
Computational Vulnerability Analysis for Information Survivability ∗

Howard Shrobe
NE43-839

Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139
hes@ai.mit.edu

Abstract

The Infrastructure of modern society is controlled by soft-
ware systems. These systems are vulnerable to attacks; sev-
eral such attacks, launched by ”recreation hackers” have al-
ready led to severe disruption. However, a concerted and
planned attack whose goalis to reap harm could lead to catas-
trophic results (for example, by disabling the computers that
control the electrical power grid for a sustained period of
time). The survivability of such information systems in the
face of attacks is therefore an area of extreme importance to
society.
This paper is set in the context of self-adaptive survivable
systems: software that judges the trustworthiness of the com-
putational resources in its environment and which chooses
how to achieve its goals in light of this trust model. Each
self-adaptive survivable system detects and diagnoses com-
promises of its resources, taking whatever actions are neces-
sary to recover from attack. In addition, a long-term moni-
toring system collects evidence from intrusion detectors, fire-
walls and all the self-adaptive components, building a com-
posite trust-model used by each component. Self-adaptive
survivable systems contain models of their intended behav-
ior, models of the required computational resources, models
of the ways in which these resources may be compromised
and finally, models of the ways in which a system may be at-
tacked and how such attacks can lead to compromises of the
computational resources.
In this paper we focus on Computational Vulnerability Anal-
ysis: a system that, given a description of a computational
environment, deduces all of the attacks that are possible. In
particular its goal is to develop multi-stage attack models in
which the compromise of one resource is used to facilitate the
compromise of other, more valuable resources. Although our
ultimate aim is to use these models online as part of a self-
adaptive system, there are other offline uses as well which we
are deploying first to help system administrators assess the
vulnerabilities of their computing environment .

∗This article describe research conducted at the Artificial Intel-
ligence Laboratory of the Massachusetts Institute of Technology.
Support for this research was provided by the Information Tech-
nology Office of the Defense Advanced Research Projects Agency
(DARPA) under Space and Naval Warfare Systems Center - San
Diego Contract Number N66001-00-C-8078. The views presented
are those of the author alone and do not represent the view of
DARPA or SPAWAR.
Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Background and Motivation
The infrastructure of modern society is controlled by com-
putational systems that are vulnerable to information at-
tacks. A skillful attack could lead to consequences as dire
as those of modern warfare. There is a pressing need for
new approaches to protect our computational infrastructure
from such attacks and to enable it to continue functioning
even when attacks have been successfully launched.

Our premise is that to protect the infrastructure we need to
restructure these software systems asSelf-Adaptive Surviv-
able Systems. Such software systems must be informed by a
trust-modelthat indicates which resources are to be trusted.
When such a system starts a task, it chooses that method
which the trust-model indicates is most likely to avoid com-
promised resources. In addition, such a system must be ca-
pable of detecting its own malfunction, it must be able to
diagnosethe failure and it must be capable of repairing it-
self after the failure. For example, a system might notice
through self-monitoring that it is running much slower than
expected. It might, therefore, deduce that the scheduler of
the computer it is running on has been compromised and
that the compromise resulted from the use of a buffer over-
flow attack that gained root access to the system and used
this privilege to change the scheduler policy. The buffer
overflow attack in turn might have exploited a vulnerability
of a web server (as for example happened in the ”code-red”
attack). Given this diagnosis, the trust model should be up-
dated to indicate that the computer’s operating system was
compromised and should be avoided in the future if possi-
ble. Techniques for this type of diagnosis are described in
(Shrobe 2001).

