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Abstract

Model-based diagnosis has largely operated on hard-
ware systems. However, in most complex systems to-
day, hardware is augmented with software functions
that influence the system’s behavior. In this paper, hard-
ware models are extended to include the behavior of as-
sociated embedded software, resulting in more compre-
hensive diagnoses. Prior work introduced probabilistic,
hierarchical, constraint-based automata (PHCA) to al-
low the uniform and compact encoding of both hard-
ware and software behavior. This paper focuses on
PHCA-based monitoring and diagnosis to ensure the
robustness of complex systems. We introduce a novel
approach that frames diagnosis over a finite time hori-
zon as a soft constraint optimization problem (COP),
allowing us to leverage an extensive body of efficient
solution methods for COPs. The solutions to the COP
correspond to the most likely evolutions of the complex
system. We demonstrate our approach on a vision-based
rover navigation system, and models of the SPHERES
and Earth Observing One spacecraft.

Introduction
Model-based diagnosis of devices has traditionally oper-
ated on hardware models (de Kleer & Williams 1987;
Dressler & Struss 1996). For instance, given an observation
sequence, the Livingstone (Williams & Nayak 1996) diag-
nostic engine estimates the state of hardware components
based on hidden Markov models that describe each compo-
nent’s behavior in terms of nominal and faulty modes. At the
other end of the spectrum, researchers have applied model-
based diagnosis to software debugging (Mateis, Stumptner,
& Wotawa 2000). This paper explores the middle ground
between the two, in particular the monitoring and diagnosis
of systems with combined hardware and software behavior.

Many complex systems today, such as spacecraft, robotic
networks, automobiles and medical devices consist of hard-
ware components whose functionality is extended or con-
trolled by embedded software. Examples of devices with
software-extended behavior include a communications mod-
ule with an associated driver, and an inertial navigation unit
with embedded software for trajectory determination. The
embedded software in each of these systems interacts with
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the hardware components and influences their behavior. In
order to correctly estimate the state of these devices, it is
essential to consider their software-extended behavior.

As an example of a complex system, consider vision-
based navigation for an autonomous rover exploring the sur-
face of a planet. The camera in the navigation system is
an instance of a device that has software-extended behav-
ior: the image processing software embedded within the
camera module augments the functionality of the camera by
processing each image and determining whether it is cor-
rupt. A sensor measuring the camera voltage may be used
for estimating the physical state of the camera. A hardware
model of the camera describes its physical behavior in terms
of inputs, outputs and available sensor measurements. A di-
agnosis engine, such as Livingstone, that uses only hard-
ware models will not be able to reason about a corrupt im-
age. Consider, for instance, a scenario in which the camera
sensor measures a zero voltage. Based solely on hardware
models of the camera, the measurement sensor and the bat-
tery, the most likely diagnoses will include camera failure,
low battery voltage and sensor failure. However, given a
software-extended model of the camera that incorporates the
behavior of the image processing software, the quality of the
image may be used to correctly diagnose the navigation sys-
tem. Given that the processed image is not corrupt, the most
likely diagnosis, that the measurement sensor is broken, may
be deduced. This scenario demonstrates that a diagnostic en-
gine for systems with software-extended behavior must: 1)
monitor the behavior of both the hardware and its embedded
software, so that the software state can be used for diagnos-
ing the hardware, and 2) reason about the system state, given
delayed symptoms. An instance of a delayed symptom is the
quality of the processed image.

In this paper we introduce a novel monitoring and diag-
nostic system that operates on software-extended behavior
models, to meet requirements 1) and 2) listed above. In con-
trast to previous work on model-based software debugging,
the purpose of this work is to leverage information within
the embedded software to refine the diagnoses of physi-
cal systems. As such, we are not addressing the problem
of diagnosing software bugs discovered at runtime, which
can be handled by a separate exception handling mecha-
nism. Capturing the behavior of software is more com-
plex than that of hardware, due to the hierarchical struc-
ture of a program and the use of complex constructs. We
address this complexity by using probabilistic, hierarchi-
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cal, constraint-based automata (PHCA) (Williams, Chung,
& Gupta 2001). Building upon this previous work, we in-
troduce a PHCA-based monitoring and diagnostic engine
that can handle delayed symptoms. While Livingstone-2
(L2) (Kurien & Nayak 2000) handles delayed symptoms
for diagnosing hardware systems, our approach generalizes
this capability to software-extended behavior, by posing the
PHCA-based diagnosis problem as a receding finite horizon
estimator. We frame diagnosis as a constraint optimization
problem based on soft constraints that encode the structure
and semantics of PHCA models. The soft constraint formu-
lation provides convenient expressivity and enables the use
of efficient optimal constraint solvers to enumerate the most
likely diagnoses of the software-extended system.

