
DNNF-based Belief State Estimation∗

Paul Elliott and Brian Williams
(pelliott, williams)@mit.edu

MIT SSL and CSAIL
Cambridge, MA 02139

Abstract

As embedded systems grow increasingly complex, there is
a pressing need for diagnosing and monitoring capabilities
that estimate the system state robustly. This paper is based
on approaches that address the problem of robustness by rea-
soning over declarative models of the physical plant, repre-
sented as a variant of factored Hidden Markov Models, called
Probabilistic Concurrent Constraint Automata. Prior work on
Mode Estimation of PCCAs is based on a Best-First Trajec-
tory Enumeration (BFTE) algorithm. Two algorithms have
since made improvements to the BFTE algorithm: 1) the
Best-First Belief State Update (BFBSU) algorithm has im-
proved the accuracy of BFTE and 2) the MEXEC algorithm
has introduced a polynomial-time bounded algorithm using
a smooth deterministic decomposable negation normal form
(sd-DNNF) representation.
This paper introduces a new DNNF-based Belief State Esti-
mation (DBSE) algorithm that merges the polynomial time
bound of the MEXEC algorithm with the accuracy of the BF-
BSU algorithm. This paper also presents an encoding of a
PCCA as a CNF with probabilistic data, suitable for compi-
lation into an sd-DNNF-based representation. The sd-DNNF
representation supports computing k belief states from k pre-
vious belief states in the DBSE algorithm.

Introduction
The purpose of estimation is to determine the current, hid-
den state of the system. An estimator infers the current state
by reasoning over a model of the system dynamics, the com-
mands that have been executed and the resulting sensory ob-
servations. In model-based programming, the models writ-
ten by the system engineers can be used to diagnose the sys-
tem, using a mode estimator. The mode estimator is capa-
ble of automatically doing system-wide diagnostic reason-
ing and is completely reusable for different applications.

This paper introduces a new DNNF-based Belief State
Estimation (DBSE) algorithm that combines features of
two other algorithms, the Best-First Belief State Update
(BFBSU) algorithm (Martin, Ingham, & Williams 2005;
Martin 2005) and the MEXEC algorithm (Barrett 2005).
The BFBSU and MEXEC algorithms, in turn, are extensions

∗This work was funded in part under grant #902364.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

of the Best-First Trajectory Enumeration (BFTE) algorithm
(Williams et al. 2003).

All 4 algorithms, DBSE, BFBSU, MEXEC, and BFTE,
reason over a variant of factored Hidden Markov Models
(HMMs), called Probabilistic Concurrent Constraint Au-
tomata (PCCA) (Williams & Ingham 2002). PCCAs factor
the HMM by both requiring that components have indepen-
dent probability distributions and by encoding zero proba-
bilities as a constraint theory.

The BFTE algorithm computes the k most likely trajecto-
ries, approximating the most likely belief states as the most
likely trajectories. Trajectories are computed by testing can-
didate consistency against prime implicates in an Optimal
Constraint Satisfaction Problem (OCSP) solver (Williams
et al. 2003). The consistency test used has a worst-case
time complexity that is exponential in the size of the model,
though in practice it is often polynomial.

The trajectory approximation made by BFTE is a poor
approximation when two or more of the leading belief states
are close in probability and composition (Martin 2005). In
these cases, the two belief states may transition into the same
next state, but by different trajectories, as they have differ-
ent initial conditions. The BFTE approximation treats each
trajectory that ends in the same state as a different estimate,
which means the same state may appear more than once in
the k estimates that the algorithm keeps. The algorithm also
underestimates the probability of that state, as it has divided
the probability across multiple trajectories.

The BFBSU algorithm improves upon the accuracy of the
BFTE algorithm by instead enumerating the k best belief
states using the same OCSP solver instead of trajectories.
BFBSU also improves upon the accuracy of the BFTE al-
gorithm by estimating the probability of getting an observa-
tion for a particular state. BFBSU uses a sparse observation
probability table for this purpose. The table approximates
the number of possible observations, given a state, so the
probability of an observation is one over this value, assum-
ing a uniform distribution.

