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Abstract

We present a theory of a modeler’s problem decomposition skills
in the context of optimal reasoning — the use of qualitative modeling
to strategically guide numerical explorations of objective spaces. Our
technique, called activity analysis, applies to the pervasive family of
linear and non-linear, constrained optimization problems, axld easily
integrates with any existing numerical approach. Activity analysis
draws from the power of two seemingly divergent perspectives — the
global conflict-based approaches of combinatorial satisficing search,
and the local gradient-based approaches of continuous optix‘nization
- combined with the underlying insights of engineering mon?tOMCity
analysis. The result is an approach that strategically cuts away sub- *
spaces that it can quickly rule out as suboptimal, and then guides the

numerical methods to the remaining subspaces.




1 Introduction and Example ‘

Our goal is to capture a modeler’s tacit skill at decomposing physical models
and its application to focusing reasoning. This work is ultimzitely directed
towards the contruction of “self modeling” systems, operating in embedded,
real time situations. Contrasting compositional approaches [TIQ, 8, 5, 13],
this article explores the modeler’s decompositional skills in the context of
optimal reasoning — the use of qualitative modeling to strategically guide
gradient-based and other numerical explorations of objective %paces. Opti-

mal reasoning is crucial for embedded systems, where numerical methods are

key to such areas as estimation, control, inductive learning an‘ vision. The
technique we present, called activity analysis, applies to the pirvasive fam-
ily of linear and non-linear, constrained optimization problems, and easily
integrates with any existing numerical approaches.

Activity analysis is striking in the way it merges together two styles of
search that are traditionally viewed as quite disparate: first is the more
strategic, conflict-based approaches used in combinatorial, satisficing search(6,
7, 18] to eliminate finite, inconsistent subspaces. The second is the rich suite
of more tactical, numeric methods[21, 20, 16] used in continuous optimizing
search to climb locally but monotonically towards the optimum. Activity
analysis draws from the power of both perspectives, strategically cutting
away subspaces that it can quickly rule out as suboptimal, and‘ then guiding
the numerical methods to the remaining subspaces.

The power of activity analysis to eliminate large suboptimaj subspaces 1s
derived from Qualitative KT, an abstraction in qualitative vector algebra of
the foundational Kuhn-Tucker (KT) condition of optimization theory. The
underlying algorithm achieves simplicity and completeness, by introducing
the concept of generating prime implicating assignments of linear, qualitat-
ice vector equations. This process of ruling out feasible, but suboptimal sub-
spaces in a continuous domain, nicely parallels the use of conflicts and prime
implicant generation for combinatorial, satisficing search. The end result is a
method that achieves parsimonious descriptions, guarantees correctness, and
maximizes the filtering achieved from QKT.

To demonstrate the task consider the design of a hydraulic cylinder! (Fig-

1The hydraulic cylinder is a classic optimization problem, introduced Ty Wilde [22] to

demonstrate the related technique of monotonicity analysis.



ure 1), which delivers force f, through input pressure p. Weight is modeled as
inside diameter (i) plus twice the cylinder thickness (t), force (f) as pressure
(p) times cylinder area, and hoop stress (s) as pressure times diameter acting
across the thickness. The task is to find a parametric solution that minimizes
cylinder weight, while satisfying constraints including positivity of variables
(i,s,t,p, f > 0), maximum pressure (P) and stress (S), and minimum force
(F) and thickness (T) (design variables are in lowercase, fixed parameters
in uppercase, and equality and inequality constraints are labeled A; and g;,
respectively):

Minimize: 1+ 2t
Subject to: s—.z‘z’—; = 0, (hy =0): -t <0, (250)
f=5%p = 0. (he=0): p—P < 0, (g3=0)
F—f <0, (16<0): s=-§5 < 0, (94<0)
\