Modeling Software-Extended Behavior
Consider the software-extended camera module for the
vision-based navigation scenario introduced above. Assume
that the failure probabilities for the battery, the camera and
the sensor are 10%, 5% and 1% respectively. A typical be-
havioral model of the camera is shown on the left of Figure
1. The camera can be in one of 3 modes: on, off or broken.
The hardware behavior in each of the modes is specified in
terms of inputs to the camera, such as power, and the behav-
ior of camera components, such as the shutter. The broken
mode is unconstrained in order to accommodate novel types
of failures. Mode transitions can occur probabilistically, or
as a result of issued commands. The battery and the sen-
sor can be modeled similarly. For the scenario introduced
above, the most likely diagnoses of the module, generated
based on the hardware models alone, are shown on the right
of Figure 1. However, the unmodeled software components
can offer important evidence that substantially alters the di-
agnosis. A sample specification of the behavior of the image
processing software may take the following form:

If an image is taken by the camera, process it to determine
whether it is corrupt. If the image is corrupt, discard it and
reset the camera; retry until a non-corrupt image is obtained
for navigation. Once a high quality image is stored, wait for
new image requests from the navigation unit.

Such a specification abstracts the behavior of the image
processing software implemented in an embedded program-
ming language, such as Esterel (Berry & Gonthier 1992) or
RMPL (Williams, Chung, & Gupta 2001). For the above
scenario, given that the image is not corrupt, the possibility
that the camera is broken becomes very unlikely. This is il-
lustrated in Figure 2. Unlike a hardware component that can
typically be described by a single mode of behavior, moni-
toring software behavior necessitates tracking simultaneous
hierarchical modes. Furthermore, a modeling framework for
software-extended systems must support the specification
of complex behavioral constructs. Probabilistic, hierarchi-
cal, constraint-based automata (PHCA) (Williams, Chung,
& Gupta 2001) are compact encodings of hidden Markov
models that capture both hardware and software behavior.
Definition 1 (PHCA)
A PHCA is a tuple < Σ, PΘ,Π, O,C, PT >, where:
• Σ is a set of locations, partitioned into primitive locations

Σp and composite locations Σc. Each composite location
denotes a hierarchical, constraint automaton. A location
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may be marked or unmarked. A marked location repre-
sents an active execution branch.

• PΘ(Θi) denotes the probability that Θi ⊆ Σ is the set of
start locations. Each composite location li ⊆Σc may have
a set of start locations to be marked when li is marked.

• Π is a set of finite domain variables. C[Π] is the set of all
finite domain constraints over Π.

• O ⊆ Π is the set of observable variables.
• C : Σ → C[Π] associates with each location li ⊆ Σ a

finite domain behavioral constraint C(li).
• PT (li), for each li ⊆ Σp, is a probability distribution over

a set of transition functions T (li) : Σ
(t)
p × C[Π](t) →

2Σ(t+1). Each transition function maps a marked location
into a set of locations to be marked at the next time step,
provided that the transition’s guard constraint is satisfied.

Definition 2 (PHCA State)
The state of a PHCA at time t is a set of marked locations,
called a marking m(t) ⊂ Σ.

Figure 3 shows a PHCA model of the camera module.
Circles represent primitive locations and boxes represent
composite locations. The ”On” composite location contains
three subautomata that correspond to the primitive locations
”Initializing”, ”Idle” and ”Taking Picture”. Each location of
the PHCA may have behavioral constraints. In addition to
the physical camera behavior, the model incorporates quali-
tative software behavior, such as processing the image. Fur-
thermore, the possible camera configurations may be con-
strained by the embedded software. For example, if the im-
age is determined to be corrupt, the software attempts to re-
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Figure 3: PHCA model for the camera/image processing module.

set the camera. This restricts the camera behavior to transi-
tion to the Initializing location.

