bert Systems Tools
nd Techniques:

Peter Szolovits

- My task in this article is to try to bring a little clarity to the discussion of
tools for expert system construction. This is difficult mainly because the
" topic is still very much in flux, with new ideas and new products coming
. onto the stage constantly, and because our basis of practical experience is
" still small enough that it is not easy to separate the lasting ideas from the
overblown publicity surrounding the commercialization of artificial intelli-
‘gence technology. My approach here will be to give a brief overview of the
current state of expert systems and expert system construction tools, and
then to discuss the directions of research in applied artificial intelligence,
:}t‘i‘yiﬁg to indicate the likely future developments of both expert systems
4nd the tools built to support their development.

' This commercialization of Al, mainly in the form of expert systems, i
becoming a large market, with current revenues in the $100 million range.
projected to reach around $800 million by 1990." Despite the large dollat
figures, the overall impression given by the field is that only & very small
number of projects has actually reached the stage of routine commercia/
x'&pplication. The forecast quoted above goes on to suggest that the markel

.- 1These figures, as well as the ones below on tool product sales, are from a presentatior

by Alex Jacobson, President of Inference Corp., at the 1985 IJCAI meeting in Lo

~ Angeles. As an officer of one of the companies whose future depends on the commer

" cial success of this field, I would guess the numbers are more likely to be optimisti
than pessimistic estimates.
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for expert systems tools is now roughly a third the size of the total expert

systems market, projected to be about half its size (i.e., $400 million) by

1990. This is a peculiar situation. In the commercial data processing
world, it would correspond to the almost unimaginable scenario in which
nearly as many people would be building COBOL compilers as writing data
processing applications. This disproportionate emphasis on tools may have
several explanations; only time will tell which, if any, are correct:

¢  Many commercial systems destined for actual use are in various stages
of development, but because the big push to build such systems began
only in the past couple of years, it is too early to see the finished
products in widespread use. Perhaps meore systems are even in routine
use but being kept secret for possible competitive advantage.

e  The overwhelming interest of inexperienced potential expert systems
builders to “get on the bandwagon” both demands relatively simple-
to-use tools to help them get started and provides large commercial
incentives to more experienced tool-builders to cash in on the wave of
interest.

e - Many researchers who have built at least experimentally successful
expert systems believe that their underlying approach is universal, so
they are motivated to generalize and export that technology for use
by others.

o Progress in the general field of artificial intelligence (especially in
knowledge representation, inference, meta-level reasoning, knowledge
acquisition and learning) and in software engineering (especially the
use of graphical interfaces, powerful single-user workstations, and in-
teractive editing/debugging tools) have really made it possible to build
much improved computer language/environment combinations to sup-
port the kind of programming involved in creating expert systems.

Whatever the real situation is, the disproportionate effort going into
tool construction should serve as a caveat; much is still poorly understood.

As a result of the huge volume of activity in expert systems tool con-
struction, it is impossible for me to survey here even the most well-known
of the large system-building tools, much less to try my hand at bringing
some order to the plethora of small PC-based tools and languages being of-
fered for general use. Typical of the many attempts to survey this field are
articles such as “An Evaluation of Five Commercial Expert Systems Tools:
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Hulk I Parys
Hypnotist Personal Consultant
Inference Manager Prolog2
Insight2 Reveal
KES Rulemaster
Lightyear Savoir
LPA Micro-Prolog  Superfile ACLS
M1 Tess
Micro Expert Timm
Micro-Synthese Xi
olden Common Lisp  Natpack Zxpert

I A large (but incomplete) list of expert system development tool
] d languages for microcomputers, from Expert Systems User, Vol. 1, No. 4
/August 1985.

EE, SRLY, 8.1, ART, DUCK,”? which investigates five of the best-know:
rge systems, and “Overview of Small Expert Systems Building Tools,’
which lists the set of programs and tools shown in Figure 1.

Instead of a comprehensive Consumer Reports style survey, therefore
Ilwould like to focus more on the underlying concepts and technology of ex
p;_ert systems and tools. I want to review the basic ideas of what an exper

- gystem is and to relate the notion of tools to the more classical computer sci
_ éﬁbe topic of language design. I will then review two of the simplest “pure’
ét:ategies for building expert systems—the use of rule chaining and of fram
' matching—which provide the bases for most of today’s tools. Next, I wil

* turn to a discussion of a set of criteria according to which various exper
system tools can be evaluated. Then I will describe current efforts to finc
underlying commonalities among different tasks and problem-solving meth
ods and suggest directions for expert system tools if these efforts succeed

+ Finally, I conclude with some experimental ideas for including more sophis

ﬁibated reasoning about causality, constraints, etc. into expert systems anc
speculate on the effect such ideas will have on future tool developments.

Expert Systems

A conceptual revolution during the late 1960’s suggested that the way
to make “artificial intelligence” programs smart was not simply to give

"2This appeared in the August 1985 issue of The Artificial Intelligence Report, Artificia
Intelligence Publications, 3600 West Bayshore Road, Palo Alto, CA 94303.
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them Sherlock Holmes' powers of deduction but instead to pack them full
of a very large amount of knowledge specific to problem-solving in their
intended domain of application. Based on this insight, the first Al pro-
grams of real use to people other than their developers were built for doing
symbolic mathematics [Mathlab 83] and determining chemical structures
[Feigenbaum, et al. 71]. In both these cases, the systems could do as well
at some tasks as human experts. In addition, both systems were organized
around a few relatively simple but powerful central ideas {several represen-
tations for algebraic expressions, a non-redundant constrained generator of
possible chemieal structures) augmented by vast numbers of special bits of
knowledge most useful in simple combinations (e.g., how to do integration
by parts, what features of a mass spectrum indicate the presence of CHj
groups).

