
To appear in the Twentieth National Conference on Artificial Intelligence, 2005 1

Diagnosis as Approximate Belief State Enumeration for
Probabilistic Concurrent Constraint Automata∗

Oliver B. Martin and Brian C. Williams
{omartin, williams}@mit.edu

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA, 02139

Michel D. Ingham
michel.ingham@jpl.nasa.gov

Jet Propulsion Laboratory
Pasadena, CA 91109

Abstract

As autonomous spacecraft and other robotic systems grow
increasingly complex, there is a pressing need for capabili-
ties that more accurately monitor and diagnose system state
while maintaining reactivity. Mode estimation addresses this
problem by reasoning over declarative models of the physi-
cal plant, represented as a factored variant of Hidden Markov
Models (HMMs), called Probabilistic Concurrent Constraint
Automata (PCCA). Previous mode estimation approaches
track a set of most likely PCCA state trajectories, enumerat-
ing them in order of trajectory probability. Although Best-
First Trajectory Enumeration (BFTE) is efficient, ignoring
the additional trajectories that lead to the same state can sig-
nificantly underestimate the true state probability and result
in misdiagnosis. This paper introduces an innovative belief
approximation technique, called Best-First Belief State Enu-
meration (BFBSE), that addresses this limitation by comput-
ing estimate probabilities directly from the HMM belief state
update equations. Theoretical and empirical results show that
BFBSE significantly increases estimator accuracy, uses less
memory, and requires less computation time when enumerat-
ing a moderate number of estimates for the approximate be-
lief state of subsystem sized models.

Introduction
The purpose of estimation is to determine the current state
of the system. An estimator infers the current state by rea-
soning over a model of the system dynamics along with the
commands that have been executed and the resulting sen-
sory observations. In many embedded systems, this knowl-
edge of the current state is then used by a controller to drive
the system state towards a specific target or goal. The abil-
ity for a system to accurately and reliably deduce its current
state can dictate whether it is able to achieve its objectives.
This is particularly important for highly complex robotic
space exploration systems that operate in uncertain environ-
ments. Furthermore, deep space communication delays and
severely constrained onboard computing capabilities present
tremendous challenges to traditional methods of estimation
in support of robust autonomous spacecraft operations.

Previous work in model-based monitoring and fault di-
agnosis, including GDE/Sherlock (de Kleer and Williams
1987; 1989), GDE+ (Struss and Dressler 1989), Living-
stone (Williams and Nayak 1996; Kurien and Nayak 2000),

∗This research was funded in part by the Jet Propulsion Labora-
tory, through the JPL Director’s Research and Development Fund.

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

model-checking (Cordier and Largouët 2001) and Titan
Mode Estimation (Williams et al. 2003), have made sig-
nificant advances towards meeting these challenging perfor-
mance requirements. All of these capabilities achieve reac-
tivity, while maintaining reliability, by framing mode esti-
mation as a best-first shortest-path problem, which can be
efficiently solved using a variant of the Viterbi algorithm
(Forney 1978). This approach is known as Best-First Tra-
jectory Enumeration (BFTE) and works quite well when try-
ing to determine the “most likely explanation” to a sequence
of observations. Livingstone was successfully flight vali-
dated on the NASA Deep Space One probe as part of the
Remote Agent Experiment in 1999 (Williams and Nayak
1996). Unfortunately, approximating the current state by
the most likely trajectory can significantly underestimate the
true state probability and result in misdiagnosis.

This paper introduces a novel mode estimation technique
called Best-First Belief State Enumeration (BFBSE) that ap-
proximates the belief state by generating the set of most
likely estimates and achieves greater accuracy by computing
the estimate probabilities directly from the Hidden Markov
Model (HMM) Belief State Update equations instead of ap-
proximating them by their trajectory probability. This con-
tribution significantly increases the accuracy of the estimator
while using less memory and, under certain conditions, less
computational time; providing an enabling technology for
increasingly complex space missions of the future.

We begin by introducing our modeling formalism and
the complete HMM estimation problem, noting some prac-
tical limitations. We address these limitations by presenting
BFTE and BFBSE as instances of an optimal constraint sat-
isfaction problem. In conclusion, we support our claims of
improved estimator accuracy and performance through the-
oretical and empirical comparisons between the approaches.