The micro executive MEXEC algorithm reduces the com-
plexity bound of the BFTE algorithm by replacing the prime
implicates used in the OCSP solver with a smooth determin-
istic decomposable negation normal form (sd-DNNF) (Dar-
wiche 2001) representation. The sd-DNNF representation
supports the queries needed by the BFTE algorithm with a



time bound that is polynomial in the size of the sd-DNNF.
The MEXEC algorithm, like (Kurien & Nayak 2000), also
adds the ability to estimate over an N-step time window,
where BFTE was only able to handle a single step. The hard
polynomial upper space and time bounds of the MEXEC al-
gorithm are especially important for embedded applications,
where sufficient memory is generally allocated for the worst
case and response times need to be known.

The new DBSE algorithm presented in this paper merges
the polynomial space and time bound of the MEXEC algo-
rithm with the accuracy of BFBSU algorithm by using an
sd-DNNF representation to estimate the best k belief states.
The DBSE algorithm improves upon the accuracy of the BF-
BSU algorithm in two ways: 1) the sd-DNNF representation
admits polynomial-time model counting, so the observation
probabilities are no longer approximate and 2) the algorithm
is able to correctly handle transitions between components
that are not fully independent, because they depend on an
unobserved condition. This algorithm does not include the
n-step capability of the MEXEC algorithm.

This paper also provides a complete encoding of the
PCCA model as a Conjunctive Normal Form (CNF) model
plus a set of OCSP probabilities for the transition variables.
This CNF encoding is used with the C2D (Darwiche 2005)
compiler to generate an sd-DNNF suitable for use by the
DBSE algorithm.

This paper starts out by presenting the parts of the PCCA
model. It then introduces an encoding of the PCCA model
as a CNF theory suitable for computing the HMM update
equations. The CNF encoding can be compiled with the
C2D compiler into a sd-DNNF that is suitable for online
estimation. The paper then provides the DBSE estimation
algorithm, including the running time.

PCCA Model
We model the physical plant being diagnosed as a factored
HMM that is compactly encoded as a PCCA (Williams et
al. 2003). A PCCA represents a set of discrete, partially-
observable, and concurrently-operating components that are
connected together to form a system. Each automaton has
a set of conditional probabilistic transitions, which capture
both nominal and faulty behavior.

A PCCA is a composition of Probabilistic Constraint Au-
tomata (PCA). A PCA Aa is defined by the triple Aa =
〈Πa, Ma, Ta〉:

1. Πa = Πm
a ∪ Πc

a ∪ Πo
a ∪ Πd

a is a finite set of discrete
variables, which completely describe the component. All
x ∈ Πa have a finite domain D (x). m, c, o, and d corre-
spond to mode, control, observation, and dependent vari-
ables, respectively. The mode variables are the estimated
variables. The dependent variables are the intermediate
variables needed to define the behavior of a single com-
ponent. We denote the non-mode variables Πcod

a . Σ (Π)
is the complete set of full assignments to variables Π, and
C (Π) is the set of all possible constraints on variables Π.

2. Ma :
{
Σ (Πm

a )→ C
(
Πcod

a

)}
, the modal constraints,

map each mode to a constraint that must hold true when
the component is within that mode.

N
2
H

4

GHe

S Solenoid Valve

Catalyst Bed

Pipe 1

Pipe 2

Hydrazine

Thruster

Inertial Sensor

Fuel Tank

Figure 1: Monopropellant Propulsion System Schematic

3. Ta :
{
Σ (Πm

a )× C
(
Πcd

a

)
× Σ (Πm

a )→ < [0, 1]
}

repre-
sent probabilistic, conditional transition functions. Con-
sider a single transition (σt

m, Ct,t+1, σt+1
m ). σt

m rep-
resents the source mode of the component at time t.
Ct,t+1, the transition guard, represents the conditions un-
der which this transition can occur, and σt+1

m is the tar-
get mode of the component at time t + 1 after the tran-
sition. The transition functions Ta assign the probability
P

(
σt+1

m |σt
m, Ct,t+1

)
to a transition.

Transitions in different components may be conditioned
on the same variables, but semantically, given the truth of the
transition guards, the transition taken for each component is
decided independently based on its local transition proba-
bilities. When two transitions depend on a variable whose
value is not known at the current time, the transition guards
are only partially known and so it is necessary to considered
the possible values of the variable and how they impact the
choice of transitions.

