
Extending Dynamic Backtracking to Solve Weighted Conditional CSPs

Robert T. Effinger and Brian C. Williams

MIT – Computer Science and Artificial Intelligence Laboratory
32 Vassar Street, Bld. 32-272

Cambridge, MA 02139
{effinger,williams}@mit.edu

Abstract
Many planning and design problems can be characterized as
optimal search over a constrained network of conditional
choices with preferences. To draw upon the advanced
methods of constraint satisfaction to solve these types of
problems, many dynamic and flexible CSP variants have
been proposed. One such variant is the Weighted
Conditional CSP (WCCSP). So far, however, little work
has been done to extend the full suite of CSP search
algorithms to solve these CSP variants. In this paper, we
extend Dynamic Backtracking and similar backjumping-
based CSP search algorithms to solve WCCSPs by utilizing
activity constraints and soft constraints in order to quickly
prune infeasible and suboptimal regions of the search space.
We provide experimental results on randomly generated
WCCSP instances to prove these claims.

Introduction
Research on constraint satisfaction problems (CSP) has
lead to many breakthroughs in our ability to understand,
analyze, and solve combinatorial-style problems. These
advances have taken the form of fast and sophisticated
search algorithms (Dechter 1990; Ginsberg 1993; Prosser
1993), as well as in-depth complexity analyses to help
differentiate between fundamentally easy and hard to solve
CSP instances (Gaschnig 1979; Grant 1997). To leverage
these advances into more expressive domains, such as
conditional planning with preferences and design
configuration, many dynamic and flexible CSP variants
have emerged (Miguel 2001). One such variant, the
Weighted Conditional CSP (WCCSP), employs activity
constraints and soft constraints to model both conditional
dependencies and preferences within a unified framework
(Miguel 2001).
* In this paper, we extend Dynamic Backtracking (DB) to
solve WCCSPs via four extensions to Ginsberg’s original
algorithm (Ginsberg 1993). These extensions enable
memory-bounded, conflict-directed, and optimal search of
WCCSPs by utilizing activity constraints and soft
constraints in order to quickly prune infeasible and

Copyright © 2006, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

suboptimal regions of the search space. While the
pedagogical focus of this paper is to extend the DB
algorithm in particular to solve WCCSPs, the ideas
developed in this paper more generally apply to extending
all backjumping-based algorithms to solve WCCSPs.
 To place the ideas presented in this paper into proper
perspective, we briefly review conditional, dynamic,
valued and weighted CSPs, and discuss related work.

 Background and Related Work
(Mittal and Falkenhainer 1990) were the first to extend the
CSP to support conditional variables. This formalism is
called a Conditional CSP (CCSP) (Sabin and Freuder
1999). A CCSP assumes variables enter and leave the
problem according to special constraints, called activity
constraints. It is important to point out the difference
between the CCSP and the Dynamic CSP (DCSP)
developed by (Dechter and Dechter 1998). The DCSP
assumes that activity constraints either do not exist or are
hidden from the CSP solver, thus, the addition and removal
of variables appears random and unpredictable.
 Valued CSPs (VCSP) incorporate soft constraints into
the CSP framework to model preferences (Schiex, et. al.
1995). A Weighted CSP (WCSP) is a special instance of a
VCSP in which the composition operator is constrained to
be additive and non-idempotent (Shapiro and Haralick
1981; Larrosa 2002). In a WCSP, a cost is associated with
each soft constraint, and the cost of a partial solution is
calculated by summing the individual costs of each soft
constraint violated by that partial solution.
 Several CSP search algorithms have been extended to
CCSPs and DCSPs. (Sabin 2003) extended arc-
consistency and forward checking to CCSPs, and
(Verfaillie and Schiex 1994) extended DB to DCSPs. It is
important to note that the DB algorithm developed by
Verfaillie and Schiex is not meant to solve CCSPs; it is
unable to reason about a CCSP’s activity constraints.
(Miguel 2001) proposes a broad class of dynamic flexible
CSP variants; the ideas presented in this paper can be
viewed as filling in an empty element of Miguel’s sparsely
populated matrix of dynamic flexible CSP variants and
algorithms. Also, (Dago and Verfaillie 1996) merge nogood
learning with branch-and-bound search to make the

Appeared in AAAI-06

pruning mechanism more efficient. In this paper, we
merge backjumping-based techniques with branch-and-
bound search for the same desired effect. Two restricted
forms of the WCCSP have been studied previously in the
literature under different names. (Keppens 2002) defines
the Dynamic Preference CSP in which all soft constraints
must be unary constraints, and (Sabin et. al. 1995) define
the Dynamic Partial CSP in which all constraints are soft
and have equal cost.
 The rest of this paper is organized as follows. Next, we
present a formal definition of the WCCSP along with a
simple motivating example. Then, we briefly review DB,
and develop in detail the four extensions required to extend
DB to solve WCCSPs. To conclude, we give a simple walk-
through example, and provide experimental results on
randomly generated WCCSP instances.

