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Abstract

A wide range of sensor rich, networked embed-
ded systems are being created that must operate ro-
bustly for years in the face of novel failures, by
managing complex autonomic processes. These
systems are being composed, for example, into vast
networks of space, air, ground, and underwater ve-
hicles. Our objective is to revolutionize the way
in which we control these new artifacts by creating
reactive model-based programming languagesthat
enable everyday systems to reason intelligently,
and that enable machines to explore other worlds.
A model-based program is state- and fault-aware;
it elevates the programming task to specifying in-
tended state evolutions of a system. The pro-
gram’s executive automatically coordinates system
interactions to achieve these states, while entertain-
ing known and potential failures, using models of
its constituents and environment. At the execu-
tive’s core is a method, called Conflict-directed A*,
which quickly prunes promising but infeasible so-
lutions, using a form of one-shot learning. This ap-
proach has been demonstrated on a range of sys-
tems, including NASA’s Deep Space One probe.
Model-based programming is being generalized to
hybrid discrete/continuous systems and to the coor-
dination of networks of robotic vehicles.

1 The Criticality of Fault-Aware Systems
The demands we place on robotic explorers and everyday
embedded systems have gone through a major transforma-
tion over the last decade. For example, the challenge of
robotic space exploration has dramatically shifted from sim-
ple planetary fly-bys to micro-rovers that can alight upon sev-
eral asteroids, collect the most interesting geological samples,
and return with their findings. This challenge will not be
answered through billion dollar missions with 100-member
ground teams, but through innovation. Future space explo-
ration will be enabled in significant part by inexpensive, “fire-
and-forget” space explorers that are self-reliant and capable
of handling unexpected situations; they must balance curios-
ity with caution.

Self-reliance of this sort can only be achieved through an
explicit understanding of mission goals and the ability to rea-
son from a model of how the explorer and its environment can
support or circumvent these goals. This knowledge is used to
carefully coordinate the complex network of sensors and ac-
tuators within the explorer. Given the complexity of current
and future spacecraft, such fine-tuned coordination seems to
be a nearly-impossible task, using traditional software engi-
neering approaches.

Our demand for this level of fault resilience is no longer
isolated to the realm of exotic space explorers. It has shifted
to systems that are part of our everyday activities, such as our
houses and automobiles[1]. Automobile manufacturers are
now envisioning automobiles that address traffic congestion
by operating cooperatively, and that are perceived to never
fail. Two decades of deregulation have placed much of the
US’s critical embedded infrastructure on open networks, in-
cluding the phone system, the internet, and power networks.
Opening these systems exposes society to new levels of vul-
nerability to natural and man-made disasters. Traditionally,
closed systems are carefully protected only at their perime-
ter, and are particularly vulnerable to failure or malicious at-
tacks that originate within their perimeter. To be robust, open
networked systems cannot leave their guard down along any
front. They must quickly detect and recover from a malfunc-
tion or intrusion in any of their constituents. This level of
vigilance is common to space missions, which have repeat-
edly succeeded despite a multitude of hardware failures by
employing fault management systems that continuously de-
tect and recover from faulty components.

To achieve these new levels of vigilance, safety and adap-
tivity, we must fundamentally rethink how we program em-
bedded systems. We confront these challenges through an au-
tomated reasoning and programming paradigm, calledmodel-
based autonomy. In this paradigm, embedded systems are
easily programmed by specifying strategic guidance in the
form of a few high-level control behaviors, calledmodel-
based programs[2] (Section 2). These control programs,
along with a commonsense model of its hardware and its en-
vironment, enable an embedded system to control and mon-
itor its hidden state according to the strategic guidance. To
respond correctly in novel, time-critical situations, our sys-
tems use their onboard models to perform extensive common-
sense reasoning within the reactive control loop, something
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Figure 1: Model of interaction for a) traditional embedded
programs and b) model-based programs.

that conventional AI wisdom had suggested was not feasi-
ble. Systems that execute model-based programs are called
model-based executives. We focus on an executive, called
Titan, used to robustly coordinate the network of devices in-
ternal to a high performance embedded system (Section 4).
At the core of Titan is Conflict-directed A*, a method for
solving that quickly prunes away sets of candidate solutions,
using a form of one shot learning, until the best feasible so-
lution is found (Section 5). In addition, we briefly highlight
two other model-based executives: Moriarty, which is used
to monitor, diagnose, and control hybrid discrete/continuous
systems (Section 7) and Kirk, which coordinates networks of
robotic vehicles (Section 8).

