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“With autonomy we declare that no sphere is off limits.
We will send our spacecraft to search beyond the 
horizon, accepting that we cannot directly control 

them, and relying on them to tell the tale.”

– Bob Rasmussen  
New Millennium Autonomy Team

AI Magazine Volume 17 Number 3 (1996) (© AAAI)



■ A new generation of sensor-rich, massively dis-
tributed, autonomous systems are being devel-
oped that have the potential for profound social,
environmental, and economic change. These sys-
tems include networked building energy systems,
autonomous space probes, chemical plant con-
trol systems, satellite constellations for remote
ecosystem monitoring, power grids, biospherelike
life-support systems, and reconfigurable traffic
systems, to highlight but a few. To achieve high
performance, these immobile robots (or im-
mobots) will need to develop sophisticated regu-
latory and immune systems that accurately and
robustly control their complex internal func-
tions. Thus, immobots will exploit a vast nervous
system of sensors to model themselves and their
environment on a grand scale. They will use
these models to dramatically reconfigure them-
selves to survive decades of autonomous opera-
tion. Achieving these large-scale modeling and
configuration tasks will require a tight coupling
between the higher-level coordination function
provided by symbolic reasoning and the lower-
level autonomic processes of adaptive estimation
and control. To be economically viable, they will
need to be programmable purely through high-
level compositional models. Self-modeling and
self-configuration, autonomic functions coordi-
nated through symbolic reasoning, and composi-
tional, model-based programming are the three
key elements of a model-based autonomous sys-
tem architecture that is taking us into the new
millennium.

The limelight has shifted dramatically in
the last few years from an AI tradition
of developing mobile robots to that of

developing software agents (that is, softbots)
(Etzioni and Weld 1994; Kautz et al. 1994;
Maes and Kozierok 1993; Dent et al. 1992; Et-
zioni and Segal 1992). This shift is reflected in
Hollywood, which has replaced R2D2 with cy-
berpunk descendants of Disney’s TRON as the
popular robot icon. One motivation for the
shift is the difficulty and cost of developing
and maintaining physical robots, which are
believed to substantially impede progress to-

ward AI’s central goal of developing agent ar-
chitectures and a theory of machine intelli-
gence (Etzioni and Segal 1992). As Etzioni and
Segal argue, software environments, such as a
UNIX shell and the World Wide Web, provide
softbots with a set of ready-made sensors (for
example, LS and GOPHER) and end effectors (for
example, FTP and TELNET) that are easy to
maintain but still provide a test bed for ex-
ploring issues of mobility and real-time con-
straints. At the same time, the recent Internet
gold rush and the ensuing web literacy has
provided an enormous textual corpus that
screams for intelligent information-gathering
aides (Levy, Rajaraman, and Ordille 1996;
Knoblock and Levy 1995).

However, two concerns have been raised
about using software agents as a research test
bed and application domain: First, softbots
often operate in an environment lacking the
rich constraints that stem from noisy, analog
sensors and complex nonlinear effectors that
are so fundamental to physical environments.
Can such a software environment adequately
drive research on agent kernels? Second, giv-
en that much of the information on the In-
ternet is textual, will oft-envisioned softbot
applications, such as information gathering
and synthesis, be viable before the hard nut
of language understanding has been cracked?

In this article, we argue that the informa-
tion-gathering capabilities of the Internet, cor-
porate intranets, and smaller networked com-
putational systems supply additional test beds
for autonomous agents of a different sort.
These test beds, which we call immobile
robots (or immobots), have the richness that
comes from interacting with physical environ-
ments yet promise the ready availability asso-
ciated with the networked software environ-
ment of softbots. Potential immobile robots
include networked building energy systems,
autonomous space probes, chemical plant
control systems, satellite constellations for
ecosystem monitoring, power grids, biosphere
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nel for controlling an immobot’s regulatory
system. Our work on these systems fuses re-
search from such diverse areas of AI as model-
based reasoning, qualitative reasoning, plan-
ning and scheduling, execution, propositional
satisfiability, concurrent reactive languages,
Markov processes, model-based learning, and
adaptive systems. MORIARTY and LIVINGSTONE are
grounded in two immobot test beds. MORIARTY

was part of the RESPONSIVE ENVIRONMENT (Elrod
et al. 1993; Zhang, Williams, and Elrod 1993),
an intelligent building control system devel-
oped within the Ubiquitous Computing Pro-
ject at Xerox PARC. LIVINGSTONE is part of the
REMOTE AGENT, a goal-directed, fully au-
tonomous control architecture, which will fly
the National Aeronautics and Space Adminis-
tration (NASA) Deep Space One space probe in
1998 (Pell, Bernard, et al. 1996). At least one
of these immobots has the promise of
significant impact at the beginning of the new
millennium.

Examples of Immobile Robots
Hardware advances in cheap single-chip con-
trol and communication processors, sensors,
point actuators, analog-to-digital converters,
and networking have enabled a new category
of autonomous system that is sensor rich,
massively distributed, and largely immobile.
This technology is being quickly embedded in
almost every form of real-time system, from
networked building energy systems to space-
craft constellations. The current generation of
these hybrid hardware-software systems has
created a slumbering giant whose potential
has only begun to be tapped. Furthermore,
they offer a diverse set of ready-made immo-
bile-robot test beds just waiting to be exploit-
ed by AI researchers.

The potential of this technology captured
the imagination of Hollywood in the 1960s
with such movies as 2001: A Space Odyssey,
The Forbin Project, and The Andromeda Strain
and the Star Trek television episode “Spock’s
Brain.” The most famous computational in-
telligence, the HAL9000 computer, and the
most famous biological intelligence, Spock,
were both for a time immobile robots. In this
article, we use HAL and Spock as starting
points for two immobile robot futures.

HAL9000

In the movie 2001, HAL is the first of a new
generation of computers with unprecedent-
ed intelligence and flawless behavior. HAL is
characterized as the single mission element
with the greatest responsibility, the “brain

life-support systems, and reconfigurable traffic
systems. Conversion of these and other real-
time systems to immobile robots will be a
driving force for profound social, environ-
mental, and economic change. The power of a
term such as robot, mobot, or softbot is the
way in which it sets our imagination free. The
purpose of this article is to see where the im-
mobot metaphor can take us, from science
fiction to fundamental AI insights to
significant applications.

We argue that the focus of attention of im-
mobile robots is directed inward, toward
maintaining their internal structure, in con-
trast to the focus of traditional robots, which
is toward exploring and manipulating their
external environment. This inward direction
focuses the immobot on the control of its
complex internal functions, such as sensor
monitoring and goal tracking; parameter esti-
mation and learning; failure detection and
isolation; fault diagnosis and avoidance; and
recovery, or moving to a safe state. Metaphor-
ically speaking, the main functions of an im-
mobot correspond to the human nervous,
regulatory, and immune systems rather than
the navigation and perceptual systems being
mimicked in mobile robots.

