

Real-Time Analysis of Physiological Data and Development of Alarm

Algorithms for Patient Monitoring in the Intensive Care Unit

by

Ying Zhang

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

August 2003

Copyright 2003 Ying Zhang. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author__
 Department of Electrical Engineering and Computer Science
 August 29, 2003

Certified by__
 Peter Szolovits
 Thesis Supervisor

Accepted by__
 Arthur C. Smith
 Chairman, Department Committee on Graduate Theses

 2

Real-Time Analysis of Physiological Data and Development of Alarm Algorithms

for Patient Monitoring in the Intensive Care Unit
by

Ying Zhang

Submitted to the
Department of Electrical Engineering and Computer Science

August 2003

In Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

The lack of effective data integration and knowledge representation in patient monitoring limits
its utility to clinicians. Intelligent alarm algorithms that use artificial intelligence techniques have
the potential to reduce false alarm rates and to improve data integration and knowledge
representation. Crucial to the development of such algorithms is a well-annotated data set. In
previous studies, clinical events were either unavailable or annotated without accurate time
synchronization with physiological signals, generating uncertainties during both the development
and evaluation of intelligent alarm algorithms.

This research aims to help eliminate these uncertainties by designing a system that
simultaneously collects physiological data and clinical annotations at the bedside, and to develop
alarm algorithms in real time based on patient-specific data collected while using this system.

In a standard pediatric intensive care unit, a working prototype of this system has helped collect a
dataset of 196 hours of vital sign measurements at 1 Hz with 325 alarms generated by the bedside
monitor and 2 instances of false negatives. About 89% of these alarms were clinically relevant
true positives; 6% were true positives without clinical relevance; and 5% were false positives.
Real-time machine learning showed improved performance over time and generated alarm
algorithms that outperformed the previous generation of bedside monitors and came close in
performance to the new generation.

Results from this research suggest that the alarm algorithm(s) of the new patient monitoring
systems have significantly improved sensitivity and specificity. They also demonstrated the
feasibility of real-time learning at the bedside. Overall, they indicate that the methods developed
in this research have the potential of helping provide patient-specific decision support for critical
care.

Thesis Supervisor: Peter Szolovits, Ph.D.
Title: Professor of Computer Science and Engineering

 3

To my grandparents

 4

Acknowledgements

First and foremost, I would like to thank my thesis advisor, Peter Szolovits. Every time I came to
an unexpected result or an obstacle, Professor Szolovits had the power to get to its essence and to
invigorate my research in a new light. He made me think hard about research questions in the
most encouraging spirit, and he “finely combed” through drafts of this thesis to give me a
valuable learning experience in scientific writing. His wisdom, style, and dedication to the
education and growth of students tell much about why MIT is a special place. I am truly grateful
for his guidance and support in my endeavors. I also want to especially thank Christine L. Tsien.
Chris took me on as an UROP student and introduced me to the area of patient monitoring. She
has been an exceptional mentor, big sister, and friend. Her work has generated much research
interest in intelligent patient monitoring and inspired several ideas in this thesis. Her faith in me
and her unwavering support have made the “little bumps on the road” easier to go over.
 I am very grateful to Adrienne Randolph for giving me the opportunity to conduct research at
the bedside at Children’s Hospital in Boston. Dr. Randolph has been a principle investigator with
genuine professionalism and valuable insights for our study and a role model for me. This thesis
work would not have been realized without her continuing support. I would also like to thank
Isaac Kohane. His faith in students and his zest for research have powered many to achieve their
best. I cannot thank Dr. Kohane enough for his teaching, his interest in my education, and his
support for this research at Children’s Hospital. Each problem with the bedside monitor seemed
to “melt away” as soon as David Martin started to tackle it. I am deeply indebted to Mr. Martin;
without his expertise and continuing support for this research, we may not be able to get the
physiological data from the bedside monitor. I want to sincerely thank all the nurses who have
helped me in annotating the clinical events at the bedside. Their expertise and work ethics make
me wish that every child who needs intensive care could have nurses like them. I am truly
grateful to the patients and their families who have participated in our study. They kindly
allowed me to sit by their bedside and showed great interest and support for the study. Simply
thinking about them motivates me to do more research, to do good work.
 I would like to thank Roger Mark, my graduate counselor, an invaluable mentor in patient
monitoring, and the first person who showed me the similarities between physiological systems
and electrical systems. He gave me the opportunity to attend Computers in Cardiology 2000
Conference, which opened my eyes to physiological signal analysis and intelligent patient
monitoring. I am very grateful for Professor Mark’s teaching, advice, and support in my
education. I also want to thank John Guttag for teaching the seminar class Medical Innovation
and Engineering Research, which motivated me to look beyond the problem of false alarms and
into data integration, analysis, and knowledge representation for patient monitoring. I am
genuinely grateful to John Wang, Larry Nielsen, and Mohammed Saeed for giving me the
opportunity to work with them in the Patient Monitoring Division of then Agilent Technologies
(now Philips Medical Systems). My summer internship allowed me to investigate the patient
monitoring system from inside the box and to learn from them as well as from Andres Aquirre,
Joanne Foster, Scott Kresge, and Susan Shorrock.
 When I was in high school, I envisioned a life at MIT as studying in the library or working in
lab until exhaustion, then taking a nap on a bench nearby, and getting up to work again. Only
after getting to know Gerald Sussman did I truly understand what nerd pride really means.
Professor Sussman taught me how to formulate a good research problem and to have a clear goal.
He has shown me the power of having a broad range of knowledge, the zest for teaching, and

 5

great humanity. I am deeply touched by his dedication to the education and growth of every
student, and I am forever grateful for his teaching and guidance. I also want to especially thank
Dennis Freeman, my undergraduate academic advisor. Professor Freeman effectively helped my
transition from biology to engineering. His teaching in Quantitative Physiology gave me the first
drill in scientific writing. As I was writing this thesis, I recalled several techniques that I had
learned from him. Professor Freeman’s advise, encouragement, and unwavering support have
contributed much to my education and growth. I am very grateful to Arthur Smith, who gave me
helpful advice on several occasions and is genuinely dedicated to both the undergraduate and
graduate education in EECS. I also would like to thank the entire staff of EECS Undergraduate
Office, especially Anne Hunter, Vera Sayzew, and Linda Sullivan, and of EECS Graduate Office,
especially Marilyn Pierce. They really think for and care about students in imaginable and
unimaginable ways.
 I would like to thank all members, past and present, of my research group MEDG, who have
each helped in their individual ways. I am particularly thankful of Patrick Cody, Fern
DeOliveria, Meghan Dierks, Jon Doyle, Hamish Fraser, Ronida Lacson, William Long, Michael
McGeachie, Andrew Nakrin, Lik Mui, Delin Shen, Yao Sun, Stanley Trepetin, and Min Wu for
making me feel welcomed and for always being happy to help. I also want to especially thank
Mojdeh Mohtashemi, whose doctoral thesis defense made me want to deliver my own thesis
defense one day, who later became my officemate, a big sister, and a friend, and whose care and
wisdom made all the difference.
 I am very fortunate to have come to know Raymond Chan, Thomas Heldt, Ramakrishna
Mukkamala, Shunmugavelu Sokka, and Wei Zong. Along with Mohammed Saeed, they have
genuinely cared about my education and growth, and believed in me even when I was not so
perfect. I look up to each of them in many ways, and I will always treasure their kindness and
friendships.
 I am eternally grateful to Farita McPherson for saving my foot just in time from being crashed
by a utility vehicle ten months ago. I want to sincerely thank Deborah Brown, the orthopedic
specialist at MIT Medical, and Michael Cassanni, my physical therapist at Kennedy Brothers, for
getting me back on my feet and to walk again.
 I would like to truly thank my parents for their unconditional love and unwavering support in
everything I do. I also want to thank all my friends, especially Wesley Watters for his enduring
faith in me and his unconditional friendship, which has really been a gift from heaven. This
thesis work sprang during a period of tremendous growth, maturation, and discovery. I do not
know how to thank enough all the people who have contributed to it, either directly or indirectly,
or have touched my life in some way.
 My work has been carried out in fond memories of He Jingzhi and Wu Xiangen, and with
wonderful inspirations from Zhang Kongjia and Qin Quan. My grandparents brought me up
since infancy, taught me to be a genuine person, and encouraged me to keep going forward in
education and in doing something useful for others. I would like to dedicate this thesis to them.

 This thesis is based upon work supported in part by a DARPA Research Grant and the Health
Science and Technology Medical Engineering and Medical Physics Fellowship.

 6

Contents

1 Introduction 10

1.1 Background 10

1.2 Problem Statement 11

1.3 Thesis Organization 12

2 A System for Synchronized Collection of Physiological Signals and Clinical

Annotations 13

 2.1 Motivation 13

2.2 Methods 15

 2.2.1 Overview 15

 2.2.2 Physiological Data Collection 17

 2.2.3 Command Center 21

 2.2.4 Clinical Event Recording 21

 2.2.5 Database 28

 2.2.6 Time Synchronization 29

 2.2.7 Gold Standard for Alarm Classification 29

 2.2.8 Evaluation Procedure 31

 2.2.9 Implementation 31

2.3 Results 32

2.3.1 System Evaluation 32

2.3.2 Data Collection 33

2.4 Discussion 38

3 Real-time Development of Alarm Algorithms 43

3.1 Motivation 43

3.2 Methods 44

 3.2.1 System Requirements 44

 3.2.2 Real-Time Training of Alarm Algorithms 45

 3.2.3 Real-Time Evaluation of Alarm Algorithms 55

 7

 3.2.4 Incremental Learning 56

3.3 Results 57

 3.3.1 Training Time Assessment 57

 3.3.2 Sample Classification Tree 58

 3.3.3 Sample Neural Network 59

 3.3.4 Imbalanced Dataset 59

 3.3.5 Feature Derivation 60

 3.3.6 Incremental Learning 61

3.4 Discussion 67

3.4.1 Real-Time Development of Methods 67

3.4.2 Imbalanced Dataset 67

3.4.3 Feature Selection 68

3.4.4 Incremental Learning 68

4 Related Work 71

 4.1 Data Acquisition in the ICU 71

 4.2 Understanding Patient Monitoring and Alarms 73

 4.3 Intelligent Patient Monitoring 76

 4.4 Real-Time Systems, Design Issues, and Decision Support 78

5 Conclusion 81

5.1 Studies and Findings 81

5.2 Questions for Future Research 82

5.3 Summary 85

References 86

Appendix A 91

 8

List of Figures

2.1 System diagram / Data flow chart 16

2.2 Main user interface 22

2.3 CMS alarm message box 23

2.4 Algorithm alarm message box 25

2.5 Non-alarm event annotation entry box 26

2.6 Drug information entry box 26

2.7 Synchronization between physiological data and event annotations 30

2.8 Distribution of alarm rate over all patients 36

2.9 Distribution of alarm rate over the patients monitored for 2-12 hours 37

3.1 Neural network structure 49

3.2 The primitive unit for the neural networks’ hidden nodes 51

3.3 Performance metrics illustration 57

3.4 An example of classification tree 59

3.5 An example of an overfitted classification tree 60

3.6 Sensitivity comparison graph 63

3.7 Specificity comparison graph 64

3.8 Positive predictive value comparison graph 65

3.9 Accuracy comparison graph 66

A.1 The primary thread and main thread in PAAT 91

A.2 Multiple threads for incremental learning 92

A.3 Threads for CMS alarm annotations and threshold alarm annotations 93

A.4 Multiple threads for algorithms’ alarm annotations 94

 9

List of Tables

2.1 Message ID structure 18

2.2 Bandwidth Cost Summary for each data type 19

2.3 Limits on byte rates 20

2.4 Physiological data tables 28

2.5 Clinical event recordings tables 29

2.6 Monitored numeric parameters 34

2.7 Frequencies of different types of alerts 39

2.8 Distribution of the alarms among different alarm classes 40

3.1 Classification tree training time 57

3.2 Performance comparison of classification tree models 61

3.3 Performance comparison of neural network models 61

 10

Chapter 1

Introduction

1.1 Background

In the intensive care unit (ICU) and other critical care settings, patients’ physiological state needs

to be monitored, but medical staff do not have the human resources and technical capabilities to

perform this task continuously. Since the technology of monitoring astronauts’ vital signs in

space was transferred to the bedside in the 1960s, patient monitoring systems have become an

indispensable part of critical care. Today, these systems can gather multiple physiological signals

simultaneously and derive clinically important parameters.

 Although the amount of information patient monitoring systems provide to medical

professionals is more than ever before and still on the increase with improvements in computation

power, memory, storage capability, and networking, the usability and usefulness of the

information are less than desirable. The raw data contains measurement errors and noise from

biosensors. Corrections for these errors and elimination of noise are difficult and limited without

concurrent improvements of the measurement devices. Data integration and multi-parameter data

analysis may be able to extract useful information from the imperfect raw data, but the state-of-

the-art monitoring systems carry out limited data integration and analysis for effective decision

support.

 One symptom of this lack of data integration and analysis is the generation of false alarms.

Patient monitoring systems for critical care should alert caregivers when the patient requires

immediate attention. Several studies in the 1990’s, however, indicated that the vast majority of

the alerts generated by automated monitors were inappropriate. A study in the multidisciplinary

ICU of a pediatric teaching hospital, however, showed that 86% of total 2942 alarms during 298

monitoring hours over a ten-week period were false positives; an additional 6% were found to be

clinically irrelevant true alarms; only 8% of all alarms were true alarms with clinical significance

[45]. Another study in a similar pediatric ICU found that 68% of alarms were false, 26.5% were

induced by medical procedures, and only 5.5% were significant true alarms that resulted in

CHAPTER 1. INTRODUCTION

11

change in therapy. [25] In critical care settings for adults, false alarm rate could be even higher –

as high as 94% was reported in a standard cardiac ICU. [21]

 To reduce false alarm rates in the ICU, researchers have been pursuing two paths: (a) creating

better sensors that reduce measurement noise and that “notice” systematic faults such as wires

being disconnected; and (b) developing “intelligent” alarm algorithms for patient monitoring.

Methods such as neural networks, classification trees, fuzzy logic, and other artificial intelligence

techniques have shown potential for reducing false alarm rates. These techniques may also be

used in improving more general aspects of patient monitoring, such as data integration and

analysis, prognosis generation, and decision support.

1.2 Problem Statement

The conventional approach to developing, evaluating, and refining physiological models or

algorithms for decision support is based on a retrospective analysis of physiological data with

clinical annotations that were collected around the same time as the data. There are several

limitations to this approach. First, physiological data and clinical annotations are collected by

separate mechanisms and often poorly synchronized as a result. Second, because physiological

data and clinical annotations have different granularity, and the time range of a clinical event is

often difficult to capture, even with time synchronization, correlation between two different types

of data can be ambiguous. Third, in the critical care setting, it is difficult to record everything

that can potentially be useful in retrospective research, so clinical annotations are collected based

on assumptions about future research needs, and retrospective studies often find that they need

additional clinical information and thus cannot reconstruct the necessary clinical context to

interpret a past event properly. Thus, most developments of “intelligent alarm algorithms”

contain significant uncertainties and assumptions that may not be clinically valid; as a result,

evaluations of these algorithms also yield results that are still speculative.

 To address these problems, we have developed a system that enables data analysis and

algorithm development for patient monitoring in real time. In this thesis, we first demonstrate the

feasibility of real-time data analysis at the bedside and concurrent clinical annotation. Then we

present the development and evaluation of alarm algorithms in real-time, using machine learning

techniques.

CHAPTER 1. INTRODUCTION

12

1.3 Thesis Organization

In the remainder of this thesis, we begin by motivating and describing a system for synchronized

collection of physiological signals and clinical annotations in Chapter 2. We will also discuss

design considerations, constraints on such systems, and its utility. Chapter 3 presents real-time

modeling at the bedside. It describes methods for developing alarm algorithms using machine

learning techniques in real time. Then, in Chapter 4, we review related work. Chapter 5

concludes this thesis with a summary of the studies and findings in our research. We will also

discuss questions that have arisen form our research and ideas for future work.

 13

Chapter 2

A System for Synchronized Collection of
Physiological Signals and Clinical Annotations

This chapter describes a system for synchronized collection of physiological signals and clinical

annotations at a bedside at a standard pediatric intensive care unit. Its design purpose is to

support real-time analysis of physiological signals and real-time development of alarm algorithms

for patient monitoring in critical care settings.

2.1 Motivation

To develop and evaluate models and algorithms for intelligent patient monitoring, we must have

real patient data and a way to reconstruct the clinical context under which these data are

generated. In other words, we need to obtain physiological measurements or signals from the

patient’s monitor and to know what is going on with the patient when these measurements

become available. Yet, the reconstruction of the clinical context is a nontrivial task. Although

experienced physicians can form a hypothesis about the patient’s state or what could be

happening to the patient by examining physiological data such as an electrocardiagram and blood

pressure readings, only with adequate clinical information, such as the course of therapy and

events at the bedspace, can he or she validate this hypothesis. Thus, a well-annotated dataset that

contains both physiological data and clinical annotations is key to the development of intelligent

patient monitoring systems.

