
Extending Dynamic Backtracking to Solve Weighted Conditional CSPs 

Robert T. Effinger and Brian C. Williams 
 

MIT – Computer Science and Artificial Intelligence Laboratory 
32 Vassar Street, Bld. 32-272 

Cambridge, MA 02139 
{effinger,williams}@mit.edu 

 
 

Abstract 
Many planning and design problems can be characterized as 
optimal search over a constrained network of conditional 
choices with preferences.  To draw upon the advanced 
methods of constraint satisfaction to solve these types of 
problems, many dynamic and flexible CSP variants have 
been proposed.  One such variant is the Weighted 
Conditional CSP (WCCSP).  So far, however, little work 
has been done to extend the full suite of CSP search 
algorithms to solve these CSP variants.  In this paper, we 
extend Dynamic Backtracking and similar backjumping-
based CSP search algorithms to solve WCCSPs by utilizing 
activity constraints and soft constraints in order to quickly 
prune infeasible and suboptimal regions of the search space.  
We provide experimental results on randomly generated 
WCCSP instances to prove these claims. 

Introduction 
Research on constraint satisfaction problems (CSP) has 
lead to many breakthroughs in our ability to understand, 
analyze, and solve combinatorial-style problems.  These 
advances have taken the form of fast and sophisticated 
search algorithms (Dechter 1990; Ginsberg 1993; Prosser 
1993), as well as in-depth complexity analyses to help 
differentiate between fundamentally easy and hard to solve 
CSP instances (Gaschnig 1979; Grant 1997).  To leverage 
these advances into more expressive domains, such as 
conditional planning with preferences and design 
configuration, many dynamic and flexible CSP variants 
have emerged (Miguel 2001).  One such variant, the 
Weighted Conditional CSP (WCCSP), employs activity 
constraints and soft constraints to model both conditional 
dependencies and preferences within a unified framework 
(Miguel 2001).   
* In this paper, we extend Dynamic Backtracking (DB) to 
solve WCCSPs via four extensions to Ginsberg’s original 
algorithm (Ginsberg 1993).  These extensions enable 
memory-bounded, conflict-directed, and optimal search of 
WCCSPs by utilizing activity constraints and soft 
constraints in order to quickly prune infeasible and 
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suboptimal regions of the search space.  While the 
pedagogical focus of this paper is to extend the DB 
algorithm in particular to solve WCCSPs, the ideas 
developed in this paper more generally apply to extending 
all backjumping-based algorithms to solve WCCSPs.   
 To place the ideas presented in this paper into proper 
perspective, we briefly review conditional, dynamic, 
valued and weighted CSPs, and discuss related work.   

 Background and Related Work 
(Mittal and Falkenhainer 1990) were the first to extend the 
CSP to support conditional variables.  This formalism is 
called a Conditional CSP (CCSP) (Sabin and Freuder 
1999).  A CCSP assumes variables enter and leave the 
problem according to special constraints, called activity 
constraints.  It is important to point out the difference 
between the CCSP and the Dynamic CSP (DCSP) 
developed by (Dechter and Dechter 1998).  The DCSP 
assumes that activity constraints either do not exist or are 
hidden from the CSP solver, thus, the addition and removal 
of variables appears random and unpredictable.   
 Valued CSPs (VCSP) incorporate soft constraints into 
the CSP framework to model preferences (Schiex, et. al. 
1995).  A Weighted CSP (WCSP) is a special instance of a 
VCSP in which the composition operator is constrained to 
be additive and non-idempotent (Shapiro and Haralick 
1981; Larrosa 2002).  In a WCSP, a cost is associated with 
each soft constraint, and the cost of a partial solution is 
calculated by summing the individual costs of each soft 
constraint violated by that partial solution.   
 Several CSP search algorithms have been extended to 
CCSPs and DCSPs.  (Sabin 2003) extended arc-
consistency and forward checking to CCSPs, and 
(Verfaillie and Schiex 1994) extended DB to DCSPs.  It is 
important to note that the DB algorithm developed by 
Verfaillie and Schiex is not meant to solve CCSPs; it is 
unable to reason about a CCSP’s activity constraints.  
(Miguel 2001) proposes a broad class of dynamic flexible 
CSP variants; the ideas presented in this paper can be 
viewed as filling in an empty element of Miguel’s sparsely 
populated matrix of dynamic flexible CSP variants and 
algorithms.  Also, (Dago and Verfaillie 1996) merge nogood 
learning with branch-and-bound search to make the 
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pruning mechanism more efficient.  In this paper, we 
merge backjumping-based techniques with branch-and-
bound search for the same desired effect.  Two restricted 
forms of the WCCSP have been studied previously in the 
literature under different names.  (Keppens 2002) defines 
the Dynamic Preference CSP in which all soft constraints 
must be unary constraints, and (Sabin et. al. 1995) define 
the Dynamic Partial CSP in which all constraints are soft 
and have equal cost.  
 The rest of this paper is organized as follows.  Next, we 
present a formal definition of the WCCSP along with a 
simple motivating example.  Then, we briefly review DB, 
and develop in detail the four extensions required to extend 
DB to solve WCCSPs.  To conclude, we give a simple walk-
through example, and provide experimental results on 
randomly generated WCCSP instances.   