The trust model is also influenced by collating evidence
from many available sources over a long period of time. In
our lab, for example, we notice several alerts from our in-
trusion detection system over a couple a days. This was fol-
lowed by a period in which nothing anomalous happened.
But then we began to notice that the consumption of disk
space and the amount of network traffic from outside the lab
were increasing and this continued for some time. Then the
load leveled off. What had happened is that a user password
had been stolen and that a public ftp site had been set up for
the use of the friends of the password thief. This incident
is an instance of a very commonattack plan. Such attack
plans have multiple stages, temporal constraints between the



stages, and constraints within each stage on values and their
derivatives (e.g. the rate of growth of disk space consump-
tion). These can, therefore, be used as ”trend templates”
for collating and analyzing the alerts from intrusion detec-
tion systems and the data in common system logs. This pro-
vides perspective over a longer period of time than the intru-
sion detection systems themselves possess, allowing detec-
tion of attacks that are intentionally subtle. Long-term mon-
itoring systems capable of conducting trend template driven
attack plan recognition are described in (Doyleet al. 2001a;
2001b).

Trust modeling thus depends both on attack plan recogni-
tion as well as on the self-diagnosis of self-adaptive software
systems. The resulting trust model includes models of what
computational resources have beencompromised, what at-
tackswere used to effect this attack and whatvulnerability
was exploited by the attack. Key to all these tasks is having
a comprehensive set of attack models.

This paper focuses on Computational Vulnerability Anal-
ysis, a systematic method for developing attack models used
both in attack plan recognition and self-diagnosis of adaptive
systems. All current systems are driven either bysignatures
of specific exploits (e.g. the tell-tales of a password scan) or
by anomaly profiling(e.g. detecting a difference in behavior
between the current process and a statistical norm). Neither
of these alone is capable of dealing with a skillful attacker
who would stage his attack slowly to avoid detection, would
move in stages and would use a compromise at one stage to
gain access to more valuable resources later on. The sys-
tematic nature of Computation Vulnerability Analysis and
the use of its attack plans in both long-term monitoring and
in self-diagnosing adaptive systems leads to increased pre-
cision in trust modeling and greater survivability of critical
systems.

Contributions of this Work
We develop a model-based technique, which we call Com-
putational Vulnerability Analysis, for analyzing vulnerabili-
ties and attacks. Rather than relying on a catalog of known
specific attacks we instead reason from first principles to de-
velop a much more comprehensive analysis of the vulnera-
bilities. Furthermore, the attacks developed in this analysis
include both single stage attacks as well as multi-stage at-
tacks. These are crucial issues when failure is caused by a
concerted attack by a malicious opponent who is attempting
to avoid detection.

We develop a unified framework for reasoning about the
failures of computations, about how these failures are re-
lated to compromises of the underlying resources, about
the vulnerabilities of these resources and how these vul-
nerabilities enable attacks. We then extend previous work
in Model-Based diagnosis (Davis & Shrobe 1982; deK-
leer & Williams 1987; 1989; Hamscher & Davis 1988;
Srinivas 1995) to enable systems capable of self-diagnosis,
recovery and adaptation. We also use this framework in
building long term monitoring systems (Doyleet al. 2001a;
2001b) capable of attack plan recognition. Both attack plan
recognition and self-diagnosis lead to updated estimates of

the trustability of the computational resources. These esti-
mates, which form the trust model, inform all future decision
making about how to achieve goals.

In addition to its role in Survivable Systems, Computa-
tional Vulnerability Analysis can also be used offline to as-
sess the vulnerability of and to identify weak links in a com-
putational environment. This can help system administrators
improve the security and robustness of their network, often
by instituting simple changes. We are currently using the
system, in a limited way, to assess the vulnerabilities of our
lab’s computing environment; as the system matures we plan
to apply it more systematically to the entire lab. We are also
in the process of connecting the computation vulnerability
analysis system to our long-term monitoring system, and of
connecting the monitoring system to a commercial intrusion
detector. We plan to begin deploying this monitoring system
within the next six months.

This paper first describes the modeling framework and
reasoning processes used in computational vulnerability
analysis and shows its application to a small section of our
lab’s computing environment. We conclude by explaining
how attack plans fit within the self-diagnostic and the long-
term monitoring frameworks.