2 Programming in Terms of Hidden State
Formal verification has long held promise for ensuring the ro-
bustness of embedded software. A major concern is the gap
between the specifications about which we prove properties
and the programs that are supposed to implement them. Man-
ual translation across this gap introduces the danger of bugs.
To close this gap, Berry emphasizes executable specifications
within the Esterel embedded language: “What you prove is
what you execute”[3]. In model-based programming, we
carry this one step further by offering an executable specifica-
tion language that operates on descriptions of abstract hidden
states, reasons through physical models in real time, and is
knowledgeable of a system’s fault behavior.

Engineers like to reason about embedded systems in terms
of state evolutions. This provides the engineer with a simple
abstraction that ignores issues of controllability and observ-
ability. However, executable specification languages, such as
Esterel and Statecharts[4], interact with a physical plant by
reading sensor variables and writing control variables (Figure
1a). It is the programmer’s responsibility to close the gap be-
tween intended state and the sensors and actuators. This map-
ping involves reasoning through a complex set of interactions
under a range of possible failure situations. The complexity
of the interactions and the number of possible scenarios make
this an error-prone process.

A model-based programming language is an executable
specification language similar to Esterel or Statecharts, but
with the additional feature that it isstate aware, it interacts
directly with the plant state (Figure 1b). This is accomplished
by allowing the programmer toread or write constraints on
“hidden” state variables in the plant, i.e., states that are not
directly observable or controllable. It is then the responsibil-

ity of the language’s execution kernel to map between hidden
states and the plant sensors and control variables. This map-
ping is performed automatically by employing a deductive
controller that reasons from a common-sense plant model. To
be robust, this mapping must succeed under failure, hence,
the deductive controller must reason extensively from models
of correct and faulty component failure. Given the exponen-
tial space of potential symptoms, diagnoses and recoveries,
some of this reasoning must be performed on-line. In this ar-
ticle, we introduce theReactive Model-based Programming
Language (RMPL), a programming framework that supports
model-based execution from hybrid systems to robotic net-
works.

3 Model-based Programming

A model-based program is comprised of two components.
The first is acontrol program,which uses standard program-
ming constructs to codify specifications of desired system be-
havior. In addition, to execute the control program, the exe-
cution kernel needs a model of the system it must control.
Hence, the second component is aplant model, which in-
cludes models of the plant’s nominal behavior and common
failure modes. This modeling formalism, calledprobabilistic
concurrent constraint automata,unifies constraints, concur-
rency and Markov processes.

For example, consider the task of inserting a spacecraft into
orbit around a planet. Our spacecraft includes a science cam-
era and two identical redundant engines, Engines A and B
(Figure 2). An engineer thinks about this maneuver in terms
of state trajectories:

Heat up both engines (called “standby mode”).
Meanwhile, turn the camera off, in order to avoid
plume contamination. When both are accom-
plished, thrust one of the two engines, using the
other as backup in case of primary engine failure.

This specification is far simpler than a control program that
must turn on heaters and valve drivers, open valves, and in-
terpret sensor readings for the engine. Thinking in terms of
more abstract hidden states makes the task of writing the con-
trol program much easier and avoids the error-prone process
of reasoning through low-level system interactions. In addi-
tion, it gives the program’s execution kernel the latitude to
respond to failures as they arise. This is essential for achiev-
ing high levels of robustness.
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Figure 2: Simple spacecraft for orbital insertion.



1  OrbitInsert ():: {
2 do
3        { EngineA = Standby,
4         EngineB = Standby,
5         Camera = Off,
6         do
7             when EngineA = Standby AND Camera = Off
8                 donext EngineA = Firing
9         watching EngineA = Failed,
10       when EngineA = Failed AND EngineB = Standby AND Camera = Off
11           donext EngineB = Firing}
12  watching EngineA = Firing OR EngineB = Firing
13 }

Figure 3: RMPL control program for orbital insertion.