The Weighted Conditional CSP (WCCSP) 
A WCCSP is a tuple, .)(,,,,,, PfCCCIVI SACI  Where, 

  •  { }niiiI ,,, 21 K= , is a set of finite domain variables. 

  •  { }nVVVV ,,, 21 K= , are finite domains for each .Ii ∈  

  •  II I ⊆ , is a set of initially active variables. 

  •  CC , is a set of hard constraints that must be satisfied. 

  •  AC , is a set of activity constraints describing the  
        conditions under which each variable becomes active.   
  •  SC , is a set of soft constraints of the form .)(, cfc s  

  •  Where, c  is an assignment of values to variables, and  
       ℜ→)(cf s  is a cost to be incurred if ,Pc∈  where  
        P is the current partial solution (Definition 1). 
  •  ),(Pf assigns a real-valued cost to a partial solution, 
       ,P by summing the costs of each soft constraint which      
       is violated by that partial solution, ∑

∈

=
Pc

s cfPf )()( . 

 
Definition 1 – Partial solution.  A partial solution, P, to a 
WCCSP is a subset IJ ⊆  and an assignment of a value to 
each variable in .J   We denote a partial solution by a tuple 
of pairs, ),( vi  which assign the value v  to the variable i .  

For a partial solution ,P we denote by P̂  the set of 
variables assigned values by .P  
 
Definition 2 – Activity Constraint.  An activity constraint 
is an expression of the form ),( kiactiveAC →  where AC  
represents an assignment of values to variables, 
{ },,,11 jj vivi == K  and is the condition under which 

variable ki  becomes active.  If a variable becomes active, it 
must subsequently be assigned a value from its domain that 

is both consistent with the current partial solution, ,P and 
the problem’s hard constraints, CC .   
 
Definition 3 – Active Variable List.  To keep track of 
which variables in a WCCSP are currently active, we 
define an active variable list, IA.  IA is defined as the set of 
variables with satisfied activity constraint conditions, .AC   
Note that the set of initially active variables, II, will always 
be on the active variable list, IA. 
 
Definition 4 – Solution to a WCCSP.  A solution, *,I to a 
WCCSP is an assignment of values to all active variables, 
IA, which satisfies CC, such that *)(If  is minimized.  The 
optimal solution to a WCCSP, *,I is formally defined as:  
 

andsatisfiedisCctsPfI C∈∀= ..)(minarg*      
                .satisfiedisCc A∈∀  
 

We also assume that a solution is minimal with respect to 
activity constraints as defined in (Gelle and Faltings 2003).  
It is important to note that the solvability of a WCCSP 
depends on II.  A solution may exist for some sets of 
initially active variables, II, but not for others.   
 
Definition 5 – Nogood.  A partial solution, P , is a nogood 
if and only if there is no WCCSP solution, I*, containing 
P .  Nogoods are commonly called conflicts. 