BFBSU assumes the guards are always independent, an
assumption that is only correct if all jointly conditioned vari-
ables are known every estimation cycle. When a jointly con-
ditioned variable is not fully known, BFBSU allows impos-
sible transition combinations to occur. This DBSE imple-
mentation relaxes this condition so that impossible transition
combinations are never taken together, even when not fully
known.

A PCCA model P is defined by the triple P = 〈A,Π, Q〉.
A = {A1, . . . , An} is the finite set of PCAs; one PCA for
each component. Π =

⋃
a=1..n Πa is the set of all variables

defined inP . Q ∈ C (Π) is a constraint over all the variables
that captures the interconnections between components.

Example PCCA
To illustrate a PCCA model, consider a simplified monopro-
pellant thruster. A schematic of the propulsion subsystem is
shown in Figure 1. We model this propulsion subsystem as a
set of two components: a fuel tank and a solenoid valve. We
assume that a properly opened solenoid valve always lead to
a nominal inertial sensor measurement.

Fuel Tank: The fuel tank PCA model Atank is shown
graphically in Figure 2. Atank is defined by the triple
Atank = 〈Πtank, Mtank, Ttank〉. The variables are Πtank =



filled empty
(xflow= positive)

(xflow= zero) 0.99
0.01

xp= nominal xp= zero

Figure 2: Fuel Tank PCA Atank.

open closed

0.99

0.01

xvp-out= xvp-in 0.01
0.99

(xvalve-cmd= close)

stuck
closed

(xvp-out= zero)

(xvp-out= zero)

(xvalve-cmd= open)

¬(xvalve-cmd= close)

¬(xvalve-cmd= open)

Figure 3: Solenoid Valve PCA Avalve.

{xtank, xflow, xp}, where the fuel tank, represented by
xtank, resides in one of two discrete modes, D (xtank) =
{filled, empty}. xflow describes whether fuel is flowing
from the tank. xp describes whether the tank is pressurized,
which indicates whether or not the fuel tank contains fuel.
The modal constraint Mtank and transitions Ttank are

Mtank

xtank C
filled {(xp = nominal)}
empty {(xp = zero)}

Ttank

xt
tank xt

flow xt+1
tank p

filled zero filled 1
filled positive filled 0.99
filled positive empty 0.01
empty —— empty 1

Solenoid Valve: The solenoid valve PCA model Avalve is
shown graphically in Figure 3, and is defined in a manner
similar to the Fuel Tank.

Combined PCCA Model
Combining these components, the PCCA model P is de-
fined by the three components: 1) A = {Atank, Avalve}, 2)
Π = Πtank∪Πvalve, and 3) Q links xp to xvpin and xvpout to
xflow. The components are connected through a single pres-
sure variable. There is flow when the pressure at the output
of the valve is not zero.

sd-DNNF Model
We will use the sd-DNNF compiler C2D (Darwiche 2005),
which converts a CNF theory into an sd-DNNF. To use this
compiler, the PCCA must be encoded as a CNF theory plus
transition probabilities. The resulting sd-DNNF encoding
of the model presented here is designed to allow for the easy

computation of the HMM belief state propagation equations.
Given the observations σt+1

o and the commands σt
c, the two

HMM belief state propagation equations (Baum & Petrie
1966) are:

f
(
σt+1

m

)
=

P
(
σt+1

o |σt+1
m

) ∑
σt

i∈Bt
k

P
(
σt+1

m |σt
i , σ

t
c, σ

t,t+1
d

)
g

(
σt

i

)
,

(1)

g
(
σt+1

m

)
=

f
(
σt+1

m

)∑
σt+1

i ∈Bt+1
k

f
(
σt+1

i

) . (2)

Equation 1, f
(
σt+1

m

)
, computes the probability

P
(
σt+1

m |σ0,t
o , σ0,t+1

c

)
using the distribution g (σt

i) at time t,
which is approximated by the k best belief states Bt

k. The
probability is then normalized by Equation 2, g

(
σt+1

m

)
.

Normalization is necessary for two reasons: 1) we are
ignoring a normalization term P

(
σ0,t

o , σ0,t+1
c

)
, so the result

may not sum to 1, and 2) we are only computing the k
highest probabilities for the k best σt+1

m , so we are losing
some solutions.