The terms “knowledge-based systems” and “expert systems” were in-
vented to describe programs such as these and their intellectual successors,
to emphasize their reliance on much knowledge embedded in the program
and on their utilization of expert human methods in attempting to achieve
expert-level performance.® The boundaries between expert systems and
others are, of course, not sharply drawn. After all, a very conventional
payroll program may also encode vast numbers of intricate minutiae of the
tax code, and a statistical classification program may perform as well as
human experts in diagnosing abdominal pain [de Dombal, et al. 72, yet
their authors might not choose to characterize these programs as expert
systems. Conversely, with the current near-magical attractiveness of expert
systems, almost any complex program might get labeled as such. Neverthe-
less, there are some characteristics that typically identify an expert system,
based on the type of problem it is solving, the form in which its knowledge
is encoded, etc. _

Many expert systems have been implemented to solve problems that
are some form of diagnostic reasoning, ranging from medical diagnosis o
troubleshooting generators, locomotives, and telephone networks. Many
expert systems use simple if-then rules to express their bits of knowledge,
with a uniform rule interpreter to link together such rules into more com-
plex, longer chains of inference. Much of the knowledge in expert systems

3My own preference is for the term “knowledge-based systems™ because it focuses on
the critical role of knowledge. Whether the program actually works in ways compa-
rable to those used by human experts or, indeed, whether its competence is that of
an expert or only that of a thorough journeyman seems less significant. Nevertheless,
I will use the more widely-used term “expert systems” here.
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‘heuristic in nature—it consists of rules of thumb that are often, but not
ways, true. Many systems reason by making assumptions that are then
erified or rejected in later analysis. None of these characteristics is neces-
n an expert system, however, and none is criterial; yet most expert
‘systems have characteristics similar to these.

A more abstract, and more useful, view of expert systems is as a

-programming methodology that emphasizes the separation of what is true
bout the world from how to use knowledge to solve problems. In this

w, an expert system consists of two components: '

DOMAIN PROBLEM-SOLVING
KNOWLEDGE METHODS

‘Inisimple cases, the domain knowledge will be a collection of facts and the
_problem-solving methods will be more general-purpose reasoning mecha-
* nisms.

i For a concrete example of how one can separate domain knowledge
“from problem-solving methods, consider the following {oversimplified) ex-
ple from medical diagnosis. We may begin with a general notion such
;’a‘sl‘_““'.[f Mary has a fever, then Mary has an infection,” which is a rather
“$pecific problem-solving method for diagnosing the cause of Mary's fevers.
 Using the traditional programming notion of variables, we can generalize
“to the following picture:

FACTS
Mary is a patient.

~ METHOD
If the patient has a fever,
then the patient has an infection.

where the left column represents domain facts and the right is the slightly
more general method. .

" © A more general rule, which begins to deserve to be called a true
problem-solving method, is achieved by further abstracting this case:

FACTS
Mary is a patient.
Fever is a symptom.
Infection is a disease.
" Fever is a symptom of infection.

METHOD
If the patient has,
the symptom of a disease
then the patient has the disease.

A final generalization would bring us to something like
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FACTS
Mary is a patient.

Fever is a symptom.
Infection is a disease.
Fever is a symptom of infection.
Patient is an object.

A symptom is a feature.

A disease is a class.

METHOD
If the object exhibits
a feature of a class,
then the object belongs to the class.

This latest method is in fact close a general expression of what has been
called abduction, the process of working backward from observable mani-
festations to their probable explanatory cause.

In this view, then, expert systems provide a programming method-
ology that separates factual statements from the methods that determine
how those facts will be used. Within this methodology, there remains the
flexibility to have both very specific and very general facts and methods.
In fact, if a domain lends itself to reasoning by encoding specific ways
to deal with many specific problems, then we might expect many rather
special-purpose methods for each of them. An example might be testing the
many components of a computer system, where each component is likely
to require highly-specialized testing methods. If possible, however, the
methodology encourages the development of more general problem-solving
methods, as illustrated in the example above.

Classical Models of Expert System Construction

The best-known technical approach to building expert systems has em-
ployed simple if-then rules to express virtually all of a system’s knowledge
and a straightforward rule interpreter to link such rules together into longer
chains of inference. The assumption here is that all expertise consists of
small, modular chunks of knowledge, and that overall intelligent behavior
emerges from the simple goal-directed combination of these many chunks.
Each rule has the form
If (list of premises) then (conclusion).

A backward-chaining rule-based system, such as Mycin [Shortliffe 76], be-
gins with a goal it is trying to achieve; for example, to determine the iden-
tity of any infectious organisms causing significant disease in the patient.
Tt then operates by interleaving two recursive procedures (Figures 2 and 3)
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1. If the validity of the goal can be determined by facts already known, then
simply return with that answer; otherwise,

. If the goal is an observable objective fact that the user can supply, then
simply ask for it; otherwise (or if the user is unwilling to supply it),
_Collect the list of rules whose conclusion asserts facts that are potentially
relevant to the goal under consideration.

Apply each rule (if any) in turn.

.0 :If the rules.that have applied have succeeded in asserting new facts from
which the validity of the goal can now be ascertained, then return that
‘result; otherwise,

6 If the user has not already been asked to determine this fact, then ask and
turn that result.

igure 2. Mycin’s findout procedure to determine if a goal fact is true or false.

For each item in the rule’s list of premises in turn, call the findout procedure
to determine if it is true or false.

‘2" As soon as any item is false, the rule fails and its conclusion is not asserted.
3. If all items are determined to be true, then assert the rule’s conclusion, with
4 degree of certainty computed from the certainties of the rule itself and the
.f)r'emises.

'Fi_gure 3. Mycin's monitor procedure to apply a rule.

that work backward from that goal to further subgoals and eventually to
data that can simply be acquired from the user.
The other major rule-based technology employs forward-chaining rules,
in which a new fact asserted to the system causes any rule whose premises
match that fact to fire. Then, if all the other premises are also matched

among facts that have been asserted, the rule’s conclusion is in turn asserted
:as a new fact. OPS is a system operating in just this way, having been
carefully tuned to eliminate redundant matching of facts to rules. Systems
built using forward-chaining of rules are typically most appropriate for
tagks that respond to a stream of input data, such as monitoring problems.
It is also possible, however, to simulate the behavior of a backward-chaining
system using forward-chaining rules, by explicitly asserting goals as data
and re-writing rules to depend on such goal statements. For example, the
effect of the backward-chaining rule -

If A and B then C.

can be achieved in a forward-chaining system by translating it to the fol-
lowing three rules.
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If (Goal G) then (Goal A).
If (Goal C) and A then {Goal B).
If A and B then C.

The first assures that if (Goal C) is ever asserted, then the system will .
seek the goal of A, in effect chaining backward from the goal of C to the -

A clause of the premises of the original rule. The second guarantees that

if we are still seeking C and A has been demonstrated, then B becomes a ‘
goal, and the third is the simple statement that if both A and B have been

shown then C should be asserted.

