
Specialized Languages: An Applications Methodology M49

SPECIALIZED LANGUAGES:

AN APPLICATIONS METHODOLOGY
by RICHARD H. BIGELOW, NORTON R. GREENFIELD,
PETER SZOLOVITS, and FREDERICK B. THOMPSON

California Institute of Technology
Pasadena, CA

One objective of the information processing community is to
aid the problem-solving activities of its clients. In this paper we
will discuss a methodology for serving the needs of the "user",
that is, the end-user: the manager running an organization, the
accountant understanding the financial condition of a company,
the anthropologist studying a culture, the engineer designing
some equipment, or the meteorologist predicting the weather.
Each of these users has his own particular, idiosyncratic prob­
lems. The computer should be an effective tool for him in dealing
with these problems. Our methodology is designed to provide
each of these users with an appropriate interface to the computer,
with a language which is natural to his view of reality.

In this paper we examine the nature of today's ubiquitous
applications packages, discuss our notion of applications lan­
guages and present some of our experience with the REL system,
which has been designed to incorporate our views on specialized
user languages.

This research has been supported by:
Office of Naval Research contract #N00014-67-A-0094-0024
National Science Foundation grant #GH-31573
Rome Air Development Center contract #F30602-72-C-0249

APPLICATIONS PACKAGES

The bare hardware of a computer, from the point of view of
the user, is impotent. An operating system augmented by a few
language processors, e.g. FORTRAN and COBOL, is hardly
more useful. Indeed, when constructing complex applications for
an end user, the standard programming technique is to first build
a set of data structures and utility routines which then become
the user's environment and make the computer habitable. We
will call any consistent set of such structures and routines an
applications package.

The need for many such applications packages is clearly dem­
onstrated by their existence and wide usage. Examples are stan­
dard programs for payroll and inventory control in business, the
SPSS1 package for statistical analysis, subroutine libraries and
languages such as NAPSS2 for numerical analysis, and APT3 for
machine tool control. Hundreds of other illustrations may easily
be found.4'5

All these systems have a common property: they provide oper­
ators which perform meaningful unit operations needed by their
users. Their primitives draw up payrolls, compute correlations
and solve differential equations. We wish to examine how the
user invokes these primitive operations to fulfill his requirements.

M50 National Computer Conference, 1973

In the most unsophisticated system, the user invokes a unitary
operator: e.g. "produce the payroll". This is a complete program,
perhaps operating on large bodies of data, with well-understood,
structurally constant results. This type of applications package
supports only a single aspect of its users' reality. Being optimized
around a single task, it is not easily modifiable to meet even
simple contingencies and it often quickly becomes inadequate.
Problems change in structure as well as in data. Because the user
has no concept of the computer representation of sub-parts of the
whole problem, he is left with the use of a partly obsolete opera­
tor, or he becomes dependent on his programmers to make even
the most minor structural changes in his problem solutions.

Concerns of typical computer users consist not of single, all-
encompassing operations, but of a number of lower level tasks
which in combination allow the solution of a range of related
problems. For example, the accountant does not care merely to
be able to produce his quarterly financial report. He has to be able
to investigate data on various aspects of the company's fiscal
status to understand his problems. His products are not just
periodic reports, but also the tax and cash flow calculations,
projections, special briefings, etc. Similarly, a physicist manipu­
lating his experimental data looks not for a single answer, but for
a multitude of indications and partial results which may help him
understand the processes he is studying.

A computer system which supports such investigations must
embody a number of different primitive operators, to correspond
to the variously complex conceptual units of the user. It must also
allow the hierarchical combination of these primitives to build up
the operations which match higher-level user concepts.

The common production of standardized subroutine libraries
in many fields attests to the widespread acceptance of this view.
Such libraries, along with the standard algebraic computer lan­
guages, allow the construction of hierarchically-composed calls
on the primitives, offering flexibility and power. What, then, are
the inadequacies of these sophisticated applications packages to
the user?