 There are two major requirements for a well-annotated dataset. First, physiological data must

be accompanied by clinical information that enables the reconstruction of clinical events that

could affect the current and future values of the data or could provide explanations for the

physiological data from the past. Second, both the physiological data and clinical information

should be time-stamped such that they are synchronized in time and can be accurately correlated.

CHAPTER 2. A SYSTEM FOR SYNCHRONIZED COLLECTION OF PHYSIOLOGICAL
 SIGNALS AND CLINICAL ANNOTATIONS

14

 In previous studies, data acquisition in the intensive care unit focused primarily on collecting

physiological signals from the bedside monitors. Little information about the state of the patient

and clinical events at the bedside were recorded. The reasons are straightforward. First, only

until recently has the revolution in computation power and storage capacity enabled researchers

to record large amount of data and to allow computers to analyze these data in a timely fashion.

Second, many researcher did not realize the importance of clinical information to modeling

physiological systems until they had encountered the limitations of retrospective annotation by

human experts. The third reason, which still hinders much research today, is the difficulty of

accessing clinical information, due to either practical reasons (e.g. clinical event recording

requires a trained person and is labor intensive) or legal concerns (e.g. clinical annotations could

contain confidential patient information).

 A study by Moody et al. foresaw the importance of clinical information and recorded clinical

data such as laboratory reports, physicians’ and nurses’ progress notes, and administration of

medications through the hospital’s clinical information systems [30] Another study by Tsien et

al. prospectively recorded clinical events at the bedside. [44] In both studies, however, clinical

information was recorded separately from the physiological data and time-stamped by different

clocks. As a result, the exact correlation between physiological data and clinical information

could not be achieved. Assumptions about the correlation between the two forms of data had to

be introduced, but they could not remove the uncertainties in the development and evaluation of

models and algorithms based on these data.

 Difficulties in synchronizing physiological data and clinical information come from two

sources. First, when a patient’s condition deteriorates, the clinicians are fully occupied caring for

the patient instead of writing notes. In fact, they write progress notes only when the patients do

not need their attentions or at the end of their shifts. (Personal observation) Thus, the event

recordings in the physicians’ and nurses’ notes usually lag behind the actual events and cannot be

accurately correlated with physiological data. Furthermore, when a clinician records an event

that happened hours before, his or her memory of it might be less vivid, and the information that

gets recorded about the event might lack useful details. A trained observer, however, could take

advantage of the fact that the clinicians usually could talk when they carry out procedures to

avoid information loss. The observer could sit at the bedside to record the clinicians’ response to

and verbal description of a clinical event as it happens. He or she could also ask for additional

CHAPTER 2. A SYSTEM FOR SYNCHRONIZED COLLECTION OF PHYSIOLOGICAL
 SIGNALS AND CLINICAL ANNOTATIONS

15

information that might be useful for reconstructing the event. The design of our system supports

the use of such observer-recorded annotations.

 The second source arises because it is difficult during an alarm event to determine the

significance of the alarm, which may become apparent only some time after the event ends. The

user interface that collects clinical information, therefore, must remain available to the user after

the event. However, because alarms may follow each other in succession, it may happen that

multiple alarm events are awaiting entry of their clinical interpretation at the same time.

Therefore, the user interface must keep clear to its users just which annotation corresponds to

which event and time interval. Our system design also addresses this requirement.

 In the first part of this research, we addressed the problem of data synchronization by building

a system for synchronized data collection and clinical annotations. We designed this system to be

used by a trained observer to collect data at the bedside in real time. We also describe the

expansions of this system for real-time trials of alarm algorithms. In the rest of this thesis, we

refer to the entire system as PAAT, for Prospective Alarm Algorithm Trial system.

2.2 Methods

2.2.1 Overview

The “ideal” data acquisition system for our purposes is a powerful workstation with full

networking capabilities for use with any bedside monitor in any critical care setting. It can

communicate with different brands of bedside monitors and obtain physiological data using

common standards through an RS232 interface or from the ICU’s information system. It has

enormous bandwidth on both the serial and the Ethernet lines to receive all the data that a bedside

monitor has, and possibly from nearby monitors as well. It has enough computational power to

receive, store to the database, and simultaneously analyze and learn from the data, all at once.

 Not surprisingly, all the assumptions of our “ideal” system are violated in the actual situation

for which our system has been used. In this section, we describe the actual situation we faced and

how we tackled each constraint to achieve the purpose of our system. Figure 2.1 is a block

diagram of the system’s components:

CHAPTER 2. A SYSTEM FOR SYNCHRONIZED COLLECTION OF PHYSIOLOGICAL
 SIGNALS AND CLINICAL ANNOTATIONS

16

CHAPTER 2. A SYSTEM FOR SYNCHRONIZED COLLECTION OF PHYSIOLOGICAL
 SIGNALS AND CLINICAL ANNOTATIONS

17

Our system is divided by function into three components: a physiological data collection unit, a

clinical event recording unit, database, and a command center. Design considerations include

system synchronization, speed, modularity, and multiple tasking.

2.2.2 Physiological Data Collection

2.2.2.1 Bedside monitor

We carried out this research in collaboration with a standard pediatric medical ICU. Because the

patient monitoring systems of each brand have their own proprietary platform, operating system,

and network, we had to design our system specifically for the bedside monitor that was

designated for our research in this ICU. This monitor belongs to the HP Viridia Neonatal

Component Monitoring System (CMS) series. It was manufactured by the former medical

instruments division of Hewlett Packard, which then became part of Agilent Technologies, and

now Philips Medical Systems. This monitor has optimized features for neonatal care and is

configurable for pediatric and adult patient monitoring.

2.2.2.2 Data Access

In an ideal situation, we would like to access data from any one of the eighteen bedside monitors

in our collaborating ICU, but the ICU’s central information system was not available for use by

our project; thus, we designed our system to communicate with the bedside monitor that was

designated for our research via the RS232 interface. An RS232 dual interface card (Option 13 for

CMS Model 1077A) was installed in the monitor. A variety of HP printers can connect to it to

produce paper reports. With a special cable and a set of software that correctly configures the

connection, it also allows a personal computer to access all waveforms (e.g. electrocardiogram),

numerics (e.g. heart rate), and alarm status data from the monitor.
 A printer cable with a 25 pin D-type female connector and a 9 pin female connector for IBM

AT-LASER plotter has been used to connect the RS232 interface card with the serial port of a

standard laptop. Although this particular kind of cable might not be the only kind that can

CHAPTER 2. A SYSTEM FOR SYNCHRONIZED COLLECTION OF PHYSIOLOGICAL
 SIGNALS AND CLINICAL ANNOTATIONS

18

establish a connection with the correct interface lines between the serial port and the RS232

interface card, among many cables that we have tested, it is the only one that works.

 The manufacturer of this monitor provides a programming guide, a library file, some source

files, and a demo program that shows how to obtain data through the RS232 interface. Based on

the source code of the demo program, we built an application, named CMSCOM, to configure the

RS232 connection and to receive data. The library file, which is called mecif.lib, contains the

definition of each data structure and functions for communication with the RS232 interface.

Because the data structures were defined in a 16-bit format and compilation in a 32-bit operating

system prevented CMSCOM from correctly interpreting the data values after linking to the

library file, CMSCOM was compiled in 16-bit Turbo C in Windows 95.

 CMSCOM first communicates with the bedside monitor and checks which data are available

for access. All data are transmitted in packets called messages. Each message type is identified

by a message ID. Message ID is uniquely specified by six items, as listed in Table 2.1.

SourceID Specifies the measurement module that transmits the message
(e.g. ECG module, invasive pressure module)

SourceNo Differentiates between different modules with the same
SourceID (e.g. the patient has two different pressure
sensors/measurement modules)

ChannelID Specifies the output quantity (e.g. ECG wave or heart rate
numeric)

ChannelNo Differentiates between different channels (e.g. ECG wave may
outputs three wave channels, each of which represents a
different ECG lead)

MsgType Contains the syntax and semantic of the message (i.e. specify
the data structure)

Layer Differentiates between messages that have the same meaning
in different steps of data processing

 Table 2.1: Message ID structure [17]

After getting a list of message Ids for available data, it sends a request to the monitor for

continuously receiving a set of desired available data.

CHAPTER 2. A SYSTEM FOR SYNCHRONIZED COLLECTION OF PHYSIOLOGICAL
 SIGNALS AND CLINICAL ANNOTATIONS

19

 When a message is received from the monitor, it is identified by its message ID, and the

parameter value contained in the message is saved into a designated text file. We chose to use

text files to transfer data instead of directly transferring data into the database because CMSCOM

is a 16-bit application and its direct compatibility with various database engines is limited.

2.2.2.3 Bandwidth Consideration

Ideally, we would like to collect all the physiological data that the monitor could provide.

However, the amount of data we can collect is limited by the bandwidth of the communication

channel. The type and the number of physiological signals that can be collected from the bedside

monitor via its RS232 interface are governed by bandwidth cost of each signal, the baudrate of

the RS232 ports on the monitor, the baudrate of the serial port on the laptop, and the number of

escape sequences in the messages. Exceeding the allowable bandwidth could cause an overflow

of the monitor’s transmission buffer and loss of data.

 The CMS monitor collects two forms of physiological signals: waveforms and numerics.

Waveforms are sampled at either 500 Hz (electrocardiogram) or 125 Hz (pressures, arterial

oxygen saturation, respiration) Numerics (e.g. heart rate, respiratory rate) are derived from the

waveforms once every 1024 milliseconds. Table 2.2 lists the types of monitor data that are

available for access and their minimum bandwidth cost.

Message Type Period
(milliseconds)

Length
(bytes)

Minimum Bandwidth Cost
(bytes/second)

Waveform 32 19-43 1376
Waveform Support 1024 33-133 133

Numeric 1024 39-135 135
Alarm Information 1024 13-61 61

 Table 2.2: Bandwidth cost summary for each data type [17]

 There are two RS232 ports on each RS232 card, and each monitor can have two cards. Each

RS232 port could be set at one of the three baud rates: 9,600 baud, 19,200 baud, and 38,400 baud,

with the constraint that if one port is set at the maximum baud rate, the other port on the same

CHAPTER 2. A SYSTEM FOR SYNCHRONIZED COLLECTION OF PHYSIOLOGICAL
 SIGNALS AND CLINICAL ANNOTATIONS

20

card would only support data output up to 600 bytes/sec. Since the amount of escape sequences

is unknown, the maximum amount of data CMSCOM requests from the monitor should be under

the byte rate limit for the baud rate setting of the monitor. These limits are listed in Table 2.3. (HP

Programming Guide)

Selected Baudrate (bits/sec) Byte Rate Limit (bytes/sec)

9600 920

19200 1850

38400 3750

 Table 2.3 Limits on byte rates [17]

 Table 2.2 and Table 2.3 show that in order to collect all available physiological signals, there

must be two RS232 interface cards to provide 4 ports, two of which must be set at the maximum

baud rate. However, we have only one serial port on our laptop, and this standard serial port has

a minimal buffer. If the incoming data arrives at 38,400 bits/second, it would overflow the buffer

and lose data.

 The four RS232 ports in combination can transmit 8700 bytes every second. This byte rate

allows a maximum of six waveforms that are sampled at 500 Hz being collected simultaneously

or five such waveforms plus all the numeric data. Since most patients usually have no more than

four or five such waveforms being measured or displayed simultaneously on the monitor, a

previous study was able to receive most data from the bedside monitor for most patients using

two RS232 cards and an expanded serial connection with smart serial cards on a workstation. [30]

 We considered a similar expansion, but since, for research at the bedside, we were restricted to

using only a laptop, which limits the extent of expansion and computational power, we were not

able to receive and analyze all the waveforms in real time. Thus, we focused on getting numeric

data and alarm information as a first step. The final baud rate was set at 19,200 bits/second for

one RS232 connection. In the future, we would like to upgrade our system to receive all

available physiological data.

CHAPTER 2. A SYSTEM FOR SYNCHRONIZED COLLECTION OF PHYSIOLOGICAL
 SIGNALS AND CLINICAL ANNOTATIONS

21

2.2.3 Command Center

The functions of the command center include data transfer, data synchronization, and central

control of all the components of PAAT. It features the main user interface, which hosts patient

information entry and command buttons. Figure 2.2 illustrates the main user interface.

 The command center is written in Visual Basic .NET. The choice of this language was made

based on the ease of creating and modifying the user interface, availability of multiple timers, and

direct access to SQL server and other database engines using the functionality ADO.NET.

 At selected clock times, the command center obtains physiological data from data text files

and transfers the data into the database. This clock is based on the system time of the laptop. The

command center uses this clock to check if any physiological data have been received in the past

two seconds. If yes, it time-stamps each set of data with the time of this clock and records the

data into the database. Otherwise, it substitutes a special value for missing data, time stamps it,

and records it in the database.

2.2.4 Clinical Event Recording

2.2.4.1 Event Annotation

Clinical event recording is done in four cases: 1) the bedside monitor sounds an alarm; 2) an

alarm algorithm under investigation displays an alarm; 3) the patient becomes irritated and

requires immediate attention when no alarm occurs; 4) drugs are being administered or

discontinued.

CMS Alarm Event. When the bedside monitor sounds an alarm and sends alarm information to

the system, an annotation box, as in Figure 2.3, is displayed on the user interface.

CHAPTER 2. A SYSTEM FOR SYNCHRONIZED COLLECTION OF PHYSIOLOGICAL
 SIGNALS AND CLINICAL ANNOTATIONS

22

CHAPTER 2. A SYSTEM FOR SYNCHRONIZED COLLECTION OF PHYSIOLOGICAL
 SIGNALS AND CLINICAL ANNOTATIONS

23

Figure 2.3 CMS alarm message box

The field “Begin Time”, “Alarm Type” and “Alarm Severity” are automatically filled when the

annotation box appears. “Begin Time” is the time point when the alarm starts. “Alarm Type” is

the physiological parameter that triggers the alarm. “Alarm Severity” is given by the monitor

according to the following prioritization scheme [17]:

3: Red Alarms – identify apnea, extreme bradycardia, extreme SpO2 desaturation, FiO2 low

 oxygen, asystole, ventricular fibrillation and pressure disconnect conditions;

2: Yellow alarm – alert clinicians when the preset alarm limits are exceeded;

1: Short yellow alarm – alert clinicians of abnormal but not life-threatening arrhythmia.

 Technical alerts (INOPS), which are triggered by signal quality problems, equipment

malfunction, a measurement setup problem, or an ongoing calibration, are recorded into the

database but not annotated because they are treated differently by caregivers and have distinct

sounds and known causes.

 During or after the alarm, a trained observer at the bedside records whether the patient is

moving, whether a medical procedure is in process, and how the medical staff responds to the

alarm, such as checking the patient, adjusting sensors, or silencing the alarm without any

intervention.

CHAPTER 2. A SYSTEM FOR SYNCHRONIZED COLLECTION OF PHYSIOLOGICAL
 SIGNALS AND CLINICAL ANNOTATIONS

24

 “End Time” is automatically filled in when the alarm stops. At this time, a trained observer

asks the nurse or physician at the bedside to classify the alarm into one of the three categories, as

adopted from work by Tsien [48]:

• TP-R (True Positive, Clinically Relevant)

These alarms are appropriate given the actual data value, and the patient’s condition

requires prompt attention. For example, a patient suddenly develops a dysrhythmia with

a heart rate of 200 beats per minute (bpm), the ECG measures 200 bpm, the monitor is set

with an upper threshold at 160 bpm, and the monitor sounds an alarm.

• TP-I (True Positive, Clinically Irrelevant)

These alarms are appropriate given the input data value as compared to the set threshold

value, but the patient’s condition had not changed in a way that required additional

medical attention. The sounding of the alarm thus has no clinical relevance. For

example, a patient suddenly has a heart rate of 200 beats per minute (bpm), the ECG

measures 200 bpm, the monitor is set with an upper threshold at 160 bpm, but the

increase in heart rate is due to patient’s excitement upon seeing his or her family, so he or

she does not require medical attention. For this example, we should note that children,

especially sick children, generally have a higher heart rate and a higher tolerance of

fluctuation in heart rate than adults do.

• FP (False Positive)

These alarms are inappropriate given the input data value. For example, a patient has a

heart rate of 80 bpm. The ECG electrodes are manipulated. Although the patient’s heart

rate stays at 80 bpm throughout this period, an alarm sounds. The alarm was false

because the reported value did not reflect the patient’s condition.

This classification can be revised if any events in the next 30 minutes indicate the classification is

incorrect. The need for this update mechanism will be elaborated in the discussion on the gold

standard for alarm classification in section 2.2.7.

 When the entire message box is completed, the observer would save the annotation and close

the message box.

Algorithm Alarm Event. When an alarm algorithm under investigation generates an alarm and

reports it, an annotation box, as in Figure 2.4, is displayed on the user interface.