Computational Vulnerability Analysis
In this section we examine the core issue of this paper which
is how to make the modeling of attacks and vulnerabilities
systematic.

We do this by grounding the analysis in a comprehensive
ontology that covers:

• System properties

• System Types

• System structure

• The control and dependency relationships between sys-
tem components.

.
This ontology covers what types of computing resources

are present in the environment, how the resources are com-
posed from components (e.g. an operating system has a
scheduler, a file system, etc.), how the components control
one another’s behavior, and what vulnerabilities are known
to be present in different classes of these components. Fi-
nally, the models indicate how desirable properties of such
systems depend on the correct functioning of certain compo-
nents of the system (for example, predictable performance of
a computer system depends on the correct functioning of its
scheduler).

A relatively simple reasoning process (encoded in a rule-
based system) then explores how a desirable property of a
system can be impacted (e.g. you can impact the predictabil-
ity of performance by affecting the scheduler, which in turn
can be done by changing its input parameters which in turn
can be done by gaining root access which finally is enabled
by a buffer overflow attack on a process running with root
privileges). The output of this reasoning is a set of multi-
stage attacks, each of which is capable of affecting the prop-
erty of interest.



We also provide a structural model of the entire comput-
ing environment under consideration, including:

• Network structure and Topology

– How is the network decomposed into subnets
– Which nodes are on which subnets
– Which routers and switches connect the subnets
– What types of filters and firewalls provide control of

the information flow between subnets

• System types:

– What type of hardware is in each node
– How is the hardware decomposed into sub-systems
– What type of operating system is in each node
– How is the operating system decomposed into sub-

systems

• Server and user software suites: What software function-
ality is deployed on each node.

• What are the access rights to data and how are they con-
trolled

• What are the places in which data is stored or transmitted

The next step is to model dependencies. To do this we
begin with a list of desirable properties that the computa-
tional resources are supposed to deliver. Typical properties
include:

• Reliable Performance

• Privacy of Communications

• Integrity of Communications

• Integrity of Stored Data

• Privacy of Stored Data

Within the diagnostic framework each such property cor-
responds to a normal behavioral mode of some (or several)
computational resource(s). For example, reliable computa-
tional performance is a property to which the scheduler con-
tributes while data privacy is a property contributed by the
access-control mechanisms.

Control Relationships
We now turn our attention to a rule-base that uses this ontol-
ogy to reason about how one might affect a desirable prop-
erty. Our goal is to make this rule base as abstract and gen-
eral as possible. For example, one such abstract rule says
(this is a paraphrase of the actual rule, which is coded in a
Lisp-based rule system):

If the goal is to affect the
reliable-performance
property of some component ?x

Then find a component ?y of ?x that
contributes to the delivery
of that property

and find a way to control ?y

This puts the notion of control and dependency at the cen-
ter of the reasoning process. There are several rules about
how to gain control of components, which are quite gen-
eral. The following are examples of such general and ab-
stract rules:

If the goal is to control a component ?x
Then find an input ?y to ?x

and find a way to modify ?y

If the goal is to control a component ?x
Then find a component ?y of ?x

and find a way to control ?y

If the goal is to control a component ?x
Then find a vulnerability ?y

of the component ?x
and find a way to exploit ?y

to take control of ?x.

At the leaves of this reasoning chain is specific informa-
tion about vulnerabilities and how to exploit them. For ex-
ample:

• Microsoft IIS web-servers below a certain patch level are
vulnerable to buffer overflow attacks.

• Buffer overflow attacks are capable of taking control of
the components that are vulnerable.

One of the rules shown above indicates that one can con-
trol a component by modifying its inputs. The following
rules describe how this can be done:

If the goal is to modify an input ?x of
component ?y

then find a component ?z which control
the input ?x

and find a way to gain control of ?z

If the goal is to modify an input ?x
of component ?y

then find a component ?z of the input ?x
and find a way to modify ?z

Access Rights
Within most computer systems the ability to read or modify
data depends on obtaining access rights to that data. We
model access rights in a more general way than is used in
many actual systems:

• For each type of object we enumerate theoperationsthat
can be performed on objects of that type.