On the one hand, a computer system for a particular user must
embody a large set of the conceptual primitives of his problem
area in order to be useful to him. In addition, however, that
system must also exclude the incursions of as many as possible
of those computer concepts unrelated to the problem area. All of
today's generally available programming languages have a strong
bias in their syntactic and semantic capabilities to fit the needs
of their designers, namely computer scientists. Their natural
primitives include the control of storage, input and output, the
declaration of procedures, data types, etc. Every one of these
concepts is foreign to the problem area in which the nonprogram-
mer user is working. Thus, although the subroutines in a library
may well represent valid primitives to our user, the irrelevant
concepts of program control, procedure calling, and data man­
agement intrude upon and disrupt his problem solving.6

Current users struggle with this disruption in different ways:
the accountant must work through a programmer, removing
himself from direct contact with his data; the physicist often
becomes a programmer, sacrificing his productivity as a scientist
to develop competence in a field of only incidental interest to his
work.

The information science community can provide better techni­
cal solutions and more viable tools.

APPLICATIONS LANGUAGES

To be most effectively utilizable, the computer must metamor­
phose to be each user's own conceptual machine. It must embody
exactly those primitive notions which the user finds fundamental;
it must support that structuring of complex problems which the
user finds natural. And because the user must be able to commu­
nicate easily with his machine, it must provide for communica­
tion in a language which embodies the user's conceptual
primitives and the means of composing them clearly and con­
cisely.

It is not generality that the language must provide. Indeed it
is exactly in its ability to reflect the biases, limits, and idiosyn­
cratic representation of the user's reality that a specialized lan­
guage finds its greatest strengths. The user brings with him a host
of presuppositions, the knowledge of his field, of which he is only
peripherally aware, but whose logic underlies all of his problem-
solving activities. General languages know nearly nothing about
the problem domain. All checks, all limits, all structures must be
explicitly expressed by the user. In any high-level application, the
amount of knowledge which the user has about his data is enor­
mous. To enter it as explicit instructions to the computer and to
probe his data in a system which recognizes none of his tacit
knowledge is unconscionably tedious.

The implicit inclusion of the tacit knowledge of a specialized
problem domain is the advantage which gives the applications
language both expressive conciseness and computational effi­
ciency in the problem-solving tasks of the particular end user.7

With such a language the user can concentrate on his problem
instead of the programming details. There is no intrusion of
foreign concepts from the implementation - the user manipulates
structures and operators that are familiar and relevant. The
power of the language opens new options and capabilities in his
use of the computer, and the naturalness of the language allows
him to exploit those capabilities himself, bringing his own im­
plicit knowledge and intuition to bear without having to work
through a programmer.

At the same time, the embodiment of the user's presupposi­
tions implicitly in the prior programming of the primitive opera­
tors results in increased computational efficiency. It is often
erroneously assumed that higher-level, user-oriented languages
entail increased computing times as well as excessive implemen­
tation costs. Quite the contrary. The existence of specialized
knowledge of the field of application allows more global optimi­
zation of the basic primitives. And once programmed, these
primitives can be composed in the solution of wide-ranging prob­
lems, being reused a multitude of times without involving any
new programming tasks. One can appreciate the extent of such
savings by considering the compaction of records and optimiza­
tion of access to peripheral storage which the programming of
specialized primitives can embody, savings in ultimate computer
time which can amount to orders of magnitude for large data
bases.8

Specialized Languages: An Applications Methodology M51

The fear has been expressed that the widespread development
of such languages would lead to a large number of small user
communities, each with its own highly specialized language, each
unable to communicate data and methods of solution to the
others. Consequently, the argument goes, we should concentrate
upon standardizing our languages rather than specializing them,
to allow the easy exchange of data, algorithms and personnel.

We find two related answers to this line of argument. First, we
do not believe that our current experience with sharing data or
programs justifies the requirement of adherence to rigid stan­
dards on the part of all computer users. Specialized languages
already tend to arise in response to natural divisions which exist
among groups of users. Hence, between groups isolated by spe­
cialized languages, it is already unlikely that they would profit
from sharing of common technique and common data. Second,
the increased capabilities provided a group by a specialized lan­
guage may well justify accepting the cost of relative isolation. It
is the user community's responsibility to regulate language devel­
opment to achieve an economic balance between specialized ca­
pability and communication. Between groups where
communication and sharing of data is desirable, their various
specialized languages can explicitly facilitate precisely such com­
mon access and cross-talk.

Currently, the economic factors underlying the decision of
whether or not to create a specialized language are dominated by
implementation cost. Technical advances of the sort we will de­
scribe can reduce this cost sufficiently to allow that decision to
be made on the grounds discussed above. We now examine the
task of implementing specialized languages.