Despite the fact that simulation of backward chaining is possible by '

forward chaining, some systems provide specific user-visible support for
both methods, to hide the details of the translation process exemplified
above, A typical example of how both can be useful in the same system is
in a diagnostic task, where forward-chaining rules may be used to generate
diagnostic hypotheses from facts about a case, and then backward-chaining
rules can be used to verify those hypotheses by seeking more data directly
relevant to the subgoals of that verification [Fieschi, et al. 85].

Situation: Frozen Gas Line Wet Plugs
Typical Case: Car won'’t run Car won’t run
Weather very cold Weather humid or rainy
. Started but stalied When running, rough
Therapy: Warm up car Dry out plugs
Predictions: Once warm, will run ~ Will stall in rain

Figure 4. Two sample frames from a system to diagnose and fix simple faults in
automobile operation.
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lie‘Present Tllness Program [Pauker, et al. 76] and Intermst—I[Mlller, et
83] employed such' methods, which also have much in common with
_h more traditional methods of statistical pattern recognition. Figure 4
two frames from a simple auto-club style good Samaritan’s knowl-
gt 'base. Such systems are typically able not only to diagnose what is
ong by matching the preponderance of symptoms, but also to suggest the
useful questions to differentiate among alternatives (e.g., ask about
weather in our example}, to suggest appropriate interventions, and to
ke predictions about what should be expected after the intervention.
urally, the failure of such an expectation can be a very effective clue to
overing from an incorrect initial decision,

'Another form of expert system, for which many tools are also be-
‘oining available, actually rejects the need for human beings to formalize
the knowledge of a domain. It relies, instead, on general-purpose pattern-
ognition or learning methods to generate its own decision-making meth-
ods” from a sample of previously-decided cases. Most such systems are
consxderably simpler in their internal structure than other types of expert
iystems because they base their elassification decisions on some combina-
n of independent features of a case. Despite some significant successes
such methods [Quinlan 86, Quinlan, et al. 86, they appear unlikely
to capture much of the subtlety or complexity of human decision-making,
d will probably be limited to use in data-rich and theory-poor domains.

What is an Expert System Tool?

When early expert systems were constructed, their implementors typically

Began with a general-purpose programming language (usually LISP) and
Biiilt a number of utility data structures and programs to represent facts,
'Ies, and strategies, and to perform the basic operations of the system
§tich as rule-invocation, matching, computation of certainties, etc. Initially,
was often very difficult to determine how much of that machinery was
ghly specific to the domain of the system being built and how much of
would generalize to other fields, because both the specific knowledge of
he experimental system and the more general mechanisms it used would
-modified as new challenges pointed out defects in the system.

Although rule-based systems appear to be by far the most common means
of implementing expert systems, there are other equally-effective approaches
that have been successfully explored as well. The most important such
method matches characteristics of a situation to stored profiles of common
situations (often called frames) in order to identify which one best matches
the case at hand. In medical diagnosis, for example, situations correspond
to diseases and characteristics to the signs, symptoms and laboratory data
commonly associated with each disease. General matching methods, pos-
sibly based on additional measures of likelihood or seriousness, can be
used to compute the degree of match, and general information-acquisition
strategies can determine what additional tests should be performed in or-
der to best differentiate between competing hypotheses. Programs such as

_ Once a few experimental applications had been built using a particular
qpproa.ch, however, researchers began the difficult task of abstracting out
of those programs those aspects that appeared universal. The fruits of such
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labors were the earliest expert system tools, such as EMYCIN [van Melle

81]. The intellectual and practical claim of such a system is that, based -
on past experience, it provides a useful organization of knowledge and an
appropriate problem-solving method. Thus, to build a new application it -
is only necessary to express the domain knowledge of the new task in that °
system’s formalism and then the built-in problem-solving techniques will
apply to generate intelligent behavior for the new task.

gy, inference, assumptlons uncertainty, meaning, user interface, perfor-
fance and practical issues.

é_inology

can be said about the world in the formalisms of the tool? Most
ol systems permit the representation of entities, which have attributes
I believe the best way to view such tools is as new programming lan d relations to other entities. Tools whose entities are called concepts
guages. Unlike conventional programming languages that provide primi ypically also support a taxonomic organization of concepts, where certain

tive data objects such as integers, strings and arrays, these new languages ' fined relationships have built-in meaning. Most common examples
provide objects such as facts and ‘rules. Unlike languages, whose control i€ “euch are:

structure consists of sequential execution, conditionals and looping con-
structs, these tools provide rule-chaining and pattern matching as their
fundamental control structures.

is-an-instance-of — “Clyde is an elephant.”

is-a-kind-of — “Elephant is a kind of animal.”

. part-of — “The balleen is part of a sperm whale.”

The value of such built-in relations is that common inferences that are
ntailed by these relationships should then be automatically made by the
system, typically in a fashion that is more efficient than by its normal
ence mechanisms. Typical inferences of this sort might be:

Evaluating Expert System Tools

The principal objective of evaluating tool systems is to determine their .
“fit” to the problem under consideration. As in the case of evaluating -
languages, there is probably no “best” language overall, only a variety of -
well and poorly-designed tools that make different assumptions about the :
sorts of problems and domains to which they will be applied and that make -
different engineering trade-offs that effect the cost and performance of the !
tools. In this section, I propose a mumber of characteristics of tool systems -
and describe some of the questions that should be raised in evaluating
specific tools with respect to these characteristics. It is critical to keep in
mind, however, that the most important aspect of the evaluation is still -
how well the tool supports the needs of the system it is to belp implement.
The lack of an elegant but irrelevant feature should, therefore, lead to no
condemnation, and the inclusion of large numbers of other features that
are of little use should not count too much in faver of an individual tool.
This obvious idea must be kept in mind especially because of the fact
that different tool systems vary in price by up to two or three orders of
magnitude (not counting the ones that are free, of course) and that the uses
they may be put to range from the development of a simple experimental
prototype intended primarily to teach its developers about expert system
building to serious, large-scale systems intended for production use.

Clyde has a trunk because he is an elephant and elephants have trunks.
Elephants must ingest food, because all animals do. In turn, Clyde
. must eat, because ke is an elephant,

IF I haul a sperm whale on board the Pequod, I must have lifted its
; balleen as well, because it is part of the whale.

Tools based on the notion of frames ordinarily also provide constraints
on- what values and other frames can fill the attributes and satisfy the
tClationships of an object. (These attributes and relations are often called
lots in frame systems. For example, we might wish to indicate as part of
he definition of the concept of a birthday party that one of the participants
‘Thust be someone whose birthday is being celebrated. We may also include
_constraints among slots: for example, that if the guests at the party are
children, the beverage to be served is non-alcoholic. Frame systems usually
~also provide defaults. For example, if I imagine a child’s birthday party,
-I'can be fairly sure that dessert will be ice cream and cake if nothing has
“been said about dessert.