CHAPTER 2. A SYSTEM FOR SYNCHRONIZED COLLECTION OF PHYSIOLOGICAL
 SIGNALS AND CLINICAL ANNOTATIONS

25

Figure 2.4 Algorithm alarm message box

The field “Begin Time” is automatically filled when the annotation box appears. “Begin Time” is

the time point when the alarm starts. The annotation is done in the same manner as that for the

CMS alarm message box except there are no parameter and severity specifications because the

alarm algorithms that we have developed classify the patient’s condition instead of an individual

physiological signal, and the alarms generated by these algorithms do not have a priority

assignment. In future research where new algorithms generate more refined decisions or require

additional information, the algorithm alarm message box can easily be modified to facilitate

necessary annotations.

Non-Alarm Event. If the patient starts to show irritation or serious discomfort when no alarms

are generated, the trained observer starts a Non-Alarm event annotation entry box to record this

event. If the nurse deems this event to be clinically relevant, this event would be classified as a

false negative. Figure 2.5 shows the layout of this annotation entry box.

CHAPTER 2. A SYSTEM FOR SYNCHRONIZED COLLECTION OF PHYSIOLOGICAL
 SIGNALS AND CLINICAL ANNOTATIONS

26

 Figure 2.5 Non-Alarm event annotation entry box

Medication Annotation. An annotation entry box is also available for the observer to record

when a drug is administered, which could significantly alter some of the physiological data.

 Figure 2.6 Drug information entry box

CHAPTER 2. A SYSTEM FOR SYNCHRONIZED COLLECTION OF PHYSIOLOGICAL
 SIGNALS AND CLINICAL ANNOTATIONS

27

2.2.4.2 Multiple threading

Events, especially clinically relevant events, are likely to occur multiple times. They might be

concurrent, overlapping, or in series. Especially during such times, the caregivers are busily

involved in taking care of the patients, so they might not be available to answer questions or they

do not have adequate information to classify the alarm yet. Thus, our system must allow multiple

alarm messages to coexist and multiple annotation boxes to remain open in order to facilitate the

annotation process.

 The design of multiple threading in PAAT is illustrated in Appendix A. Figure A.1 shows the

primary thread and the main thread. The primary thread serves the main user interface, initializes

new threads, and relays commands to other threads in the system. The main thread serves the

monitoring functions of the system. It has a timer running at one second and automatically reads,

processes, and stores the physiological data. It also generates new threads for the annotation

processes for the monitor’s alarms and the algorithms’ alarms during each cycle.

 As shown in Figure A.2, there is a thread for each alarm-generating entities (i.e. the bedside

monitor and each alarm algorithm). PAAT also runs a threshold alarm algorithm in parallel with

the CMS alarm system to mimic the alarm algorithm in the previous generation of patient

monitoring systems. It immediately generates an alarm when a measurement value exceeds the

parameter’s upper or lower threshold. The purpose of running this algorithm will be elaborated in

Chapter 3.

 When an alarm is generated, a new thread is initialized and a message box appears on the

screen. This thread will remain active until the user finishes entering the annotations about the

alarm and closes the message box. Thus, concurrent or overlapping events can be annotated

simultaneously and as clinical information becomes available. Figure A.3 illustrate this

capability of PAAT for CMS alarm annotations and the threshold alarm annotations. Figure A.4

gives the similar illustration for two sample alarm algorithms.

 Each Non-Alarm event annotation and drug information entry also has its own thread. The

purpose of these thresholds is to allow multiple concurrent annotation sessions as well as

separation from the automated monitoring process.

CHAPTER 2. A SYSTEM FOR SYNCHRONIZED COLLECTION OF PHYSIOLOGICAL
 SIGNALS AND CLINICAL ANNOTATIONS

28

2.2.5 Database

The database is designed using SQL server desktop version. SQL Server provides more

capability and reliability than database engines such as Microsoft Access and is simpler to use

than engines such as Oracle. It is easy to backup and restore different databases, allowing data

from each collection session to exist in one database. More importantly, SQL Server has

enforced transactions mechanism, which ensures the physical integrity of each transaction. For

example, it provides lock facilities that preserve transaction isolation and logging facilities that

ensure transaction durability. Even if the server hardware, operating system, or SQL Server itself

fails, SQL Server uses the transaction logs, upon restart, to automatically roll back any

uncompleted transactions to the point of the system failure. Transaction management features

enforce transaction atomicity and consistency. After a transaction has started, it must be

successfully completed, or SQL Server undoes all of the data modifications made since the

transaction started. These features ensure data integrity and prevent partial or corrupted record

from being stored.

 Table 2.4 lists the tables in the database for the physiological data collection unit. Table 2.5

lists all the tables for clinical event recordings.

HR (heart rate)
PR (pulse rate)
RR (respiratory rate)
ABP (arterial blood pressure)
NBP (cuff blood pressure)
O2Sat (arterial oxygen saturation)
Perf (oxygen perfusion)
Tp (temperature)
CO (cardiac output)
Wedge (pulmonary wedge pressure)
CO2 (carbon dioxide)
AllNu (all numeric)
AllNuAvg (features derived from the numeric)

Table 2.4 Physiological data tables

CHAPTER 2. A SYSTEM FOR SYNCHRONIZED COLLECTION OF PHYSIOLOGICAL
 SIGNALS AND CLINICAL ANNOTATIONS

29

Table 2.5 Clinical event recordings tables

2.2.6 Time Synchronization

In the previous section, we described the time stamps for all the data records. Time

synchronization between two different physiological parameters is achieved by matching their

time stamps. Time synchronization between event recordings is achieved by comparing the

beginning times and the two ending times. Synchronization between physiological data and event

recording is achieved by going over all the time intervals defined by the begin and end time of

each event and identifying those events whose time interval spans the time stamp of the

physiological data, as illustrated in Figure 2.7.

2.2.7 Gold Standard for Alarm Classification

The most difficult part of annotating an alarm-sounding event in the ICU is the accurate

classification of the alarm. Even if the definitions of each class, such as those described earlier in

the chapter (i.e. TP-R, TP-I, or FP), are clearly disjoint, the complexity of the event or how an

alarm is classified, by whom, and on what basis could make the classification process ambiguous.

 In their studies, Tsien, Lawless, and Koski all asked the patient’s nurse to classify the alarms.

The gold standard for alarm classification is then the nurses’ comments. From personal

communication with the director of a standard pediatric ICU, we learned that the patient’s nurse

may not serve as a sufficient gold standard because nurse training focuses on routine care and

reaction to clinical events rather than on knowledge that enable nurses to detect trends and to

CMS Alarm
Tree1 Alarm
Tree 2 Alarm
.
. (Algorithm alarms)
.
Threshold Alarm

CHAPTER 2. A SYSTEM FOR SYNCHRONIZED COLLECTION OF PHYSIOLOGICAL
 SIGNALS AND CLINICAL ANNOTATIONS

30

CHAPTER 2. A SYSTEM FOR SYNCHRONIZED COLLECTION OF PHYSIOLOGICAL
 SIGNALS AND CLINICAL ANNOTATIONS

31

foresee a deterioration in the patient’s condition. Other studies propose to verify the nurse’s

classification with the attending physician, but since the attending physician may not have

followed the course of this particular patient on a minute-to-minute basis, the physician’s

judgment may not be a good gold standard either.

 So far, there is not a reliable gold standard for alarm classification in the literature. Thus, in

this study, we construct a 2-tier gold standard: we first ask the patient’s nurse or a physician who

has been closely following the patient to classify the alarm sounding event. Then, we use the

patient’s condition in the next 30 minutes to revise the human expert’s classification as needed.

For example, if an alarm for bradycardia (i.e. heart rate less than the low limit) is classified as a

false positive, and the patient becomes persistently hypotensive in the next 30 minutes, we would

revise the classification to either clinically relevant true positive or a class chosen by all

physicians and nurses at the bedside.

2.2.8 Evaluation Procedure

Evaluation of the system was done in three stages: simulation, implementation, and usage.

Testing was done at each stage. During simulation, both unit level testing and system-level

testing were performed. A simulation database was constructed as the source of patient data. At

the beginning of implementation, the RS232 connection was first tested separately from the rest

of the system. After it was shown to function normally, system-level testing was performed.

After this test succeeded, the system was used to run alarm algorithms in real time in a

completely functional phase, which facilitated stress testing.

2.2.9 Implementation

This system has been implemented and used at the Multidiciplinary Intensive Care Unit (MICU)

of Children’s Hospital in Boston. The study was approved as a part of a research protocol by the

Institutional Review Board of Children’s Hospital. A patient consent form is required to ensure

CHAPTER 2. A SYSTEM FOR SYNCHRONIZED COLLECTION OF PHYSIOLOGICAL
 SIGNALS AND CLINICAL ANNOTATIONS

32

that patients and their families are comfortable with the presence of the observer. Patient

confidentiality and privacy have been protected according to the hospital guidelines.

 A sample protocol for each session is as follows:

1) After obtaining patient’s/guardian’s consent, the investigator connects the portable

computer for the study to the bedside monitor via a cable that is installed and tested by

technicians from the Biomedical Department of Children’s Hospital.

2) The software-based system on the portable computer collects numeric physiological data

(e.g. heart rate, blood pressures, oxygen saturation) every second, monitors alarm and

algorithm alarm recordings as alarms occurs, and gathers annotations of any clinical events

(e.g. suction, drug injection, change of sensors). The investigator also obtains the patient’s

age, gender, primary reason for MICU stay, and the settings of monitor alarm limits from

the nurse, and records this information into the database.

3) A half hour or one hour into data collection, intelligent alarm algorithms start to analyze

the collected data in real-time to generate visual alarms on the screen of the investigator's

computer. When such an alarm appears, the investigator will record the time, duration, and

cause of these generated alarms, along with the nurse's comment regarding the patient's

state. The performance of these algorithms may be evaluated either in real time or after the

session ends.

4) At the end of each session (2-12 hours after the beginning of the session), collected data

and annotations may remain stored on the investigator's computer or may be transferred at

a remote location to a file server.

2.3 Results

2.3.1 System Evaluation

We tested our system according to the evaluation procedure described in the last section on a

Pentium 4 professional notebook with 2.2 GHz CPU speed, 1024 MB memory, 60 GB storage

disk space, and 64 MB video memory. It was used to collect patient data over 300 hours in

CHAPTER 2. A SYSTEM FOR SYNCHRONIZED COLLECTION OF PHYSIOLOGICAL
 SIGNALS AND CLINICAL ANNOTATIONS

33

sessions from 2 to 12 hours in duration, and demonstrated no major problem in the last 200 hours

of data collection.

 CMSCOM was the most robust and independent component of the system. Its function was

not disrupted by disturbances or faults in other parts of the system. However, to achieve this

robustness, it required the highest priority among all running applications. Otherwise, data arrival

from the bedside monitor would be aperiodic and may cause data loss at unpredictable times.

 The number of concurrent multiple threads was tested up to 70, which allowed message boxes

for 70 alarms to be active at the same time. Because this number far exceeded the amount of

annotations the observer could handle concurrently, higher numbers were not tried. The system

may be able to handle more than 70 concurrent annotations given that the system resources such

as memory and screen size were sufficiently large.

 As a data collection system, the system’s performance was consistent. For the evaluation of

alarm algorithms, the system performed at a normal level for up to 10 algorithms. When trials of

more than 10 alarm algorithms were carried out simultaneously, the amount of computation and

memory usage started to put a burden on the system, resulting in lower performance and data

loss. Such problems were alleviated by decreasing the rate of data collection and analysis (e.g.

from 1 Hz to 0.5 Hz).

 The system slowed down globally in response to the notebook heat-up problem. Nevertheless,

all processes continued in a synchronized manner. This problem was also alleviated by

decreasing the rate of data collection and analysis.

2.3.2 Data Collection

The MICU provides intensive care to a diverse group of children. Its patient population consists

of all critically ill children admitted to Children’s Hospital except those who have primary cardiac

disease and require treatments in the Coronary Intensive Care Unit (CCU). Thus, patients come

to the MICU for a variety of reasons, such as recovery from surgery, treatments for specific

diseases, close monitoring and diagnosis. They range from neonates to adolescents. Their stays

at the MICU last from a few hours to a few months. A nurse simultaneously cares for at most

CHAPTER 2. A SYSTEM FOR SYNCHRONIZED COLLECTION OF PHYSIOLOGICAL
 SIGNALS AND CLINICAL ANNOTATIONS

34

two patients. One or sometimes two nurses are assigned to a patient who needs frequent

interventions.

 Different patients were monitored for different sets of physiological parameters. Some

parameters, such as heart rate, were measured in every patient, while others were measured only

in some patients. Table 2.6 lists the numeric parameters according to how frequently they were

measured during this research.

Always
Monitored parameters

Heart rate
Pulse rate
Respiratory rate
Arterial oxygen saturation

Frequently
monitored parameters

Arterial blood pressure (systolic, diastolic, mean)
Noninvasive blood pressure (systolic, diastolic, mean)
Oxygen perfusion
Venous oxygen saturation

Less frequently
monitored parameters

Temperature
Central venous pressure
Carbon dioxide level

Rarely
monitored parameters

Wedge pressure
Cardiac output
Temperature difference

 Table 2.6 Monitored numeric parameters

 During 196 monitoring hours, collected between 8 AM to 2 AM, in sessions of 2-12 hours, the

bedside monitor sounded 325 clinical alarms. Of these alarms, 290 were true positives with

clinical relevance, 20 were true positives but clinically irrelevant, and 15 were false positives.

Two instances of false negatives were observed.

 Arterial blood pressure alarms had a false positive rate at 20%, but the other 80% were all true

positives with clinical relevance. While 13 out of 15 false alarms were arterial oxygen saturation

alarms, over 80% of the other arterial oxygen saturation alarms were true positives, and about

80% of which were clinical relevant, and the rest were clinically irrelevant true positives. Heart

rate alarms, respiratory rate alarms, and noninvasive blood pressure alarms were mostly true

positives without clinical relevance. There was no oxygen perfusion alarm because the nursing

CHAPTER 2. A SYSTEM FOR SYNCHRONIZED COLLECTION OF PHYSIOLOGICAL
 SIGNALS AND CLINICAL ANNOTATIONS

35

staff did not set limits or turn on the alarm system for this parameter. Other rarely monitored

parameters did not generate alarms.

 Besides alarms that alert the caregiver of possible deterioration in the patient’s condition, the

CMS monitor generated another kind of audio and visual alerts, called INOPs. During the 196

monitoring hours, 1768 INOPs were generated. They were used to alert the caregivers of setup or

hardware faults and the system being unable to process signals properly. Unlike the alarms, they

were not specifically indicative of the patient’s condition. For clarity, in the rest of this thesis, we

refer to regular alarms as alarms, INOP alerts as INOPs, and alarms and INOPs together as alerts.

 According to our observations at the bedside, the MICU staff responded to the two kinds of

alerts with different senses of urgency. Alarms and INOPs were sounded with different tones.

Upon hearing an alarm, the nurses would immediately check the patient and the values displayed

on the monitor’s screen. During the 196 monitoring hours, ten out of the 325 alarms were

silenced by the MICU staff. At no times did the MICU staff suspend the monitor’s alarm system.

For the INOPs, the nurses could wait from seconds to minutes before checking the monitor and

making appropriate adjustments of sensors and equipment connections. After identifying the

cause of an INOP, they usually silenced the audio alert but rarely suspended it.

 Not only were the nurses’ prioritizations of the INOPs different from that of the alarms, but

also the rates of the two types of alerts varied widely from session to session and patient to

patient. Figure 2.8 is a histogram of the number of patients in each bracket of different alarm

rates. Out of the 16 patients included in this study, five patients were in especially critical

conditions, so that the study sessions had to end and the observer had to withdraw from

the bedside within the first two hours. These patients had the highest alarm rate and

contributed to the distribution above 10 alarms per hour. However, no INOPs were

generated during the observation of these patients. The other eleven patients were

followed in sessions of 2-12 hours in the total 196 monitoring hours. Figure 2.9 is the

histogram of the number of patients in each bracket of different alarm rates for the eleven

patients. It is in fact a zoomed-in view of Figure 2.8 for the patients whose alarm rate was below

10 alarms per hour.

CHAPTER 2. A SYSTEM FOR SYNCHRONIZED COLLECTION OF PHYSIOLOGICAL
 SIGNALS AND CLINICAL ANNOTATIONS

36

5 15 25 35 45 55 65
0

2

4

6

8

10

12
Distribution of Alarm Rate Over All Patients

Number of Alarms / Hour

N
um

be
r o

f P
at

ie
nt

s

Figure 2.8 Distribution of alarm rate over all patients

CHAPTER 2. A SYSTEM FOR SYNCHRONIZED COLLECTION OF PHYSIOLOGICAL
 SIGNALS AND CLINICAL ANNOTATIONS

37

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4
Distribution of Alarm Rate Over Patients Monitored for 2-12 Hours

Number of Alarms / Hour

N
um

be
r o

f P
at

ie
nt

s

Figure 2.9 Distribution of alarm rate over the patients monitored for 2-12 hours

CHAPTER 2. A SYSTEM FOR SYNCHRONIZED COLLECTION OF PHYSIOLOGICAL
 SIGNALS AND CLINICAL ANNOTATIONS

38

Three of these eleven patients had no alarms. Others’ alarm rates were relatively distributed

closed to the mean of 1.7 alarms/hour. The total 1768 observed INOPs were randomly

distributed among these patients.

