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Abstract 

W i t h  the proliferation of modern  monitoring and labora- 
tory proceabres, physicians in intensive care areas m a y  face 
”information overload”, in dealing with very large, complex 
and ever-changing quantities of clinical dai!a, which of ten 
lacks e f i c i en t  organization. T h i s  research an.alyzes the med-  
ical knowledge required for formulat ing decision models in 
the domain  of hemodynamics .  Based o n  such analysis, a 
knowledge based expert s y s t em t o  track a patient’s hemody- 
namic  state has been developed and evaluated in a laboratory 
setting. 

T h e  initial phase of the work utilizes a cardiovascular 
simulator to  generate ”pseudo-IGU” waveforms as inpu t  t o  
the expert s y s t em in order t o  guide the development of the 
ma t r i x  of rules and search strategies. A number  of patho- 
logical simulations have been successfully ornalyzed by this 
model-based expert system,  including examples of hyperten- 
sion, left ventricular failure, hypovolemia, pu lmonary  hy- 
pertension, etc. W e  conclude that our approach i s  practical, 
and provides a mechan i sm f o r  transforming and reducing 
real-time physiologic data in to  pathophysiologic hypotheses 
relevant t o  the managemen t  of patients. 

1 Introduction 

Hospital intensive care areas generate enormous 
amounts of real-time and off-line data relating to the 
status of acutely ill patients: multi-parameter real-time 
physiological signals, ventilator data, laboratory tests, 
imaging studies, medications, clinical observations, etc. 
Clinical staff must reassess patients frequently, and 
accurately interpret all of this dynamically changing 
data. Providing optimal life support in 1 CUs is becom- 
ing an increasingly difficult task as the volume of mon- 
itoring data increases. The sheer quantity of available 
patient data, which often lacks rational organization, 
may leadl to ” information overload” for clinicians, and 
decreased efficiency in translating the data into patho- 
physiologic hypotheses upon which therapy is based. 
There have been occasional tragedies, most of which 

are due to the human error, reported in ICU care[l]. 
Manufacturers of monitoring equipment are making 

major progress in developing interfaces between real- 
time monitoring systems and hospital clinical infor- 
mation systems such that patient data firom multiple 
sources is accessible from a single ICU terminal. In 
fact, in a number of centers it is already possible to 
access most real-time and offline patient data from 
patient’s bedside. The next challenge is to explore 
the extent to which t,he available clinical data can be 
used to formulate dynamic pathophysiological models 
of the patient’s changing clinical status. Such models 
or hypotheses could provide a rational structure around 
which to present data to clinicians, could play a key role 
in developing decision support paradigms, and should 
provide the basis for more sophisticated and sensitive 
” alarms” . 

Many researchers lhave developed techniques to in- 
terpret ICU data[2]. Generally, we can divide these 
techniques into two categories: numeric and symbolic 
methods. The numleric methods are reasoning pro- 
cesses for providing quantitative analysis; and symbolic 
methods deal with qualitative analysis. In intensive 
care areas, the clinical context includes data that are 
both numeric and symbolic[3]. 

We have begun our investigations in the restricted 
domain of hemodynamics. We have designed and im- 
plemented a prototype knowledge-based system to in- 
terpret observable hemodynamic data (right and left- 
sided pressures, cardiac outpyt), and limited func- 
tional/anatomic data available from imaging studies 
such as echocardiography. We assume that the pa- 
tient’s hemodynamic status at any particular time can 
be represented by the simple lumped parameter model 
described below. Ouir objective was to design and eval- 
uate the feasibility of an expert system to  automat- 
ically select that set of parameter values for the CV 
model which produces outputs closely matching the 
pressures and flows of the patient. 
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2 Methods 

2.1 Cardiovascular Model 

A lumped-parameter cardiovascular model was used in 
our expert system to represent the patient's hemody- 
namic state. The same model was used during this 
study to  generate "clinical" input data for the expert 
system. The model is a dynamic computer simulation 
of human cardiovascular hemodynamics, originally de- 
signed as a teaching tool for students of physiology and 
medicine[4]. It is implemented on workstations running 
the X window system, and allows students to  perform 
a variety of "investigations" not all of which would be 
possible in an animal laboratory. 

The model is shown in Figure 1. It includes four ma- 
jor sections: the left heart, systemic circulation, right 
heart, and pulmonary circulation. Each side of the 
heart is modeled by a variable capacitor (representing 
the pumping action of both atrium and ventricle), two 
diodes representing the AV and arterial valves, and out- 
flow resistances[4]. There are 23 parameters for defin- 
ing the status of the simulator; their normal values are 
shown in the second column of Table 1. 