Next, consider a model-based program corresponding to
this specification. The spacecraft dual main engine system
(Figure 2) consists of two propellant tanks, two main engines
and redundant valves. The system offers a range of config-
urations for establishing propellant paths to a main engine.
When the propellants combine within the engine they produce
thrust. The flight computer controls the engine and camera by
sending commands. An accelerometer sensor, for example,
is used to confirm engine operation by sensing thrust, and a
camera shutter position sensor is used to confirm camera op-
eration.

3.1 Control Program

The RMPL control program (Figure 3) codifies the infor-
mal specification we gave above as a set of state trajecto-
ries. RMPL provides standard embedded programming con-
structs, such as parallel and sequential execution, iteration,
conditions, and preemption. Recall that, to perform orbital
insertion, one of the two engines must be fired. We start by
concurrently placing the two engines in standby, and by shut-
ting off the camera. This is performed by lines 3-5, where
the comma at the end of each line denotes parallel composi-
tion. We then fire an engine, choosing to use Engine A as the
primary engine (lines 6-9) and Engine B as a backup, in the
event that Engine A fails to fire correctly (lines 10-11). En-
gine A starts trying to fire as soon as it achieves standby and
the camera is off (line 7), but aborts if at any time Engine A
is found to be in a failure state (line 9). Engine B starts trying
to fire only if Engine A has failed, B is in standby and the
camera is off (line 10).

Several features of this control program reinforce our ear-
lier points. First, the program is stated in terms of state as-
signments to the engines and camera, such as “EngineB =
Firing.” Second, these state assignments appear both as as-
sertions and as execution conditions. For example, in lines
6-9, “EngineA = Firing” appears in an assertion (line 8),
while “EngineA = Standby,” “Camera = Off,” and “EngineA
= Failed,” appear in execution conditions (lines 7 and 9).
Third, none of these state assignments are directly observ-
able or controllable, that is, only shutter position and accel-
eration may be directly sensed and only the flight computer
command may be directly set. Finally, by referring to hid-
den states directly, the RMPL program is far simpler than the
corresponding traditional program, which operates on sensed
and controlled variables. The added complexity of the tradi-
tional program is due to the need to fuse sensor information
and generate command sequences under a large space of pos-
sible operation and fault scenarios.

For example, consider how a traditional program achieves
the lone assignment “EngineA = Firing.” From a large space
of options, the program must first select a set of healthy valves
whose opening will achieve thrust. To select the appropriate
valves, the program encodes a decision tree that assesses the
health of the valves by fusing together multiple sources of
sensor data. Next the selected valves are opened using a valve
open procedure. This procedure must send commands over a
communication bus to a valve driver, which then opens the
valve. The procedure involves another decision tree that is
able to detect and recover from any failures along this path,
again by exploiting redundancy.

This example demonstrates that the code needed to achieve
even a simple hidden state assignment can quickly explode.
Writing this type of code is tedious. In this situation, the pro-
grammer can inadvertantly introduce a software bug or miss
an important case that puts the mission at risk. For example,
the Mars Polar Lander mission was most likely lost when a
buggy software monitor incorrectly classified a noise spike on
one of the lander’s legs as an indication of touch down. The
lander then shut off its engine roughly 40 meters above the
surface[5].

In contrast, in model-based programming, the control pro-
gram is a compact specification of intended state evolution
that is executed by provably correct synthesis procedures, us-
ing knowledge of failure provided by a compact, reusable
plant model.

3.2 Plant Model
The plant model represents a system’s normal behavior and
its known and unknown aberrant behaviors. It is used by a de-
ductive controller to map sensed variables to queried states in
the control program and asserted states to specific control se-
quences. The plant model is specified as a concurrent transi-
tion system, composed of probabilistic concurrent constraint
automata[6]. Each component automaton is represented by
a set of component modes, a set of constraints defining the
behavior within each mode, and a set of probabilistic tran-
sitions between modes. Constraints are used to represent
co-temporal interactions between state variables and inter-
communication between components. Constraints on con-
tinuous variables operate on qualitative abstractions of the
variables, comprised of the variable’s sign (positive, negative,
zero) and deviation from nominal value (high, nominal, low).
Probabilistic transitions are used to model the stochastic be-
havior of components, such as failure and intermittency. Re-
ward is used to assess the costs and benefits associated with
particular component modes. The component automata oper-
ate concurrently and synchronously.

