sequences with

highest prior probabilities in the process of control design
for Active Hybrid Estimation, this is not to say that we
are ignoring available observation data. First, p(prune) does
not, by definition, depend on the observations after time
step zero. Second, the observations after time step zero are
used in estimation (rather than control design), when they
become available. Third, observations made before t = 0 are
incorporated into the prior probabilities p(Hi).
In this section we have shown how to derive a tractable

upper bound on the probability of pruning the true mode
sequence that involves a fixed number |S| of mode sequences
for which the observation statistics (49) and (50) need to be
calculated. By choosing the |S| most likely mode sequences,
we achieve the tightest such bound. Choosing the |S| mode se-
quences with highest priors xd,0:h−1 is a challenging problem
in itself given an exponential number of possible sequences.
Prior work has, however, shown that this can be posed as
a tree search problem[7]. This enables the best |S| mode
sequences to be found efficiently using a best-first informed
search approach[33]. For the sake of brevity, we refer the
interested reader to [7] for details of this approach.

E. Summary
The AE-JMLS algorithm is summarized in Table II. The al-

gorithm works in parallel with approximate hybrid estimation,
which calculates the probability of each of theK tracked mode
sequences. Starting from these sequences, AE-JMLS then
enumerates the |S| most likely future mode sequences over
the horizon using best-first search. AE-JMLS forms an upper
bound on the probability of approximate hybrid estimation
losing the true mode sequence, which involves only the |S|
most likely future sequences. AE-JMLS minimizes this upper
bound subject to constraints on the expected system state using
Sequential Quadratic Programming. This yields an optimized
sequence of control inputs that is applied to the system, while
hybrid estimation continues to estimate the hybrid state.

Function ACTIVEHYBRIDMAIN(M,P (·),K,h) returns
(u0:h−1

∗)
1) Perform K-best hybrid estimation. Calculate the probabilities of

the K tracked mode sequences, as well as the distribution over the
continuous state conditioned on each mode sequence.

2) Starting from the K tracked mode sequences, enumerate the |S|
most likely future mode sequences over the horizon 1, . . . , h using
best-first search.

3) Form the upper bound on the probability of pruning the true mode
sequence involving only terms corresponding to the |S| most likely
future mode sequences:

J =
X

i∈S

X

j>i,j∈S

P (Hi)
1

2 P (Hj)
1

2 e−k(i,j). (58)

4) Using Sequential Quadratic Programming, minimize (58) subject
to constraints on the expected system state and control inputs to
find the optimal control sequence u0:h−1

∗.
5) Execute optimal control sequence u0:h−1

∗ while estimating hy-
brid state.

TABLE II. AE-JMLS for Active Hybrid Estimation algorithm with JMLS.

IV. SIMULATION RESULTS: MULTIPLE-MODEL
DISCRIMINATION

In this section we demonstrate the AE-MM algorithm using
an aircraft fault detection scenario. We use a discrete time
approximation to the longitudinal aircraft dynamics, linearized
about the trim state with ∆t = 0.5s. Here, the state of the
system consists of the vertical velocity, the horizontal velocity,
the pitch rate, the pitch angle and the altitude. The observed
output of the system is taken to be the pitch rate θ̇ and the
vertical velocity Vy . The input is denoted u, and is taken to
be the requested elevator angle. We assume that the elevator
actuator saturates at ±0.25rad.
In the multiple-model selection task, we must determine

which model H(i) is most likely. Under model Hi, the
system is described by {A(i),B(i),C(i),D(i),Q(i),R(i)}. For
the aircraft example, we consider three single-point failures;
the pitch rate sensor may fail, the vertical velocity sensor may
fail, or the elevator actuator may fail. This gives four models:

• H0: Nominal (no faults)
• H1: Faulty pitch rate sensor
• H2: Faulty vertical velocity sensor
• H3: Faulty elevator actuator
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The model parameters for H0 are:

A(0) =













0.9985 0.1950 0 −0.161 0
−0.0325 0.8405 3.87 0 0

0.01 −0.0505 0.7855 0 0
0.0 0 0.5 1.0 0
0.5 0 0 0 1.0













B(0) =













0.005
−0.09
−0.58
0.0
0.0













C(0) =













0 1
0 0
1 0
0 0
0 0













′

D(0) =

[

0
0

]

.

