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Abstract 

 
Many recent studies of trust and reputation are made in the context of commercial 
reputation or rating systems for online communities.  Most of these systems have been 
constructed without a formal rating model or much regard for our sociological 
understanding of these concepts.  
 
We first provide a critical overview of the state of research on trust and reputation.  We 
then propose a formal quantitative model for the rating process.  Based on this model, we 
formulate two personalized rating schemes and demonstrate their effectiveness at 
inferring trust experimentally using a simulated dataset and a real world movie-rating 
dataset.  Our experiments show that the popular global rating scheme widely used in 
commercial electronic communities is inferior to our personalized rating schemes when 
sufficient ratings among members are available.  The level of sufficiency is then 
discussed.  In comparison with other models of reputation, we quantitatively show that 
our framework provides significantly better estimations of reputation.  “Better” is 
discussed with respect to a rating process and specific games as defined in this work. 
 
Secondly, we propose a mathematical framework for modeling trust and reputation that is 
rooted in findings from the social sciences.  In particular, our framework makes explicit 
the importance of social information (i.e., indirect channels of inference) in aiding 
members of a social network choose whom they want to partner with or to avoid.  Rating 
systems that make use of such indirect channels of inference are necessarily personalized 
in nature, catering to the individual context of the rater. 
 
Finally, we have extended our trust and reputation framework toward addressing a 
fundamental problem for social science and biology: evolution of cooperation.  We show 
that by providing an indirect inference mechanism for the propagation of trust and 
reputation, cooperation among selfish agents can be explained for a set of game theoretic 
simulations.  For these simulations in particular, our proposal is shown to have provided 
more cooperative agent communities than existing schemes are able to. 
 
Thesis Supervisor:  Peter Szolovits 
Title:  Professor of Electrical Engineering and Computer Science
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CHAPTER  1 

Introduction 

“Your corn is ripe today; mine will be so tomorrow. 'Tis profitable for 
us both that I shou'd labour with you today, and that you shou'd aid 
me tomorrow. I have no kindness for you, and know that you have as 
little for me. I will not, therefore, take any pains on your account; 
and should I labour with you on my account, I know I shou'd be 
disappointed, and that I shou'd in vain depend upon your gratitude. 
Here then I leave you to labour alone: You treat me in the same 
manner. The seasons change; and both of us lose our harvests for 
want of mutual confidence and security.” 

 
  -- David Hume, Treatise, III, II, section 5 
 
 
“Covenants struck without the sword are but words.” 
 
  -- Thomas Hobbes, Leviathan. 
 

1.1 Trust and Reputation 

In his Treatise on Human Nature (1737), David Hume provides a clear description 
on the problem involving trust.  We rely on trust every day: we trust that our parents 
would support us, our friends would be kind to us, we trust that motorists on the road 
would follow traffic rules, we trust that the goods we buy have the quality commensurate 
with how much we pay for them, etc.  Whether one believes societies to be results of 
divine ruling, or social contract, the very notion of society as an organizing body requires 
the notion of trust among its members.   

Yet, underlying every social transaction is the temptation to defect against one’s 
opponent so as to increase one’s personal gain (or to lessen one’s labor).  For instance, 
after one party has received payment for the goods that he is selling, he is tempted to not 
deliver the goods or to provide goods that do not match the quality advertised to the 
purchasers.  As illustrated by the opening quote of this chapter, parties engaged in many 
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social interactions are tempted to hold back cooperation even though doing so results in 
both being worse off.  These interactions exhibit the structure of the well studied 
prisoner’s dilemma (Axelrod, 1984). 

Thomas Hobbes (1588-1679), an Enlightenment philosopher, argues that social 
dilemmas require formal mechanisms to guard individuals against defection.  Such 
mechanisms must have some way to enforce any agreements or contracts so that 
sanctions are imposed on those who break them.  Hobbes believes that the State should 
be the agency of enforcement, the “sword”, for societies.  Without the State and its laws, 
courts, and police, “the state of nature ... [would be in a] constant state of war, of one 
with all, … the life of man, solitary, poor, nasty, brutish, and short.” (Hobbes, Leviathan) 

1.1.1 Formal Trust Producing Mechanisms 

Formal mechanisms for tempering the temptation to defect refer to those that are 
institutionalized.  Examples include legislations, written contracts, escrow services and 
the like.  Disciplines such as law, finance and economics have been concerned with 
ensuring trust in societies through these formal mechanisms.  In everyday activities such 
as credit card purchasing, many of us unknowingly have acquired trust for those whom 
we deal with through some formal trust producing systems.  Institutions such as the credit 
report bureaus, the criminal justice system, loan collection agencies, etc., have procedures 
and rules for guarding against potential defectors and to apprehend those who break the 
contracts or laws.  Their existence guarantees to all parties involved in credit card 
transactions against defective activities. 

1.1.2 Informal Trust Producing Mechanisms 

Of course, not all social activities that we encounter every day are as well 
structured against defection as credit card purchasing.  Further, the formal mechanisms 
for guaranteeing mutual cooperation are imperfect.  Hence we must each take risks in 
trusting others to behave as we expect them (or as they promised) to do.  We may use a 
variety of clues and past experiences to decide, in any particular transaction, whether to 
take such a risk.  In these activities, we rely on indirect mechanism for guarding us 
against defection.  These indirect mechanisms include very subjective factors such as our 
partners’ firmness of handshakes, body language, accent, etc.  We also rely on our social 
networks and the media to gather hearsay on others’ experiences of dealing with these 
individuals.  Given these information, we form opinions and infer the reputation about 
our potential partners.  With reputation information, we then decide on how much we 
trust these individuals.   

In addition to playing an information role, reputation also has a sanctioning role in 
social groups.  If one violates others’ trust, this person may be subject to loss of his or her 
good reputation.  A tainted reputation can be very costly to one’s future transactions. 

Institutional guarantees such as legal contracts do not completely eliminate risks.  
Even when societies do provide adequate measures against these risks, they often involve 
lengthy steps that most people would prefer not to have to take.  Nonetheless, in bilateral 
interactions involving risk, no cooperation would take place unless the party who moves 
first has a certain level of trust that the second party is willing to fulfill its obligations. 
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The study of trust outside formal mechanisms becomes more important in new 
communities where such mechanisms have yet to be firmly established.  This is 
particularly the case for virtual (or electronic ) communities today.  These communities 
have created reputation or rating systems for the express purpose of encouraging trusting 
and trustworthy behaviors.  The study of trust production in these communities is the 
subject of this dissertation. 

1.2 Trust and Reputation in Virtual Communities 

The past decade has seen the rise of virtual communities such as online chat rooms, 
electronic markets, and virtual multiplayer game worlds.  These new spaces of human 
interaction have challenged our accumulated wisdom on how human interactions can 
occur.  Many aspects of these virtual communities deserve to be and have been 
extensively researched (e.g., Rheingold, 2000; Wellman, 2001; Smith and Kollock, 1999; 
Donath, 2002).  In this dissertation we focus on one aspect that in many ways differs 
from the physical world equivalent: how trust and reputation are acquired and used. 

An example virtual community is an electronic market such as eBay.  Electronic 
markets hold great promises for bringing together large numbers of buyers and sellers 
across wide geographic regions on a scale that is unprecedented in the physical world.  
By so doing, electronic markets have the potential to dramatically improve the efficiency 
of trading through the reduction of search and transaction costs.  For example, proponents 
of such markets claim that unlike the offline markets, buyers can choose the best possible 
deal for every transaction and work with different sellers every time.  This claim hinges 
on an important assumption often unstated: that buyers and sellers can trust each other in 
ways that do not incur expensive transaction costs.  For online trading communities, the 
production of trust is thus a crucial social factor that must be tackled. 

Challenges facing trust in virtual communities arise ironically from what some 
proponents claim to be the advantages for such communities: being vast, nearly 
anonymous, simple to join and leave.  By being vast,  

• Members in virtual communities often span geopolitical boundaries where 
formal mechanisms ensuring trusts are difficult to establish. 

• Virtual interactions lack direct physical cues such as tone of voice, body 
language, handshakes, store façade, etc., which are often used as the first line 
for gauging trustworthiness in everyday interactions. 

• Members are often anonymous and can enter and leave a community easily. 

• Members often interact with strangers whom the members nor their friends 
have encountered before.1  

The possibility for dealing with complete strangers without institutional guarantees 
significantly increases the risk for such interactions.  Therefore, one expects trust to be 
hard to acquire.  Hence, one would not expect to find many interactions requiring trust in 
such communities. 
                                                 

1 In sociologists’ terms, their “social networks” do not overlap (c.f. , Chapter 2 on sociology). 
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On the contrary, virtual communities have thrived in the case of eBay 2, internet 
newsgroups (Smith and Kollock, 1998), The WELL (Rheingold, 2000)3, and ICQ 4, 
among others.  In the case of eBay, trust between buyers and sellers is established with a 
set of simple rating schemes.  What makes trust possible given the difficulties outlined 
above for virtual communities?  The following tools contribute to trusting interactions  
online: 

• Escrow services 

Some formal institutions already exist online for guaranteeing trust within 
individual countries.  Services such as Paypal provide the equivalent of 
institutional guarantees for virtual communities.  However, recent fraud cases 
involving Paypal point to some of the difficulties for such institutions that span 
geopolitical boundaries.5 

• History reporting for members  

Virtual communities are capable of storing complete information on their 
members’ interactions online.  Companies such as eBay provide a breakdown of 
the number of positive, neutral, and negative ratings, and written feedbacks for a 
given seller over 1 week, 1 month and 6 months prior to any given transaction.  
Potential buyers can use this history reporting feature to evaluate their own risk 
profile for engaging in a transaction with the seller. 

• Reputation rating systems  

A reputation or rating system attempts to provide succinct summaries of a user’s 
history for a given virtual community.  In the case of eBay (or Amazon), one’s 
reputation is represented by a rating “score” which is calculated based on 
cumulative (or average ratings) by its members. 

Similar to offline interactions, formal mechanisms offered by tools such as escrow 
services can only cover a small fraction of all interactions online.  Except for financially 
related interactions, few institutional guarantees are available.  For activities such as 
inferring experts, or finding compatible partners, or locating reliable opinions, more 
informal mechanisms are needed. 

History and reputation reporting systems aim to provide the informal mechanisms 
for producing trust for online interactions.  The majority of such systems today have been 
created by internet entrepreneurs and their properties have yet to be fully researched.  
Many are still primitive.  The eBay reputation system is no more than a cumulative 
registry of user ratings and feedbacks on a given eBay member.  Each feedback is 
accompanied by either a positive (+1), neutral (0), or negative (-1) rating.  Clearly, 
human interactions are more finely grained and more sophisticated.  In fact, one can 
easily think of schemes to take advantage of the eBay reputation system.  Recent fraud 

                                                 

2 http://www.ebay.com/  
3 http://www.well.com/  
4 http://www.icq.com/  
5 http://www.cnn.com/2002/TECH/industry/03/26/paypal.stranded.idg/index.html 
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cases on eBay remind us of the frailty of this simple design.6  As virtual communities 
mature and grow to rely on these trust management systems, they deserve to be 
reexamined.   

1.3 Contributions 

This dissertation contributes to the study of trust and reputation by first providing a 
critical overview of the state of the art in this field.  Many extant studies of trust and 
reputation have been made in the context of building reputation or rating systems for 
online communities.  Most of these systems have been constructed without a formal 
rating model or much regard for our sociological understanding of these concepts.7  Many 
such studies provide an intuitive approach to trust and reputation which appeal to 
common experiences without clarifying whether their usage of these concepts is similar 
to or different from those used by others.   

We first describe a formal quantitative model for the rating process.  Based on this 
model, we propose two personalized rating schemes and experimentally demonstrate 
their effectiveness for inferring trust using a simulated dataset and a real world movie-
rating dataset.  Our experiments show that the popular global rating scheme widely used 
in commercial electronic communities is inferior to our personalized rating schemes 
when sufficient ratings among members are available.  The level of sufficiency is then 
discussed.  In comparison with other models of reputation, we quantitatively show that 
our framework provides significantly better estimations of reputation.  “Better” is 
discussed with respect to the rating process in Chapter 4 and then to two specific games 
to be discussed in Chapter 6 and Chapter 8.    

One important contribution of this dissertation is the derivation of a mathematical 
framework for modeling trus t and reputation that is rooted in findings from the social 
sciences.  In particular, our framework makes explicit the importance of social 
information (i.e., indirect channels of inference) in helping members of a social network 
choose whom they want to partner with or to avoid. 

Finally, we extend our trust and reputation framework toward addressing a 
fundamental problem for social science and biology: evolution of cooperation.  We show 
that by providing an indirect inference mechanism for the propagation of trust and 
reputation, cooperation among selfish agents can be explained.  In a set of game theoretic 
simulations for evaluating the process for the evolution of cooperation, our proposal is 
shown to have provided more cooperative agent communities than many existing 
schemes are able to. 

 
 
 

                                                 

6 e.g., http://www.cnn.com/2000/TECH/computing/11/07/suing.ebay.idg/ 
7 Examples of such systems include those in many commercial services such as Amazon or eBay, 

Zacharia and Maes (1999), Yu and Singh (2000), among others. 
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1.4 Relevance to Computer Science 

Much of this dissertation is about sociological concepts such as society, trust and 
reputation.  How do these concepts relate to contemporary computer science research? 

As argued earlier in this chapter, the emergence of online communities opens new 
interaction spaces.  In these virtual spaces, the advantages of face-to-face interactions, 
personal trust and reputation, and physical cues, among others, no longer apply.  In this 
dissertation, we are specifically interested in the genesis and maintenance of reciprocity, 
trust and reputation in virtual communities.  We believe that such social variables have 
significant roles for enhancing the user experiences online.  As irrational as trusting and 
trustworthy behaviors might seem to selfishness-based modelers, such behaviors 
ultimately lead to advantages in other areas (such as survival of a social group).   If these 
behaviors are so prevalent and important in our physical world, enabling such behaviors 
in the virtual worlds should pave the way to allow more people to be positively involved 
in these new interaction spaces than otherwise.  

There has been extensive work for modeling cooperation, reciprocity, trust and 
reputation in diverse fields including computer science.  Several chapters 8 in this work 
provide cross-disciplinary analyses of these concepts.  This dissertation attempts to build 
on these diverse sources of scholarship to create new computational techniques for 
fostering cooperative behaviors in virtual communities. 

A second reason why the discussion thus far should be relevant to computer science 
is that researchers in artificial intelligence have borrowed heavily from the machineries of 
economics in modeling rationality specifically and intelligence in general (Doyle, 1998; 
Wellman, 1993; Horvitz, 1986; Keeney and Raiffa, 1986; etc.).  As economic modeling 
has so far neglected the modeling of norms, preferences, and other such social quantities 
(c.f., Fehr, et al., 2002), there exist many opportunities to explore and further artificial 
intelligence when one is equipped with deeper understandings of these concepts.  
Appendix C explores how this work is relevant to the modeling of (ir)rationality, 
cooperation and related social variables. 

1.5 Roadmap 

This chapter provides the motivating context for this work.  Chapter 2 critically 
reviews the literature related to rating and reputation as a notion in particular.  A typology 
is proposed to summarize this literature.  Chapter 3 describes a formal rating framework 
for inferring and producing trust.  We model the commercially popular global rating 
scheme within this rating framework.  In this chapter, we also propose two personalized 
rating propagation schemes as alternatives to the global rating scheme.  Chapter 4 
presents simulations comparing our proposed rating systems with the global and a control 
schemes. 

We examine the notion of trust and reputation more generally outside the rating 
problem in Chapter 5 and 6.  Chapter 5 describes a sociologically justified, statistically 
sound computational model for trust and reputation.  This model is based on the 

                                                 

8 In particular, these chapters below provide these analyses: 2, 3, 5, 7 and 8. 
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personalized rating scheme proposed in Chapter 3 and experimentally tested in Chapter 4.  
With a set of evolutionary games known as iterated Prisoner’s Dilemma, simulation 
results comparing our proposed computational model for trust and reputation with others 
are reported in Chapter 6.  

Chapter 7 and 8 extend our trust and reputation framework and apply it to a 
fundamental problem in biology and social theories: how does cooperation evolve among 
self interested individuals?  Several existing theories already attempt to answer this 
question; each with its merits and faults.  We argue that cooperation can evolve among 
self- interested individuals if certain social structures are well-established.  The social 
structures studied in this work are indirectly inferred trust and reputation.  Chapter 7 is a 
review of the literature covering this field.  Chapter 8 presents our computational 
framework for explaining the evolution of cooperation.  The core of our proposal lies in 
modeling social interaction in the form of “social information” such as trust and 
reputation.  We illustrate the robustness of our model through artificially simulated 
societies of agents.  Finally, we compare our results to those obtained via other 
methodologies. 

Chapter 9 briefly concludes this work and points to directions for future research 
opportunities. 
 



CHAPTER  2 

Notions of Reputation 

 
 
Trust and reputation underlie almost every face-to-face trade.  In an on- line setting, 

trading partners have limited information about each other’s reliability or the product 
quality during the transaction.  The analysis by Akerloff in 1970 on the Market for 
Lemons is also applicable to the electronic market.  The main issue pointed out by 
Akerloff about such markets is the information asymmetry between the buyers and 
sellers.  The buyers know about their own trading behavior and the quality of the 
products they are selling.  On the other hand, the buyers can at best guess at what the 
sellers know from information gathered about them, such as their trustworthiness and 
reputation.  Trading partners use each others’ reputations to reduce this information 
asymmetry so as to facilitate trusting trading relationships. 

Reputation or rating systems have become widespread for virtual communities.  
Such systems aim to enhance the level of trust among members, whether the goal is to 
increase number of auctions (e.g., eBay), or to increase the sale of good products (e.g., 
Amazon), or to engage in more social circles (e.g., newsgroup).  Before we investigate 
how such systems have been built and contribute to the production of trust for these 
communities, we review the research on reputation in this chapter, emphasizing the 
quantitative work that can be implemented in real world computer systems.  

Reputation is not a single notion but one with multiple parts.  Section 2.2 reviews 
the basic notions of reputation as used in several disciplines.  Section 2.3 proposes a 
typology as a helpful framework to summarize existing notions of reputation.  Chapter 6 
describes a set of experiments and results aimed at understanding the relative strength of 
different notions of reputation as discussed in this chapter.  A brief discussion of our 
typology concludes this paper. 

2.1 Introduction 
Reputation refers to a perception that an agent has of another’s intentions and 

norms.  Evolutionary biologists have used reputation to explain why selfish individuals 
cooperate (e.g., Nowak and Sigmund, 1998).  Economists have used reputation to explain 
“irrational” behavior of players in repeated economic games (e.g., Kreps and Wilson, 
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1982).  Computer scientists have used reputation to model the trustworthiness of 
individuals and firms in online marketplace (e.g., Zacharia and Maes, 1999).   

Reputation is often confused with concepts related to it, such as trust (e.g., Abdul-
Rahman, et al., 2000; Yu, et al., 2001).1  The trouble with a number of reputation studies 
lie in their lack of careful analysis based on existing social, biological, and computational 
literatures regarding reputation.  We refer to Chapter 5 in this work, Ostrom (1998) or 
Mui, et al., (2002) for a clarification of reputation, trust, and related concepts.  

2.2 Background 
Trust and reputation are concepts studied by researchers and thinkers in different 

fields.  The sections below by no mean attempt to divide these works into distinct 
buckets.  Rather, they group together similar works that have often been of interest to 
audiences of the various disciplines.  

2.2.1 Reputation Reporting System 

Reputation reporting systems have been implemented in e-commerce sys tems and 
have been credited with these systems’ successes (Resnick, et al., 2000a).  Several 
research reports have found that seller reputation has significant influences on on- line 
auction prices, especially for high-valued items (Houser and Wooders, 2000; Dewan and 
Hsu, 2001).  

The reputation system in eBay is well studied.  Reputation in eBay is a function of 
the cumulative positive and non-positive ratings for a seller or buyer over several recent 
periods (week, month, 6-months).  Resnick and Zeckhauser (2000b) have empirically 
analyzed this reputation system and conclude that the system does seem to encourage 
transactions.  Houser and Wooders (2000) have used games to study auctions in eBay and 
describe reputations as the propensities to default – for a buyer, it is the probability that if 
the buyer wins, he will deliver the payment as promised before the close of the auction; 
for a seller, it is the probability that once payment is received, he will deliver the item 
auctioned.  Their economic analysis shows that reputation has a statistically significant 
effect on price. Both Lucking-Reily, et al. (1999) and Bajari and Hortacsu (2000) have 
empirically examined coin auctions in eBay.  These economic studies have provided 
empirical confirmation of reputation effects in internet auctions.  

Despite the obvious usefulness of reputation and related concepts for online 
trading, conceptual gaps exist in current models about them.  Resnick and Zeckhauser 
(2000b) have pointed out the so called Pollyanna effect in their study of the eBay 
reputation reporting system.  This effect refers to the disproportionately positive 
feedbacks from users and rare negative feedbacks.  They have also pointed out that 
despite the incentives to free ride (for not providing feedbacks), feedbacks by agents are 
provided in more than half of the transactions.  This violates the rational alternative of 

                                                 

1 The relationship between trust and reputation (and other related social quantities) is described in the next 
chapter. 
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taking advantage of the system without spending the effort to provide feedback.  
Moreover, these studies do not model deception and distrust.  As shown by Dellarocas 
(2000), several easy attacks on reputation systems can be staged.  These studies also do 
not examine issues related to the ease of changing one’s pseudonym online.  As Friedman 
and Resnick (1998) have pointed out, an easily modified pseudonym system creates the 
incentive to misbehave without paying reputational consequences.   

2.2.2 Economics 

Economists have extensively studied reputation in game theoretic settings.  Many 
of the economic studies on reputation relate to repeated games.   In particular, the 
Prisoner’s Dilemma or the Chain Store stage game is often used in these studies (e.g., 
Andreoni and Miller, 1993; Selten, 1978).  In such repeated games, reputation of players 
is linked to the existence of cooperative equilibria.  Game theorists have postulated the 
existence of such an equilibrium since the 1950’s in the so called Folk Theorem 
(Fudenberg and Maskin, 1986).  However, the first proof did not come until 1971 in the 
form of discounted publicly observable repeated games between two players (Friedman, 
1971).  Recent development in game theory have extended this existence result to 
imperfect publicly monitored games and to some extent privately monitored games 
(Kandori, 2002), and to games involving changing partners (Okuno-Fujiwara and 
Postelwaite, 1995; Kandori, 1992).  Economists often interpret the sustenance of 
cooperation between two players as evidence of “reputation effects” (Fudenberg and 
Tirole, 1991). 

Entry deterrence is often studied by game theorists by using notions of reputation.  
Kreps and Wilson (1982) borrows Harsanyi (1967)’s theory of imperfect information 
about players’ payoffs to explain “reputation effects” for multi-stage games involving an 
incumbent firm versus multiple new entrants.  They show that equilibria for the repeated 
game exist (with sufficient discounting) so that an incumbent firm has the incentive to 
acquire an early reputation for being “tough” in order to decrease the probability for 
future entries into the industry.   Milgrom and Roberts (1982) report similar findings by 
using asymmetric information to explain the reputation phenomenon.  For an incumbent 
firm, it is rational to seek a “predation” strategy for early entrants even if “it is costly 
when viewed in isolation, because it yields a reputation which deters other entrants.” 
(ibid.)  More recently, Tirole (1998) and Tadelis (2000a) have studied reputation at the 
firm level — firm reputation being a function of the reputation of the individual 
employees.  Tadelis (2000b) has further studied reputation as a tradeable asset, such as 
the tradename of a firm. 

2.2.3 Scientometrics 

Scientometrics (or bibliometrics) is the study of measuring research outputs such as 
journal impact factors. Reputation as used by this community usually refers to number of 
cross citations that a given author or journal has accumulated over a period of time 
(Garfield, 1955; Baumgartner, et al., 2000).  As pointed out by Makino, et al., 1998 and 
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others, cross citation is a reasonable but sometimes confounded measure of one’s 
reputation. 

2.2.4 Computer Science 

Trust between buyers and sellers can be inferred from the reputation that agents 
have in the system.  How this inference is performed is often hand-waved by those 
designing and analyzing such systems as Zacharia and Maes (1999), Yu and Singh 
(2000), Houser and Wooders (2001).  As briefly discussed earlier, several easy attacks on 
reputation systems can be staged (Dellarocas, 2000). 

Besides electronic markets, trust and reputation play important roles in distributed 
systems in general.  For example, a trust model features prominently in Zimmermann’s 
Pretty Good Privacy system (Zimmermann, 1995; Khare and Rifkin, 1997).  The 
reputation system in the anonymous storage system Free Haven is used to create an 
accountability system for users (Dingledine, et al, 2001).  Trust management in the 
system Publius allows users to publish materials anonymously such that censorship of 
and tampering with any publication in the system is rendered very difficult (Waldman, et 
al., 2000). 

In the computer science literature, Marsh (1994) is among the first to introduce a 
computational model for trust in the distributed artificial intelligence (DAI) community.  
He did not model reputation in his work.  As he has pointed out, several limitations exist 
for his simple trust model.  Firstly, trust is represented in his model as a subjective real 
number between the arbitrary range –1 and +1.  The model exhibits problems at the 
extreme values and at 0.  Secondly, the operators and algebra for manipulating trust 
values are limited and have trouble dealing with negative trust values.  Marsh also 
pointed to difficulties with the concept of “negative” trust and its propagation. 

Abdul-Rahman, et al, (2000) have studied reputation as a form of social control in 
the context of trust propagation — reputation is used to influence agents to cooperate for 
fear of gaining a bad reputation.  Although not explicitly described, they have considered 
reputation as a propagated notion which is passed to other agents “by means of word-of-
mouth”.  

Sabater, et al. (2001) have defined reputation as the “opinion or view of one about 
something” and have modeled 3 notions of reputation: individual, social, and ontological.  
Individual reputation refers to how a single individual’s impressions are judged by others.  
Social reputation refers to impression about individuals based on the reputation of the 
social group they belong to.  Ontological refers to the multifaceted nature of reputation – 
depending on the specific context.  

Mui, et al., (2001) and Yu, et al., (2001) have proposed probabilistic models for 
reputation.  The former uses Bayesian statistics while the latter uses Dempster Shafer 
evidence theory.  Reputation for an agent is inferred in both cases based on propagated 
ratings from an evaluating agent’s neighbors.  These propagated ratings are in turn 
weighted by the reputation of the neighbors themselves. 
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2.2.5 Evolutionary Biology 

A detailed review of how trust and reputation are relevant for evolutionary 
biologists is given in Chapter 7.  Here we briefly highlight the more recent research of 
relevance to the next few chapters. 

Among evolutionary biologists, Pollock and Dugatkin (1992) have studied 
reputation in the context of iterated prisoners’ dilemma games (Axelrod, 1982).  They 
have introduced a new interaction strategy (named Observer Tit For Tat) which 
determines whether to cooperate or defect based on the opponent’s reputation.  
Reputation here is inferred from the ratio of cooperation over defection.  Nowak and 
Sigmund (1998, 2000) use the term image to denote the total points gained by a player by 
reciprocation.  The implication is that image is equal to reputation.  Image score is 
accumulated (or decremented) in every direct interaction among agents.  Following the 
studies by Pollock and Dugatkin (1992), Nowak and Sigmund (1998) have also studied 
the effects of third party observers of interactions on image scores.  Observers have a 
positive effect on the development of cooperation by facilitating the propagation of 
observed behavior (image) across a population.  Castelfranchi, et al. (1998) explicitly 
have reported that communication about “Cheaters”’ bad reputations in a simulated 
society is vital to the fitness of agents who prefer to cooperate with others. 

2.2.6 Anthropology 

Anthropologists describe the observed human cooperation as “altruistic” since 
selfishness-based arguments cannot explain such behaviors (Ensminger, 2002; Henrich, 
et al., 2002). 