For example, we can model the spacecraft abstractly as a
three-component system (two engines and a camera) by sup-
plying the models depicted graphically in Figure 4. Nomi-
nally, an engine can be in one of three modes:off, standbyor
firing. The behavior within each of these modes is described
by a set of constraints on plant variables, namelythrust and
power in. In Figure 4, these constraints are specified in boxes
next to their respective modes. The engine also has afailed
mode, capturing any off-nominal behavior. We entertain the
possibility of a novel engine failure by specifying no con-
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Figure 4: State transition models for a simplified spacecraft.

straints for the engine’s behavior in thefailed mode[7].
A wide range of plant modeling formalisms is possible,

depending on the category of system being controlled. These
define different families of model-based programming lan-
guages. For example, in[8] we represent the plant models as
a hybrid between Hidden Markov Models (HMM) and con-
tinuous dynamics in order to detect and handle incipient fail-
ures. In[9] the plant models are described using a hybrid
of hierarchical automata and constraints in order to monitor
robotic networks.

4 Model-based Execution of Autonomic
Processes

A model-based program is executed by automatically gener-
ating a control sequence that moves the physical plant to the
states specified by the control program (Figure 5). We call
these specified statesconfiguration goals. Program execution
is performed using amodel-based executive, which generates
configuration goals and then generates a sequence of control
actions that achieve each goal, based on knowledge of the
current plant state and model.

A model-based executive consists of two components, a
control sequencerand adeductive controller. The control
sequencer is responsible for generating a sequence of config-
uration goals, using the control program and plant state esti-
mates. Each configuration goal specifies an abstract state for
the plant to achieve. The deductive controller is responsible
for estimating the plant’s most likely current state, based on
observations from the plant (mode estimation) and for issuing
commands to move the plant through a sequence of states that
achieve the goals (mode reconfiguration).

Consider a model-based executive, calledTitan, which co-
ordinates the low-level “autonomic” processes internal to an
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Figure 5: Architecture for a model-based executive.

embedded system. When Titan executes the orbital insertion
control program (Figure 3), the control sequencer starts by
generating a configuration goal consisting of the conjunction
of three state assignments: “EngineA = Standby,” “EngineB
= Standby,” and “Camera = Off” (lines 3-5). To determine
how to achieve this goal, the deductive controller considers
the latest estimate of the state of the plant. For example,
suppose the deductive controller determines from its sensor
measurements and previous commands that the two engines
are already in standby, but the camera is on. The deductive
controller deduces from the model that it should send a com-
mand to the plant to turn the camera off. After executing
this command, it uses its shutter position sensor to confirm
that the camera is off. With “Camera = Off” and “EngineA =
Standby”, the control sequencer advances to the configuration
goal of “EngineA = Firing” (line 8). The deductive controller
identifies an appropriate setting of valve states that achieves
this behavior, then it sends out the appropriate commands.

In the process of achieving goal “EngineA = Firing”, as-
sume that a failure occurs: an inlet valve to Engine A sud-
denly sticks closed. Given various sensor measurements (e.g.
flow and pressure measurements throughout the propulsion
subsystem), the deductive controller identifies the stuck valve
as the most likely source of failure. It then tries to execute
an alternative control sequence for achieving the configura-
tion goal, for example, by repairing the valve. Presume that
the valve cannot be repaired; Titan diagnoses that “EngineA
= Failed.” The control program specifies a configuration goal
of “EngineB = Firing” as a backup (lines 10-11), which is
issued by the control sequencer to the deductive controller.

4.1 Mode Estimation
Mode estimation (ME) incrementally tracks the set of state
trajectories that are consistent with the plant model, the se-
quence of observations and control actions. For example,
suppose the deductive controller is trying to maintain the con-
figuration goal “EngineA = Firing,” as shown to the left of
Figure 6. Here we assume that ME starts with knowledge of
the initial state, with valves opening a flow of oxidizer and
fuel to Engine A. In the next time instant, the sensors send
back the observation that “Thrust = zero.” ME then identi-
fies a number of state transitions that are consistent with this
observation, including that either the inlet valve into Engine
A has transitioned to stuck closed, as depicted on the right of
Figure 6, or that any combination of valves along the fuel or
oxidizer supply path are broken.