The Weighted Conditional CSP (WCCSP)
A WCCSP is a tuple, .)(,,,,,, PfCCCIVI SACI Where,

 • { }niiiI ,,, 21 K= , is a set of finite domain variables.

 • { }nVVVV ,,, 21 K= , are finite domains for each .Ii ∈

 • II I ⊆ , is a set of initially active variables.

 • CC , is a set of hard constraints that must be satisfied.

 • AC , is a set of activity constraints describing the
 conditions under which each variable becomes active.
 • SC , is a set of soft constraints of the form .)(, cfc s

 • Where, c is an assignment of values to variables, and
 ℜ→)(cf s is a cost to be incurred if ,Pc∈ where
 P is the current partial solution (Definition 1).
 •),(Pf assigns a real-valued cost to a partial solution,
 ,P by summing the costs of each soft constraint which
 is violated by that partial solution, ∑

∈

=
Pc

s cfPf)()(.

Definition 1 – Partial solution. A partial solution, P, to a
WCCSP is a subset IJ ⊆ and an assignment of a value to
each variable in .J We denote a partial solution by a tuple
of pairs,),(vi which assign the value v to the variable i .

For a partial solution ,P we denote by P̂ the set of
variables assigned values by .P

Definition 2 – Activity Constraint. An activity constraint
is an expression of the form),(kiactiveAC → where AC
represents an assignment of values to variables,
{ },,,11 jj vivi == K and is the condition under which

variable ki becomes active. If a variable becomes active, it
must subsequently be assigned a value from its domain that

is both consistent with the current partial solution, ,P and
the problem’s hard constraints, CC .

Definition 3 – Active Variable List. To keep track of
which variables in a WCCSP are currently active, we
define an active variable list, IA. IA is defined as the set of
variables with satisfied activity constraint conditions, .AC
Note that the set of initially active variables, II, will always
be on the active variable list, IA.

Definition 4 – Solution to a WCCSP. A solution, *,I to a
WCCSP is an assignment of values to all active variables,
IA, which satisfies CC, such that *)(If is minimized. The
optimal solution to a WCCSP, *,I is formally defined as:

andsatisfiedisCctsPfI C∈∀= ..)(minarg*
 .satisfiedisCc A∈∀

We also assume that a solution is minimal with respect to
activity constraints as defined in (Gelle and Faltings 2003).
It is important to note that the solvability of a WCCSP
depends on II. A solution may exist for some sets of
initially active variables, II, but not for others.

Definition 5 – Nogood. A partial solution, P , is a nogood
if and only if there is no WCCSP solution, I*, containing
P . Nogoods are commonly called conflicts.

A Motivating Example
To give a simple example of a WCCSP, we introduce a
simple car configuration task commonly employed in the
CCSP literature (Mittal and Falkenhainer 1990). In this
example, the car buyer’s objective is to minimize the cost
of the vehicle subject to the car dealer’s configuration
requirements, shown in Figure 1. The car buyer must
choose from Base Package (B) one of three values {luxury,
standard, convertible}. Choosing luxury activates the
options Air-Conditioning (A) and Sunroof (S), while

Variable Activates: Cost $

1.) luxury airConditioning,
sunroof

$9 K

2.) standard - $10 K
3.) convertible ragtop, hardtop $9 K
1.) no - $0 K
2.) yes - $2 K
1.) tint - $3 K
2.) no tint - $2 K
1.) no - $0 K
2.) yes - $2 K
1.) automatic - $3 K
2.) manual - $2 K

(H) hardtop

(R) ragtop

(B) base
package

Values

(S) sunroof

(A) Air-
Conditioning

Figure 1: An Example WCCSP, a car configuration task.