PCCA Plant Model

As in previous work, we model the physical plant as a
factored Hidden Markov Model that is compactly encoded
as Probabilistic Concurrent Constraint Automata (PCCA)
(Williams et al. 2003). The PCCA represent a set of con-
currently operating components that are interconnected and
interact with their surrounding environment. Each automa-
ton has a set of possible discrete modes with conditional
probabilistic transitions, which capture both nominal and
faulty behavior. These modes are only partially observable,
due to a limited number of sensors, but are inherently con-
strained by the system properties that define each mode. In

To appear in the Twentieth National Conference on Artificial Intelligence, 2005 2

this section we review the formal definition of the PCCA
plant model and provide an illustrative example.

PCCA Formalism

Consider the probabilistic constraint automaton for compo-
nent “a” defined by the tuple Aa = 〈Πa,Ma,Ta,PTa

,PΘa
〉:

1. Πa = Πm
a ∪ Πr

a is a finite set of discrete variables for
component “a”, where each variable πa ∈ Πa ranges over
a finite domain D(πa). Πm

a is a singleton set containing
mode variable {xa} = Πm

a whose domain D(xa) is the
finite set of discrete modes in Aa. Attribute variables Πr

a

include inputs, outputs, and any other variables used to
define the behavior of the component. Σa is the complete
set of all possible full assignments over Πa and the state
space of the component Σxa

a = Σa⇓xa
is the projection

of Σa onto mode variable xa.

2. Ma : Σxa

a → C(Πr
a) maps each mode assignment (xa =

va) ∈ Σxa

a to a finite domain constraint ca(xa = va) ∈
C(Πr

a), where C(Πr
a) is the set of finite domain con-

straints over Πr
a. These constraints are known as modal

constraints and are typically encoded in the propositional

form λ , True | False | (u = y) | ¬λ1 | λ1 ∧ λ2 |
λ1∨λ2, where y ∈ D(u). If the current mode is (xt

a = va)
at time-step t, then the assignments to each attribute vari-
able rt

a ∈ Πr
a at time-step t must be consistent with

ca(xa = va). These constraints capture the physical be-
havior of the mode.

3. Ta : Σxa

a ×C(Πr
a) → Σxa

a is a set of transition functions.
The set of finite domain constraints C(Πr

a) are also known
as the transition guards, encoded in the propositional
form λ. Given a current mode assignment (xa = va) ∈
Σxa

a and guard ga ∈ C(Πr
a) entailed at time-step t, each

transition function τa(xa = va, ga) ∈ Ta(xa = va, ga)
specifies a target mode assignment (xa = v′a) ∈ Σxa

a

that the automaton could transition into at time-step t+1.
Ta = Tn

a ∪Tf
a captures both nominal and faulty behavior.

4. PTa
: Ta(xa = va, ga) → ℜ[0, 1] is a transition prob-

ability distribution. For each mode variable assignment
in Σxa

a and guard gt
a, there is a probability distribution

across all transitions into target modes defined by the set
of transition functions Ta(xa = va, ga).

The entire system plant P is modeled by a composition of
concurrently operating constraint automata. Each automa-
ton is interconnected to both its environment and other au-
tomata through constraints on shared variables. Formally,
the PCCA plant model is defined by the tuple P = 〈A,Π,Q〉:

1. A = {A1,A2, . . . ,An} is the finite set of constraint au-
tomata that represent the n components of the plant.

2. Π =
⋃

a=1..n Πa is the set of all plant variables. The vari-
ables Π are partitioned into a finite set of mode variables
Πm =

⋃
a=1..n Πm

a , control variables Πc ⊆
⋃

a=1..n Πr
a,

observation variables Πo ⊆
⋃

a=1..n Πr
a, and dependent

variables Πd ⊆
⋃

a=1..n Πr
a. Σc, Σo, and Σd are the sets

of full assignments over Πc, Πo, and Πd.