A Motivating Example 
To give a simple example of a WCCSP, we introduce a 
simple car configuration task commonly employed in the 
CCSP literature (Mittal and Falkenhainer 1990).  In this 
example, the car buyer’s objective is to minimize the cost 
of the vehicle subject to the car dealer’s configuration 
requirements, shown in Figure 1.  The car buyer must 
choose from Base Package (B) one of three values {luxury, 
standard, convertible}.  Choosing luxury activates the 
options Air-Conditioning (A) and Sunroof (S), while  
 

   

Variable Activates: Cost $

1.)  luxury airConditioning, 
sunroof

$9 K

2.) standard - $10 K
3.) convertible ragtop, hardtop $9 K
1.) no - $0 K
2.) yes - $2 K
1.) tint - $3 K
2.) no tint - $2 K
1.) no - $0 K
2.) yes - $2 K
1.) automatic - $3 K
2.) manual - $2 K

(H) hardtop

(R) ragtop

(B) base 
package

Values

(S) sunroof

(A)  Air- 
Conditioning

 
Figure 1:  An Example WCCSP, a car configuration task. 
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choosing standard activates no additional options, and 
choosing Convertible (C) activates the options Hardtop 
(H) and Ragtop (R).  Each base package and option has an 
associated cost.  Each option has a corresponding activity 
constraint: ),(1{ AactiveBC A →== ),(1 SactiveB →=      

),(3 RactiveB →=   )}.(3 HactiveB →=   In addition, the 
car buyer does not want a sunroof, so there are two 
compatibility constraints: }.21{ ≠∧≠= SSCC   The soft 
constraints in this example are all unary: ,9}1{{ →== BCS

 
,3}1{,2}2{,9}3{,10}2{ →=→=→=→= SABB   

,3}1{,2}2{,2}2{ →=→=→= RHS }.2}2{ →=R  

Dynamic Backtracking (DB) 
In this section, we briefly review Dynamic Backtracking 
(DB) as developed in (Ginsberg 1993) to solve the CSP.  
First, we briefly summarize the properties of DB, and then 
we present the DB pseudocode, with slight changes in 
notation, along with several requisite definitions.  A more 
thorough development of the DB pseudocode and 
definitions is available in (Ginsberg 1993). 
 
Properties of Dynamic Backtracking (DB) 
 DB ensures a complete, systematic, and memory-bounded 
search of the state space, while leveraging nogoods to only 
generate candidate plans that resolve all stored nogoods.  
When DB encounters a dead-end, it utilizes a backjumping 
resolution step (Proposition 1) to backjump directly to the 
source of the inconsistency, thus avoiding the “thrashing” 
behavior inherent to chronological backtracking.  In 
addition, DB dynamically reorders the partial solution 
when backjumping in order to preserve as much 
intermediate nogood information as possible.  Search 
failure is indicated when the backjumping resolution step 
returns an empty nogood, indicating that all domain values 
for a variable are inconsistent with the problem’s constraints.  
DB requires O(i2v) space where i is the number of 
variables, and v is the largest domain size.  The notation 
used in Proposition 1 is from (Verfaillie and Schiex 1994). 
 
Definition 6 – Eliminating Explanation.  Given a partial 
solution P  to a CSP, an eliminating explanation for a 
variable i is a pair ( )Tvi ,≠ where iVv∈ and .P̂T ⊆   The 
intended meaning is that i  cannot take the value v  because 
of the values already assigned by P  to the variables in .T   
An eliminating explanation can be viewed as a directed 
nogood.  For example, if the partial solution 

},,{ 332211 vivivi === is a nogood, it can be written in the 
directed form, ,},{ 332211 vivivi ≠→==  which 
corresponds to the eliminating explanation ( )},{, 2133 iivi ≠ . 
 

Definition 7 – Elimination Mechanism.  An elimination 
mechanism ),( iPε  for a CSP is a function which accepts 
as input a partial solution, P , and a variable .P̂i∉   The 
function returns a (possibly empty) set ),( iPEi ε=  of 
eliminating explanations for i .  An elimination mechanism 
tries to extend a partial solution, P , by assigning each 
possible value iVv∈  for a variable i , and returns a reason 
for each value assignment that is not consistent with P .  
For a set iE  of eliminating explanations, Ginsberg denotes 
by iÊ  the values that have been identified as eliminated, 
ignoring the reasons given.  Therefore, ),(ˆ iPε  returns just 
the values eliminated by ),( iPε , while ignoring the 
reasons given, which is formally stated as, ).,(ˆˆ iPEi ε=  

 
Proposition 1 - Backjumping Resolution Step.  Let i  be 
a variable with domain, },,,,{ 21 mi vvvD K=  and let 

mPPP ,,, 21 K  be partial solutions that do not include i . If, 

( ){ } ( ){ } ( ){ }mm viPviPviP ,,,,,, 2211 ∪∪∪ K are all 

nogoods, then, mPPP ∪∪∪ K21  is also a nogood. 