Appeared in AAAI-06

choosing standard activates no additional options, and
choosing Convertible (C) activates the options Hardtop
(H) and Ragtop (R). Each base package and option has an
associated cost. Each option has a corresponding activity
constraint:),(1{ AactiveBC A →==),(1 SactiveB →=

),(3 RactiveB →=)}.(3 HactiveB →= In addition, the
car buyer does not want a sunroof, so there are two
compatibility constraints: }.21{ ≠∧≠= SSCC The soft
constraints in this example are all unary: ,9}1{{ →== BCS

,3}1{,2}2{,9}3{,10}2{ →=→=→=→= SABB

,3}1{,2}2{,2}2{ →=→=→= RHS }.2}2{ →=R

Dynamic Backtracking (DB)
In this section, we briefly review Dynamic Backtracking
(DB) as developed in (Ginsberg 1993) to solve the CSP.
First, we briefly summarize the properties of DB, and then
we present the DB pseudocode, with slight changes in
notation, along with several requisite definitions. A more
thorough development of the DB pseudocode and
definitions is available in (Ginsberg 1993).

Properties of Dynamic Backtracking (DB)
 DB ensures a complete, systematic, and memory-bounded
search of the state space, while leveraging nogoods to only
generate candidate plans that resolve all stored nogoods.
When DB encounters a dead-end, it utilizes a backjumping
resolution step (Proposition 1) to backjump directly to the
source of the inconsistency, thus avoiding the “thrashing”
behavior inherent to chronological backtracking. In
addition, DB dynamically reorders the partial solution
when backjumping in order to preserve as much
intermediate nogood information as possible. Search
failure is indicated when the backjumping resolution step
returns an empty nogood, indicating that all domain values
for a variable are inconsistent with the problem’s constraints.
DB requires O(i2v) space where i is the number of
variables, and v is the largest domain size. The notation
used in Proposition 1 is from (Verfaillie and Schiex 1994).

Definition 6 – Eliminating Explanation. Given a partial
solution P to a CSP, an eliminating explanation for a
variable i is a pair ()Tvi ,≠ where iVv∈ and .P̂T ⊆ The
intended meaning is that i cannot take the value v because
of the values already assigned by P to the variables in .T
An eliminating explanation can be viewed as a directed
nogood. For example, if the partial solution

},,{ 332211 vivivi === is a nogood, it can be written in the
directed form, ,},{ 332211 vivivi ≠→== which
corresponds to the eliminating explanation ()},{, 2133 iivi ≠ .

Definition 7 – Elimination Mechanism. An elimination
mechanism),(iPε for a CSP is a function which accepts
as input a partial solution, P , and a variable .P̂i∉ The
function returns a (possibly empty) set),(iPEi ε= of
eliminating explanations for i . An elimination mechanism
tries to extend a partial solution, P , by assigning each
possible value iVv∈ for a variable i , and returns a reason
for each value assignment that is not consistent with P .
For a set iE of eliminating explanations, Ginsberg denotes
by iÊ the values that have been identified as eliminated,
ignoring the reasons given. Therefore,),(ˆ iPε returns just
the values eliminated by),(iPε , while ignoring the
reasons given, which is formally stated as,).,(ˆˆ iPEi ε=

Proposition 1 - Backjumping Resolution Step. Let i be
a variable with domain, },,,,{ 21 mi vvvD K= and let

mPPP ,,, 21 K be partial solutions that do not include i . If,

(){ } (){ } (){ }mm viPviPviP ,,,,,, 2211 ∪∪∪ K are all

nogoods, then, mPPP ∪∪∪ K21 is also a nogood.

Dynamic Backtracking Pseudocode (DB)

1. Set ∅== iEP for each .Ii∈

2. If ,ˆ IP = return P. Otherwise, select a variable

.P̂Ii −∈ Set).,(iPEE ii ε∪=

3. Set .ˆ
ii EVL −= If L is nonempty, choose an element

 Lv∈ Add),(vi to P and return to step 2.

4. If L is empty, we must have ;ˆ
ii VE = let E be the set

of all variables appearing in the explanations, T , of
each elimination explanation, ()Tvi ,≠ for each

iEv ˆ∈ . (Proposition 1, Backjumping Resolution Step)

5. If ,∅=E return failure. Otherwise, let),(jvj be

the last entry in P such that .Ej∈ Remove),(jvj

from P and for each variable ,Pk∈ which was
assigned a value after j, remove from kE any
eliminating explanation that involves j. Set
 (){ }PEvjjPEE jjj

ˆ,),(∩≠∪∪= ε

so that jv is eliminated as a value for j because of the

values taken by variables in .P̂E ∩ Now set i = j and
return to step 3.