Socio-biological theories predict that cooperation and altruism should be limited to 
kin and reciprocating partners (Hamilton, 1963; Trivers, 1971; Axelrod, 1984; Boyd and 
Richerson, 1989).  However, humans cooperate with large groups of unrelated 
individuals who do not promise reciprocation.  Their cooperation is not just co- incidental 
to their selfish pursuit; anthropological experiments with western subjects have shown 
that these individuals actually have social preferences that support large scale 
cooperation (Fehr, et al., 2001).  Such preferences include: inequality aversion, strong 
reciprocity, and concerns for fairness. 

One of the main goals of the recently completed MacArthur Cross-Cultural Project 
is to answer whether the canonical selfishness-based models of human decision making 
holds true across 18 distinct social-economic groups in 4 continents with over 1030 
subjects (Henrich, et al., 2002).  The results by 12 researchers in economics and 
anthropology emphatically show that the canonical selfishness-based assumption about 
human do not explain any of the social groups studied.  At the same time, behavioral 
variability in this well-designed and controlled set of experiments point to a lack of 
universal pan-human explanation for issues about cooperation and related variables such 
as reciprocity and trust.   

These recent anthropological results have greatly challenged our understanding on 
concepts such as cooperation, rationality, reputation, etc.  As pointed out by Chapter 9 of 
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this work, incorporating these new findings is a major area of future extension in our 
work. 

2.2.7 Sociology 

Reputation is of interested to sociologists for the obvious reason that reputation is a 
social phenomenon.  The rise of large scale virtual communities as new spaces of human 
interaction has challenged sociologists’ accumulated wisdom on how human interactions 
occur (e.g., Smith and Kollock, 1999; Rheingold, 2000; Wellman, 2001; Donath, 2002).  
Research of reputation in newsgroups, rating systems, and mediated spaces is given new 
prominence (e.g., Kollock and Smith, 1996; Resnick and Zeckhauser, 2000b; Rheingold, 
2000).  

Among the structural sociologists studying social networks, reputation is often 
studied as a network parameter associated with a society of agents (Freeman, 1979; 
Krackhardt, et al., 1993; Wasserman and Faust, 1994).  Reputation or prestige is often 
measured by various centrality measures.  An example is a measure proposed by Katz 
(1953) based on a stochastic coincidence matrix where entries record social linkages 
among agents.  Because the matrix is stochastic, the right eigenvector associated with the 
eigenvalue of 1 is the stationary distribution associated with the stochastic matrix (Strang, 
1988).  The values in the eigenvector represent the reputation (or prestige) of the 
individuals in the society.  Unfortunately, each individual is often modeled with only one 
score, lacking context dependence. 

Other sociologists and social scientists who study reputation from a qualitative 
perspective are interested in the social context surrounding reputation (or “status”, 
“prestige”, “power”, “dominance”, etc.).  Types of reputation can be divided into 
“ascribed” (e.g., chiefdoms and states), “achieved” (Renfrew & Bahn, 1996), or “earned” 
(e.g., by excelling at specific activities), “forced” (through threat, fear, persuasion or 
compulsion, Krackle, 1978).   

 
In her Presidential Speech to the American Political Science Society, Ostrom 

(1998) has argued for a holistic approach to study reputation based on how reputation, 
trust, and reciprocity interrelate.  Based on her qualitative model, a computational model 
for these related concepts has been proposed by Mui, et al. (2002). 

2.3 Reputation Typology 

2.3.1 Contextualization 

Reputation is clearly a context-dependent quantity.  For example, one’s reputation 
as a computer scientist should have no influence on his or her reputation as cook.  Formal 
models for context-dependent reputation have been proposed by Mui, et al., (2001) and  
Sabater, et al., (2001), among others.  Existing commercial reputation systems in eBay or 
Amazon provide only one reputation rating per trader or per book reviewer.  Context-
dependent reputation systems (e.g., based on value of items) might help mitigate 
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cybercrimes involving self-rating on small value items among a cartel of users for 
gaining reputation points (c.f., US Dept of Justice, 2001). 

2.3.2 Personalization 

Reputation can be viewed as a global or personalized quantity.  For social network 
researchers (Katz, 1953; Freeman, 1979; Marsden, et al., 1982; Krackhardt, et al., 1993), 
prestige or reputation is a quantity derived from the underlying social network.  An 
agent’s reputation is globally visible to all agents in a social network.  In the same way, 
scientometricians who use citation analysis to measure journal or author impact factors 
(i.e., reputation) also rely on the underlying network formed by the cross citations among 
the articles studied (Garfield, 1955; Baumgartner, et al., 2000).  Many reputation systems 
rely on global reputation.  In the case of Amazon or eBay, reputation is a function of the 
cumulative ratings on users by others.  Global reputation is often assumed in research 
systems such as those in Zacharia and Maes (1999)’s Sporas, Nowak and Sigmund 
(1998)’s image score without observers, Rouchier, et al. (2001)’s gift exchange system, 
among others. 

Personalized reputation has been studied by Zacharia and Maes (1999), Sabater, et 
al., (2001), Yu, et al. (2001), among others.  As argued by Mui, et al. (2002), an agent is 
likely to have different reputations in the eyes of others, relative to the embedded social 
network.  The argument is based on sociological studies of human behavior (c.f., 
Granovetter, 1985; Raub and Weesie, 1990; C. Castelfranchi, et al., 1998).  Depending 
on factors such as environmental uncertainties, an agent’s reputation in the same 
embedded social network often varies (Kollock, 1994). 

How many notions of reputation have been studied?  Based on the reviewed 
literature, an intuitive typology of reputation is proposed as shown in Figure 2.1.  This 
typology tree is to be discussed one level at a time in the rest of this section.  Each sub-
section reviews reputation literatures that are relevant to that part of the tree. 

 

Figure 2.1  Reputation typology.  It is assumed that reputation is context dependent.  
Shaded boxes indicate notions that are likely to be modeled as social (or “global”) 
reputation as opposed to being personalized to the inquiring agent (see text). 
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2.3.3 Individual and Group Reputation 

 

At the topmost level, reputation can be used to describe an individual or a group of 
individuals.  Existing reputation systems such as those in eBay, Amazon, Free Haven, or 
Slashdot (c.f., Resnick, et al. 2000b; Houser and Wooders, 2001; Dingledine, et al., 2001) 
concentrate on reputation of the individuals. 

Economists have studied group reputation from the perspective of the firm (Kreps 
and Wilson, 1982; Tirole, 1996; Tadelis, 2000). A firm’s (group) reputation can be 
modeled as the average of all its members’ individual reputation. Among computer 
scientists, Sabater and Sierra (2001) have studied the social dimension of reputation, 
which is inferred from a group reputation in their model.  Halberstadt and Mui (2001) 
have proposed a hierarchical group model and have stud ied group reputation based on 
simulations using the hierarchical model.  Their group model allows agents to belong to 
multiple overlapping groups and permits reputation inferences across group 
memberships. 

Commercial groups such as Reputation.com and OpenRatings 2 are applying their 
proprietary algorithms to manage buyer-supplier company relationships based on 
individual transactions.  Inherent in these models is the distinction between individual 
and group reputation. 

2.3.4 Direct and Indirect (individual) Reputation 

 

One can consider individual reputation as derived either (1) from direct encounters 
or observations or (2) from inferences based on information gathered indirectly.  Direct 
reputation refers to reputation estimates by an evaluator based on direct experiences (seen 
or experienced by the evaluating agent first hand).  Indirect reputation refers to reputation 
estimates that are based on second-hand evidence (such as by word-of-mouth). 

 

                                                 

2 c.f., http://www.reputation.com and http://www.openratings.com 
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2.3.5 Direct Reputation 

 

Direct experience with another agent can be further divided into (1) observations 
made about another agent’s encounters with others, and (2) direct experience interacting 
with that other agent. 

 

2.3.5.1 Observed Reputation 

Reputation rating in systems such as eBay provides an example for both observed 
and encounter-derived reputation.  These ratings are direct feedbacks from users about 
others with whom they have interacted directly.  After an encounter with a seller, a buyer 
can provide a rating feedback which can directly affect a seller’s reputation in the system 
— this is encounter-derived reputation (Dewan and Hsu, 2001; Resnick and Zeckhauser, 
2000b).  Buyers who have not interacted with a seller need to rely on others’ ratings as 
observations about a seller — thereby deriving observed reputation about the seller. 

Observer based reputation plays an important role in reputation studies by 
evolutionary game theorists and biologists. Pollock and Dugukin (1992) have introduced 
“observed tit- for-tat” (OTFT) as an evolutionarily superior strategy compared to the 
classic tit-for-tat strategy for the iterated Prisoner’s Dilemma game.  OTFT agents 
observe the proportion of cooperation of other agents.  Based on whether a cooperation 
threshold is reached, an OTFT agent determines whether to cooperate or defect on an 
encounter with another agent.  Similarly, Nowak and Sigmund (1998) use observer 
agents to determine agent actions in their image-score based game.   

 

2.3.5.2 Encounter-derived Reputation 

In our terminology, “observed” reputation differs from “encounter-derived” 
reputation in that the latter is based on actual encounters between a reputed agent and his 
or her evaluating agent.  For example, journal impact factor as determined by citation 
analysis (Garfield, 1955) is an “observed” reputation based on the observed cross-citation 
patterns.3  However, individual researchers might not agree with the impact factor based 

                                                 

3 Anthropomorphically, each journal article’s citation is a “rating feedback” to the cross-citation analysis 
observer.  
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on their own readings of individual journals.4  Each researcher revises the observed 
reputation based on their direct experience with each journal.  Field studies by Kollock 
(1994) have shown that personal interactions play a more important role than indirect 
observations in determining whether users choose to interact with one another socially. 5 

2.3.6 Indirect Reputations 

 

Without direct evidence, individual reputation can be inferred based on information 
gathered indirectly.   

2.3.6.1 Prior-derived reputation 

In the simplest inference, agents bring with them prior beliefs about strangers.  In 
human societies, each of us probably has different prior beliefs about the trustworthiness 
of strangers we meet.  Sexual or racial discrimination might be a consequence of such 
prior beliefs. 

For agent systems, such discriminatory priors have not yet been modeled.  Mui, et 
al., (2001)’s probabilistic model uses a uniform distribution for reputation priors.  This is 
equivalent to an ignorance assumption about all unknown agents.  Zacharia and Maes 
(1999)’s system give new agents the lowest possible reputation value so that there is no 
incentive to throw away a cyber identity when an agent’s reputation falls below a starting 
point.  Nowak and Sigmund (1998)’s agents assume neither good nor bad reputation for 
unknown agents.   

2.3.6.2 Group-derived Reputation 

Models for groups can been extended to provide prior reputation estimates for 
agents in social groups.  Tadelis (2001)’s study of the relation between firm reputation 
and employee reputation naturally suggests a prior estimate based on the firm that an 
economic agent belongs to.  If the firm has a good reputation, the employee can benefit 
from being treated as if he or she had a good reputation, and vice versa.  In the computer 
science field, both Sabater and Sierra (2001), and Halberstadt and Mui (2001) have 
postulated different mapping between the initial individual reputation of a stranger and 
the group from which he or she comes from.  Since the reputation of a group can be 
                                                 

4 Citation analysis based impact factor has been questioned on scientific ground (Makino, et al., 1998). 
5 Our term “Encounter-derived” reputation is usually called “personalized” (Zacharia and Maes, 1999; 

Sabater and Sierra, 2001; Yu and Singh, 20001; Mui, et al., 2001).  We avoid the word “personalized” 
here since other notions of reputation in Figure 2.1 can also be described as such. 
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different to different agents, individual reputation derived from group reputation is 
necessarily personalized to the evaluating agent’s perception of the group. 

2.3.6.3 Propagated Reputation 

Finally, although an agent might be a stranger to the evaluating agent, the 
evaluating agent can attempt to estimate the stranger’s reputation based on information 
garnered from others in the environment.  As Abdul-Rahman and Hailes (2000) have 
suggested, this mechanism is similar to the “word-of-mouth” propagation of information 
for humans.  Reputation information can be passed from agent to agent.  Schillo, et al., 
(2000), Mui, et al., (2001) Sabater and Cierra, (2001), and Yu and Singh (2001) have all 
used this notion, that reputation values can be transmitted from one agent to another.  
What differentiates these approaches is the care taken in combining the information 
gathered from these chains.  Yu and Singh (2001) have tried to use Dempster-Shafer 
theory for this combination.  Mui, et al., (2001) have used Bayesian probability theory.  
The latter has also used the Chernoff Bound to propose a reliability measure for 
information gathered along each chain. 

2.4 Discussions 
This chapter has proposed a typology for different notions of reputation that have 

been studied by various researchers and implemented in real world systems.  The 
typology serves a useful function in unifying the diverse literature on reputation.  Based 
on this typology, Chapter 6 will experimentally study the relative strengths of different 
notions of reputation in a set of evolutionary games.  Whereas these notions of reputation 
could only be compared qualitatively before, our experimental framework will enable us 
to compare them quantitatively. 

 

Reputation has become a popular topic for building online rating systems (e.g., 
Sycara, et al., 1999; Zacharia and Maes, 1999; Yu and Singh, 2000; Dingledine, et al., 
2001).  As mentioned earlier in Chapter 1, many of these models have been constructed 
without a formal rating model or much regard to our sociological understandings of these 
concepts.   

The next chapter formalizes a reputation or rating model for inferring trust.  It also 
proposes two personalized rating systems using this rating model.  Chapter 4 reports 
experiments on the proposed rating systems.  Chapter 5 and 6 discuss trust and reputation 
with a sociological perspective. 
  

 



CHAPTER  3 

Online Rating Systems 
 
 
In our everyday lives, we have various opinions about whether we approve of one 

another in different situations.  For example, we might approve or disapprove of George 
W. Bush in his foreign policy toward Iraq; we might approve or disapprove our partners’ 
outfit for a concert.  The level of approval varies.  We could be strongly against, for, or 
ambivalent about one another for a given situation. 

Based on our conceived level of approval for one another, we form trust 
relationships over time.  The sociological aggregate of individuals’ opinions of one 
another can be interpreted as the basis of individuals’ “reputation” in a society.  This 
chapter examines schemes for how approval of one toward another can be propagated via 
ratings about other members of a community.   

For distributed systems at large and e-commerce systems in particular, ratings play 
an increasingly important role.  Ratings confer reliability or reputation measures about 
sources.  This chapter reports our formalization of the rating process.  We argue that 
ratings should be context- and individual-dependent quantities.  In contrast to existing 
rating systems in many e-commerce or developer sites, our approach makes use of 
personalized and contextualized ratings for assessing source reliability and reputation.  
We present two new approaches to estimating reputation from ratings based on indirect 
inference.  In the next chapter, we will report experimental results about our proposed 
system.  Through the formalism and the experiments, we aim to show that indirect 
inference using personalized and contextualized ratings can enhance the production of 
trust, much more so than many existing methods based on non-personalized ratings. 

3.1 Rating Systems: Trust and Reputation Inference 

As alluded to in Chapter 1, philosophers have argued that societies depend on trust 
being present (Baier, 1986).  Under this premise, virtual communities have much going 
against them.  These communities cover vast geographic distances; they are easy to join 
and leave; their members are semi-anonymous. 

By being vast, virtual communities span geopolitical boundaries where formal 
mechanisms (e.g., law) ensuring trust are difficult to implement.  Because it is easy for 
members to join and leave, persistent identities, which are important for trust, become 
difficult to establish.  Even the identities created online are semi-anonymous in the sense 
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that these identities correspond mainly to email addresses, avatars, or credit card 
numbers; each real world individual can easily create multiple identities.  Anonymity is 
good for protecting individual privacy but is a hindrance to the production of trust by 
others. 

The fact that many virtual communities have been highly successful is due to their 
rating systems.  There are many types of rating systems, with ratings of people, content, 
objects, etc.  For the convenience of discussion below, we consider a generic rating 
system for an auction web site, such as eBay.  The ratings concern individual buyers and 
sellers. 

Under such a generic rating system, the collection of ratings of a given user 
represents the reputation of that member, as rated by other members in the community.  
Using this reputation measure, for example, a buyer can determine whether the seller is a 
party that could be trusted to carry out a transaction successfully.  If that were not the 
case, the buyer could use the system to look for a seller that is more trustworthy. 

One useful view of a rating system is through the lens of a social network 
(Wasserman and Faust, 1994).  A social network is a directed graph often used by 
sociologists to represent a community.  In a social network, members of a community can 
be represented by nodes, and the edges between the nodes represent the existence of 
ratings between users.  The weight associated with each edge is the current rating that is 
given by one user to another based on their past and current interactions.  The rating 
system updates these weights as the ratings change over time.  The reputation of a 
member is then calculated depending on the structure of the network as well as the 
ratings between the members.  For an example of a social network, see Figure 3.3. 

3.2 Rating Systems: Background 

In the abstract, a rating system is the intermediary that allows ratings of objects to 
propagate from one user to another.  In the commercial world, a number of rating systems 
have been built; but most of these are built in an ad-hoc fashion.  These systems usually 
assign a single reputation to each user and therefore ignore the personalized nature of 
reputation.  An individual’s reputation, as opposed to being a fixed attribute, actually 
varies depending on the tastes, preferences, opinions, and biases of other people 
interested in knowing his reputation.  We term the assignment of reputation that is not 
personalized as “global” reputation.  Dellarocas (2000) has provided warnings against 
possible attack methodologies that can be used against ratings management systems that 
employ a “global” notion of reputation.  

As an example of such commercial systems is the eBay rating system is a 
cumulative registry of user feedbacks on a given eBay member.  Each feedback is 
accompanied by either a positive (+1), neutral (0), or negative (-1) rating.  Clearly, 
human interactions are more finely grained and more sophisticated.  In fact, one can 
easily think of schemes to take advantage of the eBay reputation system, as discussed in 
the last chapter.1 

                                                 

1 Also see news article such as http://www.cnn.com/2000/TECH/computing/11/07/suing.ebay.idg/ 
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Sporas and Histos (Zacharia and Maes, 1999) allow each user in a community to 
rate one another after each transaction and modify their reputations based on these 
ratings.  Reputation of a user in Sporas is determined globally in a similar way as that in 
eBay, based on the average of all ratings given to an agent.  Histos is a personalized 
rating system with each inquirer receiving ratings about others based on who makes a 
query and the local environment surrounding the inquirer.  Unfortunately, the formulation 
of Histos is based on informal arguments about what one expects of a reasonable rating 
system. 

In recent literature, there have been many attempts to formulate a coherent set of 
rules for designing systems that manage reputation ratings.  Among these, Glass and 
Grosz (2000) have proposed a “brownie-points” system to represent how conscientious 
an agent is in a community.  Yu and Singh (2000), and Rouchier et al. (2001) have each 
suggested different formulae for calculating reputation ratings among agents.  Many of 
these existing schemes are based on the “global” notion of reputation.   

Noted exceptions are attempts that use collaborative filtering techniques.  
Collaborative filtering allows similarity between users to be estimated (Resnick, et al., 
1994; Goldberg, et al., 1992).  Weighting ratings or reputation measures with the 
similarity score calculated from collaborative filtering offers one technique for 
personalizing ratings (Lashkari, et al. 1994).  This technique stems from mathematical 
considerations of metric space and no one has yet established its equivalent in real social 
settings.  In addition, collaborative filtering techniques suffer from two related problems: 

• Slow initialization: after a collaborative filtering system is set up, similarity 
among users cannot be estimated reliably due to lack of user data.   

• Large user base requirement: to provide reasonable similarity measures, the 
number of sample points (user preferences) must be sufficiently large.  

Other systems such as Platform for Internet Content Selection (PICS) 2, Better Business 
Bureau, Weaving a Web of Trust (Khare and Rifkin, 1997), and Yenta (Foner, 1997), 
users are required to assert their own reputation rating of themselves, and either have 
authoritative agencies or other users verify their assertions. 

 

                                                 

2 http://www.w3.org/PICS/ 
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3.3 Formalizing the Rating Process 

This section first presents a formal model for the rating process.  How an agent 
update his or her belief about the trustworthiness of others can be considered a learning 
process.  An abstract learning model is proposed.  A discussion then follows on extend ing 
the rating model to indirect inferences based on ratings of members in a social network.  
The notion of a rating propagation function is introduced that forms the basis for our 
proposals for estimating trust among members in a community. 

3.3.1 The Rating Model 

To formalize the rating process, the following model is used: 
 

 

 

 

 

 

Figure 3.1  Model for the abstract rating process, where arrows indicate “ratings” by 
agents in A for objects in O. 

Agents exist in an environment of objects (O) and other agents: 

Set of agents:  A = { a1, a2, … aM } (3.1) 

Set of objects:  O = { o1, o2, … oN } (3.2) 

where objects can represent agents.  When an agent would like to rate other agents, the 
other agents belong to the set O. 

In this model, only 2 ratings by an agent are considered: an “approve” (represented 
by ‘1’) or “disapprove” (represented by ‘0’) for an object ok in the environment.  Let this 
rating process be represented by: 

Rating:  : A O {1,0}ρ × →  (3.3) 

where ikρ  represents the rating by agent a i on object ok. 
To model the process of opinion sharing between agents, the concept of an 

encounter is required.  An encounter is an event between 2 different agents (ai, aj) such 
that the query agent ai asks the response agent aj for aj’s rating of an object: 

Encounter:  2e E A O {0,1} { }∈ = × × ∪ ⊥  (3.4) 

 

 

Objects (O) 

o1 o2 o3 oN 

a1 a2 a3 aM 
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Two cases are next considered for sharing opinions among agents in A.  The first 
case below takes all objects in O to be in the same “context” (i.e., all objects in O are 
related to the same subject matter).  The second case considers multiple contexts.  
Clearly, sharing approval ratings in multiple contexts need to take into account the 
similarities and differences among the various contexts. 

3.3.1.1 Uniform Context Environment 

Consider an agent ai in the model shown in Figure 3.1 who has never interacted 
with object ok in the past.  Before taking the trouble of interacting with ok, ai asks other 
agents (A-i) in the environment what their ratings for ok are.  ai will decide to interact with 
object ok if the weighted sum of the ratings from agents in A-i is greater than a certain 
threshold thresi.  Determination of thresi is a system policy issue not discussed here. 

The weights on the ratings from other agents are determined by ai’s level of 
approval of other agents about the objects in the (uniform context) environment.  The 
higher the approval aj has in ai’s mind, the higher the weight ai gives to aj’s rating of 
object ok. 

Reputation of aj in ai’s mind can be considered as the probability that in the next 
encounter, aj’s rating about a new object in a given context will be approved by ai, each 
given independently.  The reputation probability can be represented by the mapping: 

Reputation:  : A A [0 ,1]R × →  (3.5) 

where ai’s approval of itself can be defined as 1.  No object is mapped from the domain 
side of this mapping since the mapping is about any generic object in the context of 
interest not yet encountered.  This mapping is the subject of the next section in this paper. 

The state of the system is the set of reputations: 

State:  S = R (3.6) 

The history of the system can be represented by: 

Set of Times: T {0,1,..., }t=  (3.7) 

History:  H : T S Eh and h∈ → ×  (3.8) 

3.3.1.2 Multiple Contexts Environment 

Ratings can be shared across encounters easily if the environment has a single 
context.  How should ratings be evaluated when there are multiple contexts? 

First, a context has to be defined.  A context is a set of attributes and their 
instantiated values about an environment.  Let an attribute be defined as the presense 
(‘1’) or absense (‘0’) of a trait.  The set of all attributes is possibly countably infinite, and 
is defined as follows: 

Attribute:  B : O { 0,1}b and b∈ →  (3.9) 

Set of attributes:  B = { b1, b2, … } 

A context is then an ordered list of instantiated attributes: 
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Context:  ' ' ', ,...i j kc b b b wherec C=< > ∈  (3.10) 

where each element of c is an instantiated value for the corresponding attribute.  We 
assume that there are no duplicate attributes in the list. 

In a multiple-contexts environment, any agent’s reputation is clearly context-
dependent.  The reputation mapping can now be represented by: 

Reputation:  R : A A C [0,1]× × →  (3.11) 

Therefore, for an encounter i, the binary random variable xab(i) represents a’s approval of 
b after the ith encounter between them.   

3.3.2 Multi-context Reputation 

Inference in a multi-context environment involves ontological techniques that can 
form a separate science in itself.  To avoid diverting attention from the rating process 
here, we refer interested readers to the paper by Koh and Mui (2001). 

Transference of one’s reputation from one context to the next is commonly applied 
in our everyday activity.  For example, most people can infer that an agent i’s reputation 
as a good politician is likely to mean that i is probably a good public speaker also.  
However i’s reputation as a cook cannot be inferred from i’s reputation as a politician.  
The context of being a politician is likely to share more instantiated attributes for being a 
public speaker than for being a cook.  Some of these attributes include: being confident, 
being eloquent, knowing the key issues of the day, etc.  To properly measure the level of 
transference of one’s reputation from one context to the next is outside the scope of this 
work.  For simplification, we consider the most stringent case of no reputation 
transference from one context to the next in this work.  In other words, one’s reputation 
in one context has no effect on his or her reputation in another context. 

3.3.3 Reputation Learning 

Reputation for an agent by others is learned over encounters among them.  Assume 
that reputation only changes after an actual encounter (either directly with the individual 
involved, or through reputation sharing among other agents).  After each encounter, how 
is the update of agent ai’s reputation for aj?  

The update rule for the state (S) of the system can be represented as: 

Update rule:  :S E Snewstate × →  (3.12) 

3.3.4 Indirect Inference by Rating Propagation 

We represent an online community using a social network where nodes represent 
members and directed edges represent direct pair-wise ratings.  Each social network is 
formed with respect to a specific context.  By indirect inference, we refer to the ability to 
estimate the rating that a subject would have given to another member in the community 
as if that subject has directly interacted with that member. 

In any sizeable social networks, members are unlikely to have interacted with 
(rated) every other members.  Humans rely on gossip or word-of-mouth to propagate 
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their opinions about each other.  In evaluating a stranger’s trustworthiness, we weight 
those of our friends’ opinions about this stranger by how much we trust our friends and 
come to a conclusion on whether we are going to trust this stranger.  Hence, propagation 
of opinions (of which ratings is one) in human society is a very natural phenomenon. 

 

Figure 3.2.  Illustration for indirect inference of i’s rating for k  based on i’s rating on j and 
j’s rating on k . 

Let ρij(c) be the rating that member i gives to member j with respect to context c.  
Assume that ρij(c) represents all the information that i has about j.  Given ρij(c) and ρjk(c) 
where i ?  j ?  k, how i should evaluate k can be expressed as: 

 ρik(c) = f (ρij(c), ρjk(c)) (3.13) 

where f (.) represents a rating propagation function for inference across 2 edges. 
The following several sections examine 3 specific models that instantiate the above 

formalism.  In particular, we examine the following models: 

• Centrality based rating 

• Preference based rating 

• Bayesian inference based rating 

Commercial systems such as those in Amazon or eBay are essentially simple forms 
of centrality based rating systems.  Sociologists have studied these systems using social 
networks for many decades (Wasserman and Faust, 1994).  In this section, we examine 
one particularly well constructed centrality based rating system that takes into 
consideration not only the ratings themselves, but also weights these ratings of the ratings 
on the raters themselves.   

In general, centrality based rating systems are global rating systems.  We argue that 
a personalized rating system with contextualized ratings would yield better measures of 
reputation or reliability.  We construct two different personalized rating systems based on 
indirect inference.  Indirect inference refers to a rating propagation mechanism to be 
defined below.  Comparisons of these rating systems are performed in the next chapter. 

i 
j 

k  
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3.4 Centrality-based Rating 

 

Figure 3.3   A sample social network with weighted edges representing ratings given by the source node to 
the destination node. 