Tools can, in addition, come primed with a large store of actual knowl-
“edge about the world, though they ordinarily do not. For example, the tool

I will address my comments under the following categories: epistemol- might come pre-loaded with knowledge of physical objects, ideas, kinds,
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actions, beliefs, etc. It might thus innately know that a book is not phys-
ically divisible for simultancous use by several people, that the water in
a river is, though resulting in less water per person, and that an idea is
also, and that it remains whole for each user. Tools that are pre-charged
with what might be called “common sense” theories of some aspects of the
world have the advantage that they make the task of the system builder
simpler. Rather than having to invent the mapping from the real world
into the structures provided by the tool de novo, the user has a much more
structured framework in which to describe the application domain and at
the same time automatically gets the tool’s built-in knowledge. Despite
this promise, existing common-sense theories are rather weak and fragilé;
and tools ordinarily provide only a few built-in taxonomic relations such
as those listed above.

tching operations can be expressed in the pattern language. For an
ple of possible inefficiency, consider a system to analyze electrocar-
gram recordings, which may have records of hundreds of heart beats in
ata'base. If I want a rule-that checks for a certain condition between
wsuccessive heartbeats and express it as '
If:by is a beat and by is a beat and time(by) < time(bz) and there is
:bg such that bg is a beat and time(b1) < time(bs) < time(bz) and
.then ...
-will be applied n® times where n is the number of beats, in order
match each b; to each beat. In reality, of course, there are only n — 1
ssive pairs of beats, but the pattern language of the system may not
¢ it, possible to avoid the redundant matches that then take more time
filter out.* Indeed, typical tutorials on programming with rule-based
tems. (e.g., [Brownston et al. 85]) include important hints on how to
id atching inefficiencies in using the tool, often by reformulating the
tion of the problem being solved or altering the problem-solving
gies. The most general matching capabilities are provided by uni-
on, used in PROLOG. Naturally, this generality may, without careful
ught, also lead to the most severe inefficiencies.

ame systems, computations are often attached to particular slots
es, serving as if-needed or if-added daemons that are run when some
ﬁh part of a system either needs or asserts the vahie of a slot. The com-
n may be expressed either as a rule or, more commonly, as a simple
ure in a programming language such as LISP. These daemons can
»for propagating information in a system, for creating new entities
eeded, and for any other computational task. An example of prop-
g t'Qn‘ might be an if-added rule on the celebrant slot of a birthday party
that fills in either Kool-Aid or Champagne punch in the refreshments
ot when the celebrant is asserted, depending on his or her age. New en-
es may be created by daemons, for example, when someone accepts an
ivitation to a birthday party (is added to the list of attendees and. puts it
his schedule) and creates a new entity for the present he plans to bring.
it;<The calculations of the built-in implications of predefined relations
as is-a-kind-of are also part of the responsibility of the inference sys-
Thus, inheritance of attributes via a kind hierarchy is an important
dpability given by many tools. In addition, certain classification tasks can
automatically performed by the tool because of those relations. For

Inference

How can things be figured out? Tools typically provide the capability of :
making inferences by providing built-in mechanisms to do so automatically
and by allowing the tool user to build rules or procedures that will, under -
the control of the tool, run at appropriate times to deduce some facts from °
others.

In rule-based systems, one can ask whether the system supports the
use of rules in forward or backward chaining (or both), and what other -
mechanisms might be provided to improve efficiency or to give a finer de- :
gree of control over the operations of the system. For example, the rete :
algorithm of OPS reduces the amount of effort the system must expend on |
matching rules to facts to the bare minimuwmn. Explicit mechanisms such -
as agendas, which indicate which of a possibly large set of rules are ready -
to run, and meta-rules, which allow control over the selection or ordering
of the agenda, are useful in complex problems where carefully directing
the efforts of the problem-solver is necessary to achieve adequate speed.
Facilities for chunking of rules to form rule sets, which may be made ac-
tivate or inactive in groups, can also reduce computing effort significantly
if the problem decomposes into recognizably-distinct components that can
be addressed in parts.

Matching, between facts in a data base and rules or frames, is also

typically provided by a tool. Important considerations are whether vari-
ables are supported in either the data or rules, and how efficiently relevant

s eicample is an adaptation of a personal communication from William J. Long,
cribing an ECG analysis system under development by Warren Muldrow.
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example, it might be able to conclude automatically that a horse’s tail is
an animal’s tail because it knows that a horse is-a-kind-of animal [Hawkin-
son 75].
definitions. Thus, if X is a quadrilateral with equal opposite sides, then

X is a parallelogram, by definition. In addition, the tool may provide

primitive means to express the idea of covering, mutual exclusion and par-
tition [Brachman and Schmolze 85]. For example, if a shape taxonomy
distinguishes between straight-line objects and curved ones, then these two
categories may be said to be both mutually exclusive and a covering of
the set of shapes. Therefore, any object known to be curved cannot match
a straight-line object and, in addition, any shape must be either curved
or straight-line. These capabilities support reasoning by exclusion. They
can also greatly improve the efficiency of problem-solving by narrowing the
search space of objects that might be useful in some task.

In some domains, especially those involving design, constraint propa-
gation is another useful inference mechanism. The following is an example
from an experimental system intended to design recombinant DNA pro-
cedures [Stefik 81a, Stefik 81b]. If bacteria successfully inoculated with a
viral fragment are to be separated from those whose inoculation failed by
killing the failing bacteria with an antibiotic, then the viral fragment must
confer immunity to the bacterium against that antibiotic. Note that this
constraint leaves open the choice of which partienlar bacterium is to be
used, what virus will be involved, or what antibiotic will be selected; in-
deed, these choices can be made in any order by other parts of the reasoner.
However, no matter how the choices are actually made, the constraint can-
not be violated without invalidating the designed procedure. Making any
of these choices can narrow the possibilities allowed for any of the others
and in fact may determine that choice uniquely.

