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ABSTRACT 
 
The lack of effective data integration and knowledge representation in patient monitoring limits 
its utility to clinicians.  Intelligent alarm algorithms that use artificial intelligence techniques have 
the potential to reduce false alarm rates and to improve data integration and knowledge 
representation.  Crucial to the development of such algorithms is a well-annotated data set.  In 
previous studies, clinical events were either unavailable or annotated without accurate time 
synchronization with physiological signals, generating uncertainties during both the development 
and evaluation of intelligent alarm algorithms.   
 
This research aims to help eliminate these uncertainties by designing a system that 
simultaneously collects physiological data and clinical annotations at the bedside, and to develop 
alarm algorithms in real time based on patient-specific data collected while using this system.   
 
In a standard pediatric intensive care unit, a working prototype of this system has helped collect a 
dataset of 196 hours of vital sign measurements at 1 Hz with 325 alarms generated by the bedside 
monitor and 2 instances of false negatives.  About 89% of these alarms were clinically relevant 
true positives; 6% were true positives without clinical relevance; and 5% were false positives.  
Real-time machine learning showed improved performance over time and generated alarm 
algorithms that outperformed the previous generation of bedside monitors and came close in 
performance to the new generation. 
 
Results from this research suggest that the alarm algorithm(s) of the new patient monitoring 
systems have significantly improved sensitivity and specificity.   They also demonstrated the 
feasibility of real-time learning at the bedside.  Overall, they indicate that the methods developed 
in this research have the potential of helping provide patient-specific decision support for critical 
care. 
 
Thesis Supervisor: Peter Szolovits, Ph.D. 
Title: Professor of Computer Science and Engineering 
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Chapter 1 

Introduction 
 

1.1     Background 
 
In the intensive care unit (ICU) and other critical care settings, patients’ physiological state needs 

to be monitored, but medical staff do not have the human resources and technical capabilities to 

perform this task continuously.  Since the technology of monitoring astronauts’ vital signs in 

space was transferred to the bedside in the 1960s, patient monitoring systems have become an 

indispensable part of critical care.  Today, these systems can gather multiple physiological signals 

simultaneously and derive clinically important parameters. 

     Although the amount of information patient monitoring systems provide to medical 

professionals is more than ever before and still on the increase with improvements in computation 

power, memory, storage capability, and networking, the usability and usefulness of the 

information are less than desirable.  The raw data contains measurement errors and noise from 

biosensors.  Corrections for these errors and elimination of noise are difficult and limited without 

concurrent improvements of the measurement devices.  Data integration and multi-parameter data 

analysis may be able to extract useful information from the imperfect raw data, but the state-of-

the-art monitoring systems carry out limited data integration and analysis for effective decision 

support. 

    One symptom of this lack of data integration and analysis is the generation of false alarms.  

Patient monitoring systems for critical care should alert caregivers when the patient requires 

immediate attention.  Several studies in the 1990’s, however, indicated that the vast majority of 

the alerts generated by automated monitors were inappropriate.  A study in the multidisciplinary 

ICU of a pediatric teaching hospital, however, showed that 86% of total 2942 alarms during 298 

monitoring hours over a ten-week period were false positives; an additional 6% were found to be 

clinically irrelevant true alarms; only 8% of all alarms were true alarms with clinical significance 

[45].  Another study in a similar pediatric ICU found that 68% of alarms were false, 26.5% were 

induced by medical procedures, and only 5.5% were significant true alarms that resulted in  
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change in therapy. [25]  In critical care settings for adults, false alarm rate could be even higher – 

as high as 94% was reported in a standard cardiac ICU. [21] 

    To reduce false alarm rates in the ICU, researchers have been pursuing two paths:  (a) creating 

better sensors that reduce measurement noise and that “notice” systematic faults such as wires 

being disconnected; and (b) developing “intelligent” alarm algorithms for patient monitoring.  