2.4 Discussion

This system for synchronized collection of physiological signals and clinical annotations has been

shown to synchronize the physiological data and clinical event recordings in a consistent manner.

Although its performance could be influenced by hardware capabilities, it is robust in achieving

real-time data collection at the bedside.

 Using this system, we were able to collect a set of annotated physiological data with more

certainty in data correlation than previous studies had. It can be easily backed up or restored.

The data storage format also allows easy access during both prospective and retrospective data

analysis.

 A major new finding in this study is the unexpectedly low volume of clinical alarms generated

by the bedside monitor. In the study by Tsien, there were 2942 alarms during 298 monitored

hours: about 9.9 alarms/hour. [45] In the similar study by Lawless, there were 2176 alarms

during 928 monitoring hours: about 2.3 alarms/hour. [25] Our results show only 325 clinical

alarms during 196 monitoring hours: about 1.7 alarms/hour.

 One explanation for the low volume of clinical alarms in comparison to the study by Tsien is

that Tsien’s study counted what we now call INOPs as clinical alarms. That study obtained its

data from the previous generations of patient monitoring systems, which did not have the

capability to distinguish the abnormal measurements that were due to hardware or operational

malfunction of the monitor itself from those that were due to some physiological changes in the

patient. In fact, the number of alarms and INOPs per hour is about 10.7 alerts/hour, which is

similar and even slightly higher than the alarm rate of 9.9 alarms/ hour that was found by Tsien.

 This reasoning may also help explain the unexpected low rate of false alarms. Comparing to

previous studies in which the false alarm rate is as high as 86%, a false alarm rate of 4.6% found

in this study suggests a significant reduction in false alarm rate with the newer monitoring

system. [45] Since all the technical alarms are false alarms by our alarm classification and we

CHAPTER 2. A SYSTEM FOR SYNCHRONIZED COLLECTION OF PHYSIOLOGICAL
 SIGNALS AND CLINICAL ANNOTATIONS

39

exclude them from the alarm count, our false alarm rate should be lower than those in previous

studies.

 Table 2.7 gives a breakdown of alert categorization with two counting schemes. The first

scheme includes alarms only, and the second scheme includes both alarms and INOPs, where

INOPs are considered as false positive alarms.

Average Alarm Rate (Number of Alarms / Hour) Study

Total TP-R TP-I FP

Tsien 9.9 0.79 0.59 0.79

Lawless 2.3 0.12 0.62 0.12

This study (W/O INOPs) 1.7 1.49 0.10 0.05

This Study (W/ INOPs) 10.7 1.49 0.10 9.14

 Table 2.7 Frequencies of different types of alerts

Including the INOPs in the alarm number count has no effect on the rate of true positive alarms;

only the false positive rate and total alert rate are changed.

 As in the study by Tsien, Lawless’ alarm statistics include alarms that were strictly due to

hardware or operational malfunctions; yet, its alarm rate, 2.3 alarms/hour, is only about 0.5

alarms higher than this study’s alarm rate that does not include the INOPs. One explanation may

be that the actual number of alarms is higher than the recorded alarm rate. Lawless obtained his

alarm statistics by asking the pediatric ICU staff to voluntarily record the source, time (shift), and

the number of alarm soundings for each patient during a 7-day period. [25] Given the intense

workload in an environment such as the ICU, and for reasons that we will elaborate in Chapter 3,

the nurses may not had time to record all the occurrences of alarms at the bedside.

 Another reason for our significantly different results compared to previous studies may be the

differences among the three patient populations. One characteristic of a patient population is the

critical nature of the patient’s state. We could expect that a population of less severely ill patients

would have a lower average alarm rate. The number of clinically relevant true positive alarms

CHAPTER 2. A SYSTEM FOR SYNCHRONIZED COLLECTION OF PHYSIOLOGICAL
 SIGNALS AND CLINICAL ANNOTATIONS

40

serves as a measure of this characteristic. Table 2.7 shows that our study has the highest rate of

clinically relevant true positive alarms among the three studies. The TP-R rate in Tsien’s study is

about a half of what our study observed. Lawless’ TP-R rate is the lowest. Thus, the results

suggest that the patient populations for the three studies are different, but the lower alarm rate in

this study is not necessarily a result of having a population of less clinically critical patients. On

the contrary, the relatively high rate of clinically relevant true positive alarms suggests that the

patient population in this study overall may be more critical than that in the previous two studies.

 Although the alarm statistics are dependent on the overall patient population, we must

emphasize that individual patients within the study may be clinically very different from one

another. We do not have the distribution of patient population over the true alarm rates from the

previous studies, but the patient distribution in our study, as illustrated by Figure 2.8 and Figure

2.9, suggests that the alarm rate could vary significantly within the patient population for a study.

For example, four patients had an alarm rate of less than 0.5 alarms per hour, while five patients

had more than 10 alarms per hour. Even within the range of 10 alarms per hour, seven out of the

eleven patients had different alarm rates.

 Table 2.7 shows another major new finding in this study: the rate of clinically irrelevant true

positive alarms is lower than that in the previous studies by about six fold. This decrease is

further illustrated by the statistics of the TP-I alarms in Table 2.8.

Percentage of Total Number of Alarms in Each Class Study

TP-R TP-I FP

Tsien 8% 6% 86%

Lawless 5.5% 26.5% 68%

This study (W/O INOPs) 89.2% 6.2% 4.6%

This Study (W/ INOPs) 13.8% 1.0% 85.2%

Table 2.8 Distribution of the alarms among different alarm classes

CHAPTER 2. A SYSTEM FOR SYNCHRONIZED COLLECTION OF PHYSIOLOGICAL
 SIGNALS AND CLINICAL ANNOTATIONS

41

Statistics of different types of alerts averaged over 196 monitoring hours. The alarm

classification methods for Tsien’s study and this study are the same, as described in Section 2.2.

Lawless’ categorization of TP-R and TP-I is slightly different. His TP-R statistics are for alarms

that lead to change in therapy, while TP-I alarms are true alarms that do not lead to change in

therapy.

 Counting the INOPs, only 1% of the alarms in this study were clinically irrelevant true

positives. This percentage is far less than that found by Lawless, and this result may be due to the

different definitions for TP-I alarms and TP-R alarms in the two studies. However, this

percentage is also less than that found by Tsien, who used the same alarm classification method

and found a similar false positive alarm rate as did this study, with INOPs counted as false

alarms. Thus, the results overall suggest that the newer generation of patient monitoring

systems has improved data analysis and alarm algorithms.
 The significant reduction in the clinically irrelevant true alarms is not the only evidence for the

improvements in the new monitors. Without counting the INOPs, about 89.2% of all alarms are

true positives with clinical relevance. Even with the INOPs counted (and thus the false alarm rate

being comparable to those in the previous studies), the percentage of clinically significant true

alarms under the same classification method has improved from 8% to 13.8%.

 Due to intensive competition in the market of patient monitoring systems, individual vendors

guard their special techniques as proprietary information, so the new data analysis techniques and

specialized algorithms in the current generation of monitors have not been made public. We

hypothesize that more sophisticated signal processing is applied to physiological signals to reduce

noise and to derive more accurately the numeric values. Data analysis that incorporates

information from multiple parameters may also facilitate the observed improvements.

Furthermore, specialized algorithms, such as that for ST elevation detection, may also contribute

to the increased specificity of alarm sounding decisions.

 Given these unexpected results, we then would like to ask: is there still room or a need to

improve patient monitoring systems? The answer seems to be yes. Why? Data from this study

only represents a subset of patients in one pediatric ICU. Adult patient population may have a

wider range of disease courses. Moreover, the purpose of patient monitoring systems is not only

to generate sensitive and specific alarms but also to make patient data more readily useable and

informative to the medical professionals. Thus, much more work still need to be carried out.

CHAPTER 2. A SYSTEM FOR SYNCHRONIZED COLLECTION OF PHYSIOLOGICAL
 SIGNALS AND CLINICAL ANNOTATIONS

42

Things we have learned from this study help us to find the direction for this future work. In the

next chapter, we explore some of the ideas in this direction.

43

Chapter 3

Real-Time Development of Alarm Algorithms

3.1 Motivation

Machine learning has typically been used to learn patterns in the data collected from multiple

patients in medical applications. As a result, the models learned represent the average patient. In

clinical medicine, however, many patients behave in highly individual ways that might deviate

significantly from the average. Even what counts as “normal” for a specific patient may be

highly abnormal if seen in another, and patients’ dynamic responses to changing circumstances

also vary greatly from individual to individual. One of our main goals, therefore, is to develop

learning methods that will create models specific to the individual patient. There is, innately, a

trade-off in choosing this strategy, however. The amount of data that is available about a large

population is typically far richer than what can be gathered about an individual patient.

Therefore, the population model is more likely to include aspects that represent rare events, which

are likely to have been seen in the population but not in the individual. Nevertheless, we have

chosen to try to learn individualized models in order to explore our ability to recognize events

that are most relevant to the specific individual.

 A previous study that applies a machine learning-based event discovery process to detecting

“true alarm” events from physiological data of multiple patients showed that some models

perform significantly worse on data from two other groups of patients. After adjusting the

thresholds in these models to levels that were more suited to 9% of one evaluation dataset, the

refined models’ performances on the rest of that dataset showed significant improvement. [48]

This finding suggests that a robust model must have a component that “adapts” to the targeted

patient population or to individual patient whenever possible.

CHAPTER 3. REAL-TIME DEVELOPMENT OF ALARM ALGORITHMS

44

 In patient monitoring, there could be significant patient variability within the same patient

population; thus, adaptation to individual patient is necessary. Yet, how to incorporate patient-

specific data into modeling? How to design a model component that changes with the patient? In

this research, we carried out an exploratory study towards helping answer these questions. The

study examined the feasibility and potential of developing alarm algorithms, using machine

learning techniques, based on patient-specific data, in real time at the bedside. If these algorithms

could achieve acceptable performance, our methodology could be used in constructing

comprehensive models that generalize over both disease processes and patient population.

3.2 Methods

In this section, we describe our methods in four parts: system requirements, training alarm

algorithms, evaluating these algorithms, and learning incrementally in real time. We also explain

the rationale for choosing the tools that we used and the methodologies that we adopted.

 As for any supervised learning in machine learning, the learning process consists of

training/model building and testing/evaluation. The core learning algorithm takes in a set of

examples with input-output pairs of the target function to be learned and generates all the

parameters of the model (weights and biases in the case of neural network models).

3.2.1 System Requirements

In order to develop alarm algorithms in real time, we must have a system that obtains

physiological data from a patient monitoring system, that collects clinical annotations at the

bedside, whose applications generate alarm algorithms within a bounded time, and that includes a

mechanism to evaluate these algorithms on subsequent incoming data.

 We expanded our system for synchronized collection of physiological signals and clinical

annotations to include modules for training and evaluating alarm algorithms. Alarms generated

by these algorithms were annotated in a similar manner as for recording alarm events generated

CHAPTER 3. REAL-TIME DEVELOPMENT OF ALARM ALGORITHMS

45

by the bedside monitor. To maintain modularity, each new application was designed to function

on its own processing thread and to be independent of a maximum number of other system

components.

3.2.2 Real-Time Training of Alarm Algorithms

In this study, we experimented with two machine learning techniques that had shown potential in

generating intelligent alarm algorithms for patient monitoring systems: classification tree learning

and neural network learning. We focused on classifying each stream or instance of physiological

data into an “alarm class,” if it corresponds to an adverse event for the patient, or a “non-alarm

class,” if it represents some normal patient condition.

 This section describes the two machine learning techniques and their implementation in our

study. At the end of the section, we also elaborate on key issues that we have encountered in

real-time training of alarm algorithms.

3.2.2.1 Classification Tree Learning

3.2.2.1.1 Overview of Classification Tree Learning

Classification tree learning is a method for inductive inference that takes on continuous-valued,

discrete-valued, and/or Boolean inputs and generates a discrete-valued output, and the learned

function is represented by a classification tree or a set of if-then rules. It is one of the most

widely used classifiers, and it classifies each instance by sorting it down a tree from the root,

through branching nodes that depend on the values of the instance’s attributes, to a leaf node,

which represents the instance’s class. It also forms a disjunction of conjunction of ranges of

attribute values of training instances.

CHAPTER 3. REAL-TIME DEVELOPMENT OF ALARM ALGORITHMS

46

3.2.2.1.2 Why Choose Classification Tree Learning?

Classification tree learning is a useful classification method for many practical problems. It is

generally best suited to problems in which instances are represented by a fixed set of attributes;

the classification output is discrete-valued; disjunctive description may be required; training data

may contain errors; and the training data may contain missing attribute values. [28] The problem

of deciding whether to sound an alarm has all of these characteristics. Thus, classification tree

learning is particularly useful for the classification of patient state as needing prompt medical

attention or not.

 Another reason for choosing classification tree learning is that a previous study showed that

classification trees are effective in classifying ICU data from a pediatric patient population into

the alarm class and non-alarm class. [47] It demonstrated the potential of classification tree

learning in providing decision support.

 Furthermore, the core algorithm for classification tree learning is well developed and readily

available. It is often referred to as ID3 in the literature, and it conducts a top-down, greedy search

through the space of possible classification trees. [33] ID3’s successors C4.5 and C5 have been

widely used. [28] The software that implements C5 can be called in batch-mode as an

independent, embedded application, running at very high speed, with almost no limit on the

amount of training data or test data. This feature allows the software to be incorporated into our

system.

3.2.2.1.3 Real-Time Generation of Classification Trees

For this study, we obtained the software See5, the Windows version of C5. (RuleQuest Research,

St. Ives, Australia) [41] To run See5 in batch-mode for training, two text files of specified format

were required. One file, called the Name file, specified the number and type of each attribute, the

type of the output, the order of attributes for the input data, and special training options, such as

boosting, cross-validation, and pruning. The other file, called the Data file, contained the training

data in the specified order. A third text file, called the Cost file, could be used, but is not

required, to specify an asymmetric cost function.

 Before a trained observer initializes training from the command center, he or she can specify a

training size, which is the number of data points to be written to the data file. After initialization,

CHAPTER 3. REAL-TIME DEVELOPMENT OF ALARM ALGORITHMS

47

PAAT automatically creates the Name file based on the available physiological data specified on

the user interface, writes the most recent data of the specified training size into the Data file, and

then calls See5 to process the training data and generate a classification tree. The resulting

classification tree is stored in a file called the Tree file.

3.2.2.1.4 Classification Tree Training Options

There are several options available for modifying the training process in classification tree

learning. The ones used in See5 are boosting, cross-validation, differential misclassification

costs, fuzzy thresholds, local pruning, global pruning, final minimum cases, winnowing, subset,

and sampling. The following subsections provide an overview of each option and specify how

each was set in this study.

Boosting. When this option is selected with the specification of the number of trials, the training

process builds a classifier in each trial. When an instance is classified, each classifier votes for its

predicted class with a weight equal to the confidence of its prediction, and the class assignment

that has the weighted majority vote from all the classifiers is the final decision. The classification

tree model is then this set of classifiers. Depending on the nature of the data, boosting often gives

higher predictive accuracy but at the expense of increased training time. In our study, we used

the standard setting of 10 trials for boosting.

Cross-validation. This option can be used to estimate the accuracy of the classifier even when

there are no separate test cases. The training data are divided into a user-specified number of

blocks, and this number is referred to as the number of folds. Each block contains approximately

the same number of cases and the same distribution of classes. A classifier is built for data in the

other blocks and then tested on the data in the block. Because the data division changes each

time a cross-validation is carried out, the results also change each time for the same data.

 We experimented with cross-validations with 5 to 15 folds. This option further lengthened the

training time. Since we were going to estimate the accuracy of the classifier(s) on separate data

instances, we chose not to carry out cross-validation in real time.

CHAPTER 3. REAL-TIME DEVELOPMENT OF ALARM ALGORITHMS

48

Differential misclassification costs. Without this option, by default, the core learning algorithm

assumes that the costs of all types of misclassification are equal. Some problems, however, have

an asymmetric cost function. For example, in medicine, the cost of diagnosing a patient with a

disease as not having the disease is much higher than the cost of diagnosing the patient positive

for the disease when the patient in fact does not have the disease. Thus, we first used differential

misclassification costs in training. However, due to the bias this cost assignment created, as to be

discussed in the later sections under the topic of handling imbalanced dataset, we decided not to

assign differential misclassification costs.

Local Pruning. To prevent the classification tree from overfitting the training data, local

pruning examines each subtree and replaces it by a leaf or a sub-branch if by doing so the entire

tree’s estimated predictive accuracy would be improved. The Pruning CF parameter for this

option controls the extent of local pruning. A lower value causes more extensive simplification.