Finally, we argue that these immobots give
rise to a new family of autonomous agent ar-
chitectures, called model-based autonomous sys-
tems. Three properties of such systems are cen-
tral: First, to achieve high performance,
immobots will need to exploit a vast nervous
system of sensors to model themselves and
their environment on a grand scale. They will
use these models to dramatically reconfigure
themselves to survive decades of autonomous
operations. Hence, self-modeling and self-
configuration make up an essential executive
function of an immobot architecture. Second,
to achieve these large-scale modeling and
configuration functions, an immobot architec-
ture will require a tight coupling between the
higher-level coordination function provided
by symbolic reasoning and the lower-level au-
tonomic processes of adaptive estimation and
control. Third, to be economically viable, im-
mobots will have to be programmable purely
from high-level compositional models, sup-
porting a “plug and play” approach to soft-
ware and hardware development.

These properties of a model-based au-
tonomous system are embodied in two imple-
mented systems: MORIARTY (Williams and Mil-
lar 1996) and LIVINGSTONE (Williams and
Nayak 1996). LIVINGSTONE provides a kernel for
controlling the immune system of immobile
robots, and MORIARTY provides part of the ker-
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and central nervous system” of a spacecraft
targeted for Jupiter.

It might seem puzzling to call HAL an im-
mobot; after all, it travels from Earth to
Jupiter in 18 months, making it the fastest
manmade artifact of its time. However, tradi-
tional mobile robots typically focus on their
external environment and on the tasks of
navigation and obstacle avoidance. In con-
trast, the movie portrays HAL with an extreme
sense of immobility. The camera zooms in for
long periods on HAL’s optical sensors, which
are attached to walls throughout the space-
ship. HAL’s actuators are also extremely limit-
ed; examples include the opening and closing
of doors and the raising and lowering of beds.
The distribution of these sensors and actua-
tors throughout the spacecraft compensates
for their immobility, giving HAL a sense of
omnipresence. HAL’s attention is focused in-
ward throughout the movie, highlighted by
the characterization of HAL as the “brain and
central nervous system” of the spacecraft as
opposed to the navigator and pilot. HAL’s ma-
jor responsibility is to look after the health of
the spacecraft and crew, including monitor-
ing the spacecraft’s health, performing fault
diagnosis and repair, operating the life-sup-
port systems, and continuously monitoring
the medical status of crew members in hiber-
nation. Finally, the movie highlights the con-
nection between HAL’s higher-level symbolic
reasoning and the complex, low-level, auto-
nomic processes distributed throughout the
spacecraft. Hence, HAL can be thought of as
the spacecraft’s immune system.

The New Millennium Program 
Although many aspects of 2001 now seem
farfetched, the current future of space explo-
ration is no less exciting. With the creation of
the New Millennium Program in 1995, NASA
put forth the challenge of establishing a vir-
tual presence in space through an armada of
intelligent space probes that autonomously
explore the nooks and crannies of the solar
system: “With autonomy we declare that no
sphere is off limits. We will send our space-
craft to search beyond the horizon, accepting
that we cannot directly control them, and re-
lying on them to tell the tale” (Rasmussen
1996).

This presence is to be established at an
Apollo-era pace, with software for the first
probe to be delivered in mid-1997, leaving
only 1-1/2 years for development, and the
probe (Deep Space One) to be launched in
mid-1998. The additional constraint of low
cost is of equal magnitude. Unlike the billion-

dollar Galileo and Cassini missions with hun-
dreds of members in their flight operations
teams, New Millennium Program missions
are to cost under $100 million, with only
tens of flight operators. The eventual goal is a
$50 million spacecraft operated by a mere
handful of people. Achieving these goals will
require autonomy and robustness on an un-
precedented scale.

The final challenge, spacecraft complexity,
is equally daunting. Consider Cassini, NASA’s
state-of-the-art spacecraft headed for Saturn.
Cassini’s “nervous system” includes a sophis-
ticated networked, multiprocessor system,
consisting of two flight computers that com-
municate over a bus to more than two dozen
control units and drivers. This nervous sys-
tem establishes complex sensing and control
paths to an array of fixed sensors and actua-
tors, including inertial reference units, sun
sensors, pressure sensors, thrusters, main en-
gines, reaction wheels, and heaters. The most
complex is the main engine subsystem, con-
sisting of a web of redundant pipes, valves,
tanks, and engines that offer exceptional lev-
els of reconfigurability. Coordinating these
complicated, hybrid systems poses significant
technical hurdles.

Together, the goals of the New Millennium
Program pose an extraordinary opportunity
and challenge for AI. As with HAL, our chal-
lenge is to provide the immune system for
this type of immobile robot over the lifetime
of its mission.

“Spock’s Brain” 
A second example of an immobile robot from
1960’s Hollywood comes from a little-known
episode of the original Star Trek series called
“Spock’s Brain.” In this episode, Spock’s body
is found robbed of its brain by an unknown
alien race, and the crew of the Enterprise em-
barks on a search of the galaxy to reunite
Spock’s brain and body. Spock detects that he
has a new body that stretches into infinity
and that appears to be breathing, pumping
blood, and maintaining physiological tem-
perature. When discovered, Spock’s brain is
found to be within a black box, tied in by
light rays to a complex control panel. Instead
of breathing, maintaining temperature, and
pumping blood, he is recirculating air, run-
ning heating plants, and recirculating water.
That is, the function that requires this
supreme intelligence is the regulation of a
planetwide heating and ventilation system.

As with HAL, Spock’s body in this case is ex-
tremely immobile. The episode portrays an
immobile robot as a massively distributed be-
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management systems. These are networked
multiprocessor systems containing hundreds
to thousands of processors that allow high-
fidelity sensing and control throughout a
building. They will enable systems that are far
more energy efficient and at the same time
improve indoor air quality. Second is the in-
terconnection of building and home utilities
through optical fiber networks, which has led
to several commercial alliances between
members of the utility and telecommunica-
tions industries. Third is the deregulation of
the utilities and the ensuing establishment of
computer-based energy markets. These new
energy markets will allow peak and average
electric rates to be fluidly adjusted, enabling
more even and stable balancing of the energy
load. Technologies for storing energy within
buildings during off-peak hours will enable
even greater stability and efficiency. The rapid
deployment of these networked control tech-
nologies has already generated a multibillion

hemoth, sufficient to encircle a globe. Again,
the crucial link between high-level reasoning
(that is, Spock’s brain) and autonomic pro-
cesses is highlighted. Finally, although 2001
highlights HAL’s function as an immune sys-
tem that maintains the health of the im-
mobot, this episode highlights Spock’s func-
tion as a regulatory system, performing
high-fidelity control of the immobot’s inter-
nal organs. A regulatory system provides an
efficient metabolism, supplying central re-
sources efficiently, equitably distributing
these resources throughout the system, con-
suming these resources efficiently, and atten-
uating the effects of disturbances.