Figure 1: Hydraulic Cylinder

A3

Given this symbolic formulation, activity analysis uses quaLlitative argu-
ments to classify regions of the design space where optima might le, and
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where they cannot. After eliminating suboptimal regions, each remaining re-
gion identifies the solution as possibly lying on the intersection of one or more
constraint boundaries. Each region reduces the dimensionality of the problem
by the number of intersecting boundaries, thus significantly increasing the
ease with which a solution can be found. In particular, for the cylinder prob-
lem, activity analysis concludes there are two subspaces of the design space
that could contain the optima, one subspace in which ¢g; and g4 become strict
equalities, and a second in which all but g4 become strict equalities. The new
problem formulation finds the optima of the two spaces, and combines the
results as follows (where “argmin” returns a set of optima):

Given: vectorx = (istpf)T .
1. Let Y = argminy(: + 2t),
subject to: (hy =0) (91 =0) (g5 <0)

(hy = 0) (92 <0) (g4=0)

2. Let Z = argming(t + 2t),
subject to: (h1 =0) (g1 =0) (g3=0)
(he=0)  (g2=0) (g4 <0).
3. Return argming(z + 2t),
subject to: xeYUZ.

Originally, the problem has a 3 dimensional space to be exploredi (5 variables,
2 equality constraints). The reformulated problem rules out‘ the interior
and boundaries, except some intersections. The first remaining subspace .
corresponds to a line, produced by the intersection of the g; and ‘g4 constraint
boundaries with the h;. The second remaining space is the point produced
by the intersection of g1, g2, g3 and the h;. Thus finding a solution to the
first problem involves a single, one dimensional line search, and the second
involves solving the system of equalities to find the unique solution — this
is a substantial reduction in problem complexity.

Activity analysis draws inspiration from monotonicity analysis (MA) [15,
14, 23]. Monotonicity analysis began as a set of principles and I‘nethods used
by modelers to identify ill-posed problems and to partially solve them, based
on monotonic arguments alone. These principles were encoded in several
rule-based implementations (2, 17, 4, 9], presented informally as heusistic
methods.

The problem activity analysis addresses is similar in spirit to that of MA;
nevertheless, the approach is quite different. First, activity analysis operates



directly on an abstraction (QKT) of the Kuhn-Tucker (KT) conditions of
optimization theory (section 2). While much easier to apply, QKT and KT
are equivalent for the task, given only knowledge of monotonicities (section
3). Second, activity analysis provides a precise formulation of the problem, in
terms of marimal pstationary coverings that guarantees the solution is par-
simonious, maximizes the focus derived from QKT, and insures correctness
(section 4). Finally, a mapping to prime assignments and the mntroduction of
a simple but complete prime assignment engine guarantees that these three
properties are achieved (section 4). |

2 Stationary Points and Kuhn-Tucker

Vg ) a"-LLVgl 1'.U;V82

Figure 2: Example gradient vector diagram for Kuhn-Tucker.

For a point x* to be an optimum it is necessary that the point be statiogary,
that is any “down hill” direction is blocked by the constraints. Activity anal-
ysis exploits this fact to eliminate sets of points that can quickly be proven to
be nonstationary, using a condition we call Qualitative Kuhn- 'ITucker (QKT).
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This section introduces the optimization problem, the concept of stationary
point, and the traditional algebraic (Kuhn-Tucker) condition for testing sta-
tionary points. Activity analysis applies to the pervasive family of linear and
non-linear, constrained optimization problems OP = (x, f, g, h):
Find xx = argmin f(x)
subject to: g(x)
h(x)

where column vectors are denoted in bold (e.g., x, x*, g(x) and h(x)), f(x)
is the objective function, g(x) is a vector of inequality constraints and h(x)
is a vector of equality constraints. A point x € R™ is feasible if it satisfies the
constraints, and feasible space F C R" denotes all feasible points (represented
F = {(g,h})). A feasible direction s from a feasible point is one through which
a non-zero distance can be moved before hitting a constraint boundary. f(x)
is decreasing at x in direction S if f(x)-§ < 0. Finally, a point is stationary
(denoted xx) if any direction that decreases the objective is infeasible. The
Kuhn-Tucker (KT) conditions [11, 10] provide a set of vector equations that
are satisfied for a feasible point x* exactly when that point is stationary:?