3. Q ⊂ C(Π) is a set of finite domain constraints that cap-
ture the interconnections between plant components.

Example

An Inertial Measurement Unit (IMU) is a standard sensor
package that is used to provide spacecraft and other ro-
botic systems with translational and angular motion mea-
surements. When power is supplied to this IMU by closing
its associated Power Switch (PS), it enters Initializing mode
and eventually transitions to Measuring mode, in which it
produces valid data. The IMU has a fault mode where it
becomes Stuck Initializing; recovery from this fault requires
sending a reset command to the IMU. This model also de-
fines a highly unlikely Unknown mode, which captures all
other unexpected behavior. Our PCCA plant model P is
composed of the constraint automata for the IMU (Aimu)
and PS (Aps). Graphical representations of each are shown
in Figures 1 and 2, respectively, with a formal description of
Aimu provided below:

()IMU
cmd reset=

()

Initializing

in

()
Measuring
me()

Unknown
un

()

Stuck

Initializing
si

(-)IMUtimer in expired=

()IMUcmd reset¬ =

()IMUcmd reset¬ =

0.01

(
)

IMUcmd
reset=

0.001

0.001

0.001

1.0

(-)

(-)
IMU

IMU

power in

data valid false

=

∧ =

nominal

(-)IMUpower in zero= (-)

(-)
IMU

IMU

power in

data valid false

=

∧ =

nominal

(-)

(-)
IMU

IMU

power in

data valid true

=

∧ =

nominal

()IMUcmd reset¬ =

()- IMUtimer in expired¬ =

()

Off

of

0.001

Figure 1: IMU constraint automaton, Aimu.

1. Πimu = {ximu, µcmd
imu, odv

imu, d
pi
imu, dti

imu} where
{ximu} = Πm

imu resides in 1 of 5 discrete
modes D(ximu) = {of, in, me, si, un}. Πr

imu =

{µcmd
imu, odv

imu, d
pi
imu, d

pi
imu} where µcmd

imu is used to reset

the IMU, odv
imu is an observation of the data validity, d

pi
imu

is the power-in, and dti
imu is a time expiration variable.

Σimu = Σm
imu × Σr

imu is the set of all full assignments
over Πimu with 5 · (2 · 2 · 2 · 2) = 80 elements.

2. Mimu includes the constraints encapsulated by rectan-
gles in Figure 1. For example, Mimu(ximu = me) =

(dpi
imu = nominal ∧ odv

imu = true).

3. Transitions are indicated by the arrows and labels in Fig-
ure 1. Timu(ximu = si, µcmd

imu = reset) is a set of

transition functions {τn1 , τn2 , τf1} where (ximu = in),
(ximu = of), and (ximu = un) are the target modes.

4. For the set of transitions described above in item 3, the
probability distribution across target modes {in, of, un} at

time-step t + 1 is PTimu
(ximu = si, µcmd

imu = reset) =
{0.4995, 0.4995, 0.001}.

The PCCA plant model for this simple IMU/PS example
is composed of 2 components and the interconnections be-
tween them. The PCCA plant P is defined as follows:

1. A = {Aimu,Aps}.

2. Π = Πimu ∪ Πps is the set of all variables.

To appear in the Twentieth National Conference on Artificial Intelligence, 2005 3

()

Closed

cl

()
Unknown
un 0.0005

1.0

()PScmd close=

()PScmd close¬ = ()PScmd open¬ =

()PScmd open=

()

Open

op

()

Tripped

Open
to

(-)PSpower out nominal=

(-)PSpower out zero=

0.1

0.1

0.0005

(
)

PScmd
open=

()PScmd open¬ =

0.0005

* Assumes constant

input power

(-)PSpower out zero=

Figure 2: Power Switch constraint automaton, Aps.

3. Q = {dpo
ps = d

pi
imu} contains only one interconnection

constraint. For this example, the power-out (po) of the
PS is connected to the power-in (pi) of the IMU.

Estimation of PCCA

This section reviews exact belief state update for PCCAs,
while noting practical limitations due to state space explo-
sion and assumptions that make online estimation tractable.
The task of estimation is to calculate a belief state of the
system in real-time while maintaining accuracy and reliabil-
ity. A belief state is a probability distribution over the states
of a system, which represents the likelihood of the system
being in any single state given a history of past commands
and observations. For PCCA, a state si is defined as a full
assignment to mode variables si ∈ Σm and a belief state
B = 〈S, p〉 is a finite set of estimates that cover all consis-
tent states S ⊆ Σm. Each estimate consists of a state si ∈ S
and its posterior probability p(si) ∈ p.