Assumptions

In many systems, it may be useful to make assumptions during the course
of reasoning. This might be done because a problem-solver is stuck given
only what is known to be true and must make some further assumptions
(perhaps to be verified later) to proceed, or it may arise because it is useful
to compare different hypothetical alternatives. Because assumptions will
sometimes be wrong, it is important that the system provide some way to
retract them, and furthermore to cause the retraction of an assumption also

The system might also be able to compute the implications of
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iretract the consequences of that assumption. This chaining of retraction
ritical because new information inferred from an assumption will often
n°out to ‘be wrong if the assumption itself is wrong. This issue has
een a difficult one in many historical systems, some of which could fail
jiretract no-longer-valid consequences and meost of which would retract
ren those that were still valid. The techniques of truth maintenance or,
ome of its creators would prefer, reason maintenance, now solve this
oblem correctly by keeping with each fact in the data base an indication
hat rule or computation asserted it and what other facts [Doyle 79]
and ultimately, assumptions {de Kleer 86]) it depends on.

Ore particularly useful type of assumption is a default, meaning
In the absence of any knowledge to the contrary, assume ...

his ‘type of assumption is quite troublesome, however, because the “ab-
ce of knowledge to the contrary” is not something true or false in the
ofld, but only in the inference machinery of the problem solver. Thus,
may change as further computation is performed, and default assump-
ns may need to be retracted as additional knowledge is gained. The
ct that the system can take back assertions that it has previously made
es such systems non-monotonic because their list of assertions does not
ow monotonically. The greatest difficulty arises when a default assump-
causes the system to discover something “to the contrary,” in which
¢ase care must be taken not to leave the system in an inconsistent state.
Some tools prohibit the automatic use of default assumptions in order to
cape this difficulty, and require the user or some other program to make
sumptions explicitly.

%7 Another common type of assumption that is receiving much study
in‘the research laboratories but that is not widely supported in-available
stems is the closed-world assumption, which roughly states that what
ot known to be true is false, or the only objects that satisfy some
descnptxon are the ones known to satisfy it. Such an assumption is often
very useful because it codifies the notion that one can ignore what one
doesn't know about. It also formalizes reasoning by exclusion: if I can
show that all but one possible hypothesis is false, then the remaining one
must be true, if there can be no others.

- Terms such as contexts, viewpoints, environments and hypotheticals
all:relate to the idea that separate sets of assumptions can be maintained
imultaneously within a system. This is important for tasks where hypo-
hetical alternatives must be compared, for example, in doing sensitivity
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analyses. Without a built-in ability provided by the tool system, such
comparisons can be inordinately expensive. They might require the asser-
tion of one set of assumptions, inferring their consequences, than retracting
those assumptions, making the alternative set, and then inferring its conse-
quences. The eyele of retraction and re-assertion must then be performed
each time the problem solver wishes to switch back and forth between two
sets of assumptions to be compared. Systems such as the ATMS {de Kleer
86] provide more efficient built-in support.

powerset of the set of hypotheses, the straightforward application of
theory is impractical except for very limited domains. Considerable
search is now pursuing its practical application under realistic simplifying
ditions {Gordon and Shortliffe 85].

tictural encoding of uncertainty uses a taxonomic organization of
riptions and represents uncertainty by picking that node in the taxon-
hat subsumes all possible descriptions. This is a standard Al method,
"effective only if the taxonomies used in a system correspond to the
t§:among which uncertainty may lie. Furthermore, such methods give no

Uncertainty ie-grained numeric means of expressing the degree of uncertainty.

st Several experimental programs rely on some form of dialectical argu-
entation, where each piece of evidence for and against each hypothesis is
plicitly remembered, and where further arguments may apply not only
hie hypotheses but to other arguments. This method has been proposed
sa-system for deliberative reasoning [Doyle 80] and, in a slightly different
7, in the theory of endorsements {Coken 85].

Many, if not most, application domains innately deal with uncertain knowl-
edge. A tool used to build expert systems for such an application would be
most useful if it provides innate support for uncertainty. However, there
are many competing methods for dealing with uncertain reasoning.

Classical probability theory, Bayes’ rule, statistics and subjective prob-
abilistic techniques all rely on numerical assessments of likelihood, obeying
well-known and time-tested laws. The principal problems of these methods
revolve around the need to make simplifying assumptions about the real
world in order to apply them practically. Recent advances show promise
of providing in this classical framework the kind of flexibility that has mo-
tivated the development of other methods {Pearl 86).

Certainty factors, theory of confirmation, and other non-probabilistic
variants concentrate on probability updates—the degree of change in a
system’s belief in response to new evidence—rather than on absolute prob-
abilities. Although intuitively such methods seem to differ from probability
theory, recent analyses indicate that they may simply represent a particular
set of independence assumptions in a probabilistic framework [Heckerman
86).

"Various ad hoc numerical methods that approximate some form of
babilistic reasening but do not have a precise-enough definition to be
alyzed formally. '
‘Many expert systems are in fact built with ad hoe methods for dealing
‘uncertainty. Tools, if they support any uncertain reasoning at all,
ostly support some form of probabilistic reasoning or certainty factors
fuzzy set theory. If the tool does not provide any innate support for
icertainty, the developer of a specific expert system may still incorporate
s,0F her own uncertainty-handling theory by making explicit assertions
ofiidegree of belief on other assertions, if the tool’s epistemology allows
assertions to be made about other assertions.

" Reasoning with uncertainty is a “hot topic” in Al research {Kanal and
emmer 86}, and one may expect the fruits of many current efforts to be

Fuzzy set theory, fuzzy logic and its relatives focus on an imprecise : flected in future tool systems.

plausibility rather than true probabilities, reflecting psychologically moti- '
vated observations that in many real-world cases descriptions of an object
or situation are only plausible to a degree {Zadeh 78|, and that sets de-

scribing characteristics of groups (e.g., tall) have imprecise boundaries. Iﬁhseems so obvious as to make almost ludicrous the suggestion that an

itfiportant criterion in judging expert system tools is that their methods
‘6fi representation and their inference procedures should have some well-
‘defined meaning or, technically, semantics. In fact, however, most tools
support what is kindly called operational semantics, i.e., that what the

The Dempster-Shafer theory of evidence [Shafer 76] uses a least-commit-
ment approach to probabilistic reasoning, allowing evidence to assign beliel
not only to individual hypotheses but to sets among whose members the
evidence fails to distinguish. Because this theory is expressed in terms of
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system does is what it means. This is not to suggest that the operation
of the system is not fully defined-—only that there may be no simpler way
to determine what the system ought to do in some situation than to set
up that situation and run the system. It becomes difficult, therefore, to
prove any global properties of the system or to characterize fully under
what circumstances it will behave as intended.