<0
=0,

Vf(xx) + AT 7 h(xx) + p7 7 g(x+) = 07 (KT1)

subject to

pTg(xx)

M

o7, (KT2)
0. | (KT3)

VAR

The 7 f term denotes directions of decreasing objective from x*, the term
(AT 7 h(x*) + T 7 g(x*)) denotes infeasible directions from x*, and the
equality says the decreasing directions are all infeasible; hence, x* is station-
ary. More specifically, § decreases the objective if it has a component in the
— v/ f direction (S-57f < 0). A direction is infeasible with respect to in-
equality constraint g;(xx) if x« lies on the constraint boundary (g;(x*) = 0)
and it has a component in the + 7 g;(x*) direction. A direction is infeasible

24T transposes column vector u to a row. Gradients 7 f, Vg and h denote Jacobian
matrices. 7 f is a row vector (a%% .- E%%) g and Vh are matrices (gf—;f) and ﬁ%)
respectively, where (a;;) denotes a matrix whose element in the ith row and jth column is

a;j, for all i and j. For example, KT1 and KT2 are equivalences between row vectors, and
KT3 is a relation between column vectors.



with respect to equality constraint h;(xx) if it has a component in either the
— 7 hj(xx) or + 57 hj(x*) direction. Most importantly, if x* lies on multiple
constraint boundaries, then an infeasible direction has a component which is
a linear, weighted combination of the above gradients for these constraints.
The weights are y and A, (called Lagrange multipliers), and the combination
is pT7g + AT7h subject to KT2 and KT3. Hence all decreasing directions
are infeasible when — <7 f equals one of these linear combinations (KT1). Fig-
ure 2 shows an example of 7 f and Vg gradient vectors, and the combined
weighted vector, which exactly cancels v/ f.

A key property of KT is that it identifies active inequality constraints.
Intuitively, a constraint [g;] is active at a point x when X is on the constraint
boundary and the direction of decreasing objective, ¥/ f, is pointing into the
boundary. When this is true p; is positive. The basis of our approach is
to conclude, by looking at signs of u, that the stationary points lie at the
intersection of the constraint boundaries. One or more constraints have been
identified as active, hence the name activity analysis.

3 Qualitative KT Conditions

Qualitative KT (QKT) is an abstraction of KT that is a necessary, but in-
sufficient, condition for a point being stationary. It is the means by which
activity analysis quickly rules out suboptimal subspaces. Qualitative proper-
ties used by QKT to test a point x include whether each constraint is active
at X, and the quadrant of the coordinate axes each gradient 7 f, g and 7h
lies within. These properties can be extracted quickly and hold uniformly for
large subsets of the feasible space, and parameterized families of optimization
problems. QKT, its proof (see [25]), and manipulations by activity analy-
sis rely on a matrix version of SR1 - a hybrid algebra combining signs and
reals. This algebra behaves as one expects given a familiarity with (scalar)
sign algebra and traditional matrix algebra (see [25] and the work of [24]).
Derived from KT, QKT states that a feasible point x* is stationary only if:

[7 f(ex)] + (AT [Th(xx)] + [1]” [vg(x%)] 2 07, (QKT1)

subject to
(u]Tlg] = 07T, and (QKT2)
] # —. (QKT3)



where [v], called a sign vector, denotes the signs of the elements of v, such
that [v;] € {—,0,+}. Recall KT said that to be stationary there must exist
a weighted sum (W) of 7g and vh that exactly cancels 7 f (note W is a
row vector). QKT says a point is nonstationary unless there exists a w that
lies in the quadrant diagonal from that which contains 7 f. For example, in
figure 2 v/ f lies in the upper left quadrant; thus, a w must exist that lies in
the lower right. The sign vector [v] denotes the quadrant containing a vector
v, and each component [v;] describes where v lies relative to the v; = 0 plane.

For example, [W] = ( + - ) indicates that W is in the lower right. Using
this algebraic representation, the condition on diagonal quadrants becomes
—[vf] = [wl].