Belief State Update

The Markov property states that the future of a system is
conditionally independent of its past, given its current belief
state. This property allows an estimator to iteratively com-
pute the next complete belief state Bt+1 at time-step t+1 by
only considering the current belief state Bt and commands
µt at time-step t, along with the resulting observations ot+1.
The belief state is then computed using the standard HMM
belief state update equations (Baum and Petrie 1966):

P(st+1

j |o<0,t>
, µ

<0,t>) =

Σst

i
∈St(P(st+1

j |st
i, µ

t)P(st
i|o

<0,t>
, µ

<0,t−1>))
(1)

P(st+1

j |o<0,t+1>
, µ

<0,t>) =

P(st+1

j |o<0,t>, µ<0,t>) · P(ot+1|st+1

j)

Σ
s

t+1
i

∈St+1P(st+1

i |o<0,t>, µ<0,t>)P(ot+1|st+1

i)

(2)

Equation 1 represents the a priori probability of being in

the next state st+1
j at time-step t + 1, given all the obser-

vations o<0,t> and commands µ<0,t> between time-step 0
and t. P(st

i|o
<0,t>, µ<0,t−1>) ∈ pt is the probability that

the system was in state si at time-step t and P(st+1
j |st

i, µ
t)

is the state transition probability. Equation 1 propagates the
system dynamics into the future before considering new ob-
servations. Once all the a priori estimates are generated,
Equation 2 then updates these estimates by adjusting the
probabilities based on new observations ot+1 using the Total
Probability Theorem and Bayes’ Rule to calculate the a pos-
teriori probabilities pt+1 across all states in St+1. Detailed
definitions of state transition and observation probabilities
for PCCA can be found in (Williams et al. 2003).

Approximation to Exponential Belief State

For systems modeled as PCCA, there is a finite number of
estimates in the belief state, though the size of the belief state
is exponential in the number of components. The precise
size of the belief state for n components is

∏
a=1..n |D(xa)|,

where |D(xa)| is the number of modes in Aa. For a full-
scale spacecraft propulsion subsystem, the size of the belief
state is roughly 3.580 (80 mode variables with an average
domain size of 3.5) (Williams and Nayak 1996). To mitigate
this belief state space explosion, previous work in Living-
stone and Titan have made the assumption that the true state
of the system is captured within only a few of the most likely
estimates. This assumption is based on the key insight that,
although the full belief state has an exponential size, the bulk
of the probability density is concentrated in only a handful
of most likely estimates. This is due to the drastically de-
creasing likelihood of simultaneous multiple point failures.

By leveraging this approximation, the estimation problem
is simplified from updating the full belief state B to enumer-

ating the k best estimates of an approximate belief state B̃.
To avoid extraneous computation, preserve reactivity of the
estimation process, and enable it to be employed for the pur-
poses of real-time control, this enumeration is performed in
best-first order. This is done efficiently by framing estima-
tion as an optimal constraint satisfaction problem (OCSP).

Optimal Constraint Satisfaction Problem

Estimation can be viewed as a problem of constraint opti-
mization where each possible target state in the approximate
belief state must be consistent with modal constraints M,
component interconnections Q, and observations ot+1.

Definition 1 An OCSP 〈x, f, C〉 is a problem of the form
“arg max f(x) subject to C(x),” where x is a vector of de-
cision variables, C(x) is a set of state constraints, and f(x)
is a multi-attribute utility function.

Solving an OCSP consists of generating a prefix to the
sequence of feasible solutions, ordered by decreasing value
of f . A feasible solution assigns to each variable in x a value
from its domain such that C(x) is satisfied.

OPSAT is an OCSP solver that was implemented using
Conflict-directed A∗ (Ragno 2002) to efficiently find solu-
tions to the OCSP in best-first order by interleaving can-
didate generation and test. OPSAT generates each leading
candidate x using A∗ search and then tests the candidate for
consistency against C(x). If it proves inconsistent, OPSAT
summarizes the inconsistency (called a conflict) and uses
this summary to jump over other leading candidates that are
similarly inconsistent.