In Equation 1, the observation probability P
(
σt+1

o |σt+1
m

)
is

#Models(σt+1
o ∧ σt+1

m ∧Bt
k ∧ σt

o ∧ σt
c)

#Models(σt+1
m ∧Bt

k ∧ σt
o ∧ σt

c)
,

where #Models designates counting the number of mod-
els of the theory for which its argument is true. In other
words, the probability is the number of ways that we
could have gotten our observation divided by the number
of ways to get any observation. The transition probability
P

(
σt+1

m |σt
i , σ

t
c, σ

t,t+1
d

)
is computed for each of the k pre-

vious belief states σt
i , where the probability of transitioning

to the the belief state σt+1
m is encoded on a per-PCA Aa basis

in the transition function Ta.

Encoding of a PCCA Model for Compilation
This section shows a novel encoding of the PCCA Model
as a CNF theory plus the transition probabilities, suitable
for estimating the next belief states using k previous belief
states. The PCCA model has three types of explicit con-
straints: 1) the global constraint Q, which is already a CNF
constraint, 2) the modal constraints Ma, and 3) the tran-
sition constraints Ta. In addition to encoding the explicit
constraints, the resulting sd-DNNF must support computing
belief states from k prior belief states, which will require
performing some additional operations on the CNF prior to
using C2D.

Modal Constraints The modal constraints are encoded
as (xa = v) ⇒ Ma ((xa = v)), for each mode assignment
(xa = v).

Transition Encoding The transitions designate a single
probabilistic choice per PCA. Choosing a particular transi-
tion τa means that the PCA is in the source mode σt

m of the



transition at time t and is in the target mode σt+1
m of the tran-

sition at time t + 1. Choosing the transition also means that
the guard Ct,t+1 is consistent over the time interval [t, t+1].
The probability of the choice is Ta (τa).

To encode the transition, we create a transition variable t
for each PCA Aa. The domain of a transition variable is the
set of all non-zero probability transitions τa ∈ Ta. To cap-
ture the constraints imposed by the transition, we construct
the constraint (t = τa) ⇒ σt

m ∧ σt+1
m ∧ Ct,t+1, for each

transition assignment (t = τa).
The transition probability is needed to compute

P
(
σt+1

m |σt
i , σ

t
c, σ

t,t+1
d

)
. This probability cannot be

encoded in the CNF and so it is stored externally. There is
a one-to-one correspondence between assignments σt and
probabilities, hence it is easy to associate the probabilities
with the sd-DNNF after compilation.

Belief States Encoding DBSE supports tracking the k
best belief states, where k is an input parameter to the com-
pilation process. A belief state represents a possible state of
the system, and from each of the k possible previous belief
states, the DBSE algorithm computes the k best next be-
lief states. To support k independent previous belief states
all transitioning to the same next belief state, we encode
k sets of the model variables at time t, along with k sets
of the constraints C1, . . . , Ck containing those model vari-
ables. The previous belief states must still share a single co-
herent next state, so the remaining variables and constraints
are unchanged.

The choice of which previous belief state led to a particu-
lar state is encoded by creating a variable b with the domain
[1, k]. Choosing a belief state implies that the previous be-
lief state assignment has been chosen with the probability of
the previous belief state. Using this variable b, the choice is
encoded as (b = i) ⇒ Ci, for each belief state variable as-
signment (b = i) and ith duplicate constraint Ci. The online
algorithm is responsible for associating the ith belief state
with the variables of the constraint Ci. The online algo-
rithm can directly associate the belief state probability with
(b = i).

sd-DNNF Representation
The compiled PCCA representation consists of the two
parts: 1) an sd-DNNF representation D of the CNF encod-
ing, as output from C2D, and 2) a mapping of transition
variables to their corresponding modeled probability P (τa),
from the PCCA model.

Estimation Algorithm
The online estimation algorithm needs to compute the tran-
sition and observation probabilities for each candidate. The
true probability of the candidate is the product of the two,
per Equation 1. Traditionally, one computes the first and
then the second, as one needs to know what the expected
state is in order to compute the observation probability. A
key benefit of using sd-DNNFs in this estimation process is

that the observation and transition probabilities can be com-
puted in parallel, in a factored fashion, for every candidate,
allowing the estimation algorithm to select the best candi-
dates efficiently using an exact metric of their factored prod-
uct. Specifically, the sd-DNNF theory is factored into hier-
archically independent sets of deterministic or-nodes, which
can be chosen between arbitrarily. We can compute the ob-
servation probability of each choice at the same time as the
transition probability of each choice, and then efficiently de-
cide between the choices locally based on the product of the
two probabilities.