Arteries Microcirculation 
systemic 
veins 

Figure 1: Circuit Diagram Equivalent 
of Lumped Parameter Model 

2.2 Extracting Features from Physiologi- 

The CV simulator is initialized by specifying each of 
the 23 model parameters. The simulator then gener- 
ates the resultant pressures, flows, and volumes at all 
sites in the CV system. (See Figure 2.) The raw wave- 
forms are then pre-processed by the "feature detector" 
which derives a set of 21 clinically observable param- 
eters (features) such as heart rate, mean arterial BP, 
pulse pressure, central venous pressure, left ventricular 

cal Waveforms 

end-diastolic pressure, cardiac output, etc. (Note that 
clinically non-observable parameters are not included 
in the feature set.) This 21 dimensional feature set is 
used to  characterize the physiologic data generated by 
the model (or by patients). 

In our present study we used the CV simulator to 
generate "pseudo-clinical'' test data which was repre- 
sentative of a variety of disease states. This approach 
simplified the task of designing the expert system, and 
also provided a quantitative method to  evaluate its per- 
formance of the expert system. Since the actual input 
parameters of the CV model are known for each test 
case, they can be compared directly with those derived 
by the expert system. 

........................ 
.I Simulated Waveforms 
,I 

......................... 

Figure 2: Diagram of Generating and 
Pre-processing Data 

2.3 

The task of the expert system is to  derive a set of con- 
trol parameters for the CV model which will result in 
output waveforms and features which match those of 
the patient. The input to  the expert system is the 21- 
dimensional feature set from the patient or "pseudo- 
patient". The expert system then iteratively adjusts 
the control parameters of its internal copy of the CV 
model until its output feature set matches that of the 
"patient". (See Figure 3.) The initial control pa- 
rameters are established by using the patient data to 
calculate as many parameters as possible. For exam- 
ple, if the clinical data includes ABP, PAP, C.O., CVP, 
PCWP it is possible to  derive model parameters such 
as HR, Ca, Ra, Rp, Cp, etc. The remaining parameters 
are initialized to the normal values. 

The CV model is then run, and its output is rep- 
resented by an 21-dimensional feature vector which is 
compared to  the target feature vector from the "pa- 
tient". The comparison is made using the error func- 
tions Eq. 1 and Eq. 2 : 

Design of the Expert System 

21 

i= 1 
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I n i t i a l  Parameters 
"Pseud,c" pat ient  features -. 

Change selected parameters 

I nferance 

Engine 

1 

No parameter needs; t o  be  changed 

Figure 3: Prototype of Search Control Box 

(2) 
I Patient Value - CVsim Output Value] 

Normal Value 
For example, the error function of CVP(Centra1 Ve- 

nous Pressure) is defined as Eq. 3: 

___- E, = 

(3) 
IPatient CVP - CVsim's CVPl 

CVP Normal Value Ecvp = 

The total error function is comparedl to a threshold. 
If the error is below the threshold the iteration stops. 
If the error exceeds the threshold, the expert system 
tunes the input parameters of its CV model to more 
closely represent the status of the "patient". This is 
a multidimensional search process guided by a priori 
physiologic knowledge and available clinical data from 
the patient. The rule-based inference engine which 
guides the search was developed in the context of an- 
alyzing a number of simulated pathological conditions 
such as hypertension, septic shock, hypovolemia, LV 
failure, pulmonary hypertension, etc. The performance 
of the expert system was evaluated by comparing the 
model parameters and waveforms derived by the expert 
system to those of the pseudo-patient. 

3 Results 

Illustrative results are presented in the context of two 
case studies: 

3.1 Case study 1: Hypertension 

This case represents a patient with increased periph- 
eral resistance, increased heart rate, increased blood 
volume, increased LV contractility, decreased LV di- 
astolic compliance, and decreased arterial incremental 
compliance. After running about 4 minutes on a Sun 
SPARC station, the iteration stops. Table lshows the 
comparison of the actual model parameters to those 
estimated by the expert system. 