• For each operation we specify thecapabilitiesthat are re-
quired to perform the operation

• The capabilities are related by a subsumption relationship
that forms a DAG.



• For each agent (i.e. a user or a process) we enumerate the
capabilities that the agent possesses at any time.

• An agent is assumed to be able to perform an operation on
an object only if it possesses a capability at least as strong
as that required for the operation.

• Typically groups of machines manages access rights col-
lectively (e.g. workgroups in MS Windows, NIS in Unix
environments). We refer to such a collection of machines
as anaccess pool.

• The structure of access pools may be orthogonal to the
network topology. Machines in different subnets may be
parts of the same access pool, while machines on a com-
mon subnet may be members of different access pools.

Given this framework we provide rules that describe how
to gain access to objects:

If the goal is to gain access to
operation ?x on object ?y

and operation ?x on ?y
requires capability ?z

then find a process ?p
whose capability ?w
subsumes ?z

and find a way to
take control of ?p.

If the goal is to gain access to
operation ?x on object ?y

and operation ?x on ?y
requires capability ?z

then find a user ?u whose
capability ?w
subsumes ?z

and find a way to log in as ?u
and launch a process ?p

with capability ?w

Knowledge of Secrets

Logging on to a system typically requires knowledge of a
secret (e.g. a password). A set of rules describes how to
obtain knowledge of a password:

• To obtain knowledge of a password, find it by guessing,
using a guessing attack.

• To obtain knowledge of a password, Sniff it.

– To sniff a piece of data place a parasitic virus on the
user’s machine

– To sniff a piece of data monitor network traffic that
might contain the datum

– To sniff a piece of data find a file containing the data
and gain access to it.

• To obtain knowledge of a password, gain write access to
the password file and change it.

Network Structure
The next section of rules deal with networks. As mentioned
above, networks are described in terms of the decomposition
into subnets and the connections of subnets by routers and
switches. In addition, for each subnet we provide a descrip-
tion of the media type; some subnets are shared media, for
example coaxial-cable based ethernet and wireless ethernet.
In such subnets, any connected computer can monitor any of
the traffic. Other subnets are switched media (e.g. 10, 100,
and 1000 base-T type ethernet); in these network only the
switch sees all the traffic (although it is possible to direct the
switch to reflect all traffic to a specific port). Switches and
routers are themselves computers that have presence on the
network; this means that, like any other computer, there are
exploits that will gain control of them. However, it is typical
that the switches and routers are members of a special access
pool, using separate capabilities and passwords.

Given this descriptive machinery it now becomes possible
to provide another rule:

To gain knowledge of some information
gain the ability to monitor network traffic.

Residences and Format Transformations
The last set of modeling issues have to do with the vari-
ous places in which data live and how data is transformed
between various representations. The following issues are
modeled:

• Data elements reside in many places

• Executable code resides in many place

– Main memory
– Boot files
– Paging files

• Data elements and code move between their various resi-
dences

– Data migrations go through peripheral controllers
– Data migrations go through networks

Given these representations we then provide the following
rules:

• To modify or observe a data element find a residence of
the element and find a way to modify or observe it in that
residence.

• To modify or observe a data element find a migration path
and find a way to modify or observe it during the trans-
mission.

Further rules provide details of how one might gain con-
trol of a peripheral controller or of a network segment so as
to modify data during transmission. For example:

• To control traffic on a network segment launch ”A man in
the middle attack” by gaining control of a machine on the
network and then finding a way to redirect traffic to that
machine rather than to the router or switch.



• To observe network traffic get control of a switch or router
and a user machine and the reflect the traffic to the user
machine.