To illustrate PHCA-based diagnosis, consider the state
trajectories shown in Figure 2. At time step 2, as the sen-
sor measurement indicates zero voltage, the most likely es-
timated trajectories end at 1) battery = low with 10% proba-
bility, 2) camera = broken with 5% probability and 3) sensor
is broken with 1% probability. For the first trajectory, which
indicates that the battery is low, the power to the camera is
not nominal, hence the camera will stay in the ”Off” loca-
tion. For the second trajectory, the camera will be in the
”Broken” location. For the third trajectory, which indicates
that the sensor is broken, the power input to the camera will
be unconstrained, and hence the PHCA state of the cam-
era may include a marking of the ”On” location. Although
the evolutions of this third trajectory have an initially low
probability of 1%, at time step 6 they become more likely
than the others as the embedded software determines that
the image is valid. The reason is because the second most
likely trajectory at time 2 with camera = ”Broken” location
marked has a 0.001 probability of generating a valid image,
thus making the probability of that trajectory 0.005% at time
6. This latter trajectory is less probable than those trajecto-
ries stemming from the sensor being broken with 1% prob-
ability. Similarly, the first trajectory with battery = low and
camera = off becomes less likely at time step 6 as there is
0.001% probability of processing a valid image while the
camera is ”Off”.

The following sections introduce a novel capability for
PHCA-based trajectory tracking in the presence of delayed
symptoms, addressing the requirements highlighted above.

Best-First Trajectory Enumeration for PHCA
PHCA-based monitoring and diagnosis are formulated as the
task of enumerating and tracking the most likely trajectories
of system state. Given a PHCA state distribution at time t
and an assignment to observable and command variables in
Π (see Definition 1) at times t + 1 and t respectively, Best-
First Trajectory Enumeration (BFTE) is the problem of es-

timating the most likely transitions to PHCA states at time
t + 1. Ideally, trajectory enumeration will maintain a com-
plete probability distribution of all possible system trajec-
tories. However, maintaining all possible state trajectories
at each time step is intractable because of the exponential
growth in state space. Thus at every time step, only a limited
number of trajectories (K-Best) are maintained . A potential
problem with this approach is that it may miss the best di-
agnosis if a trajectory through a pruned state that is initially
very unlikely becomes very likely after additional evidence.
For example, if we track only 3 trajectories in Figure 2, the
initially unlikely state (Sensor = Broken) at time 1 will
be pruned, resulting in the best diagnosis to be unreachable
when additional evidence is available at time 6.

Dealing with delayed symptoms is particularly important
for diagnosing software-extended systems, due to typically
delayed observations associated with complex processes.
We generalize the L2 capability to PHCA-based diagnosis
by performing BFTE within a receding N-Stage time hori-
zon. We refer to this problem as N-Stage Best-First Trajec-
tory Enumeration (N-BFTE) for PHCA. Although our ap-
proach still limits the number of tracked trajectories, it lever-
ages the N-Stage history of observations and issued com-
mands to reason about delayed symptoms.

Given a probability distribution P (S(t)) of PHCA states
S at time t, and assignments to observable and command
variables in Π at times (t → t + N ) and (t → t + N − 1)
respectively, the task of N-BFTE is to estimate the most
probable trajectories, within the time horizon (t → t + N ),
that are consistent with the observations, commands and
the PHCA model. We define the probability of a trajectory
{S

(t)
i , S

(t+1)
i+1 , S

(t+2)
i+2 , .., S

(t+N)
i+N } as:

P (S
(t)
i ) ·

∏

j=0..N−1

PT (S
(t+j+1)
i+j+1 |S

(t+j)
i+j ,Π(t+j))·

∏

j=0..N

P (O(t+j)|S
(t+j)
i+j ) (1)

where PT is the transition probability from a current state
to a target state. Since a PHCA state consists of multiple
marked locations, each of which may transition to multiple
target locations, T is a set of transitions taken from locations
within the current state and leading to locations within the
target state. Therefore, PT is the product of the probabilities
of all transitions τ ∈ T . Within the consistency-based frame-
work, the probability of observations O(t+j) for j = 0..N
in Equation 1 are given by:

P (O(t+j)|S
(t+j)
t+j ) =

{

1 if O(t+j) ∧ S
(t+j)
t+j consistent

0 otherwise

Our approach to N-BFTE for PHCA models consists of
two phases: an offline compilation phase and an online so-
lution phase. In the offline phase, we frame the N-BFTE
problem as a constraint optimization problem (COP) within
the N-Stage horizon. In the online phase, the COP is solved
to generate the K-Best PHCA trajectories in decreasing or-
der of probability, as given by Equation 1. The following
sections describe each phase in detail.
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Offline Phase: Formulation of COP
We frame the N-BFTE problem for PHCA models as a soft
constraint optimization problem (COP) (Schiex, Fargier, &
Verfaillie 1995). The COP encodes the PHCA models as
probabilistic constraints, such that the optimal solutions cor-
respond to the most likely PHCA state trajectories. This for-
mulation allows a separation between probability specifica-
tion and variables to be solved for. Thus, we can associate
probabilities with constraints that encode transitions, while
solving for state variables.
Definition 3 (Constraint Optimization Problem)
A probabilistic constraint optimization problem (COP) is
a triple (X,D,F ) where X = {X1, ..., Xn} is a set of
variables with corresponding set of finite domains D =
{D1, ..., Dn}, and F = {F1, ..., Fm} is a set of functions
Fi : (Si, Ri) → [0, 1]. Each constraint (Si, Ri) consists of
a scope Si = {Xi1, ..., Xik} ⊆ X , and a relation Ri ⊆
Di1× ...×Dik defining all allowed assignments to variables
in Si. Each function Fi maps the tuples of (Si, Ri) to a prob-
ability value in [0, 1]. Given variables of interest (solution
variables) Y ⊆ X , a solution to the COP is an assignment to
Y that is consistent with R, has a consistent extension to all
variables X , and maximizes the global probability value in
terms of the functions Fi.

We encode the structure and semantics of PHCA models
as a probabilistic COP, consisting of:

• Set of variables X
(t)
Σ ∪Π(t) ∪X

(t)
Exec for t = 0..N , where

X
(t)
Σ = {L

(t)
1 , ..., L

(t)
n } is a set of variables that corre-

spond to PHCA locations li ∈ Σ, Π(t) is the set of PHCA
variables at time t, and X

(t)
Exec = {E

(t)
1 , ..., E

(t)
n } is a set

of auxiliary variables used to encode the execution seman-
tics of the PHCA within the N-Stage time horizon.

• Set of finite, discrete-valued domains DXΣ
∪ DΠ ∪

DXExec
, where DXΣ

= {Marked, Unmarked} is the
domain for each variable in XΣ, DΠ is the set of domains
for PHCA variables Π, and DExec is a set of domains
for variables XExec. For brevity, we will abbreviate do-
main values throughout this paper as: CO=Consistent,
IN=Inconsistent, MA=Marked, UM=Unmarked,
DI=Disabled, EN=Enabled.

• Set of constraints R comprised of the behavioral con-
straints associated with PHCA locations, and an encoding
of the PHCA execution semantics, presented below.

• Functions F that map tuples allowed by constraints R to
probabilities. Disallowed tuples are assigned probability
0. For hard constraints, allowed tuples are assigned proba-
bility 1. For soft constraints, tuples are mapped to a range
of probability values based on the PHCA model, as given
by functions F presented below. These functions incorpo-
rate the probability distribution PΘ of PHCA start states,
and probabilities PT associated with PHCA transitions.

• The optimal solutions to the COP are assignments to solu-
tion variables X

(t)
Σ for {t..t + N}, representing the most

probable PHCA state trajectories. The probability value
of each trajectory is obtained by maximizing the product

of the probabilities of the constraint tuples that are con-
sistent with the observations and commands. This corre-
sponds to maximizing the probability of the trajectory as
given by Equation 1.

A key to framing PHCA-based N-BFTE as a COP is
the formulation of the constraints R that capture the be-
havior and execution semantics of the PHCA. PHCA exe-
cution involves determining the consistency of behavioral
constraints, identifying enabled transitions from a current
PHCA state, and taking those transitions to determine the
next state. Referring to the PHCA model in Figure 3, if we
assume that at time t the PHCA state is < On < Idle >>
and that the transition guard constraint (command =
TakeP icture) is satisfied, and at time t+1 the behavioral
constraint (shutter = moving) of the transition’s target lo-
cation is consistent, then the PHCA state at time t+1 will be
< On < TakingP icture >>.