Appeared in AAAI-06

Extending Dynamic Backtracking to Solve
Weighted Conditional CSPs (CondDB-B+B)

To extend Dynamic Backtracking to solve Weighted
Conditional CSPs (CondDB-B+B), we augment the
algorithm to appropriately handle activity constraints and
soft constraints. This is accomplished via four extensions
to the DB algorithm:

1.) A total variable ordering, IO, for searching over
 conditional variables, and a conditional variable
 instantiation function.
2.) A modified backjumping resolution step which
 accounts for the behavior of conditional variables.
3.) A recursive check to remove deactivated variables

from the partial solution when backjumping occurs.
4.) A branch-and-bound search framework augmented to

construct minimal suboptimal nogoods.

The CondDB-B+B pseudocode is presented to the right,
with each change to Ginsberg’s original algorithm (DB)
highlighted in grey and annotated with a superscript
number indicating the extension it belongs to. Next, we
give a detailed description of each of the four extensions:

Extension #1: A total variable ordering, IO, and a
conditional variable instantiation function.
One systematic method for searching over conditional
variables is to construct a directed graph from the
conditional dependencies between variables. Then, from
this graph, a total variable ordering, IO, can be derived
which together with extensions 2 and 3 result in a
systematic search over the conditional variables. This
method, which we call CondBT in this paper, is described
in detail in (Gelle and Faltings 2003) and (Sabin 2003).
 For Extension #1, we simply merge CondBT with the
DB algorithm. This extension outfits DB with the basic
machinery to search systematically over conditional
variables. At first glance, it may appear that CondBT’s
strict variable ordering strategy is incompatible with DB’s
dynamic variable reordering technique. However, in
actuality, the two merge quite nicely for the following
reasons; CondBT restricts the order in which variables are
added to the partial solution, while DB restricts the order in
which variables are removed from the partial solution.
Therefore, the two pieces are entirely complimentary.
CondBT is in charge of picking which unassigned variable
should be instantiated next (in order to ensure a systematic
search over the conditional variables), and DB is in charge
of rearranging, reassigning, and unassigning variables once
they have been instantiated (in order to perform Dynamic
Backtracking).
 Starting on the next page, we summarize CondBT’s
variable instantiation strategy in four steps:

Dynamic Backtracking for the WCCSP (CondDB-B+B)
1. Set ., IIIP =∅= Set ∅=iE for each .Ii∈

(1) Take as input the total variable ordering, IO .
(4) Set the incumbent solution ()∞∅= ,N .

2.a. (4) If ,ˆ
AIP = and),()(NfPf < P is the new

 incumbent solution. Set ().)(, PfPN =

2.b. (4) If ,ˆ
AIP = set).ˆ,(iPviEE ii −≠∪= Otherwise,

 select a variable (1))(CapplyNextAi = (Function 1)
 and set ∪= ii EE (4)).,(iPOε (Definition 8)

3. Set .ˆ
ii EVL −= If J is nonempty, choose an element

.Lv∈ Add),(vi to P and return to step 2.

4. If L is empty, we must have ;ˆ
ii VE = let E be the set

of all variables appearing in the explanations, T, of
each elimination explanation, ()Tvi ,≠ for each

iEv ˆ∈ , (2) plus all of the variables appearing in
variable i’s activating constraint, AC. (Proposition 2,
WCCSP Backjumping Resolution Step)

5. If ,∅=E (4) return the incumbent, N. Otherwise, let

),(jvj be the last entry in P such that .Ej ∈

Remove),(jvj from P and for each variable Pk∈

which was assigned a value after j, remove from kE
any eliminating explanation that involves j. (3) Call
removeUnsupportedVars(j , P), and set,

∪= jj EE (4)),(jPOε (){ }PEvj j
ˆ, ∩≠∪

 so that jv is eliminated as a value for j because of the

values taken by variables in .P̂E ∩ Now set i = j and
return to step 3.
 (1) Extension #1, (2) Extension #2, (3) Extension #3
(4) Extension #4

Figure 2: Dependency graph for the car buyer example.