We briefly explain why the deterministic nodes can be de-
cided independently. We distinguish between two types of
or-nodes: deterministic and indistinguishable. A determin-
istic or-node is one in which different paths ensure different
models are chosen over the remaining variables, in our case
the estimated variables σt+1

m , in compliance with the deter-
ministic requirement of the sd-DNNF. An indistinguishable
node, by contrast, is a disjunction over indistinguishable
models, which have become indistinguishable through pro-
jection, and are not allowed to be part of a proper sd-DNNF.
When projecting an sd-DNNF, the sd-DNNF is guaranteed
to only have indistinguishable nodes at the leaves if the pro-
jected variables are all first in the decomposition. In the
DBSE algorithm, all variables are summed-out or assigned
values except the σt+1

m variables, so these variables must
appear first in the decomposition. To make the sd-DNNF
compliant again, we need to make a single walk through the
DNNF and sum-out the indistinguishable nodes.

To sum-out an indistinguishable node, we add both model
counts and the transition probabilities of all the node’s chil-
dren together into a single pair of model counts and a single
transition probability. The indistinguishable node can then
be replaced by a new node containing these three values.
The and-nodes that are descendants also need to be elimi-
nated by multiplying their children, rather than adding. The
and-node, too, can be replaced by a new node containing the
product of its children.

Once we have chosen a path for every deterministic node
and eliminated every indistinguishable node, we can col-
lapse the entire sd-DNNF into a single and-node with a list
of literals as its leaves. Since and-nodes multiply their chil-
dren and multiplication is associative, the transition and ob-
servation probabilities of each or-node will be multiplied
into the final answer. Thus, the probabilities can be com-
puted independently, per deterministic node, and the deci-
sion for each deterministic node can be made based on the
local multiplied pair of probabilities.

Online
The online algorithm, shown in Figure 4, is responsible for
taking an sd-DNNFD, up to k belief states Bt

k, the previous
σt

o and next σt+1
o observations, and the commands σt

c and
then computing the k next belief states Bt+1

k . The algorithm,
therefore, is incremental and only requires keeping track of
the previous time step.

The first step of the algorithm assigns the k best belief
states from the previous state to the k belief state variables.



Bt+1
k DBSE

(
D, Bt

k, σt
o, σ

t
c, σ

t+1
o

)
1. D ← D|(σt

m ∈ Bt
k) ∧ σt

o ∧ σt
c

2. Assign P (Bt
k (i)) to (b = i) in D

3. Compute #Models (D), #Models
(
D|σt+1

o

)
, and P (D)

4. D ← D ⇓Πmt+1

5. Bt+1
k ← Enumerate the k best models of D

6. Normalize and return Bt+1
k

Figure 4: An algorithm that computes k belief states using a
sd-DNNF model.

It also assigns the observations gathered at the previous point
in time and the commands that have since been issued. As-
signment is performed by conditioning the sd-DNNF on the
conjunction of the assignments.

The second step assigns the belief state probabilities to
the belief state variables.

In the third step, we walk through the sd-DNNF D and
compute the three parts of the update equation, Equation 1:
1) The denominator of the observation probability, 2) the nu-
merator of the observation probability, and 3) the transition
probability. As discussed earlier, these can only be com-
bined into a single probability at deterministic nodes, where
we can guarantee the only operation is multiplication. The
values are computed for each node in the DNNF.

The fourth step projects the DNNF onto the mode vari-
ables that we are estimating. The projection uses the DNNF
project algorithm, except we keep track of the number of
models that we are projecting, as computed in step 3. We re-
fer to this as summing-out the variables. In this process, all
indistinguishable nodes are eliminated, as they are no longer
needed. This ensures that every or-node is a deterministic
node, choosing between different mode-variable instantia-
tions, so each model of the sd-DNNF appears exactly once.