METALANGUAGES

From the implementor's viewpoint, a computer language con­
sists of a set of procedures containing the semantic primitives of
the language, the set of data structures to which these are to be
applied, and a syntax which allows the user to compose his
operations and to apply them to his data. The task of the language
implementor is to analyze the natural requirements of the user
in these three areas and to design and code the procedures, data
structures and syntactic processor to realize the language.

We can examine the language writer's problem just as we
looked earlier at the end-user's problem. We note that current
programming languages do not have operators and data struc­
tures in their semantics which specifically support language im­
plementation. Because their facilities are much more primitive
and detailed, the construction of applications languages is dif­
ficult and costly. The language implementor needs a specialized
language, just as the user does. The primitive concepts of this
language must be parsing, storage management, permanent and
temporary data base management, semantic compositions, etc.
Again we emphasize that this implementor's language is not a
generalized language. Not all implementors will want the same
parser nor the same data base management scheme. However, for
particular classes of language implementors, those implementing
similarly-structured user or object languages, a particular imple­
mentors' or meta- language is useful.

A metalanguage structures and supports the task of the appli­
cations language implementor in the same way that the applica­
tions language structures and supports the task of the user. It
allows the implementor to concentrate on the problems of design­
ing his language and supports its implementation. For example,
provision within the metalanguage of an efficient parsing al­
gorithm coupled with a simple means of expressing syntax rules
will allow the programmer to utilize a natural syntax in his
language. He is no longer forced to a simple syntax by the high
cost of implementing anew a complex parser.. The metalanguage
can embody much of the tacit knowledge of the language imple­
mentor about the internal structure of the language. For instance,
a rigid coupling between rules of grammar of the object language
and the invocation of the associated semantic primitive routines
allows the metalanguage to know the calling and return struc­
tures of these semantic routines, and to use this knowledge to
allow a more concise "descrtption of The 'roiitm^''and~ttrpeTfbnrr
error checking or optimization on the object language. The meta­
language also directs the attention of the language implementor
to the central issues of his task: the construction of the operators
and data structures that are significant to the user and a natural
syntax for combining them.

REL-
THE RAPIDLY EXTENSIBLE LANGUAGE SYSTEM

The REL System has been developed to give concrete realiza­
tion to the ideas presented in this paper and allow us to get actual
experience with the use of such a system. We will not further
describe REL here, but will only enlarge upon those aspects
which relate to ideas discussed in this paper. For a more complete
description of REL, see references 9>10>11.

The REL System provides a metalanguage for the implementa­
tion of sentence-driven, syntax-directed, interpretive and extensi­
ble applications languages12. Within the REL environment, a
language is represented by a set of general rewrite grammar rules,
their corresponding processing routines, and the data structures
of the associated data items. The grammar rules structure the
operation of the language, define the valid syntactic constructs
which the user may employ, cause invocation of the syntactic and
semantic processing routines, and define which data types may
be related in the language. As an example, consider the following
grammar rule:

<class;relation_image> = > <relation> 'OF' <class>

This may be a rule of grammar of a language which expresses
aspects of a relation calculus. The rule, written exactly as shown
here, states to the REL system that:

• the syntactic construct "name of a relation" followed by the
word " o f followed by "name of a class" is valid.

s such a construct represents another data item of the type
"class",

• this new item may be computed by applying the program
named "relation_image" to the two old data items.

M52 National Computer Conference, 1973

Notice how this metalanguage forces the implementor's attention
to exactly the problems which should concern him: the primitive
entities of his language, e.g. "class" and "relation"; the primitive
operations of the language, e.g. "relation_image"; and the syntax
by which these can be combined, e.g. "regions of salesmen",
"vendors of components".

We have emphasized that the user's language should fit his
needs naturally. That means that he must often be able to define
new operations on the basis of his previously existing operations
to express new tasks and methods of solution. REL provides the
applications programmer with a powerful tool to implement this
ability for his language. Using whatever external syntax he finds
natural for his users, the programmer can invoke an REL system
utility which will add to the user language's grammar new rules
which express the desired definitions of the user.

REL APPLICATIONS LANGUAGES

We have used REL to implement a variety of languages and
have found it to be very supportive of them. Indeed, even if we
had wanted to develop only one fairly complex language, we
would have found it desirable to separate the REL system and
general language processor facilities from the syntax and seman­
tics of the particular language. Doing so has given us a frame­
work in which to design our languages that has been at least as
important as the support we have gotten to actually write the
code.