Ratings in the context of a social network can be represented by an adjacency 
matrix, A.  A rating by member i about member j is the matrix entry aij.  For the sample 
social network in Figure 3.3, the adjacency matrix is: 

 

1.0 0.0 0.9

0.1 1.0 0.2
0.0 0.6 1.0

A
 
 =  
  

 (3.14) 

We assume that every member agrees with his or her own judgment; therefore, the 
diagonal of the adjacency matrix is always 1.   

For sociologists, network centrality is an important concept that represents how 
well connected an actor in a social network – his or her “reputation” (Bonacich, 1987).  
Simple measures of centrality involve the indegrees and outdegrees of a given member.  
More realistic models of prestige incorporate measures in which the centralities or 
prestige of nodes in a social network are recursively related to those of the nodes to 
which they are connected (Wasserman and Faust, 1994).   Such recursive measures imply 
that being rated highly by a prestigious member should increase one’s reputation in a 
social network.  Being rated poorly by a reputed member should be more devastating 
than being so rated by a less prestigious member. 

Let us define the following quantities: 

x : the vector of reputation measures for members in a social network 

xi : the reputation measure for member i  

n  : number of members in a social network 

where the reputation vector [ ]1 2 ...
T

nx x x=x  
The reputation measure xi is a function of the reputation values of the members 

who have rated the member i.  Note that the ith column of the adjacency matrix contains 
the ratings that the other members of the social network gave to member i.   

The rating process by members in a social network for the ith member can be 
expressed as: 

 1 1 2 2' ...i i i ni nx a x a x x x= + + +  (3.15) 

i 
j 

k  

0.1 

0.6 

0.9 
0.2 
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In matrix form: 

 ' TA=x x  (3.16) 

To perform the recursive calculation referred to earlier, this equation can be solved 
for its steady state values (eigenvalue λ=1): 

 ( )TI Aλ− x = 0
 (3.17) 

This characteristic equation does not in general have a steady state solution since 
the matrix A in general does not have an eigenvalue 1. 

By the Perron-Frobenius Theorem, if the adjacency matrix can be column 
normalized to have a unity sum, the normalized matrix will have an eigenvalue of 1 
(Ross, 1995).  Such normalization does not affect the relative reputation of each member 
in the social network.  After the normalization, the largest eigenvalue of the matrix AT is 
guaranteed to be 1.  The corresponding eigenvector r is then the reputation of the 
corresponding members in the social network.  This recursive calculation yields 
reputation that would be higher if either the ratings were higher or if the members who 
give those good ratings have higher reputation themselves. 

Centrality based rating systems based on the above recursive procedure make use 
of aggregate ratings for a given context to select the most reputable members of a social 
network.  In selecting the members with the highest reputation from the eigenvector with 
eigenvalue 1, the system is choosing the members whose opinions reflect that of the 
majority of the other members in the community.  By its global nature, the same group of 
members of high reputation is recommended to all members in the social network.  

3.5 Preference-based Rating 

A preference-based rating system is a personalized rating system that takes into 
account the preferences of each member when selecting the reputable members in the 
community that he or she is most likely to approve of.  Let ρi(c) be defined as the 
probability that an individual i approves of an object that can be categorized within 
context c.  The probability that i approves of another j’s opinion for an object in the 
context c is represented by ρij(c). 

Every member in a social network has a personal preference for that context.  His 
or her preference is reflected in the way that he or she rates the other members in the 
community.  Therefore, a subject’s personal preference is inherent in the direct ratings 
that he or she gives.  These direct ratings are used to estimate the ratings that he or she 
would give to other members in the social network.  In this way, the personal preference 
is incorporated into the selection of reputable members of the social network.   

3.5.1 Binary Pair-wise Ratings 

To simplify the derivation of a rating propagation function based on preferences, 
we first consider binary ratings.  Let member i be the subject that the preference-based 
system is working for.  Let the personal preference of member i with respect to context c 
be represented by ρi(c) ∈ { 0, 1}, where 0 indicates that member i does not approve 
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context c and 1 indicates that he or she does.  Let member j be another member in the 
social network such that i ?  j.  We consider the function that indicates how i approves of 
j: 

 

1 ( ) ( )
( )

0
i j

ij

if c c
c

otherwise
ρ ρ

ρ
=

= 
  (3.18) 

In terms of the rating propagation function introduced earlier, the rating 
propagation function for 2 links can be written as: 

 

( ) ( ( ), ( ))

( ) ( ) (1 ( ))(1 ( ))
ik ij jk

ij jk ij jk

c f c c

c c c c

ρ ρ ρ

ρ ρ ρ ρ

=

= + − −  (3.19) 

To determine the propagated rating for member n that are more than 2 links away 
from member i, member i simply needs to apply the above calculation recursively along 
the path between i and n. 

3.5.2 Continuous Pair-wise Ratings 

Individual preferences are definitely not binary but occupy values along a 
spectrum.  We can model individual preference using a probability value to indicate the 
likelihood that he or she “prefers” a given object in context c.  For example, in the case of 
restaurant preference, one’s preference ρi(c) for spicy cuisine (where c=spicy cuisine) 
could vary from 0 to 1 where 0 indicates that this individual does not prefer spicy cuisine 
at all; to 0.5 where one is ambivalent about spicy cuisine; to 1.0 where one absolutely 
loves spicy cuisine.  As a probability, the range of the preference function for member i is 
then: 

 ρi(c) ∈ [0, 1] (3.20) 

Let member j ?  i be another member of the social network.  Given ρi(c), let the 
rating that member i would give to j, the rating that member i would give to member j 
with respect to context c is the probability ρij(c) that member i would approve of member 
j’s preference for c: 

 ρij(c) ∈ [0, 1] (3.21) 

Taking the spicy cuisine example from above: if member i has a preference value 
of ρi(spicy) for spicy cuisine, the probability that he would approve of any randomly 
selected restaurant is given by ρi(spicy).  Similarly, the probability that member j would 
approve of any randomly selected restaurant is given by ρj(spicy).  Logically, the 
probability that i would approve of j’s opinion on a randomly selected restaurant is the 
sum of the following 2 probabilities (assuming that their opinions are formed 
independently): 

• they both approve of that restaurant: ρi(spicy) ρj(spicy)  

• they both disapprove of that restaurant: (1-ρi(spicy)) (1- ρj(spicy)) 

Consequently, the preference rating that i would give to j can be calculated as: 
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ρij(c) = Prob (i approves of j’s preference for context c) 

 = Prob (both i and j approve of context c) +   

    Prob (both i and j disapprove of context c) 

 = ρi(c) ρj(c) + (1 - ρi(c)) (1 - ρj(c)) (3.22) 

The actual rating that i would give to j when they actually interact is only an 
estimate for ρij(c) since j does not actually reveal his preference value ρj(spicy) to i.  As a 
result, i gives j a rating based on how much he agrees with j’s approval of objects in the 
context c.  Therefore, the social network that is formed based on direct ratings among 

members would yield pair-wise rating µ ( )ij cρ , which is an estimator for the trust rating 
ρij(c) where i, j ∈ { 1, …, n } with n members total.  

3.5.3 Ratings Propagation 

Consider the simple social network depicted in Figure 3.2.  i has previously directly 
rated j; j has previously rated k.  Now, i would like to estimate ρik(c) where c is any fixed 
context such as how one enjoys “spicy cuisine”.  From Equation (3.22), if i is aware of 
the value ρk(c), ρik(c) can be calculated exactly.  However, in real social settings, only 

estimates of µ ( )ij cρ , i, j ∈ { 1, …, n } are available.  As a result, we have to develop a 

rating propagation mechanism to estimate ρik(c) from µ ( )ij cρ  and µ ( )jk cρ . 
Section 3.3.4 has discussed the generic form of the rating propagation function.  In 

the case of the preference framework just presented, our goal is to derive a closed form 
for ρik(c) given what are known to i through j.  The following theorem is proved in 
Appendix A: 
 
Theorem (Preference based Rating Propagation Function).  With a social network setup 
in Figure 3.1, the rating propagation func tion ρik when i and k are 2 nodes separated by a 
third node j is: 

 

(2 1)(2 ) (1 )(2 1)
0.5

2 1

0.5 0.5

i i jk i jk ij i ij
ij

ijik

ij

if

if

ρ ρ ρ ρ ρ ρ ρ ρ
ρ

ρρ
ρ

− − − + + − −
≠ −= 

 =

 (3.23) 

 ð 
The singular point of the propagation function at ρij = 0.5 should yield ρik=0.5 can be 
justified by interpreting 0.5 as being the least certain probability.  This least certainty is 
warranted since there is no direct and indirect information that i can get about k. 

Since true rating ρij and ρjk are dependent on the unknowns (from i’s perspective) ρj 
and ρk, these can be estimated from their estimators, as discussed earlier: 



 42 

 µ

µ µ µ µ µ µ µ µ

µ
(2 1)(2 ) (1 )(2 1)

0.5
2 1

0.5 0.5

i i jk i jk ij i ij
ij

ik ij

ij

if

if

ρ ρ ρ ρ ρ ρ ρ ρ
ρ

ρ ρ

ρ

 − − − + + − −
≠

= −
 =

 (3.24) 

where µ
iρ  can be a simple proportional measure.  For example, µ

iρ  can be estimated as 
follows: divide the total number of i’s approval by the total number of ratings that i has 
given to that context. 

When the true random variable is replaced by its estimate, equation (3.24) can yield 

a result that is not bounded by [0, 1].  Therefore, in order for µ
ikρ  to remain a probability 

value, it has to be rounded to within this range. 
To estimate the rating of members that are more than 2 links away, Equation (3.24) 

can be recursively applied along the path linking i to those members – similar to the 
method used in the binary preference rating case. 

3.6 Bayesian Estimate Rating 

Let’s assume that there are multiple encounters between member i and another 
member j with respect to a certain context c.  During each encounter, i either approves or 
disapproves of member j’s opinion on an object in the context c.  How i perceives j in the 
context c depends on the history of approvals and disapprovals.  For example, consider 
the case when c refers to “spicy cuisine”.  Every encounter between i and j involves their 
discussion on how they like a certain restaurant with reference to its spicy cuisine.  i 
would give an approval rating to j if i considers j’s opinion on a given restaurant 
“correct”; disapproval otherwise.   

In this section, we propose a rating system based on Bayesian estimation in the 
approval framework just discussed. 

3.6.1 Delegation of Approval: a Bayesian Inference 

Let xab(i) be the indicator variable for a’s approval of b after the ith encounter 
between them.  If a and b have had n encounters in the past, the proportion of number of 
approvals of b by a can be modeled with a Beta prior distribution: 

Let n  = total number of encounters between a and b in the past 

 p  = number of approvals of b by a in the past 

 θ  = true proportion of number of approvals for b by a  

 θ̂  = estimator for θ  based on all encounters between a and b 



 43 

 

1 2

1 2
1 2

1 2

1 2

1 2

1 1ˆ ˆ(1 )
( , )

ˆ( ) ( , )

( ) ( )
( , )

( ) ( )

c c

B c cp Beta c c

c c
B c c

c c

θ θθ
− −−= =

Γ Γ
=

Γ + Γ

 (3.25)  

where c1 and c2 are parameters determined by prior assumptions.  Assuming that each 
encounter’s approval probability is independent of other encounters between a and b, the 
likelihood of having p approvals and (n – p) disapprovals can be modeled as: 
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where the likelihood is derived by observing that the random variable p follows a 
binomial distribution.  Since D is the collection of all possible sets of n encounters that 
contains p approvals and (n - p) disapprovals, its likelihood given the estimator θ̂  is: 
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Since likelihood’s need not be normalized to one, the proportion is turned into an 
equality in Equation (3.26). 

Combining the prior and the likelihood, the posterior estimate for θ̂  becomes: 
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The steps of derivation for Equation (3.28) are given in Appendix B.  1st order statistical 
properties of the posterior are summarized below for the posterior estimate of θ̂ : 
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In the approval framework for reputation, reputation for b in a’s mind is a’s 
estimate of the probability that a will approve of b in the next encounter.  This estimate is 
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based on n previous encounters between them.  (Note that only a single context c* is 
considered here.)  This estimate can be calculated as follows:  

 ( ) ( )ˆ ˆ ˆ( 1) 1| ( 1) 1| , ( | )n n nab abp x n D p x n D p D dθ θ θ+ = = + =∫  (3.30)  

where n̂θ  is the estimated approval proportion based on n previous encounters.  Note that 

( )ˆ( 1) 1| ,ab np x n Dθ+ =  is the likelihood for ( 1) 1abx n + = , given the estimated parameters 

from n previous encounters.  Substituting in the (normalized) likelihood: 
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which we have formulas for (c.f. Equation (3.28)). This conditional expectation is the 
operational definition for reputation: rab. 

How is the prior belief about θ̂  estimated?  We now consider two approaches. 

3.6.2 Complete Strangers: Prior Assumptions 

If individuals a and b are complete strangers, an ignorance assumption is made. 
When these 2 strangers first meet, their estimate for each other’s reputation is uniformly 
distributed across the reputation’s domain.  i.e., 
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For the Beta prior, values of c1=1 and c2=1 yields such a uniform distribution. 

3.6.3 Known Strangers: Rating Propagation Function 

If ai and ak have never met before but ai knows aj well (i.e., ai has an opinion on 
aj’s reputation).  Also, aj knows ak well.  ai would like to estimate ak’s reputation based 
on ai ’s history of encounters with aj, and aj’s history of encounters with ak.  This setup is 
depicted in Figure 3.2. 

For agent ai, agent ak is a stranger but ak is not completely unknown to ai since ai 
knows aj who has an opinion about k.  In a future encounter between ai and ak, the 
probability that this encounter will be rated good by ai can be shown to be (ibid.): 

Let   Dij,n  = all n encounters between ai and aj. 

 Djk,m  = all m encounters between aj and ak. 

 xij(n) = indicator variable for ai’s approval of ak at encounter n 
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 (3.33)  

The interpretation of this equation is that the probability that ai would approve ak at 
encounter n + 1 is the sum of the probabilities that both ai and aj agree (about the context 
that c is in) and that both of them disagree.  

3.6.4 Inference Propagation 

The formulation in Section 3.6.1 provides a Bayesian maximum posterior estimate 
of the direct neighbor reputation.  The previous Section 3.6.3 has discussed a belief 
estimation for indirect neighbors which are one degree away from a direct neighbor.  The 
reputation of indirect neighbors which are further away can be estimated by applying 
Equation (3.33) recursively along the nodes in the path that connects any two nodes in the 
social network. This recursion has a fixed point for a finite population community: when 
all members of the communities have been rated, the recursion stops. 

There is a tricky issue skimmed over in the previous paragraph.  What should the 
reputation estimate be if there are multiple paths connecting two agents?  Loopy 
probability estimates have been found to be tricky (Pearl, 1988).  Based on experimental 
findings to be discussed in the next chapter, the maximum probability path of the direct 
neighbor is chosen for inferring the reputation of indirect neighbors.  Currently, we are 
investigating different schemes for loopy network inference (such as Murphy, et al., 
1999).  In Chapter 5, we present another approach based on graph transformation. 

3.7 Prelude to Experiments 

The next chapter describes several experiments based on the rating models 
presented here.  These experiments aim to quantitatively compare the rating algorithms 
against a control.  One important goal of these experiments is to understand whether the 
commercially popular global rating systems are robust as characteristics of the underlying 
social network change.  Two datasets are used for our experiments: one based on a set of 
simulated restaurant rating data, the other based on a set of real world data collected by a 
movie-rating web site. 

 



CHAPTER  4 

Rating Experiments 
 
 
This chapter describes a series of experiments for testing the effectiveness of 

several rating systems based on the rating process from the previous chapter.  In 
particular, we are interested to compare our two proposed (preference based and 
Bayesian estimate) personalized rating systems against existing global rating schemes 
(such as the eBay rating system).  The first set of experiments involves a custom built 
simulation environment for restaurant recommendation ratings – the Restaurant 
Sanctioning System (RSS).  The second set of experiments uses the same simulation 
engine on a real world dataset collected by MovieLens for movie ratings.1  This dataset 
consists of 100,000 ratings by 943 users on 1682 movies of 19 different genres.   

Section 4.1 describes the common experimental framework used in all experiments 
in this section.  Section 4.2 describes the details of our restaurant rating simulation 
experiments.  Section 4.3 describes the movie rating experiments.  Section 4.4 reports the 
experimental results and their implications for designing rating systems and for the 
production of trust in online communities.  Section 4.5 concludes this section and briefly 
discusses what has been learned from the rating model and experiments. 

4.1 Experimental Framework 

This section describes a system that simulates an online community of users that 
subscribe to a web-based service where they have to rate both resources and other users’ 
ratings. In our simulations, the resources are restaurants and movies, and the service 
could be a restaurant recommendation or movie rating service that recommends 
restaurants or movies based on the ratings given by users of the service. 

For the sake of conciseness, the description of the experimental framework below 
will mainly use restaurants as the resource under discussion. 

4.1.1 The Simulation System 
There are 4 components to the simulation system: user specifications, resource 

specifications, simulation engine, and analysis package.  Each experiment starts with 
selecting the number of users and resources that are to be used.  The user and resource 
specifications declare experimental variables and attributes (the set B in our rating 
framework) that are relevant for each experiment.  The simulation engine would conduct 
                                                 

1 The MovieLens web site is at: http://www.movielens.umn.edu/ 
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the experiments according to the specifications.  The results of the experiments are fed 
into the analysis package.  

4.1.2 User Specification 
A user specification (US) declares the number of users to be included in an 

experiment and the attributes for each user.  In the case of restaurant rating, the attribute 
includes the home city of the user, the preference values of each user for various contexts, 
the number of restaurants and other members that he will rate per round of the 
experiment.  Each user only rates restaurants that are in his or her home city.  The 
preference values fall in the range [0, 1].  The simulation engine then generates the rating 
that the user would give to a restaurant for a given context based on the user’s preference 
values as well as the restaurant’s attributes.  The exact rating function will be discussed in 
the section on the simulation engine below. 

4.1.3 Resource Specification 
The resource specification (RS) contains information about the size of the object 

set O, as well as the attributes of the objects themselves.  In the case of restaurant rating, 
the attribute set include the city that a restaurant is in, the cuisine type, the quality of food 
in the restaurant, the ambience, etc.  In the actual simulation, a restaurant with a low 
quality score for its cuisine type (the “context”), would on average receive lower rating 
from users for that cuisine type.  Details of the rating process will be discussed below. 

4.1.4 Simulation Engine 
Given the user and resource specifications (and randomizer seed values), the 

simulation engine (SE) is a deterministic automaton that produces results that simulate 
how the users would rate the resources.  For a given resource context (e.g., Japanese 
restaurants in the city of San Francisco), the simulation engine makes each user rate a 
number of resources in that context.  The set of ratings from all users then forms the 
social network as discussed in the rating process of Section 3.3. 

How does the simulation engine determine the ratings by users on resources?  
Consider the following setting: 

• c  : context c  

• xc : a user’s rating for a resource in context c 

• pc : a user’s preference for a resource in context c 

The simulation engine generates rating for users according to the following density for 
random variable Xc of which xc is an instance: 
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The binomial density is chosen due to its ease of implementation.  We could have used 
other density (such as Gaussian). 
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Since users’ ratings should also be influenced by the quality of the resource for 
specific contexts, some modification to the above density is needed.  The criteria behind 
the incorporation of resource quality are as follows: 

• If the resource quality is very low, the mean of the rating distribution Xc should 
correspondingly be very low.  For example, if the quality of the resource for the 
context c is qc = 0, the simulation engine can choose E(Xc) = 0. 

• Conversely, when the resource quality is high, we expect E(Xc) to be high.  For 
example, if the resource quality for the context c is qc = 1, the simulation engine 
can choose E(Xc) = 1. 

To satisfy these guidelines, we adopt the following variation on the mean of Xc. 
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Note that when qc = 0.5, the mean value of Xc is pc.  Such a rating distribution satisfies 
the two criteria listed above. 

For every user, the simulation engine draws a rating from Xc for every resource that 
user is to rate.  The set of all user ratings are the inputs to the analysis package. 

4.1.5 Analysis Package 
Based on the attributes of the users, the resources, the ratings of resources by users, 

the analysis package constructs a social network for every context of interest.  In other 
words, a social network is formed among individuals who happen to rate resources for 
the context of interest (such as “spicy cuisine”).  The social network is the basis for 
analyzing the effectiveness of various rating and rating propagation schemes. 

4.1.6 Error Measure for Analysis 
The error measure will be the ‘ranking error measure’, described as follows. For 

every user, the simulation run would use the propagation mechanism of the rating system 
to generate the ratings for his indirect neighbors. Using these ratings and the direct 
ratings given to his first-degree friends, a list of neighboring users is generated.  The  
inferred reputation ratings for all indirect neighbors are used to rank these neighbors.  
Next, we compare the ranked list of all users each rating system generates to the correct 
ranked list. The correct ranked list is generated by calculating the direct rating that the 
subject user would have given to all users in the network, and then ranking all these users 
using these direct ratings. The ranking error measure calculates the difference in the 
ordering of users in the two lists. It does that by first finding the sum of the absolute 
differences of each user’s ranking in the two lists. This sum is then normalized by 
dividing it by the maximum possible error for the number of users. Note that the 
maximum error occurs when the inferred ranking is exactly opposite to that of the actual 
one: 

 Max(ranking error measure) = 
2

2

1 2 ,

2 ,

n n Odd

n n Even

 − ∈


∈
 (4.3) 

where n = number of users in the community.  The ranking error measure is therefore a 
fraction given by the normalized value.  
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The ranking error measure is a modified measure based on the Wilcoxon sign test 
from statistics.  Estimators based on the Wilcoxon sign test has a range of all 0 and 
positive integers.  The ranking error measure has been normalized by (4.3) to have a 
range of [0, 1]. 

4.2 Restaurant Rating Simulation 

The simulation environment is used to simulate restaurant ratings by users.  The 
preference values of the users for given contexts are drawn from the range [0, 1].  Every 
user randomly selects a set of restaurants, and gives restaurant ratings with respect to 
specific contexts.  When user ai decides to rate user aj for the context of ambience, user ai 
will first ask for the set of restaurants that user aj has rated with respect to the context of 
ambience.  He then determines the set, Dij of restaurants that both of them have rated.  
Using Dij and aj’s ratings for restaurants in Dij, ai then determines rating rij ∈ Rij for aj.  
The rating rij that a user ai gives to another user aj confers the reputation rating that aj 
receives from ai.  rij should reflect how much ai approves of aj’s ratings of restaurants in 
the set Dij.  In personalized rating systems, we expect rij to depend on the number of 
restaurants that ai and aj share in common as well as their opinions of these shared 
restaurants.   

4.2.1 Level of Approval 
How is the level of approval determined given a set of restaurant ratings by aj on 

the set of restaurants Dij?  Since the ratings range from [0, 1], there is no straightforward 
way to determine such agreement.  We present two heuristic algorithms here. 

4.2.1.1 Threshold Algorithm 
The Threshold Algorithm essentially turns real value ratings into binary ratings.  It 

makes an arbitrary boundary (midpoint in the range) that separates one binary value from 
another.  The complete threshold algorithm is shown below: 

Threshold Algorithm 

Given: ratings ρi(rk) ∈ [0, 1] and ρj(rk) ∈ [0, 1] that agent i and j have respectively 
given to restaurant rk ∈ Dij 

Let p = 0 and n = size of Dij. 

For rk in Dij 

 if ((ρi(rk) = 0.5 ∧  ρj(rk) = 0.5) ∨  (ρi(rk) < 0.5 ∧  ρj(rk) < 0.5)) 

  p = p + 1 

rij = p/n 

For example, if user A and user B both give a restaurant good rating (ρ(rk) = 0.5), the 
Threshold Algorithm considers user A approves of B’s rating. Consequently, p in the 
algorithm will be incremented by 1.  
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4.2.1.2 Agreement Likelihood Algorithm 
We can also assess the level of approval that an agent i has for another j’s ratings as 

the probability that the i would approve of j’s ratings with respect to a given context.  If 
ρi(rk) represents the probability that i likes the restaurant rk, and ρj(rk) represents the 
probability that j likes the restaurant rk.  The probability that they both like rk is given by  
ρi(rk) ρj(rk) assuming that they each arrive at their assessment independently.  Similarly, 
the probability that they both dislike rk is given by (1 – ρi(rk)) ( 1 – ρj(rk)).  Therefore, the 
probability that i would approve of j is the sum of these two products.  Finally, the rating 
that i has for j would be the proportion of restaurants in Dij that i would approve of j’s 
ratings. 

Agreement Likelihood Algorithm 

Given: ratings ρi(rk) ∈ [0, 1] and ρj(rk) ∈ [0, 1] that agent i and j have respectively 
given to restaurant rk ∈ Dij 

Let p = 0 and n = size of Dij. 

For rk in Dij 

 p = p + ρi(rk) ρj(rk) + (1 – ρi(rk)) (1 –  ρj(rk)) 

rij = p/n 

 

4.2.2 Rating Propagation Algorithms 
Either of the two algorithms above can provide user-to-user direct ratings between 

any pair of users.  In most social scenarios, it is unlikely that every encounters would 
involve interactions between previous ly rated agents.  Therefore, some form of rating 
propagation is necessary to spread ratings across a social network of agents.  In the 
example in Figure 3.2 where edges refer to the existence of direct ratings, for one to infer 
how i might rate k, one would have to estimate rij based on rij and rjk. 

The user-to-user direct ratings are used to construct a social network for the context 
c being considered.  This social network is used for propagation of ratings.  4 rating 
propagation schemes are experimentally tested.  In the description of these schemes 
below, note that first degree direct neighbors of a user i refer to all those that i has 
directly rated; second degree indirect neighbors are those that are two rating links away.  
Indirect neighbors refers to all neighbors that are at least second degree and above.  These 
4 schemes are:  

1. Control rating : As a control, indirect neighbors are randomly ranked. Note that when 
the number of first degree direct neighbors equals the total number of users – 1, 
ranking error (c.f., Section 4.1.6) should be 0 since there are no second degree indirect 
neighbors in this case. 

2. Global rating : The most reputed individual is computed using the centrality measure 
based on eigenvector method discussed in Section 3.4.  To simulate a reliance on a 
“global” reputation measure, every user uses the ranking of this reputed individual as 



 51 

the ranking of their indirect neighbors.  This global rating scheme is similar in nature 
to those used in many commercial communities such as eBay. 

3. Preference-based rating : The Preference based Rating Propagation Function from 
Section 3.5 is used recursively across the nodes in the path between all rating agents to 
infer all indirect ratings:   

 µ
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where µ
iρ  and µ

iρ  are agent i and j’s estimated preference values for a given context.  
µ

ijρ  and µ
jkρ  are the direct ratings between agents i and j, and j and k respectively.  For 

individual preference estimation, µ
iρ  is calculated as the average of all the restaurant 

ratings that user i has given to restaurants in a given context. 

4. Bayesian estimate rating : Each user infers the reputation of second degree indirect 
neighbors by the Bayesian method discussed in Chapter 3.  The rating propagation 
scheme here is given by:  

 ρik(c) =  ρij ρjk + (1 – ρij) (1 – ρjk) (4.5) 

4.2.3 Multiple Paths and Loops 
A general social network is bound to have loops in the underlying undirected graph. 

For the personalized rating algorithms being studied, each path connecting 2 nodes is 
likely to produce different ratings.  Consider the following undirected graph underlying a 
social network: 

 
Figure 4.1.  Shown here is the underlying undirected graph of a social network. 

Multiple paths exist between node i and node h.  In general, dealing with “loopy 
networks” involve one of 3 techniques (Pearl, 1988): (1) clustering : collapsing multiple 
nodes into a compound node,  (2) cutset conditioning : changing the connectivity of a 
network and render it singly connected by instantiating a selected group of variables, and 
(3) stochastic methods : use sampling techniques and computational cycles to average 
over many samples of indirect inference ignoring the existence of multiple paths.  
Murphy, et al. (1999) have demonstrated that by ignoring multiple paths and dependency 
among variables, stochastic methods can approximate the true solution surprisingly well. 
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We simulated 3 different strategies for indirect inference: 

• Average strategy: if there are m different paths between node i and j, this strategy 
determines i’s inference for j as the simple average across the m paths.  