To encode the consistency of conditions, such as
(command = TakeP icture), with observables and com-
mands, a variable ET is introduced with domain {CO, IN}
to denote whether the transition guard condition is consis-
tent. Consistency is then formulated as a COP constraint
that associates ET = CO with all possible assignments to
the variable command that are consistent with the condition
(command = TakeP icture). Consistency constraints are
generated for all locations that have behavioral constraints
and for all transitions that have guard constraints:
Behavioral Consistency:

(∀ t ∈ {0..N}, ∀ L ∈ Σ : Behavior
(t)
L =CO ⇔

BehavioralConstraint(L)(t)).
Transition Guard Consistency:

(∀ t ∈ {0..N − 1}, ∀ τ ∈ T : Guard
(t)
L =CO ⇔

GuardConstraint(τ)(t)).
Some semantic rules apply to PHCA hierarchies. For ex-

ample, when a composite location becomes marked, all of its
start locations are attempted to be marked. We refer to this
semantics as Full Marking of composite locations. The ac-
tual marking of locations depends on the consistency of each
location’s behavioral constraint with observations and com-
mands. Since ”Initializing” is a start location of the compos-
ite ”On” location, a PHCA in state < Off > may transition
to state < On < Initializing >>. Furthermore, a com-
posite location should be marked if any of its subautomata
are marked, and unmarked if none of its subautomata are
marked. We refer to this as Hierarchical Composite Mark-
ing/Unmarking. These rules are encoded by constraints.

The following four constraints apply only to the initial
time t = 0, and will be referred to as Initial Constraints IC:
Initial Model Marking: enforces the initial marking of
PHCA models: (∀C ∈ {PHCA Models} : C(0)=MA).
Initial Unmarking: enforces the initial unmarking of all
non-start locations:

(∀C ∈ ΣC : (∀L ∈ {Subautomata(C)-Θ(C)} :
L(0)=UM )).
Initial Full Marking: enables the initial full marking
(marking of start locations) of composites:
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(∀C ∈ΣC : [C(0)=MA⇔ (∀L ∈Θ(C) : Start
(0)
L =EN )]

∧ [C(0)=UM ⇔ (∀L ∈ Θ(C) : Start
(0)
L =DI)]).

Initial Probabilistic Marking: encodes the initial proba-
bilistic marking of start locations:

(∀C ∈ ΣC : (∀L ∈ Θ(C) : [L(0)=MA ⇒ (Start
(0)
L =EN

∧ Behavior
(0)
L =CO)])).

Each model M of the initial probabilistic marking con-
straint, with Scope(M)={L(0), Start

(0)
L , Behavior

(0)
L }, is

mapped to a probability value using the function:

F0(M) =







Prob(L(0) = MA) if Condition1
1 − Prob(L(0) = MA) if Condition2

1.0 otherwise

where Condition1 is:
(L(0)=MA) ∧ (Start

(0)
L =EN) ∧ (Behavior

(0)
L =CO),

and Condition2 is:
(L(0)=UM) ∧ (Start

(0)
L =EN) ∧ (Behavior

(0)
L =CO).

Hierarchical Composite Marking/Unmarking: encodes
the hierarchical semantics that specifies how mark-
ing/unmarking of each composite location is affected by the
state of its subautomata, as mentioned above. This constraint
complements the full marking constraints that encode the se-
mantics that specifies how marking of a composite location
affects the marking of its subautomata. Hierarchical com-
posite marking/unmarking is formulated as:

(∀t ∈ {0..N}, ∀C ∈ ΣC : [C(t)=MA ⇔ (∃L ∈
Subautomata(C) : L(t)=MA)] ∧ [C(t)=UM ⇔ (∀L ∈
Subautomata(C) : L(t)=UM )]).
Probabilistic Transition Choice: encodes the probabilistic
choice among transitions from each primitive location as an
exclusive OR constraint, given by:

(∀t ∈ {0..N − 1}, ∀P ∈ ΣP : (∃τ ∈ T | Source(τ)=P

⇒ [P (t)=MA ⇔ (∃T ∈ {T |Source(T )=P} : T (t)=EN

∧ (∀T ′ ∈ ({T |Source(T )=P}-{T}) : T ′(t)=DI))]
∧

[P (t)=UM ⇔ (∀T ∈ {T |Source(T )=P} : T (t)=DI)])),
where each model M of this constraint, with
Scope(M) ={P (t)} ∪ {T

(t)
i |Source(Ti) = P}, is

mapped to a probability value using the function:

FT (M) =

{

Prob(Ti) if (∃T
(t)
i : T

(t)
i = EN)

1.0 otherwise

The following example on the left of Figure 4 shows a prob-
abilistic choice between two transitions for a section of the
PHCA in Figure 3. In order to encode this, we first introduce
a location variable X

(t)
Off , with domain {MA,UM}. Then

auxiliary variables E
(t)
T1 and E

(t)
T2 with domain {EN,DI}

are introduced for transitions T1 and T2 respectively. The

Off Broken
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1.0DisabledDisabledUnmarked

0.05EnabledDisabledMarked

0.95DisabledEnabledMarked

Prob.ET 2
(t)ET1

(t)XOff
(t)

T1
T2

Figure 4: left: PHCA with two probabilistic transitions. right:
Probabilistic transition choice constraint.

probabilistic transition choice constraint is instantiated at
time t for the choice among T1 and T2:

[X(t)
Off =MA ⇔ (∃T ∈ {T1, T2} : T (t)=EN ∧ (∀T ′ ∈

{{T1, T2} − T} : T ′(t)=DI))]
∧

[X(t)
Off =UM ⇔ (∀T ∈

{T1, T2} : T (t)=DI)],
which is compiled into a set of allowed tuples M with asso-
ciated probability values obtained using the function FT (M)
above, as shown in Figure 4 (right).

Probabilistic choice is made among consistent transitions,
as encoded by the following constraint.
Transition Consistency: encodes that marking of the tran-
sition’s source location and the consistency of the transi-
tion’s guard with issued commands are necessary conditions
for a consistent transition:

(∀t ∈ {0..N − 1}, ∀τ ∈ T : [τ (t)=EN ⇒

(Source(τ)(t)=MA ∧ Guard
(t)
τ =CO)]).

Target Identification: encodes whether there’s any enabled
transition(s) to each location:

(∀t ∈ {0..N − 1}, ∀L ∈ Σ : [TransTo
(t+1)
L =EN ⇔ (∃τ

∈ T ∩ {T |Target(T )=L} : τ (t)=EN )]).
Target Full Marking: enables the full marking of compos-
ite targets:

(∀t ∈ {1..N}, ∀C ∈ ΣC : [(∀L ∈ Θ(C) : Start
(t)
L =EN )

⇔ (TransTo
(t)
C =EN ∨ Start

(t)
C =EN )]

∧

[(∀L ∈ Θ(C) :
Start

(t)
L =DI) ⇔ (TransTo

(t)
C =DI ∧ Start

(t)
C =DI)]).

The above constraints identify the enabled transitions and
enable full marking of targets. The following two constraints
encode taking enabled transitions.
Primitive Target Marking: formulates the marking of each
primitive location, based on whether it is an identified target
or an indirect target (i.e. start location of a composite), and
whether its behavioral constraint is consistent:

(∀t ∈ {1..N},∀P ∈ ΣP : [(P (t)=MA) ⇔

(TranTo
(t)
P =EN ∨ Start

(t)
P =EN) ∧ Behavior

(t)
P =CO]

∧

[(P (t)=UM) ⇔ (TransTo
(t)
P =DI ∧ (Start

(t)
P =DI ∨

Behavior
(t)
P =IN))]).

Composite Target Marking: is a ”weaker” version of the
primitive target marking constraint, in order to allow con-
sistency with the hierarchical composite marking/unmarking
constraint.

(∀t ∈ {1..N},∀C ∈ ΣC : [C(t)=MA ⇒

Behavior
(t)
C =CO]

∧

[C(t)=MA ⇐ (TransTo
(t)
C =EN ∨

Start
(t)
C =EN ) ∧ Behavior

(t)
C =CO]

∧

[(C(t)=UM ) ⇒

(TransTo
(t)
C =DI ∧ (Start

(t)
C =DI ∨ Behavior

(t)
C =IN ))]).