Using only knowledge of the quadrant each constraint’s gradient lies
within and whether each constraint is active (indicated by the signs of the la-
grange multipliers [¢] and [\]), we know from KT that the quadrants w may
lie within are a subspace of those described by [p]T[7g] + [A]T[vh]. Thus,
—[vf] = [W] C [u])F[vg] + [AN]T[vh] (i.e., QKT1). For example, in figure 2
since Vg1 (= ( + + )) lies in the upper right and g; (= ( - - )) lies
in the lower left, it is possible for a W to lie in the lower right; thus, any x
satisfying these conditions may be stationary. But suppose \/g; is replaced
with 7g;, which lies in the upper left for points in some subspace 71 C F.
Then W may lie in the upper or lower left, but not the lower right; thus, all
points in F1 must be nonstationary. That is,

= (3 2)e ()= (3 ) (L D) -l b
(+2)g (2 1)=(+ +){ % )=wriva
It is this type of conclusion, made from only qualitative properties, that

activity analysis uses to eliminate feasible subspaces of nonstationary points.
Next, to instantiate QKT1 on optimization problem OP = (x, f, g, h):

R

1. Compute Jacobians v/ f, /g and Vh by symbolic differentiation.

2. Compute signs of Jacobians. For each element, o

(a) replace real operators with sign operators, using properties [a +

b] C [a] + (8], [ab] = [a][b], [a/] = [a]/[8] and [—a] = —]a].
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(b) Substitute for sign variables [a] using positivity conditions ([a] =
+), and perform sign arithmetic (e.g., [5] = +, (=) + (=) = ).

3. Expand QKT1 by expanding matrix sums and products.

Returning to the hydraulic cylinder problem in section 1, recall that x is the
vector (itfsp)T, the objective f(x)is i + 2t, and the constraint vectors are:

h=(s—2 f-=p) g=(F—f T—t p—P s-5)7

2t 4

The following shows [7h] after steps 2a (middle) and 2b (right):

=[p] (ol o U 3 R
on = emoew O Uoam ) _ (- 0+ -
—[=l[c 0 [1] 0 :[ﬁ]_]m_ - 0 + 0 _

T
7 00 =~ 0 0
T r{ - + 0 + = r] 05 0 00
°§8+’\(~0+0—)+“0000+
0 00 0 + 0
Expanding matrix operations for step 3 results in 5 equations:
0 C () =[] =[] | QKTHL) |0 C [pa] +[A] QRT1(4)
0 < ( = [p2] + [M] | QKT1(2) |0 € [pa] = [M] = [As] | QKTL(5)
0 ¢ [#1]"‘[)\2] QKTI(3)

Note that the computation of sign matrices in step 2 is extremely simple,
but suprisingly adequate for many problems. The symbolic algebra system
Minima ([24] provides a general tool for deducing the signs of sensitivities
(e.g., {4—] ) subject to x satisfying the equality and inequality constraints.
Having achieved an easily evaluable condition that is sufficient for testing
the suboptimality of infinite subspaces, we turn to its use for strategically
focussing optimization. ‘



4 Activity Analysis and Prime Assignments

Activity analysis reduces an optimization problem to a set of simpler sub-
problems by “cutting” out feasible subspaces that are suboptimal. These
subspaces contain all and only those points that are provably nonstationary
by QKT (see [25]). The output of activity analysis is a concise descrip-
tion of the remainder, called a mazimal pstationary covering (“p-" is for
provably). It is a set of feasible subspaces (and corresponding optimization
problems), at least one of which is guaranteed to contain the true optimum.
What is key 1s that the descriptions are parsimonious, they ma)‘kjmize the “fo-
cussing” achievable from QKT, and are always correct. This section states
and demonstrates the activity analysis problem, and a sound and complete
solution algorithm. The core is a mapping between mazimal pstationary
subspaces and prime assignments, and a general prime assignment engine for
arbitrary systems of linear sign equations. To start we say a point is pnon-
stationary if it follows from QKT that it is nonstationary; otherwise, it is
pstationary. A feasible subspace is pstationary if all its points are pstation-
ary, and pnonstationary if all its points are pnonstationary. Activity analysis
maximizes its use of QKT while preserving correctness by eliminating ex-
actly the pnonstationary subspaces from its description of the feasible space.
This description is built from a set ¥ whose elements result from strength-
ening one or more of the inequality constraints g; < 0 to strict equalities
g; = 0; that is, ¥ is the powerset of constraint boundary intersections. The
description (called a minimal pstationary covering), covers the pstationary
points by collecting all pstationary subspaces that are maximal under super-
set. These cover every pstationary subspace. The activity analysis problem
is then: given optimization problem OP = (x, f,g,h) and instantiation of
QKT (=QKT(OP)), construct the minimal pstationary covering C.
Mapping QKT(OP) to C relies on two observations: First, from QKT2
(= [pi(x)}[gi(x)] = 0) it follows that [;1;(x)] = + — gi(x) = 0. That is, any
point where [p;] = 4 must be on the g; = 0 constraint boundary. Thus, when
activity analysis shows that a subspace of pstationary points makes [u;] = +
for one or more g;’s, it concludes that these points lie along the intersection of
the g; boundaries. Second, a particular set of variable assignme‘hts for QKT1,
called prime assignments, directly maps to the maximal pstationary covering
by applying the first observation. The key here is that achieving parsimony,
maximum focus and correctness reduces to generating compl{ete prime as-
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signments. More specifically, a (partial) assignment to [x] is a set a which
assigns each [r;] at most one value, a C {[z;] = s | [z;] € x,s € {=,0,+}}.
We are interested in the consistent assignments to QKT1, where the [x] to