• Weighted strategy: for the m different inferences, each is weighed by i’s rating for 
the intervening node k, ρik. 

• Maximum strategy: for the m different paths between node i and j, pick the indirect 
inference from the intervening node k such that ρik = ρik’ for all k, k’ ∈ { i’s direct 
neighbors lying in the m paths connecting i and j } and k ?  k’. 

 
In all 3 strategies, if the number of paths between two nodes becomes 1, the calculation 
degenerates to the 1 indirect inference between i and j, as expected. 
 

4.3 Movie Rating Experiments 

A set of experiments similar to those described in the restaurant case in the 
previous section are performed on the MovieLens data set 2.  This dataset consists of 
100,000 ratings by 943 users on 1682 movies of 19 different genres. The data were 
collected through the MovieLens web site (movielens.umn.edu) during the seven-month 
period from September 19th, 1997 through April 22nd, 1998.   

Each experiment assigns each user a set of direct neighbors.  The task is to estimate 
the ranking of indirect neighbors in terms of reputation to the user concerned – similar to 
the restaurant simulation in the last section.  The ranking error measure described earlier 
is also used.  Referring to the rating model in Section 3.3.1, the set of agents A that we 
have is the set of 943 users in the GroupLens dataset.  The set of objects O is the set of 
movies being rated by these users.  The set of ratings by members of A on members of O 
are normalized so that each rating value falls in the interval [0, 1]. 

                                                 
2 MovieLens. http://movielens.umn.edu/ 
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4.4 Experimental Results 

4 sets of experiments are performed.  The first 3 sets aim to evaluate the 
effectiveness of the rating propagation algorithms discussed in Section 4.2.2.  We are 
particularly interested in comparing how well different personalized rating systems do 
compare to the commercially prevalent global rating system.  Our hypothesis is that tastes 
can vary substantially from individual to individual in the real world;  such taste 
differences justify the need to personalized ratings for every user.  We expect 
personalized rating systems to be more effective (lower ranking error measure) than a 
global one.  Through the experiments in this section, we would like to test this hypothesis 
under varying social network conditions. 

The last set of experiments aims to evaluate the 3 strategies for dealing with 
multiple paths connecting two indirect neighbors. 

4.4.1 Rating Propagation: Network Density Variation 
The first set of experiments deal with evaluating the 4 rating propagation systems 

in ranking neighboring users as the density of the network varies.  Density refers to the 
number of other users that each user rates – each rating adds an edge to the social 
network.  The simulation engine creates an environment with 300 restaurants and each 
user is given 100 restaurants to rate – controlling for the statistical significance of 
restaurant preference values for each user.   

We first use the Threshold Algorithm from 4.2.1.1 to determine direct user to user 
rating.  Figure 4.2 shows the ranking error measure (c.f., Section 4.1.6) for the 4 rating 
propagation algorithms as a function of neighborhood size.  Note that as the 
neighborhood size increases, the network density increases; the converse is true when the 
neighborhood size decreases.  Let k be the neighborhood size.  For each k, 10 simulation 
runs are executed for each rating propagation algorithm and the average error measure for 
the algorithm is calculated and plotted as shown.  The total number of users is 40 and k is 
varied from 1 to 39.  Also shown in Figure 4.2 is the “Control” rating propagation 
algorithm.  Ratings under “Control” are calculated for each user i by randomly inserting 
i’s second-degree friends into a ranked list of i’s first-degree friends.  This control acts as 
the baseline against which we can compare the other rating propagation schemes.  As 
long as a propagation scheme can rank the second-degree neighbors better than the 
“Control”, we expect the scheme to be better than chance. 
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Ranking error as a function of network density 
(Threshold algorithm)
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Figure 4.2. Shown is the restaurant simulation result with ranking error as a function of 

neighborhood size for the 4 rating propagation algorithms studied.  The direct rating 
algorithm used is the threshold algorithm.  Network density refers to number of 
edges over number of user nodes in a social network 

  
Note that when the neighborhood size reaches (n-1) where n = size of a social 

network, we expect the personalized rating propagation schemes to have 2nd degree 
neighbor ranking error measure = 0, as shown in Figure 4.2.  The plots in Figure 4.2 
indicate that the Bayesian estimate propagation scheme seems to achieve the least 
ranking error measure among the schemes studied.   

When the number of direct neighbors is 0, clearly, no algorithm can perform better 
than random guessing.  However, as each user gets to know the true reputation of 
additional direct neighbors for a specific context of rating, more information leads to 
decreased ranking error.  The Centrality-based scheme consistently performs worst 
among all schemes examined, including the Control.  What is interesting is that by 
trusting the most reputed individual for ranking users, each user does worse than by 
relying on his or her own judgment on the direct neighbors while random guessing on 
indirect neighbors.  This should be no surprise since our reputation measure concerns 
degree of approvals between two agents for a specific context.  This problem is especially 
noticeable for dense networks where information about one’s neighbors is easily 
noticeable. 

In the next experiment, we use the Agreement Likelihood Algorithm from Section 
4.2.1.2 to determine direct user to user rating.  Figure 4.3 plots the ranking error measure 
(c.f., Section 4.1.6) for the 4 rating propagation algorithms as a function of neighborhood 
size.  Note that as the neighborhood size increases, the network density increases; the 
converse is true when the neighborhood size decreases.  Let k be the neighborhood size.  
For each k, 10 simulation runs are executed for each rating propagation algorithm and the 
average error measure for the algorithm is calculated and plotted as shown.  The total 
number of users is 40 and k is varied from 1 to 39.  Much similarity exists between 
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Figure 4.2 and Figure 4.3.  The centrality-based scheme continues to perform poorly 
compare to the other propagation schemes.  As the network density increases, both the 
Bayesian and the Preference based propagation schemes perform significantly better than 
the control.  But in this Agreement Likelihood direct rating calculation, a Preference-
based propagation scheme outperforms the Bayesian scheme.  The relative performance 
of the preference-based versus the Bayesian schemes is discussed in Section 4.5. 

Ranking error as a function of network density 
(Agreement Likelihood algorithm)
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Figure 4.3  Shown is the restaurant simulation result with ranking error as a function of 

neighborhood size for the 4 rating propagation algorithms studied.  The direct rating 
algorithm used is the Agreement Likelihood algorithm.  Network density refers to 
number of edges over number of user nodes in a social network  

 
Using the MovieLens movie rating dataset, each of the rating propagation 

algorithms is evaluated against these real world data.  In Figure 4.4 and Figure 4.5, the x-
axis indicates the number of direct neighbors (ndr) each user has.  As each user gets to 
know the true reputation of additional direct neighbors for a specific context of rating, 
more information again leads to decreased ranking error.  Except for small neighborhood 
size, the global reputation measure again leads to the most error while the Bayesian 
contextualized reputation algorithm leads to the least error of the three.  The shapes of the 
ranking error curve are to first approximation the same as those derived from the 
restaurant simulations in Figure 4.3.  Note that two different contexts are considered in 
the experiments shown in Figure 4.4 and Figure 4.5.  In Figure 4.4, the context is for all 
movies in the ‘Drama’ genre.  In Figure 4.5, the context is for all movies in the 
‘Romance’ genre. 
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Ranking Error as a Function of Neighborhood Size (Total 50 Users)
(Preference genre = DRAMA)
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Figure 4.4.  Shown are the MovieLens experimental results for the context ‘Genre 

Drama’ with ranking error as a function of neighborhood size for the 4 rating 
propagation algorithms studied.  The direct rating algorithm used is the Agreement 
Likelihood algorithm. 

 
Qualitatively, the two experiments in Figure 4.4 and Figure 4.5 have very similar 

results.  In both cases, the Centrality-based scheme consistently performs worst among all 
schemes examined, including the Control.  As the network density increases, both the 
Bayesian and the Preference based propagation schemes perform significantly better than 
the control.  Just as the restaurant simulation results using Agreement Likelihood direct 
rating calculation in Figure 4.3, a Preference-based propagation scheme outperforms the 
Bayesian scheme. 
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Ranking Error as a Function of Neighborhood Size (Total 50 Users)
(Preference genre = ROMANCE)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 10 15 20 25 30 35 40 45 49
Neighborhood Size

R
an

ki
n

g
 E

rr
o

r 
(f

ra
ct

io
n

 o
f 

m
ax

im
u

m
)

Bayesian Preference Control Global

 
Figure 4.5.  Shown are the MovieLens experimental results for the context ‘Genre 

Romance’ with ranking error as a function of neighborhood size for the 4 rating 
propagation algorithms studied.  The direct rating algorithm used is the Agreement 
Likelihood algorithm. 

4.4.2 Rating Propagation: Network Size Variation 
A set of simulations is performed with varying number of users in a social network.  

The main goal of this set of experiments is to test the scalability of the 4 rating 
propagation schemes.  In other words, we would like to know if the performance 
observed in the first set of experiments in Section 4.4.1 can be maintained as the number 
of nodes in a social network increases.   

A total of 300 restaurants are defined for these experiments.  Each user 
specification mandates each user to rate 100 restaurants (randomly chosen) so as to get 
fairly dense social networks.  Network size is varied from 20 to 130.  For each network 
size, 10 simulations runs are executed for each of the 4 rating propagation schemes.  The 
line denoted “Control”, as in the previous set of experiments, is the ranking error 
generated by the control rating propagation scheme. 

Plotted in Figure 4.6 and Figure 4.7 are the ranking error curves when half of nodes 
in a social network are direct neighbors.  Figure 4.6 shows the results using the Threshold 
direct neighbor rating algorithm and Figure 4.7 shows the results using the Agreement 
Likelihood direct neighbor rating algorithm.  The results in these two figures do not seem 
to vary greatly as the network size varies from 20 to 130.   
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Plot of error measure against network size 
(Threshold algorithm)
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Figure 4.6.  Ranking error curves for the simulated restaurant rating experiments when half of 

nodes in a social network are direct neighbors.  The direct rating algorithm used is the 
Threshold algorithm. 

The consistency of the ranking error measures suggests that the rating propagation 
schemes tested here are scalable in the range of 20 to 130 nodes in the social network.  
The Bayesian estimate and Preference-based rating propagation schemes perform several 
times better than the control system across node size in this range.   

  An important difference highlighted by Figure 4.6 and Figure 4.7 is that 
depending on the direct neighbor rating algorithm used, either the Bayesian estimate 
rating propagation scheme or the Preference-based rating propagation scheme achieves 
the least ranking error measures consistently across the network size varying from 20 to 
130 nodes. 
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Plot of error measure against network size 
(Agreement Likelihood algorithm)
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Figure 4.7.  Ranking error curves for the simulated restaurant rating experiments when half of 

nodes in a social network are direct neighbors.  The direct rating algorithm used is the 
Agreement Likelihood algorithm. 

Performing the same scalability experiments on the MovieLens dataset, the results 
are shown in Figure 4.8.  Just as in the case of the simulation experiments displayed in 
Figure 4.6 and Figure 4.7, the network size is varied while the number of direct neighbors 
is kept at 50%.  The performance of the Preference-based and the Bayesian estimate 
rating propagation schemes seems to be consistent with what are observed in the 
restaurant simulations just discussed in Figure 4.6 and Figure 4.7: these personalized 
rating schemes significantly outperform both the control and Centrality-based global 
rating propagation system. 
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Ranking Error as a Function of Network Size 
(number of direct ratings = 0.5 number of raters)
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Figure 4.8.  Ranking error curves for the MovieLens dataset experiments when half of nodes in a 

social network are direct neighbors.  The direct rating algorithm used is the Agreement 
Likelihood algorithm. 

4.4.3 Rating Propagation: Sampling Size Variation 
For all experiments studied so far, the number of direct neighbors for every node in 

the social network is assumed to be uniform.  We would like to know how reliable are the 
observations made so far when this assumption is removed.  In other words, we are 
varying the accuracy of the direct neighbor ratings.  The accuracy of the direct neighbor 
ratings depends on the number of restaurants rated by each user.  As the number of 
restaurants rated by each user is decreased, the number of restaurants commonly rated by 
any two randomly chosen users decreases correspondingly.  In turn, the accuracy of the 
rating that a user would give to another should also decrease.  This set of experiments is 
crucial in understanding scenarios such as when a social network is being formed.   

For the results shown in Figure 4.9 and Figure 4.10, 40 users are defined, with the 
number of direct neighbor ratings 20 per user.   Each user rates between 5% to 50% of a 
total of 300 restaurants defined for the experiments.  As in the previous cases, the line 
denoting “Control” is generated by a random process of inserting second degree 
neighbors into ranked first degree neighbors.   

Figure 4.9 shows the results using the Threshold direct neighbor rating algorithm as 
we change the proportion of restaurants rated by each user.  The ranking error for the 
Centralized-based global rating scheme remains constant through changes in the number 
of restaurants rated by users.  The ranking errors from the other rating propagation 
schemes start off at a high value and drop as the number of rated restaurants per user 
increases.  However, the marginal increase in the performance of the rating propagation 
schemes decreases with the increase in the accuracy of the direct neighbor ratings.  
Overall, the Bayesian estimate rating propagation scheme has the best performance in 
terms of the minimum amount of ranking error, followed by the Preference-based rating 
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propagation scheme.  Consistently, the Centrality-based rating scheme has the worst 
performance compare to the other schemes studied, including the control. 

Plot of error measure against proportion of restaurants rated 
(Threshold algorithm)
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Figure 4.9.  Ranking error measure as a function of the proportion of all restaurants rated.  The 

direct neighbor rating algorithm used is the Threshold Algorithm. 
 
Figure 4.10 shows the results using the Agreement Likelihood direct neighbor 

rating algorithm as we change the proportion of restaurants rated by each user.  The 
ranking error generated by the Centrality-based rating scheme is again the worst among 
those examined.  All the personalized rating propagation schemes start off with relatively 
high ranking errors.  In contrast to results based on the Threshold direct neighbor rating 
algorithm, the Preference-based rating propagation scheme does slightly better than the 
Bayesian estimate propagation scheme in terms of smaller ranking errors across all 
proportions of restaurants rated by each user.  Again, the relative performance of the 
preference-based versus the Bayesian schemes is discussed in Section 4.5. 
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Plot of error measure against proportion of restaurants rated 
(Agreement Likelihood Method)
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Figure 4.10.  Ranking error measure as a function of the proportion of all restaurants rated.  The 

direct neighbor rating algorithm used is the Agreement Likelihood Algorithm. 

With the MovieLens dataset, the next experiment varies the network size but keeps 
the number of direct neighbors fixed at 25 individuals.  As the number of individuals in a 
community increases, one expects the error in reputation ranking of indirect neighbors to 
increase, as is the case shown by the MovieLens results in Figure 4.11.  When the 
number of individuals is below 400, Preference-based rating propagation achieves the 
least ranking error.  However, as the number of individuals increases above that, the  
Centrality-based global reputation inference seems to have an advantage.  This small 
observation has implications on the relationship between the importance of opinion 
leaders and network size and warrants future research.   
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Ranking Error as a Function of Network Size 
(number of direct ratings = 25 raters)
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Figure 4.11. The left figure shows movie raters reputation ranking error as a function of network 

sizes and fixed number of direct neighbors (25) 

4.4.4 Multiple Paths 
We would like to examine different strategies for combining evidence from 

multiple paths connecting two second-degree indirect neighbors.  In calculating the rating 
that one user would give to another that is two or more links away, we have to deal with 
cases where more than one path connects the pairs of users.  In general, we expect 
different paths to produce different ratings using the rating propagation schemes 
discussed so far.  Therefore, we must devise strategies to combine the ratings derived 
from these multiple paths in a meaningful manner.   

In this set of experiments, we use the 3 strategies discussed in Section 4.2.3.  For 
the following discussions, consider the following stylized version of multiple 2nd degree 
neighbors as shown in Figure 4.12. 

 
 

 
Figure 4.12.  Stylized social network to illustrate multiple paths connecting two 

2nd degree neighbors. 
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For the averaging strategy, the rating rik that agent i has for k in the social network 
as shown in Figure 4.12 is calculated as: 

 ,
1

1
( )

n

ik averaging ik h
h

r r vianode j
n =

= ∑  (4.6) 

For the weighted averaging scheme, rik is calculated as follows:  

 ,
1 1

( ) /
h h

n n

ik weighted ij ik h ij
h h

r r r vianode j r
= =

= ∑ ∑  (4.7) 

For the maximum rating scheme, rik is calculated as follows: 

 , max{ ( )}ik maximum ik hh
r r vianode j=  (4.8) 

In the previous simulations, a 2nd degree neighbor’s rating is determined using the 
maximum rating scheme.  The following set of experiments attempt to compare the 
results across all 3 aggregation schemes.   

4.4.4.1 Multiple Paths in Movie Ratings 
We use the MovieLens dataset under the same experimental setup as in the 

experiments so far described.  Plotted in Figure 4.13 and Figure 4.14 are the simulation 
results for ranked error measures for rating second degree neighbors. 

 
 

Inference Schemes' Ranking Error as a Function of Neighborhood Size 
(Total 50 Users)

(Preference genre = DRAMA)
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Figure 4.13.  Shown is ranked error measure for the 3 schemes for combining multiple paths’ 

inference results against direct neighborhood size.  The preference-based rating propagation 
scheme is used for inferring indirect neighbor pair’s ratings; the direct neighbor rating 
algorithm used is the Agreement Likelihood Algorithm.  The “context” used is for ratings in 
the MovieLens dataset about the “genre drama”. 
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Note that in both set of experiments using the preference-based and the Bayesian 
rating propagation schemes, the weighted strategy for combining multiple paths’ 
inferences under-performs the maximum- and averaging strategies.  In the case of 
preference-based rating propagation schemes, the maximum strategy further 
differentiates itself by outperforming the other two strategies in the range of 
neighborhood size from [5, 48]. 

 
 

Inference Schemes' Ranking Error as a Function of Neighborhood Size 
(Total 50 Users)

(Bayesian Estimate Propagation)
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Figure 4.14. Shown is ranked error measure for the 3 schemes for combin ing multiple paths’ 

inference results against direct neighborhood size.  The Bayesian estimate rating propagation 
scheme is used for inferring indirect neighbor pair’s ratings; the direct neighbor rating 
algorithm used is the Agreement Likelihood Algorithm.   

To further study the 3 aggregation strategies for multiple paths, we set up the 
restaurant rating simulations as before.  Every user randomly selects a specified set of 
restaurants for ratings.  In each simulation run, the ratings that users give for the 
restaurants in a given context are used to construct a social network for inferring user-to-
user ratings.  Direct ratings use either the Threshold algorithm or the Agreement 
Likelihood algorithm (c.f., Section 4.2.1).  The 3 multiple paths aggregation strategies are 
simulated for both the Bayesian estimate and Preference-based rating propagation 
schemes. 

For this set of restaurant simulations, we use a slightly different error measure 
(“difference error”) to highlight the purpose of comparing the 3 aggregation schemes.  
For every agent i in the social network, the simulation run would use a rating propagation 
scheme to generate the estimated ratings for all i’s second degree neighbors.  The 
simulation then calculates the direct ratings that i would give to all his second-degree 
neighbors using either the Threshold algorithm or the Agreement Likelihood algorithm.  
The error measure (difference error) we use to compare across the different aggregation 
strategies is defined to be the average difference between each pair of direct rating and 



 66 

estimated rating.  Therefore, we expect this difference error measure to be in the range [0, 
1].  A difference error of 1 indicates that the estimated rating completely differs from the 
direct ratings whereas a difference error of 0 means that they are identical. 

Difference error of Bayesian estimate propagation vs. network 
density (Threshold algorithm)
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Figure 4.15. Difference error versus network density for the 3 multiple-paths inference strategies 

using Bayesian estimate rating propagation. The direct user-to-user rating algorithm used is 
the Threshold algorithm.  Network density refers to number of edges over number of user 
nodes in a social network  

 

4.4.4.2 Restaurant Bayesian Estimate Propagation: Multiple Paths 
Shown in Figure 4.15 are the first set of simulation results for restaurant ratings 

using simulated users and their rating values.  In this and the subsequent experiments, 40 
users are simulated; the number of other users that each user rates is within the range [2, 
39].   

For this experiment, we created a simulation with 300 restaurants, where each user 
rates 100 restaurants.  Figure 4.15 shows the performance of each multiple path inference 
strategy as the network density varies – where network density refers to the number of 
edges over the number of user nodes in a social network.  Figure 4.15 shows that the 
performances of the 3 different aggregation strategies generally increase as network 
density increases – i.e., the difference error decreases.  In the case of the simulations in 
Figure 4.15, the best performing aggregation strategy is the maximum weight strategy 
(c.f., Equation 4.8).  This observation is especially true as the network density increases.  
The maximum weight strategy seems to be able to make use of the increased number of 
paths between pairs of users to produce the most accurate estimated ratings among the 3 
strategies studied.   

The same Bayesian estimate propagation scheme is applied for the 3 multiple paths 
aggregation strategies using the Agreement Likelihood direct user-to-user rating 
algorithm.  Recall that for every network density value, 10 simulations runs are executed 
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for each strategy and an average error measure for the strategy is calculated and plotted.  
The results of this experiment are shown in Figure 4.16.  When the network density is 
low, the error measure is high for all the strategies because there are very few paths 
linking any two pairs of users together.  This limited number of paths did not allow any 
of the multiple-paths inference strategies to calculate accurate estimated ratings. 

Difference error of Bayesian estimate propagation vs. network 
density (Agreement Likelihood algorithm)
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Figure 4.16.  Difference error versus network density for the 3 multiple -paths inference strategies 

using Bayesian estimate rating propagation. The direct user-to-user rating algorithm used is 
the Agreement Likelihood algorithm. Network density refers to number of edges over number 
of user nodes in a social network  

 
By using the Agreement Likelihood algorithm for direct user-to-user rating, Figure 

4.16 further exhibits the performance of the maximum weighting multiple paths inference 
algorithm versus the other two being examined.  When the network is sparse, the error 
measure used in this experiment is high; for the maximum weighting strategy, its error 
measures are about at the level for the other 2 strategies.  However, when the network 
density increases, the maximum weight strategy is able to make use of the increased 
number of paths between pairs of users to produce the most accurate estimated ratings 
among the 3 strategies studied. 

4.4.4.3 Restaurant Preference-based Propagation: Multiple Paths 
The same experimental setup as the Bayesian estimate propagation scheme is 

applied with the preference-based propagation scheme. Recall that for every network 
density value, 10 simulation runs are executed for each strategy and an average error 
measure for the strategy is calculated and plotted.  The results of this experiment are 
shown in Figure 4.17.  Unlike the Bayesian estimate propagation schemes, the difference 
error does not diminish as much when the network density increases. Overall, the 
weighted average strategy for inferring rating across multiple paths is still performing not 
as well as the other two strategies. 
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Difference error of Preference-based rating system vs. network 
density (Threshold algorithm)
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Figure 4.17. Difference error versus network density for the 3 multiple-paths inference strategies 

using Preference-based rating propagation. The direct user-to-user rating algorithm used is 
the Threshold algorithm. Network density refers to number of edges over number of user 
nodes in a social network  

 
Shown in Figure 4.18 are results from a Preference-based rating propagation 

experiment with the simulated restaurant rating experiment.  The direct user-to-user 
rating algorithm used is the Agreement Likelihood algorithm. Compared to the Threshold 
direct rating algorithm, the Agreement Likelihood algorithm generates lower difference 
errors for all values of direct neighborhood size in the range [2, 39].. 
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Difference error of Preference-based rating system vs. network 
density (Agreement Likelihood algorithm)
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Figure 4.18.  Difference error versus network density for the 3 multiple -paths inference strategies 

using the Preference-based rating propagation. The direct user-to-user rating algorithm used 
is the Agreement Likelihood algorithm. Network density refers to number of edges over 
number of user nodes in a social network  

 
Overall, the performances of the 3 aggregation strategies for multiple paths are 

similar through this last set of multi-paths experiments.  The error measure (difference 
error) for each one of them decreases as the network density increases until each user 
rates about half of the total number of users in the network.  Beyond that, the error 
stabilizes at a steady value.  The maximum weighting strategy for rating inference across 
multiple paths consistently performs at or above the performance of the other (averaging 
and weighted averaging) strategies examined. 
 

4.5 Conclusion and Discussions 

For distributed systems at large and e-commerce systems in particular, ratings play 
an increasingly important role.  Ratings confer resource reliability or reputation of 
sources.  The previous and this chapter have reported our formalization of the rating 
process and a set of experiments testing various aspects of the rating process.  We have 
argued that since ratings and reputations are clearly subjective quantities, models about 
them should explicitly model their contextualized and personalized nature.   

Our experimental framework makes use of a social network based on the rating 
patterns of a community of users.  Each social network is constructed using user ratings 
for a given context.  In our simulations, our personalized rating schemes perform about as 
well as that of the global reputation scheme when the network density of a social network 
is low.  (Recall that network density refers to the ratio of number of edges  over number 
of nodes).  As the network density increases, personalized rating systems based on our 
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Bayesian estimate or Preference-based rating propagation schemes can significantly 
outperform a global rating scheme.  Increase in the network density translates to increase 
in the amount of information about users in the social network.  This observation 
suggests that personalized rating schemes are not always better than global rating 
schemes; their advantages are only realized when there are sufficient ratings in the 
community.  In our experimental settings, the level of “sufficiency” has been tested and 
reported earlier in this chapter. 

In comparing the Bayesian estimate and the Preference-based rating propagation 
schemes, our results show that in cases where the rating of resources is binary such as in 
the Threshold algorithm, the Bayesian estimate scheme performs better than the 
Preference-based scheme.  This observation can be explained by noting that the Bayesian 
estimate scheme is modeled after binary ratings (c.f., Section 3.6).    In the case where 
ratings are values in the real numbers, as in the case of the Agreement Likelihood rating 
algorithm, the Preference-based rating system can outperform the Bayesian estimate 
scheme. 

 
Emerging computing paradigms such as web services, peer-to-peer networking, and 

pervasive computing are making available a myriad of resources to users.  Multiple 
businesses may compete in the same space by offering similar services.  Descriptions of 
businesses and their services allow the consumer to locate a business providing an 
appropriate service.  The description, however, does not fully indicate the quality or 
reliability of the services provided by the business to the consumers.  Provided careful 
designs are made to prevent attacks, personalized rating systems as proposed here could 
be used in this context to provide a reputation system for businesses and their services.   

There are several issues yet to be resolved.  Already pointed out is the multiple 
paths inference problem.  The rest will be discussed in the future works section in 
Chapter 9.  This chapter has experimented with several strategies for inference in such 
setting.  We have shown that a good strategy is to use the path that contains the most 
trusted intermediary.  Recent work by Murphy, et al (1999), Yedidia, et al. (2001) and 
others have pointed to stochastic techniques for dealing with this multiple paths (or loopy 
networks) inference problem.  Along with this issue, areas for future rating work are 
discussed in Chapter 9. 



CHAPTER 5 

            A Computational Model of 
Trust and Reputation 

 
 
Much parallel exists between the trust and reputation models in this chapter and the 

ratings work presented in Chapter 3 and 4.  This is not surprising since ratings confer 
perceptions of reliability, leading to the production (or un-production) of trust for those 
viewing the ratings.  One can argue that a sound rating system should be based on in-
depth understanding of how trust and reputation work in a society of agents.  From this 
view, this chapter is complementary to the ratings work in the previous two chapters.  In 
fact, the personalized rating systems proposed in those two chapters have been enhanced 
as a result of the models formulated here. 

Let’s review the main critiques from the trust and reputation literature reviewed so 
far: 

• Differentiation of trust and reputation is either not made or the mechanism for 
inference between them is not explicit. 