(A) Air -
Conditioning

{no $0k, yes $2k}

(S) Sunroof
{yes $2k ,

no $1k}

(H) Hardtop
{no $0k ,

yes $2k }

(R) Ragtop
{ auto $3k ,
manual $2k}

Maximal Depth: Variables:

0

1

(B) Base Package:
{ luxury $9k, standard $10k, convertible $9k}

(A) Air -
Conditioning

{no $0k, yes $2k}

(S) Sunroof
{yes $2k ,

no $1k}

(H) Hardtop
{no $0k ,

yes $2k }

(R) Ragtop
{ auto $3k ,
manual $2k}

Maximal Depth: Variables:

0

1

(B) Base Package:
{ luxury $9k, standard $10k, convertible $9k}

Appeared in AAAI-06

Step 1 - Create a Dependency Graph. The dependencies
between a CCSP’s activity constraints, CA, can be
represented in the form of a directed graph, called a
dependency graph, where the root node is defined as the
set of all initially active variables, II. For example, the
dependency graph for the car buyer example is shown in
Figure 2, and the initially active variable is Base Package.

Step 2 – Eliminate Cycles in the Dependency Graph.
Once a CCSP’s dependency graph is constructed, any
cycles in the graph must be eliminated by clustering the
cyclic elements into a super-node. After all cycles have
been collapsed, the new graph is called the reduced
dependency graph, or RDG. The RDG will always be a
directed acyclic graph (DAG). The car buyer example
contain no cycles so it is trivially the RDG.

Step 3 – Derive a Total Ordering, IO. The RDG implies
a partial ordering in which the activity constraints of a
CCSP should be applied and retracted during search. To
determine the implied partial ordering, an integer value is
defined for each node in the RDG, called the maximal
depth. The maximal depth for each RDG node is defined
as the number of nodes appearing above it in the RDG. If
there happens to be more than one path into an RDG node,
then the longest path must be taken as that node’s maximal
nest depth. For example, the nest depth of each variable in
the car buyer example is shown in Figure 2, and the
implied partial ordering is: },,,{},{ RHSAB .

As defined by (Gelle and Faltings 2003), any two nodes
with the same maximal depth are incomparable, and the
order in which their corresponding activity constraints are
applied is arbitrary. Thus, any total ordering, IO, which
obeys the implied partial ordering, is valid. For example,
two valid total orderings for the car buyer example are

RHSAB ,,,, and HRSAB ,,,, .

Step 4 – Enforcing the Derived Total Ordring, IO.
The CondBT algorithm enforces a sound and complete
search over the conditional variables via two additions: a
total variable ordering, IO, and a function applyNextAC().
The function applyNextAC() works by instantiating only
active variables, and simply skips over variables that are
not active, and is described in Function 1.

Function 1 - applyNextAC(), Conditional Variable
Instantiation Function. This function simply scans IO
from beginning to end and returns the first variable, v ,
which satisfies two conditions:
 1.) The variable must not belong to the current partial

solution, P. (Definition 1)
2.) The variable must be on the active variable list, IA.

Extension #2: Modified Backjumping Resolution
Step to account for conditional variables.
As Extension #2, we augment the Backjumping Resolution
Step (Proposition 1) to account for conditional variables.
To do this, we inform the backjumping resolution step that
a variable may be removed from the problem via
conceding any one of the activation conditions used to
instantiate it. Thus, when backjumping occurs, the
activation conditions responsible for a variable presently
being active are also added to the newly resolved nogood.
This modified resolution step is described formally below.

Proposition 2 - WCCSP Backjumping Resolution Step
Let i be a variable with domain, },,,,{ 21 mi vvvV K=
activity constraint)(iactiveAC → , and let mPPP ,,, 21 K
be partial solutions that do not include i. If,

(){ } (){ } (){ }mm viPviPviP ,,,,,, 2211 ∪∪∪ K are all

nogoods, then, ACPPP d ∪∪∪∪ K21 is also a
nogood. Note that the new nogood can be resolved by
removing variable i from the problem via conceding any
one of its activation conditions, AC .

Extension #3: Checking for Deactivated Variables
Extension #3 is more straightforward than the previous two.
When CondDB backjumps to a variable and changes its
value, it is possible for that reassignment to deactivate other
variables in the partial solution. In response, those variables
must also be unassigned, removed from the partial solution,
and the eliminating explanations depending on those
variables must be erased. This is accomplished via the
recursive function removeUnsupportedVars(v,P).

Function 2 – removeUnsupportedVars(j , P)

for each variable Pi ˆ∈ ,
 if si' activating constraint depends on the reassigned
variable j , unassign variable i , remove),(ivi from P,
and for each variable k assigned a value after i, remove
from kE any eliminating explanation that involves i, call
removeUnsupportedVars(i , P), and return.