The Responsive Environment 
The concept in “Spock’s Brain” is not as im-
plausible as it might seem. In fact, it is quick-
ly becoming a reality through a confluence of
forces (figure 1). First is the broad installation
of the new generation of networked building
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Figure 1. Immobots of Unprecedented Size Are Being Developed in the Area of Building Energy Management.
Key elements include networked building control systems, optical networks that connect buildings on a power grid to multiple power-

production facilities, deregulation of the power industry, and the establishment of a dynamic energy market. 
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dollar growth in the service industries for re-
mote building monitoring and maintenance.
However, the potential of these immobile
robots for optimal energy-efficient control
has yet to be tapped.

These are only two examples of an ever-in-
creasing collection of immobile robot test
beds being constructed. NASA’s Earth-observ-
ing system is moving toward a level of sens-
ing that will enable full Earth ecosystem
modeling, providing insight into problems of
pollution, global warming, and ozone deple-
tion. Vast networked control systems are gen-
erating a revolution in chemical processing,
factory automation, drug manufacturing, and
semiconductor fabrication, producing immo-
bile robots that enable substantial improve-
ments in quality, efficiency, and safety.

These are not far-off dreams. Many govern-
ment and private institutions, such as NASA,
Pacific Gas and Electric, Rockwell Automa-
tion, Echelon, Hewlett Packard, and Johnson
Controls, are aggressively embracing these
technologies as fundamental to their future
in the new millennium, that is, in the imme-
diate future. The two immobot test beds dis-
cussed in this article represent first steps to-
ward these future visions.

Immobot Characteristics 
From these examples, we can extract a num-
ber of properties that distinguish immobots
from their mobile robot and softbot siblings,
both in terms of their physical structure and
their most salient functions. Structurally, im-
mobots are massively distributed, physically
embedded, autonomous systems with a large
array of simple, fixed-location sensors and ac-
tuators. Functionally, an immobot’s primary
task is to control its massive regulatory, im-
mune, and nervous systems through a cou-
pling of high-level reasoning and adaptive
autonomic processes. More specifically, an
immobot has the following distinctive fea-
tures:

Physically embedded: An immobot’s sen-
sors and actuators operate on the physical
world, many of which operate in noisy envi-
ronments. Immobots need to react in real
time; however, the time scale of the reaction
time can vary dramatically. For example, a
spacecraft might have to act instantaneously
to close off a leaking thruster but then might
have weeks during its cruise to perform a self-
diagnosis.

Immobile: An immobot’s sensors and actu-
ators reside at fixed locations and are largely
limited to one-dimensional signals and one-

degree-of-freedom movement. Examples in-
clude light sensors, window-blind actuators,
gyroscopes, valves, and reaction wheels. Al-
though an immobot’s hardware is often re-
dundant and highly reconfigurable, the prim-
itive elements of interaction that are used to
build a configuration are simple and fixed. In
contrast, a traditional robot typically has a set
of complex mobile sensors and actuators,
such as three-dimensional vision systems and
articulated hands, arms, and legs.

Omnipresent: The lack of sensor and actu-
ator mobility is compensated for by the sheer
number of sensors and actuators. A spacecraft
has dozens; a building can have on the order
of thousands.

Sensors and actuators must reside a priori
in all locations that the immobot wants to
model or affect, giving the immobot the po-
tential for being continuously aware of all as-
pects of its environment. In contrast, a mo-
bile robot’s few precious sensors and
actuators must be navigated to the point
where they are needed. The omnipresence of
the immobot shifts the bottleneck from the
expense of gathering each piece of informa-
tion to the integration of a continuous
stream of data.

Massively distributed and tightly cou-
pled: Computation is distributed along
lengthy communication paths, with increas-
ingly complex computation being performed
at sites near sensors and actuators. For exam-
ple, in Cassini, a complex set of physical and
software processes work together to fire an
engine: The flight computer turns on an en-
gine by sending a command over a bus to a
communication processor, which tells a driv-
er to open two valves, which causes fuel to
flow into the engine, where combustion oc-
curs. These properties lead to distributed sens-
ing and control problems of high dimension-
ality as a result of tight couplings between
internal components. This high di-
mensionality makes these problems extreme-
ly difficult to solve.

Self-absorbed: Mobile robots and softbots
focus largely on what is occurring in the
world outside the “bot,” including navigat-
ing around obstacles, moving through net-
works to databases, and changing navigation
paths because of external failures. However,
an immobile robot’s attention is largely di-
rected inward toward monitoring the inter-
nal health of its network (immunology) and
reconfiguring its components or control
policies to achieve robust performance (regu-
lation). Although some reasoning is directed
outward, the external world is not fluid in
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responses to all possible situations quickly be-
comes intractable. Tractability is typically re-
stored with the use of simplifying assumptions
such as using local suboptimal control laws,
assuming single faults, ignoring sensor infor-
mation, and ignoring subsystem interactions.
Unfortunately, this results in systems that are
either brittle or grossly inefficient.

Finally, the autonomic processes of an im-
mobot involve a broad range of discrete, con-
tinuous, and software behaviors, including
control laws, Kalman filters, digital hardware
commands, and software drivers. This range
of behaviors needed by an immobot makes it
difficult and expensive to both manually syn-
thesize high-fidelity autonomic processes and
couple these autonomic processes to high-
level symbolic reasoning.

Model-Based 
Autonomous Systems

The goal of our research program is to solve
these difficulties by developing a model-based
autonomous system kernel for maintaining
the regulatory and immune systems of im-
mobots. The kernel that we are driving to-
ward is defined by three desiderata: (1) mod-
el-based programming, (2) model-based
reactive execution, and (3) model-based hy-
brid systems.

Our work on immobots originated with
work on interaction-based design (Williams
1990), which explored the coordination and
construction of continuous interactions, as a
design task that involves the addition of nov-
el hardware-device topologies. In contrast,
model-based autonomy explores the coordina-
tion of hardware and software interactions
using a digital controller.

Model-Based Programming
A model-based autonomous system addresses
the difficulty of reasoning about systemwide
interactions using model-based programming.
Model-based programming is based on the
idea that the most effective way to amortize
software development cost is to make the soft-
ware plug and play. To support plug and play,
immobots are programmed by specifying
component models of hardware and software
behaviors. A model-based autonomous system
combines component models to automate all
reasoning about systemwide interactions nec-
essary to synthesize real-time behaviors such
as the ones in figure 2. The development of
model libraries is used to reduce design time,
facilitate reuse, and amortize modeling costs.

The application of a stringent qualitative

the same sense that it is for classical robots.
One of a kind: Ironically, what binds to-

gether immobile robots is that no two are
alike. Drug manufacturing lines, Disney’s
space mountain, car factories, Mars rovers,
Earth-orbiting satellites, deep-space probes,
and Antarctic biospheres are each one-of-a-
kind devices, making it difficult to amortize
their development costs. The dilemma is
how to cost effectively build these one of a
kinds yet provide high performance and reli-
ability.