« One important new idea in interfaces that has emerged in expert sys-
ool construction and that is now incorporated in some of the high-end
ds a direct two-way intereonmection between the internal state vari-
es, of the program and the graphical images depicting those variables.
s means that the tool user/expert system builder can easily design an
terface that clearly shows relevant aspects of the internal state of the ex-
system, and, further, that the ultimate expert system user can thereby
'ci;ly manipulate the internal state of the program simply by manipu-
ng the graphical presentation.

Although the abuses of knowledge representation schemes without
well-defined semantics have been well documented [Woods 75), there is still
considerable controversy about how to define a system that is both flexi-
ble and expressive enough to state conveniently all the sorts of knowledge
needed in expert systems and formal enough to permit an unambiguous
interpretation of what any statement means. Systems that are simultane-
ously (a) formally defined, {b) expressive and (c) complete in their built-
in inference procedures appear doomed to being innately very inefficient
[Brachman and Levesque 84]. In practice, it appears irresistible for expert
system builders to take liberties with the semantics provided by formal
systems, to trade some “correctness” for expressiveness or efficiency. A
typical example of this is when some association that is almost always true
is instead taken to be true by definition, to avoid the system’s exploration
of the contingency of its being false.

For example, in building a control system for a steam plant, the pro-
ammer can declare that one standard gauge should always display the
;it boiler pressure, another one should display the desired pressure,
, third the anticipated pressure one minute later, in the absence of
rentions. The ultimate application user can then directly manipulate
se'gauges to control or interrogate the system. Changing the indicated
e on the “desired pressure” gauge (e.g., by moving the graphical needle
ha inouse) might actually change the internal value, and changing the
icipated” gauge might request a sensitivity analysis to suggest under
conditions the future value could be the one indicated by the user. Of
rse it has always been possible for an application builder to create such
'phi'sticated interface. What is new here is a set of built-in facilities to

Most current tools pay little attention to this matter, but simply pro- 6 the two-way mapping state and appearance easy to build,

vide a set of capabilities that can be manipulated at will by the expert
system builder, who then must shoulder the responsibility for determining
that the tool's facilities are being combined in a meaningful manner. _For
applications in which unanticipated failure can lead to disaster—control of
nuclear power plants comes to mind as a frightful example—the fact that
the language in which the domain knowledge is expressed has no formal
interpretation may be a serious deficiency.

rformance and Practicality

the usual issues of evaluating any software product apply to expert
em tools: ‘

‘Is it actually available (for real, not just the glossy brochures)?
Does it really work with acceptably few errors?

User Interface Is it well documented? Is training, méintena.nce, assistance in using it
~available?

an you trust the tool’s developers with the future of your project?
«Are they going to be there in the long run?

If a picture is worth a thousand words, a program with an appropriate
graphical interface may be worth dozens that are restricted to text-only
interaction. Expert system tools are not unique in wishing to offer sophis-
ticated graphics interfaces, but an important criterion in judging a tool sys-
tem is what facilities it provides, or, at least, what independently-provided
facilities does it allow the user to incorporate?

< Is it fast enough to form a good basis for your system, or will the tool’s
" inefficiencies make your system a dog? Are there built-in limitations
on the size of the knowledge base, number of frames or rules, etc.,
‘that your application may exceed? (This is particularly critical in
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many PC-based tools, which may bave to fit within the 640KB of the
PC’s address space.) -

e Isits price commensurate with its value? If you plan to sell the system -
you are building, can a stripped-down (run-time only) version of the

tool be bundled inexpensively to your customers?

newer 80386 or 68020,/68030 machines? Does it depend on, support, or

make impossible networking and comraunications you or your clients :

are likely to be using?

Ultimately, of course, the key question is whether the tool appears to pro-
vide the kinds of features that you believe your intended expert system to
require.

In considering this list, it is probably worthwhile to keep in mind that
expert system tools are typically more problematic to use and evaluate
than programming languages. This is because for most. programming lan-
guages at least the language is clearly defined, multiple implementations
by competing vendors are typically available, test suites and benchmarks
have often been prepared, and there is a large group of programmers among
whom you can seek employees and consultants. Virtually each expert sys-
tem tool is, by contrast, unique. Even if its capabilities are similar to those
of another tool, they are slightly different in meaning or appearance. Usu-
ally only very limited examples of proper use are available in a tutorial
manual, and there may be few if any skilled tool users. N ‘

Finally, in evaluating expert system tools, it is important to keep in
mind that for a large project that stretches the capabilities of existing tools,
it may well be worthwhile producing a custom tool specifically tailored to

the needs of the particular application. The rationale is that any project

will typically need a specific combination of capabilities, which can be more
elegantly designed or be made more efficient knowing that other capabilities

are not needed and can therefore be designed out. The cost of such an
approach is very high, however. It requires designers and programmers
capable of building, not only of using tools. Therefore it is often advisable,
even if building your own tools seems appropriate, to do prototyping work
with an existing tool and then, once the requirements of the target system
are well understood, make a careful assessment of whether the clarity and
efficiency to be achieved by the custom tool and the cost saving and lesser

What hardware environment does it demand? In particular, is there a -
reasonable prospect that it will run on PC-class machines, at least the -
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lianice on outsiders offered by it is worth the time, expense and effort
ilved.

ture of Expert System Tools

e rosy outlook for the expert system tools market, many many
s are engaged in the continual improvement of existing tools, the
on of the most sophisticated capabilities into smaller and cheaper
and the adaptation of tools running on high-cost personal computers
Lisp machines to more conventional workstations. In keeping with
lti‘e-'tpye of this review, I will'not try to extrapolate along this line, except
note that the next generation of conventional workstations will have
6uhly the computing power of today’s $50,000 Lisp machines, several
is‘p machine manufacturers have plans to build and market single-chip
a‘d_;ines, and thus is seems safe to predict that, by one or the other of
liese paths, what are today the high-end tools should become available for
eneral use on $5-10,000 workstations.
Looking at more fundamental issues, it seems that there are two lines
firesearch likely to have a significant impact on expert system tools. The
s tﬁempts to identify, within the many tasks for which expert systems
i? bE;ing built, recognizable standard types of problems to which already-
solutions can be applied or at least adapted. The second continues
hié'historical precedent in expert systems research: to develop new one-of-
tkind problem solvers capable of reasoning that current systems cannot
o0, and then to generalize such systems to form the basis for new tools.