To appear in the Twentieth National Conference on Artificial Intelligence, 2005 4

Estimation as an OCSP

By solving the estimation problem as an OCSP using OP-
SAT, each estimate in an approximate belief state can be
enumerated in best-first order. Both the BFTE and BFBSE
algorithms take advantage of OPSAT to reduce the expo-
nential number of possible states to the k most likely. The
decision variables x are the set of mode variables Πm and
the state constraints C(x) restrict mode variable assignments
(xa = v′a) to those that are consistent with observations
ot+1, modal constraints Ma(xa = v′a), and component in-
terconnections Q. The primary difference between the two
algorithms resides in the utility function f(x) specification.

Best-First Trajectory Enumeration

BFTE has a utility function that is equivalent to that of
the Viterbi algorithm (Forney 1978). This approach essen-
tially unfolds the belief state transitions into a branching tree
structure (Figure 3) and estimates are enumerated by finding
the single-step shortest-path in the tree.

B
2

B
1

B
0

B
2

B
1

B
0

Figure 3: Evolution of the belief state, represented as a trellis
diagram (left), can be decomposed into a branching tree.

Each arrow on the right side of Figure 3 still represents
a state transition but the belief state encoding is no longer
compact since there can be duplicate states at each time-step
in the branching tree. Furthermore, the probability associ-
ated with each estimate, as per the HMM belief state up-
date equations, has been split across all the duplicate nodes
within the same time-step such that the probability tied to
each individual node in the tree is actually a lower bound on
the true state probability. This tree representation invalidates
the BFTE claim of true best-first state enumeration.

Given the plant model P , the current approximate belief

state B̃t, commands µt, and resulting observations ot+1,

BFTE generates the estimates in the next belief state B̃t+1

in best-first order according to the state trajectory probabil-

ity P(st+1
j | st

i, µ
t) · pt(si). It is important to note that the

update step of the HMM belief state update equations is im-
plicit in both BFTE and BSBSE algorithms1. Pseudo code
for the BFTE algorithm is shown in Figure 4.

As an example of BFTE, consider the simple scenario
presented in Figure 5. Assuming that the IMU and PS are
in one of the two depicted states at time t, and there are
no commands issued nor observations received, the leading

1Since each solution to an OCSP must satisfy constraints C(x),

the update step is implicitly computed such that P(ot+1|st+1

j) is 1

when observations are consistent with C(x) and 0 otherwise. This
is not a proper probability distribution but it avoids state space com-
plexities and requires no additional computation.

BFTEalg (P, B̃t, µt, ot+1) → B̃t+1 ::

1. For each st

i
∈ S̃t , setup OCSPi 〈x, f, C〉:

• The vector x includes a decision variable xa for each component of the plant,

whose domain D(xa) is the set of reachable target modes. The target mode

for each transition (xa = v′

a
) = τa(xa = va, ga) is reachable when the

source (xa = va) ∈ st

i
and guard ga are satisfied by Ct

M
∧ st

i
∧µt, where

Ct

M
= Q∧∧(xa=va)∈st

i

Ma(xa = va).

• The utility function f(x) is the prior trajectory probability of next state

x, that is, f(x) = P(x | st

i
, µt) · pt(si), where P(x |

st

i
, µt) =Π(xa=v′

a
)∈xP(xa = v′

a
| xa = va, st

i
, µt) and pt(si)

is the posterior probability for state st

i
.

• C(x) encodes the constraint that x ∧CMx ∧ ot+1 must be consistent, where

CMx = Q∧∧(xa=v′
a
)∈xMa(xa = v′

a
).

2. Compute the k most likely solutions S̃t+1 = {x1, . . . , xk} to

∧i=1..kOCSPi〈x, f, C〉 by incrementally comparing the next-best solution

from each of the k instances of OPSAT.

3. Extract the posterior probabilities pt+1 = {f(x1), . . . , f(xk)} for each solu-

tion x
i in S̃t+1.