Controlling Immobots 
In the preceding sections, we argued that the
dominant function of an immobot is to con-
trol its massive regulatory, immune, and ner-
vous systems through a coupling of high-lev-
el reasoning with adaptive autonomic
processes. Providing a regulatory and im-
mune system involves a broad set of tasks, in-
cluding those listed in figure 2.

Writing software to control the immune
and regulatory systems of an immobot is
difficult for a variety of reasons: First, it often
requires the programmer to reason through
systemwide interactions to perform the appro-
priate function. For example, diagnosing a
failed thruster requires reasoning about the in-
teractions between the thrusters, the attitude
controller, the star tracker, the bus controller,
and the thruster valve electronics. The com-
plexity of these interactions can lead to cogni-
tive overload, causing suboptimal decisions
and even outright errors. Furthermore, the
one-of-a-kind nature of immobots means that
the cost of reasoning through systemwide in-
teractions cannot be amortized and must be
paid over again for each new immobot.

Second, the need for fast reactions in
anomalous situations has led to a tradition of
precomputing all responses. However, im-
mobots often operate in harsh environments
over decades, so that explicitly enumerating
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Parameter estimation Adaptive control
Monitoring Control policy coordination
Mode confirmation Hardware reconfiguration
Goal tracking Fault recovery
Detection of anomalies Standby
Isolation of faults Safing
Diagnosis of causes Fault avoidance
Calibration

Figure 2. Tasks Performed to Maintain the Immobots Regulatory and Im-
mune Systems. 
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modeling methodology is used to reduce
both modeling time and the sensitivity to
model inaccuracies and hardware changes.
Our experience and those of others (Malik
and Struss 1996; Hamscher 1991) has shown
that extremely weak qualitative representa-
tions, for example, representing only devia-
tions from nominal behavior, are sufficient
for many model-based autonomy tasks.
Counter to the folklore of the field (Sacks and
Doyle 1992), ambiguity and intractable
branching has not proven to be a significant
practical issue.

Model-based programming on a large scale
is supported by developing languages, com-
pilers, debuggers, and visualization tools that
incorporate classical concepts of object-ori-
ented, procedural, and hierarchical abstrac-
tions into the modeling language.

Model-Based Reactive Execution
The difficulty of precomputing all responses
means that a model-based autonomous sys-
tem must use its models to synthesize timely
responses to anomalous and unexpected situ-
ations at execution time. Furthermore, the
need to respond correctly in time-critical and
novel situations means that it must perform
deliberative reasoning about the model with-
in the reactive control loop. Although the list
of tasks that the model-based execution sys-
tem must support is seemingly diverse (figure
2), they divide into two basic functions: (1)
self-modeling and (2) self-configuring.

Self-modeling: Identifying anomalous and
unexpected situations and synthesizing cor-
rect responses in a timely manner require an
immobot to be self-modeling. Although parts
of its model are provided a priori using mod-
el-based programming, other parts need to be
adapted or elaborated using sensor informa-
tion. Self-modeling tasks include tracking
model parameters over time (for example,
base-line voltages), tracking changes in com-
ponent behavioral modes (for example, a
valve going from open to closed and then to
stuck closed), and elaborating quantitative
details of qualitative models (for example,
learning a quantitative pipe model given that
flow is proportional to the pressure drop).
Self-modeling tasks are listed in the left-hand
column of figure 2; all but estimation, moni-
toring, and calibration involve identifying
discrete behavioral modes of the immobot’s
components.

Self-configuring: To provide immune and
regulatory systems, an immobot must be self-
configuring; it must dynamically engage and
disengage component operating modes and

adaptive control policies in response to
changes in goals, the immobot’s internal
structure, and the external environment. The
right-hand column of figure 2 lists tasks that
involve self-configuration. The first two items
involve coordinating or adjusting continuous
control policies, and the remainder involve
changes in component behavioral modes.

Model-Based Hybrid Systems
Given the wide range of digital, analog, and
software behaviors exhibited by an immobot,
developing a model-based approach for coor-
dinating the immobot’s autonomic processes
requires a rich modeling language and rea-
soning methods that go well beyond those
traditionally used in qualitative and model-
based diagnosis. More specifically, a model-
based autonomous system must be able to
represent and reason about the following:

Concurrent software: Coordinating, in-
voking, and monitoring real-time software re-
quires formal specifications of their behavior.
These behaviors are modeled by incorporat-
ing formal specifications of concurrent transi-
tion systems into the model-based program-
ming language. Concurrent transition
systems provide an adequate formal seman-
tics for most concurrent real-time languages
(Manna and Pnueli 1992).

Continuous adaptive processes: Achiev-
ing high fidelity requires the merging of sym-
bolic model-based methods with novel adap-
tive estimation and control techniques (for
example, neural nets). Specifications of adap-
tive processes must be combined with
specifications of discrete concurrent behavior
within the models. For high-level reasoning
systems that coordinate adaptive processes,
the most suitable specification of the adaptive
processes are often qualitative.

Stochastic processes: Inherent to support-
ing an immobot’s regulatory and immune
functions is the modeling and control of
stochastic events that occur within an im-
mobot’s components. This stochastic behav-
ior is modeled by extending the concurrent
transition-system model, mentioned previ-
ously, to modeling concurrent, partially ob-
servable Markov processes.

The previous three subsections outlined
the key requirements for model-based auton-
omy. The essential property that makes these
requirements manageable is the relative im-
mobility of our robots. The system interac-
tions are relatively fixed and known a priori
through the component models and their in-
terconnection. The flexibility within the sys-
tem is largely limited to changes in compo-
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ter, where the flow rate of the water is con-
trolled by the reheat-valve position.

Regulating a building is difficult because
the number of control variables is over-
whelming, and the control variables are high-
ly coupled. For example, the energy con-
sumption of the fan and the chiller are
nonlinear functions of the fan speed and the
change from outside to inside temperature.
The optimal settings of the damper and re-
heat valve then depend on the outside tem-
perature and the demands that other offices
are placing on the chiller and the fan. Hence,
the performance of all the offices is coupled,
which is exacerbated by the slow response
time of office temperature change, making a
trial-and-error approach to global control ex-
tremely unstable.

We solve this problem with a gradient-de-
scent controller that uses a global model to
adaptively predict where the optimum lies.
An informal evaluation using the responsive
environment test bed suggests that energy
savings in excess of 30 percent are conceiv-
able with help from model-based control
(Zhang, Williams, and Elrod 1993).