In this study, we used the default Pruning CF value of 25%.

Global pruning. Global pruning looks at the tree as a whole and may prune relatively weak

subtrees to prevent the final tree from overfitting the training data. No parameter specifies the

extent of global pruning in See5. We used this option to obtain shorter trees, which may

generalize better over instances not in the training data.

Final Minimum Cases. The parameter for this option also influences the complexity of the

classifier. A higher minimum number of cases restricts the tests that can be used near the leaves

of the classification tree and usually leads to smaller classification trees. In this study, we used

the default parameter value of 2 cases.

Winnowing. Selecting this option directs the core learning algorithm to analyze the training

cases and discard attributes that are only marginally relevant to classification prior to constructing

a classifier. In this study, we assumed that all data could potentially be useful for classification,

and this option was not selected.

CHAPTER 3. REAL-TIME DEVELOPMENT OF ALARM ALGORITHMS

49

Subset. By default, the core learning algorithms deals separately with each value of an

unordered discrete attribute. If this option were chosen, these values would be grouped into

subsets. In this study, all attributes are continuous-valued, so we did not select this option.

Sampling. Selecting this option causes only the specified percentage of the training instances

to be used for constructing the classifier. Samples are redrawn every time a classifier is

constructed. Since we could lose interesting patterns or informative training instances in

sampling, we chose not to use this option. This rationale is elaborated further in section 3.3.

3.2.2.2 Neural Network Learning

3.2.2.2.1 Overview of Neural Network learning

Neural Network learning is inspired in part by the complex webs of interconnected neurons in

biological learning systems in the brain. It is a general, practical method for learning real-valued,

discrete-valued, and vector-valued nonlinear functions. It has the structure in Figure 3.1.

Figure 3.1 Neural network structure

Output layer

Hidden layer

Input layer
wij

wjk

 wkn

CHAPTER 3. REAL-TIME DEVELOPMENT OF ALARM ALGORITHMS

50

A neural network consists of a layer of input nodes, a user-specified number of layers of hidden

nodes, and a layer of output nodes. Each input node outputs the value of the corresponding

attribute, and this output feeds into every node in the next layer with a specific weight, and this

weighted value becomes the input of this next node. A bias may be added to each hidden layer.

The values of the output layer nodes specify the output of the network. The number of nodes in

each hidden layer can be user-specified or optimized during learning. Each hidden node transfers

its input to the output with a specific transfer function.

3.2.2.2.2 Why Choose Neural Network Learning?

Neural network learning is among the most effective methods for learning to interpret complex

real-world sensor data and also applicable to problems for which more symbolic representations

are often used. With the commonly-used transfer functions, it is inherently nonlinear and is

useful especially to capture nonlinear patterns. The training examples may contain errors, and

evaluation of the learned target function is fast. [28] These capabilities work well for our

problem.

 Another reason for choosing neural network learning is that a previous study showed that

neural network classifiers are effective in classifying ICU data from a pediatric patient population

into the alarm class and non-alarm class. [48] It demonstrated the potential of neural network

learning in providing decision support.

 This machine learning technique does have the drawbacks of possible long training times and

difficulty with interpretation of the input-output relations. Because we were using data from one

patient and the estimated data size was not significantly large, we expected the training time to be

tolerable. Also, at this stage in our research, we would like to focus on pattern recognition first

before going onto pattern elucidation. Thus, these drawbacks would not prevent us from

achieving our current research goals.

CHAPTER 3. REAL-TIME DEVELOPMENT OF ALARM ALGORITHMS

51

3.2.2.2.3 Real-time Generation of Neural Network

We use the backpropagation algorithm as our core learning algorithm. Each hidden node is

designed as a sigmoid threshold unit, which is best illustrated by Mitchell, as adopted in Figure

3.2.

Figure 3.2 The primitive unit for the neural networks’ hidden nodes

 We used EasyNN-plus, a software package that employs BACKPROPAGATION as the core

learning algorithm, to build neural networks. To run EasyNN-plus in batch-mode for training,

two text files of specified format are required. One file, called the Script file, specifies the

number and type of each attribute, the type of the output, the order of attributes in the training

dataset, and options for the training process. The other file, called the Data file, contains the

training data.

 Before a trained observer initializes training from the command center, he or she specifies a

training size, the number of data points to be written to the data file. After initialization, PAAT

automatically creates the Script file based on the available physiological data specified on the

x0 =1

x1

x2

xn

w0

w1

w2

wn

∑

xw i

n

0i
isum ∑

=
=

output

The sigmoid threshold unit

e sum1
1output −+

=

CHAPTER 3. REAL-TIME DEVELOPMENT OF ALARM ALGORITHMS

52

user interface, writes the most recent data of the specified training size into the Data file, and then

calls EasyNN to process the training data and generate a neural network. The resulting neural

network is stored in a file called the Network file.

3.2.2.2.4 Neural Network Learning Specifications

Learning rate. Learning rate determines the step size in the gradient descent search of the

BACKPROPAGATION algorithm by moderating the degree to which weights are changed at

each step. The trade-off on learning rate is that a smaller rate enables a more thorough learning

process but lengthens the training time. In our study, training data varied from patient to patient

and even over different monitoring periods of the same patient, so an “optimal” learning rate

could not be pre-determined. We balanced over this trade-off in real time by setting the initial

learning rate at 1.0, letting the core learning algorithm optimize it during training, and making it

decay over training cycles. EasyNN-plus optimizes the learning rate by running a few learning

cycles with different values prior to actual training to determine a learning rate that allows quick

learning and convergence. Then, the learning rate is automatically reduced if erratic learning or

oscillations in training error occur.

Momentum. Momentum is used to alter the weight-update rule in the BACKPROPAGATION

algorithm to speed up convergence. For our purposes, we first set the momentum to be 0.8 and

then let the core learning algorithm to optimize it and to allow it to decay over training cycles.

EasyNN-plus optimizes the momentum by running a few learning cycles with different values

prior to the actual training and then automatically reduces the value during learning if oscillations

in training error occur.

Network reconfiguration. This option allows the number of nodes in a specified hidden layer to

grow during training. A previous study had found that neural networks with one hidden layer are

sufficient to capture the complexity in the physiological data. [48] Thus, we started with one

hidden layer in neural network learning. The number of nodes in each hidden layer was set to be

the number of inputs and then allowed to grow during training.

CHAPTER 3. REAL-TIME DEVELOPMENT OF ALARM ALGORITHMS

53

Validation. To help prevent the neural network from becoming overfitted to the training data,

we designated 30% of the training data for validation. The learning and validating process was

set to stop after 100% of the validating examples were correct after rounding or if the number of

correctly classified validating instances decreased.

Target error stops. The core algorithm can stop the learning after a target error is reached. In

our study, we set the average error of 0.1 as the target error.

Fixed period stops. The core algorithm allows the user to preset a time limit on the training. To

allow adequate training while staying within the time needed for real-time training, we set the

upper bound for training time at 120 seconds.

3.2.2.3 Key issues in real-time training

3.2.2.3.1 Handling Imbalanced Dataset

As discussed in Chapter 2, clinical events were few in number and sparse in time at the bedside.

The available dataset for training alarm algorithms was highly imbalanced or skewed. As a

result, the classification trees or neural networks derived from such imbalanced training dataset

were biased towards classifying every new instance as belonging to the non-alarm class. We

could in theory have an alarm algorithm that would never generate an alarm.

 To address this problem with the imbalanced dataset, we experimented with three ways to

reduce its effects. One method was to introduce an asymmetrical cost function: the cost of a false

negative greatly exceeds the cost of a false positive. This method was applicable in classification

tree learning but not in neural network learning. The second method was to include only a

sample of the non-alarm instances in the training dataset such that the two classes were equally

represented during training. The third method was is to duplicate the instances in the alarm class

multiple times in the training dataset to reduce the imbalance.

CHAPTER 3. REAL-TIME DEVELOPMENT OF ALARM ALGORITHMS

54

3.2.2.3.2 Feature Derivation

Features of clinical time-series data are information derived from the data either over time or

from multiple time-series or both. Extracting features that effectively characterize the trends in

the training data is an important step in building generalized models for patient monitoring. A

number of features have been derived from clinical time-series in previous studies, but their

techniques for feature derivation cannot be readily employed in real-time learning, which requires

a large memory space to keep track of the data over time and fast calculations. As the number of

features and the complexity of the features increase, the time needed to derive these features can

increase exponentially. Thus, in this study, we used both the actual value of the measurements

and simple features such as time averages.

3.2.2.3.3 Handling Missing Values

The problem of missing values occurs in two forms. The first form usually results from

unavailability of the measurements (i.e. the caregiver removes a sensor from the patient). The

parameter with missing values might not have any measurement readings for a period of time or

the rest of the session. With the second form, the measurement of a particular parameter is not

available or the monitor does not generate a value occasionally because of corrupted signals.

 The trained observer could readily detect the second form at the bedside. Our action in this

case was to exclude the attribute(s) with missing values from the training of new algorithms, but

we continued to run existing algorithms through the incoming data. For the second form, we

chose to let the core learning algorithms’ built-in functions handle the missing values.

 The built-in function in See5 estimates a probability for each of the possible value of the

attribute at each sample based on the observed frequencies among the training instances and

substitutes the missing value with the value with the highest probability. To classify new

instances whose attribute values are unknown, See5 computes the most probable classification by

summing the weights of the instance fragments classified according to different path down the

tree at the leaf nodes. [34]

 The built-in function for handling missing values in EasyNN-plus substitutes the missing

value with the median of the affected attribute in the training dataset. This method is used during

both training and evaluation. [12]

CHAPTER 3. REAL-TIME DEVELOPMENT OF ALARM ALGORITHMS

55

3.2.3 Real-Time Evaluation of Alarm Algorithms

After developing the alarm algorithms, we evaluated them in real time because real-time trials of

alarm algorithms have three major advantages. First, they run the alarm algorithm as soon as the

physiological data and clinical annotations are collected. Therefore, physiological data, clinical

annotations, and alarms generated by the alarm algorithms are synchronized and time-stamped

within the same time frame. This synchronized setup allows better correlation between alarm

algorithm output and the clinical data.

 Second, when an alarm algorithm generates an alarm, the trained observer can immediately

annotate what is going on at the bedspace and proceed to classify the alarm. He or she can seek

and verify information about the patient’s state with the medical professionals. In contrast, the

conventional approach to evaluating alarm algorithms might not have recorded this information,

especially if the clinical staff did not observe anything unusual. Thus, evaluating alarm

algorithms in real-time provides more informative assessment of the algorithms.

 Third, the real time trials allow the detection of false negatives when the bedside monitor and

the alarm algorithms all fail to detect these clinical significant events. Unlike in retrospective

evaluations where the access to clinical information is limited to what has been recorded, the

observer can obtain the information about these false negatives from the ICU staff during real-

time evaluation. This information is valuable in either refining the alarm algorithm under study

or re-tuning of the learning process.

 After the trained observer initializes the evaluation of the classification tree, a new data stream

is written into a file called the Cases file. The application then uses the Tree file and the Cases

file to classify the data stream and outputs the classification result into a file called the Class file.

 For the evaluation of the neural network, a new data stream is input into an application that

obtains the weights and bias values from the Network file and calculates the output. We created

this application independently of EasyNN-plus because that software’s memory requirement may

potentially slow down other processes.

CHAPTER 3. REAL-TIME DEVELOPMENT OF ALARM ALGORITHMS

56

3.2.4 Incremental Learning

In this part of the study, we would like to explore the question: how much data is needed to

capture the states of a patient over time. In the framework of our research, how much data is

needed to develop a patient-specific yet adequate model of the patient state in real time?

 As the first step, we built classification trees and neural networks in incremental periods at 30

minutes, 1 hour, 2 hours, 4 hours, and 8 hours after the beginning of 12-hour sessions. Each

model was evaluated immediately on the incoming data in the parallel processes illustrated in

Figure A.2 to A.4. Model evaluation first used the clinical annotations to determine the actual

class of each instance in the database. Then, four performance metrics were calculated for each

model, based on the classification given by the model and the actual class of each instances, and

averaged over 10 study sessions.

 The four performance metrics are sensitivity, specificity, positive predictive value (PPV), and

accuracy. Sensitivity measures the percentage of actual alarm-class instances that are correctly

classified by the model. Sensitivity measures the percentage of actual no-alarm class instances

that are correctly classified by the model. Positive predictive value measures the percentage of

true positives of all the instances that are classified by the model as in the alarm-class. It is one

minus the false positive rate. Accuracy measures the percentage of correctly classified instances

by the model over all instances. Below is an illustration of the four performance metrics, based

on an illustration adopted from Tsien [48]:

instancesofnumbertotal
instancesclassifiedmodelcorrectofnumber total

dcba
daAccuracy

instancealarmclassifiedmodelofnumber total
instancealarmclassifiedmodelcorrectofnumber

dc
dPPV

instancesalarmnonofnumbertotal
instancealarmnonclassifiedmodelcorrectofnumber

ca
aySpecificit

instancesofnumbertotal
instancealarmclassifiedmodelcorrectofnumber

db
dySensitivit

−=
+++

+=

−
−=

+
=

−
−−=

+
=

−=
+

=

CHAPTER 3. REAL-TIME DEVELOPMENT OF ALARM ALGORITHMS

57

 Figure 3.3 Performance metrics illustration

3.3 Results

3.3.1 Training Time Assessment

The duration of the training process varies with the training size and training options. Table 3.1

lists the training time for classification trees during a typical 12-hour study session in the ICU.

Training Time for Classification Tree Learning (seconds) Number of
Examples 10 Boosting Trials

10-fold Cross-validation
Global Prunning 25%

10-fold Cross-validation
Global Prunning 25%

Global Prunning
25%

1800 0.1 0.1 < 0.1
3600 2.5 0.2 0.1
7200 3.2 0.7 0.2
14400 11.0 2.0 0.5
28800 53.5 6 1.1

Table 3.1 Classification tree training time

a b

c d

 Actual class:

 0 1

Classified as:

0

1

CHAPTER 3. REAL-TIME DEVELOPMENT OF ALARM ALGORITHMS

58

The actual training time for each study could vary within ±50% from the figures given in Table

3.1. When applications other than those of the system are also running, the training time could

lengthen significantly.

 Training neural networks in general took more time than training classification trees.

EasyNN-plus does not keep track training time; thus, precise estimates of training times are not

available for neural network learning. A rough estimate based on repeated observations was in

the ranges of a few seconds to several minutes for 1800 to 28800 examples, corresponding to 30

minutes to 8 monitoring hours. Training time could vary significantly with different training

specifications, such as learning rate, momentum, the number of validation cycles, and the target

error for each cycle. EasyNN-plus was set to stop training at 120 seconds. Thus, the

comparatively long training time for neural network learning did not disrupt the overall system,

although at the expense of modeling accuracy.

3.3.2 Sample Classification Tree

An example of a classification tree model for detecting true alarms is shown in Figure 3.4. This

tree was the classifier that had the smallest training error among a community of classifiers that

were built on 14400 training examples (data from 4 monitoring hours) with 10 trials of boosting.

Cross-validation and asymmetric cost function are not used. In the classification tree, true-alarm

class is labeled as “1” and the non-alarm class is labeled as “0”. The parentheses after the class

label indicate the number of training examples that arrived at that node, followed by the number

out of these examples that were incorrectly classified at that node. These numbers can have

decimals because of pruning the tree.

 To read this tree, we start with the first line. If the arterial oxygen saturation is greater than

91, the instance is classified into the non-alarm class. There were 10645.6 training examples that

were classified into the non-alarm class at this node, and 187.7 of these examples were classified

incorrectly. If the arterial oxygen saturation is less than 87, the instance is classified into the true-

alarm class. There were 130.2 training examples that were classified into the true-alarm class at

this node, and 0.3 of which were classified incorrectly. If the arterial oxygen saturation is greater

than or equal to 87 but less than 91, we look at the heart rate: if the heart rate is greater than 211,

CHAPTER 3. REAL-TIME DEVELOPMENT OF ALARM ALGORITHMS

59

O2Sat > 91: 0 (10645.6/187.7)
O2Sat <= 91:
:…..O2Sat <= 87: 1 (130.2/0.3)
 O2Sat > 87:
 :.…..HR > 211: 1 (47.9/0.4)
 HR <= 211:
 :…...PRAvg > 117.4: 1 (252.4/52.1)
 PRAvg <= 117.4:
 :…...O2SatAvg > 89.2: 0 (1185.1/47.5)
 O2SatAvg <= 89.2:
 :…...O2Perf > 4.1: 1 (499.5/41)
 O2Perf <= 4.1:
 :.…..PRAvg > 110.8: 1 (76.9/0.2)
 PRAvg <= 110.8:
 :.…..HRAvg > 111.6: 1 (58.6/2.5)
 HRAvg <= 111.6:
 :.…..O2PerfAvg <= 2.74: 1 (262.2/114)
 O2PerfAvg > 2.74: 0 (1241.6/123)

 Figure 3.4 An example of classification tree.

the instance is in the true-alarm class; otherwise, we look at the time average of the pulse rate,

and so forth.