We frame ME as an instance of belief state update for a
HMM. It incrementally computes the probability of statesi

at timet + 1 using a combination of forward prediction from
the model and correction based on the observations:

p(•t+1)[si] =
n∑

j=1

p(t•)[sj ]PT(si | sj , µ
(t))

p(t+1•)[si] = p(•t+1)[si]
PO(ok | si)∑n

j=1 p(•t+1)[sj ]PO(ok | sj)

wherePT(si | sj , µ
(t)) is defined as the probability that the

plant transitions from statesj to statesi, given control ac-
tionsµ(t), andPO(ok | si) is the probability of observingok
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Figure 6: ME step for orbital insertion. Faulty valves are
circled and closed valves are filled.

in statesi. Probabilityp(•t+1)[si] is conditioned on all obser-
vations up too(t), whilep(t+1•)[si] is also conditioned on the
latest observationo(t+1) = ok.

Our approach is distinguished in that the plant HMM is en-
coded compactly through concurrency and constraints. The
number of states is exponential in the number of compo-
nents, which reaches a trillion states for even our simple
example. Hence, ME enumerates the consistent trajectories
and states in order of likelihood using an efficient procedure
calledConflict-directed A*, described below. This offers an
any-time approach, which stops enumeration when no addi-
tional computational resources are available.

4.2 Mode Reconfiguration
Mode reconfiguration (MR) takes as input a configuration
goalg(t), and the most likely current states(t) computed by
ME, and returns a series of commands that progress the plant
towards a maximum-reward goal state that achievesg(t) [10].
MR accomplishes this using agoal interpreter(GI) and are-
active planner(RP). GI determines a target states

(t)
g that is

reachable froms(t) and that achievesg(t), while maximizing
reward. It accomplishes this by having Conflict-directed A*
search over the reachable states in best-first order. RP gener-
ates a command sequence that moves the plant froms(t) to
s
(t)
g . RP generates and executes this sequence one command

at a time, using ME to confirm the effects of each command.
For example, in our orbital insertion example, given a con-

figuration goal of “EngineB = Firing,” GI selects a set of
valves to open that establish a flow of fuel to the engine (bot-
tom left, Figure 7). RP sends commands to control units,
drivers and valves to achieve this target.

4.3 Model-based Reactive Planning
Having identified which valves to open and close, one might
imagine that achieving the configuration is a simple matter of
calling a set of open-valve and close-valve routines. In fact,
this is how Titan’s predecessor, Livingstone[6], performed
MR. However, much of the complexity of MR is involved in
correctly commanding each component to its intended mode,

Configuration Goal:
Spacecraft = Thrusting

Figure 7: GI uses Conflict-directed A* to search for a mode
reconfiguration during orbital insertion.

through lengthy communication paths. For example, Figure 8
shows the communication paths to a spacecraft main engine
system. The flight computer sends commands to a bus con-
troller, which broadcasts these commands over a 1553 bus.
These commands are received by a bank of device drivers,
such as the propulsion drive electronics (PDE). Finally, the
device driver for the appropriate device translates the com-
mands to analog signals that actuate the device.
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Figure 8: A spacecraft establishes complex interaction paths
from the flight computer to the main engine.

The following is an example of a scenario that a robust
close-valve routine should be able to handle. The correspond-
ing procedure is automatically generated by Titan’s RP:

To ensure that a valve is closed, the close-valve
routine first ascertains if the valve is open or closed,
by polling its sensors. If it is open, it broadcasts a
“close” command. However, first it determines if
the driver for the valve is on, again by polling its
sensors, and if not, it sends an “on” command. Now
suppose that shortly after the driver is turned on, it
transitions to a resettable failure mode. The valve
routine catches this failure and then before sending
the “close” command, it issues a “reset” command.
Once the valve has closed, the close-valve routine
powers off the valve driver, to save power. How-
ever, before doing so, it changes the state of any
other valve that is controlled by that driver; other-
wise, the driver will need to be immediately turned
on again, wasting time and power.

This example highlights several key challenges: devices are
controlled indirectly through other devices, they can nega-
tively interact and hence need to be coordinated, they fail and



hence need to be monitored, and when they fail they must
be quickly repaired. To address these challenges, Titan’s RP
precompiles a set of procedures that form agoal-directed uni-
versal plan, specifying responses for achieving all possible
target states, starting in all possible current states. These pro-
cedures constitute a set of compact concurrent policies, one
for each component, and are generated by exploiting proper-
ties of causality and reversibility of action. This is in contrast
to explicit universal plans, whose size is exponential in the
number of components. Titan’s reactive planner, called Bur-
ton, is developed in[2; 10].