Generic thermal models are available for
complete buildings (for example, the DOE2
simulator models) that suffice for this type of
control. These models are extremely rich, in-
cluding not only the building’s hardware and
nonlinear thermal characteristics but also
sunlight and shading, external weather, and
the occupants’ desires. They have on the or-
der of thousands of equations for buildings
with 100 or more offices.

The labor-intensive task is tailoring this
model to the specifics of a building, which re-
quires estimating numeric values for parame-
ters such as thermal conductance through the
walls, heat output of the equipment, and
thermal capacity of the office airspace. An im-
mobot can estimate its parameters by adjust-
ing their values until the model best fits the
sensor data. More precisely, given sensed vari-
ables y and x (a vector) and a vector of pa-
rameters p, we first construct an estimator f
from the model that predicts y given x and p:

y = f(x; p)  .

Next, given a set of (x,y) data D, estimating p
using least squares fit of f to y involves solv-
ing the optimization problem

p* = arg ^
<yi, xi> ∈ D

(yi – f(xi; p))2
.

Such an estimate is performed by an adaptive
numeric algorithm that can be viewed as one
of the immobot’s autonomic processes.

There are far too many parameters in a

min
p

nent modes and control policies and adjust-
ments to parameter values. In the rest of this
article, we consider two implemented systems
that exploit immobility to achieve these
desiderata. They form two major components
of a kernel we envision for maintaining the
regulatory and immune systems of im-
mobots.

Responsive Environments 
The scenario in “Spock’s Brain” of a heating
and cooling system on a planetary scale high-
lighted three aspects of immobile robots that
we examine technically in this section: First
is the task of maintaining a massive, high-
performance regulatory system. Second is the
need by this system to acquire and adapt ac-
curate models of itself and its environment to
achieve high performance. Third is the need
for high-level reasoning to coordinate a vast
set of autonomic processes during adaptive
modeling and regulation.

As a stepping stone toward this ambitious
scenario, we developed a test bed for fine-
grained sensing and control of a suite of
offices at Xerox PARC called the responsive en-
vironment (Elrod et al. 1993). This test bed in-
cludes a networked control system for the
complete building plus 15 model offices, each
of which has been enhanced with a net-
worked microprocessor that controls an array
of sensors and actuators. These include sen-
sors for occupancy, light level, temperature,
pressure, and airflow and actuators for regu-
lating air temperature and airflow.

The heart of the building is the central
plant, which generates airflow and cold and
hot water through a fan, chiller, and boiler,
respectively. The extremities of the building
are the hundred or more offices, whose tem-
perature must be regulated carefully. The
veins and arteries of the building are the
pipes and duct work that deliver air and wa-
ter to the extremities, where they are used to
regulate temperature. The connection be-
tween the central plant and a single office,
used for cooling, is shown in figure 3. Office
temperature is controlled through heat flow
into, or out of, the office, which includes
heat flowing from the sun and equipment,
through the walls and doorways, and
through the air duct. Heat flow into an office
is controlled by the air duct in two ways:
First, the amount of airflow is controlled by a
damper that partially blocks airflow. Second,
the temperature of the airflow is changed by
blowing the air over a radiatorlike device,
called a reheat, that contains hot or cold wa-
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building model to estimate all of them at
once. Instead, the immobile robot must auto-
mate a control engineer or modeler’s expertise
at breaking a model into a set of tractable pa-
rameter-estimation tasks and then coordinat-
ing and combining their results.2 This coordi-
nation represents the link between high-level
reasoning and autonomic processes in our self-
modeling immobot. An army of modelers is
used for large-scale tasks, such as earth ecosys-
tem modeling, at great cost. This army must
be automated for many immobile robot tasks
if high performance and robustness are to be
achieved. MORIARTY automates key aspects of
how a community of modelers decompose,
simplify, plan, and coordinate large-scale mod-
el-estimation tasks through a technique called
decompositional, model-based learning (DML).

Coordinating Adaptive 
Model Estimation

When decomposing a model into a set of esti-
mation tasks, there is often a large set of pos-
sible estimators (y = f(x; p)) to choose from,
and the number of parameters contained in
each estimator varies widely. MORIARTY decom-
poses a model into a set of simplest estima-
tors that minimize the dimensionality of the
search space and the number of local mini-
ma, hence improving learning rate and accu-
racy. Each estimator, together with the appro-
priate subset of sensor data, forms a primitive
estimation action. MORIARTY then plans the or-
dering and the coordination of information
flow between them.

To estimate the parameters for a single
office, MORIARTY starts with a thermal model
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beled airflow, produces an estimate for param-
eter Rdct, the air resistance in the duct. It per-
forms this estimate using the following esti-
mator for Fext,

Fext = (ρlkg + ρdmpr(Xdmpr)) ÏPdwctw /wRdwctw ,

which is derived using three equations in the
office model pertaining to airflow. This action
does not take any parameter values as input
(ρlkg and ρdmpr(Xdmpr) are known a priori as con-
stants).

Consider a commonsense account of how
the estimation plan is generated. MORIARTY

constructs this plan by generating a set of
possible estimation actions from the model.
It then selects and sequences a subset of the
actions sufficient to cover all parameters. Ac-
tions are generated in two steps: In the first
step, subsets of the model and sensors are
identified that are sufficiently constrained to
form an estimation problem. For example,
the airflow action described earlier was gener-
ated from the pressure Pdct and airflow sensors
F, together with the following airflow equa-
tions:

Fext = Flkg + Fdmpr  .

Flkg = 1 2ÏPwdcwtw .

Fdmpr = 1 2ÏPwdcwtw .
ρdmpr(Xdmpr) }}

Rdct

ρlkg }
Rdct

consisting of 14 equations that involve 17
state variables and 11 parameters. About one-
third of the equations are nonlinear, such as

Fdmpr = 1 2 ÏPwdcwtw ,

which relates airflow through the damper to
duct pressure and duct air resistance as a
function of damper position. Nine of the
state variables are sensed, including tempera-
ture T, flow rate F, air pressure P, and damper
and reheat valve position X. Seven of the 11
parameter values are unknown and must be
estimated by MORIARTY.

MORIARTY’s task is to generate an estimation
plan from the thermal model. MORIARTY, when
brought to full capability, will be able to gen-
erate the plan in figure 4 (it currently gener-
ates less efficient plans). In terms of the im-
mobot metaphor, each octagon in the figure
represents an adaptive, autonomic estimation
process, and the plan graph represents high-
er-level coordination. Each octagon in the di-
agram is an estimation action that is defined
by an estimator y = f(x,p) applied to a subset
of the sensor data. The estimator is construct-
ed from a subset of the model. The arc going
into the action specifies additional parame-
ters whose values are already known, and the
arc leaving the action specifies parameters
whose values have been determined by the
estimation. For example, the top octagon, la-

ρdmpr (Xdmpr) 
}}

Rdct

Articles

26 AI MAGAZINE

Figure 4. Model-Estimation Plan for a Single Office. 
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MORIARTY’s
task is to 
generate an
estimation
plan from 
the thermal
model.