The fifth step involves enumerating the k best models of
D, using the value of Equation 1 computed for each deter-
ministic node. A linear programming algorithm is used to
compute the k most probable choices for each node based
on the combination of the k best candidates of its children.
Nodes will only have an estimate if they have a deterministic
node as a child or if they are themselves deterministic nodes.
When the algorithm completes, the root node will have the
probabilities of k most likely belief states and which chil-
dren led to those probabilities. It then can walk back through
the DNNF and build a set of k belief states based on which
choices were part of each estimate.

The final step re-normalizes the belief states so the proba-
bilities sum to 1. This step performs the calculation of Equa-
tion 2. We then return the new k best belief states.

Running Time
This section addresses the running time of the algorithm.
The first step of the algorithm in Figure 4 requires a sin-
gle iteration through D, assigning each leaf literal a value of
true or false. The second steps assigns k probabilities to k

Figure 5: The number of nodes and edges needed to rep-
resent the Mars EDL model as a function of the number of
belief states k encoded in the CNF formula. The number of
nodes is 71×103×k and the number of edges is 244×103×k
for k ≥ 4, with an RMS error of 2.5×103 and 4.7×103, re-
spectively. For k = 1, 2, the number of nodes is 4.4×103×k
and the number of edges is 14.8 × 103 × k, with an RMS
error of 370 and 340, respectively.

leaf literals, and thus the time taken is O(k). The third step
requires one iteration through D, visiting every edge once.
The fourth step, like the third, makes one pass through D,
visiting each edge and leaf once. The fifth step requires two
iterations over D. The first iteration identifies the best be-
lief states and then the second extracts the best belief states.
The first iteration requires O(k) space per edge and node of
the sd-DNNF. The merging of the child’s estimates with the
parent’s estimates requires O(k) time per edge for or-node
parents and O(k2) time per edge for and-node parents. The
second iteration propagates the selection at the root down
each edge for each of the k estimates. The final step requires
averaging the k probabilities.

For a DNNF with n nodes, e edges and supporting k belief
states, in total the DBSE algorithm has a space complexity
of O(kn+ke) and a time complexity of O(kn+k2e). Since
n ≤ e for all sd-DNNFs, we can simplify these bounds to
O(ke) and O(k2e) for space and time, respectively.

Preliminary Results
The encoding presented in this paper has been used to gen-
erate a set of sd-DNNFs using a Mars Entry, Descent, and
Landing (EDL) model (Ingham 2003), which is roughly the
size of a spacecraft subsystem. The model has forty-two
variables, of which ten are dependent variables and ten are
state variables, with an average domain size of 4.4. For the
set, we varied k from 1 to 30. The C2D algorithm employs
randomization in generating a decomposition of the CNF
theory, and was given no guidance as to which decompo-
sitions to consider. Thus, to make the data more regular, the
C2D compiler was run 10 times on each CNF formula. The
number of nodes and edges of the smallest model was kept



and plotted in Figure 5.
It can be seen in Figure 5 that the sd-DNNF is linear in

k. For k ≥ 4, the number of nodes is 71 × 103 × k and
the number of edges is 244 × 103 × k. The RMS error
for the slope of the line is 2.5 × 103 and 4.7 × 103 for the
number of nodes and edges, respectively. The first two data
points, however, tell a somewhat different picture. For the
first two data points, which have only 2 or 3 copies of the
variables and constraints, respectively, the C2D compiler is
able to find a much smaller encoding than for the remaining
data points. For these first two points the number of nodes is
4.4×103×k and the number of edges is 14.8×103×k, with
an RMS error of 370 and 340, respectively. For these first
two values of k, the C2D’s binary variable representation is
able to encode exactly the possible assignments to the belief
state variable. Thus, the C2D compiler is forced to identify a
single decision point at which the model breaks into k inde-
pendent pieces. For larger k, the decision as to which belief
state is active is spread across many decision points, which
we believe is what leads to a less efficient decomposition, as
represented by the larger slope.

We believe that generating consistently small sd-DNNFs,
at a size proportional to the first two data points, is possible
by guiding the decomposition. The CNF formula contains
k + 1 copies of the same variables and k + 1 copies of the
state constraints and global constraints. It also has k copies
of the transition constraints. The C2D compiler is currently
expected to find the large number of symmetries and then
order the decomposition to take advantage of them.