3.3.3 Sample Neural Network

An example of neural network model for alarm detection contains 16 input nodes, 1 hidden layer

with 18 nodes, and one output node. The number of training examples was 14400. During

network training, the optimal step size was 0.2, momentum was 0.8, target error for stopping each

training cycle was 0.1.

3.3.4 Imbalanced Dataset

Using an asymmetric cost function to rebalance the dataset caused about a 4 to 10 fold increase in

training error for cost ratios (false positive: false negative) from 1:10 to 1:1000. The

classification trees generated with such cost function generated at least twice more false alarms

than those with a symmetric function. The increase in the false alarm rate depended on the nature

CHAPTER 3. REAL-TIME DEVELOPMENT OF ALARM ALGORITHMS

60

of the training data, so only a lower bound has been observed. For two classification trees, the

false alarm rate jumped by 50 fold.

 Rebalancing the dataset by sampling instances in the larger class also increased the false alarm

rate, although not as dramatically as we have seen with the first approach. The increase depended

on both the training data and the evaluation data.

 Rebalancing the dataset by duplicating the instances in the smaller class multiple times

showed improved sensitivity and no general increase of the false alarm rate. However, the

training time for a larger training dataset could slow down the system. Some classifiers also

showed the effects of overfitting the duplicated training examples. The classification tree in

Figure 3.5 illustrates some of these effects.

O2SatAvg > 89.2:
:.…..PRAvg <= 117.4: 0 (14227.6/5)
: PRAvg > 117.4:
: :.…..PRAvg <= 118: 1 (13)
: PRAvg > 118: 0 (24.1)
O2SatAvg <= 89.2:
:.…..O2Perf > 4.1: 1 (35.1/1.1)
 O2Perf <= 4.1:
 :.…..O2Sat <= 87: 1 (12)
 O2Sat > 87:
 :.…..PRAvg > 110.8: 1 (12)
 PRAvg <= 110.8:
 :.…..O2Perf <= 2.5: 1 (9/1)
 O2Perf > 2.5: 0 (67.1/7)

Figure 3.5 An example of an overfitted classification tree.

3.3.5 Feature Derivation

 Although both classification tree models and neural network models varied from patient to

patient and time interval to time interval, time averages were selected more frequently for the

node in classification trees than the actual parameter. In neural network models, they in general

had larger weights.

CHAPTER 3. REAL-TIME DEVELOPMENT OF ALARM ALGORITHMS

61

3.3.6 Incremental Learning

The performances of classification tree models averaged over 10 sessions are presented in Table

3.2.

Performance Averaged Over 10 Sessions (~120 Hours) Performance
Metrix CMS Threshold Tree1 Tree2 Tree3 Tree4 Tree5

Sensitivity 1 1 0.0036 0.0083 0.1111 0.4286 0.8432
Specificity 0.9913 0.8765 0.9991 0.9843 0.9794 0.9828 0.9829

PPV 0.8235 0.6958 0.625 0.1667 0.1429 0.3749 0.7214
Accuracy 0.9917 0.9621 0.9575 0.9510 0.9533 0.9700 0.9751

Table 3.2 Performance comparison of classification tree models

The column with the header “CMS” is for the alarm algorithm(s) of the bedside monitor.

“Threshold” stands for the standard threshold alarm algorithm. “TreeX” stands for the Xth

classification tree model in a session. Tree1 were usually built with 30 minutes or 1800 instances

of training data, Tree2 with 60 minutes or 3600 instances, Tree3 with 2 hours or 7200 instances,

Tree4 with 4 hours or 14400 instances, and Tree5 with 8 hours or 28800 instances.

 The performances of neural network models averaged over 10 sessions are presented in Table

3.3.

Performance Averaged Over 10 Sessions (~120 Hours) Performance
Metrix CMS Threshold ANN1 ANN2 ANN3 ANN4 ANN5

Sensitivity 1 1 0.0501 0.2301 0.5948 0.8034 0.9562
Specificity 0.9913 0.8765 0.9940 0.9704 0.9822 0.9856 0.9873

PPV 0.8235 0.6958 0.7000 0.1598 0.3719 0.7134 0.7928
Accuracy 0.9917 0.9621 0.9606 0.9515 0.9605 0.9742 0.9861

Table 3.3 Performance comparison of neural network models

CHAPTER 3. REAL-TIME DEVELOPMENT OF ALARM ALGORITHMS

62

The column with the header “CMS” is for the alarm algorithm(s) of the bedside monitor.

“Threshold” stands for the standard threshold alarm algorithm. “ANNX” stands for the Xth

neural network model in a session. ANN1 were usually built with 30 minutes or 1800 instances

of training data, ANN2 with 60 minutes or 3600 instances, ANN3 with 2 hours or 7200 instances,

ANN4 with 4 hours or 14400 instances, and ANN5 with 8 hours or 28800 instances.

 Figures 3.6 to 3.9 present the performance comparison of the CMS alarm algorithm(s), the

standard threshold alarm algorithm, the classification tree models, and the neural network models.

CHAPTER 3. REAL-TIME DEVELOPMENT OF ALARM ALGORITHMS

63

Sensitivity Comparison Graph

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7
Time (10^2 minutes)

Se
ns

iti
vi

ty

CMS
Threshold
Tree
ANN

 Figure 3.6 Sensitivity comparison graph

CHAPTER 3. REAL-TIME DEVELOPMENT OF ALARM ALGORITHMS

64

Specificity Comparison Graph

0.8
0.82
0.84
0.86
0.88

0.9
0.92
0.94
0.96
0.98

1
1.02

1 2 3 4 5 6 7
Time (10^2 minutes)

Sp
ec

ifi
ci

ty

CMS
Threshold
Tree
ANN

Figure 3.7 Specificity comparison graph

CHAPTER 3. REAL-TIME DEVELOPMENT OF ALARM ALGORITHMS

65

Positive Predictive Value (PPV)
Comparison Graph

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7
Time (10^2 minutes)

PP
V

CMS
Threshold
Tree
ANN

Figure 3.8 Positive predictive value comparison graph

CHAPTER 3. REAL-TIME DEVELOPMENT OF ALARM ALGORITHMS

66

Accuracy Comparison Graph

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1 2 3 4 5 6 7

Time (10^2 minutes)

A
cc

ur
ac

y CMS
Threshold
Tree
ANN

Figure 3.9 Accuracy comparison graph

CHAPTER 3. REAL-TIME DEVELOPMENT OF ALARM ALGORITHMS

67

3.4 Discussion

The results show that the development of alarm algorithms based on machine learning is feasible

in real time. Furthermore, these algorithms are useful for integrating multiple physiological

signals in detecting adverse clinical events. We conclude this chapter with a discussion of the

results and relevant issues arisen during our research.

3.4.1 Real-Time Development of Models

In real-time learning, specifically in developing alarm algorithms, we found that the training time

is determined by the type of learning, the core learning algorithm, the number of training

examples, and the options for fine-tuning the training process. For example, training neural

networks takes more time than training classification trees in general, and this training time

increases fast for neural networks as the number of training examples increases. Training options

such as boosting and cross-validation can significantly increase the training time, and because the

intermediate models during boosting and cross-validation can be different from trial to trial, the

training time has a larger variance than training without these options.

 Uncertainties in the training time may not affect the overall process if the system does not

require instantaneous model generation. However, even in such systems, the allowed timeframe

is within a few minutes. Thus, any artificial intelligence techniques that require training time that

is over minutes to hours cannot be used for this purpose.

3.4.2 Imbalanced Dataset

Using asymmetric cost function to rebalance the training dataset did not show promising results.

Experiments demonstrate that using the cost function in training classification trees not only leads

to a higher training error on the training set but also produces a high rate of false alarms. This

observation is consistent independent of other training specifications.

CHAPTER 3. REAL-TIME DEVELOPMENT OF ALARM ALGORITHMS

68

 In sampling the larger class, the amount of information available for learning the patterns of

normal patient conditions could be lost. Thus, the models derived from the final training set are

more likely to misclassify a non-alarm instance as in the alarm class.

 The results suggest that rebalancing the dataset by expanding the rare class could produce

more sensitive and specific models. However, this method is not guaranteed to do so. For

example, in Figure 3.x, we saw a classification tree that was overfitted to the training data.

Because the training examples in the smaller class were duplicated multiple times, the

mechanisms that prevent overfitting, such as pruning of the classification trees, were unable to

minimize overfitting to these training examples. Another drawback is that the amount of training

data is increased by thousand and tens of thousand fold. The overall effect on the system might

not be tolerable in real-time learning.

3.4.3 Feature Selection

Data averages over a time window of the raw data can help eliminate some of the artifacts that

create spikes of abnormally high or abnormally low values. As a result, they more accurately

reflect the actual value of the parameters. Both the classification tree models and neural network

models indicate that the time averages have a larger information gain despite the natural bias in

the information gain measure that favors attributes with many values over those with few values.

 To improve our system, we have implemented slopes as a new feature. The results are yet to

be obtained. The hypothesis is that they could be useful in detecting trends that involve multiple

parameters over time. For example, sudden decoupling between two parameters that are highly

correlated under normal physiological conditions would suggest the presence of disease

processes, adverse reaction to therapy, or both.

3.4.4 Incremental Learning

Comparison of the sensitivity of different alarm algorithms showed that the first models are not

sensitive in detecting alarm events. One reason may be that for most session, there were no alarm

events during the first 30 minutes. Thus, these models automatically classify all data instances

CHAPTER 3. REAL-TIME DEVELOPMENT OF ALARM ALGORITHMS

69

into the non-alarm class. Even though there were a few sessions with true clinical events during

the first 30 minutes and the resulting classification trees and neural networks had better

performance, their sensitivity was still below 50%. When averaged over 10 sessions, the overall

sensitivity was low.

 While the first models were not sensitive, their specificity was higher than any other models,

CMS’s alarm algorithm(s), and threshold alarm algorithm. This high specificity came from their

ability to classify most non-alarm instances correctly. This result is expected, because sensitivity

and specificity are inversely related. Also, due to their high specificity, the first trees managed to

have a relative high positive predictive value.

 Subsequent learning models improved steadily in sensitivity, as on a learning curve. The

improvement was moderate for Tree2 and Tree3 and for ANN2, and their specificity and positive

predictive value were low. One reason for this phenomenon may be that the models have learned

the patterns in the alarm instances, but because the training data did not capture all the patterns of

the normal physiological conditions, when these models encounter a new non-alarm event, they

are likely to classify it as abnormal, alarm instance.

 The fourth and fifth models showed improvements in sensitivity, specificity, and positive

predictive value. These models were trained with more data; hence, they may capture more

patterns, both of the normal physiological conditions and of abnormal patient states.

 The performance of Tree5 and ANN5 approached that of the CMS’s alarm algorithm in all

four performance metrics. Their positive predictive values also exceed that of the standard

threshold alarm algorithm, which represents the alarm algorithms in the last generation of patient

monitoring system. This result suggests that more training data may help build a more robust

model for the patient, and 8 hours of training data may be adequate.

 Overall, the neural network models performed better than the classification trees. They also

seemed to improve faster than classification tree learning did. This result may be attributed to the

stronger learning capabilities for nonlinear problems.

 There are several reasons for the learned models not to perform as well as CMS’s alarm

algorithm(s). First, alarm detection in the newer generation of patient monitoring system is more

sophisticated than that in the last generation. Although the details of the new algorithm(s) have

not been disclosed, from publicly available information we know that they include sensitive

artifact detection, noise elimination, pattern recognition of specific disease conditions, such as

ventricular fibrillation, and some multiple-signal/multi-channel data analysis. For example, from

CHAPTER 3. REAL-TIME DEVELOPMENT OF ALARM ALGORITHMS

70

observations at the bedside and retrospective data analysis, we found that when the value of a

parameter went beyond the thresholds, the CMS’s alarm system would wait for at least 6 seconds

before sounding an alarm.

 Another reason is that each product line of patient monitoring systems has its unique platform

and operating system that allow fast, real-time processing of data in formats that take up little

memory. The monitoring system itself has more processing power than a standard professional

laptop. Furthermore, our alarm algorithms were developed from only the numeric data, while the

bedside monitor had more information than just the numerics. Thus, it is not surprising that our

models did not outperform the CMS’s alarm algorithm(s).

 Even with much less data and processing power, our algorithms’ performances did come close

to that of the CMS’s algorithms. Furthermore, these models are intended to be part of a larger

decision support system for detecting and predicting adverse events. Their value lies in their

specificity to individual patient’s baseline values and adaptivity to the course of patient outcome.

Thus, it is reasonable to predict that with more information, such as waveforms and their features,

classification tree learning and neural network learning have promising potential in helping

generate intelligent alarm sounding decisions.

71

Chapter 4

Related Work

Efforts to develop better, more intelligent patient monitoring systems have been ongoing, both in

academia and industry. In this chapter, we present related work in four areas: data acquisition in

the ICU, understanding patient monitoring and alarms in critical care, intelligent patient

monitoring, and real-time systems and design issues. There are necessarily areas of overlap

among these topics.

4.1 Data Acquisition in the ICU

Data acquisition is an essential step in the development and evaluation of patient monitoring

systems. Due to restricted accessibility of patient data, building systems that collect

physiological signals and record clinical information has become a serious research topic. This

section presents some of the data collection / annotation systems in the literature.

 Tsien and Fackler developed and implemented a prospectively annotated data collection

system to support intelligent analysis of intensive care unit data at Children’s Hospital, Boston.

This system had two components: automated collection of bedside monitor data and computer-

based, human operated recording of the clinical events at the bedside. The first component

collected numerical data directly from SpaceLab bedside monitor into a laptop via a serial

connection at a rate of every 5-6 seconds. This physiological data was saved in a text file. The

second component recorded detailed annotations of relevant clinical events such as alarm

soundings, staff interventions, equipment malfunction, etc. These annotations were stored in a

Microsoft Access database. All the data were time-stamped to allow retrospective analysis and

correlation between the clinical events and the actual numeric data during these events. The

system was used to collect annotated data over 298 hours. One area for improvement, as noted

by the authors, is to make sure that physiological data and clinical annotations are time-stamped

in a synchronized manner. [48]

CHAPTER 4. RELATED WORK

72

 Moody et al. developed and implemented a data collection system that acquired signals from

the bedside monitors (Hewlett Packard Merlin CMS) in the medical, surgical, and cardiac ICUs

of Boston’s Beth Israel Hospital. This system communicated with the bedside monitors via two

RS232 interface links to a Digiboard PC/4e “smart” serial interface on a standard PC at the

monitor’s maximum output baudrate. It allowed the recording of up to three ECG signals that

were sampled at 500 Hz and four or five other waveforms that were sampled at 125 Hz, or two

ECG signals and six other signals. This system also recorded numeric data, the monitor’s status

messages, and alarm information. Clinical information from the patient’s medical records and

from the hospital’s clinical computing system was recorded separately into three relational

databases. The physiological data and clinical information together make up a database called

MIMIC, which supports research on multi-parameter intelligent monitoring for intensive

care. [30]
 Sukuvaara et al. constructed a signal preprocessor called DataLog, which continuously

collected patient’s vital signs from bedside monitors via an RS232 interface. Their system also

included a patient data management system (PDMS) that directly connected to the bedside

monitor. It provided clinical information for a knowledge-based alarm system, called InCare,

which we will describe in section 4.2. [43]

 As shown in the three systems described above, Chambrin made the observation that the

RS232 interface has been widely used in collecting data from bedside monitors. [6] Eddleman

also found that, although more and more bedside monitors are networked and connected to a

hospital’s LAN system, the RS232 interface has continued to be used in the development of

prototype patient monitoring systems because of its position as a de facto standard in the medical

community. [11]

 We do, however, anticipate that future generations of patient monitoring systems will have

more networking and data sharing capabilities to allow easy remote access to patient data from

the bedside. As a pilot study, Wang et al. built a real-time patient monitoring system on the

Internet to facilitate intelligent on-line monitoring for the intensive care unit and showed

promising test and evaluation results. One of the major concerns for such system is the security

of data over the Internet. [51]

 Goldstein et al. also built a remote data acquisition system for the study of disease dynamics in

the intensive care unit. They acquired physiological data from multiple bedside monitors at

different ICUs simultaneously via the hospital intranet and the Internet. The advantages of this

CHAPTER 4. RELATED WORK

73

system include remote access to data, some patient selection (from any 6 out of the 16 PICU

bedside), and continuous data capture on a 24-hour by 7 days schedule. Their study went a step

further to analyze the physiological data. Both linear and nonlinear analysis methods in the time

and frequency domains were used; most outputs were signal visualizations of data

transformations such as autocorrelation, power spectral density, and wavelet correlation. These

analyses were carried out retrospectively off-line, and the clinical annotations were being

appended to the physiological data retrospectively as well. [14]

 Another data acquisition system that employs networking capabilities and the hospital’s

information system is the data collection system for a temporal ICU patient database called

MIMIC II. Saeed et al. recorded physiological data and clinical information from patients

admitted to an 8-bed medical intensive care unit and an 8-bed coronary care unit from the

patient’s admission to his or her discharge. The physiological data (2 ECG leads, arterial blood

pressure waveform, pulmonary arterial pressure waveform, and 30 1-minute parameters such as

heart rate) as well as monitor-generated alarms and INOPs were collected from Philips CMS

bedside monitors via an information center database server. Clinical information was

automatically captured from the ICU’s information system (CareVue by Philips Medical

Systems) using the Philips Information Support Mart (ISM). A web-enabled rational database

was used to transfer, store, and manage the clinical data. A text search engine facilitated queries

of the database. Some of the clinical information was aligned with the 1-minute physiological

data, which was also processed using wavelet analysis techniques. [38]

4.2 Understanding Patient Monitoring and Alarms

 In general, researchers in patient monitoring believe that continuous monitoring of vital signs

and other relevant physiological variables is indispensable in critical care, as the caregiver cannot

be at the bedside at all times and measure all signals. [43] However, it was generally

acknowledged that the previous generation of patient monitoring systems generated false alarms

at an undesirably high rate, as we have noted earlier. Although our studies have shown that the

false alarm rate is significantly reduced by distinguishing INOPs from clinical alarms and by

more sophisticated alarm algorithms, examining how researchers have tackled the previous

CHAPTER 4. RELATED WORK

74

problem with false alarms in the ICU might help us understand the requirements of patient

monitoring and the decision process for alarm generation.