(59)

In the case of H1 and H2, the C matrix is modified so that
the sensor reading is zero mean white noise. In the case of
H3, the B matrix is modified so that the elevator exerts no
control effort. In all models, the process and observation noise
matrices are given by Q = diag([0.01 0.01 0.01 0.01 0.1])
and R = diag([0.01 0.01]), while the initial state distribution
is given by x̄0 = [0 0 − 0.1 0 100]′ and P = Q. Consistent
with a multiple-model fault detection framework, we assume
that the system matrices {A, B, C, D, Q, R} are fully known
for each of the possible faults, and that the true model persists
indefinitely. In other words, in this section we do not allow
switching between the different models; switching dynamics
are considered in Section III.
In each of the following discrimination tasks we control

the system by constraining the expected state, conditioned on
nominal operation. We evaluate the efficacy of the AE-MM
approach in terms of the reduction in the probability of model
selection error achieved by using the discrimination-optimal
sequence. There are two different error probabilities that we
consider:
1) Batch Error Probability. This error probability is based
on the assumption that Bayesian model selection is
carried out based on all the observations over the entire
horizon. This value is calculated in closed form.

2) Sequential Error Probability. This is the probability of
a sequential multiple-model estimation scheme making
a model selection error. This probability is estimated by
carrying out a large number of simulations.

As discussed in Section VII AE-MM minimizes an upper
bound on the batch error probability although most practical
multiple-model implementations are sequential. Nevertheless,
the results provided here show that the new approach dramat-
ically reduces the sequential error probability also.

A. Altitude Envelope

Figure 4 and Figure 5 show results from a fault detection
scenario where the aircraft is constrained to remain within
a flight envelope around an altitude of 100m. The elevator
angle is constrained to be at most 0.25rad in magnitude. The
prior probabilities of models H0 through H3 are 0.65, 0.1,
0.05 and 0.2 respectively. We assume that these priors have
been generated by a multiple-model estimator running up until
time 0.

The optimized control input yields a batch error probability
of 0.0003 and a sequential error probability of 0.0004. The
bang-bang nature of the optimized control input highlights
the fact that by optimizing up against hard constraints the
discrimination power of the input signal can be much greater
than a power-bounded auxiliary signal. This particular solution
took 58.5s to generate, of which 30.7s was used to generate
the necessary covariance matrices and of which 27.8s was
used to perform the nonlinear optimization using Matlab’s
fmincon function.
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Fig. 4. Discrimination-optimized input design for aircraft flight envelope
scenario. Top: Expected altitude of aircraft given nominal operation.
Bottom: Optimized sequence of control inputs. The optimal control
discriminates between the different models while ensuring that in the
nominal case, the aircraft altitude remains between 98 and 102m. The
optimized control input yields a batch error probability of 0.0003 and a
sequential error probability of 0.0004.
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Fig. 5. Expected observations for aircraft flight envelope scenario with
optimized control input. The top plot shows the nominal case, where
there are no faults. In the second and third plots, the pitch rate sensor
and vertical velocity sensors are faulty, respectively. In the bottom plot,
the elevator actuator is faulty. The optimized control input ensures that
the observation sequences in each case are as different as possible, in
order to minimize the probability of model selection error.
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B. Manually Generated Sequence
In order to identify the longitudinal dynamics of an aircraft,

pilots typically use a doublet control input[34]. Figure 6
shows such a control input sequence, with the same actuator
limits as for the optimized control sequence. This sequence
yields a batch error probability of 0.0269 and a sequential
error probability of 0.0258. Hence the optimized sequence in
Figure 4 has significantly greater discrimination power than
the manually generated sequence.
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Fig. 6. Typical manually generated identification sequence. This doublet
form is used by pilots to perform aircraft system identification. This
sequence yields a batch error probability of 0.0269 and a sequential
error probability of 0.0258.

C. Auxiliary Signal
A number of existing approaches to control design for

discrimination and model identification add a low power
auxiliary signal to the nominal control sequence[16], [18],
[19]. The power of the signal is small so that the effect on the
system state is small. A typical approach to auxiliary signal
design uses a Pseudo-Random Binary Signal (PRBS)[35].
Figure 7 shows an altitude-hold control signal with a

typical PRBS auxiliary signal added. The PRBS signal was
constrained to have a maximum elevator angle of 0.01 in order
to ensure that the aircraft altitude did not deviate significantly
from 100m. Averaged over a number of randomly-generated
signals, the resulting batch error probability was 0.3455, and
the sequential error probability was 0.3510, which is far
worse than the values obtained using the new discrimination
approach.