5 Efficient On-line Reasoning Through
Conflict-directed A*

The core problems underlying model-based programming,
such as ME and GI, involve a search over a discrete space
for the best solution that satisfies a set of finite domain con-
straints. These problems, calledoptimal constraint satisfac-
tion problems(OCSPs), consist of a set of decision variables
y, each ranging over a finite domain, a utility functionf on
y, and a set of constraintsC that y must satisfy. A solu-
tion is an assignment toy that maximizesf and satisfiesC.
For ME, eachy denotes a set of possible next transitions for
a component,f maximizes transition probability, andC de-
notes consistency between the target state, model and obser-
vations. For GI, eachy denotes sets of reachable transitions
for a component,f minimizes target state cost, andC denotes
the entailment of the configuration goal by the target state.

A key to the success of model-based programming is the
ability to perform this search quickly and correctly. The best
methods for finding optimal solutions, such as A*, explore
the space of solutions one state at a time, visiting every state
whose estimated utility is greater than the true optimum (Fig-
ure 9a). The time taken to visit this number of states is unac-
ceptable for model-based executives, which perform best-first
search within the reactive control loop.
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Figure 9: a) A* examines all best cost states up to the so-
lution. b) Conflict-directed A* jumps over best cost states
contained by known conflicts.

The Conflict-directed A* method, employed by Titan,
also searches in best-first order, but accelerates search by
eliminating subspaces around each state that are inconsis-
tent. This process builds upon the concepts of conflict and
kernel diagnosis introduced in model-based diagnosis[11;
12]. A conflict describes a set of states that areinconsistent

with the constraints. A state contained by a conflictmanifests
the conflict, and a state not contained by a conflictresolves the
conflict. The kernel diagnoses describe a set of states that re-
solve all known conflicts and hence, the portion of the search
space that hasn’t yet been pruned.

In Figure 9b, Conflict-directed A* first selects stateS1,
which proves inconsistent. This inconsistency generalizes to
Conflict 1, which eliminates statesS1 - S3. Conflict-directed
A* then testsS4 as the highest utility state resolving Conflict
1. S4 tests inconsistent and generates Conflict 2, eliminating
statesS4 - S7. Conflict-directed A* continues until it finds
S9 consistent, and hence an optimal solution. Figure 7 shows
a similar conflict-detection sequence, generated by GI for the
Cassini example.

Conflict-directed A* consists of four steps. First a candi-
dateS is generated, which is the best valued decision state
that resolves all discovered conflicts. Second,S is tested for
consistency against the constraints. Third, whenS tests in-
consistent, the inconsistency is generalized to one or more
conflicts, denoting states that are inconsistent in a manner
similar to S. Finally, Conflict-directed A* jumps down to
the next best candidateS′ that resolves all conflicts discov-
ered thus far.This process repeats until the desired leading
solutions are found or all states are eliminated. (Note that the
candidate is tested using any suitable CSP algorithm that ex-
tracts conflicts, allowing Conflict-directed A* to be applied
to a wide family of constraint systems).

The Conflict-directed A* algorithm is presented in[13],
and makes rigorous a set of focussing mechanisms first in-
troduced heuristically within the Sherlock diagnosis system
[14], and evolved within the model-based diagnosis commu-
nity over the last decade. Though it emerged in the context
of diagnosis, we have found conflict-directed A* to be an
equally powerful algorithm for reconfiguration, planning, and
knowledge compilation.

6 Model-based Execution Six Light Minutes
From Earth

Titan and its predecessors, Livingstone[6], Sherlock[14], and
GDE[11], have been applied to a wide range of applications
over the last two decades, including space systems, copiers,
automobiles, electronics, power transmission systems and bi-
ological systems. In the space domain, we are currently incor-
porating RMPL and Titan within the MIT SPHERES multi-
spacecraft mission, which is on the manifest to be flownin-
sidethe International Space Station. In addition, we are work-
ing in colaboration with the Caltech Jet Propulsion Labora-
tory to apply RMPL and Titan to NASA’s Mars 2009 rover
mission. Titan has also been applied to testbeds for the Air
Force TechSat 21 mission, and NASA’s Messenger and Space
Technology 7 missions.