4. Return the k most likely trajectories contained by B̃t+1 = 〈S̃t+1, pt+1〉.

Figure 4: Best-First Trajectory Enumeration algorithm.

four estimates are displayed for time-step t + 1 according to
the HMM belief state update equations. The numbers on the
arrows represent the individual component transition proba-
bilities. For pedagogical clarity, the true a priori state proba-
bilities are shown on the right for time-step t+1 and should
be updated with the observation probabilities to complete
the belief state update. Modes that are mutually inconsis-
tent, such as (ximu = in ∧ xps = op), are determined to be
conflicting by OPSAT and are not returned.

IMU=of

PS=op

(0.4995)(0.1)

(0.4995)(0.9995)

(0.4995)(0.8995)

IMU=of
PS=to

IMU=of

PS=to

IMU=of

PS=op

IMU=un

PS=to

IMU=un
PS=op

1tB +ɶtBɶ

1

ts

2

ts

1

1

ts +

1

2

ts +

1

3

ts +

1

4

ts +

0.2521

0.2471

0.0005

0.0005

0.55

0.45

Figure 5: Simple IMU/PS belief state update example.

Table 1: Best-First Trajectory Enumeration results
solution # source state target state probability % error

1 st

1 s
t+1
2 0.2471 0.0

2 st

2 s
t+1
1 0.2247 10.9

3 st

1 s
t+1
1 0.0275 89.1

4 st

1 s
t+1
4 0.000495 0.0

Table 1 shows the 4 most likely trajectories returned by
BFTE for the scenario in Figure 5, with their source state,
target state, a priori state trajectory probability, and percent
error when compared to the true a priori probabilities. It is
important to notice that since BFTE splits the two trajecto-

ries leading to st+1
1 , this state is no longer evaluated as the

To appear in the Twentieth National Conference on Artificial Intelligence, 2005 5

most likely estimate. Incorrectly estimating the likelihood
of states in this fashion can have a major affect on the action
a control system will take to achieve a goal.

Best-First Belief State Enumeration

Using BFBSE to generate estimates for the IMU/PS sce-
nario would entirely remove the problem exhibited in Ta-
ble 1. Instead of approximating the belief state by searching
over most likely trajectories, BFBSE uses the HMM belief
state propagation equation directly as its utility function. Al-
though this technique still approximates the belief state by
enumerating only the k best estimates, the estimate repre-
sentation is more compact and little accuracy is lost. Pseudo
code for BFBSE is presented in Figure 6.

BFBSEalg (P, B̃t, µt, ot+1) → B̃t+1 ::

1. Setup the OCSP 〈x, f, C〉:

• The vector x includes a decision variable xa for each component of the plant,

whose domain D(xa) is the set of modes that are reachable from any current

state st

i
∈ S̃t. For all st

i
∈ S̃t, the target mode for each transition (xa =

v′

a
) = τa(xa = va, ga) whose source (xa = va) ∈ st

i
and guard ga are

satisfied by Ct

M
∧ st

i
∧ µt is considered reachable such that v′

a
∈ D(xa).

Ct

M
= Q∧∧(xa=va)∈st

i

Ma(xa = va).

• The utility function f(x) is the prior probability of next state x, that

is, f(x) = Σ
st

i
∈S̃tP(x | st

i
, µt) · pt(si), where P(x |

st

i
, µt) =Π(xa=v′

a
)∈xP(xa = v′

a
| xa = va, st

i
, µt) and pt(si)

is the posterior probability for state st

i
.

• C(x) encodes the constraint that x ∧CMx ∧ ot+1 must be consistent, where

CMx = Q∧∧(xa=v′
a
)∈xMa(xa = v′

a
).

2. Compute the k most likely solutions S̃t+1 = {x1, . . . , xk} to OCSP〈x, f, C〉

using OPSAT.

3. Extract the posterior probabilities pt+1 = {f(x1), . . . , f(xk)} for each solu-

tion x
i in S̃t+1 .

4. Return the k most likely state estimates contained by B̃t+1 = 〈S̃t+1, pt+1〉.

Figure 6: Best-First Belief State Enumeration algorithm.