 
Dynamic Backtracking Pseudocode (DB) 
 

1.  Set ∅== iEP  for each .Ii∈  
 

2.  If ,ˆ IP =  return P.  Otherwise, select a variable 

.P̂Ii −∈   Set ).,( iPEE ii ε∪=  
 

3. Set .ˆ
ii EVL −=   If L is nonempty, choose an element     

   Lv∈   Add ),( vi  to P and return to step 2. 
 

4.   If L is empty, we must have ;ˆ
ii VE =  let E  be the set 

of all variables appearing in the explanations, T , of 
each elimination explanation, ( )Tvi ,≠  for each 

iEv ˆ∈ .  (Proposition 1, Backjumping Resolution Step) 
 

5.   If ,∅=E  return failure.  Otherwise, let ),( jvj  be 

the last entry in P such that .Ej∈   Remove ),( jvj  

from P and for each variable ,Pk∈  which was 
assigned a value after j, remove from kE  any 
eliminating explanation that involves j.  Set 
               ( ){ }PEvjjPEE jjj

ˆ,),( ∩≠∪∪= ε        

so that jv  is eliminated as a value for j because of the 

values taken by variables in .P̂E ∩   Now set i = j and 
return to step 3. 
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Extending Dynamic Backtracking to Solve 
Weighted Conditional CSPs (CondDB-B+B) 

To extend Dynamic Backtracking to solve Weighted 
Conditional CSPs (CondDB-B+B), we augment the 
algorithm to appropriately handle activity constraints and 
soft constraints.  This is accomplished via four extensions 
to the DB algorithm: 
 
1.)  A total variable ordering, IO, for searching over  
         conditional variables, and a conditional variable  
         instantiation function. 
2.)  A modified backjumping resolution step which  
         accounts for the behavior of conditional variables. 
3.)   A recursive check to remove deactivated variables  

from the partial solution when backjumping occurs. 
4.)   A branch-and-bound search framework augmented to  

construct minimal suboptimal nogoods. 
 
The CondDB-B+B pseudocode is presented to the right, 
with each change to Ginsberg’s original algorithm (DB) 
highlighted in grey and annotated with a superscript 
number indicating the extension it belongs to.  Next, we 
give a detailed description of each of the four extensions:   
 
Extension #1:  A total variable ordering, IO, and a 
conditional variable instantiation function. 
One systematic method for searching over conditional 
variables is to construct a directed graph from the 
conditional dependencies between variables.  Then, from 
this graph, a total variable ordering, IO, can be derived 
which together with extensions 2 and 3 result in a 
systematic search over the conditional variables.  This 
method, which we call CondBT in this paper, is described 
in detail in (Gelle and Faltings 2003) and (Sabin 2003).   
 For Extension #1, we simply merge CondBT with the 
DB algorithm.  This extension outfits DB with the basic 
machinery to search systematically over conditional 
variables.  At first glance, it may appear that CondBT’s 
strict variable ordering strategy is incompatible with DB’s 
dynamic variable reordering technique.  However, in 
actuality, the two merge quite nicely for the following 
reasons; CondBT restricts the order in which variables are 
added to the partial solution, while DB restricts the order in 
which variables are removed from the partial solution.  
Therefore, the two pieces are entirely complimentary.  
CondBT is in charge of picking which unassigned variable 
should be instantiated next (in order to ensure a systematic 
search over the conditional variables), and DB is in charge 
of rearranging, reassigning, and unassigning variables once 
they have been instantiated (in order to perform Dynamic 
Backtracking).   
 Starting on the next page, we summarize CondBT’s 
variable instantiation strategy in four steps: 

Dynamic Backtracking for the WCCSP (CondDB-B+B)  
1.  Set ., IIIP =∅=   Set ∅=iE  for each .Ii∈     

(1) Take as input the total variable ordering, IO . 
(4)    Set the incumbent solution ( )∞∅= ,N . 