 For the previous generation of patient monitoring system, there were many factors that

contribute to the high false alarm rate. First, these monitoring systems used single variable limit

alarms: an alarm was generated if a patient parameter exceeds a threshold determined separately

and independently for each signal. Some essential problems with this approach were the

difficulty of determining appropriate alarm thresholds, irritations resulting from frequent false

positive alarms, and the fact that each signal is assessed separately without considering the

clinical context (e.g. the values of other signals or recent medications). Thus, a conventional

alarm often could not give appropriate information about the patient’s state. It may even be

“meaningless in the context of all information about the patient’s state.” [39] Koski also found

that an individual limit alarm does not infer specific physiologic deterioration. [22]

 Arnell and Koski proposed that a combination of several signals should be used to generate

alarms that are more context relevant. [2, 22] Schecke et al. constructed AES-2, a knowledge-

based decision support system for patient monitoring in cardioanesthesia. This system

incorporated multiple signals and provided an interactive user interface via a touch-screen color

graphics monitor. A fuzzy set approach was applied to the uncertainty in decision-making. [39]

Bloom demonstrated that the interpretation of any single physiologic variable could be improved

by examining its interrelationships with other variables, and that the significance of the composite

of these variables varied depending on the clinical state of the patient. [5]

 Multivariable monitoring does not imply that using more variables would necessarily lead to

better patient monitoring. Mylrea et al. showed that sometimes when a smaller number of

parameters were considered at the same time, the monitoring produced better results. They

examined 10 published reports of operating room critical incidents, accidents, and deaths since

1975 to determine the percentages of anesthesia-related critical incidents that could have been

detected with knowledge of patient airway variables. Their estimates indicated that integrated

monitoring of “only 5 patient airway variables could potentially identify and warn when 50 to

60% of the preventable anesthesia mishaps occur.” [32]

 Some variables may also be more informative of a patient’s state than others. Koski et al.

were interested in clinicians’ opinions on alarm limits and urgency of therapeutic responses.

They found that clinicians view heart rate, end tidal CO2, and systemic arterial blood pressure as

the most important vital signs and place less emphasis on the pulmonary arterial pressures. [22]

CHAPTER 4. RELATED WORK

75

 In addition to multivariable monitoring, safe ranges of monitored vital signs must always be

determined based on the individual patient’s state. [22] In Makivirta’s study, physicians’ choice

of alarm limits did not vary significantly from the mean limit values observed in postoperative

cardiac patients. However, as the variables contain recurrent transient excursions beyond the

threshold, these limit values would result in the relatively frequent occurrence of false alarms.

[26] This study suggests that the alarm thresholds should be set according to the patient’s state

instead of completely based on established limits.

 Fewer false alarms may be possible by automatically changing alarm limits during a

procedure. Shifts also can occur with drug administration, incision, etc. Automated event

recognition and limit adjustment, using multivariable analysis, can provide these corrections.

Recognition of intubation has been accomplished using measured variables from clinical

monitors interfaced to a personal computer. Recorded data from 20 general surgical cases were

used to test a rule-based algorithm for detecting changes in oxygen level, breathing rate, and heart

rate to identify preoxygenation, start of intubation, and completion of intubation. Fifteen of 19

intubations were recognized, producing a 42% reduction in “low CO2” false alarms.

“Determination of appropriate limits could be further enhanced using information on initial

patient status and diseases.” [32] Moreover, automatically setting the limits at predetermined

ranges from the latest variable levels can speed up the adjustment and promote the use of alarm

limits. [22]

 Manually changing the alarm limits could also increase the positive predictive value of the

alarms. Schoenberg et al. developed an algorithm that allowed users to first define a

physiological trend, such as the difference between the heart rate variability over one minute in

the last minute and that from three minutes ago. Then, a threshold for this trend was chosen to

yield one of the three outcomes: above the threshold, below the threshold, or unknown due to

missing values. Each outcome was assigned a score, and the sum of the scores was compared

with a second threshold to determine whether an alarm should sound or not. This algorithm

required an expert to manually set its parameters, but it showed that the positive predictive value

of the algorithm’s alarm exceeded that of the bedside monitor’s alarm by 31.9%. [40]

 Another area for improvement is the detection and removal of noise from physiological

signals. Real-time systems for monitoring and therapy planning, which receive their data from

on-line monitoring equipment and computer-based patient records, require reliable data. Horn

suggested that “data validation has to utilize and combine a set of fast methods to detect,

CHAPTER 4. RELATED WORK

76

eliminate, and repair faulty data, which may lead to life-threatening conclusions. The strength of

data validation resulted from the combination of numerical and knowledge-based methods

applied to both continuously assessed high-frequency data and discontinuously assessed data.

The data validation benefited from the temporal data-abstraction process, which provides

automatically derived qualitative values and patterns. The temporal abstraction was oriented on a

context-sensitive and expectation-guided principle.” [18]

 Horn et al. constructed VIE-VENT, an open-loop, knowledge-based monitoring and therapy-

planning system for artificially-ventilated newborn infants. It consisted of data selection, data

validation, data abstraction, data interpretation and therapy planning. The strength of the system

was that it used time-point, time-interval, and trend-based methods to validate data. Automatic

elimination of invalid measurements resulted in reduced false positive alarm rate. [18]

 To increase noise immunity, alarm delays and trend analysis are usually added. [32] Tsien

studied four algorithms that filter output signals of a bedside monitor: moving average, moving

median, delay, and sampling rate. Moving average algorithms and delay algorithms decreased

false alarms up to a particular window size. Moving median algorithms seemed more likely to

eliminate true alarms than false alarms. The sampling rate algorithm showed no consistent effect

on the positive predictive value of the alarms. [46]

 From interviews with neonatal ICU staff, ward observations, and experimental techniques for

investigating the role of computerized monitoring in neonatal intensive care, Alberdi et al. found

that the monitors played a secondary role in the clinicians’ decision making and that the ICU staff

used the information resources provided by the monitors less often than expected. The study

suggested that computerized monitoring could improve through the development of intelligent

algorithms, systematic staff training, integration and presentation of clinical information, and

better user interfaces. [1]

4.3 Intelligent Patient Monitoring

Studies in patient monitoring have been applying techniques in artificial intelligence and related

disciplines to improve patient monitoring systems. A collection of such studies is presented here

to give an overview of the area.

CHAPTER 4. RELATED WORK

77

 Cohn et al. modeled the progression of hemodynamic abnormality by a sequence of clinical

phases or “scenes”, which reflected the predominant physiologic process involved (e.g. increased

pericardial pressure, vasodilation, hypotension). A prototype intelligent cardiovascular monitor,

DYNASCENE, implemented this paradigm as a parallel process lattice running on a

multiprocessor. [8] Bloom used cluster analysis, discriminant analysis, and statistical predictors

to identify changes in clinical context. [5]

 Sukuvaara et al. developed and tested a knowledge-based alarm system for monitoring

cardiac operated patients. It consisted of two parts: DataLog and InCare. DataLog was a signal

preprocessor for the continuously monitored patient signals. InCare was a knowledge based

alarm system that implements 87 rules that helped deduce a specific pathological condition from

a combination of measured signals and estimated trends. InCase could continue to operate with

incomplete data. Rules used both numeric data and detected trends in the numerical data over a

time window. Multiple rules and multiple conditions in the rules were combined by logical OR

operator to maintain the reliability of the system when data was incomplete. [43] During a 171.9-

hour trial with 35 patients, the sensitivity of the system was 100%, and the specificity was 71%.

In the second phase of their study, with 73 cases, the sensitivity of the system remained at 100%,

and the specificities for the alarms and for the alerts were 73.9% and 70.0%. [23]

 Mylrea et al. suggested that addition of pattern recognition capability using neural networks

would allow the development of systems that would meet the stringent and complex requirements

of the medical environment. Neural networks could be more easily updated than rule-based

systems. Two neural networks could also be operated in parallel. [32]

 In the words of Kickert and Mamdani, fuzzy control is “the incorporation of the experience of

a human process operator; the description of the operator’s control strategy by linguistic rules

where the words are defined as fuzzy sets; and the main advantage of this approach is the

possibility of implementing rules of thumb, experience, intuition, and heuristics without the need

for a mathematical model.” [20] Fuzzy control has wide applications in industry, because

computational algorithms with fuzzy control can derive inferences from vague data using vague

logical statements. In medicine, fuzzy control has been used to control pacemaker rate [42] and

to monitor left ventricular assist device (LVAD) controller [53]. Since determining the

appropriate threshold for individual signals in monitoring devices is difficult, the fuzzy inference

approach may be useful in dealing with the vagueness of a precise threshold and in modeling

physicians’ decision-making process.

CHAPTER 4. RELATED WORK

78

 In a study by Rau et al., 14 experienced cardioanesthetists formulated a set of defined terms,

membership functions for the input parameters, and a knowledge base, which had 188 fuzzy

rules. The rule of inference was compositional. [35] Zong et al. used a fuzzy logic approach to

analyze the relationship between electrocardiogram and arterial blood pressure waveform in an

effort to reduce false arterial blood pressure alarms in the ICU. A fuzzy variable, called

“Signal_quality_good” (SQG), was derived from the linguistic variables for describing local

waveform characteristics, and it was used to describe the quality of the arterial blood pressure

signal. [54]

 Another study detected time-varying relationships between physiological variables using

graphical modeling. It explored the statistical methodology of graphical models based on partial

correlations between different signals. It showed that distinct clinical states of a patient were

characterized by distinct partial correlation structures. [19]

 Tsien et al. used classification tree induction on multiple signals to detect false alarms in the

intensive care unit. Features such as the maximum, minimum, range, mean, median, linear

regression slope, absolute value of this slope, and standard deviation were calculated for

successively overlapping time windows of three-minute, five-minute, and ten-minute durations as

inputs into the decision tree learning algorithm C4.5. This study showed that using machine

learning techniques such as decision tree induction on derived features from physiological data

may be a viable approach to distinguishing false alarms from true positives in the ICU. [47]

Tsien went further to detect “true alarm” situations in the ICU using a pipeline for event

discovery in medical time-series data. This study demonstrated that machine learning techniques,

such as decision tree classifiers, neural networks, logistic regression, radial basis function

networks, and support vector machines, were useful in discovering knowledge from physiological

data and their correlation with clinical events. [48, 49]

4.4 Real-Time Systems, Design Issues, and Decision Support

According to Laplante, a real-time system is a system that must satisfy explicit (bounded)

response-time constraints or risk severe consequences, including failure. It is one whose logical

correctness is based on both the correctness of the outputs and their timeliness. [24]

CHAPTER 4. RELATED WORK

79

 Some of the design issues are: 1) the selection of hardware and software; 2) the decision to

take advantage of a commercial real-time operating system or to design a special operating

system; 3) the selection of an appropriate software language for system development; 4) the

maximizing of system fault tolerance and reliability through careful design and rigorous testing;

5) the design and administration of tests, and the selection of test and development equipment.

[24]

 For real-time systems, a major problem is maintaining consistency, both temporal and among

the data, between the computerized model and the process to be managed. The first question is

one of precision in the representation of time. For ONCOCIN, the maximally precise unit of time

was the day. SEPIA’s precision was one minute. GUARDIAN selected its unit of timeaccording

to the working context of the system. The second question rises from the synchronization of the

computer process and the real process being monitored: gaps can occur if the system must wait

too long for a piece of information, or if the computer crashes. [31]

 Sampling rate of physiological signals must be high enough to yield useful information about

the patient’s state. Schecke et al. suggested that their approach required a very precise data

recording; sampling interval of vital signs must be considerably shorter than 1 minute. A

comprehensive semi-automatic anesthesia information and documentation system is a

prerequisite. [39]

 User-interface is an important part of designing patient monitoring systems. Coiera proposed

a user and dialogue modeling approach for the development of user interfaces for intelligent

patient monitoring systems. He believed that this method could facilitate communication

between human and computer. He pointed out that the emphasis should be on the process of

development of an interface rather than the final product. Furthermore, the process of

development should follow the user’s natural cognitive processes and structures. [7]

 Very few references on real-time learning on medical data or real-time decision support for

critical care have been found in the literature. One study presented the architecture of an

intelligent alarm system for patient monitoring during anesthesia, called the Adaptive Real-Time

Anesthesiologist Associate (ARTAA). It planned to implement a hybrid expert system based on

neural networks and fuzzy logic theories for real-time and adaptive detection of which monitor is

connected to the patient and common machine malfunctions. [15] Another study by Fried et al.

compared autoregressive models, phase space models, and dynamic linear models for online

detection of artifacts, baseline change, and trends that could help classify the patient’s state in

CHAPTER 4. RELATED WORK

80

retrospective case studies on physiological data from 19 critically ill patients. They showed that

no single statistical methodology could model all the patterns in physiological time-series data

and suggested a combination of methods and pattern-specific models could achieve better results.

[13]

81

Chapter 5

Conclusion

In this thesis, we have presented the design, implementation, and evaluation of a system for

synchronized collection of physiological signals and clinical annotations, and then described an

expansion of this system for real-time learning in the application of developing alarm algorithms

for patient monitoring systems. We conclude with a summary of our studies and findings, and

questions for future research.

5.1 Studies and Findings

We began, in Chapter 2, by outlining the structure of the system for synchronized collection of

physiological signals and clinical annotations and describing the design of its functional

components. During the evaluation of this system and the subsequent study, we found that this

system achieved its design goals and enabled time synchronization and accurate correlation

between physiological data and clinical annotations.

 Using this system, we collected numerical time-series data from the patient monitoring system

and clinical event annotations at a bedside in a typical pediatric medical ICU. We found that the

new monitor generated alarms at a frequency much lower than what had been reported in the

literature. The finding that very few of these alarms were false positives further contrasts with

the high false alarm rates observed in previous studies.

 In discussion, we attempted to explain why our results gave a seemingly complete picture of

the state of patient monitoring. One of our hypotheses was tested in the subsequent study of this

research; it clearly showed that the new generation of patient monitoring systems, including the

one used in our research, has significantly improved data analysis capabilities and alarm

algorithms.

CHAPTER 5. CONCLUSION

82

 In Chapter 3, we presented learning in real time as a novel approach to help develop patient-

specific algorithms for patient monitoring. We first explored the feasibility of this approach in

the critical care setting by training and evaluating classification tree models and neural network

models to detect adverse events at the bedside. Then, we assessed the utility of this approach by

carrying out classification tree learning and neural network learning at incremental time intervals

in an adaptive manner.

 Our expanded system of real-time data collection and algorithm development demonstrated

that learning in real time is a feasible approach to developing alarm algorithms. Performances of

the trained classification trees and neural networks were consistent with the course of a

generalized learning process. The ones that are trained with eight hours of monitored numerics

data outperformed the standard threshold alarm algorithm, which represented the alarm

algorithms in previous generations of patient monitoring systems, and came close in performance

to the alarm algorithm(s) in the new-generation monitors. Contrary to our initial expectations,

our individualized learned monitoring algorithms did not improve on the current generation of

alarm methods incorporated in proprietary monitoring equipment.

5.2 Questions for Future Research

In this section, we elaborate four key questions that have arisen from our studies. We will also

discuss relevant ideas for future research in patient monitoring.

What should be the gold standard for event classification in the ICU?

Correct event classification is central to obtaining a useful annotated dataset and developing

intelligent alarm algorithms. As described in Chapter 2 and Chapter 4, event classification has

relied on human experts as the gold standard. Yet, we know that asking either the nurses to

classify the alarm at the bedside or experienced physicians to do so retrospectively based on

known patterns in the physiological data could bias the annotation toward misclassifying a true

alarm as a false positive because of inadequate medical knowledge or clinical information.