• To modify network traffic, launch an ”inserted packet” at-
tack. To do this get control of machine on the network
and then send a packet from that machine with the correct
serial number but wrong data before the real sender sends
the correct data.

A somewhat analogous issue has to do with the various
formats that data and code take on and the processes that
transform data and code between these formats. In particu-
lar, code can exist in at least the following formats: Source,
compiled, linked executable images. In many systems there
are other representations as well (e.g. JAR files for Java
code). In addition, processes such as compilation and link-
ing transform code between these formats. This leads to the
following rules:

• To modify a software component find an upstream repre-
sentation of that component and then find a way to mod-
ify that representation and to cause the transformation be-
tween representations to happen.

• To modify a software component gain control of the pro-
cesses that perform the transformation from upstream to
downstream representation.

An Example
The following example illustrate how these representations
and rules interact to analyze the vulnerabilities of a com-
puter. Suppose we are interested in affecting the perfor-
mance of a specific computer. The rule-base would then
generate the following plan:

• One goal is to control the scheduler of the computer be-
cause the scheduler is a component that impacts perfor-
mance.

• One way to do that is to modify the scheduler’s policy
parameters because the policy parameters are inputs to the
scheduler.

• One way to do that is by gaining root access to the com-
puter because root access is required to modify these pa-
rameters.

• One way to do that is to use a buffer overflow attack on a
web server because the web-server possesses root capabil-
ities and the web-server is vulnerable to buffer-overflow
attacks.

For this attack to succeed in impacting performance every
step of the plan must succeed. Each of these steps has ana
priori probability based on its inherent difficulty.

The analysis process must take into account not just the
general strategies but also the specific features of individ-
ual machines, network segments, routers, fire-walls, packet-
filters etc. The attack plans include only those which sat-
isfy all these constraints. A computer may be vulnerable to
an exploit but if there is a fire-wall isolating it from the at-
tacker, the analysis will not develop an attack plan exploiting
that vulnerability.

Figures 1 and 2 show 2 attack plans that our system devel-
oped to attack privacy. Other plans developed are more com-
plex. Each plan is an And-Or tree (Goal nodes are Or nodes,
they may have several incoming links from Plan nodes; all
that is required is that one of the plans work. Plan nodes are
And nodes; each sub-goal must be fulfilled for a plan to be
valid) The leaves of the tree are primitive actions, i.e. actual
attack steps. The figures show one slice through the and-or
tree for simplicity.

Figure 1: A Plan for Affecting Privacy

For the given system description our vulnerability ana-
lyzer generated 7 attack plans for the privacy property and 9
plans for attacking performance.

We now turn briefly to the question of how the attack
plans are utilized in diagnostic reasoning and in long term
monitoring. In both cases, the attack plans are transformed:
for diagnostic reasoning they are converted into compo-
nents of a Bayesian network. In this form they help ex-
plain why a computation has failed and they also deduce
what resources are therefore likely to have been compro-
mised. For long-term monitoring they are transformed into
”trend-templates”. In this format they function as a time-
line for how a skillful attacker would stage an assault on
the analyzed network. The monitoring system accepts and
collates inputs from intrusion detectors, fire-walls, and self-
monitoring applications in an attempt to detect more perni-



Figure 2: A Second Plan for Affecting Privacy

cious, multistage attacks.
We will briefly describe each use in the next two sections.

Application to Diagnosis

Figure 3: An Example of the Extended System Modeling
Framework

Figure 3 shows a model of a fictitious distributed finan-
cial system which we use to illustrate the reasoning pro-
cess. The system consists of five interconnected software
modules (Web-server, Dollar-Monitor, Bond-Trader, Yen-
Monitor, Currency-Trader) utilizing four underlying compu-
tational resources (i.e. the computers WallSt-Server, JPMor-
gan, BondRUs, Trader-Joe). We use computational vulner-
ability analysis to deduce that one or more attack types are
present in the environment, leading to a three-tiered model
as shown in figure 4. The first tier is thecomputationallevel
which models the behavior of the computation being diag-
nosed; the second tier is theresourcelevel which monitors
the degree of compromise in the resources used in the com-
putation; the third tier is theattack layer which models at-
tacks and vulnerabilities. In this example, we show two at-
tack types, buffer-overflow and packet-flood. Packet-floods

can affect each of the resources because they are all net-
worked systems; buffer-overflows affect only the 2 resources
which are instances of a system type that is vulnerable to
such attacks.