 

2.a. (4) If ,ˆ
AIP =  and ),()( NfPf <  P is the new    

         incumbent solution. Set ( ).)(, PfPN =     
 

2.b.  (4)  If ,ˆ
AIP =  set ).ˆ,( iPviEE ii −≠∪=  Otherwise,  

        select a variable (1) )(CapplyNextAi =  (Function 1)  
        and set ∪= ii EE (4) ).,( iPOε  (Definition 8) 

3.   Set .ˆ
ii EVL −=   If J is nonempty, choose an element 

.Lv∈   Add ),( vi  to P and return to step 2. 

4.   If  L  is empty, we must have ;ˆ
ii VE =  let E be the set 

of all variables appearing in the explanations, T, of 
each elimination explanation, ( )Tvi ,≠  for each  

iEv ˆ∈ ,  (2)  plus all of the variables appearing in 
variable i’s activating constraint, AC. (Proposition 2, 
WCCSP Backjumping Resolution Step) 
 

5.  If ,∅=E  (4) return the incumbent, N.  Otherwise, let 

 ),( jvj  be the last entry in P such that .Ej ∈   

Remove ),( jvj  from P and  for each variable Pk∈  

which was assigned a value after j, remove from kE  
any eliminating explanation that involves  j. (3)  Call 
removeUnsupportedVars( j , P ), and set, 

 

∪= jj EE (4) ),( jPOε ( ){ }PEvj j
ˆ, ∩≠∪  

 

 so that jv  is eliminated as a value for j because of the 

values taken by variables in .P̂E ∩   Now set i = j and 
return to step 3. 
 (1) Extension #1,  (2) Extension #2,  (3) Extension #3  
(4) Extension #4 

 
 
 
 
 
 
 
 

Figure 2:  Dependency graph for the car buyer example. 

(A)  Air -
Conditioning

{no $0k, yes $2k}

(S)  Sunroof
{yes $2k ,

no $1k}

(H)  Hardtop
{no $0k , 

yes $2k }

(R)  Ragtop
{ auto $3k , 
manual $2k}

Maximal Depth: Variables:

0

1

(B) Base Package:
{ luxury $9k, standard $10k, convertible $9k}

(A)  Air -
Conditioning

{no $0k, yes $2k}

(S)  Sunroof
{yes $2k ,

no $1k}

(H)  Hardtop
{no $0k , 

yes $2k }

(R)  Ragtop
{ auto $3k , 
manual $2k}

Maximal Depth: Variables:

0

1

(B) Base Package:
{ luxury $9k, standard $10k, convertible $9k}

Appeared in AAAI-06



Step 1 - Create a Dependency Graph.  The dependencies 
between a CCSP’s activity constraints, CA, can be 
represented in the form of a directed graph, called a 
dependency graph, where the root node is defined as the 
set of all initially active variables, II.  For example, the 
dependency graph for the car buyer example is shown in 
Figure 2, and the initially active variable is Base Package. 
  
Step 2 – Eliminate Cycles in the Dependency Graph.  
Once a CCSP’s dependency graph is constructed, any 
cycles in the graph must be eliminated by clustering the 
cyclic elements into a super-node.  After all cycles have 
been collapsed, the new graph is called the reduced 
dependency graph, or RDG.  The RDG will always be a 
directed acyclic graph (DAG).  The car buyer example 
contain no cycles so it is trivially the RDG. 
 
Step 3 – Derive a Total Ordering, IO.  The RDG implies 
a partial ordering in which the activity constraints of a 
CCSP should be applied and retracted during search.  To 
determine the implied partial ordering, an integer value is 
defined for each node in the RDG, called the maximal 
depth.  The maximal depth for each RDG node is defined 
as the number of nodes appearing above it in the RDG.  If 
there happens to be more than one path into an RDG node, 
then the longest path must be taken as that node’s maximal 
nest depth.  For example, the nest depth of each variable in 
the car buyer example is shown in Figure 2, and the 
implied partial ordering is: },,,{},{ RHSAB .   