be assigned is a vector of lagrange multipliers ([;L]T[/\]T)T. Additionally, the

consistent assignments must also satisfy the restriction of QKT3 ([r] # —).

Next, an implicating assignment v is a consistent assignment to QKT1, such

that whenever an extension to 7y satisfies restriction QKTS3, i‘ also 1s con-
sistent with QKT1. That is, assignment v implies QKT1 undrer restriction
QKT3. Finally, a prime assignment is an implicating assignmént no proper
subset of which is also an implicating assignment. To produce all primes for
QKT1, our prime assignment engine first computes the primes P, of each
scalar equation in QKT1, then combines them using minimal set covering.
Pulling this all together, the activity analysis algorithm is:

Guwen problem OP = (x, f,g,h):
1. Instantiate QKT1 (given earlier) — QKT1(OP),

2. Compute prime assignments P; of each QKT1,(OP) € QKT1(OP).
3. Compute minimal set covering of P, — P,
4. Extract minimal sets of [g;] = + assignments from P — [/,

5. Map each element of I/ to a maximal pstationary subspace by applying
[1i(x)] = + — gi(x) = 0, producing a covering.

6. Formulate and return a new optimization problem from this covering.

Step one was demonstrated in the previous section. For steps two and three
we note that QKT1 is an instance of a linear system of sign equations (de-
noted L([x])) and solve the prime assignment problem for arbitrary L([x]).
That is, L([x]) in vector form is 0 C [B] + [A][x], with [A] and [B] being
sign constant matrices, [X] an n vector, [A] an n by m matrix and [B] an m
vector. The ith scalar equation of L([x]) (denoted L;([x])) is of the form:

m

Llx]) =0 C (] + ) [ais] [e].

j=1 o

T
For QKTI, xT is (,uT/\T) , [B] = [Vf], and [A] is the matrix (Vg Th).
Additionally, we generalize the set of restrictions given by QKT3 (i.e., [u;] #
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—). to arbitrary sets of restrictions R([x]) C {[z;] # slz; € x,s € {=,0,+}}.
For the cylinder (table, end section 3), QKT1 has 5 L;([x])’s, with x =
(;Llpgpgu4/\1/\2)T. For ease of reading we wrote terms —{—[.l‘,] as [z;], ;{‘r;] as
—[z;], and eliminated terms 0[z;]. The cylinder R([x]) is {[p1] # =, [1s] #
= [ua] # = [ua] # -}

For step 2, the prime assignments of each L;([x]) are constructed from
three sets of scalar assignments, consistent with R([x]): those restricting one
of the equation’s terms ([a;;]|[z;]) to be positive (P;), those making a term
zero (Z;), and those making a term negative ( V;), respectively:

P = {[z;] = [ayj] [ {aij] #0, ([z;] # [ai;]) € R([x])},
Z; = {lz;] =0 [ay] #0, ([x;] #0) & R([x])} and
N; = {lz;] = —[ai] | [ag;] #0, ([=;] # —ai;]) & R{[x])}.