Decisions made with this gold standard are also subject to inter-observer variability.

CHAPTER 5. CONCLUSION

83

 In our study, we used a combination of human experts at the bedside and patient outcome

within a windowed timeframe after the event as a new gold standard for event classification.

While our results contain no instances where future patient outcome was used to revise the

classification by human experts, they do not suggest that incorporating patient outcome as a part

of the gold standard is not necessary nor that classification by human experts alone is sufficient.

 Since future patient outcome could yield significant information about the current patient state

because living system and disease processes are causal and memory driven, one idea for future

research is to carry out a rigorous evaluation of the proposed gold standard, a study that goes

beyond the scope of this research. Another idea is to identify new sources of information that

could either facilitate or validate event classification. It is also important to develop a gold

standard that allows comparison of results across studies.

How to best deal with the missing value problem in real time?

As described in Chapter 3 and Chapter 4, the data from patient monitoring systems often have

missing values for one or more parameters, either transiently in time or consistently over minutes

and hours. These missing values cannot be simply ignored or set to zero; parameters that

frequently have missing values cannot be simply removed from the study. Thus, we need a

systematic approach to deal with the missing value problem.

 In our study, we recorded both the transient and consistent missing values during data

collection. We relied on the core learning algorithms’ specialized mechanisms for dealing with

missing values in real-time learning. We need to investigate whether there are more effective

ways to handle missing values other than what we have tried. These methods should offer a

general, systematic approach to the problem and yet could be easily implemented for specific

studies.

What features of clinical time-series data are most informative of patient condition?

As we discussed in Chapter 3, features that are derived from clinical time-series data may capture

patterns in the data and allow easy detection of adverse events by machines or humans. There are

many features that can be derived, such as averages, slopes, statistical characteristics, frequency

characteristics, etc., and many more have yet to be derived and examined. Researchers seem to

CHAPTER 5. CONCLUSION

84

know that a wealth of information in clinical time-series data have not been extracted and

utilized, but there is not a systematic way of deriving and selecting new features.

 Due to the time constraint on feature derivation, we used the basic and widely used feature,

time averages, in our study. While we are currently experimenting with slopes and simple

statistical characteristics, we would like to have in the near future a repertoire of features that

yield high information gains and are quick to derive. Furthermore, we would like to know which

features to use in what kind of problem.

In real-time learning, is it more effective to adaptively update existing models or to

build a new set of models with newly obtained patient data?

Real-time learning is a potentially useful approach to discover knowledge and to provide decision

support in many real-world applications. It is a new concept, and the methodologies for this

approach are yet to be formulated and tested. In Chapter 3, we presented a study that explored

real-time learning in the medical domain. Two machine learning techniques were employed to

build models that help generate alarm-sounding decisions in incremental time intervals,

successively with more patient data. Our results showed that learning from scratch requires

patient-specific data from a sufficient period of time. Thus, in providing clinical decision support

for a specific patient, we still need to use the knowledge or models from a larger, relevant patient

population during this period.

 An interesting exploration would be to adaptively update existing models instead of building

new ones from scratch. The questions would then be how to do it, which of the two approaches

has more advantages and fewer limitations, and are their performances highly dependent on

clinical context.

 One idea for updating existing models is to use N hours of training data from a group of

patients with similar conditions and add the data from the current patient to the training dataset.

This method might dramatically improve the performance of the learned models before all the

data from this patient can capture possible clinical states. The hypothesis is that the models

derived from a larger patient population are better than the relative ignorance of the newly

learned models derived from only limited amounts of data from this particular patient.

Nevertheless, as we monitor this patient for more and more hours, at the Nth hour, we would have

about equal amounts of population and individual data to train from, at 2xNth hour, we would

CHAPTER 5. CONCLUSION

85

have twice as much data from the individual. Thus, we should eventually get a very specific

model for your patient. While the details of this method are yet to be worked out, some

interesting questions already arise: how to select the initial N hours of training data; what value

should N take on, is it dependent on the clinical context, and if so, how to determine it under the

constraints of time and data processing power for real-time learning.

5.3 Summary

 From an engineering standpoint, this research developed a computer-based system and

realized real-time learning using artificial intelligence techniques for a real-world application.

From a clinical standpoint, it facilitated the understanding of physiological signals at the bedside

and may help improve clinical decision-support systems. Overall, this research demonstrated that

obtaining useful information in an environment that is over-loaded with data is a challenging but

feasible task. It also showed that unexpected results could lead to a better understanding of and

creative ways to tackle a multidisciplinary problem. Our challenges in medical engineering

research will continue to be formulating problems arising from specific applications such as

patient monitoring in terms of more general engineering problems and balancing between

application and theory to produce specific engineering solutions for patient care.

86

References

1. Alberdi E, Gilhooly K, Hunter J, Logie R, Lyon A, McIntosh N, Reiss J. Computerisation
and decision making in neonatal intensive care: A cognitive engineering investigation.
Journal of Clinical Monitoring and Computing. 2000; 16: 85-94.

2. Arnell WJ, Schultz DG. Computers in anesthesiology - a look ahead. Medical
Instrumentation. 1983; 17: 385-93.

3. Becker K, Thull B, Kasmacher-Leidinger H, Stemmer J, Rau G, Kalff G, Zimmermann

HJ. Design and validation of an intelligent patient monitoring and alarm system based on
a fuzzy logic process model. Artificial Intelligence in Medicine. 1997; 11(1): 33-53.

4. Beneken JEW and van der Aa JJ. Alarms and Their Limits in Monitoring. Journal of

Clinical Monitoring. 1989; 5(3): 205-210.

5. Bloom MJ. Techniques to identify clinical contexts during automated data analysis.
International Journal of Clinical Monitoring and Computing. 1993; 10(1): 17-22.

6. Chambrin MC, Ravaux P, Chopin C, Mangalaboyi J, Lestavel P, Fourrier F. Computer-

assisted evaluation of respiratory data in ventilated critically ill patients. International
Journal of Clinical Monitoring and Computing. 1989; 6(4); 211-215.

7. Coiera E. Incorporating user and dialogue models into the interface design of an

intelligent patient monitor. Medical Informatics. 1991; 16(4): 331-346.

8. Cohn AI, Rosenbaum S, Factor M, Miller PL. Methods of Information in Medicine. 1990;
29(2); 122-131.

9. Coleman WP, Siegel JH, Giovannini I, Sanford DP, Gaetano AD. Computational logic: a

method for formal analysis of the ICU knowledge base. International Journal of Clinical
Monitoring and Computing. 1993; 10(1), 67-69.

10. Cunningham S, Deere S, Elton RA, McIntosh N. Neonatal physiological trend

monitoring by computer. International Journal of Clinical Monitoring and Computing.
1992; 9(4): 221-227.

11. Eddleman DW, Tucker DM, McEachern M. A patient monitoring system designed as a

platform for application development. International Journal of Clinical Monitoring and
Computing. 1990; 7(4), 233-240.

12. EasyNN-plus Help Manual. Neural Planner Software. 2003.

REFERENCES

87

13. Fried R, Gather U, Imhoff M. Online Pattern Recognition in Intensive Care Medicine.
Proceedings of American Medical Informatics Association Annual Fall Symposium.
2001; 184-188.

14. Goldstein B, McNames J, McDonald BA, Ellenby M, Lai S, Sun Z, Krieger D, Sclabassi

RJ. Physiologic data acquisition system and database for the study of disease dynamics in
the intensive care unit. Critical Care Medicine. 2003, Feburary; 31(2): 433-441.

15. Guez A, Nevo I. Neural networks and Fuzzy logic in clinical laboratory computing with

application to integrated monitoring. Clinica Chimica Acta (International Journal of
Clinical Chemistry). 1996, Nov; 8(6): 543-576.

16. Haimowitz IJ. Intelligent Diagnostic Monitoring Using Trend Templates. In:

Symposium on Computer Applications in Medical Care. American Medical Informatics
Association, 1994, pp 702-708.

17. HP Viridia Component Monitoring System RS232 Computer Interface Programming

Guide. 4th Ed. Hewlet Packard. 1998.

18. Horn W, Miksch S, Egghart G, Popow C, Paky F. Effective data validation of high-
frequency data: time-point-, time-interval-, and trend-based methods. Computers in
Biology and Medicine. 1997; 27(5): 389-409.

19. Imhoff M. Detecting Relationships Between Physiological Variables Using Graphical

Modeling. Proceedings of American Medical Informatics Association Annual Fall
Symposium. 2002; 340 –344.

20. Kickert WJM, Mamdani Ej. Analysis of a fuzzy logic controller. Fuzzy Sets Systems.

1978; 1: 29-44.

21. Koski EMJ, Makivirta A, Sukuvaara T, Kari A. Frequency and reliability of alarms in
the monitoring of cardiac postoperative patients. International Journal of Clinical
Monitoring and Computing. 1990; 7: 129-133.

22. Koski EMJ, Makivirta A, Sukuvaara T, Kari A. Clinicians’ opinions on alarm limits and

urgency of therapeutic responses. International Journal of Clinical Monitoring and
Computing. 1995; 12(2): 85-88.

23. Koski EMJ, Sukuvaara T, Makivirta A. A knowledge-based alarm system for monitoring

cardiac operated patients---assessment of clinical performance. International Journal of
Clinical Monitoring and Computing. 1994; 11(2): 79-83.

24. Laplante PA. Real-Time Systems Design and Analysis. IEEE: New York, 1997.

25. Lawless ST. Crying wolf: False alarms in a pediatric intensive care unit. Critical Care

Medicine. 1994; 22(6): 981-985.

REFERENCES

88

26. Makivirta A, Koski EMJ. Alarm-inducing variability in cardiac postoperative data and
the effects of prealarm delay. Journal of Clinical Monitoring. 1994; 10: 153-162.

27. Meredith C and Edworthy J. Are there too many alarms in the intensive care unit? An

overview of the problems. Journal of Advanced Nursing. 1995; 21: 15-20.

28. Mitchell TM. Machine Learning. WCB McGraw-Hill: Boston, 1997.

29. Momtahan K, Hetu R, Tansley B. Audibility and identification of auditory alarms in the
operating room and intensive care unit. Ergonomics. 1993; 36(10): 1159-1176.

30. Moody GB, Mark RG. A Database to Support Development and Evaluation of Intelligent

Intensive Care Monitoring. Computers in Cardiology. 1996; 23: 657-660.

31. Morice V, Seroussi B, Boisvieux JF. A Real Time Control Architecture for Continuously
Managing Patients in a Care Unit. Methods of Information in Medicine. 1995; 34(5): 475-
488.

32. Mylrea KC, Orr JA, Westenskow DR. Integration of monitoring for intelligent alarms in

anesthesia: neural networks – can they help? Journal of Clinical Monitoring. 1993; 9(1):
31-37.

33. Quinlan, JR. Induction of decision trees. Machine Learning. 1986; 1(1), 81-106.

34. Quinlan, JR. C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann,

1993.

35. Rau G, Becker K, Kaufmann R, Zimmermann HJ. Fuzzy Logic and Control: Principal
Approach and Potential Applications in Medicine. Artificial Organs. 1995; 19(1): 105-
112.

36. Russ, TA. Reasoning with time dependent data. PhD thesis, Massachusetts Institute of

Technology, August 1991.

37. Russ, TA. Use of data abstraction methods to simplify monitoring. Artificial Intelligence
in Medicine. 1995; 7(6): 497-514.

38. Saeed M, Lieu C, Raber G, Mark RG. MIMIC II: A massive temporal ICU patient

database to support research in intelligent patient monitoring. Computers in
Cardiology. 2002; 29: 641-644.

39. Schecke T, Langen M, Popp HJ, Rau G, Kasmacher H, Kalff G. Knowledge-based

decision support for patient monitoring in cardioanesthesia. International Journal of
Clinical Monitoring and Computing. 1992; 9(1): 1-11.

REFERENCES

89

40. Schoenberg R, Sands DZ, Safran C. Making ICU alrms meaningful: a comparison of
traditional vs. trend-based algorithms. Proceedings of American Medical Informatics
Association Fall Symposium. 1999; 379-383.

41. See5 Help Manual. RuleQuest Research. 2003.

42. Siguira T, Mizushina S, Kimura M, Fukui Y, Harada Y. A fuzzy approach to the rate

control in an artificial cardiac pacemaker regulated by respiratory rate and temperature: A
preliminary report. Journal of Medical Engineering and Technology. 1991; 15: 107-110.

43. Sukuvaara T, Koski EMJ, Makivirta A, Kari A. A knowledge-based alarm system for

monitoring cardiac operated patients - technical construction and evaluation.
International Journal of Clinical Monitoring and Computing. 1993; 10(2): 117-126.

44. Tsien CL and Fackler JC. An annotated data collection system to support intelligent

analysis of intensive care unit data. In: Advances in Intelligent Data Analysis. Liu X,
Cohen P, Berthold M (editors). Berlin, Springer-Verlag, 1997, pp. 111-121.

45. Tsien CL and Fackler JC. Poor prognosis for existing monitors in the intensive care unit.

Critical Care Medicine, vol. 25, no. 4, April 1997, pp. 614-619.

46. Tsien CL. Reducing false alarms in the intensive care unit: a systematic comparison of
four algorithms. Proceedings of the American Medical Informatics Association Annual
Fall Symposium, October 1997.

47. Tsien CL, Kohane IS, McIntosh N. Multiple signal integration by decision tree induction

to detect artifacts in the neonatal intensive care unit. Artificial Intelligence in Medicine.
2000, Jul; 19(3): 189-202.

48. Tsien CL. TrendFinder:Automated detection of alarmable trends. Laboratory for

Computer Science Technical Report 809, Massachusetts Institute of Technology. July
2000.

49. Tsien CL. Event discovery in medical time-series data. Proceedings of American

Medical Informatics Association Fall Symposium. 2000; 858-62.

50. Uckun S. Intelligent systems in patient monitoring and therapy management.
International Journal of Clinical Monitoring and Computing. 1994; 11(4): 241-253.

51. Wang K, Kohane I, Bradshaw KL, Fackler J. “A real time patient monitoring system on

the World Wide Web.” Proceedings of the American Medical Informatics Association
Annual Fall Symposium, 1996.

52. Westenskow DR, Orr JA, Simon FH, Ing D, Bender HJ, Frankenberger H. Intelligent

Alarms Reduce Anesthesiologist's Response Time to Critical Faults. Anesthesiology.
1992; 77(6); 1074-1079.

REFERENCES

90

53. Yoshizawa M, Kuramoto K, Takeda H, Miura M, Yambe T, Nitta S. An automatic
monitoring and estimation tool for the cardiovascular dynamics under ventricular
assistance. Proceedings of the 14th International Conference on IEEE Engineering and
Medical Biology. 1992; 1: 364-366.

54. Zong W, Moody GB, Mark RG. Reduction of False Blood Pressure Alarms by use of

Electrocardiogram Blood Pressure Relationships. Computers in Cardiology. 1999; 26:
305-308.

91

Appendix A

 Figure A.1 The primary thread and main thread in PAAT

 Start PAAT

Initialize variables

Start Monitoring

Create Trees and
ANNs

Save patient info

Stop monitoring

Stop PAAT

Main
thread

Read data

Derive features

Th alarm

 Save data to DB

CMS alarm

Tree alarm

ANN alarm

Monitoring

Monitor
Alarms

Algorithm
Alarms

Alarm System

Alarm Variables

PAAT System

Primary
thread

APPENDIX A

92

 Figure A.2 Multiple threads for incremental learning

CMS
thread

Th
thread

Tree1
thread

ANN1
thread

Tree n
thread

ANN n
thread

Monitor Alarms Algorithm Alarms

Tree 2
thread

ANN 2
thread

APPENDIX A

93

Monitor Alarms

Th
thread

Check Th
 alarm status

Launch the form
with Begin Time

Send End Time to
most recent form

If alarm
Off -> On

Find available
annotation form

Th form 1

Th form 2

Th form 3

Th form n

CMS
thread

Check CMS
 alarm status

Launch the form
with Begin Time

Send End Time to
most recent form

If alarm
Off -> On

Find available
annotation form

CMS form 1

CMS form 2

CMS form 3

CMS form n

Figure A.3 Threads for CMS alarm annotations and threshold alarm annotations

APPENDIX A

94

 Algorithm Alarms

ANN 1
thread

Check ANN 1
 alarm status

Launch the form
with Begin Time

Send End Time to
most recent form

If alarm
Off -> On

Find available
annotation form

ANN 1 form 1

ANN 1 form 2

ANN 1 form 3

ANN 1 form n

Tree 1
thread

Check Tree 1
 alarm status

Launch the form
with Begin Time

Send End Time to
most recent form

If alarm
Off -> On

Find available
annotation form

Tree 1 form 1

Tree 1 form 2

Tree 1 form 3

Tree 1 form n

Figure A.4 Multiple threads for algorithms’ alarm annotations