As defined by (Gelle and Faltings 2003), any two nodes 
with the same maximal depth are incomparable, and the 
order in which their corresponding activity constraints are 
applied is arbitrary.  Thus, any total ordering, IO, which 
obeys the implied partial ordering, is valid.  For example, 
two valid total orderings for the car buyer example are 

RHSAB ,,,,  and HRSAB ,,,, .  
 
Step 4 – Enforcing the Derived Total Ordring, IO. 
The CondBT algorithm enforces a sound and complete 
search over the conditional variables via two additions: a 
total variable ordering, IO, and a function applyNextAC().  
The function applyNextAC( ) works by instantiating only 
active variables, and simply skips over variables that are 
not active, and is described in Function 1. 
 
Function 1 - applyNextAC( ), Conditional Variable 
Instantiation Function.  This function simply scans IO 
from beginning to end and returns the first variable, v , 
which satisfies two conditions:   
 1.)  The variable must not belong to the current partial 

solution, P. (Definition 1) 
2.)   The variable must be on the active variable list, IA. 
 

Extension #2:  Modified Backjumping Resolution 
Step to account for conditional variables. 
As Extension #2, we augment the Backjumping Resolution 
Step (Proposition 1) to account for conditional variables.  
To do this, we inform the backjumping resolution step that 
a variable may be removed from the problem via 
conceding any one of the activation conditions used to 
instantiate it.  Thus, when backjumping occurs, the 
activation conditions responsible for a variable presently 
being active are also added to the newly resolved nogood.  
This modified resolution step is described formally below. 
 
Proposition 2 - WCCSP Backjumping Resolution Step 
Let i  be a variable with domain, },,,,{ 21 mi vvvV K=  
activity constraint )(iactiveAC → , and let mPPP ,,, 21 K  
be partial solutions that do not include i.  If, 

( ){ } ( ){ } ( ){ }mm viPviPviP ,,,,,, 2211 ∪∪∪ K  are all 

nogoods, then, ACPPP d ∪∪∪∪ K21  is also a 
nogood.  Note that the new nogood can be resolved by 
removing variable i  from the problem via conceding any 
one of its activation conditions, AC .  
 
Extension #3:  Checking for Deactivated Variables 
Extension #3 is more straightforward than the previous two.  
When CondDB backjumps to a variable and changes its 
value, it is possible for that reassignment to deactivate other 
variables in the partial solution.  In response, those variables 
must also be unassigned, removed from the partial solution, 
and the eliminating explanations depending on those 
variables must be erased.  This is accomplished via the 
recursive function removeUnsupportedVars(v,P). 
 
Function 2 – removeUnsupportedVars(  j , P )  

for each variable Pi ˆ∈ , 
 if si'  activating constraint depends on the reassigned 
variable j , unassign variable i , remove ),( ivi  from P, 
and for each variable k assigned a value after i, remove 
from kE  any eliminating explanation that involves i, call 
removeUnsupportedVars( i , P ), and return. 

 
Extension #4: A Branch-and-Bound Framework 
Augmented with Minimal Suboptimal Nogoods 
To extend DB to handle soft constraints, we integrate 
Branch-and-Bound (B+B) search into the DB algorithm.  
In addition, we augment B+B to construct minimal 
suboptimal nogoods.  A B+B framework consists of three 
key attributes: an incumbent, an evaluation function, and a 
pruning mechanism.    A basic review of B+B search is 
available in (Shiex et. al. 1995).  For the first attribute, we 
simply need to initialize an incumbent, ( )∞∅= ,N , in 
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which we will store the lowest cost solution found so far 
during the search.  The second attribute, an evaluation 
function, is already defined by the WCCSP.  To 
incorporate the third attribute, a pruning mechanism, we 
need to augment DB’s elimination mechanism,ε , to prune 
suboptimal partial solutions as well as inconsistent ones.  
This is described formally in Definition 8.  Additionally, 
we augment DB’s elimination mechanism to construct 
minimal suboptimal nogoods, as described in Function 3. 
 