Extension #4: A Branch-and-Bound Framework
Augmented with Minimal Suboptimal Nogoods
To extend DB to handle soft constraints, we integrate
Branch-and-Bound (B+B) search into the DB algorithm.
In addition, we augment B+B to construct minimal
suboptimal nogoods. A B+B framework consists of three
key attributes: an incumbent, an evaluation function, and a
pruning mechanism. A basic review of B+B search is
available in (Shiex et. al. 1995). For the first attribute, we
simply need to initialize an incumbent, ()∞∅= ,N , in

Appeared in AAAI-06

which we will store the lowest cost solution found so far
during the search. The second attribute, an evaluation
function, is already defined by the WCCSP. To
incorporate the third attribute, a pruning mechanism, we
need to augment DB’s elimination mechanism,ε , to prune
suboptimal partial solutions as well as inconsistent ones.
This is described formally in Definition 8. Additionally,
we augment DB’s elimination mechanism to construct
minimal suboptimal nogoods, as described in Function 3.

Definition 8 - WCCSP Elimination Mechanism,

).,(iPOε We define a new elimination mechanism Oε
for the WCCSP as a function which accepts as arguments a
partial solution, P , and a variable Pi ˆ∉ and returns a
(possibly empty) set),(iPE Oi ε= of eliminating
explanations for i . An elimination mechanism tries to
extend a partial solution, P , by assigning each possible
value for a variable i , and returns a reason for each value
assignment which along with P is inconsistent or
suboptimal given the problems constraints, CC and CS. If
the extended partial solution is suboptimal, (has a cost
greater than the current incumbent),),()(NfviPf ≥=∪
then a subset of the extended partial solution, iPM ∪⊆
is returned as the reason for inconsistency, since its
extension will be a suboptimal solution,).ˆ,(Mvi ≠ Where
M is determined by the function
minSubOptimalNogood(P,f(N)).

Function 3 – minSubOptimalNogood(P , f(N))
Let SE CC ⊆ be the set of soft constraints expressed in
the partial solution P , and thus contributors to).(Pf Let

EC be an ordered list of each constraint ECc∈ such

the associated costs,)(cf s , are ordered from greatest to
least. Let kC be the first k elements of EC such that

their combined cost exceeds).(Nf Let M be the set of
all variable assignment from each .kCc∈ Return M as a
minimal suboptimal nogood.

This concludes our description of the four extensions to DB in
order to solve WCCSPs. Proofs of completeness and
termination of CondDB-B+B are sketched out in the thesis
summarized by this paper (Effinger 2006).

Taking CondDB-B+B for a Test-Drive
In this section we give an execution trace of the CondDB-
B+B algorithm solving the car buyer example. Initially,
we assume CondDB-B+B receives as input, BI I = and

RHSABI O ,,,,= . In Figure 3, we show at each search
step the partial solution, ,P its cost,),(Pf the cost of the

Search
Step

P f(P) f(N) IA - P Ei B A S H R

1
- 2

3
1

9 2
3
1

9 2
3
1 { }

9 2 { }
3
1 { }

10 10 2
3
1 { }

9 10 2 { }
3
1 { }

9 10 2 { } {B}
3
1 { } {B}

9 10 2 { } {B} {B}
3
1 { }

9 10 2 { }
3 { }

0 { B }

{ A,S }{B=1}

{B=1,
A=1}

3

8

{ S }

{B=1,
A=1,
... }

{ }

{ }

5 {B=3}

{B= } { H,R }

{ H,R }

{ }

2

1

4 {B=2}

6
{B=3,
H=1} { R }

 Return the Incumbent Solution, N = ({B=2} , 10).

7
{B=3,
H=1,
... }

{ }

∅

∅

∞

∞

∞

∞

∅

∅

∅

∅
∅

∅

∅
∅

∅
∅

∅
∅

∅
∅
∅

Figure 3: Solving the car buyer WCCSP with CondDB-B+B

current incumbent,),(Nf the elimination explanations for
each variable, ,iE and also the set of active variables
which are not assigned values, PI A

ˆ− .

Step 0 – CondDB-B+B is initialized with ,∅=P ,ˆ ∅=iE

,BII IA == ,,,,, RHSABI O = and ()∞∅= ,N .