A single compromise of an operating system component,
such as the scheduler, can lead to anomalous behavior in
several application components. This is an example of a
common mode failure; intuitively, a common mode failure
occurs when a single fault (e.g. an inaccurate power sup-
ply), leads to faults at several observable points in the sys-
tems (e.g. several transistors misbehave because their bias-
ing power is incorrect). Formally, there is a common mode
failure whenever the probabilities of the failure modes of
two (or more) components are dependent.

We deal with common mode failures as follows: Our
modeling framework includes three kinds of objects: com-
putational components (represented by a set of input-output
relationships and delay models one for each behavioral
mode), infrastructure resources (e.g. computers) and at-
tacks. Connecting the first two kinds of models are con-
ditional probability links; each such link states how likely
a particular behavioral mode of a computational component
would be if the infrastructure component that supports that
component were in a particular one of its modes (e.g. nor-
mal or abnormal). We next observe that resources are com-
promised by attacks that are enabled by vulnerabilities. An
attack is capable of compromising a resource in a variety
of ways; for example, buffer overflow attacks are used both
to gain control of a specific component and to gain root ac-
cess to the entire system. But the variety of compromises
enabled by an attack are not equally likely (some are much
more difficult than others). We therefore have a third tier in
our model describing the ensemble of attacks assumed to be
available in the environment and we connect the attack layer
to the resource layer with conditional probability links that
state the likelihood of each mode of the compromised re-
source once the attack has been successful. The attack plans
generated by computational vulnerability analysis constitute
this third tier. However a transformation is required for them
to fulfill this role. Attack plans are And-Or trees. However,
it is possible (and in fact likely) that different attack plans
share sub-plans (e.g. lots of multi-stage attacks begin with
a buffer-overflow attack being used to gain root privilege).
Therefore, all the attack plans are merged into a single And-

Figure 4: An Example of the Three Tiered System Modeling
Framework



Or tree which constitutes the third tier of the model. The
top-level nodes of this tree, which model the desirable prop-
erties of the computational resources, are then connected to
the second tier (the resource layer) of the model.

We will next briefly describe how the diagnostic and mon-
itoring processes use attack plans.

Diagnostic Reasoning
Diagnosis is initiated when a discrepancy is detected be-
tween the expected and actual behaviors of a computation.
We use techniques similar to (deKleer & Williams 1989;
Srinivas 1995). We first identify allconflict sets(a choice
of behavior modes for each of the computational compo-
nents that leads to a contradiction) and then proceed to cal-
culate the posterior probabilities of the modes of each of the
components. Conflicts are detected by choosing a behav-
ioral mode for each computational component and then run-
ning each of the selected behavioral models. If this leads to
a contradiction, then the choice of models is a conflict set.
Otherwise it is a consistent diagnosis.

Whenever the reasoning process discovers a conflict it use
dependency tracing (i.e. its Truth Maintenance System) to
find the subset of the models in the conflict set that actu-
ally contributed to the discrepancy. At this point a new node
is added to the Bayesian network representing the conflict.
This node has an incoming arc from every node that partic-
ipates in the conflict. It has a conditional probability table
corresponding to a pure ”logical and” i.e. its true state has a
probability of 1.0 if all the incoming nodes are in their true
states and it otherwise has probability 1.0 of being in its false
state. Since this node represents a logical contradiction, it is
pinned in its false state.