Definition 8 - WCCSP Elimination Mechanism, 

).,( iPOε   We define a new elimination mechanism Oε  
for the WCCSP as a function which accepts as arguments a 
partial solution, P , and a variable Pi ˆ∉  and returns a 
(possibly empty) set ),( iPE Oi ε=  of eliminating 
explanations for i .  An elimination mechanism tries to 
extend a partial solution, P , by assigning each possible 
value for a variable i , and returns a reason for each value 
assignment which along with P  is inconsistent or 
suboptimal given the problems constraints, CC and CS.  If 
the extended partial solution is suboptimal, (has a cost 
greater than the current incumbent), ),()( NfviPf ≥=∪  
then a subset of the extended partial solution, iPM ∪⊆  
is returned as the reason for inconsistency, since its 
extension will be a suboptimal solution, ).ˆ,( Mvi ≠   Where 
M  is determined by the function 
minSubOptimalNogood(P,f(N)).   
 
Function 3 – minSubOptimalNogood( P , f(N) ) 
Let SE CC ⊆  be the set of soft constraints expressed in 
the partial solution P , and thus contributors to ).(Pf   Let 

EC  be an ordered list of each constraint ECc∈  such 

the associated costs, )(cf s , are ordered from greatest to 
least.   Let kC  be the first k elements of EC  such that 

their combined cost exceeds ).(Nf   Let M be the set of 
all variable assignment from each .kCc∈   Return M  as a 
minimal suboptimal nogood. 
 
This concludes our description of the four extensions to DB in 
order to solve WCCSPs.  Proofs of completeness and 
termination of CondDB-B+B are sketched out in the thesis 
summarized by this paper (Effinger 2006).   
 
Taking CondDB-B+B for a Test-Drive 
In this section we give an execution trace of the CondDB-
B+B algorithm solving the car buyer example.  Initially,  
we assume CondDB-B+B receives as input, BI I =  and 

RHSABI O ,,,,= .  In Figure 3, we show at each search 
step the partial solution, ,P  its cost, ),(Pf  the cost of the 

Search 
Step

P f(P) f(N) IA - P Ei B A S H R

1  
- 2  

3
1  

9 2  
3
1  

9 2  
3
1  {     }

9 2  {     }
3
1 {     }  

10 10 2  
3
1 {     }  

9 10 2 {     }  
3
1 {     }  

9 10 2 {     }  {B}
3
1 {     }  {B}

9 10 2 {     }  {B} {B}
3
1 {     }  

9 10 2 {     }  
3 {     }

0 { B }

{ A,S }{B=1}

{B=1,  
A=1}

3

8

{ S }

{B=1,  
A=1, 
...  }

{     }

{     }

5 {B=3}

{B=    } { H,R }

{ H,R }

{      }

2

1

4 {B=2}

6
{B=3, 
H=1} { R }

 Return the Incumbent Solution, N = ( {B=2} , 10 ).

7
{B=3, 
H=1, 
...    }

{     }

∅

∅

∞

∞

∞

∞

∅

∅

∅

∅
∅

∅

∅
∅

∅
∅

∅
∅

∅
∅
∅

Figure 3:  Solving the car buyer WCCSP with CondDB-B+B 
 
current incumbent, ),(Nf  the elimination explanations for 
each variable, ,iE  and also the set of active variables 
which are not assigned values, PI A

ˆ− .  

Step 0 – CondDB-B+B is initialized with ,∅=P  ,ˆ ∅=iE   

,BII IA == ,,,,, RHSABI O =  and ( )∞∅= ,N . 

Step 1 - ,ˆ
AIP ≠ so the function applyNextAC( ) is called 

and returns variable .B   All three of sB'  value 
assignments are consistent with the constraints, CC, and it 
is assigned the value 1.  The new variable-value 
assignment 1=B  activates variables A and .S   

Step 2 - ,ˆ
AIP ≠  so applyNextAC( ) is called and returns 

variable .A  Both of sA'  value assignments are consistent 
with the constraints CC, and it is assigned the value 1.  
Step 3 - ,ˆ

AIP ≠ so applyNextAC( ) is called and returns 
variable .S   Both of sS '  value assignments are NOT 
consistent with the constraints, CC, so it is not added to the 
partial solution.  The buyer does not like a sunroof!  Since 
S is self-inconsistent, each of its elimination explanations  
are empty, { }.∅   }).{,2(}){,1( ∅≠∪∅≠∪= SSEE SS  
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Step 4 – ,∅=L  so backjump, { }.}{ BBE =∪∅∪∅=  
(Proposition 2)  Let ).1,(),( Bvj j =   Remove )1,(B  from 

,P and erase any elimination explanations involving B.   
Call removeUnsupportedVars(B,P), which removes A  
from .P   Set }),{,1( ∅≠∪= BEE BB  and set .2=B  

Now, AIP =ˆ  and ),()( NfPf <  so that P  is the new 
incumbent.  Set { }( )10,2== BN . 