The following decision-making strategies were em- 
ployed in this case: 

1) Set up the resistance and heart rate based on di- 
rect calculation; 

2) Est,imate the value of arterial capacitance based 
on "patient's'' stroke volume and pulse ]pressure; 

3) If the "patient':;'' right heart pre-1oa.d is high, then 
increase total blood volume of CV simuliator; 

4) If the "patient's" stroke volume is low and left 
heart pre-load is high, then change the diastolic capac- 
itance and systolic capacitance of left ventricle of CV 
simulator. 

Fkom Table 1, we can see that the estimated val- 
ues of heart rate and microvascular resistance match 
with the actual values very well. The estimated value 
of effective blood volume (up 300 cc in total blood vol- 
ume) is identical to the actual effective volume (300 
cc squeezed out of the veins by decreased zero-pressure 
volume). The system was not successful in distinguish- 
ing LV systolic and diastolic dysfunctioii, however. 

3.2 Case study 2: Vaso-dilatiotn 

This case represents a patient with decreased microvas- 
cular resistance and increased arterial capacitance. Af- 
ter running about 1 minute on a Sun SPARC station, 
the iteration stops. Table 2 shows the comparison of 
real values with estimated values in this case. 

The following decision making strategies have been 
used for this case: 

1) Set up the resistance and heart rate based on di- 
rect calculation; 

2) Estimate the value of arterial capacitance based 
on "patient's'' stroke volume and pulse pressure; 

3) If the "patienit's" cardiac output, left ventricu- 
lar end-diastolic pressure and central venous pressure 
are the same with those of CV simulator, but the "pa- 
tient's'' pulse pressure is low, then increase arterial ca- 
pacitance of CV sirnulator. 

From Table 2, we can see that the estimated val- 
ues of arterial capacitance and microvascular resistance 
match with the real values well. 
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I Pnmmeter I Normal I Actual I Estimation 

J - -  - 
RVdiast 
Pulm. Art. 
Pulm. Venous 

Pulm. Art. I 90.0 I 90.0 I 90.0 
Piilm. Venous 1 490.0 I 490.0 1 490.0 

10.0 10.0 10.0 
4.30 4.30 4.30 
8.40 8.40 8.40 

LV 15.0 15.0 
Arterial 715.0 715.0 
Venous 2500.0 2500.0 
R V  i5.n 15.0 

t Venous I 0.01 I 0.01 I 0.01 I 

15.0 
715.0 

2500.0 
15.0 

~ ~ ~ . . .  

RV Outflow I 0.00 I 0.00 I 0.00 
Pulmonary 1 0.08 I 0.08 1 0.08 

LV Inflow 0.01 0.01 
LV outflow 0.0 0.0 
Microvascular 1.0 2.00 

Table 1: Comparison of Actual Values with 
Estimated Values for Hypertension Patient 

0.01 
0.0 

1.96 

4 Discussion and Conclusions 

w outflow 
Microvascular 
Venous 
RV Outflow 
Pulmonary 

Based on approximately 15 typical case studies exam- 
ined, we found that: 

1) The system usually can converge in less than 5 
minutes; 

2) Heart rate and most resistances can be directly 
calculated, so their values are quite accurate; 

3) The system can only be used to determine the ef- 
fective blood volume and cannot differentiate whether 
the change of effective volume is due to changes in to- 
tal blood volume or t o  changes in zero-pressure filling 
volumes; 

4) Systolic and diastolic LV dysfunction cannot be 
clearly differentiated .on the basis of hemodynamics 
alone. Additional information (such as cardiac echo) 
is needed; 

such as mitral regurgitation due to constraints of the 
model. 

This iteration approach can be used as a way for 
model-based expert system to solve system identifi- 
cation problems when these problems are underdeter- 
mined. Clinical rules and other available test results 
have been used to guide the direction of the iteration 

5 )  The sys tem c a n n o t  be used to analyze some cases 

0.0 I 0.0 0.0 
1.0 0.496 0.500 
0.01 0.01 0.01 
0.00 0.00 0.00 
0.08 0.08 0.08 

'The items in bold type are different from the normal values. 

I RVsvat  I 1.20 I 1.20 I 1.20 I 

- _  - -. . --. 
Pulm. Art. I 90.0 I 90.0 I 90.0 
Pulm. Venous I 490.0 I 490.0 I 490.0 
Resistances:(mmHg*sec/ml) 
LV Inflow I 0.01 I 0.01 I 0.01 

Table 2: Comparison of Actual Values with 
Estimated Values for Vaso-dilation Patient 

in our system. The results of our case studies have 
shown that this approach is promising to solve other 
underdetermined clinical problems. 
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