Methods such as neural networks, classification trees, fuzzy logic, and other artificial intelligence 

techniques have shown potential for reducing false alarm rates.  These techniques may also be 

used in improving more general aspects of patient monitoring, such as data integration and 

analysis, prognosis generation, and decision support.   

 

 

1.2     Problem Statement 
 

The conventional approach to developing, evaluating, and refining physiological models or 

algorithms for decision support is based on a retrospective analysis of physiological data with 

clinical annotations that were collected around the same time as the data.  There are several 

limitations to this approach.  First, physiological data and clinical annotations are collected by 

separate mechanisms and often poorly synchronized as a result.  Second, because physiological 

data and clinical annotations have different granularity, and the time range of a clinical event is 

often difficult to capture, even with time synchronization, correlation between two different types 

of data can be ambiguous.  Third, in the critical care setting, it is difficult to record everything 

that can potentially be useful in retrospective research, so clinical annotations are collected based 

on assumptions about future research needs, and retrospective studies often find that they need 

additional clinical information and thus cannot reconstruct the necessary clinical context to 

interpret a past event properly.  Thus, most developments of “intelligent alarm algorithms” 

contain significant uncertainties and assumptions that may not be clinically valid; as a result, 

evaluations of these algorithms also yield results that are still speculative.   

     To address these problems, we have developed a system that enables data analysis and 

algorithm development for patient monitoring in real time.  In this thesis, we first demonstrate the 

feasibility of real-time data analysis at the bedside and concurrent clinical annotation.  Then we 

present the development and evaluation of alarm algorithms in real-time, using machine learning 

techniques.   
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1.3     Thesis Organization 
 

In the remainder of this thesis, we begin by motivating and describing a system for synchronized 

collection of physiological signals and clinical annotations in Chapter 2.  We will also discuss 

design considerations, constraints on such systems, and its utility.  Chapter 3 presents real-time 

modeling at the bedside.  It describes methods for developing alarm algorithms using machine 

learning techniques in real time.  Then, in Chapter 4, we review related work.  Chapter 5 

concludes this thesis with a summary of the studies and findings in our research.  We will also 

discuss questions that have arisen form our research and ideas for future work. 
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Chapter 2 

A System for Synchronized Collection of 
Physiological Signals and Clinical Annotations 
 
 
 
 
This chapter describes a system for synchronized collection of physiological signals and clinical 

annotations at a bedside at a standard pediatric intensive care unit.  Its design purpose is to 

support real-time analysis of physiological signals and real-time development of alarm algorithms 

for patient monitoring in critical care settings.  

 

 

2.1     Motivation 
 

To develop and evaluate models and algorithms for intelligent patient monitoring, we must have 

real patient data and a way to reconstruct the clinical context under which these data are 

generated. In other words, we need to obtain physiological measurements or signals from the 

patient’s monitor and to know what is going on with the patient when these measurements 

become available.  Yet, the reconstruction of the clinical context is a nontrivial task.  Although 

experienced physicians can form a hypothesis about the patient’s state or what could be 

happening to the patient by examining physiological data such as an electrocardiagram and blood 

pressure readings, only with adequate clinical information, such as the course of therapy and 

events at the bedspace, can he or she validate this hypothesis.  Thus, a well-annotated dataset that 

contains both physiological data and clinical annotations is key to the development of intelligent 

patient monitoring systems. 

     There are two major requirements for a well-annotated dataset.  First, physiological data must 

be accompanied by clinical information that enables the reconstruction of clinical events that 

could affect the current and future values of the data or could provide explanations for the 

physiological data from the past.  Second, both the physiological data and clinical information 

should be time-stamped such that they are synchronized in time and can be accurately correlated. 
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     In previous studies, data acquisition in the intensive care unit focused primarily on collecting 

physiological signals from the bedside monitors.  Little information about the state of the patient 

and clinical events at the bedside were recorded.  The reasons are straightforward.  First, only 

until recently has the revolution in computation power and storage capacity enabled researchers 

to record large amount of data and to allow computers to analyze these data in a timely fashion.  