Step 1 - ,ˆ
AIP ≠ so the function applyNextAC() is called

and returns variable .B All three of sB' value
assignments are consistent with the constraints, CC, and it
is assigned the value 1. The new variable-value
assignment 1=B activates variables A and .S

Step 2 - ,ˆ
AIP ≠ so applyNextAC() is called and returns

variable .A Both of sA' value assignments are consistent
with the constraints CC, and it is assigned the value 1.
Step 3 - ,ˆ

AIP ≠ so applyNextAC() is called and returns
variable .S Both of sS ' value assignments are NOT
consistent with the constraints, CC, so it is not added to the
partial solution. The buyer does not like a sunroof! Since
S is self-inconsistent, each of its elimination explanations
are empty, { }.∅ }).{,2(}){,1(∅≠∪∅≠∪= SSEE SS

Appeared in AAAI-06

Step 4 – ,∅=L so backjump, { }.}{ BBE =∪∅∪∅=
(Proposition 2) Let).1,(),(Bvj j = Remove)1,(B from

,P and erase any elimination explanations involving B.
Call removeUnsupportedVars(B,P), which removes A
from .P Set }),{,1(∅≠∪= BEE BB and set .2=B

Now, AIP =ˆ and),()(NfPf < so that P is the new
incumbent. Set { }()10,2== BN .

Step 5 - AIP =ˆ so)ˆ,2(BPBEE BB −≠∪= and)3,(B
is added to .P The assignment { }3=B activates H and R.

Step 6 - ,ˆ
AIP ≠ so applyNextAC() is called and returns

variable .H The assignment 2=H is pruned as
suboptimal, { }).()2(NfHPf ≥=∪ Add 2=H to .P

Step 7 - ,ˆ
AIP ≠ so applyNextAC() is called and returns

variable R . Both of sR' value assignments are pruned as
suboptimal. Note that the minimization function (Def. 14)
eliminates H=1 from each no-good, since the cost of the
assignments to B and R alone (without even considering
H) already comprise suboptimal nogoods.
 Step 8 - ,∅=L so backjump, }.{∅=E An empty
nogood was produced. Return the incumbent,

{ }()10,2== BN . Search Success!!

Experimental Results
To test the CondDB-B+B algorithm, we developed a
random WCCSP generator which accepts three inputs: the
number of desired variables, the maximum domain size,
and the maximum depth of nested activity constraints. We
tweaked the random generator to output WCCSP instances
that lie near the phase transition by varying the ratio of
binary hard constraints to variables until the generated
instances were approximately 50% solvable. The
generator randomly constructs one activity constraint for
each variable, and one soft constraint per variable-value
assignment with a uniform cost distribution from 1 to 10.
 We benchmarked the CondDB-B+B algorithm against a
standard branch-and-bound algorithm augmented to handle
conditional variables (CondBT-B+B). We performed two
separate experiments. For the first experiment, the domain
size was fixed at 3, the maximum depth of activity
constraints was fixed at 4, and the number of variables was
varied from 6 to 20. For the second test, the domain size
was fixed at 3, and the depth of activity constraints, n, was
varied from 1 to 6. The activity constraints formed a
uniform depth tree, so that the number of variables and the
number of activity constraints grew at each step by
approximately 3^(n) as n varied from 1 to 6. As the metric
for comparison, we counted the number of search tree nodes
tested before an optimal solution or search failure was

returned. For each data point, we tested 100 WCCSP
instances, and individual tests were capped at 5000
candidates. The results, presented in Figures 4 thru 7, show
that CondDB-B+B provides a significant improvement in
average and worst-case case performance along two WCCSP

0

500

1000

1500

2000

2500

5 10 15 20
of variables

of

 s
ea

rc
h

tre
e

no
de

s

CondBT-B+B
CondBT-B+B + h
CondDB-B+B
CondDB-B+B + h

Figure 4: Average Case Test Results - Fixed Depth of

Nested Activity Constraints

0

1000

2000

3000

4000

5000

2 4 6 8 10 12 14 16 18 20
 # of variables

of

 se
ar

ch
 tr

ee
 n

od
es

CondBT-B+B
CondBT-B+B + h
CondDB-B+B
CondDB-B+B + h

Figure 5: Individual Test Case Results - Fixed Depth

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6
Maximum depth of nested activity constraints

of

 s
ea

rc
h

tre
e

no
de

s

CondBT-B+B
CondBT-B+B + h
CondDB-B+B
CondDB-B+B + h

Figure 6: Average Case Test Results – Varying Depth of

Nested Activity Constraints

Appeared in AAAI-06

0

200

400

600

800

1000

0 1 2 3 4 5 6
 Maximum depth of nested activity constraints

of

 se
ar

ch
 tr

ee
 n

od
es

CondBT-B+B

 CondBT-B+B + h

CondDB-B+B

CondDB-B+B + h

Figure 7: Individual Test Case Results - Varying Depth

dimensions; the number of variables and the maximum depth
of nested activity constraints. These promising results
motivate more extensive testing, and imply that DB and
similar backjumping-based algorithms can continue to
increase search efficiency in extended CSP domains, such as
WCCSPs, by using nogoods to avoid thrashing.