Titan’s deductive controller is a generalization of the Liv-
ingstone mode estimation and reconfiguration system[6].
Livingstone was demonstrated in flight in the Spring of 1999
on NASA’s New Millennium Deep Space One (DS1) probe,
as part of the Remote Agent autonomy experiment[15]. DS1
is an asteroid and comet fly-by mission, which used an ion
propulsion system and navigated by the stars using a cam-



era and onboard star map. The Remote Agent experiment
demonstrated that an autonomous system can automatically
plan and execute a space mission, given a set of mission goals
and a spacecraft operation model, and that it can recover from
failures by diagnosing and repairing the spacecraft using en-
gineering models. During this experiment, Livingstone was
exercised on a wide range of failures: it detected that a cam-
era was stuck on and invoked mission replanning in order to
handle the loss of resources; it detected a switch sensor fail-
ure and determined that it was harmless; it repaired an instru-
ment by issuing a reset, and it compensated for a stuck closed
thruster valve by switching to a secondary control mode.

The thruster scenario involved isolating a faulty valve
among eight valve/thruster pairs, while only sensing a three
dimensional acceleration. A model using only the sign of
quantities and their relative value was sufficient for Living-
stone to perform this task. In addition, because of the sim-
plicity of these models, their development time was a minor
fraction of the total development time for the Remote Agent
experiment.

Beyond the space domain, Titan is being demonstrated in
the context of two automotive applications. The first is the
control and fault management of a multi-vehicle cooperative
cruise control system, developed at University of California,
Berkeley. The second is an onboard automobile fault man-
agement system, which is being developed in collaboration
with Toyota.

RMPL offers one instance of a larger family of reactive
model-based executives programming languages, which are
parameterized by the plant modeling language and their cor-
responding deductive controller. The next two sections high-
light two different variants of RMPL.

7 Model-based Programming of Hybrid
Systems

The year 2000 was kicked off with two missions to Mars, fol-
lowing on the heels of the highly successful Mars Pathfinder
mission. The Mars Climate Orbiter burned up in the Martian
atmosphere, when a units error in a small forces table intro-
duced a small but indiscernible fault that, over a lengthy time
period, caused the loss of the orbiter. The problem of mis-
interpreting a system’s dynamics was punctuated later in the
year when the Mars Polar Lander vanished without a trace. It
most likely crashed into Mars after it incorrectly shutdown its
engine 40 meters above the surface, because it misinterpreted
its altitude due to a faulty software monitor.

The above case study is a dramatic instance of a common
problem – increasingly complex systems are being developed
whose failure symptoms are nearly indiscernible, up until a
catastrophic result occurs. In addition, these failures are man-
ifested through a coupling between a system’s continuous dy-
namics and its evolution through different behavior modes.

We address these issues through a hybrid model-based ex-
ecutive called Moriarty, whose mode estimation capability is
able to track a system’s behavior along both its continuous
state evolution and its discrete mode changes[8]. Failures
may generate symptoms that are initially on the same scale as
sensor and actuator noise. To discover these symptoms, Mo-
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Figure 10: left) Hybrid mode estimation, right) Mars entry,
descent and landing sequence (compliments of NASA JPL).

riarty uses statistical methods to separate the noise from the
true dynamics.

Moriarty extends Titan’s concurrent probabilistic con-
straint automata model to include continuous dynamical sys-
tem models as constraints (top left, Figure 10). This is un-
like most traditional hybrid modeling frameworks (for ex-
ample, [16]), which define mode transitions to be deter-
ministic, or do not explicitly specify probabilities for tran-
sitions. Moriarty tracks a system’s hidden state by creat-
ing a hybrid HMM observer (left, Figure 10). The ob-
server uses the results of continuous state estimates to es-
timate a system’s mode changes and coordinates the ac-
tions of a set of continuous state observers. This approach
is similar to work pursued in multi-model estimation[17;
18]. However, Moriarty provides a novel any-time, any-
space algorithm for computing approximate hybrid estimates,
which allows it to track concurrent automata that have a large
number of possible modes. Moriarty is being demonstrated
on Mars entry, descent, and landing scenarios (right, Fig-
ure 10), and on the fault management of a simulated Martian
habitat.