Second, many researcher did not realize the importance of clinical information to modeling 

physiological systems until they had encountered the limitations of retrospective annotation by 

human experts.  The third reason, which still hinders much research today, is the difficulty of 

accessing clinical information, due to either practical reasons (e.g. clinical event recording 

requires a trained person and is labor intensive) or legal concerns (e.g. clinical annotations could 

contain confidential patient information). 

     A study by Moody et al. foresaw the importance of clinical information and recorded clinical 

data such as laboratory reports, physicians’ and nurses’ progress notes, and administration of 

medications through the hospital’s clinical information systems [30]  Another study by Tsien et 

al. prospectively recorded clinical events at the bedside. [44]  In both studies, however, clinical 

information was recorded separately from the physiological data and time-stamped by different 

clocks.  As a result, the exact correlation between physiological data and clinical information 

could not be achieved. Assumptions about the correlation between the two forms of data had to 

be introduced, but they could not remove the uncertainties in the development and evaluation of 

models and algorithms based on these data.  

     Difficulties in synchronizing physiological data and clinical information come from two 

sources.  First, when a patient’s condition deteriorates, the clinicians are fully occupied caring for 

the patient instead of writing notes.  In fact, they write progress notes only when the patients do 

not need their attentions or at the end of their shifts. (Personal observation)  Thus, the event 

recordings in the physicians’ and nurses’ notes usually lag behind the actual events and cannot be 

accurately correlated with physiological data.  Furthermore, when a clinician records an event 

that happened hours before, his or her memory of it might be less vivid, and the information that 

gets recorded about the event might lack useful details.  A trained observer, however, could take 

advantage of the fact that the clinicians usually could talk when they carry out procedures to 

avoid information loss.  The observer could sit at the bedside to record the clinicians’ response to 

and verbal description of a clinical event as it happens.  He or she could also ask for additional 
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information that might be useful for reconstructing the event. The design of our system supports 

the use of such observer-recorded annotations. 

     The second source arises because it is difficult during an alarm event to determine the 

significance of the alarm, which may become apparent only some time after the event ends.  The 

user interface that collects clinical information, therefore, must remain available to the user after 

the event.  However, because alarms may follow each other in succession, it may happen that 

multiple alarm events are awaiting entry of their clinical interpretation at the same time.  

Therefore, the user interface must keep clear to its users just which annotation corresponds to 

which event and time interval.  Our system design also addresses this requirement. 

     In the first part of this research, we addressed the problem of data synchronization by building 

a system for synchronized data collection and clinical annotations.  We designed this system to be 

used by a trained observer to collect data at the bedside in real time.  We also describe the 

expansions of this system for real-time trials of alarm algorithms.  In the rest of this thesis, we 

refer to the entire system as PAAT, for Prospective Alarm Algorithm Trial system. 

 

 

2.2     Methods 
 

2.2.1     Overview 
 

The “ideal” data acquisition system for our purposes is a powerful workstation with full 

networking capabilities for use with any bedside monitor in any critical care setting.  It can 

communicate with different brands of bedside monitors and obtain physiological data using 

common standards through an RS232 interface or from the ICU’s information system.  It has 

enormous bandwidth on both the serial and the Ethernet lines to receive all the data that a bedside 

monitor has, and possibly from nearby monitors as well.  It has enough computational power to 

receive, store to the database, and simultaneously analyze and learn from the data, all at once. 

     Not surprisingly, all the assumptions of our “ideal” system are violated in the actual situation 

for which our system has been used.  In this section, we describe the actual situation we faced and 

how we tackled each constraint to achieve the purpose of our system.  Figure 2.1 is a block 

diagram of the system’s components: 
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Our system is divided by function into three components: a physiological data collection unit, a 

clinical event recording unit, database, and a command center.  Design considerations include 

system synchronization, speed, modularity, and multiple tasking.    