Justifying P;, for example, we know in general that [c] # 0 — [c]> = +. Thus

laijl[z;] = + if [z;] = [a;;] and [a;;] # 0. The derivation of Z; and N; is
similar. Constructing the prime assignments for the cylinder L;([x]) uses:

1| N; Z; P;

L] =+ [h] =+

2| [M] = - (o] = +

31 o)==+ | X =04 =0 [A2] = +

4 [/\1] = ~ : ) )\1 = O,ﬂ4 = 0 [/\1] = —%—, [/,[,4] = + .
5 =+ D)=+ M =04 =0,p=0][M]==,[A] == [us] = +

Next, recall that the prime (implicating) assignments for L;([x]) must im-
ply L;([x]). That is, they guarantee that it holds, given R([x]), independent
of additional consistent assignments. This is true if the right hand side of
L([x]) is guaranteed to be a superset of 0 (i.e., it is either 0 or 7). The form
of the assignments that achieve this for some L,([x]) depends on the value of
[b;], where [b;] = [a%f—'_] for QKT1. Suppose [b;] = +, then the right hand side
must become ?. This holds exactly when at least one of the [a;j][z;] terms is
negative (since 0 C (=) + (+) = ?). For example, in the cylinder QKT equa-
tion (2), Ay = — guarantees that the equation is satisfied. The only other
assignment that guarantees this is s = +. Thus the prime assignments for
(2) are {A\; = =} and {u2 = +}. The treatment of [b;] = — is analogous.

Next, suppose [b;] = 0, then to imply L;([x]) the prime assignment can
make the right hand side either 0 or 7. The first holds exactly when all terms
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are 0. The second holds when at least one term is positive and the other is
negative. For example, {agi’f)] = 0 in cylinder QKTI(3) : 0 C —[u1] + [As].
Thus, the prime assignments are {\y = 0,1 = 0} and {Xs = +,p; = +}.
Note that {A\s = <,y = =} is not acceptable, since by restriction [wi] # —.
To summarize, the prime assignments of L;([x]) are 1) N; if [b;] = +, 2) P,
if ;] = —, and 3) {Z;}u{{p,n}|p € Pi,n € N;} if [b;] = 0. Completing step
two for the table of cylinder equations QKT1(1) - (5) produces:

{M=4) {2 =4} P
{M=-} {2 =+} P
P
P

{da=0,p1 =0} {2 =+, 11 = +}

{M=0,pa =0}, {M = -, pa=+}

{/\1 = 0,/\2 = O.;L3 = 0},
{u=+X=-}{ =+ n=+}
M= Q=+} {o=+na=14} P(5)

The third step, constructing the composite primes for L([x]), is based on:

VpGP(L([x])) (/\aep Cl.) = /\?:1 (VpEP(Li([X])) (/\a.Ep a)) .

The left hand side is a disjunction of the L([x]) prime assignments, and
the right hand side is an expression in terms of the primes of Li([x]), just
computed. Thus, the desired primes result from reducing the expression on
the right to minimal, disjunctive normal form. For this specialized case, this
step i1s equivalent to computing minimal set covering of the P(L;([x])) (a
standard algorithm text, or [25] for our algorithm). For the cylinder, the
minimal covering of P(1) - (5) produces just two prime assignments,

{0 = 2, ] = T[] = ] = 1,

{M]=0,[d] = +,[m] = +, 2] = +, [a] = +, [a] = 0}}.
The fourth step, extracting the minimal sets of [u;] = 1 assignments results
in {{g2] = +,[ma] = +} and {(in] = +,[1a] = +,[ws] = +}}. The fifth
step uses [g;] = + — g;(x) = 0 to map these sets to the equivalent maximal
pstationary covering. The sets tell us that g; and g; must be active, or g,
g2 and g3. The resulting cover is:

Fi = ({92, 95}, {h1, 2,91, 94}) and Fp = ({ga}, {1, b2, 91,92, 93 })s

where (g, h) is a space defined by inequality g and equality h constraints.
J1 and F; denote the line and point highlighted in the introduction to the
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example. The final step, formulating a new optimization problem, produces:

Given: § = {x*|x* = argminger f(x),F € {F1, F2}}
Find: minges f(x)

The first part finds the minimum of each subspace in the covering. The sec-
ond part selects from these the global minimum. A more expanded form was
given in the introduction. Thus through this example we have demonstrated
activity analysis's capability of partially solving constrained optimization
problems from monotonicity constraints, and for synthesizing special pur-
pose optimization codes.