Online Phase: Best-First Trajectory Tracking
The N-BFTE problem, formulated in the offline phase as the
COP presented above, is dynamically updated and solved in
an online phase when new observations and commands are
available. Assignments to observation and command vari-
ables are added to the COP as unary constraints with prob-
ability 1. We refer to these constraints within the N-Stage
horizon as the history of observations HO and the history
of commands HC . The N-BFTE solutions are the K most
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N-BFTE (COP, Traj
(t→t+N)
(i=1..K) , H

(t→t+N)
O , H

(t→t+N−1)
C )

→ Traj
(t+1→t+N+1)
(i=1..K) ::

1. Update the COP (X,D,F ):
1.1 Shift the time horizon from (t → t + N ) to

(t + 1 → t + N + 1) by deleting observations O(t)

and commands C(t) from constraints HO and HC .
1.2 Add new observations O(t+N+1) and commands

C(t+N) to the COP:
H

(t+1→t+N+1)
O =O(t+N+1) ∪ H

(t+1→t+N)
O

H
(t+1→t+N)
C =C(t+N) ∪ H

(t+1→t+N−1)
C

1.3 Remove the initial constraints IC if t = 0, or
the initial state constraint (see 1.4) if t > 0

1.4 To track trajectories Traj
(t→t+N)
(i=1..K) , constrain the

initial states of Traj
(t+1→t+N+1)
(i=1..K) to be consistent

with the states S
(t+1)
(i=1..K) ∈ Traj

(t→t+N)
(i=1..K) , where

each S
(t+1)
(i) represents an assignment to solution

variables X
(t+1)
Σ . Add to the COP the constraint:

(∀ L ∈ Σ : L(t+1) ∧ (
∨

i=1..K S
(t+1)
i )),

with preference function FI that maps each model
M of this constraint to a probability value given by:

FI(M) = P (S
′(t)
i ) · PT (S

(t+1)
i |S

′(t)
i ,Π(t))

if L(t+1) ∧ S
(t+1)
i are consistent.

The set of states S
′(t)
i ) denote the beginning states

of Traj
(t→t+N)
(i=1..K) . The probabilities P (S

′(t)
i ) are

obtained using preference function F0 if t = 0, or
through previous iterations of N-BFTE otherwise.

2. Enumerate the K most probable trajectories by solving
for sets of solution variables {X(t+1)

Σ ,.., X
(t+1+N)
Σ },

using an optimal constraint solver.
3. Return Traj

(t+1→t+N+1)
(i=1..K) , along with the probability

associated with each trajectory, as given by Equation 1.

Figure 5: Online trajectory tracking pseudocode.

probable trajectories within the N-Stage horizon. The steps
of the online process are given by the N-BFTE pseudocode
in Figure 5.

As time progresses during the online solution phase, the
N -stage horizon is shifted from (t → t + N ) to (t + 1 →
t + N + 1). In addition to incorporating new constraints for
observations and commands, the COP over the new horizon
is updated by constraining the start states at time t + 1 to
match the states of the trajectories within the previous hori-
zon. Referring to Figure 2, if we consider a time horizon
(0 → 6), even if we track K = 3 trajectories, the trajectory
ending at state (Sensor = Broken) at time 6 will have the
highest probability based on the delayed observation. Con-
sequently, the state (Sensor = Broken) at time 2 will be
maintained within the horizon (0 → 6). As the horizon is
shifted to (1 → 7), the initial constraints IC for probabilistic
marking of the start states are removed from the COP (part

1.3 of pseudocode). Instead, the trajectories Traj
(0→6)
(i=1..3)

are tracked by adding a constraint that limits the states at
time 1 to correspond to those in Traj

(0→6)
(i=1..3) (part 1.4 of

pseudocode). The new constraint for initial states is a soft
constraint that maps each initial state to its probability value.
The probability of each initial state within the new horizon
(1 → 7) is computed as the probability of the previous ini-
tial state multiplied by the transition probability to the new
initial state, as given in the pseudocode.