Two additional actions, Rht and Rm, are creat-
ed from the set of temperature and heat-flow
equations by using the duct air-temperature
sensor to split the set into reheat and room
submodels. The first action, Air-Flw, involves
the single parameter Rdct, action Rht involves
the two parameters Qrhtmax and Crht, and Rm
involves the four parameters Rwall, Qeqp, Crm,
and Qslr(t). MORIARTY’s first step generates eight
possible estimation actions in total, each con-
taining between one and seven parameters.
Air-Flw, Rht, and Rm are three actions that
cover all seven model parameters and contain
the fewest parameters individually. The fact
that the sets of parameters in these actions are
disjoint is purely coincidental.

An additional step, under development,
produces one or more simplified versions of
each estimation action by identifying condi-
tions on the data such that influences by one
or more parameters become negligible. For
example, consider the estimator for action
Rm:

= +

.

This estimator can be simplified by noticing
that solar effect Qslr(t) is negligible at night-
time when the sun is down (action Rm-
Nght), but it is significant during the day (ac-
tion Rm-Day-Trn). Action Rm-Nght is
generated from Rm by restricting the data set
to data taken at night, which allows Qslr to be
eliminated, reducing the number of parame-
ters in the estimator from four to three: Rwall,
Qeqp, and Crm.

Furthermore, the effect of the room heat
capacity Crm is negligible when the room tem-
perature is in steady state (Rm-Nght-Std), but
it becomes particularly significant during
room-temperature transients (Rm-Nght-Trn).
Hence, action Rm-Nght-Std is generated from
the simplified action Rm-Nght by further re-
stricting the data set to data where dTrm/dt is
small. Thus, the term CrmdTrm/dt can be elimi-
nated from the estimator, and the number of
parameters can be reduced from three to two.
Applying this simplification process to the
first three of the eight actions generated in
the first step results in the six primitive esti-
mation actions shown in figure 4.

Having generated these estimation actions,
sequencing exploits the fact that some of
these estimation actions share parameters to
further reduce the dimensionality of the
search performed by each action. In particu-
lar, the output of an estimation action with

Qeqp +  Qslr(t) + Rwall(Text – Trm)
}}}}

Crm

C0Fsply (Tsply – Trm)
}}}

Crm

dTrm}
dt

fewer unknown parameters, such as Rm-
Nght-Std, is passed to an overlapping action
with more parameters, such as Rm-Nght. Se-
quencing reduces the number of unknown
parameters estimated in the second action;
for example, Rm-Nght is left only with Crm as
an unknown. This approach produces the se-
quence shown in figure 4. Each action esti-
mates at most two unknown parameters, a
dramatic reduction from the seven unknown
parameters in the original problem.

Technically, in the first step, MORIARTY de-
composes a model into an initial set of esti-
mation actions by exploiting an analogy to
the way in which model-based diagnosis de-
composes and solves large-scale multiple-fault
problems. The decomposition of a diagnostic
problem is based on the concept of a
conflict—a minimal subset of a model (typi-
cally in propositional or first-order logic) that
is inconsistent with the set of observations
(de Kleer and Williams 1987; Reiter 1987).
MORIARTY’s decompositional learning method
is based on the analogous concept of a
dissent—a minimal subset of an algebraic
model that is overdetermined given a set of
sensed variables (that is, a dissent is just
sufficient to induce an error function). The
set of three flow equations used earlier to
construct the Air-Flw estimator is an example
of a dissent. Following this analogy, MORIARTY

uses a dissent-generation algorithm (Williams
and Millar 1996) that parallels the conflict-
recognition phase of model-based diagnosis.

MORIARTY’s simplification step (currently un-
der development) is based on an order-of-
magnitude simplification method called cari-
catural modeling (Williams and Raiman 1994).
Caricatural modeling partitions a model into
a set of operating regions in which some be-
haviors dominate, and others become negligi-
ble. MORIARTY applies caricatures to each esti-
mation action generated in the first step,
using the action’s estimator as the model.
Each operating region generated corresponds
to a simplified estimation action; the operat-
ing region’s model is the simplified estimator,
and the operating region’s boundary descrip-
tion provides a filter on data points for the es-
timator. In the thermal example, one of
many simplifications to our estimator for Rm
is to minimize Qslr(t). Because Qslr(t) ≈ 0 for all
data at night, this simplification can be used.
In the final step, sequencing selects and or-
ders primitive estimation actions using an al-
gorithm that greedily minimizes the un-
known parameters in each estimator, as
described in Williams and Millar (1996).

Consider MORIARTY’s performance on the ex-
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able. For example, at trial size 200, the origi-
nal estimator requires 166 seconds, but the
total time to estimate all parameters using F2,
F1, and F6 is under 9 seconds, representing a
speedup by a factor of 14.

In addition, the sequence requires less data
to converge, important for self-modeling im-
mobile robots, which use online estimation
to quickly track time-varying parameters.
Based on the rule of thumb that the data-set
size should roughly be tenfold the dimension
of the parameter space, F7 would require
around 70 data points, but the F2, F1, F6 se-
quence requires only 40. The anomalous
slowdown in the convergence rate of F7 at 25
data points is attributed to insufficient data.
Finally, although not included, parameter ac-
curacy, measured by the confidence interval
of each parameter, is also improved using the
generated sequence.

To summarize, a model-based approach is
essential for regulating systems of the size of

ample, where the simplification step hasn’t
been performed (figure 5). MORIARTY generates
the eight estimators, F1 to F8, in the first step
and immediately sequences them to produce
<F2, F1, F6>, which corresponds to the flow
reheat and room-estimation actions, given
earlier. We compare the performance of the 8
estimators by running them against sensor
data sets ranging in size from 10 to 200,
shown previously. The y axis denotes the
time required to converge on a final estimate
of parameters involved in the dissent. The
plot labeled F7 is for the original seven-di-
mensional estimator, and plots F2, F1, and F6
are the three estimators in MORIARTY’s se-
quence. Higher-dimensional estimators, such
as F7, tend to fail to converge given arbitrary
initial conditions; hence, ball-park initial pa-
rameter estimates were supplied to allow con-
vergence in the higher-dimensional cases. De-
composition leads to significant speedup
even when good initial estimates were avail-
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most immobile robots. Embodying an immo-
bile robot with self-modeling capabilities re-
quires the use of symbolic reasoning to coor-
dinate a large set of autonomic estimation
processes. This coordination mimics the way
in which a community of modelers decom-
poses, simplifies, and coordinates modeling
problems on a grand-challenge scale. DML
automates one aspect of this rich model de-
composition and analysis planning process.