D. Altitude Change Maneuver
The AE-MM algorithm can use constraints to ensure that a

given control task is performed, while optimizing with respect
to discrimination. This is demonstrated in Figure 8, where
the aircraft carries out a maneuver that changes its altitude
from 100m to 120m, conditioned on the elevator actuator
being functional. The discrimination-optimal control sequence
is compared to the fuel-optimal one. Optimizing with respect
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Fig. 7. Typical control sequence with added Pseudo-Random Binary
auxiliary signal. This sequence yields a batch error probability of 0.3360
and a sequential error probability of 0.3406.

to discrimination yields a batch error probability of 0.0006
and a sequential error probability of 0.0001. Optimizing with
respect to fuel yields a batch error probability of 0.1914 and
a sequential error probability of 0.1833. Hence a dramatic
improvement in fault detection can be achieved by using
control inputs designed for model discrimination, rather than
those designed to optimize some other criterion and employing
only passive model selection. This particular solution took
51.4s to generate, of which 30.9s was spent calculating the
necessary covariances and 20.5s was spent performing the
nonlinear optimization.
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Fig. 8. Discrimination-optimal and fuel-optimal control design for altitude
change maneuver. The discrimination-optimal sequence gives a batch
error probability of 0.0006 and a sequential error probability of 0.0001,
while the fuel-optimal sequence gives a batch error probability of 0.1914
and a sequential error probability of 0.1833.

V. SIMULATIONS RESULTS: JMLS DISCRIMINATION
In this section we demonstrate the AE-JMLS algorithm in

simulation. We consider the aircraft described in Section IV,
except we now model the system as a JMLS with the following
modes:
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• Mode 1: Nominal (no faults)
• Mode 2: Faulty pitch rate sensor
• Mode 3: Faulty vertical velocity sensor
• Mode 4: Faulty elevator actuator

These modes are the same as the models described in Sec-
tion IV. The key difference is that the JMLS model explicitly
models stochastic jumps between the modes; stochastic jumps
represent component failures or recoveries from failure. The
transition probability matrix is:

T =









0.97 0.01 0.01 0.01
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0









. (60)

Notice that once a fault occurs, it persists indefinitely. The
initial belief state is uniform across the four discrete modes.
As in Section IV-D we constrain the expected system state,
conditioned on nominal operation, to make the aircraft carry
out an altitude change maneuver.
Given the designed control sequence we simulate the JMLS

aircraft model and carry out approximate hybrid estimation as
described in Section III-A. Hybrid estimation is sequential,
and at every time step mode sequences that are not in the
20 most likely are discarded. While in designing the control
sequence we assume that sequences are discarded at the end
of the planning horizon, we evaluate the new control design
approach in terms of the benefits afforded to sequential hybrid
estimation, since this is the most common implementation. The
two metrics used are:

1) Probability of discarding the true mode sequence. This is
estimated by carrying out a large number of simulations
and recording occurrences of true mode sequence loss.

2) Probability of Maximum A Posteriori (MAP) mode se-
quence estimation error. Correctly estimating the MAP
mode sequence is important for control, in particular.
This value is again estimated through a large number of
simulations.

The control design algorithm considered the a priori most
likely 10 sequences in the set S, as defined in (44). The ele-
vator angle was constrained to have a maximum magnitude of
0.25rad. Figure 9 shows the designed active hybrid estimation
control input, as well as the fuel-optimal sequence, for compar-
ison. Active hybrid estimation yields a probability of losing the
correct mode sequence of 0.0570 and a probability of MAP
mode sequence error of 0.1540. Optimizing with respect to
fuel yields a probability of losing the correct mode sequence
of 0.0970 and a MAP mode sequence error probability of
0.3040. Again, a significant improvement in fault detection
can be achieved by using control inputs designed for model
discrimination, rather than those designed to optimize some
other criterion and employing only passive hybrid estimation.
This solution took 269.7s to generate, of which 1.02s was
spent finding the a priori most likely 10 sequences, 76.3s
was spent calculating the necessary covariances, and 192.4s
was spent carrying out the nonlinear optimization.

0 5 10 15
95

100

105

110

115

E
xp

e
ct

e
d
 A

lti
tu

d
e
(m

)

 

 

Discrimination Optimal

Fuel Optimal

0 5 10 15
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Time(s)

E
le

va
to

r 
A

n
g
le

(r
a
d
)

Fig. 9. Active hybrid estimation for altitude change maneuver with JMLS
aircraft model. The active estimation sequence yields a probability of
losing the correct mode sequence of 0.0570 and a probability of MAP
mode sequence error of 0.1540. Optimizing with respect to fuel yields a
probability of losing the correct mode sequence of 0.0970 and a MAP
mode sequence error probability of 0.3040.