Decreasing the number of trajectories K being tracked
solves the delayed-symptom problem by maintaining a
larger number of states at each time step. However, for a
system with many combinations of similar failure states with
high probability, the number of trajectories maintained will
have to be very large in order to be able to account for a
delayed symptom that supports an initially low probability
state. For such systems, considering even a small number of
previous time steps N gives enough flexibility to regenerate
the correct diagnosis.

Implementation and Results
The PHCA model-based N-BFTE capability, described
above, has been implemented in C++. Figure 6 shows both
phases of the N-BFTE process. In the offline phase, the N -

Tree

Decomposition

N-Stage COP

Constraint

Graph

PHCA
H/W models

S/W specs

(code)

Optimal

Constraint

Solver

Dynamic update

of COP;

Horizon shifting
t0 t1 t2 t3

observations commands

Offline compilation phase Online solution phase

Figure 6: Process diagram for PHCA-based N-BFTE

Stage COP is generated automatically, given a PHCA model
and parameter N . To enhance the efficiency of the solu-
tion phase, tree decomposition (Gottlob, Leone, & Scarcello
2000) is applied to decompose the COP into independent
subproblems. This enables backtrack-free solution extrac-
tion during the online phase. In our implementation, the
COP is decomposed using a tree decomposition package that
implements bucket elimination (Kask, Dechter, & Larrosa
2003). The online monitoring and diagnosis process uses
both the COP and its corresponding tree decomposition. The
online phase consists of a loop that implements the N-BFTE
pseudocode. At each iteration of the loop, the updated COP
is solved using an implementation of the decomposition-
based constraint optimization algorithm in (Sachenbacher &
Williams 2004). For the camera model with N = 6, the
COP has 436 variables and 441 constraints, and is solved
online in ∼ 1.5 sec. We have further validated our system
on models of two spacecraft:
1) SPHERES, a formation flying testbed for demonstrating
novel metrology, control and autonomy technologies on the
International Space Station (Nolet, Kong, & Miller 2004).
We used two models of the SPHERES Global Metrology



To appear in Proceedings of the 20th National Conference on Artificial Intelligence, 2005 7

Number of COP Variables and Constraints
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Figure 7: Size of the COP generated offline for the SPHERES and
EO-1 models.

subsystem, which provides measurements to update esti-
mates of position and attitude for each SPHERES satellite.
The first model (SPHERES 1) consists of 5 components, and
the second model (SPHERES 2) consists of 18 components.
2) Earth Observing One (EO-1), a New Millennium space-
craft which has validated a number of instrument and space-
craft technologies. Models of the EO-1 spacecraft were de-
veloped at NASA and used for validating L2 on EO-1 (Hay-
den, Sweet, & Christa 2004). The EO-1 model consists of
12 components, which are parts of the Advanced Land Im-
ager, the Hyperion instrument and the Wideband Advanced
Recorder Processor onboard the EO-1.

Both the SPHERES and EO-1 systems are modeled
as probabilistic, concurrent constraint automata (PCCA)
(Williams & Nayak 1996). A PCCA model is a special case
of PHCA that does not support complex hierarchical con-
structs. Nevertheless, these models provided realistic sce-
narios for validating our approach. All experiments were
run under Windows XP on a 1.6 GHz Pentium M proces-
sor. Figure 7 shows the size of the COP generated offline,
for each of the models. Figure 8 shows the time required
for solving the online N-BFTE problem. The results for the
online phase were obtained for various nominal and failure
scenarios as a function of the time horizon size N , for the
same number of trajectories tracked (K=1 in Figure 8). For
each of the tested scenarios, N-BFTE successfully generated
the correct diagnosis based on delayed observations within
the time horizon N . For instance, in the SPHERES scenar-
ios most symptoms exhibited delays of 3 or 4 time steps.

Future work includes enhancing the efficiency of the on-
line process by unifying decomposition-based and conflict-
directed (Williams & Nayak 1996) techniques into the opti-
mal constraint solver. Finally, investigating the optimal size
of the diagnosis horizon and its relationship to the number
of trajectories tracked will allow for automated parameter
selection for the diagnostic system, based on properties of
the modeled domain.

Online N-BFTE performance
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Figure 8: Online performance for the SPHERES and EO-1 mod-
els.
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