The New Millennium Program 
HAL in 2001 highlights four aspects of the im-
mune system of an immobile robot that we
examine technically in this section: First is the
ability to monitor internal health, detecting
and isolating failing functions, processes, and
components. Second is the ability to continu-
ally reconfigure the low-level autonomic pro-
cesses of an immobot, establishing intended
functions and working around failures in a
cost-efficient and reliable manner. Third is the
ability to reason extensively through
reconfiguration options yet ensure reactivity.
Fourth is the ability to reason about hybrid
systems.

Livingstone
We have developed a system called LIVING-
STONE3 to investigate these issues in the con-
text of NASA’s New Millennium Program. LIV-
INGSTONE is a fast, reactive, model-based
configuration manager. Using a hierarchical
control metaphor, LIVINGSTONE sits at the
nexus between the high-level feed-forward
reasoning of classical planning-scheduling
systems and the low-level feedback response
of continuous adaptive control methods, pro-
viding a kernel for model-based autonomy.
LIVINGSTONE is distinguished from more tradi-
tional robotic executives through the use of
deliberative reasoning in the reactive feed-
back loop. This deliberative reasoning is com-
positional and model based, can entertain an
enormous search space of feasible solutions,
yet is extremely efficient because of the abili-
ty to quickly focus on the few solutions that
are near optimal.

Three technical features of LIVINGSTONE are
particularly worth highlighting: First, the ap-
proach unifies the dichotomy within AI be-
tween deduction and reactivity (Brooks 1991;
Agre and Chapman 1987). We achieve a reac-
tive system that performs significant deduc-
tion in the sense-response loop by drawing
on our past experience at building fast propo-
sitional conflict-based algorithms for model-
based diagnosis and framing a model-based
configuration manager as a propositional

feedback controller that generates focused,
optimal responses. Second, LIVINGSTONE’s rep-
resentation formalism achieves broad cover-
age of hybrid discrete-continuous, software-
hardware systems by coupling the concurrent
transition-system models underlying concur-
rent reactive languages (Manna and Pnueli
1992) with the qualitative representations de-
veloped in model-based reasoning. Third, the
long-held vision of model-based reasoning
has been to use a single central model to sup-
port a diversity of engineering tasks. For mod-
el-based autonomous systems, it means using
a single model to support a variety of execu-
tion tasks, including tracking planner goals,
confirming hardware modes, reconfiguring
hardware, detecting anomalies, isolating
faults, diagnosing, recovering from faults,
and safing. LIVINGSTONE automates all these
tasks using a single model and a single-core
algorithm, thus making significant progress
toward achieving the model-based vision.

Configuration Management 
To understand the role of a configuration
manager, consider figure 6. It shows a sim-
plified schematic of the main engine subsys-
tem of Cassini, the most complex spacecraft
built to date. It consists of a helium tank, a fu-
el tank, an oxidizer tank, a pair of main en-
gines, regulators, latch valves, pyro valves,
and pipes. The helium tank pressurizes the
two propellant tanks, with the regulators act-
ing to reduce the high helium pressure to a
lower working pressure. When propellant
paths to a main engine are open, the pressur-
ized tanks force fuel and oxidizer into the
main engine, where they combine and spon-
taneously ignite, producing thrust. The pyro
valves can be fired exactly once; that is, they
can change state exactly once, either from
open to closed or vice versa. Their function is
to isolate parts of the main engine subsystem
until needed or isolate failed parts. The latch
valves are controlled using valve drivers (not
shown), and an accelerometer (not shown)
senses the thrust generated by the main en-
gines.

To start with the configuration shown in
the figure, the high-level goal of producing
thrust can be achieved using a variety of dif-
ferent configurations: Thrust can be provid-
ed by either main engine, and there are a
number of different ways of opening propel-
lant paths to either main engine. For exam-
ple, thrust can be provided by opening the
latch valves leading to the engine on the left
or firing a pair of pyros and opening a set of
latch valves leading to the engine on the
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valves (rather than firing additional pyro
valves).

A configuration manager constantly at-
tempts to move the spacecraft into lowest-
cost configurations that achieve a set of high-
level dynamically changing goals, such as the
goal of providing nominal thrust. When the
spacecraft strays from the chosen configura-
tion because of failures, the configuration
manager analyzes sensor data to identify the
current configuration of the spacecraft and
then moves the spacecraft to a new configura-
tion, which, once again, achieves the desired
configuration goals. In this sense, a configura-
tion manager such as LIVINGSTONE is a discrete
control system that is strategically situated be-
tween high-level planning and low-level con-
trol; it ensures that the spacecraft’s configura-
tion always achieves the set point defined by
the configuration goals.

Model-Based Configuration 
Management 
LIVINGSTONE is a reactive configuration manag-
er that uses a compositional, component-
based model of the spacecraft to determine
configuration actions (figure 7). Each compo-
nent is modeled as a transition system that
specifies the behaviors of operating and fail-
ure modes of the component, nominal and
failure transitions between modes, and the
costs and likelihoods of transitions (figure 8).
Mode behaviors are specified using formulas
in propositional logic, but transitions between
modes are specified using formulas in a re-
stricted temporal, propositional logic. The re-
stricted propositional, temporal logic is ade-
quate for modeling digital hardware, analog
hardware using qualitative abstractions (de
Kleer and Williams 1991; Weld and de Kleer
1990), and real-time software using the mod-
els of concurrent reactive systems in Manna
and Pnueli (1992). The spacecraft transition-
system model is a composition of its compo-
nent transition systems in which the set of
configurations of the spacecraft is the cross-
product of the sets of component modes. We
assume that the component transition sys-
tems operate synchronously; that is, for each
spacecraft transition, every component per-
forms a transition.

A model-based configuration manager uses
its transition-system model to both identify
the current configuration of the spacecraft,
called mode identification (MI), and move the
spacecraft into a new configuration that
achieves the desired configuration goals,
called mode reconfiguration (MR). MI incre-
mentally generates all spacecraft transitions
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Figure 6. Schematic of the Cassini Main-Engine Subsystem.
In the valve configuration shown, the engine on the left is firing.

Figure 7. Model-Based Reactive Configuration Management.
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right. Other configurations cor-
respond to various combina-
tions of pyro firings. The differ-
ent configurations have
different characteristics because
pyro firings are irreversible ac-
tions and because firing pyro
valves requires significantly
more power than opening or
closing latch valves.

Suppose that the main-engine
subsystem has been configured
to provide thrust from the left
main engine by opening the

latch valves leading to it. Sup-
pose that this engine fails, for
example, by overheating, so that
it fails to provide the desired
thrust. To ensure that the desired
thrust is provided even in this
situation, the spacecraft must be
transitioned to a new configura-
tion in which thrust is now pro-
vided by the main engine on the
right. Ideally, thrust is provided
by firing the two pyro valves
leading to the right side and
opening the remaining latch



from the previous configuration such that the
models of the resulting configurations are
consistent with the current observations
(figure 9). MR determines the commands to
be sent to the spacecraft such that the result-
ing transitions put the spacecraft into a
configuration that achieves the configuration
goal in the next state (figure 10). The use of a
spacecraft model in both MI and MR ensures
that configuration goals are achieved correct-
ly.