We continue until all possible minimal conflicts are dis-
covered, extending the Bayesian network with a new node
for each. At this point any remaining set of behavioral mod-
els is a consistent diagnosis; we choose the minimal such
sets (i.e we discard any diagnosis that is a superset of some
other diagnosis). For each of these we create a node in the
Bayesian network which is the logical-and of the nodes cor-
responding to the behavioral modes of the components. This
node represents the probability of this particular diagnosis.
The Bayesian network is then solved giving us updated prob-
abilities.

The sample system shown in Figure 3 was run through
several analyses including both those in which the outputs
are within the expected range and those in which the outputs
are unexpected. Figure 5 shows the results of the analysis.
There are four runs for each case, each with a different attack
model developed by Computational Vulnerability Analysis.
In the first, there are no attacks present and thea priori val-
ues are used for the probabilities of the different modes of
each resource. The second run takes place in an environment
in which only a buffer-overflow attack is possible; the third
run includes only a packet-flood attack. The fourth run is
in an environment in which both types of attacks are possi-
ble. Note that the posterior probabilities are different in each
case. This is because each set of attack models couples the
resource models in a unique manner. These posterior prob-
abilities may be then used to update the overall trust model,

as each run provides some evidence about compromises to
the resources involved. Furthermore, it is possible that a
successful attack would have affected additional resources
that were not used in the computation being diagnosed; this
suspicion is propagated by the Bayesian network. In effect,
the reasoning is: the failure of the computation is evidence
that a resource has been compromised; this, in turn, is evi-
dence that an attack has succeeded. But if the attack has suc-
ceeded, then other resources sharing the vulnerability might
also have been compromised and should be trusted some-
what less in the future.

Figure 5: Updated Probabilities

Application to Long Term Monitoring
The long term monitoring system accepts inputs from
intrusion-detectors, fire-walls, system logs, and self-
diagnostic application systems and attempts to recognize
multi-stage concerted attacks that would otherwise escape
attention. Skillful attackers move slowly, first scoping out
the structure and weaknesses of a computational environ-
ment, then slowly gaining access to resources. Often the
process is staged: access to one resource is used to gain more
information about the environment and more access to other
resources within it. Computational Vulnerability analysis
produces attack plans very much like those developed by
such skillful attackers (in particular, ”Red-Teamers” people
who simulate attackers as part of exercises, report thought
processes very similar to those developed by our tool).

The monitoring system performs many low level filter-
ing, collating and conditioning functions on the data. Once



these operations have been performed, the system attempts
to match the data streams to a ”trend template” a model of
how a process evolves over time. A trend template is bro-
ken along one dimension into data segments, each repre-
senting a particular input or the product of applying some
filter (i.e smoothing, derivate) to some other data segment.
On another dimension, the template is broken into temporal
intervals with landmark points separating them. There are
constraints linking the data values within the segments (e.g.
during this period disk consumption on system-1 is grow-
ing rapidly while network traffic is stable). There are also
constraints on the length of time in each interval and on the
relative placement of the landmark points (e.g. the period of
disk consumption must be between 3 days and 2 weeks; the
start of disk consumption must follow the start of network
traffic growth).

Trend template recognition is a difficult process. It in-
volves making (usually multiple) assumptions about where
each interval begins and then tracking the data as it arrives to
determine which hypothesis best matches the data. Within
each interval regression analysis is used to determine degree
of fit to the hypothesis. More details are provided in (Doyle
et al. 2001b).