• Trust and reputation are taken to be the same across multiple contexts or are treated 
as uniform across time. 

• Despite the strong sociological foundation for the concepts of trust and reputation, 
existing computational models for them are often not grounded on understood 
social characteristics of these quantities. 

The rest of this chapter aims to construct a computational model of trust and 
reputation that addresses these points.  In Section 5.1, we first provide rationales behind 
the quantitative model proposed in this chapter for trust and reputation.  We  describe 
desirable criteria for a sociologically grounded model that addresses the inadequacies of 
existing models.  Section 5.2 explains the notations to be used.  Section 5.3 presents our 
computational model of reputation and related quantities.  Section 5.4 provides a brief 
conclusion and introduction to the experiments in the next chapter evaluating our 
proposed model and several others from the literature. 
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5.1 Model Rationales 

Contrary to game theorists’ assumptions that individuals are rational economic 
agents 1 who use backward induction to maximize private utilities (Fudenberg and Tirole, 
1996; Binmore, 1997), field studies show that individuals are at best boundedly rational 2 
(Simon, 1996) and do not use backward induction in selecting actions 3 (Rapoport, 1997; 
Hardin, 1997).  Socia l-biologists and psychologists have shown in field studies that 
human subjects can effectively learn and use heuristics 4  in decision making (Barkow, et 
al., 1992; Guth and Kliemt, 1996; Trivers, 1971).  One important heuristics that has been 
found to pervade human societies is the reciprocity norm for repeated interactions with 
the same parties (Becker, 1990; Gouldner, 1960).  In fact, people use reciprocity norms 
even in very short time-horizon interactions (McCabe, et al., 1996).  Reciprocity norms 
refer to social strategies that individuals learn which prompt them to “… react to the 
positive actions of others with positives responses and the negative actions of others with 
negative responses” (Ostrom, 1998).  From common experience, we know that the degree 
to which reciprocity is expected and used is highly variable from one individual to 
another.  Learning the degree to which reciprocity is expected can be posed as a trust 
estimation problem. 

Reciprocity in the context of evolutionary biology and game theory will be 
reviewed in detail in Chapter 7.  Here, we highlight a few important points to further the 
rationales for our trust and reputation models being proposed.  There are many 
reciprocity strategies proposed by game-theoreticians; the most well-known of which is 
the tit- for-tat strategy, which has been extensively studied in the context of the 
Prisoners’s Dilemma game (Axelrod, 1984; Pollock and Dugatkin, 1992; Nowak and 
Sigmund, 2000).  Not everyone in a society learns the same norms in all situations.  
Structural variables affect individuals’ level of confidence and willingness to reciprocate.  
In the case of cooperation, some cooperate only in contexts where they expect 
reciprocation from their interacting parties.  Others will only do so when they are 
publicly committed to an agreement.   

When facing social dilemmas 5, trustworthy individuals tend to trust others with a 
reputation for being trustworthy and shun those deemed less so (Cosmides and Tooby, 
1992).  In an environment where individuals “regularly” perform reciprocity norms, 
there is an incentive to acquire a reputation for reciprocative actions (Kreps, 1990; 
Milgrom, et al., 1990; Ostrom, 1998).  “Regularly” refers to a caveat observed by 
sociologists that reputation only serves a normative function in improving the fitness of 
those who cooperate while disciplining those who defect if the environment encourages 

                                                 
1  Rational agents refer to those able to deliberate, ad infinitum, the best choice (for maximizing their 
private utility functions) without regard to computational limitations (c.f., Fudenberg and Tirole, 1991). 
2  Bounded rationality refers to rationality up to limited computational capabilities (c.f., Simon, 1981) 
3   Backward induction here refers to a style of inference based on inducting from the last game of a 
sequence of games by maximizing a given utility at each step (this style can also be characterized as 
dynamic progra mming) (c.f. , Axelrod, 1984; Fudenberg and Tirole, 1996). 
4  A heuristic refers to “rules of thumb — that [individuals] have learned over time regarding responses that 
tend to give them good outcomes in particular kinds of situations.” (Ostrom, 1998). 
5  Social dilemma refers to a class of sociological situations where maximization of personal utilities do not 
necessarily lead to the most desirable outcome.  Tragedy of the commons (Hardin, 1968) or Prisoner’s 
dilemma (Axelrod, 1984) is the most studied social dilemma. 
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the spreading of reputation information (Castelfranchi, et al., 1998).  In the words of 
evolutionary biologists, having a good reputation increases an agent’s fitness in an 
environment where reciprocity norms are expected (Nowak and Sigmund, 1998).  
Therefore, developing the quality for being trustworthy is an asset since trust affects how 
willing other individuals are to participate in reciprocative interactions (Dasgupta, 2000; 
Tadelis, 1999). 

The following section will transform these statements into mathematical 
expressions.  The formulation below is very similar to the Bayesian estimate and 
Preference-based rating propagation schemes proposed in Chapter 3.   

The intuition behind the model given here is inspired by Ostrom’s 1998 
Presidential Speech to the American Political Society, which proposed a qualitative 
behavioral model for collective action.  Section 2.2 briefly discussed Ostrom’s work in 
the context of research on reputation across multiple fields. 

To facilitate the model description, agents and their environment are to be defined.  
Consider the scenario that agent aj is evaluating ai’s reputation for being cooperative.  
The set of all agents that aj asks for this evaluation can be considered to be a unique 
society of N agents A (where both the elements in A and its size depend on different aj’s).  
A is called an “embedded social network” with respect to aj (Granovetter, 1985): 

• Agents : A = {a1, a2, … aN} 

Clearly, ai must be part of A in order for aj to evaluate ai in a non-trivial manner. The 
reputation of an agent ai is relative to the particular embedded social network in which ai 
is being evaluated.  

It should be clear from the argument thus far that reciprocity, trust and reputation 
are highly related concepts.  The following relationships are expected: 

 
• Increase in agent ai’s reputation in aj’s embedded social network A should also 

increase the trust from aj for ai (where aj can be any agent that “knows” ai.  i.e., aj 
is in the embedded social network of ai) 

• Increase in an agent aj’s trust of ai should also increase the likelihood that aj will 
reciprocate positively to ai’s action. 

• Increase in ai’s reciprocating actions to other agents should also increase ai’s 
reputation in the embedded social network of aj. 

• Decrease in any of the three variables should lead to the reverse effects.  
Graphically, these intuitive statements create the relationships among the three 
variables of interest as shown in Figure 5.1. 
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Figure 5.1.  This simple model shows the reinforcing relationships among trust, 

reputation and reciprocity.   The direction of the arrow indicates the direction of 
influence among the variables.  The dashed line indicates a mechanism not discussed. 

5.1.1 Reciprocity 
This chapter uses the following definition for reciprocity: 

• Reciprocity: mutual exchange of deeds (such as favor or revenge) 6  

This definition is largely motivated by the many studies of reciprocity in which repeated 
games are played between two or more individuals (Raub and Weesie, 1990; Boyd and 
Richersen 1989; Nowak and Sigmund, 1998; c.f., Chapter 7).  Two types of reciprocity 
are considered: direct reciprocity refers to interchange between two concerned agents. 
Indirect reciprocity refers to actions where the initiator of an action does not obtain a 
returned action by a recipient; rather, the reaction from the recipient is fed back to the 
initiator through a third party.  For example, in an analogy for donor of good deeds, the 
donor might not necessarily be rewarded by the recipient directly but by other individuals 
who might be recipients of other good deeds by others. 

Reciprocity can be measured in two ways.  Firstly, reciprocity can be viewed as a 
social norm shared by agents in a society.  The higher this “societal reciprocity,” the 
more likely one expects a randomly selected agent from that society to engage in 
reciprocating actions.  Secondly, reciprocity can be viewed as a dyadic variable between 
two agents (say ai and aj).  The higher this “dyadic reciprocity,” the more one expects ai 
and aj to reciprocate each other’s actions.  In this latter case, no expectation about other 
agents should be conveyed.  For any single agent ai, the cumulative dyadic reciprocity 
that ai engages in with other agents in a society should have an influence on ai’s 
reputation as a reciprocating agent in that society. 

5.1.2 Reputation 
Much of the literature on reputation has been reviewed in Chapter 2.  For our work, 

we use the following definition for reputation: 

• Reputation: perception that an agent has of another’s intentions and norms 7 

Reputation is a social quantity calculated based on actions by a given agent ai and 
observations made by others in an “embedded social network” in which ai resides 
                                                 
6  Ostrom (1998) further discusses how reciprocity affects the level of cooperation which affects the overall 
net benefits in a society. 
7  Ostrom (1998) defines norm as “… heuristics that individuals adopt from a moral perspective, in that 
these are the kinds of actions they wish to follow in living their life.” 

net benefit reciprocity  trust 

reputation 
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(Granovetter, 1985).  ai’s reputation clearly affects the amount of trust that others have 
toward it.  Now, how is trust defined? 

5.1.3 Trust 
The definition for trust by Gambetta (1988) is often quoted in the literature: 

“…trust (or, symmetrically, distrust) is a particular level of the subjective probability 
with which an agent assesses that another agent or group of agents will perform a 
particular action, both before he can monitor such action (or independently of his 
capacity ever to be able to monitor it) and in a context in which it affects his own action” 
(ibid.).  We elect the term “subjective expectation” rather than “subjective probability” to 
emphasize the point that trust is a summary quantity that an agent has toward another 
based on a number of former encounters between them:   

• Trust: a subjective expectation an agent has about another’s future behavior. 

Trust is a subjective quantity calculated based on the two agents concerned in a 
present or future dyadic encounter.  Dasgupta (2000) gave a similar definition for trust: 
the expectation of one person about the actions of others that affects the first person's 
choice, when an action must be taken before the actions of others are known. 

Given the simple model of interaction in Figure 5.1, the rest of this chapter 
operationalizes this model into mathematical statements that can be implemented in a real 
world system. 

5.2 Notations  

To simplify the reasoning about the main quantities of interest (reciprocity, trust, 
and reputation), two simplifications are made here.  First, the embedded social networks 
in which agents are embedded are taken to be static.  i.e., no new agents are expected to 
join or leave.  Secondly, the action space is restricted to be: 

• Action:  α ∈ { cooperate, defect } 

In other words, only binary actions are considered.  Let 0 < γ < 1 represents the amount 
of reciprocity in the embedded social network where low γ represents low level of 
reciprocity and vice versa: 

• Reciprocity: γ ∈ [0, 1] 

γ measures the fraction of reciprocative actions that occur in a society.  In other words, 
“cooperate” actions are met with “cooperate” response; “defect” actions are met with 
“defect” responses.  How γ  is derived in our model will be discussed shortly. 

Let C be the set of all contexts of interest.  The reputation of an agent is a social 
quantity that varies with time.  Let ?ji(c) represent ai’s reputation in an embedded social 
network of concern to aj for the context c ∈ C.  In this sense, reputation for ai is 
subjective to every other agent since the embedded social network that connects ai and aj 
is different for every different aj.  Reputation is the perception that suggests an agent’s 
intentions and norms in the embedded social network that connects ai and aj.  ?ji(c) 
measures the likelihood that ai reciprocates aj’s actions, and can be reasonably 
represented by a probability measure: 
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• Reputation: ?ji(c) ∈ [0, 1] 

Low ?ji(c) values confer low intention to reciprocate and high values indicate otherwise. 
As agent ai interacts with aj, the quantity ?ji(c) as estimated by aj is updated with time as 
aj’s perception about ai changes.   

To model interactions among agents, the concept of an encounter between two 
agents is necessary.  An encounter is an event between two agents (ai,  aj) within a 
specific context such that ai performs action αi and aj performs action αj.  Let E represent 
the set of encounters.  This set is characterized by: 

• Encounter: e ∈ E = α2 × C ∪ { ⊥  } 

where {⊥} represents the set of no encounter (“bottom”).  While evaluating the 
trustworthiness of ai, any evaluating agent aj relies on its knowledge about ai garnered 
from former encounters or hearsay about ai.  Let Dji(c) represents a history of encounters 
that aj has with ai within the context c: 

• History : Dji(c) = {E*} 

where * represents the Kleene closure, and Dji might include observed encounters 
involving other agents’ encounters with ai.  Based on Dji(c), aj can calculate its trust 
toward ai, which expresses aj’s expectation of ai’s intention for reciprocation.  The above 
statement can be translated to a pseudo-mathematical expression (which is explained 
latter in the chapter): 

• Trust:  τ (c) = E [ ?(c) | D(c) ] 

The higher the trust level for agent ai, the higher the expectation that ai will reciprocate 
agent aj’s actions. 

5.3 Computational Models 

Consider two agents a and b, who care about each others’ actions with  respect to a 
specific context c.  For clarity, a single context ‘c’ is used for all variables.  We are 
interested to have an estimate for b’s reputation in the eyes of a: ?ab.  Here we assume 
that a always perform “cooperate” actions and that a is assessing b’s tendency to 
reciprocate cooperative actions.  Let a binary random variable xab(i) represent the ith 
encounter between a and b.  xab(i) takes on the value ‘1’ if b’s action is ‘cooperate’ (with 
a) and ‘0’ otherwise.  Let the set of n previous encounters between a and b be represented 
by: 8 

• History :  Dab = { xab(1), xab(2), … , xab(n) } 

Let p be the number of cooperative events by agent b toward a in the n previous 
encounters.  b’s reputation ?ab for agent a should be a function of both p and n.  A simple 
function can be the proportion of cooperative action over all n encounters.  From 
statistics, a proportion random variable can be modeled as a Beta distribution (Dudewicz 
and Mishra, 1988): ˆPr( )θ = Beta(c1, c2) where θ̂  represents an estimator for ?, and c1 and 

                                                 
8  For clarify, the discussion takes the viewpoint of “direct” encounters between a and b.  It is equally 
sensible to include observed encounters about a’s actions toward others. 
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c2 are parameters determined by prior assumptions — as discussed later in this section.  
This proportion of cooperation in n finite encounters becomes a simple estimator for ?ab: 

âb
p
n

θ =  

Assuming that each encounter’s cooperation probability is independent of other 
encounters between a and b, the likelihood of p cooperations and (n – p) defections can 
be modeled as: ˆ ˆ ˆ( | ) (1 )p n p

abL D θ θ θ −= − .  The Beta distribution turns out to be the 
conjugate prior for this likelihood (Heckerman, 1996).   Combining the prior and the 
likelihood, the posterior estimate for θ̂  becomes (the subscripts are omitted): 
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The steps of derivation for this formula are given in (Mui, et al. 2001).  First order 
statistical properties of the posterior are summarized below for the posterior estimate of 
θ̂ :  
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In their next encounter, a’s estimate of the probability that b will cooperate can be 
shown to be (ibid.):  

τab= Pr( xab(n+1) = 1 | D ) = E [ θ̂ | D ] 
Based on our model shown in Figure 5.1, trust toward b from a is this conditional 

expectation of θ̂  given D.  The following theorem provides a bound on the parameter 
estimate θ̂ . 

 
Theorem (Chernoff Bound).  Let xab(1), xab(2), … xab(m) be a sequence of m independent 
Bernoulli trials 9 , each with probability of success E(xab) = ?.  Define the following 
estimator: 

( )ˆ (1) (2) ( ) /ab ab abx x x m mθ = + + +L  

θ̂  is a random variable representing the portion of success, so ˆE[ ]θ θ= .  Then for 
0 ≤ ε ≤ 1 and 0 ≤ δ ≤ 1, the following bound hold: 

 
22mˆPr 2e εθ θ ε δ− − ≥ ≤ ≤   ?  

 
The proof is a straightforward application of the additive form of the Chernoff 

(Hoeffding) Bound for Bernoulli trials (Ross, 1995).  Note that “success” in the theorem 
refers to cooperation in our example, but to reciprocation in general.  Also note that ε 
refers to the deviation of the estimator from the actual parameter.   In this sense, ε can be 
considered as a fixed error parameter (e.g., 0.05). 

From the theorem, m represents the minimum number of encounters necessary to 
achieve the desired level of confidence and error.  This minimum bound can be 
calculated as follows: 

                                                 
9   The independent Bernoulli assumption made here for the sequence of encounters is unrealistic for 
repeated interactions between two agents.  Refinements based on removing this assumption are work in 
progress. 
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( )2
1

2 ln / 2m ε δ≥ −  

Let γc = 1–δ.  γc is a confidence measure on the estimate θ̂ .  A γc approaches 1, a 
larger m is required to achieve a given level of error bound ε.  γc can be chosen 
exogenously to indicate an agent’s level of confidence for the estimated parameters. 

In our model, reciprocity represents a measure of reciprocative actions among 
agents.  A sensible measure for “dyadic reciprocity” is the proportion of the total number 
of cooperation/cooperation and defection/defection actions over all encounters between 
two agents.  Similarly, “societal reciprocity” can be expressed as the proportion of the 
total number of cooperation/cooperation and defection/defection actions over all 
encounters in a social network.  All encounters are assumed to be dyadic; encounters 
involving more than two agents are not modeled. 

Let γab represent the measured dyadic reciprocity between agent a and b.  If γab < γc, 
calculated reputation and trust estimates fall below the exogenously determined critical 
value γc and are not reliable.  

5.3.1 Complete Stranger Prior Assumption 
If agents a and b are complete strangers — with no previous encounters and no 

mutually known friends, an ignorance assumption is made. When these two strangers first 
meet, their estimate for each other’s reputation is assumed to be uniformly distributed 
across the reputation’s domain: 

ˆ1 0 1ˆPr( )
0 otherwise

θ
θ

 < <
= 


 

For the Beta prior, values of c1=1 and c2=1 yields such a uniform distribution.   

5.3.2 Mechanisms for Inferring Reputation 
The last section has considered how reputation can be determined when two agents 

are concerned.  This section extends the analysis to arbitrary number of agents.  

5.3.2.1 Parallel Network of Acquaintances  
A schematic diagram of an embedded parallel social network for agents a and b is 

shown in Figure 5.2.10  

 
Figure 5.2.  Illustration of a parallel network between two agents a and b. 

 
 
                                                 
10  “Embedded social network” refers to the earlier discussion in Section 3. 
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Figure 5.2 shows a parallel network of k chains between two agents of interest, 
where each chain consists of at least one link.  Agent a would like to estimate agent b’s 
reputation as defined by the embedded network between them. 11  Clearly, to combine the 
parallel evidence about b, measures of “reliability” are required to weight all the evidence.   

From the last section, a threshold (m) can be set on the number of encounters 
between agents such that a reliability measure can be established as follows: 

1

ij
ij

ij

m
if m m

w m
otherwise


<

= 


 

where mij is the number of encounters between agents i and j.  The intuition behind this 
formula is as follows: arguments by Chernoff bound in the last section have established a 
formula to calculate the minimum sample size of encounters to reach a confidence (and 
error) level about the estimators.  Above a given level of sample size, the estimator is 
guaranteed to yield the specified level of confidence.  Therefore, such an estimate can be 
considered as “reliable” with respect to the confidence specification.  Any sample size 
less than the threshold m is bound to yield less reliable estimates.  As a first order 
approximation, a linear drop-off in reliability is assumed here. 

For each chain in the parallel network, how should the total weight be tallied?  Two 
possible methods are plausible: additive and multiplicative.  The problem with additive 
weight is that if the chain is “broken” by a highly unreliable link, the effect of that 
unreliability is local to the immediate agents around it.  In a long social chain however, 
an unreliability chain is certain to cast serious doubt on the reliability of any estimate 
taken from the chain as a whole.  On the other hand, a multiplicative weighting has 
“long-distance” effects in that an unreliable link affects any estimate based on a path 
crossing that link.  The form of a multiplicative estimate for chain i’s weight (wi) can be: 

1
0

i

i

l

ij
j

w w where i k
=

= ≤ ≤∏  

where li refers to the total number of edges in chain i and wij refers to the jth segment of 
the ith chain. 

Once the weights of all chains of the parallel network between the two end nodes 
are calculated, the estimate across the whole parallel network can be sensibly expressed 
as a weighted sum across all the chains: 

1
( ) i

k

ab ab
i

r r i w
=

= ∑  

where rab(i) is a’s estimate of b’reputation using path i and iw  is the normalized weight 

of path i ( iw sum over all i yields 1).  rab can be interpreted as the overall perception that 
a garnered about b using all paths connecting the two. 

  

                                                 
11  In general, embedded social networks do not form non-overlapping parallel chains and they are rather 
arbitrary (see section 5.2). 
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5.3.2.2 Generalized Network of Acquaintances  
A schematic diagram of an arbitrary social network between agents a and b is 

shown in Figure 5.3. 

 
Figure 5.3.  Illustration of a generalized network between two agents a and b. 
 
If the social network in Figure 5.3 is treated as a Bayesian network, each nodes has 

the task of combining incoming evidence and outputting some aggregation of the inputs.  
In general, this pure Bayesian approach creates a parameter space that is exponential in 
the number of nodes (Castillo, et al., 1997).  This is not computationally desirable for real 
world systems.  The most common work-around is to assume some type of causal 
independence and assume an aggregation technique known as “noisy-OR” (Pearl, 1988). 
The variables (indicating reputation for the agent being pointed at) are not independent.  
Work by Diez (1993; 1996) to generalize the noisy-OR to include multiply connected 
networks relies on assumptions about the statistics of the variables, and “strong 
assumptions of independence” (Diez, 1993). 

Due to the difficulties raised above on the use of the noisy-OR and variant 
techniques, we resort to a statistical significance approach to the graph in Figure 5.3. 

Given ε, δ, and consequently a minimum measure of reliability m, a graph 
transformation algorithm can be applied to a generalized network to reduce it to a parallel 
network (c.f., Mui and Mohtashemi, 2002): 
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Algorithm (Graph Parallelization) : 

• For every node i in the network, define I(i) as the indegree of i and O(i) as the 

outdegree of i. 

• If for all nodes other than the source and the sink I(i) = O(i) = 1, then the graph 

must be a parallel network.  Proceed as in the previous section. 

• Otherwise for each node i, with I(i), O(i) > 1, look up the number of encounters for 

each one of  its I(i) + O(i) direct links. 

• For every node i, with I(i), O(i) > 1, remove those links with reliability below a 

threshold t < m. t is application dependent and is a function of both the size of the 

network and the amount  of error the investigator is willing to tolerate.  

• For every node i that after step 4 still has I(i), O(i) > 1, form as many as I(i) × O(i) 

parallel paths each through a copy of node i.  The new graph must be a parallel 

network. 

 
Let’s apply the above algorithm to the example in Figure 5.3: 

O(2)=O(4)=O(6)=O(7)=I(7)=I(8)=I(9)=2, and O(5)=I(6)=3. Suppose further that the 
reliability of the links 6à8 and 5à7 is below the threshold t. Then the network depicted 
in Figure 3 can be transformed into the parallel network show in Figure 5.4. 

 
Figure 5.4.  Illustrated is a parallel network resulting from the application of the graph 

parallelization algorithm to the example of Figure 5.3. 
 
Once a generalized network is reduced into a parallel network, the steps in section 

5.1 can be followed for calculating reputation related quantities discussed in this chapter. 
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5.4 Discussions 

No model is perfect for social phenomena.  Our proposed models for trust and 
reputation have integrated much of what has been learned in diverse fields on these social 
quantities.  In this section, we outline a few questions that might arise as a result of the 
models presented here.  We attempt to resolve as many of these questions as we are able 
to within the realms justified by our models. 

5.4.1 The Ghandi or Christ Question 
Based on our models in this chapter, one can raise the following question: 
“Would Mahatma Ghandi (or Jesus Christ) get a lower reputation because he tends 

to err on the side of cooperation even when they ‘should’ defect?” 
The underlying concern for this question is about the mechanism for reciprocity.  

The questioner has in mind reciprocity in the form of a globally defined tit- for-tat 
strategy based on an action space with two actions. 

In the context of our models, this question is flawed. 
It relies on the assumption of a universally acknowledged action space and a 

universal understanding of the notion of reciprocity.  Our trust and reputation models are 
based on the notion of “embedded social network” (c.f. Section 5.1) where each social 
network is defined with respect to an agent evaluating the network.  To recapitulate, the 
reputation (or levels of trust or reciprocity) of an agent ai is relative to the particular 
embedded social network in which ai is being evaluated.  When being betrayed, Mahatma 
Ghandi (or Jesus Christ) still elects to cooperate.  This action is in the spirit of: “If 
someone strikes you on one cheek, turn to him the other also.”12  Turn the other cheek  is 
the proper reciprocity to those who subscribe to Ghandi or Christ’s teachings.  

In addition to how actions can be perceived differently, the actions themselves can 
also be viewed as being relative with respect to the agent exercising them.  A similar 
argument follows.  If cooperation among mankind is what they are striving after, Ghandi 
or Christ might very well consider “turn the other cheek” type of actions to be promoting 
the right kind of reciprocity, as opposed to the earthly kind.   

5.4.2 The Einstein Problem 
From the above discussion, one might infer that our trust and reputation models are 

based on the approval of one toward another about a specific context.  One can raise 
another objection: most people would consider Einstein as a very reputed physicist but 
most would not be in the position to “approve” Einstein on his General Theory of 
Relativity.   

The concept of delegation helps in alleviating this conceptual difficulty.  Most 
people know someone who knows someone who knows others who are physicists.  These 
physicists seem all to approve Einstein on his works.  Those who know these physicists 
agree that these physicists are physicists and they therefore delegate the reputation 
evaluation for Einstein as a physicist to them.  By delegation, the non-physicists approve 
of Einstein. 

                                                 
12 From the Gospel of Luke 6:29. 
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Consider the following scenario: a is not a physicist but knows a friend b who is a 
physicist.  a does not know any other individual personally and does not trust any other 
people nor media.  Figure 2 captures this situation: 

 
Figure 5.5.  This graph illustrates approval delegation.  b (a physicist) approves of 

Einstein as a physicist.  This social network shows that b knows of another 2 
physicists p and q.  (Arrows indicates whether one knows about another’s existence: 
through previous encounters or ratings.)  If a approves of b and b approves of Einstein, 
then a should approves of Einstein even though a does not have any direct knowledge 
of Einstein. 

 
Referring to Figure 2, for every encounter between a and b about physics, since a 

does not know anyone else who is a physicist, a always defer to b’s physics knowledge 
— b has a high reputation in physics in a’s mind.  b approves of Einstein as a physicist.  
Therefore, a agrees with b (whom a approves of about physics) that Einstein is a reputed 
physicist. 

Approval delegation can be propagated for arbitrary levels, as is the case in our 
proposed rating propagation scheme in Chapter 3 and 4. 

 

5.5 Conclusion  

This chapter has listed desiderata and presented a formalism that satisfies them.  
We have attempted to integrate our understanding across the surveyed literatures to 
construct a computational model of rational decision making use of social information by 
quantifying the notions of trust and reputation. Our model has the following 
characteristics: 

• makes explicit the difference between trust and reputation; 

• defines social information as the union of the amount of information embedded in 
the social structure as dictated by trust and reputation 

• defines reputation as a quantity relative to the particular embedded social network 
of the evaluating agent and the history of encounters; 

• defines trust as a dyadic quantity between the trustor and the trustee which can be 
inferred from social information from those in the embedded network; 

• by considering all possible paths to the source of information (k-degree-
acquaintance) in the reputation framework, the model effectively increases the 
underlying sample size for estimating trust and reputation; 
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• proposes a probabilistic mechanism for inference by quantifying concepts such as 
trust, reputation, and level of reciprocity. 

The explicit formulation of trust, reputation, and related quantities suggests a 
straightforward implementation of the model in a multi-agent environment (such as an 
electronic market).   Comparing one such implementation of this model against existing 
models is the task of the next chapter on reputation experiments.  We now investigate 
whether our proposed formulation of trust and reputation can be compared quantitatively 
with existing schemes.  This is the task of the experiments in the next chapter. 