 

 

2.2.2     Physiological Data Collection 
 

2.2.2.1     Bedside monitor      
 

We carried out this research in collaboration with a standard pediatric medical ICU.  Because the 

patient monitoring systems of each brand have their own proprietary platform, operating system, 

and network, we had to design our system specifically for the bedside monitor that was 

designated for our research in this ICU.  This monitor belongs to the HP Viridia Neonatal 

Component Monitoring System (CMS) series.  It was manufactured by the former medical 

instruments division of Hewlett Packard, which then became part of Agilent Technologies, and 

now Philips Medical Systems.  This monitor has optimized features for neonatal care and is 

configurable for pediatric and adult patient monitoring.   

 

2.2.2.2     Data Access      

 

In an ideal situation, we would like to access data from any one of the eighteen bedside monitors 

in our collaborating ICU, but the ICU’s central information system was not available for use by 

our project; thus, we designed our system to communicate with the bedside monitor that was 

designated for our research via the RS232 interface.  An RS232 dual interface card (Option 13 for 

CMS Model 1077A) was installed in the monitor.  A variety of HP printers can connect to it to 

produce paper reports.  With a special cable and a set of software that correctly configures the 

connection, it also allows a personal computer to access all waveforms (e.g. electrocardiogram), 

numerics (e.g. heart rate), and alarm status data from the monitor.   
     A printer cable with a 25 pin D-type female connector and a 9 pin female connector for IBM 

AT-LASER plotter has been used to connect the RS232 interface card with the serial port of a 

standard laptop.  Although this particular kind of cable might not be the only kind that can 
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establish a connection with the correct interface lines between the serial port and the RS232 

interface card, among many cables that we have tested, it is the only one that works.   

     The manufacturer of this monitor provides a programming guide, a library file, some source 

files, and a demo program that shows how to obtain data through the RS232 interface.  Based on 

the source code of the demo program, we built an application, named CMSCOM, to configure the 

RS232 connection and to receive data.  The library file, which is called mecif.lib, contains the 

definition of each data structure and functions for communication with the RS232 interface.  

Because the data structures were defined in a 16-bit format and compilation in a 32-bit operating 

system prevented CMSCOM from correctly interpreting the data values after linking to the 

library file, CMSCOM was compiled in 16-bit Turbo C in Windows 95.      

     CMSCOM first communicates with the bedside monitor and checks which data are available 

for access.  All data are transmitted in packets called messages.  Each message type is identified 

by a message ID.  Message ID is uniquely specified by six items, as listed in Table 2.1. 

 

 

SourceID Specifies the measurement module that transmits the message 
(e.g. ECG module, invasive pressure module) 

SourceNo Differentiates between different modules with the same 
SourceID (e.g. the patient has two different pressure 
sensors/measurement modules) 

ChannelID Specifies the output quantity (e.g. ECG wave or heart rate 
numeric) 

ChannelNo Differentiates between different channels (e.g. ECG wave may 
outputs three wave channels, each of which represents a 
different ECG lead) 

MsgType Contains the syntax and semantic of the message (i.e. specify 
the data structure) 

Layer Differentiates between messages that have the same meaning 
in different steps of data processing 

 

  Table 2.1: Message ID structure [17] 

 

 

After getting a list of message Ids for available data, it sends a request to the monitor for 

continuously receiving a set of desired available data.  
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    When a message is received from the monitor, it is identified by its message ID, and the 

parameter value contained in the message is saved into a designated text file.  We chose to use 

text files to transfer data instead of directly transferring data into the database because CMSCOM 

is a 16-bit application and its direct compatibility with various database engines is limited.   

 

2.2.2.3     Bandwidth Consideration 
 

Ideally, we would like to collect all the physiological data that the monitor could provide.  

However, the amount of data we can collect is limited by the bandwidth of the communication 

channel.  The type and the number of physiological signals that can be collected from the bedside 

monitor via its RS232 interface are governed by bandwidth cost of each signal, the baudrate of 

the RS232 ports on the monitor, the baudrate of the serial port on the laptop, and the number of 

escape sequences in the messages.  Exceeding the allowable bandwidth could cause an overflow 

of the monitor’s transmission buffer and loss of data. 