Future Work
One promising direction for future work is to extend more
sophisticated optimal search techniques, such as Russian Doll
Search (Verfaillie et. al. 1996) to WCCSPs. For example,
when a WCCSP’s dependency graph is strictly a tree, the cost
of instantiating a sub-tree can be directly attributed to the
parent assignment which activates it. This relationship can be
used as a tighter upper bound when B+B prunes based on
suboptimality. Preliminary results show that even this simple
heuristic can significantly improve performance as indicated
in Figures 4 thru 7 with the names CondBT-B+B+h and
CondDB-B+B+h. Local consistency checking and nogood
recording could also be incorporated into CondDB-B+B to
improve its performance, and an A* style search could
potentially improve performance at the cost of more memory.

Acknowledgements
We thank the anonymous reviewers for their thoughtful
comments. This research was supported by the NASA
H&RT program under contract NNA04CK91A, and the
DARPA SRS program under contract FA8750-04-2-0243.

References
Dago, P. and Verfaillie, G. 1996. Nogood Recording for
Valued CSPs. In Proc. of ICTAI-96.

Dechter, R. 1990. Enhancement Schemes for Constraint
Processing: Backjumping, Learning and Cutset
Decomposition. Artificial Intelligence, 41(3):273–312.

Dechter, R., and Dechter, A. 1988. Belief Maintenance in
Dynamic Constraint Networks. In AAAI '88, 37-42.

Effinger, R. 2006. Optimal Temporal Planning at Reactive
Time Scales via Dynamic Backtracking Branch-and-Bound.
S..M. diss., MIT.

Gaschnig, J. 1979. Performance Measurement and
Analysis of Certain Search Algorithms, Tech. Rept. CMU-
CS-79-124, Carnegie-Mellon University, Pittsburgh, PA.

Gelle, E. and Faltings, B. 2003. Solving mixed and
conditional constraint satisfaction problems. Constraints,
8(2):107–141.

Ginsberg, M. 1993. Dynamic Backtracking. Journal of
Artificial Intelligence Research 1:25--46.

Grant, S. 1997. Phase Transition Behaviour in Constraint
Satisfaction Problems. Ph.D. diss., The Univ. of Leeds.

Keppens, J., 2002. Compositional Ecological Modelling
via Dynamic Constraint Satisfaction with Order-of-
Magnitude Preferences. Ph.D. Thesis. Univ. of Edinburgh.

Larrosa., J. 2002. On Arc and Node Consistency in
Weighted CSP. In Proc. AAAI’02, Edmondton, CA.

Miguel, I. 2001. Dynamic Flexible Constraint Satisfaction
and Its Application to AI Planning. PhD diss., The Univ. of
Edinburgh.

Mittal, S. and Falkenhainer, B. 1990. Dynamic constraint
satisfaction problems. In Proc. AAAI-90.

Prosser, P. 1993. Hybrid algorithms for the constraint
satisfaction problems. Comp. Intelligence, 9(3):268-299.

Sabin D., et. al. 1995. A Constraint-Based Approach to
Diagnosing Configuration Problems. In Proc. IJCAI-95.
Workshop on AI in Distributed Information Networks.

Sabin, M. 2003. Towards More Efficient Solution of
Conditional CSPs. Ph.D. diss. The Univ. of New Hampshire.

Sabin, M., and Freuder, E. 1999. Detecting and resolving
inconsistency in conditional constraint satisfaction
problems. In AAAI'99 Workshop on Configuration, 95-100.

Schiex, T., et. al. 1995. Valued constraint satisfaction
problems. In Proceedings of IJCAI’95, 631-637.

Shapiro, L. and Haralick, R. 1981. Structural descriptions
and inexact matching. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 3:504–519.

Verfaillie, G., Lemaitre, M., T. Schiex. 1996. Russian Doll
Search, In Proc. of AAAI'96. Portland, OR.

Verfaillie, G. and Schiex, T., 1994. Dynamic Backtracking
for Dynamic CSPs. In ECAI’94.

Appeared in AAAI-06

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