5 Discussion

As we mentioned in section 1, activity analysis builds upon a large body of
work from the mechanical engineering community on monotonicity analysis[22,
15, 14|, a method that uses derivative information to address the bounded-
ness and global optimality of optimization problems. Monotonicity analysis
provides two rules that test the boundedness of a formulation:

Rule 1: If the objective function is monotonic with respect to a variable,
then there exists at least one active constraint that bounds the variable in
the direction opposite of the objective function.

Rule 2: If a variable is not contained in the objective function then it
must be either bounded from both above and below by active constraints
or not actively bounded at all (i.e., in the latter case, any constraint that is
monotonic with respect to that variable must be inactive or irrelevant).

Both of these rules can be derived from the Kuhn-Tucker Conditions.
They also follow as an instance of QKT and are embodied within activity
analysis. A third rule, introduced by [23] guarantees that a solution will not
be overconstrained:

Maximum Activity Principle: The number of non-redundant active con-
straints cannot exceed the total number of variables.

Although not discussed, this rule carries over to activity analysis in a
straight forward manner. The result of monotonicity analysis (exhaustive
application of the rules) are several sets of constraints one of which must be
active for a problem to be well bounded. If the problem is constraint-bound
then the set of constraints describes a potentially global optimum (remember
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that the Kuhn-Tucker conditions and thus montonicity analysis are only the
necessary but not sufficient conditions for optimization).

Various levels of implementations of monotonicity analysis have been de-
scribed in [4], [12], [17], [2]. [9]. In particular Choy and Agogino [4] and
Agogino and Almgren [1] propose the use of monotonicity as the basis of
an intelligent optimal reasoning system. Cagan and Agogino [3] use mono-
tonicity analysis within a framework to optimally expand the design space
to search for improved designs.

Although these systems attempt to address the optimal reasoning prob-
lem, they do not present algorithms proven to be sound and complete (each
of these implementations has been described as "heuristic” (see [17], [9]).

Activity provides a sound and complete algorithm by classifying the de-
sign space into pstationary and pnonstationary subspaces. It operates by
augmenting traditional numerical optimization with an analog to the global
conflict-based approaches prevalent in combinatorial satisficing search. In
particular activity analysis provides the following contributions: it formal-
izes the strategic way in which a modeler focuses optimization, as the process
of generating maximal pstationary coverings. It introduces QKT as a power-
ful condition for quickly eliminating large, suboptimal subspaces. Finally, it
exploits this condition through a novel problem reformulation based on the
prime, implicating assignments of linear sign equations.

Activity analysis has been demonstrated on several engineering problems.
The implementation is in Franz Lisp running on a Sparc 2. The problem re-
formulation is passed to Matlab’s Optimization toolbox, where a wide variety
of nonlinear gradient methods are available. [25] describes an extension to
activity analysis for cases where monotonicities are only partially known.

Activity analysis is one of a suite of techniques being developed that
capture a modeler’s expertise at strategically guiding numerical codes. Our
current work focuses on the development of optimal reasoning methods that
synthesize optimal embedded systems (called model-based agents). Activity
analysis is currently being applied to generate runtime optimization codes
for a visual 3D matching problem. Two additional techniques are being
developed in the context of building energy management; the first guides
nonlinear regression to acquire a thermal model of the building, and the
second synthesizes a distributed optimal controller from this model.

An alternative avenue is the development of exploratory tools for opti-
mization that help modelers to understand where the optima/ lie and why.
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In this context activity analysis can be extended to provide explainable op-
timizers, ones that use QKT to provide commonsense explanations about
optimality. The analysis of financial systems is an interesting context in
which to explore these explainable systems ideas.
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