When applying this algorithm to the IMU/PS scenario, the
increase in estimate probability accuracy is readily apparent.
Since the HMM belief state propagation equation is directly
used as the objective function, and there is complete knowl-
edge of the initial belief state in this scenario, the estimate
probabilities match the true a priori belief state probabilities
shown in Figure 5. Our algorithm is innovative in its abil-
ity to achieve higher accuracy while using less space and
roughly the same amount of time as discussed in the next
section.

BFTE and BFBSE Complexities

Both estimation techniques have been presented as instances
of an OCSP that can be solved efficiently using the Conflict-
directed A∗ algorithm employed in OPSAT. Since the OCSP
constraints are identical in BFTE and BFBSE, both tech-
niques will identify the same conflicts for a given candidate
solution. This allows us to compare the algorithms by eval-
uating their space and time complexities based on the A∗

candidate search portion of OPSAT.
There are two fundamental reasons why the performance

of these estimate enumeration techniques differ: BFBSE

generates estimates using only one instance of OPSAT, in-
stead of k instances as performed in BFTE; and each node
generated by BFBSE requires k times more arithmetic com-
putations than BFTE since we are summing over k incoming
state transitions. To more clearly understand the complex-
ity analysis, recall that the best case time and space for A∗

is roughly n · b and the worst case time and space is bn,
where b is the branching factor and n is the depth of the tree.
For BFTE and BFBSE, b is the average number of reachable
modes per component |D(xa)| and n is the number of com-
ponents in the model |Πm|. Table 2 shows the complexities
for BFTE and BFBSE as an augmented form of A∗ search.

Table 2: Space and time complexity for BFTE and BFBSE
Best Case Worst Case

Space Time Space Time

BFTE k · n k · n · (n + C) k · bn k · bn · (n + C)

BFBSE n · b n · b · (n · k + C) bn bn · (n · k + C)

Notice that this time complexity considers the time it
takes to create each node in addition to the number of nodes
visited. This quantity (enclosed by parentheses) consists of
the time to evaluate the objective function plus a constant
C for other data manipulating operations. We also note that
the complexities for BFTE are multiplied by k because of
the k instances of OPSAT; however, BFTE avoids expand-
ing many of the search tree’s fringe nodes by exploiting its
mutually preferential independent (Ragno 2002) objective
function, such that b = 1 in the best case.

This analysis shows that whenever k > b, the space re-
quired by BFBSE is always less than BFTE. Conversely, for
large values of n, BFTE is faster in the best case by a fac-
tor of b but both are equally fast in the worst case. In the
following section, we will see that, for practical problems,
b is small and C dominates the objective function term un-
less the model is very large. For subsystem or modest size
system models, BFBSE is more accurate, uses less memory,
and requires less computation time.

Experimental Results

The following empirical comparison between BFTE and
BFBSE (implemented in C++) was conducted using an
Earth Observing One (EO-1) spacecraft model that was de-
veloped at NASA Ames and used to flight validate Living-
stone 2 in 2004 (Hayden et al. 2004). The model has a total
of 60 variables, including 12 mode variables with an aver-
age domain size of 5.75. The results were gathered using a
1.7GHz Intel Pentium M processor with 512MB of RAM.

The single-step estimation scenario in Figure 5 illustrated
the likelihood-ordering limitations of BFTE and the addi-
tional accuracy gained using BFBSE. By considering es-
timation over many cycles (Figure 7), the loss of belief
state probability density for BFTE becomes readily appar-
ent, highlighting the amount of belief state knowledge lost
over time. The reduction in probability density is exponen-
tial in the number of estimation cycles for both algorithms,
but the rate of decay is clearly less for BFBSE.

The space and time performance results are shown in Fig-
ures 8 and 9, respectively. For a varying size initial belief
state, space is measured by the maximum number of nodes

To appear in the Twentieth National Conference on Artificial Intelligence, 2005 6

0 5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
e
lie

f
s
ta

te
 p

ro
b
a
b
ili

ty
 d

e
n
s
it
y
 m

a
in

ta
in

e
d

Estimation time−step

Probability Density Maintained over Time for EO−1 Model

BFTE, k=1
BFTE, k=10
BFTE, k=30
BFBSE, k=1
BFBSE, k=10
BFBSE, k=30

Figure 7: Probability density maintained over time.

placed in the A∗ priority queue, while estimation time is
measured in milliseconds. Each estimation technique has
two sets of data points: the solid lines represent the space
and time required to generate the single best estimate from
the k states in the initial belief state (extracting best case be-
havior) and the dotted lines are the space and time required
to generate the k most likely estimates (simulating average
case performance for the estimator in a real application).