‘ _ric Tasks and Generic Methods

ven with the best of today’s tools, it is still quite a difficult task to build
thew expert system. Naturally, the fruits of experience embodied in the
dbb' makes such a task easier than if one had to begin simply with a
rogramming language such as LISP or PROLOG, because at least many
he decision about issues described above have already been made and
abile implementations have been provided. Is it possible to do better
ian this, to improve the productivity of future expert systems builders?

The key observation is that many expert systems are really similar to
nes already built. In the simplest sense, a system to configure one line of
omputer systems should be able to profit directly from previous work done
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on a system to configure a different line. The particular knowledge in the
two cases should be different, but one would expect most of the methods
to be the same. Ranging a little farther afield, one might expect that an
automobile manufacturer facing the problem of assernbling a large variety
of custom options for a car line should also profit (if less strongly) from the
experiences of the computer configuration system. After all, building an
automobile, just as building a computer, consists of assembling a number
of selected components and making sure that they obey physical, electrical
and mechanical constraints. Naturally, cars don’t have buses and back-
planes (except insofar as they are becoming computerized), and physical
constraints are more likely to be critical than electrical ones. Nevertheless,
the two configuration tasks share significant features in common. Gener-
alizing even further, one can recognize the similarities of these tasks to all
sorts of synthesis or assembly problems.

Now when the first computer-configuration expert program was built
[McDermott 82], its builders began with OPS[Brownston et al. 85] and
a set of ideas that needed to be codified in this programming language.
In such a project, the requirements of practicality and speedy prototyp-
ing often prevent an adequate generalizable design. By the time the fifth
or sixth such system is built, however, the problems of representing the
computer configuration task should be well-enough understood that one
would expect to be able to re-use much of what had been accomplished in
the most recently-built such system. Further, if the problem of computer
configuration comes to be thoroughly understood, we should expect that
understanding to transfer to other related tasks. )

To exploit this insight, various researchers have begun to try to clas-
sify problem domains and problem-solving methods into generic categories.
Clancey [Clancey 85|, for example, suggests the taxonomy of problem types
shown in Figure 5.

The hypothesis underlying such a taxonomy is that it will be possible
to identify particular approaches to problem-solving that are most suitable
to each of the above classes of problems. Then, generic tools that provide
such approaches as built-in facilities can be directly applied to new prob-
lems once the problem type is identified within the classification hierarchy.
Indeed, one such problem-solving method, heuristic classification appears
to underlie the operations of many existing expert systems.

Heuristic classification is a problem-solving method applicable to many
interpretation problems. It is characterized by a task in which one starts
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S&stems Synthesis Problems
Construct a Solution
Specify {constrain)
Design (generate)
Configure (structure)
Plan (process))
Assemble {manufacture)
Medify (repair)
Systems Analysis Problems

Interpret a Situation
Identify (recognize)

Monitor (audit, check)
Diagnose (debug)
- +
Simulate (predict)

Control

_Pfigure 5. Clancey’s proposed taxonomy of problem types to which various
_problem-solving methods may be applied.

: with a pre-enumerated set of possible solutions, a quantity of data either
" already given or capable of being elicited, and the goal of finding the single
~solution that best characterizes the data. The fixed set of possible solutions
“is key to distinguish this from other methods. According to one analysis

[Clancey 85], heuristic classification employs three sub-methods:

Data Abstraction Classifies particular data values reported to the pro-

gram into conceptual categories that are important for further reason-
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ing. Examples are turning quantitative values into qualitative judg-
ments (e.g., a blood pressure of 90 over 60 is “significantly low”),
recognizing the presence of states defined in terms of data values (e.g.,
“hypotension” means “low blood pressure,” and applying generaliza-
tions. Long [1983] points out that judgments leading from quantitative
to qualitative values cannot be made in isolation from other data. For
example, the above-mentioned “low” blood pressure may in fact be
“normal” for a patient whose system has adjusted to such a long-term
state.

Heuristic Match Makes the “leap” from a suitable abstraction of the
data to an abstract version of the solution. These associations are
often based on experience, skip over numerous intermediate steps, and
are subject to error. This is the step often identified as the “rule of
thumb” in expert systems.

Refinement Fills in the details of the abstract solution suggested by the
heuristic match.

It is perhaps unrealistic to assume that each problem type will have

a unique best method of solution. In fact, it may be that problem-solving

methods can also be classified into a taxonomy based on their similarities,

and then one can develop a two-dimensional relationship among problem
types and problem-solving methods, with an indication of the appropriate-
ness of each method to each problem type. Attempts at such analyses have

been made by Stefik, et al. [1983] and Chandrasekaran [1985].

Efforts to identify generic tasks and methods are still very much limited
to research projects. In the commercial environment, the first indication
that these ideas may become practicable comes from the announcement of
“spplication packages” for use with large-scale expert system tools. Such
packages augment the built-in facilities of the tool with techniques partic-
ularly important to some types of problems. An example is a simulation-
oriented package for use with KEE. If research along these lines is successful,
we can expect much more specific methods provided in tools, perhaps in
industry-specific versions.

New Techniques from Applied Artificial Intelligence Research

Despite some impressive successes and almost universally-held optimism
for future capabilities, artificial intelligence and the methods of reasoning
and knowledge representation in expert system are still in their infancy. In

Expert Systems Tools and Techniques 67

e long term, therefore, it is inevitable that the greatest improvements in
expert systems tools will come from advances in artificial intelligence re-

arch. A better understanding of “common-sense reasoning,” for example,
1d be not only a major advance in the science of artificial intelligence
ut- ould dlrectly beneﬁt all expert systems by allowing them to 1ntera.ct in

restmg research efforts now underway
In_ordmary human terms, we thlnk we understa.nd a problematlc sﬂ;u-

 of causality, whlch will, in turn, rest on more basic ideas of how to
ent the physmal world,® including its objects and processes, how to
ate the behavior of systems thus described, and how to reason back

Programs that reason about defects in the behavior of complex sys-
ms (ranging from electronic circuits to human bodies) require an ability
to analyze the behavior of a system in terms of its physical realization—in
wother words, to derive function from structure. We believe that ultimately
misbehavior of a system can be traced to some defect in the structures
i make up that system: it doesn’t work {correctly) either because some
e of it is not working or because the pieces are not connected correctly.
en-a complete account of how every ultimate part works and. rules that
etermine the behavior of an aggregate from the behaviors of the parts,
ie-can, in principle, perform numerous tasks such as design and diagnosis
erms of building up behavioral models of large system parts from the
aviors of their smallest pieces. To do this well, we need good methods
“describing both parts and the behaviors. In addition, there are many dif-
eult methodological concerns, intended to guarantee that no unwarranted

N
5See [Bobrow 83] for a good recent collection of papers concerning this topic.
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assumptions should be made in the course of such analyses [de Kleer and
Brown 83].