     The CMS monitor collects two forms of physiological signals: waveforms and numerics.  

Waveforms are sampled at either 500 Hz (electrocardiogram) or 125 Hz (pressures, arterial 

oxygen saturation, respiration)  Numerics (e.g. heart rate, respiratory rate) are derived from the 

waveforms once every 1024 milliseconds.  Table 2.2 lists the types of monitor data that are 

available for access and their minimum bandwidth cost.    

 

 

Message Type Period 
(milliseconds)

Length 
(bytes) 

Minimum Bandwidth Cost 
(bytes/second) 

Waveform 32 19-43 1376 
Waveform Support 1024 33-133 133 

Numeric 1024 39-135 135 
Alarm Information 1024 13-61 61 

   

 Table 2.2: Bandwidth cost summary for each data type [17] 

 

 

     There are two RS232 ports on each RS232 card, and each monitor can have two cards.  Each 

RS232 port could be set at one of the three baud rates: 9,600 baud, 19,200 baud, and 38,400 baud, 

with the constraint that if one port is set at the maximum baud rate, the other port on the same 



CHAPTER 2. A SYSTEM FOR SYNCHRONIZED COLLECTION OF PHYSIOLOGICAL 
                             SIGNALS AND CLINICAL ANNOTATIONS  
 

20

card would only support data output up to 600 bytes/sec.  Since the amount of escape sequences 

is unknown, the maximum amount of data CMSCOM requests from the monitor should be under 

the byte rate limit for the baud rate setting of the monitor. These limits are listed in Table 2.3. (HP 

Programming Guide) 

 

 

Selected Baudrate (bits/sec) Byte Rate Limit (bytes/sec) 

9600 920 

19200 1850 

38400 3750 

 

     Table 2.3 Limits on byte rates [17] 

 

      

    Table 2.2 and Table 2.3 show that in order to collect all available physiological signals, there 

must be two RS232 interface cards to provide 4 ports, two of which must be set at the maximum 

baud rate.  However, we have only one serial port on our laptop, and this standard serial port has 

a minimal buffer.  If the incoming data arrives at 38,400 bits/second, it would overflow the buffer 

and lose data.   

     The four RS232 ports in combination can transmit 8700 bytes every second.  This byte rate 

allows a maximum of six waveforms that are sampled at 500 Hz being collected simultaneously 

or five such waveforms plus all the numeric data.  Since most patients usually have no more than 

four or five such waveforms being measured or displayed simultaneously on the monitor, a 

previous study was able to receive most data from the bedside monitor for most patients using 

two RS232 cards and an expanded serial connection with smart serial cards on a workstation. [30]   

     We considered a similar expansion, but since, for research at the bedside, we were restricted to 

using only a laptop, which limits the extent of expansion and computational power, we were not 

able to receive and analyze all the waveforms in real time.  Thus, we focused on getting numeric 

data and alarm information as a first step.  The final baud rate was set at 19,200 bits/second for 

one RS232 connection.  In the future, we would like to upgrade our system to receive all 

available physiological data. 
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2.2.3     Command Center      
 

The functions of the command center include data transfer, data synchronization, and central 

control of all the components of PAAT.  It features the main user interface, which hosts patient 

information entry and command buttons.  Figure 2.2 illustrates the main user interface.  

     The command center is written in Visual Basic .NET.  The choice of this language was made 

based on the ease of creating and modifying the user interface, availability of multiple timers, and 

direct access to SQL server and other database engines using the functionality ADO.NET.   

      At selected clock times, the command center obtains physiological data from data text files 

and transfers the data into the database.  This clock is based on the system time of the laptop.  The 

command center uses this clock to check if any physiological data have been received in the past 

two seconds.  If yes, it time-stamps each set of data with the time of this clock and records the 

data into the database.  Otherwise, it substitutes a special value for missing data, time stamps it, 

and records it in the database.   