CHAPTER 6 

Reputation Experiments 
 
 
This chapter describes a set of experiments for an evolutionary game known as the 

iterated Prisoner’s Dilemma (Maynard-Smith, 1982; Axelrod, 1984).  An extended 
version of this simulation is discussed in Chapter 8 in the context of evolution of 
cooperation.  Our aim is to establish a quantitative framework in which to compare the 
various notions of reputation that have been proposed by us and those existing in the 
literature. 

 

6.1 Simulation Framework  

 
If reputation has a utility value for the survival of an agent, we would like to design 

a set of experiments to test which notion of reputation provides the highest utility.  We 
use an evolutionary version of the incomplete information game similar to that used in 
Kreps and Wilson (1982) and Milgrom and Roberts (1982). 

Evolutionary games are made popular by Maynard-Smith (1982)’s work.  Whereas 
iterated games are played between the same players over time, evolutionary games are 
groups of iterated games played across multiple “generations” of related players.  
Consider an evolutionary game of 1 generation, this game is exactly the iterated game 
scenario.  An evolutionary game of 2 generations starts off with 1 generation of agents 
each playing iterated games with other agents.  At the end of a preset number of rounds 
that mark the end of a generation, each agent procreates certain number of children which 
is a function of the accumulated fitness of the agent.  After procreation, the 1st generation 
agents are removed from the game.  The set of children for all 1st generation agents then 
form the agents for the 2nd generation of games.   

6.1.1 Indirect Reciprocity 
Indirect reciprocity will be discussed in detail in Chapter 7.  We briefly review the 

highlight of this concept below for our simulation. 
In the field of evolutionary game theory, “evolution of cooperation” is an important 

research problem (Axelrod, 1984).  Trivers (1971) has suggested the idea of reciprocal 
altruism as an explanation for the evolution of cooperation.  Altruists ind irectly 
contribute to their fitness (for reproduction) through others who reciprocate back.  
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Reputation can potentially help to distinguish altruists from those disguised as such, 
thereby preventing those in disguise from exploiting the altruists.  Alexander (1987) 
greatly extended this idea to the notion of indirect reciprocity.  In situations involving 
cooperators and defectors, indirect reciprocity refers to reciprocating toward cooperators 
indirectly through a third party. One important heuristic that has been found to pervade 
human societies is the reciprocity norm for repeated interactions with the same parties 
(Becker, 1990; Gouldner, 1960).1  Therefore, a reasonable model for a human is an agent 
engaged in reciprocal interactions.   

In the following sub-section, groups of reciprocating agents are simulated against 
all-defecting agents.  By using various notions of reputation, the reciprocating strategy 
can be shown to be superior from the standpoint of survivability. 

6.1.2 Simulation Framework 
For the Prisoner’s Dilemma (PD) game, the action space for each agent is: 
Action = { cooperate, defect } 

The payoff matrix for the Prisoner’s Dilemma game is (where T > R > P > S and 2R > T 
+ S. c.f., Fudenberg and Tirole, 1991): 

  agent 2 

  C D 

C R, R S, T 
agent 1 

D T, S P, P 

Figure 6.1.  Payoff matrix for a one-shot Prisoner’s dilemma game, where  C = cooperate, 
D = defect.  In the 4x4 cell, the letter on the left refers to agent 1’s payoff; the letter 
on the right refers to agent 2’s payoff. 

In the game-theoretic literature for describing payoffs for the Prisoner’s dilemma 
(PD) game, four descriptions are used for the outcomes of the game: temptation, reward, 
punishment, and sucker: 

• Temptation (T): when an agent defects (D) while its opponent cooperates (C) 
• Reward (R): when both an agent and its opponent cooperate (C) with each other 
• Punishment (P): when both an agent and its opponent defect (D) against each 

other 
• Sucker (S): when an agent cooperates (C) while its opponent defects (D)  
Participants in an encounter are chosen randomly from the population. After the 

first participant is selected, a second participant is randomly selected.  At the end of a 
generation (where a certain number of dyadic encounters between agents have occurred), 
an agent begets progeny in the next generation proportional to that agent’s total fitness.  
The total population size is fixed, so any increase in the number of one type of agent is 
balanced by a decrease in the numbers of other types of agents. 
                                                 
1 Reciprocity norms refer to social strategies that individuals learn which prompt them to “… react to the 

positive actions of others with positives responses and the negative actions of others with negative 
responses (Ostrom, 1998). 
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6.1.3 Simulation Parameters and Agent Strategies 
For each of the simulation experiments, 50 agents with strategy tit-for-tat (TFT) and 

50 agents with strategy all defecting (AllD) are mixed into a shared environment.   These 
strategies are defined below.  A total of 30 generations are simulated per experimental 
run (during which no new agents are introduced into the system).  The payoff values (c.f., 
Figure 6.1) are: T = 5, R = 3, P = 1, S = 0.  

We studied agent strategies in which the decision fo r an encounter with an agent is 
based on the last interaction with that agent. Each strategy is characterized by five 
probabilities for cooperation: an initial probability and four probabilities for each of the 
possible outcomes of the last encounter. We extended these strategies by adding a 
reputation threshold that determines how an agent will act.  Example agent strategies for 
this game are: 

• Cooperate (C): always cooperates. 
• Defect (D): always defects. 
• Tit-for-tat (TFT): initially cooperates, and then does what the other agent did in 

the last round. 
• Reputation tit-for-tat (RTFT): initially cooperates depending on the reputation 

of the other agent, and then does whatever the other agent did in the last round 
The reputation referred to for RTFT agents is determined using one of several 

reputation notions as described below.  If the reputation of the target agent is less than a 
minimum reputation threshold, then the RTFT agent defects, otherwise it cooperates.  

 

Strategies I T R P S 

Cooperate (C) 1 1 1 1 1 

Defect (D) 0 0 0 0 0 

Tit-for-tat (TFT) 1 1 1 0 0 

Reputation Tit- for-tat (RTFT) * 1 1 0 0 

Figure 6.2  Probabilities of cooperation for different strategies. The column labeled I gives the initial 
probability for cooperation, while those labeled T, R, P, and S give the probabilities for cooperation 
given that the outcome (payoff) of the previous encounter was temptation, reward, punishment, or 
sucker. The initial probability for RTFT (*) depends on opponent’s reputation and the reputation 
threshold used. 

6.1.4 Goal of Simulation 
In studies of evolutionary games, one phenomenon that is of interest is whether 

certain strategies survive after many generations of evolution.  Those strategies that 
survive (as manifested by a viable set of progeny agents with that strategy) are called 
evolutionarily stable.   

In our simulations, we studied the conditions under which TFT agents are 
evolutionarily stable when they use different notions of reputation to judge agents with 
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whom they interact.  Specifically, we examined the “number of encounters per 
generation” (EPG) threshold for reputation-enhanced TFT (RTFT) to become the 
evolutionarily stable strategy (ESS, c.f. Maynard Smith, 1982).  Reputation should aid 
agents more when more information about other agents’ behavior is available.  When no 
agents have met each other before, there is no information to calculate any reputation.  
The more encounters per generation occur, the more chances each RTFT agent has to 
learn the real reputation of the opponent agents.  Note that each agent does not know the 
strategy of the other agents.  Agents can only observe the behavior of other agents.  
Therefore, it is not true that once an agent is observed acting defect, it is therefore an 
AllD agent.  

6.1.5 Notions of Reputation Simulated 
Encounter-derived individual reputation re is simulated by having each RTFT 

agent remember encounters it has with every agent it has met before.  Encounter-derived 
individual reputation is then the ratio of number of cooperations directly encountered 
over total number of encounters with a specific opponent.  Such an RTFT agent defects if 
re < rc where rc represents a critical threshold point of defection, which can be variable 
across agents.  In our simulation, rc = 0.5 for all agents. 

Observed individual reputation is simulated in a similar way as encounter-derived 
reputation with the addition of observers.  The setup mirrors observer-based image 
collection by Nowak and Sigmund (1998).  Each agent ai designates 10 random agents in 
the environment as being observed.  All encounters by these 10 observed agents are 
recorded by ai.  The reputation of agent aj in the eyes of ai is rij which is the ratio of 
number of cooperation observed by ai among its 10 observed agents’ encounters over the 
number of defection.  Such an RTFT agent ai defects an opponent aj if rij < rc where rc is 
also set at 0.5 in the actual simulations. 

Ideally, aj’s observed individual reputation should also depend on the mix of 
opponents that aj has encountered.  In our simulations, we are relying on the 
randomization process to reasonably sample the population for agents to be aj’s 
opponents.  More sophisticated modeling would take the nature of aj’s opponents into 
consideration. 

Group-derived reputation is simulated by grouping all agents with the same 
strategy into a group.  The group reputation is calculated as the ratio of number of 
cooperation performed by members of a group over total number of encounters with a 
given agent.  Reputation derived from a group depends on individual experience and is 
therefore not the same for all agents.  When an RTFT agent meets an unknown agent, it 
uses the group reputation as the prior estimate for this unknown’s reputation rg.  Such an 
RTFT agent defects an unknown opponent if rg < rc where rc is also set at 0.5 in the 
actual simulations.  After the first encounter with an unknown agent, all subsequent 
decisions are based on encounter-derived individual reputation as discussed above. 

Propagated reputation is simulated by having each RTFT agent recursively ask 
agents whom it has encountered before for their reputation estimate of an unknown agent.  
Propagation is checked by a MAX_TRAVERSAL limit.   All gathered results are tallied 
using a Bayesian algorithm as described in the next chapter 2  for calculating the 

                                                 
2 The algorithm is also described in Mui, et al. (2001). 
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propagated reputation rp for an unknown opponent agent.  If the calculated reputation rp < 
rc, the RTFT agent defects on the unknown opponent.  Again, rc is also set at 0.5 in the 
actual simulations.  After the first encounter with an unknown agent, all subsequent 
decisions are based on encounter-derived individual reputation as discussed above. 

6.1.6 Hypothesis 
Our hypothesis is that reputation should lower the threshold of encounters per 

generation (EPG) necessary for TFT agents to dominate over AllD.  By making TFT 
agents use different notions of reputation, we would like to compare how effectively each 
reputation notion allows the TFT agent to discriminate between AllD and other TFT 
agents in the environment. 

6.2 Simulation Results 

Figure 6.3 shows the evolution of TFT population size in a simulation starting with 
50 AllD and 50 TFT agents.  (No additional reputation measure is used by TFT agents 
except the 1 slot memory for the TFT for every one of its opponents.)  The legend of 
Figure 6.3 indicates the number of encounters per generation (EPG).  As the chance for 
repeated encounter is enhanced with increases in EPG, the TFT strategy dominates over 
AllD when EPG is greater than approximately 12000. 
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Figure 6.3  Base case when no reputation is introduced for TFT agents. 

The same experiment as that shown in Figure 6.3 is done for each of the four 
notions of reputation as discussed in the last section.  The EPG thresholds for RTFT 
strategies to dominate over AllD are summarized Figure 6.4. 
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Figure 6.4.  Number of encounters per generation (EPG) Thresholds for RTFT agents to become 

evolutionarily stable over AllD agents.  5 notions of reputation are used for RTFT agents, as indicated 
by the horizontal axis labels. 

 

6.3 Discussions 

Based on the encounters per generation (EPG) threshold, in order for RTFT agents 
to dominate over AllD agents, the following utility order is derived for the different 
notions of reputation in our simulations (‘ f ’ is the preference relation where a f  b 
indicates a is preferred over b): 

rp3 f  rp1 f  rg f  ro f  re 
Note the without using any aid from reputation information, the EPG for a population of 
TFT to dominate over AllD agents is 12000 as mentioned in Section 6.1.  Therefore, an 
initial glance at Figure 6.4 might be surprising to find that strategies using encounter-
derived reputation perform worse off then no reputation is used.  One has to realize that 
in the evolutionary PD game that is simulated, encounter-derived individual reputation 
does not “kick- in” to warn an RTFT agent against an AllD agent until TFT agents have 
already cooperated once with an AllD agent.  Therefore, the notion of direct encounter-
derived reputation is not useful for this TFT-AllD game since repeated encounters 
between any two agents is rare. 

Based on the size of drop in the number of encounters per generation (EPG) 
threshold, the propagated reputation seems to provide a significant utility to TFT agents 
against AllD agents.  In other words, our proposed reputation framework in Chapter 5 has 
significant improvement over existing reputation schemes in terms of survival utility to 
agents in our simulated world. 

We will return in the concluding chapter to a discussion of future works that will 
address whether the order of strength among the different notions of reputation holds in 
other types of game. 
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This chapter has described a simple simulation framework based on evolutionary 
games for understanding the rela tive strength of the different notions of reputation.  
Whereas these notions of reputation could only be compared qualitatively before, our 
simulation framework has enabled us to compare them quantitatively.  The simulations 
show that (with the metric of encounters per generation as measure of strength), our 
proposed reputation notion performs very favorably in the evolutionary games compare 
to existing notions of reputation. 

 
Our reputation simulation framework can be adapted to study an important problem 

for biologists: evolution of cooperation.  In Chapter 7, we describe the intellectual space 
surrounding the study of evolution of cooperation.  In Chapter 8, we will describe 
extension of our two-sided 3 Prisoner’s Dilemma game from the earlier experiments in 
this chapter to a one-side game proposed by Nowak and Sigmund (1998) where the 
incentive for trust and reputation becomes more prominent. 

 

                                                 
3  “Two-sided” refers to a payoff where both sides receive something in return (whether positive or 

negative) for every game that is played.  “One-sided” refers to a game payoff where only one side is paid 
for every game. 



CHAPTER  7 

Evolution of Cooperation 
 
 
Human have exhibited large scale cooperative behaviors that do not directly 

contribute to their individual survival (Fehr, et al., 2000; Ensminger, 2002).  Activities 
such as caring for the young and sick, altruistic act to the community, etc., contribute to 
the public good.  This raises the question for why people regularly engage in these 
cooperative activities – many of which are costly to the individual.  We argue that the 
transmission of trus t and reputation information is an important factor in the rise of 
cooperative behaviors in the evolution of a group of selfish individuals.  This chapter 
provides the background for this argument.  The main thrust of the argument is deferred 
to the next chapter. 

Section 2.1 first provides the motivation and background for the study of evolution 
of cooperation.  Section 2.2 reviews some game theoretic concepts that are frequently 
used in the study of evolution.  Section 2.3 summarizes the strengths and weaknesses of 
major approaches that have been taken to study this subject.  Section 2.4 concludes this 
chapter with thoughts on areas where this subject area can be further studied.   

7.1 Motivation and Background 

Darwin’s theory of evolution argues for the “survival of the fittest” but does not 
specify the unit for fitness measure.  By “fittest”, one could mean the individual, the 
population, the gene, or the organization around a group of agents.  Each interpretation 
calls for very different models for how natural selection works.   

Rational agency theory underpins much of modern economics (Kreps, 1990; 
Samuelson and Nordhaus, 2000) and interprets “fittest” to refer to the individual.  This 
individualistic view treats social organization as a by-product of self- interest.  
Phenomena such as altruism and cooperation are dismissed as no more than disguises 
with selfish motivations (Kreps and Wilson, 1982). 1   Such interpretations are in 
contradiction to sociological and biological observations of human and animal behaviors 
(Trivers, 1971; Ostrom, 1998; Fehr, et al., 2000; Henrich, et al., 2002).  Reciprocative 
acts of giving and receiving permeate human life and the lives of many animals.  

                                                 
1 Like Simon (1990), altruism is taken in this chapter to mean behaviors which on average increases 

the reproductive fitness of others at the expense of the fitness of the altruist.  Fitness refers to the expected 
number of progeny.  Cooperation often refers to altruistic acts where the cooperator puts future self-interest 
on the line for the recipient of these acts. 
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However, the individualistic view of evolutionary theory predicts that reciprocal altruistic 
cooperation should be limited to those who are “unfit” – natural selection should favor 
selfish behaviors. 

The beginning half of the past century saw the proponents of interpreting “fittest” 
as that of the species or population (Haldane, 1932; Eshel, 1972; Wilson, 1980).  This is 
known as the “group selection” theory.  Although contested by later evolutionary 
theorists, group selection has for a time been able to account for why individual agents 
cooperate. 

One dominant group of theorists interprets “fittest” to refer to the gene (Hamilton, 
1964; Dawkins, 1979).  Cooperation and related behaviors are explained in terms of 
fitness contribution to the individual gene.  Individuals’ aim in life is to maximize the 
chances that their set of genes (which also exists in others around them) is passed on to 
the next generation – even at the expense of the individual’s fitness. 

Yet another group of theorists considers “fittest” to refer to the social organization 
surrounding individual agents (Simon, 1969, 1990).  This interpretation considers 
cooperation and sacrificial acts as enhancing the fitness of groups of agents within social 
structures, which in turn increases the individual fitness of its members.   

 
This chapter summarizes five important approaches to the study of evolution of 

cooperation.  Strengths and weaknesses of these approaches are discussed.  Suggestions 
on how this field can move forward are provided. 
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Group Selection Kinship Theory Direct Reciprocation Indirect Reciprocation Social Learning 

 
Supporting 

 
Eshel, 1972; 
Wilson, et al., 1994; 
 

 
Hamilton, 1963, 
1964; 
Dawkins, 1976; 
Riolo, et al., 2001; 

 
Axelrod, et al., 1981; 
Axelrod, 1984; 
Roberts, et al., 1998; 
 

 
Trivers, 1971; 
Alexander, 1987; 
Pollock, et al., 1992; 
Nowak, et al., 1998; 
Lotem, et al., 1999; 
Wedekind, et al., 
2000; 
 

 
Simon, 1969, 1991; 
Boyd, et al., 1982; 

 
Non-
supporting 

 
Fisher, 1958; 
Hamilton, 1963; 
Axelrod, et al., 1981; 

 
Murray, et al. 1984; 
Taylor, 1992;  
Wilson, 1992;  
Queller, 1994; 
West, et al., 2001; 
Axelrod, et al., 1981; 
 

 
Alexander, 1987; 
Boyd, et al., 1987; 
Nowak, et al., 1998; 

 
Boyd, et al., 1989; 
Riolo, et al., 2001; 

 
N/A 

 
Table 7.1.  Representative works for five major approaches to the study of evolution of cooperation.  Both supporting and non-

supporting works for each approach are listed. 
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7.2 Iterated Games 

Nearly all quantitative modeling in the study of evolution of cooperation uses game 
theory (Axelrod, 2000).  The most common game studied for evolution is the prisoner’s 
dilemma game.  This section briefly reviews this game. 

7.2.1 One Shot PD Games 

This section describes in a bit more detail the Prisoner’s Dilemma single stage game 
used in the reputation simulations in Chapter 6.  For the PD game, the action space for 
each agent is: 

• Action = { cooperate, defect } 

The payoff matrix for the prisoners’ dilemma game is given in Figure 6.1. 
In the game-theoretic literature for describing payoffs for prisoners’ dilemma (PD) 

game, recall from Section 6.1.2 the four descriptions are used for the outcomes of the 
game: 

• Temptation (T): when an agent defects (D) while its opponent cooperates (C) 

• Reward (R): when both an agent and its opponent cooperate (C) with each other 

• Punishment (P): when both an agent and its opponent defect (D) against each other 

• Sucker (S): when an agent cooperates (C) while its opponent defects (D)  

With the following two constraints, the “dilemma” can be easily seen (Axelrod, 
1984): 

T > R > P > S 

2R > T + S 

The following assignments satisfy the above constraints:  

T = 5, R = 3, P = 1, S = 0.   

Given agent 2 is choosing to “cooperate,” agent 1 can maximize its payoff by choosing 
“defect”; given agent 2 is choosing to “defect,” agent 1 can maximize its payoff by 
choosing to “defect.”  Therefore, the Nash Equilibrium 2 of this one shot PD game is: 
Defect-Defect (the lower right quadrant of the payoff matrix).  

By the rational agency theory of economics (Kreps, 1990), the utility maximization 
point is therefore Defect-Defect.  However, both agents can do better by cooperating,3  
herein lies the dilemma. 

 
 

                                                 
2 “Nash Equilibrium” refers to a utility-maximizing stability point where either agent cannot be 

better off by perturbing their actions at the equilibrium (Kreps, 1990). 
3 Cooperate-Cooperate is termed pareto-superior to the Nash Equilibrium point Defect-Defect in 

the one-shot PD game. 
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7.2.2 Iterated PD Games 

If agents are indeed selfish utility-maximizing, economics tells us that in one shot 
PD games, they cannot do better than what is indicated by the Nash Equilibrium solution 
of defection.  However, if the PD game is played multiple times between two agents, 
cooperation has some chance.  In their influential 1980 Science paper, Axelrod and 
Hamilton introduced the “shadow of the future” (w) parameter and have shown how 
agents can develop cooperation when w exceeds a threshold in an iterated PD game. 4 

7.2.3 Evolutionary PD Games 

To simulate the evolutionary process, birth and death of agents are introduced for 
multiple generations of iterated PD games among groups of agents.  The most common 
scenario is the so called “non-overlapping” generations where all agents of one 
generation dies before the next generation is created (Axelrod and Hamilton 1984; 
Nowak and Sigmund, 1998).  A generation is defined by a set of PD encounters among 
the agents.  Participants in an encounter are chosen randomly from the total population.  
Often the goal of the evolutionary simulation is to assess the fitness of specific agent 
strategies or attributes.   

In many studies, the goal is to understand the strategic implications for the survival 
of agents.  To carry out these studies, at the end of each generation (where a certain 
number of dyadic encounters between agents have occurred), the total fitness of all agents 
with the same strategy is calculated.  The number of progeny in the next generation with 
a given strategy is created in proportion to the total fitness associated with that strategy in 
the previous generation.  The total population size is often fixed, so any increase in the 
number of one type of agent is balanced by a decrease in the numbers of other types of 
agents. 

Commonly studied agent strategies are: 

• All-defecting (ALLD): always defects. 

• Tit-for-tat (TFT): initially cooperates, and thereafter does what the other agent did 
in the last round. 

• Suspicious Tit-for-tat (STFT): initially defects, and thereafter does what the other 
agent did in the last round. 

• Grim-trigger: initially cooperates, but once defected by another agent, this agent 
always defects against that other agent. 

Axelrod (1984) has documented empirical evidences for the robustness of TFT 
compared to other strategies under competitive settings of many types of strategies. 

 
 
 

                                                 
4 In the upcoming section on direct reciprocation, results from Axelrod and Hamilton (1981) will be 

discussed. 
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7.3 Existing Approaches to Study Evolution of 
Cooperation 

This chapter examines five major approaches to the study of how and why 
evolution has evolved for social animals that exist today.  Significant publications for 
each approach are briefly summarized.   Table 1 highlights the representative 
publications for these approaches. 

 

7.3.1 Group Selection 

If the unit of natural selection is on the individual level, cooperation among 
individuals would not be consistent with Darwin’s theory.  A group of evolutionary 
theorists (Eshel, 1972; Wilson and Sober, 1994) therefore postulated the unit of natural 
selection is on the group level: species, community, population, etc.   

Many argue that group selection theory is misguided (Axelrod and Hamilton, 
1981).  Difficulties with this theory arise from the strife often observed within species, 
communities, and populations.  To explain for the manifest existence of cooperation and 
related behavior such as altruism, alternative theories are needed.  

 

7.3.2 Kinship Theory 

Kinship theory is based on the commonly observed cooperative behaviors such as 
altruism exhibited by parents toward their children, nepotism in human societies, etc.  
Such behaviors toward one’s kin not only decrease individual fitness of the donor (while 
benefiting the fitness of others), they often incur costs – thereby decreasing personal 
fitness. 

Hamilton’s rule of relatedness provides the foundation of much of the work on 
kinship theory.  This rule states that altruism (or less aggression) is favored when the 
following inequality holds: 

rb – c > 0      or       
c

r
b

>  

where r is the genetic relatedness of two interacting agents, b is the fitness benefit to the 
beneficiary, and c is the fitness cost to the altruist.  This rule suggests that agents should 
show more altruism and less aggression toward closer kin.  Hamilton (1964) uses 
Wright’s Coefficient of Relatedness for r.5 

Hamilton (1964) suggests that it is not the individual fitness that is evolutionarily 
selected but it is that of the “inclusive fitness” of a gene.  Inclusive fitness measures the 
ability for a gene to reproduce itself in the offspring.  This differs from the classical 
Darwinian notion of “individual fitness” in that the central actor of evolution is the 
hereditary unit and not the individual.  Dawkins (1979) popularized this “selfish gene” 

                                                 
5 Wright’s Coefficient of Relatedness r=1 if the agent is compared to itself;  r=0.5 for same parents 

siblings.  r=0.25 for a grandparent and a grandchild; and so on.  r can be thought of as the proportion of 
genes shared between two individuals. 
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thesis in his 1979 book.  By using inclusive fitness for analysis, Hamilton and others are 
able to account for cooperative behaviors as means to maximize the inclusive fitness of 
individuals’ genes. 

7.3.2.1 Problems with Kinship Theory 

A number of studies have contested Hamilton’s thesis (Taylor, 1992; Wilson, 1992; 
Queller, 1994).  The main difficulty pointed out is the interplay between relatedness and 
competition among kin.  Factors that tend to increase the average relatedness of 
interacting agents, such as limited dispersal, 6  also tend to increase the amount of 
competition among relatives (Murray, et al., 1984).  West, et al., (2001) have empirically 
examined fig wasp in nature and reported that with limited dispersal, the increased 
competition between relatives can negate the effect of increased relatedness in favoring 
altruism.  Different fixes to Hamilton’s rule have been proposed.  West, et al., (2001) 
modifies the rule by replacing b as follows: 

 b = B – a (B – c) 

where c is the fitness cost as before and B is the benefit that would be given to the 
beneficiary in an interaction if competition does not exist.  The parameter a ∈ [0, 1] 
measures the extent to which neighbors compete (small a confers little competition while 
large a confers the opposite).  a = 0 equals the original Hamilton’ rule.  

Kinship theory also has difficulty in explaining cooperation where relatedness is 
low or absent.  Axelrod and Hamilton (1981) pointed out examples from mutualistic 
symbioses such as that between fungus and alga that compose a lichen; the fig wasps and 
fig trees where wasps serve as the tree’s sole means of pollination and seed set.  
Furthermore, cooperation in such symbioses can sometimes turn into antagonism 
(Caullery, 1952).  Kinship theory cannot explain this dynamics of cooperation at all.  The 
theory of reciprocation answers these critiques. 

 

7.3.3 Reciprocation Theory 

Trivers (1971) postulated “reciprocal altruism” as an explanation for how 
individuals are willing to sacrifice personal gain for the good of another.  Specifically, 
phenomena such as friendship, moralistic aggression, gratitude, sympathy, 
trustworthiness, etc. can be explained in terms of deferring immediate personal gain 
toward potential benefits from future reciprocations by others.    

Much of the work on reciprocation theory is carried out using a game theoretic 
framework based on the Prisoner’s Dilemma (PD) game and the Tit- for-Tat (TFT) 
strategy, which have been discussed earlier in this chapter. 

                                                 
6 Dispersal refers to the geographical distribution that a group of agents are placed.  This often refers 

to individuals who are related, as in kin selection theory. 
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7.3.3.1 Direct Reciprocation 

The strategy TFT has been postulated by Axelrod and Hamilton (1981) to be an 
evolutionary stable strategy for the iterated PD game (Maynard Smith, et al., 1973),7 
provided with a sufficiently large probability of repeated future encounters between 
agents.  They label this probability “shadow of the future” (w).  In other words, 
cooperation between agents can evolve using the reciprocating strategy of TFT.   