VI. CONCLUSION
This paper introduced a novel method for active state esti-

mation in Jump Markov Linear Systems. The method designs
finite sequences of control inputs that reduce the probability
of pruning the true mode sequence while ensuring that a given
control task is achieved. We first presented a method for
constrained optimal discrimination between a finite number
of linear dynamics systems. By extending this approach we
then derived a tractable active hybrid estimation method.
Simulation results showed that the new method significantly
reduces the probability of hybrid estimation losing the true
mode sequence.

VII. DISCUSSION
In the derivation of the new methods we assumed that both

model selection and mode sequence pruning are carried out at
the end of the finite horizon control sequence, rather than at
every time step. However in most Multiple Model and hybrid
estimation schemes, selection occurs at every time step. While
it would be possible, and in fact simpler, to formulate the
control design problem for one time step, we did not do so for
two reasons. First, in the discrete-time formulation, in many
systems the effect of control inputs at time τ is not manifested
in the observations until some time after τ + 1. Hence a
one-step design approach will be severely limited. Second,
by constraining the system state over a long horizon, the
optimization has much greater latitude in designing a powerful
sequence for the purposes of estimation; the system state can
be driven far from its initial value, while being brought back
to its goal value by the end of the time horizon. Hence by
considering the probability of pruning over a horizon, rather
than over a single time step, the approach yields sequences that
are more powerful with regard to discrimination. Furthermore,
we provided empirical results that show that the new methods
do indeed reduce the probability of error when a sequential
estimation method is employed.
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1) Randomly generate M models. Each model Hi has a prior
probability p(Hi), a mean µ(i) and a covariance Σ(i) for the
observation distribution.

2) Evaluate upper bound on error probability. The upper bound (9)
is evaluated for the generated model set.

3) Simulate observations. The true model is chosen at random,
according to the prior distribution p(Hi). Then an observation
y is drawn from the probability distribution N (µ(i), Σ(i)).

4) Select most likely model. The probability p(Hi|y) is evaluated
for each Hi, and the most likely model is identified.

5) Record errors. If the most likely model is not the true model,
record the selection as an error.

6) Repeat and calculate error probability. Steps 1 through 5 are
repeated a large number of times. The probability of model
selection error is approximated as the fraction of errors recorded.

TABLE III. Experimental process for analyzing tightness of bound on
probability of Multiple Model selection error.

APPENDIX I
BOUND TIGHTNESS ANALYSIS

We now discuss some properties of the bound on multiple
model selection error in (9). In the AE-MM algorithm we
minimize this bound in order to minimize the probability
of model selection error. We do not prove analytically that
designing control inputs to reduce this upper bound necessarily
reduces the probability of model selection error. Instead, we
motivate the use of an upper bound minimization approach in
three ways. First, note that the bound (9) is lower-bounded
by zero. Driving the bound to zero will trivially reduce the
probability of error (unless the probability of error was already
zero). Second, we showed empirically in Section IV with
a fault detection scenario that minimizing the upper bound
does, indeed, minimize the probability of error. Finally, in
this section, we analyze the tightness of the bound and show
empirically that the bound follows the same trend as the true
probability of error, in randomly generated instances.
For the empirical tightness analysis, we use the process in

Table III. The observations in this case are scalar. Figure 10
shows the upper bound and the true probability of error for
M = 5, where M is the number of hypotheses, and a
variety of randomly generated mean values µ(i). Here the
true probability of error was estimated using 105 Monte Carlo
simulations. To aid visualization, in this case we have fixed
Σ(i) and p(Hi). The x-axis of Figure 10 is the average
Euclidean distance between the observation means; we choose
this measure to enable visualization on a single figure.
Figure 10 shows that the bound is not particularly tight.

This is not surprising, since prior work has shown that the
Battacharyya Bound is relatively loose[22], and the new bound
(9) is at least as loose as the Battacharyya Bound. The bound
does, however, follow the same trend as the true probability of
error. This is empirical motivation for using the bound as an
optimization criterion in the place of the probability of error.
Figure 11 shows the ratio between the upper bound and the

true probability of error as a function of M , the number of
models. In this case all of µ(i), Σ(i) and p(Hi) are generated
randomly. Figure 11 shows that the bound becomes less tight
as the number of models increases, and that the relationship
is approximately linear after M = 4.
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Fig. 10. Tightness of new upper bound on the probability of Multiple
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Fig. 11. Ratio of new upper bound to the probability of Multiple Model
selection error.
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