 

 

2.2.4     Clinical Event Recording      
 

2.2.4.1     Event Annotation 
 

Clinical event recording is done in four cases: 1) the bedside monitor sounds an alarm; 2) an 

alarm algorithm under investigation displays an alarm; 3) the patient becomes irritated and 

requires immediate attention when no alarm occurs; 4) drugs are being administered or 

discontinued.   

      

CMS Alarm Event.   When the bedside monitor sounds an alarm and sends alarm information to 

the system, an annotation box, as in Figure 2.3, is displayed on the user interface.   
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Figure 2.3 CMS alarm message box 

 

 

The field “Begin Time”, “Alarm Type” and “Alarm Severity” are automatically filled when the 

annotation box appears.  “Begin Time” is the time point when the alarm starts.  “Alarm Type” is 

the physiological parameter that triggers the alarm.  “Alarm Severity” is given by the monitor 

according to the following prioritization scheme [17]: 

3: Red Alarms – identify apnea, extreme bradycardia, extreme SpO2 desaturation, FiO2 low   

                           oxygen, asystole, ventricular fibrillation and pressure disconnect conditions; 

2: Yellow alarm – alert clinicians when the preset alarm limits are exceeded; 

1: Short yellow alarm – alert clinicians of abnormal but not life-threatening arrhythmia. 

     Technical alerts (INOPS), which are triggered by signal quality problems, equipment 

malfunction, a measurement setup problem, or an ongoing calibration, are recorded into the 

database but not annotated because they are treated differently by caregivers and have distinct 

sounds and known causes.         

     During or after the alarm, a trained observer at the bedside records whether the patient is 

moving, whether a medical procedure is in process, and how the medical staff responds to the 

alarm, such as checking the patient, adjusting sensors, or silencing the alarm without any 

intervention. 
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     “End Time” is automatically filled in when the alarm stops.  At this time, a trained observer 

asks the nurse or physician at the bedside to classify the alarm into one of the three categories, as 

adopted from work by Tsien [48]: 

•  TP-R (True Positive, Clinically Relevant) 

These alarms are appropriate given the actual data value, and the patient’s condition 

requires prompt attention.  For example, a patient suddenly develops a dysrhythmia with 

a heart rate of 200 beats per minute (bpm), the ECG measures 200 bpm, the monitor is set 

with an upper threshold at 160 bpm, and the monitor sounds an alarm. 

•  TP-I (True Positive, Clinically Irrelevant) 

These alarms are appropriate given the input data value as compared to the set threshold 

value, but the patient’s condition had not changed in a way that required additional 

medical attention.  The sounding of the alarm thus has no clinical relevance.  For 

example, a patient suddenly has a heart rate of 200 beats per minute (bpm), the ECG 

measures 200 bpm, the monitor is set with an upper threshold at 160 bpm, but the 

increase in heart rate is due to patient’s excitement upon seeing his or her family, so he or 

she does not require medical attention.  For this example, we should note that children, 

especially sick children, generally have a higher heart rate and a higher tolerance of 

fluctuation in heart rate than adults do. 

•  FP (False Positive) 

These alarms are inappropriate given the input data value.  For example, a patient has a 

heart rate of 80 bpm.  The ECG electrodes are manipulated.  Although the patient’s heart 

rate stays at 80 bpm throughout this period, an alarm sounds.  The alarm was false 

because the reported value did not reflect the patient’s condition. 

This classification can be revised if any events in the next 30 minutes indicate the classification is 

incorrect.  The need for this update mechanism will be elaborated in the discussion on the gold 

standard for alarm classification in section 2.2.7. 

     When the entire message box is completed, the observer would save the annotation and close 

the message box. 