8 Model-based Programming of Robotic
Networks

Thus far we have focussed on model-based programming
methods that increase robustness and autonomy by generating
the autonomic processes internal to embedded systems, such
as spacecraft and automobiles. The future looks to the cre-
ation of cooperative robotic networks,in which robotic sys-
tems act together to achieve elaborate missions within uncer-
tain environments. This network may be a heterogenous col-
lection of planes, helicopters, boats and ground vehicles that
perform search-and-rescue during natural or man-made disas-
ters, or a set of rovers, blimps and orbiters exploring science
sites on Mars (left, Figure 11). For example, to explore Mars,
an orbiter performs initial surveillance, producing a coarse
site map. An agile scout rover, with a tethered blimp, re-
fines the map with high resolution data for local regions and
performs initial evaluation of the scientific sites. Finally, a
laboratory rover performs detailed evaluation of scientifically
promising sites.

To program these robotic networks quickly and robustly,
we extend model-based programming with constructs for



Figure 11: Mars exploration using rovers and blimps.

specifying global strategies for multi-vehicle coordination.
We refer to this extended language ascooperative RMPLand
its corresponding executive asKirk [19]. Kirk generalizes Ti-
tan’s capabilities for deducing and controlling hidden state,
by including capabilities for reasoning about contingencies,
scheduling activities, and planning cooperative paths. To sup-
port this reasoning, RMPL’s plant model is extended to in-
clude models of the external environment, such as a terrain
map, and specifications for the command set and dynamics
of each robot vehicle in the network.

Most embedded programming languages and robotic ex-
ecution languages, such as[20], employ myopic execution
strategies that do not evaluate their future course of action
in terms of feasability or optimality. Kirk is distinguished
in that it first “looks” by employing fast temporal planning
methods that identify the optimal consistent strategy within
the RMPL program. The result is a partially ordered tem-
poral plan. Kirk then “leaps” using a robust plan execution
algorithm, described in[21], which adapts to execution un-
certainties through fast, online scheduling.

To “look,” Kirk’s control sequencer chooses a set of threads
of execution from a nondeterministic RMPL program, pro-
ducing aconfiguration plan, and checks to ensure that this
plan is consistent and schedulable. The plan is comprised of
temporally bounded configuration goals that specify desired
states. Kirk’s deductive controller uses the plant model to
map the configuration plan to a plan that involves executable
robot commands. Both the control sequencer and deductive
controller employ variants of graph-based temporal planning
to accelerate reasoning.

The Mars exploration concept has been validated within
the MIT cooperative robotics testbed using four ATRV rovers
and an overhead stereo camera, emulating a blimp (right, Fig-
ure 11)[22]. Kirk has also been demonstrated in simulation
on the coordination of up to nine air vehicles performing a
suppression of enemy air defense mission.

9 Discussion
Sensor rich, networked embedded systems are taking the
world by storm, from our everyday automobiles to futuris-
tic robotic networks. In this article we argued that a rad-
ically different programming paradigm is needed, one that
frees the programmer from the myriad details of managing
low-level interactions and detailed failure analysis. Our so-
lution – model-based programming – allows the programmer
to elevate his or her thinking to the level of specifying in-

tended state evolutions, while relinquishing issues of sensing
and control to the language’s model-based executive.

Through the Titan executive, we demonstrated how model-
based programming can be used to easily generate the auto-
nomic processes internal to robust embedded systems. An
early sibling of Titan’s deductive controller, Livingstone, was
demonstrated to diagnose and repair a half dozen failures in
flight on the NASA New Millennium Deep Space One probe
in the Spring of 1999. Titan is currently being demonstrated
on automobiles, Mars rovers and a micro-spacecraft cluster
within the International Space Station. We are extending Ti-
tan with methods for compile-time synthesis and verification
of model-based programs.

Through the Moriarty executive, we are demonstrating how
the model-based programming paradigm can control high fi-
delity systems using hybrid models, enabling the detection of
subtle failures and the creation of high confidence systems,
such as Mars entry descent and landing codes. Through the
Kirk executive, we are demonstrating how the model-based
programming paradigm is expanding to networked embedded
systems whose components are highly capable, agile robots.
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