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

M
a

x
 n

u
m

b
e

r
o

f
n

o
d

e
s
 i
n

 q
u

e
u

e

Number of initial states, k

Estimate Enumeration Maximum Queue Size for EO−1 Model

BFTE, single estimate
BFTE, k estimates
BFBSE, single estimate
BFBSE, k estimates

Figure 8: Maximum queue size for BFTE and BFBSE.

The space and time performance results show good align-
ment with the complexity analysis. The single-estimate re-
sults for BFBSE in Figure 8 reveals constant queue size as
predicted in the best case complexity analysis. Similarly, we
see linear queue growth for BFTE. Comparing the k estimate
trends show that queue size is significantly less for BFBSE.
The time results in Figure 9 also follow our predicted expec-
tations. It is interesting to note that BFTE only outperforms
BFBSE in both space and time when, as expected, k < b
where b ≈ 3 for most real models. Since it is advantageous
to set k > 3 (recall Figure 7), BFBSE will outperform BFTE
in space and time for moderate size models and sufficiently
sized belief states (e.g., k ≈ 10).

Conclusion

This paper presented BFBSE as an approximate monitor-
ing and diagnosis technique for PCCA that increases esti-
mate accuracy by directly using the HMM Belief State Up-

0 5 10 15 20 25 30
0

200

400

600

800

1000

1200

1400

T
im

e
 (

m
s
)

Number of initial states, k

Estimate Enumeration Time for EO−1 Model

BFTE, single estimate
BFTE, k estimates
BFBSE, single estimate
BFBSE, k estimates

Figure 9: Time required for BFTE and BFBSE.

date equations. Our complexity analysis and empirical data
shows that BFBSE outperforms BFTE, requiring less mem-
ory and less computational time for moderately sized ap-
proximate belief states and subsystem sized models.

Further improvements to BFBSE should result from our
current work to correctly update the prior state probabilities
with a valid observation probability distribution. Efficient
use of the observation probabilities in the OCSP objective
function should also lead to better diagnostic discrimination,
pruning lower probability states earlier in the search.

References
L. Baum and T. Petrie. Statistical inference for probabilis-
tic functions of finite-state Markov chains. Annals of Math-
ematical Statistics, 37:1554–1563, 1966.

M. Cordier and C. Largouët. Using model-checking tech-
niques for diagnosing discrete-event systems. In Proceed-
ings of DX-01, pages 39–46, 2001.

J. de Kleer and B. C. Williams. Diagnosing multiple faults.
Artificial Intelligence, 32(1):97–130, 1987.

J. de Kleer and B. C. Williams. Diagnosis with behavioral
modes. In Proceedings of IJCAI-89, 1989.

G. D. Forney, Jr. The Viterbi algorithm. In Proceedings of
the IEEE, pages 267–278, 1978.

S. C. Hayden, Adam J. Sweet, and Scott E. Christa. Liv-
ingstone model-based diagnosis of Earth Observing One.
In Proceedings of the AIAA Intelligent Systems, 2004.

J. Kurien and P. Nayak. Back to the future for consistency-
based trajectory tracking. In Proceedings of AAAI-00,
pages 370–377, 2000.

R. Ragno. Solving optimal satisfiability problems through
Clause-directed A*. Master’s thesis, MIT, 2002.

P. Struss and O. Dressler. “Physical Negation” - Integrat-
ing fault models into the General Diagnostic Engine. In
Proceedings of IJCAI-89, pages 1318–1323, 1989.

B. C. Williams and P. Nayak. A model-based approach to
reactive self-configuring systems. In Proceedings of AAAI-
96, pages 971–978, Portland, OR, August 4-8, 1996.

B. C. Williams, M. D. Ingham, S. H. Chung, and P. H.
Elliott. Model-based programming of intelligent embedded
systems and robotic space explorers. Proceedings of the
IEEE, 91(1):212–237, January 2003.