The languages that have been implemented under REL to date
include REL English,13,14,15 the Animated Film Language
(AFL),16 a language for solving ordinary differential equations,
17 and a discrete simulation language.18 We present a few exam­
ples from the first.

REL English is a technical English question-answering lan­
guage for the analysis of complex sets of highly interrelated data.
Its primitive operations are based on the data and semantics of
a relational algebra. Thus the language was designed with a view
to serving users with messy, large-scale data-related models. REL
English's current users include a cultural anthropologist, a re­
search hospital, and elements of a military staff.

The syntax of REL English is a complex, quite natural, deep
case grammar which provides our users with powerful but con­
cise statement and query capabilities. The primitive data entities
of the language are individuals, classes, and binary relations.
REL English has all the common notions of sentence structure,
time, function words like "all", "what", and "the". It does not
include any particular vocabulary but provides the ability for the
user to introduce new words which denote individuals, classes
and relations from his own problem domain. Further, it has the
capability for defining new verbs in terms of relations and the
verbs of being, and it provides the ability to extend itself by new
syntactic forms which represent composed operations of the lan­
guage, as specified by the user.

Note that this much REL English is common to a wide variety
of users. Relating to the earlier discussion of the cost of imple­
menting specialized languages, we remark that to this point the
cost of adding yet another English-based language to REL is
merely

merely the effort of deciding that the relational data structure and
an English statement and query capability are natural to the
user's problem area. To specialize to the requirements of a partic­
ular user, the extension facilities of REL English are used to
introduce the relevant user concepts to the language.

Our example will be the familiar one of the personnel data
base. The initial preparation of the language consists of acquiring
a copy of REL English and adding appropriate terms:

employee := class
department := relation
immediate supervisor := relation
salary := number relation

We can then include all of the basic data on each person, usually
taking it from some fixed-format file. At this point, the personnel
manager can ask the usual questions:

What is Sue Jones' salary?
When was John Smith Bob Jones' immediate supervi­
sor?
How many departments have employees whose salary
is over 20000?

The manager will soon extend this simple language with mean­
ingful and useful terms:

def: senior employee: employee whose salary is at least
18000
def: subordinate: converse of immediate supervisor

Are all managers senior employees?
What proportion of senior employees are female?
Which managers have more than five subordinates?

The user can, of course, produce reports. The statement:

What is the ratio of male employees to female em­
ployees in each department?

produces a columnar listing of the departments and their male
female ratios. Other involved conceptualizations can be ex­
pressed by verbs:

earn := verb (<object> is the salary of <agent>)

Does some employee earn more than his immediate
supervisor?

The capabilities represented here allow the user to efficiently
explore the interrelationships which are meaningful to his task.

The above is a small illustration of the type of applications
language which we have implemented in the REL system. Each
of the other languages mentioned have quite different syntax and
semantics. Although our experience to date is limited, these ap­
plications have been found to be directly and effectively usable
by their intended users and inexpensive to implement.

Specialized Languages: An Applications Methodology M53

CONCLUSION

The continued development of more sophisticated software
and better, less expensive hardware should lead to a great in­
crease in the number of computer users. As a tool for organizing
and managing large, complex human problems, specialized com­
puter languages promise to increase our effectiveness in handling
a complicated world. Indeed, only by the support of specially
tailored "natural" languages will the large group of new com­
puter users have the ability to effectively deal with this growing
resource. Whenever possible, the burden of making man-machine
communication tractable should fall on the machine, where the
burden is manageable through the use of specially designed meta­
languages and applications languages.

Our experience with REL gives us confidence that the notion
of a metalanguage for the implementation of whole classes of
applications languages is legitimate and valuable. We intend to
continue exploring the wide range of end-user oriented languages
which find a natural home within our system, and we envision
the future construction of other metalanguages (or programming
systems) for different classes of applications languages.