Both MI and MR are reactive. MI infers the
current configuration from knowledge of the
previous configuration and current observa-
tions. MR only considers commands that
achieve the configuration goal in the next
state. Given these commitments, the decision
to model component transitions as syn-
chronous is key. An alternative is to model
multiple component transitions through in-
terleaving. However, such interleaving can
place an arbitrary distance between the cur-
rent configuration and a goal configuration,
defeating the desire to limit inference to a
small fixed number of states. Hence, we mod-
el component transitions as being syn-
chronous. If component transitions in the
underlying hardware-software are not syn-
chronous, our modeling assumption is still
correct as long as some interleaving of transi-
tions achieves the desired configuration.

In practice, MI and MR need not generate
all transitions and control commands, respec-
tively. Rather, just the most likely transitions
and an optimal control command are re-
quired. We efficiently generate these by re-
casting MI and MR as combinatorial opti-
mization problems. In this reformulation, MI
incrementally tracks the likely spacecraft tra-
jectories by always extending the trajectories
leading to the current configurations by the
most likely transitions. MR then identifies the
command with the lowest expected cost that
transitions from the likely current configura-
tions to a configuration that achieves the de-
sired goal. We efficiently solve these combi-
natorial optimization problems using a
conflict-directed best-first search algorithm.
See Williams and Nayak (1996) for a formal
characterization of MI and MR and a descrip-
tion of the search algorithm.

A Quick Trip to Saturn
Following the announcement of the New
Millennium Program in early 1995, space-
craft engineers from the Jet Propulsion Labo-
ratory (JPL) challenged a group of AI re-
searchers at NASA Ames and JPL to
demonstrate, within the short span of five

months, a fully autonomous architecture for
spacecraft control. To evaluate the architec-
ture, the JPL engineers defined the NEWMAAP

spacecraft and scenario based on Cassini.
The NEWMAAP spacecraft is a scaled-down ver-
sion of Cassini that retains the most chal-
lenging aspects of spacecraft control. The
NEWMAAP scenario is based on the most com-
plex mission phase of Cassini—successful in-
sertion into Saturn’s orbit even in the event
of any single point of failure.

The AI researchers, working closely with the
spacecraft engineers, developed an au-
tonomous agent architecture that integrates
LIVINGSTONE with the HSTS planning and
scheduling system (Muscettola 1994) and a
multithreaded smart executive (Pell, Gat, et al.
1996) based on RAPS (Firby 1995). In this archi-
tecture (see Pell, Bernard, et al. [1996] for de-
tails), HSTS translates high-level goals into par-
tially ordered tokens on resource time lines.
The executive executes planner tokens by
translating them into low-level spacecraft com-
mands while enforcing temporal constraints
between tokens. LIVINGSTONE tracks spacecraft
state and planner tokens and reconfigures for
failed tokens. This autonomous agent architec-
ture was demonstrated to successfully navigate
the simulated NEWMAAP spacecraft into Saturn
orbit during its one-hour insertion window, de-
spite about a half-dozen failures. Consequently,
LIVINGSTONE, HSTS, and the smart executive have
been selected to fly Deep Space One, forming
the core autonomy architecture of NASA’s New
Millennium Program.
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Figure 8. Transition-System Model of a Valve.
Open and closed are normal operating modes, but stuck open and stuck closed
are failure modes. The Open command has unit cost and causes a mode transi-
tion from closed to open, similarly for the Close command. Failure transitions
move the valve from the normal operating modes to one of the failure modes

with probability 0.01.
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Figure 10. Mode Reconfiguration (MR).
The figure shows a situation in which mode identification (MI) has identified a failed main-engine valve leading to the left main engine.

MR reasons that normal thrust can be restored in the next state if an appropriate set of valves leading to the right engine are opened.
The figure shows two of the many configurations that achieve the desired goal (circled valves are commanded to change state). Transi-
tioning to the configuration at the top has lower cost because only necessary pyro valves are fired. The valves leading to the left engine

are turned off to satisfy a constraint that, at most, one engine can fire at one time.

Figure 9. Mode Identification (MI).
The figure shows a situation in which the left engine is firing normally in the previous state, but no thrust is observed in the current

state. MI’s task is to identify the configurations into which the spacecraft has transitioned that account for this observation. The figure
shows two possible transitions, corresponding to one of the main-engine valves failing “stuck closed” (failed valves are circled). Many

other transitions, including more unlikely double faults, can also account for the observations. 



Table 1 provides summary information
about LIVINGSTONE’s model of the NEWMAAP

spacecraft, demonstrating its complexity. The
NEWMAAP demonstration included seven fail-
ure scenarios. From LIVINGSTONE’s viewpoint,
each scenario required identifying likely fail-
ure transitions using MI and deciding on a set
of control commands to recover from the fail-
ure using MR. Table 2 shows the results of
running LIVINGSTONE on these scenarios.

The first column in table 2 names each of
the scenarios, but a discussion of the details of
these scenarios is beyond the scope of this arti-
cle. The second and fifth columns show the
number of solutions checked by MI and MR,
respectively. One can see that even though the
spacecraft model is large, the use of conflict-di-
rected search dramatically focuses the search.
The third column shows the number of lead-
ing trajectory extensions identified by MI. The
limited sensing available on the NEWMAAP

spacecraft often makes it impossible to identi-
fy unique trajectories. The fourth and sixth
columns show the time spent by MI and MR
on each scenario, once again demonstrating
the efficiency of our approach.

The New Millennium
We are only now becoming aware of the
rapid construction of a ubiquitous, immobile
robot infrastructure that rivals the construc-
tion of the World Wide Web and has the po-
tential for profound social, economic, and
environmental change. Tapping into this po-
tential will require embodying immobots
with sophisticated regulatory and immune
systems that accurately and robustly control
their complex internal functions. Developing
these systems requires fundamental advances
in model-based autonomous system architec-
tures that are self-modeling, self-configuring,
and model based programmable and support
deliberated reactions. This development can
only be accomplished through a coupling of
the diverse set of high-level, symbolic meth-
ods and adaptive autonomic methods offered
by AI. Although a mere glimmer of Spock and
HAL, our two model-based immobots, LIVING-
STONE and MORIARTY, provide seeds for an ex-
citing new millennium.
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Notes
1. This article is based on an invited talk given at
the Third International Conference on AI Planning
Systems (Williams 1996).

2. To achieve tractability, a modeler of nonlinear
physical systems typically searches for estimators
containing four or less parameters.

3. LIVINGSTONE the program is named after David
Livingstone (1813–1873), the nineteenth-century
medical missionary and explorer. Like David Liv-
ingstone, LIVINGSTONE the program is concerned
with exploration and the health of explorers.
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