TFT is a direct reciprocating strategy for agents in the PD game – reciprocating 
what the other agent did in the previous round.  In the context of an iterated PD game 
with only TFT agents and ALLD agents (c.f., Section Error! Reference source not 
found.), the threshold w for persistent cooperation to develop can be calculated 
analytically.  Consider a game with n TFT agents against n ALLD agents, a given w, and 
the PD payoff matrix shown in the Appendix: 

Payoff for a TFT agent against a TFT agent:   

R (1 + w + w2 + …) = R/(1-w) 

Payoff for a TFT agent against an ALLD agent:  

T + P(w + w2 + …) = T + wP/(1-w) 

For TFT agents to defend themselves against ALLD agents, the following 
inequality must hold:  

R/(1-w) > T + wP/(1-w) or w > (T-R)/(T-P) 

Experimental findings of TFT behaviors have been found for tree swallows 
(Lombardo, 1985) and sticklebacks (Milinski, 1987) in nature.   

Other theoreticians have disapproved of TFT’s significance as a workable strategy 
toward cooperation.  Specifically, Boyd and Lorberbaum (1987) have shown that there 
does not exist a single strategy (including TFT) which can be resistant to all kinds of 
invading strategies for the PD game.  The counter proof they use to show that TFT is not 
an evolutionarily stable strategy is by introducing two others: the Tit- for-two-tat (TFTT) 
and Suspicious-tit-for-tat (STFT) strategies. A TFTT agent does not retaliate until there 
have been two successive defections; a STFT agent starts off defecting on the first 
encounter but thereafter plays TFT. 8 

7.3.3.2 Indirect Reciprocation 

It is a common practice in human societies where the donor of a good deed might 
not necessarily be rewarded by the recipient directly but by other individuals who might 
be recipients of other good deeds by others.  Alexander (1987) is the first to term this 
phenomenon “indirect reciprocity.”    

                                                 
7 “Evolutionarily stable strategy” or ESS is a term coined by Maynard Smith and Price (1973) to 

refer to a strategy such that if most members of a population adopt this strategy, there exists no “mutant” 
strategy that would give high reproductive success. 

8 If a group of agents consists of some who use TFT, STFT, or TFTT strategies, those using TFTT 
have the edge over the other two.  Therefore, TFT is not evolutionarily stable.  Carefully syncing TFTT’s 
moves with alternating “cooperate” and “defect” can invade a group of TFTT easily.  Hence, neither is 
TFTT evolutionarily stable. 
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Boyd and Richerson (1989) are the first to develop a mathematical model of 
cooperation based on indirect reciprocity.  In their model, donors are rewarded for their 
deeds by the last person in a ring of n indirectly-reciprocating individuals.  Their analysis 
of the indirect reciprocity indicates that the conditions necessary for the evolution of 
indirect reciprocity “… become restrictive as group size increases.”  Their analysis 
however does not take into account social structures other than ringed interactions.  
Human agents and their interactions tend to form embedded graphs which are not rings 
(Granovetta, 1985).   

Nowak and Sigmund (1998) developed an indirect reciprocation model based on 
image (reputation) scoring.  In their non-overlapping evolutionary model, each agent has 
a genetic strategy and a non-heritable image score.9  They showed that cooperation can 
be established under “global” image scoring if the number of interactions per generation 
is sufficiently large.  “Global” refers to the nature of an agent’s image being visible to all 
other agents.  Following the results by Pollock and Dugatkin (1989), Nowak and 
Sigmund (1998) furthe r studied the effect of having randomly selected observers on the 
evolution of cooperation.  Every interaction is no longer globally known but is observed 
by a limited number of observers.  They conclude that cooperation may evolve through 
indirect reciprocity with or without global knowledge about agents’ image scores.  
Wedekind and Milinski (2000) have experimentally verified Nowak and Sigmund’s 
hypothesis that image scoring does play a role in actual human cooperation. 

Extensions to Nowak and Sigmund’s work have been done in two areas.  Lotem, et 
al. (1999) have included persistent non-cooperators (“phenotypic defectors”) to model 
after the sick, young or handicapped who may be unable to cooperate even if they are 
genetically predisposed to do so.  Their simulations show that phenotypic defectors 
paradoxically allow persistent discriminating cooperation under a much wider range of 
conditions than found by Nowak and Sigmund.   

Riolo, et al. (2001) have infused kinship theory into Nowak and Sigmund’s model 
with “tag-based” reciprocity – cooperation based on inheritable and identifiable tags on 
agents.  Their simulations indicate that cooperation can evolve even when reciprocity is 
absent. 

 

7.3.4 Social Learning  

Boyd and Richerson (1982) introduce a model for cooperation to evolve based on 
“conformist transmission,” or cultural transmission.  This mechanism refers to the 
preferential selection of the behaviors individuals encounter most frequently.  In other 
words, individuals learn the most dominant behaviors in their embedded social network.  
Although cooperation can evolve using this mechanism, conformers and non-conformers 
are not distinguished.  Along this line, Simon (1990) proposes an alternate social learning 
approach. 

Simon (1990) argues that in human societies, cooperation exists where kinship and 
reciprocation are absent.  Specifically, he uses the case of altruism often documented in 

                                                 
9 Non-overlapping refers to a common simulation simplification that no 2 generations of agents 

exists in the same time.  Refer to the Appendix on evolutionary PD games for further explanation. 
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organizational studies where real people who are satisfied with their positions adopt the 
organization’s interest as their own interest.   

Simon (1990) considers a population of two types of individuals in his model: A  
and S, in proportions p and 1 – p, respectively.  Population size is n.  Individuals of type 
A are altruistic (who always cooperate) while those of type S are selfish.  Each A  exhibits 
behaviors that contributes b offspring to members of the population (including himself).  
The cost to A is c fewer children for A.  The average number of offspring, FA and FS, of 
each A and S in the absence of social learning is: 

 FA = X – c + bp 

 FS = X + bp 

where X is the number of offspring in the absence of altruistic behavior.  To clarify, any 
individuals can be recipients to the np altruists, and selfish S individuals have no altruism 
costs.  Without social learning, since c > 0, altruists always have fewer children than 
selfish ones.  In evolutionary game theory terms, selfish individuals are more fit and will 
therefore have the evolutionarily stable strategy over altruistic ones. 

 
To model social learning (learning from others in the society), Simon introduces 

the docility parameter (d), which refers to the willingness of an individual to “ … accept 
well the instruction society provides them.”  The content of what is learned will not be 
fully screened for its contribution to personal fitness.  Docility models the level of 
bounded rationality and computational limitation of individuals.  The higher the docility, 
the more boundedly rational and the more computationally limited an individual is.  FA 
and FS

  can be modified as follows: 

 FA = X + d – c + b(c) p 

 FS = X + b(c) p 

b is now a function of c because the amount of altruism exacted from A depend on the 
society’s definition of proper behavior.  The condition for cooperation (and altruists) to 
dominate is: 

 d – c > 0 

No experimental work verifying or disapproving Simon’s model is known to the 
author. 
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7.4 Extending Existing Models 

Research attempting to explain how cooperation arises in society has been at least a 
century old.  Relative to many other research problems, this is a mature field with the 
wisdom of many very intelligent and dedicated researchers.  Nonetheless, existing 
models fall far short of fully explaining how and why cooperation evolves in natural 
population. 

7.4.1 Unifying Perspectives 

Firstly, existing models and theories appear to have conflicting assumptions and 
implications, as illustrated in the two rows of supporting and non-supporting publications 
in Table 1.  Each of the five major approaches discussed in this paper seems to explain 
certain aspects of cooperation and how it evolves but is lacking in other aspects.  Clearly, 
cooperation does evolve.  Therefore, a unified theory of how and why cooperation 
evolves still eludes the research community. 

7.4.2 Towards Realistic Models 

Secondly, most models are still based on simple games – as as prisoner’s dilemma, 
which are a gross over-simplifications of actual agent-to-agent interactions. Important 
elements comprising actual animal interactions are missing in existing models.  Glaringly 
amiss are the following: 

• Nearly all existing models are based on asexual, non-overlapping generations of 
agents.  Obviously, these are not realistic assumptions. 

• Simultaneous play for every interaction is assumed in all but a few models (e.g., 
Abell and Reyniers, 2000) 

• Interactions are restricted to dyadic.  Clearly, animals are often involved in 
interactions involving more than one other animal.   Studies into other types of 
interactions are much needed.   

• Agent behavior is assumed to be unmistakable.  As pointed out by May (1987), 
human behavior is far from mistake-free.  Future studies of how cooperation 
evolves should take the stochasticity of behavior seriously. 

• Actions are discrete in existing models.  Clearly cooperation is not just 
“cooperate” and “defect” alone but the levels of cooperation are continuous.  
Perhaps this continuity is determined by the amount trust between agents. 

• Animals are not born with specific and unyielding strategies.  Depending on the 
situation, animals might switch between different types of strategies in 
cooperating with others.  Strategy modification and defection should be studied. 

• Although works by Simon (1990, 1991), Cohen, et al., (2001), and others have 
brought social structure and learning into the study of cooperation, much work is 
still needed to understand how and to what extent various types of social structure 
affect cooperation.  Given the importance placed on cooperation across social and 
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economic organizations, this should be of enormous interest not only to the 
research community. 

It is hard to believe given the century old nature of studies on evolution of 
cooperation, there exist so many glaringly unrealistic aspects in current models.  This 
lack of progress points to the difficulty and mysteriousness of this natural phenomenon.  
It also points to the research potential of this field. 

 
 
Throughout evolution, humans have exhibited cooperative behaviors which do not 

directly contribute to their individual survival.  Activities such as warfare, caring for the 
young and sick, altruistic acts to the community, etc. contribute to the public good.  This 
raises the question: why people regularly engage in these cooperative activities – many of 
which are costly to the individual.  This chapter has summarized the major approaches 
that have been taken to answer this question.  After over a century of research, the answer 
to this question remains open.  This field continues to provide a fruitful area for 
evolutionary research.  The next chapter presents one such fruitful approach based on 
“social information.” 

 



CHAPTER  8 

        Evolution of Cooperation by 
Social Information 

 
 
As reviewed in the last chapter, the complexity of humans’ cooperative behavior 

cannot be fully explained by theories of kin selection (Hamilton, 1963, 1964) and group 
selection (Williams, 1971; Wilson and Sober, 1994).   Reciprocity approaches hold 
promising results.  Among the two main reciprocity approaches – direct and indirect, 
direct reciprocity is limited by the size of the population because in large populations, 
most agents do not interact with most others. 

If indirect reciprocity – or “reciprocal altruism” (Trivers, 1971; Axelrod and 
Hamilton, 1981; Axelrod, 1984; Axelrod and Dion, 1988) – is to provide an explanation 
for altruistic behavior, it would have to depart from direct reciprocity, which requires 
dyads of individuals to interact repeatedly. For indirect reciprocity (Alexander, 1987; 
Boyd and Richerson, 1989; Pollock and Dugatkin, 1992) to rationalize cooperation 
among genetically unrelated or even culturally dissimilar individuals, information about 
the reputation of individuals must be assessed and propagated in a population.   

In this chapter, we propose to apply our rating propagation schemes from Chapter 3 
and 5 to the problem of evolution of indirect reciprocity.  We term the information 
gathered from direct and indirect inference “social information”: information retrieved 
from and propagated through dynamically evolving networks of trust and reputation.  We 
argue that cooperation is an act of trust and is sustained by reciprocity and propagation of 
reputation information in a social environment.  We detail the computational model of 
this assertion in this chapter. 

We refer to the information content of such networks of trust and reputation as the 
‘collective memory’.  We show that for indirect reciprocity to be evolutionarily stable, 
the ratio of the probability of trusting and helping a reputable individual to the probability 
of helping a disreputable individual must exceed the cost-to-benefit ratio of the altruistic 
act.  In other words, the benefit received by trusting the trustworthy must out-weigh the 
cost of helping the untrustworthy. 
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8.1 Social Information: Role in Evolution of 
Cooperation 

Alexander (1987) coined the term indirect reciprocity to refer to the commonly 
practiced act of reciprocation in human societies, where the donor of a good deed does 
not necessarily expect to be rewarded by the recipient but perhaps by another individua l 
who may be the recipient of other good deeds by other donors. He has hypothesized that 
“indirect reciprocity is a consequence of direct reciprocity occurring in the presence of 
others” (ibid.).  For indirect reciprocity to work, Alexander conjectures that reputation 
and status of members in a group must be continually assessed and reassessed. Hence, 
reputation is a key concept in Alexander’s premise.  

Several authors have since attempted to formalize the mechanisms by which 
indirect reciprocity can evolve.  Boyd and Richerson (1989) developed a mathematical 
model of ‘circular reciprocity’ where the donor of a good deed is to be rewarded by the 
last individual in a ring of n reciprocating individuals. Their results suggested that 
indirect reciprocity is unlikely to be important unless interacting groups are relatively 
small.   

Alexander (1987) has further hypothesized that “indirect reciprocity is a 
consequence of direct reciprocity occurring in the presence of others.”   Those who 
observe direct reciprocation between individuals will then be in the position of assessing 
the reputation of members of a population.  Hence, reputation is a key concept in 
Alexander’s premise.  Under this premise, indirect reciprocity requires that the reputation 
and status of members of a group be continually assessed and reassessed. 

Pollock and Dugatkin (1992) investigated the significance of observation in 
guiding behavioral choice by studying a variant of tit- for-tat (TFT) where players behave 
like TFT in the absence of information about a new co-player but defect if the co-player 
has been observed defecting in his last interaction.  The result of this investigation is that 
when TFT fails to be evolutionarily stable,1 whereas the variant using observers is.  They 
term the information used to aid selection of action reputation. 

Following Alexander’s conjecture and studies by Pollock and Dugatkin, Nowak 
and Sigmund (1998, 2000) developed a model of indirect reciprocity by image scoring to 
study the role of observers in assessing the reputation of members of a population and 
eventually on the evolution of cooperation.   Under this model, every player (when 
selected as donor) has an image score which is modified locally only by the recipient of 
the action and a few randomly selected observers.  Hence, different individuals may have 
different perceptions about the same player.  In the terminology of Chapter 3 and 4, 
different individuals have different “ratings” about the same player. 

Cooperators are rewarded for their altruistic acts through increases of their image 
scores for the game recipients and observers. Every player also has a strategy value.2  
When playing against a recipient, the donor compares the image score of the recipient to 
his own strategy and cooperates only if the recipient’s image is at least as high as his own 
strategy k.  The underlying premise in this framework is that if the information about the 
                                                 

1 Evolutionary stability is an equilibrium condition first defined by Maynard-Smith and Price (1973) 
to describe conditions under which agents with certain strategies can dominate a population. 

2 The strategy value is an integer k and -5 = k  = 5 such that the agent only donates to a recipient if 
the recipient’s image is greater than or equal to k . 
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image of members of a population can be obtained, then an informed donor would only 
helps those who are likely to help back in the future. This in turn will improve the 
reputation of the donor.  This strategy introduces feedback into the system so that 
although an altruistic act of cooperation entails a cost, as a donor’s reputation is enhanced, 
the likelihood for others to help (i.e., increase the fitness of) this donor in the future is 
increased.    

The underlying premise in this framework is that if information about the image of 
members of a population can be obtained, then an informed donor will be able to help 
those who are likely to help back in the future. To examine the role of observers as the 
source of information about players’ actions, Nowak and Sigmund simulated an 
environment where every round of a game was observed by 10 randomly selected 
observers. These observers plus the recipient are the only ones who can update their 
perception of the donor’s image. Hence, different individuals may have different 
perceptions about the same player.  For this information to be of utility, observers and 
recipients have to interact with observed agents.  Their results suggested that when 
information in localized, cooperation can still be established in populations, but a greater 
level of interactions is needed for cooperation to be sustainable in larger populations. 
Their work well demonstrated the significance of information about the reputation of 
interacting individuals in the evolution and sustenance of indirect reciprocity. 

8.1.1  Trust and Reputation in Social Networks 

Although making observations is one of the mechanisms for acquiring information, 
it is not the principal manner by which humans process information about others’ actions. 
Furthermore, reputation is seldom propagated in a random manner in populations.  
Embedded in every social network is a web of trust with nodes representing members of 
the web and edges representing the amount of trust among pairs of acquaintances.  When 
faced with social dilemmas, such as to cooperate or not, individuals make use of social 
information available to them to reduce uncertainty. 

A key mechanism by which humans acquire information about others is by seeking 
the opinions of trusted and reputable acquaintances.  Parents are the first members of 
such networks of trust who provide their children with instruction and advice.  Because it 
is not possible for one to observe or remember all possible events even in small 
populations, the information content of such a web of trust serves as one’s collective 
memory.  Such trust-based body of information seems to be a fundamental element of 
social information and an inherent aspect of the processes by which humans make 
decisions. 

Aside from this “direct” notion of social information, where it is assumed that all 
members of a social network are acquaintances, there is another vital, while not as 
apparent, component of social information, where one attempts to seek the opinion of a 
reputable ‘k-degree acquaintance’ who is not a direct acquaintance but is connected 
through a chain of k other individuals.  In other words, trust can be inferred in a transitive 
manner using the notion of reputation (Mui and Mohtashemi, 2002).3  Such a process of 
                                                 

3 An example of such transitivity is: if agent a trusts b, who in turn trusts c.  Even if a  has not met c 
before, if c’s good reputation is communicated to a by b and perhaps other sources, a can be 
understandably cooperate with c in their first interaction. 
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decision making not only requires the ability to induce friendship and make 
acquaintances, it also entails the cognitive ability to reason, learn, and communicate.  
One can speculate that the evolution of language and intelligence plays a critical role in 
the evolution and sustenance of indirect reciprocity.  What seems common in most 
models of evolution of cooperation is the players’ passive treatment of information and 
their limited ability to remember only the near past.  Even if one assumes, to keep matters 
simple, that human memory is not functional on a longer time line, it is important to note 
the existence of a collective memory on which humans routinely rely on to gain more 
information.  However, some means of communication is required for processing and 
retrieving the information content of the collective memory.  

8.1.2   Dynamics of Social Networks 

The social interactions discussed thus far assume dynamicity in the underlying 
social networks.  Even if one assumes closed populations of constant size, due to mobility 
and communication, new links are created and new acquaintances are made at all times.4  
This means that the topology of social networks change over time. As new links are 
added to the network the path between every two individuals become shorter over time.5 
In other words, the probability that any two randomly selected individuals know each 
other increases with time, thereby modifying the content of the collective memory in a 
dynamic manner.   

In the next section, we will present a simulation framework which has the 
following assumptions: 

• Players can communicate and inquire about the reputation of their co-players. 

• The networks of acquaintance grow dynamically over time. 

• Information about the reputation of co-players is not obtained randomly; rather, 
players selectively acquire information from their acquaintance network by taking 
advantage of the collective memory of the social networks to which they belong. 

• Information is not propagated randomly in a population.  New information resulting 
from new interactions modifies the content of the collective memory of a recipient 
and is therefore selectively propagated through the recipient’s acquaintance 
network. 

• A social network is an evolving dynamic entity.  With new interactions, new links 
are created which in turn increase the likelihood of any two randomly selected 
players would know each other. 

 

                                                 
4 The game theoretic  model to be simulated uses so called non-overlapping generations: no one dies 

before the end of each generation.  Hence, our model here assumes that links are only added and not 
removed. 

5  A path between two individuals in a social network is defined as the number of distinct 
intermediary nodes connecting them.  Geodesic distance in a graph is a good example (Wasserman and 
Faust, 1994). 
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8.2 Social Information : Simulation Framework 

To make concepts related to social information clear, we propose to simulate a 
simple model of the above framework.  We simulate a series of evolutionary games 
whose stage game can be considered as a “one-sided” Prisoner’s dilemma where only one 
player’s payoff is affected at every stage.  The coupling among the players’ payoff is 
achieved through a parallel game involving adjusting the “image” (or reputation) values 
of the players. 

Consider a population of n individuals divided into non-overlapping groups of 
acquaintances of the same initial size, s: 

n : population size 

s : acquaintance size for every individua l at the beginning of each generation 

Here, we model the underlying graph structure of a group as a clique.  (In the 
remainder of this chapter we will use the terms group and clique interchangeably. )  Every 
generation consists of a fixed number of rounds: 

m : number of rounds per generation   

In every round two players are selected at random: one as donor and the other as 
recipient.  The donor has an option of cooperating with or defecting upon the recipient.  If 
the donor cooperates it will cost him 6 a value of c and the recipient receives a benefit 
value of b (b>c): 

b : benefit per round for the recipient who receives a donation 

c : cost per round to a donor who gives a donation 

If the donor fails to cooperate, no one gains any benefit nor incurs any cost.  
However, the donor’s image will suffer, as discussed below. 

At the beginning of each generation every player is born into a unique clique of 
acquaintances.  At the end of each generation everyone dies and produces offspring in 
proportion to the total payoff they receive throughout the ir generation.  Modeling after 
the simulation framework by Nowak and Sigmund (1998), every agent j possesses a 
strategy, kj, and an image score about agent i, sij: 

kj: agent j’s strategy (cooperate if the recipient’s image = k) 

sij: image that agent j has about agent i 

At the beginning of a generation all players have image score of zero.  A potential 
donor cooperates if the image score of the recipient is at least as high as his own strategy 
value (k). The image scores of players are only known to and updated for their 
acquaintances.  If a potential donor cooperates, his image score is increased by one unit; 
otherwise it is decreased by one unit.  The notion of acquaintance set is treated 
dynamically here.  A donor performs one of the two actions, cooperate or defect. 

Donor’s action space: { cooperate, defect } 

                                                 
6 We use male pronoun for donor and female pronoun for recipient. 
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After a donor’s action, the recipient and members of the donor’s clique update their 
perception of the donor’s image; the donor will then become a ‘one-way acquaintance’ of 
the recipient, i.e., if in future rounds the recipient is chosen as a donor, in addition to her 
acquaintances, she will also ask the donor about her opponent.  In other words, the donor 
is being added to the recipient’s acquaintance set but not vice versa.  

This asymmetric setup for whether the donor or recipient is added to the 
acquaintance set of the other was originally meant to represent the asymmetry in many 
everyday interactions.  For example, the sellers of goods are more likely to know more 
about the goods than the buyers do.  In our simulations, the donor gains no information 
about the recipient by donating to the recipient, but the recipient who has observed the 
donor in action can use this information for future encounters.7 

If a potential donor j does not know the image score of the recipient i, he will make 
use of the social information available by asking all his acquaintances whether they have 
ever played in recipient role against the current recipient, i.e., if the current recipient is a 
one-way acquaintance of any one in the donor’s acquaintance set Qj.  If no information is 
learned, the donor will assume an image score of zero; otherwise, he assesses the 
reputation of the recipient by adding up her image scores, provided by members of the 
acquaintance set Qj, and dividing by the total number of encounters.   

Reputation of a recipient i in Qj: ratio of cooperation over all j’s encounters in Qj 
Such an averaging scheme has the benefit of transparency during analysis.  

A potential donor j compares the computed reputation score sij for a potential 
recipient i to his own strategy kj.  In Nowak and Sigmund’s scheme, j donates if sij = kj.  
Therefore, the outcome of a round depends on the probability of knowing the recipient’s 
image, which is derived from the collective memory embedded in one’s acquaintance set.  
Furthermore, the underlying social structure is itself evolving as players meet over time, 
which causes the probability of knowing a randomly selected recipient to increase over 
the lifetime of a generation.  The next section analytically describes the dynamics of this 
probability.  

 

8.3 Social Information : Analysis 

For the analysis of the framework presented in the past section, several variables 
need to be defined: 

iA : the average number of acquaintances per player at round i 

This variable represents the average network connectivity per player at round i.  
Then 0A  is the initial clique size at the beginning of each generation (a clique includes 
self and acquaintances).   

                                                 
7 The details on the authenticity of our modeling have unfortunately escaped our attention; and we 

cannot claim that our asymmetric setup mirrors real world interactions.  In particular for our model, any 
agent in recipient’s clique can consider the donor and members of the donor’s clique as acquaintances.  The 
asymmetry lies in that the donor and members of the donor’s clique do not consider the recipient nor the 
recipient’s clique as acquaintances. 
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iq  : the probability that a potential donor knows the image score of the recipient at 
round i.  

In terms of Ai, qi can be expressed as: 

 1 1
1

i
i

A
q

n
− −

=
−

 (1) 

i.e., the likelihood of knowing the recipient at round i is one less than the average number of 
acquaintances per player from the previous round (assuming that a player cannot play as both 
recipient and donor) over n-1 possible acquaintances one can have in a population of size n. 
The average network connectivity per agent at round i can be expressed as the following 
recurrence: 

 

 1
1 (1 ) i

i i i
A

A A q
n

−
−= + −  (2) 

 
This relation shows that a new link is created between two players in every round 

of the game only if the donor does not know the image score of the recipient, in which 
case the donor is added to the acquaintance set of the recipient resulting in as many as 

1iA−  new links.  
Rewrite iA using equation (1), the following can be derived: 
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Substituting 2/i iX A n= , equation (3) can be expressed as the following canonical 

form: 

 1 1
1

(1 ) (1 )i i iX X X
n − −= + −  (4) 

 
which is the familiar logistic equation.  

As n → ∞ , the growth rate, 
1

1 1
n

 + → 
 

.  Therefore, for 2n ≥  the system is stable 

with the nontrivial fixed point *A n= .  This is the maximum network connectivity per 
player, i.e., the maximum number of acquaintances an individual can have in a 
population of size n (including self).  

If on the other hand, we assume that in each round all players are paired up to play 
as either recipients or donors, as in the remainder of this section, then the definition of  iq  
must be slightly modified to represent the probability that in each round, for each pair, a 

potential donor knows the image score of his co-player. A donor, on average, has 1

2
iA−  

acquaintances that can be selected to play as recipient. This is because, on average, half 
of the donor’s acquaintances will be chosen as recipients and half as donors. There are 
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2/n  donor-recipient pairs (for n  even), which means there are 2/n  players out of which 
the recipient can be selected.  Therefore, assuming that in each round everyone plays as 
either recipient or donor, for each pair, the probability that the donor knows his opponent 

will be: 1 1/ 2
/ 2

i i
i

A A
q

n n
− −= = .  This variable, regardless of whether we assume one donor-

recipient pair or 2/n  donor-recipient pairs per round, amounts to the average information 
about the reputation of a co-player, retrievable from the collective memory embedded in 
the acquaintance set of a discriminating donor at a point in time.  

 
Now consider the simulation framework for incomplete information by Nowak and 

Sigmund (1998, 2000), where a population of size n consists of two types of players: 
defectors who never help and discriminators who only help players with good image.  Let 
the frequencies of these populations be: 

x : the frequency of discriminators 
y : the frequency of unconditional defectors 
For a discriminating donor, a recipient has a good image, G, if she is known to have 

cooperated the last time; otherwise she has a bad image, B.  We modify this model by 
imposing a social structure on acquaintance relations.  If discriminating donors do not 
learn new information about their recipients by asking their acquaintances, they always 
cooperate.  This means that in the absence of information, defectors can be mistaken for 
good scorers by discriminators.  Therefore at the beginning of each generation, when no 
information about players’ behaviors is available, all players are assumed to be good 
scorers.  Let Ax(i) and Ay(i) denote the respective payoff for discriminators and defectors 
at round i. These two quantities can be expressed as: 
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where ( )Gx i  and ( )Gy i  are the respective frequency of good scoring discriminators and 
defectors at round i.  These frequencies can be expressed as: 

1 1 1
1
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The differential payoff at round i for discriminators is: 

 11
{ ( 1 ) ( 2 )}

2
i

x i i i i iD c q g q bq g −= − + − + − .  