We would like to make a few final comments about the impact
of the above ideas on the computer professions. We expect a
redefinition of the relation between systems programmer, appli­
cations programmer, and user. The user has problems to solve,
which he can state in some language specialized to his universe
of discourse. The task of the applications programmer, in our
view, is to provide the user not with solutions to individual
problems, but with computer languages and capabilities to allow
the user to pursue the solutions of his problems in terms of
concepts which are natural to his problem domain. The task of
the systems programmer is to build efficient language processing
systems and their associated metalanguages so that the applica­
tions programmer can concentrate on the structuring of the data,
preparation of the processing algorithms, and specification of the
syntax natural to his user. The current work in computer systems
such as REL will facilitate the task of the applications program­
mer.

Finally, the power (and thus the responsibility) of the applica­
tions language implementor is great. As our everyday language
affects our thoughts, our computer languages guide and limit our
work. An appropriate and flexible applications language can
greatly enhance the work of a user; a poor and rigid one can
impoverish it. The future of our ability to effectively use one of
our most powerful tools, indeed, of our ability to cope with an
informationally overwhelming world, is at issue.

ACKNOWLEDGEMENT

REFERENCES

1. Nie, N.H., Bent, D.H., and Hull, C.H., SPSS: Statistical Package
for the Social Sciences. McGraw-Hill, New York, 1970.

2. Symes, L.R. and Roman, R.V. Structure of a language for a numeri­
cal analysis problem solving system. In Interactive Systems for
Experimental Applied Mathematics, Klerer, M. and Reinfelds, J.
(Eds.), Academic Press, NY, 1968, 67-78.

3. APT Part Programming. McGraw-Hill, New York, 1967.
4. Sammet, J.E. Programming Languages: History and Fundamentals.

Prentice-Hall, Englewood Cliffs, NJ, 1969.
5. Sammet, J.E. Roster of programming languages, 1972. Computers

and Automation 21, 6B (1972 Aug 30), 123-132.
6. Dmytryshak, C.A. The universal consulting language - alias the

investment analysis language, Proc. Fall Joint Comput. Conf. 1972,
41, Part I, 525-535.

7. Thompson, F.B. and Dostert, B.H. The future of specialized lan-
gttagesy :Fra?. Spring^omt-Comput.-Conf. 19J2-, 40̂ 343-31-9,

8. Greenfeld, N.R. Computer System Support for Data Analysis.
Doctoral Dissertation, REL Project Report No. 4, Calif. Inst.
Tech., Pasadena, CA, 1972.

9. Thompson, F. B., Lockemann, P.C., Dostert, B.H. and Deverill,
R.S. REL: A Rapidly Extensible Language System. Proc. 24th
ACM Natl. Conf., 1969, 399-417.

10. Dostert, B.H. REL - An Information System for a Dynamic Envi­
ronment. REL Project Report No. 3, Calif. Inst. Tech., Pasadena,
CA 1971.

11. Thompson, F.B. and Dostert, B.H. The REL System, Fourth Inter­
national Symposium on Computer and Information Sciences
(COINS - 72), Miami, FL, 1972 Dec.

12. Szolovits, P. The REL Language Writers Language: A Metalan­
guage for Implementing Specialized Applications Languages. Doc­
toral Dissertation, Calif. Inst. Tech., Pasadena, CA, forthcoming.

13. Dostert, B.H. and Thompson, F.B. The Syntax of REL English.
REL Report No. 1, Calif. Inst. Tech., Pasadena, CA, 1971.

14. Dostert, B.H. and Thompson, F.B., "Syntactic Analysis in REL
English: a computational case grammar", Statistical Methods in
Linguistics, 8(1972), 5-38.

15. Dostert, B.H. and Thompson, F.B. Verb semantics in a relational
data base system. Proc. ONR Symp. on Text Processing and Scien­
tific Research, Pasadena, CA, 1972 Nov.

16. Bigelow, R.H. Greenfeld, N.R., Szolovits, P. and Thompson, F.B.
The REL Animated Film Language. REL Project Report, forth­
coming, Calif. Inst. Tech., Pasadena, CA.

17. Bigelow, R.H. Computer Languages for Numerical Engineering
Problems. Doctoral Dissertation, REL Project Report No. 5, Calif.
Inst. Tech., Pasadena, CA, 1973.

18. Nicolaides, P.L. RELSIM - An On-Line Language for Discrete
Simulation in Social Science Research. Doctoral Dissertation,
Calif. Inst. Tech., Pasadena, CA, forthcoming.

The authors acknowledge the assistance of Ms. Sara Gomberg
in the preparation of this paper.