For practical and cognitive reasons, it seems inappropriate to reason
about complex systems by reducing them to their most basic components.
One really cannot understand why a computer system Ffails to respond to
console input by tracing the anticipated signal path gate by gate through-
out the system. Instead, it seems crucial to permit a reasoning system to
deal with problems at multiple levels of detail and perhaps from multiple
viewpoints. A medical diagnosis program, for example, can incorporate
both a simple association model relating common diseases to their com-
mon manifestations and deeper causal models (perhaps at several levels of
detail). Then, the associational model can be used to generate possible
intermediate diagnostic conclusions quickly, and the more detailed models
can be consulted later to confirm the hypothesized diagnosis or to help make
sense of a complex case for which the assoctational model was misleading
or inconclusive [Patil et al. 81]. In addition to the hierarchic organization
of detail, other organizing principles may also allow more efficient compu-
tation. In analyzing electronic circuits, the circuit diagram, highlighting
planned electrical interconnections, is often a good vehicle for reasoning. As

‘Davis [1984] points out, however, the physical layout of chips and circuit-

board leads is a much better basis for fnding bridge-faults caused by excess
solder, and the three-dimensional arrangement of parts inside a chassis may
be the best representation for localizing heat-dependent problems. Pople
[1982] suggests a clever set of heuristics to exploit simultaneous constraints
from two different viewpoints on a medical diagnosis problem.

People seem comfortable thinking about many problems in qualitative
terms. Whether making judgments of physical distance (“how high will this
ball fly before starting to drop back to earth?”), likelihood (“how likely is
one of the cars in the Indy 500 to crash this year?”"), temperature {“how
hot is the water available from my water-heater?”), etc., we never expect
precise numerical answers (45 feet, 0.08, or 185°F). Instead, some qualita-
tive description of such magnitudes appears adequate and even more useful.
The relevant characterization of water temperature if I am about to bathe,
for example, is probably into some three-range scale: too cold for a bath,
acceptable, and scalding. The distinguished points in such a “quantity
space” [Forbus 84] are those at which processes of interest (shivering, pain
or damage to skin) begin to operate. Reasoning with qualitative descrip-
tions only is sometimes adequate to determine the approximate behavior

Expert Systems Tools and Techniques 6¢

of‘physical systems. For example, if I have drawn my bath and know thai
is too hot, I can determine that either adding cold water {using a mixing
process) or simply waiting for the water to cool (heat transport process’
-acceptable ways to keep from getting scalded, without reference to the
actual temperature of the water, the heat-conductivity of the tub and air
my threshold of pain for hot water.

" In many situations, however, such simple qualitative arguments lose
much information to be usable. For example, if I add both hot and cold
ter to the bathtub, I cannot tell if its temperature will rise or fall with-
knowing something about the various temperatures and water volumes
olved. Pure qualitative reasoners therefore often generate ambiguous in-
retations of some sitvation, even though a more detailed analysis would
ield a definite solution. Progress is now being made toward bulldmg 8ys-
ns with the advantages of both qualitative and quantitative reasoners.
In such a hybrid system, the key is to allow a representation of quantities
: d relationships that says just so much as there is information to support.
na a system called QMR [Sacks 85], for example, functional relationships
an be represented either precisely in terms of mathematical expression,
w1th less information, in terms of parameterized algebraic expressions,
even more qualitatively, by simply mdlcatmg the behavioral trend of a
ction, such as “monatonically increasing” on some interval. The system
é.rantees to combine functional forms without introducing new ambigu-
5. Similar approaches have also been developed for reasoning about
ertainty and utility, where it may not be the absolute magnitude of
ome value that matters as much as relative rankings of alternative courses
action [Wellman 85).

- One of the most critical problems with today’s means of building ex-
ert systems is that virtually each new system must be custom-crafted.
arlier, I have described attempts to speed up this process by identifying
eneric tasks and methods for expert problem solving. However, even as
tich categorizations succeed, they will leave to the system builder the need
0 gather and formalize the knowledge of the domain of application and to
uild it into the system. Ultimately, why can’t the computer itself play a
uch larger role in that process of gathering and formalizing knowledge?
he-problems of Jearning have received a great deal of attention throughout
history of Al research, and there has been a recent revival of interest
d active research [Michalski et al. 83, 86]. In addition to the statistical

learning approaches I touched upon earlier, there are many efforts to re-
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late learning to structural descriptions of tasks and the capabilities of the
reasoner, and efforts to describe learning as guided search through a space

of possible theories [Mitchell 82]. om the National Heart, Lung and Blood Institute, R01 LM 04493 from
As the amount of knowledge in an expert system grows larger and more 1e National Library of Medicine, and by a fellowship gift from the Sperry

comprehensive, the problem of control of reasoning becomes ever-greater. : orporation. '

After all, if a system knows how to do only one task and knows just enough

to accomplish it, then even exhaustive methods of searching through its

knowledge may be quite acceptable for good problem-solving performance.

As we try to make systems more comprehensive, however, and as we try :

to build into them a deeper understanding of their domains, it becomes ) QW, D. G., 1985, Quahtatwe Reasoning about Physical Systems, MIT

harder and harder to control the directions in which the system explores. : " Press.
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For each of the above topics, I think, successes in improving our abil-
ities to solve problems and to represent knowledge in these ways clearly
points to a greatly improved potential for future expert systems tools.
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. Case Study on Evolution of
stem Building Expertise:
Medical Diagnosis

Ramesh S. Patil
- Thtroduction

The widespread use of expert system techniques in application software de-
lopment is a recent phenomenon. The majority of projects have been un-
der development for less than five years and very few of them have reached
level of maturity where they can be usefully applied. To anticipate the
future progress of these systems and the field in general, it is useful to
study those few example domains which are of long-standing interest.

The application of artificial intelligence techniques to medicine and,
particular, to medical diagnosis is one such area. In this paper we will
study the evolution of computational techniques in the area of medical di-
agnosis. I will present a number of systems with i increasing capabilities and
cornplexity with particular emphasis on the interaction between knowledge-
representation and reasoning strategies, and on how our understanding of
the nature of diagnostic expertise has changed over time. We will then look
+the current outstanding problems and the approaches under implemen-
tation to solve them.,
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