Step 5 - AIP =ˆ  so )ˆ,2( BPBEE BB −≠∪=  and )3,(B  
is added to .P   The assignment { }3=B activates H and R. 

Step 6 - ,ˆ
AIP ≠ so applyNextAC( ) is called and returns 

variable .H   The assignment 2=H  is pruned as 
suboptimal, { } ).()2( NfHPf ≥=∪  Add 2=H  to .P    

Step 7 - ,ˆ
AIP ≠ so applyNextAC( ) is called and returns 

variable R .  Both of sR'  value assignments are pruned as 
suboptimal.  Note that the minimization function (Def. 14) 
eliminates H=1 from each no-good, since the cost of the 
assignments to B and R alone (without even considering 
H) already comprise suboptimal nogoods.   
 Step 8 - ,∅=L  so backjump, }.{∅=E   An empty 
nogood was produced.  Return the incumbent, 

{ }( )10,2== BN .    Search Success!! 

Experimental Results 
To test the CondDB-B+B algorithm, we developed a 
random WCCSP generator which accepts three inputs: the 
number of desired variables, the maximum domain size, 
and the maximum depth of nested activity constraints.  We 
tweaked the random generator to output WCCSP instances 
that lie near the phase transition by varying the ratio of 
binary hard constraints to variables until the generated 
instances were approximately 50% solvable.  The 
generator randomly constructs one activity constraint for 
each variable, and one soft constraint per variable-value 
assignment with a uniform cost distribution from 1 to 10.   
 We benchmarked the CondDB-B+B algorithm against a 
standard branch-and-bound algorithm augmented to handle 
conditional variables (CondBT-B+B).  We performed two 
separate experiments.  For the first experiment, the domain 
size was fixed at 3, the maximum depth of activity 
constraints was fixed at 4, and the number of variables was 
varied from 6 to 20.  For the second test, the domain size 
was fixed at 3, and the depth of activity constraints, n, was 
varied from 1 to 6.  The activity constraints formed a 
uniform depth tree, so that the number of variables and the 
number of activity constraints grew at each step by 
approximately 3^(n) as n varied from 1 to 6.  As the metric 
for comparison, we counted the number of search tree nodes 
tested before an optimal solution or search failure was 

returned.  For each data point, we tested 100 WCCSP  
instances, and individual tests were capped at 5000 
candidates.  The results, presented in Figures 4 thru 7, show 
that CondDB-B+B provides a significant improvement in 
average and worst-case case performance along  two  WCCSP  
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Figure 4:   Average Case Test Results - Fixed Depth of 

Nested Activity Constraints 
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Figure 5:  Individual Test Case Results - Fixed Depth 
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Figure 7: Individual Test Case Results - Varying Depth  

 
dimensions; the number of variables and the maximum depth 
of nested activity constraints.  These promising results 
motivate more extensive testing, and imply that DB and 
similar backjumping-based algorithms can continue to 
increase search efficiency in extended CSP domains, such as 
WCCSPs, by using nogoods to avoid thrashing.   
 

Future Work 
One promising direction for future work is to extend more 
sophisticated optimal search techniques, such as Russian Doll 
Search (Verfaillie et. al. 1996) to WCCSPs.  For example, 
when a WCCSP’s dependency graph is strictly a tree, the cost 
of instantiating a sub-tree can be directly attributed to the 
parent assignment which activates it.  This relationship can be 
used as a tighter upper bound when B+B prunes based on 
suboptimality.  Preliminary results show that even this simple 
heuristic can  significantly improve performance as indicated 
in Figures 4 thru 7 with the names CondBT-B+B+h and 
CondDB-B+B+h.  Local consistency checking and nogood 
recording could also be incorporated into CondDB-B+B to 
improve its performance, and an A* style search could 
potentially improve performance at the cost of more memory.   
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