The linearity of the sd-DNNF with respect to k allows us
to express the space and time bounds given in the previous
section more precisely in terms of the more precise model
size. The new space bound is O(k2en) and the new time
bounds is O(k3en), where en is the size of the model for
k = 1. For the Mars EDL model, en was shown to be ap-
proximately 244 × 103 for k ≥ 4. However, we believe
that by providing guidance to the C2D compiler, en may be
reduced to the k = 1, 2 model size of 14.8× 103 edges.

We now compare these results to the two previous algo-
rithms. The BFBSU algorithm displayed a linear space and
time bound as a function of k in (Martin 2005). For the
MEXEC algorithm, a linear space and time bound as a func-
tion of the size of the sd-DNNF was published in (Barrett
2005). Within these time and space bounds, the MEXEC al-
gorithm can extract any one of the best, equally-likely lead-
ing candidates. The MEXEC algorithm is not able to ex-
tract the next most likely candidate(s). The sd-DNNF of the
MEXEC algorithm is assumed to be linear as a function of
n, the size of the time-step window that the estimation algo-
rithm uses.

For comparison with the MEXEC algorithm, let k = n.
The DBSE algorithm requires k times more space and k2

more time than the MEXEC algorithm. This extra computa-
tional overhead is necessary to store the information needed
to extract the k best estimates, rather than just the set of
estimates that all share the same likelihood. The number
of estimates that share the same likelihood varies signifi-
cantly from estimation cycle to estimation cycle, depend-
ing on how much uncertainty there is as to the current state.

With respect to BFBSU, the DBSE algorithm requires k
times more space than BFBSU, which is presently neces-
sary to store k copies of the compiled constraints. However,
unlike BFBSU, which has experimentally shown an average
case bound, this space bound is a known upper bound. Sim-
ilarly, the k2 factor more than the BFBSU algorithm for the
time bound is an known upper-bound, as opposed to BF-
BSU’s time bound. The algorithm also computes a more
accurate estimate than BFBSU.

Conclusion
This paper has presented the DBSE algorithm for estimating
the k best belief states using an sd-DNNF representation.
The algorithm has a space requirement that is quadratic in k
times the size of the (k = 1) sd-DNNF. It has a running time
that is cubic in k times the size of the (k = 1) sd-DNNF.
While keeping the polynomial time bounds of the MEXEC
algorithm, this algorithm improves the accuracy of both the
BFBSU and the MEXEC algorithms.

References
Barrett, A. 2005. Model compilation for real-time plan-
ning and diagnosis with feedback. In Kaelbling, L. P., and
Saffiotti, A., eds., IJCAI, 1195–1200. Professional Book
Center.
Baum, L., and Petrie, T. 1966. Statistical inference for
probabilistic functions of finite-state Markov chains. An-
nals of Mathematical Statistics 37:1554–1563.
Darwiche, A. 2001. Decomposable negation normal form.
J. ACM 48(4):608–647.
Darwiche, A. 2005. C2D v2.20.
http://reasoning.cs.ucla.edu/c2d.
Ingham, M. 2003. Timed Model-based Programming:
Executable Specifications for Robust Mission-Critical Se-
quences. PhD thesis, Massachusetts Institute of Technol-
ogy, Department of Aeronautics and Astronautics.
Kurien, J., and Nayak, P. P. 2000. Back to the future for
consistency-based trajectory tracking. In AAAI/IAAI, 370–
377.
Martin, O.; Ingham, M.; and Williams, B. 2005. Diagnosis
as Approximate Belief State Enumeration for Probabilistic
Concurrent Constraint Automata. In Proceedings of the
AAAI.
Martin, O. 2005. Accurate belief state update for proba-
bilistic constraint automata. Master’s thesis, Massachusetts
Institute of Technology, MIT MERS.
Williams, B. C., and Ingham, M. D. 2002. Model-based
Programming: Controlling Embedded Systems by Reason-
ing About Hidden State. In Eighth Int. Conf. on Principles
and Practice of Constraint Programming.
Williams, B. C.; Ingham, M.; Chung, S. H.; and Elliott,
P. H. 2003. Model-based Programming of Intelligent Em-
bedded Systems and Robotic Space Explorers. In Proceed-
ings of the IEEE, volume 9, 212–237.