One source of trend templates is computational vulnera-
bility analysis. Each attack plan actually constitutes a set of
trend-templates; this is because the attack plans are devel-
oped as And-Or trees. In contrast to the diagnostic applica-
tion where the plans are merged, here we unfold each indi-
vidual attack plan into a set of individual plans by removing
the Or nodes. Each unfolded plan, therefore, consists of a
goal-node supported by a single plan-node which, in turn, is
supported by a set of goal-nodes all of which must be sat-
isfied for the plan to succeed (these goal-nodes are, in turn,
supported by individual plan nodes; the recursion continues
until terminated by a primitive action node). This tree rep-
resents a set of constraints on the temporal ordering: a goal
is achieved after all the steps in the plan are achieved, but
the plan steps may happen in parallel. Each step is charac-
terized by expectations on the various data streams; we are
currently developing the mappings between the attack plan
steps and features of data streams that would be indicative
of the plan step.

At any point in time, the Trend template matcher has
an estimate for how well each template matches the data.
These estimates are evidence that specific attacks have been
launched against specific resources and are therefore also
evidence about the degree and type of compromise present
in each resource. Thus, this process too contributes to the
overall trust model.

Conclusions and Future Work
We have shown how Computational Vulnerability Analysis
can model an attack scenario, how such a model can drive
both long-term monitoring and diagnostic processes that ex-
tract maximum information from the available data. In the
case of diagnosis this means carefully analyzing how unex-
pected behavior might have arisen from compromises to the
resources used in the computation. For long term monitor-
ing, this means recognizing the signs of a multi-stage attack

by collating evidence from many sources. Both processes
contribute to an overall Trust Model.

The purpose of the Trust Model is to aid in recovering
from a failure and to help avoid compromised resources in
the future. The Trust Model functions at the levels of 1)
observable behavior 2) the compromises to the underlying
computational resources and 3) the vulnerabilities and the
attacks that exploit them.

Computational Vulnerability Analysis is an important part
of this process. However, it has value beyond its contribu-
tion to self-adaptivity. Vulnerability assessments are a use-
ful tool for system administrators as they attempt to keep
their environments functioning. Often such an assessment
can spot problems that can be corrected easily, for example
by changing filtering rules or by adding a fire-wall. We have
begun to use the tool in our own lab for such assessments and
hope to use it more systematically as the coverage grows.

Computational Vulnerability Analysis can also be a valu-
able adjunct to intrusion detection systems, helping to col-
late events over a longer period into systematic attack plans.
We have already begun to use this tool in a limited way in our
lab to examine and prevent vulnerabilities in various sub-
spaces. We are planning to add more expertise to the system
and use it more widely in the future. We are also planning to
integrate this tool with the lab’s intrusion detection system.

References
Davis, R., and Shrobe, H. 1982. Diagnosis based on struc-
ture and function. InProceedings of the AAAI National
Conference on Artificial Intelligence, 137–142. AAAI.
deKleer, J., and Williams, B. 1987. Diagnosing multiple
faults. Artificial Intelligence32(1):97–130.
deKleer, J., and Williams, B. 1989. Diagnosis with be-
havior modes. InProceedings of the International Joint
Conference on Artificial Intelligence.
Doyle, J.; Kohone, I.; Long, W.; Shrobe, H.; and Szolovits,
P. 2001a. Event recognition beyond signature and anomaly.
In Proceedings of the Second IEEE Information Assurance
Workshop. IEEE Computer Society.
Doyle, J.; Kohone, I.; Long, W.; Shrobe, H.; and Szolovits,
P. 2001b. Agile monitoring for cyber defense. InProceed-
ings of the Second Darpa Information Security Conference
and Exhibition (DISCEX-II). IEEE Computer Society.
Hamscher, W., and Davis, R. 1988. Model-based reason-
ing: Troubleshooting. In Shrobe, H., ed.,Exploring Artifi-
cial Intelligence. AAAI. 297–346.
Shrobe, H. 2001. Model-based diagnosis for information
survivability. In Laddaga, R.; Robertson, P.; and Shrobe,
H., eds.,Self-Adaptive Software. Springer-Verlag.
Srinivas, S. 1995. Modeling techinques and algorithms for
probablistic model-based diagnosis and repair. Technical
Report STAN-CS-TR-95-1553, Stanford University, Stan-
ford, CA.