Here ( ) ( )i G Gg x i y i= +  is the proportion of good scorers at round i.  Because 
everyone is assumed to have a good image at the beginning of each generation: 
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The differential total expected payoff for discriminators is then: 
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For 0xP > , we must have: 
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Divide both sides of inequality (4) by m to get: 
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To interpret inequality (5) in an intuitive manner note that the following ratio is the 

average per round probability of knowing and helping a good scoring discriminator, i.e., 
the probability of a discriminator making the right decision: 

 1
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i
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Similarly, the following ratio is the average per round probability of knowing and 
not helping a bad scorer: 

 1

(1 ) /
m

i i
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q g m
=

−∑
   

Hence, the term 
1

1 (1 ) /
m

i i
i

q g m
=

− −∑  describes the average per round probability of 

knowing and helping a bad scorer, i.e., the probability of a discriminator making the 
wrong decision. Inequality (5) then asserts that for discriminators to outperform the 
defectors the average per round benefit received by a good scoring discriminator must 
out-weigh the average per round cost to a discriminator for helping a bad scorer. 
Therefore trust pays off if it is based on information and placed upon the trustworthy.  

If we rewrite inequality (5) in terms of cost-to-benefit ratio we derive that for 
discriminators to be evolutionarily stable we must have: 
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this is the ratio of knowing and helping a good scoring discriminator to knowing and 
helping a bad scorer must out-weigh the cost-to-benefit ratio. This result should be 
compared to the result from (Nowak and Sigmund, 1998).  Under similar assumptions on 
the population composition but without a dynamic social structure, Nowak and Sigmund 
derived the following interesting condition for discriminators to be evolutionarily stable: 

 

 
c

q
b

>  

 
where q is a constant representing the probability of knowing the co-player’s image score.  
Nowak and Sigmund aptly pointed out the similarity between their result and Hamilton’s 
rule for altruism through kin selection (Hamilton, 1964), where the parameter for genetic 
relatedness was replaced by q, i.e., the likelihood of knowing the opponent’s reputation.  
However, when we impose a constantly evolving social structure for trust and 
acquaintanceship into the same framework, the parameter of ‘familiarity’, whether 
genetic, cultural, or simply due to observation or interaction, is replaced by a variable that 
amounts to the likelihood of knowing and trusting the reputation of the opponent. 

A property of the framework outlined here is that the underlying network of trust 
relations is itself evolving as players interact.  Hence, iA and iq are changing over time.  As 
the game continues therefore, the threshold on c/b increases (see inequality (6)). Under 
such changing environment the payoff to cooperative strategies may be negative at the 
beginning, but over time they may be able to recover and even outperform the exploiters. 
This is achieved through two parameters in the system: the initial clique size, A0, and the 
number of rounds, m.  The effect of varying the initial clique size on the long term 
outcome of the game will be demonstrated in a set of simulations in the next section.   
But even under fixed initial clique size, the probability of knowing the image of an 
opponent is increased over time – following the equations (2)-(4). On the other hand, a 
slight increase in the number of rounds can help cooperation be established even in a 
population of ‘all- loners’. 

 

8.4 Social Information : Simulation Results 

Simulation results in this section are based on the experiments as described in 
Section 3.2 and as analyzed in Section 3.3. 
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Figure 8.1.  Dynamics of acquaintanceship. 

 
Figure 8.1. shows that the probability of knowing a randomly selected co-player’s image 

score increases with number of rounds.  Initially a population of n=100 individuals 
is divided into non-overlapping cliques of size 4.  As the game is continued, agents 
meet and make new connections.  The average number of acquaintances per player 
increases with every round of the game, and therefore the probability of knowing 
the opponent’s image also increases.  Here a generation consists of 10,000 number 
of rounds. The rise in the probability of familiarity is consistent with the analytic 
result in Equation (2) in the former section. 
 
Figure 8.2 shows the results of computer simulations for a population of n 

individuals with an initial acquaintance clique of size four.  Modeling after Nowak and 
Sigmund (1998)’s simulation framework, the strategy k ranges from -5 to 6 where k=-5 
represents unconditional cooperators, k=6 represents defectors, and k=0 represents the 
most discriminating.  The image scores range from -5 to 5.  A potential donor cooperates 
only if the image score of the recipient is at least as large as his own strategy.  The 
children inherit the strategies of their parents unless they are subject to mutation at a rate 
of 0.001.  We sampled the frequency distribution of strategies over 106 generations for 
population sizes n=52, n=100, and n=200.  Every generation consists of a fixed number 
of rounds, m=10n.  All other parameters are as in Nowak and Sigmund (1998)’s 
experiments.   

Under these assumptions, the likelihood for a pair of individuals to meet more than 
once is negligible.  Children inherit neither the image score of their parents nor their 
parental acquaintance structure.  They only inherit the strategy of their parents unless 
they are subject to mutation.  At the beginning of each generation all players are 
randomly assigned to unique cliques of the same size.  The game is played for many 
generations to subject the population to selective pressure.  We say that cooperation is 
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established if the average winning strategy (k) for all individuals at the end of the game is 
less than or equal zero.  We find that under our framework, cooperation evolves and is 
sustained even in larger populations after the game is played for many generations (see 
Figure Figure 8.2).  The effect of the initial clique size, however, is less discernible in 
larger populations (see the simulation result for n=200 in Figure 8.2).  
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Figure 8.2.  Evolution of indirect reciprocity by trust and reputation. 

Figure 8.3 shows the result of the simulation for a population of 100 individuals for 
varying initial clique sizes.  With more initial acquaintances cooperation is evolved and 
sustained in a more secure manner.  However, even in an initial population of ‘all loners’, 
i.e., when the initial clique size is one, a slight increase in the number of rounds can help 
a mixture of cooperating strategies to be established.  When information is scarce, in the 
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absence of a dynamically evolving network of acquaintances, cooperators (players 
with 0k ≤ ) will not stand a chance against defectors. As soon as we allow for channels of 
information to evolve by letting individuals make new connections as they interact, the 
likelihood of dissemination of information about players’ reputation is increased, thereby 
increasing the likelihood for discriminators to be able to discriminate rightfully against 
exploiters, as well as in favor of cooperators. This is why cooperation can evolve under 
this scenario despite the obvious fact that discriminators are the only ones who can make 
use of information. Evolution of cooperation is then a consequence of informed 
discrimination.  
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Figure 8.3.  Evolution of indirect reciprocity and the initial clique size.   
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The key hypothesis here is that the ability to compile and process complex social 

information by way of trust and reputation has played a critical role in the evolution of 
indirect reciprocity in human societies.  Phrasing after Alexander’s conjecture that 
“indirect reciprocity is a consequence of direct reciprocity occurring in the presence of 
others”, we add that indirect reciprocity is also a consequence of inquiring about direct 
reciprocity. 

8.5 Discussion 

We have proposed a framework for the evolution of indirect reciprocity by social 
information.  Social information is the ‘collective memory’ and the information content 
of networks of friends and acquaintances.  Such body of information can be retrieved by 
communicating with friends and acquaintances – as we have modeled:  

• Information is selectively retrieved from and propagated through networks of 
acquaintances due to the existing clustering effect of social ties.  

• The topology of the underlying social network is dynamically modified as 
members changes their interaction patterns.  

We have analytically derived the condition under which cooperation can evolve.  
Our results suggest that for cooperators to be evolutionarily stable, the average benefit 
received by a trusting and reputably cooperative individual must out-weigh the cost of 
trusting and helping a disreputable individual. In other words, trust pays off only if it is 
placed upon the trustworthy. 

 
In this chapter, we have applied our rating propagation from Chapter 3 and 5 to the 

problem of evolution of indirect reciprocity.  We have show how this information 
retrieved from and propagated through dynamically evolving ne tworks of trust and 
reputation can have a sustaining effect on the level of cooperation in a community with 
defectors.  We have argued that cooperation is an act of trust and is sustained by 
reciprocity and propagation of reputation information in a social environment. 

 



CHAPTER  9 

Conclusion and Future Work 
 
 

9.1 What have we learned? 

We have provided a critical overview of the state of the art in this field.  Many 
extant studies of trust and reputation studies are made in the context of building 
reputation or rating systems for online communities.  Most of these systems have been 
constructed without a formal rating model and without much regard to our sociological 
understanding of these concepts (e.g., Sycara, et al., 1999; Zacharia and Maes, 1999; Yu 
and Singh, 2000).  This is especially true for online reputation or rating systems which 
claim to encourage trust for their members.   

To address these inadequacies, we have first proposed a formal quantitative model 
for the rating process.  Based on this model, we have formulated two personalized rating 
schemes and have demonstrated their effectiveness at inferring trust experimentally using 
a simulated dataset and a real world movie-rating dataset.  Our experiments show that the 
popular global rating scheme widely used in commercial electronic communities is 
inferior to our personalized rating schemes when sufficient ratings among members are 
available.  The level of sufficiency has been discussed.  

Secondly, we have proposed a mathematical framework for modeling trust and 
reputation that is rooted in findings from the social sciences.  In particular, our 
framework makes explicit the importance of social information (i.e., indirect channels of 
inference) in helping members of a social network choose whom they want to partner 
with or to avoid.   

We argue that a sound reputation or rating system is essential for producing trust in 
online communities.  We have applied our framework to a real world community of 
movie ratings (MovieLens) and show that our framework can markedly improve the 
quality of ratings to the users – enabling them to make more trustworthy decisions.  In 
comparison with other models of reputation, we have quantitatively showed that our 
framework provides significantly better estimations of reputation.  “Better” has been 
discussed with respect to the rating process in Chapter 4 and then to two specific games 
to be discussed in Chapter 6 and Chapter 8.    

Finally, we have extended our trust and reputation framework toward addressing a 
fundamental problem for social science and biology: evolution of cooperation.  We have 
shown that by providing an indirect inference mechanism for the propagation of trust and 
reputation, cooperation among selfish agents can be explained for a set of game theoretic 
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simulations.  In particular, our proposal is shown to have provided more cooperative 
agent communities than existing schemes in the literature are able to. 

 

9.2 Future Work 

Although this dissertation has answered how trust and reputation are relevant to 
cooperation online, it opens up more research opportunities and questions that are 
unanswered.  This section describes a few of these important areas.   

9.2.1 Rating Systems 

As mentioned toward the end of Chapter 4, a number of unresolved issues 
regarding rating systems are raised through our work. 

Already pointed out is the multiple paths inference problem.  Chapter 4 has 
experimented with several strategies for inference in such setting.  We have shown that a 
good strategy is to use the path that contains the most trusted intermediary.  Recent work 
by Murphy, et al (1999), Yedidia, et al. (2001) and others have pointed to stochastic  
techniques for dealing with this multiple paths (or loopy networks) inference problem. 

In our formulation, the calculation of an agent's reputation requires the disclosure 
of detailed personal rating and object descriptions to other agents. This creates a privacy 
concern, as significant personal information would be contained in this information. 
Circles of trust could be defined and agents could filter the information they provide to 
other agents based on their trust of that agent.  This does not fully address privacy issues, 
because trust may be betrayed and circles of trust imply a means to identify agents, 
allowing agents' activities to be tracked over time or correlated with other data.  
Addressing this privacy issue is outside the scope of our work here but is an important 
issue. 

Another unresolved issue is the inference mechanism for inferring ratings and 
reputations from one context to another.  We have started investigating the use of 
ontology to relate different contexts.  A hard problem is to determine how to resolve the 
different ontological views of the world held by different agents. Furthermore, the metric 
or function to transfer rating or reputation from one context to the next is yet to be 
worked out.  We refer the readers to the paper by Koh and Mui (2001) for our approach 
toward this problem using the Kullback-Liebler (KL) Divergence measure from 
information theory. 

 

9.2.2 Trust and Reputation 

The study of trust and reputation has been extensive.  The written records on their 
study can be dated back several hundred years, as suggested by the quotes in Chapter 1.  
Our approach to the study of trust and reputation has been focused on those notions that 
can implemented in computational programs, and can be applied to enhance the user 
experience in virtual communities.  To reconcile the different notions of trust and 
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reputation that exist in diverse fields for different scenarios would open up many possible 
research directions. 

In our quantitative comparisons between our reputation propagation framework 
proposed in Chapter 5 and 6 with other reputation schemes, we have found that our 
proposal has significant improvement over existing reputation schemes in terms of 
survival utility to agents in our simulated world.  The single stage game played in this 
simulated world is the Prisoner’s Dilemma. 

Our results for the Nowak and Sigmund (NS) game in Chapter 8 suggest that our 
reputation proposal seems to also apply to the NS stage games.  Whether the order of 
strength among the different notions of reputation holds in other types of game can only 
be speculated on at present.  However, our social information framework in Chapter 7 
and 8 suggests that the more direct and indirect information is available for decision 
making, the more likely cooperation can evolve.  Whether the game is Prisoner’s 
dilemma, Nowak and Sigmund game, or other such common resource games, the amount 
of reputation information for the interacting agents is likely to contribute to the rise of 
cooperation. 

Our immediate future work is to formulate an information-theoretic framework that 
maps the amount of “information” available to the likelihood for the evolution of 
cooperation in a variety of games. 

 

9.2.3 Evolution of Cooperation 

We have only scratched the surface with our notion of social information for 
sustaining cooperation.  Many research directions exist for extending our work here.  
Here are a few: 

• Might (simulated or real) societies that judge reputation in different ways 
simultaneously do better than those with just a single one?  In Chapters 4 and 6, we 
have indirectly shown that by evaluating the reputation information from multiple 
direct acquaintances, an agent is able to estimate the trustworthiness of an indirect 
agent better than when only one channel is available. 

• Do means of combining reputation from different sources (both types and instances of 
social networks) lead to different advantages or disadvantages for cooperators?   

• Are there significantly different notions of reputation, trust, etc., that apply if one 
models social interactions by games more complex than the games (Prisoner’s 
Dilemma, and Nowak and Sigmund) that we have used?   

• How can we model the actions in society who provide not only information but also 
enforcement?  For example, are there priests who convince their congregation that 
they will suffer eternally if they are not nice?  Or courts that enforce legal contracts?   
How can these enforcer roles be modeled in some simplified way so as to shed light 
on the evolution of such institutions and societies? 

As computational techniques improve, the study of evolution of cooperation has many 
promising direction for further exploration. 
 



 
 

 
 

121 

9.2.4 Irrationality 

The recent anthropological work by Henrich, et al. (2002) comparing how different 
cultures treat cooperation has challenged much conventional wisdom on rationality.  
Appendix C outlines how our work is relevant to the modeling of irrational behaviors 
such as cooperation.  There is definitely an urgent need for us to take into consideration 
the cross-cultural variations of cooperative patterns. 

 

9.3 Social Information and Concluding Remarks 

Trust and reputation are important sources of information that we gather about each 
other in our daily lives.  This dissertation is an attempt to quantify and formalize some 
aspects of these two social quantities.  Our journey has shown how computational models 
can be useful in designing rating systems, in explaining cooperation among simulated 
agents, and in unifying diverse research communities around quantitative frameworks 
that can be used to benchmark different aspects of these quantities.  

As we survey what has been accomplished in this work, we become increasingly 
aware of the restricted scope in discussing simply these quantities in isolation.  The 
usefulness of trust and reputation perhaps can be understood more profitably by reducing 
these and other social quantities into some social information units.1  What is important is 
not about whether a piece of social information is about trust or reputation, but that it 
contributes to the accumulation of social information by the recipients.  

With this information-theoretic view, graphs such as that in Figure 6.4 can have 
their independent axis labeled as “amount of social information”.  Such an interpretation 
view the various strategies for gathering trust and reputation for others as no more than 
different techniques for increasing the social information available to the recipients for 
decision making.   How to extend our formulation of social information based on trust and 
reputation in Chapter 8 to include any generic social information will provide a fruitful 
direction of research. 

 

                                                 
1 The spirit of this suggestion is inline with Claude Shannon’s work which considers information in  

the abstract as in binary representation, based upon which much of modern communication theory has been 
built. 
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APPENDIX  A 

Preference based Rating Propagation 

 
 
The following proof is modified based on a derivation in Ang (2001). 
 
Theorem.  With a social network setup in Figure 3.1, the rating propagation function ρik 
when i and k are 2 nodes separated by a third node j is: 
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Proof.  Given Equation (3.10) is:  

 ρij(c) = ρi(c) ρj(c) + (1 - ρi(c)) (1 - ρj(c)) (A.1) 

By changing the name of the variables from Equation (3.10), the following are obvious: 

 ρik(c) = ρi(c) ρk(c) + (1 - ρi(c)) (1 - ρk(c)) (A.2) 

 ρjk(c) = ρj(c) ρk(c) + (1 - ρj(c)) (1 - ρk(c)) (A.3) 

 
For ease of representation, the context variable will be omitted for the rest of the 
derivation below. 

The proof strategy is to derive a closed form for ρik(c) based on the above 3 
equations so that the only independent quantities are those that are available to i.  Since ρj 
is unknown to i, it is a good variable to eliminate.  Equation (A.1) yields the following: 
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Similarly, Equation (A.3) yields the following: 
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Setting these 2 ρj equal to each other: 
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With this ρk, Equation (A.2) can be expressed in terms of quantities that are available to i : 
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 (A.7) 

 
By Equation (A.1), the singular point at ρij = 0.5 implies that ρi = 0.5.  This singular point 
of the propagation function would yield ρik=0.5.  This value can be justified by 
interpreting 0.5 as being the least certain probability.  This least uncertainty is warranted 
since there is no direct and indirect information that i can get about k.  Therefore, i is 
completely uncertain about k. 
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APPENDIX  B 

Bayesian Rating Propagation 

 
 

The following derivation first appears in Mui, et al. (2001). 
 

This derivation details how Equation (3.28) is arrived at.  This derives the posterior 
estimate of the proportion of approvals in n encounters between individuals a and b is 
given below: 
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APPENDIX  C 

Cooperation, Irrationality, and  
Economics 

 
 

“The first principle of economics is that every agent is actuated 
only by self interest.” 

 
--  F. Edgeworth, Mathematical Psychics 

 
Economists have built the foundation of their discipline on the fundamental 

assumption that individuals are rational and self-interested.  This is often called the homo 
economicus 1 assumption.  Under this assumption, cooperation is puzzling.  Individuals 
have often been found to care about social quantities such as recip rocity, fairness and 
trust, often at a personal cost to themselves (Henrich, et al., 2002).  Through our 
everyday experiences, we observe that people often take actions to praise and reward 
those who are cooperative and punish those who are not, even when these actions are 
costly to the enforcers.  This dissertation has suggested the modeling of trust and 
reputation to explain why rational individuals should be willing to give up what seem to 
be advantages in the name of cooperation.  Cooperation can be understood as rational 
within our “social information” framework (c.f., Chapter 8).  The more the amount of 
direct and indirect information about agents’ history of interaction, the more likely 
cooperation will evolve for that group of agents. 

This appendix provides the background of the argument above by first reviewing 
the evidences against the rationality claim for cooperation and responses to them in 
Section C.1.  Section C.2 suggests how this dissertation has contributed to this debate and  
briefly concludes this discussion.   

C.1 Irrational Man and Responses 

Empirical findings by social scientists have consistently uncovered significant 
deviations from the predictions of homo economicus (Fehr, et al., 2001; Ostrom, 1998; 
Camerer, 1995; Roth, et al., 1991; Caporael, et al., 1989; Kahneman, et al., 1986).  These 

                                                 
1 The “rational economic man” refers to a number of notions.  At its core, it assumes that such an 

individual choose the “best” among alternatives in a way that “properly” accords with the preferences and 
beliefs of an individual decision maker or those of a group making a joint decision (Doyle, 1998).  “Best” is 
defined with respect to some maximization operating using well ordered preference relations. 
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evidence shows that many people are strongly influenced by “moral” preferences, and 
that concerns for fairness and reciprocity often take precedence over personal gains.  
Individuals are very willing in engage in cooperative activities even at great risk for 
personal loss.  Anthropologists describe the observed human cooperation as “altruistic” 
since selfishness-based arguments cannot explain such behaviors (Henrich, et al., 2002). 

Socio-biological theories predict that cooperation and altruism should be limited to 
kin and reciprocating partners (Hamilton, 1963; Trivers, 1971; Axelrod, 1984; Boyd and 
Richerson, 1989).  However, humans cooperate with large groups of unrelated 
individuals who do not promise reciprocation.  Their cooperation is not just co- incidental 
to their selfish pursuit; anthropological experiments with western subjects have shown 
that these individuals actually have social preferences that support large scale 
cooperation (Fehr, et al., 2001).  Such preferences include: inequality aversion, strong 
reciprocity, and concerns for fairness. 

One of the main goals of the recently completed MacArthur Cross-Cultural Project 
is to answer whether the canonical selfishness-based models of human decision making 
holds true across 18 distinct social-economic groups in 4 continents with over 1030 
subjects.  The results by 12 researchers in economics and anthropology emphatically 
show that the canonical selfishness-based assumption about human do not explain any of 
the social groups studied  (Henrich, et al., 2002).  At the same time, behavioral variability 
in this well-designed and controlled set of experiments point to a lack of universal pan-
human explanation for issues about cooperation and related variables such as reciprocity 
and trust.   

 
With their fundamental rationality assumption under attack, economists (and 

rational decision supporters) have three main responses: 

• Real world individuals are indeed irrational.  However, the aggregate sum of 
individual decision making that is “rational” – it is the aggregation that 
economics is concerned with.  

• Individuals are boundedly rational.  Within the bound of their knowledge and 
inference mechanisms, they are rational. 

• The preference relations of individuals in the real world have not been taking 
into the model.  The failure of the homo economicus assumption is therefore a 
failure of modeling, not one about its premise. 

These three arguments are expanded in detail below, along with discussion of 
weaknesses in their arguments. 

 

C.1.1 Rationality in the Aggregate 

Gary Becker (1962, 1974) has formalized individual irrationality into rational 
aggregation modeling – which has significantly impacted much economic thinking on 
human behavior.2  He argues that economic models  are about the rational aggregate 

                                                 
2 For this and his other works on modeling human behavior, Gary Becker won the Nobel Memorial 

Prize in Economics in 1993. 
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behavior and not about the irrational individual actions.  At the aggregate level, the 
“average” individual tends to conform to economists’ modeling.  Such a response is 
unsatisfactory because it is arguing that limitations of current understanding and 
analytical tools should be dictating how economic modeling is made.3  Especially after 
many claims by micro-economists and other rational decision modelers about how 
individuals behave in the real world, Becker’s claim has the veneer of an unconvincing 
sleight of hand.  

C.1.2 Bounded Rationality 

Herbert Simon (1955, 1982) proposes the use of bounded rationality to model 
individual decision making.  He admits that living beings are indeed not fully rational in 
the traditional sense but that within the confines of their knowledge and reasoning 
faculty, they can be modeled in the same manner.  Simon’s ideas are very influential, as 
attested by the ample application of bounded rationality across diverse disciplines 
(Osborne and Rubinstein, 1998; Gilboa, et al., 1995; Neyman, 1985; etc.).   Nevertheless, 
one of the findings in the MacArthur Cross-Cultural Project (among other findings 4) 
discussed above is that even when individuals’ decision making is confined to simple and 
well understood set of facts and rules, human behavior can still not be described in ways 
that are completely selfish and “individually rational.”  As the 12 researchers have found 
in this project, factors such as cultures, societal structures and norms have significant  
influences on how individuals behave beyond considerations of their selfish interests.  
Note that bounded rationality is not rejected by these experiments; rather, the evidence 
suggests a reconsideration of its usual behavioral interpretation with self-regarding, 
exogenous preferences (Henrich, et al., 2002).5 

C.1.3 Modeling Irrational Preferences 

With regard to the third response, many influential economists, including Adam 
Smith (in his Theory of Moral Sentiments, 1759), Kenneth Arrow (1981), Paul 
Samuelson (1993) and Amartya Sen (1995) have acknowledged that individuals often 
have “irrational preferences” (e.g., people often care for the well-being of others, 
sometimes at their own expenses).  These economists have noted that such irrationality 
may have important economic consequences.  However, these incidental opinions have 
little impact in mainstream economic thoughts.  As Fehr and Fischbacher (2002) 
explains, the difficulty for their ideas to gain acceptance is mainly due to a “strong 
convention in economics of not explaining puzzling observations by changing 
assumptions on preferences.”  Economists believe, and rightly so, that by choosing the 
“right” preferences, everything can be explained. 

Economists are unwilling to abandon the homo economicus assumption and 
embrace modeling “irrational preferences” for good reasons.  This assumption has 

                                                 
3 The argument here is reminiscent of the tale for finding a missing door key beneath a street lamp 

and, not in the dark house where the key was lost, since there is light in the street. 
4 Example with similar findings are: Sally (1995), Ostrom (1998), Fehr and Gachter (2000). 
5 In other words, preferences should be endogenously modeled in bounded rationality models and 

not be taken as exogenous given – domains of anthropologists and behavioral social scientists. 
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provided good predictions for some important economic problems.  In the area of highly 
competitive markets with standardized goods, this assumption makes excellent 
predictions 6.  Such markets are nearly always assumed to be in perfect equilibrium.  
However, much economic activities take place outside such markets.  Further, almost no 
market can be claimed to be in perfect equilibrium at all times.7 

In fact, the physical spaces that most people interact in cannot be modeled as such.  
People operate in markets with a small number of traders.  These markets are often laden 
with “informational friction” 8 – which makes fully rational decision difficult (Fehr, et 
al., 2001).  People often work under incompletely specified and incompletely enforceable 
contracts based on trust and reputation.  Individuals often make decisions that are far 
from well thought-out.  Economists term such activities as “irrational behaviors” because 
they do not conform to conventional thoughts about what is advantageous to the 
individuals. 

C.2 Rational Cooperation 

Cooperation has been a puzzle under the traditional theory of rational agency – the 
underpinning foundation of much of artificial intelligence and  economics, and has been 
called “irrational.”  This work argues that cooperation can be very rational if the notion of 
rationality is expanded beyond immediate personal gain.  This argument is not novel – of 
course – as attested by the literature on cooperation already cited in Chapter 7 and this 
appendix. What is new is our proposition of the concept of social information as central 
to cooperative interaction  (c.f., Chapter 8).   

Social information enables individuals to refine their interaction behavior based on 
their preset preferences of cooperative strategies.  In Chapter 8, we have shown both 
analytically and through game theoretic simulations that agents who are able to utilize 
their social information can acquire more fitness than those who are not.9  Cooperative 
behavior can evolve for agents who take advantage of their social information. 

Social information is about the social structures such as trust and reputation which 
are propagated through social networks (Wasserman and Faust, 1994; Granovetter, 
1983).  The literature on trust and reputation is extensive.  To enable an informed 
research agenda, we have surveyed the literature and have summarized them with a cross-
disciplinary perspective in Chapter 2, 3, and 5.   We have then provided a sociologically 
justified, statistically sound computational formulation of trust and reputation in Chapter 
5.   Quantitative comparisons of our scheme have been performed against existing 
computation schemes.  Our formulation has marked advantages as indicated in results 
from a set of game-theoretic simulations.  In several sets of game theoretic simulations 
for evaluating the process for the evolution of cooperation, our proposal is shown to have 
provided more cooperative agent communities.  Whereas comparison across different 
                                                 

6 Any economic textbook can provide plenty of examples in this regard.  For example, consult 
Samuelson and Nordhaus (2000). 

7 The recent turmoil in the financial markets in Asia and the stock markets around the world is just 
but two examples for the “far from equilibrium” claim. 

8 “Informational friction” refers to the lack of transparency about market parameters, individual 
preferences and payoffs, and uncertainties involving the outcome of any transactions or activities. 

9 Fitness refers to private utility such as wealth (in economic modeling) or number of progeny (in 
socio-biological modeling). 
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notions of reputation can only be performed qualitatively before, we provide a 
quantitative comparison framework for such social quantities. 

 
This appendix has provided some background for how this dissertation is relevant 

to the irrationality debate.  Complete modeling of individual rational and irrational 
decision making is a very large program and is certainly outside the scope of this work.  
Our work can be used to study and model why people cooperate, sometimes even at their 
own expenses.   

Our thesis is that cooperation is not irrational.  Cooperation can be understood as 
rational within a “social information” framework.  Cooperation can evolve among self-
interested individuals if certain social structures are well-established.  The elements of 
social structures studied in this work are trust and reputation. 
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