 

Algorithm Alarm Event.    When an alarm algorithm under investigation generates an alarm and 

reports it, an annotation box, as in Figure 2.4, is displayed on the user interface.   
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Figure 2.4   Algorithm alarm message box 

 

 

The field “Begin Time” is automatically filled when the annotation box appears.  “Begin Time” is 

the time point when the alarm starts.  The annotation is done in the same manner as that for the 

CMS alarm message box except there are no parameter and severity specifications because the 

alarm algorithms that we have developed classify the patient’s condition instead of an individual 

physiological signal, and the alarms generated by these algorithms do not have a priority 

assignment.  In future research where new algorithms generate more refined decisions or require 

additional information, the algorithm alarm message box can easily be modified to facilitate 

necessary annotations. 

  

Non-Alarm Event.     If the patient starts to show irritation or serious discomfort when no alarms 

are generated, the trained observer starts a Non-Alarm event annotation entry box to record this 

event.  If the nurse deems this event to be clinically relevant, this event would be classified as a 

false negative.  Figure 2.5 shows the layout of this annotation entry box. 
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      Figure 2.5     Non-Alarm event annotation entry box 

 

 

Medication Annotation.    An annotation entry box is also available for the observer to record 

when a drug is administered, which could significantly alter some of the physiological data. 

 

 

 
  

  Figure 2.6 Drug information entry box 
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2.2.4.2     Multiple threading 

 

Events, especially clinically relevant events, are likely to occur multiple times.  They might be 

concurrent, overlapping, or in series.  Especially during such times, the caregivers are busily 

involved in taking care of the patients, so they might not be available to answer questions or they 

do not have adequate information to classify the alarm yet.  Thus, our system must allow multiple 

alarm messages to coexist and multiple annotation boxes to remain open in order to facilitate the 

annotation process.   

     The design of multiple threading in PAAT is illustrated in Appendix A.  Figure A.1 shows the 

primary thread and the main thread.  The primary thread serves the main user interface, initializes 

new threads, and relays commands to other threads in the system.  The main thread serves the 

monitoring functions of the system.  It has a timer running at one second and automatically reads, 

processes, and stores the physiological data.  It also generates new threads for the annotation 

processes for the monitor’s alarms and the algorithms’ alarms during each cycle.   

     As shown in Figure A.2, there is a thread for each alarm-generating entities (i.e. the bedside 

monitor and each alarm algorithm).  PAAT also runs a threshold alarm algorithm in parallel with 

the CMS alarm system to mimic the alarm algorithm in the previous generation of patient 

monitoring systems.  It immediately generates an alarm when a measurement value exceeds the 

parameter’s upper or lower threshold.  The purpose of running this algorithm will be elaborated in 

Chapter 3.   

     When an alarm is generated, a new thread is initialized and a message box appears on the 

screen.  This thread will remain active until the user finishes entering the annotations about the 

alarm and closes the message box.  Thus, concurrent or overlapping events can be annotated 

simultaneously and as clinical information becomes available.   Figure A.3 illustrate this 

capability of PAAT for CMS alarm annotations and the threshold alarm annotations.  Figure A.4 

gives the similar illustration for two sample alarm algorithms. 

     Each Non-Alarm event annotation and drug information entry also has its own thread.  The 

purpose of these thresholds is to allow multiple concurrent annotation sessions as well as 

separation from the automated monitoring process. 
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2.2.5     Database    
   

The database is designed using SQL server desktop version.  SQL Server provides more 

capability and reliability than database engines such as Microsoft Access and is simpler to use 

than engines such as Oracle.  It is easy to backup and restore different databases, allowing data 

from each collection session to exist in one database.  More importantly, SQL Server has 

enforced transactions mechanism, which ensures the physical integrity of each transaction.  For 

example, it provides lock facilities that preserve transaction isolation and logging facilities that 

ensure transaction durability.  Even if the server hardware, operating system, or SQL Server itself 

fails, SQL Server uses the transaction logs, upon restart, to automatically roll back any 

uncompleted transactions to the point of the system failure.  Transaction management features 

enforce transaction atomicity and consistency.  After a transaction has started, it must be 

successfully completed, or SQL Server undoes all of the data modifications made since the 

transaction started.  These features ensure data integrity and prevent partial or corrupted record 

from being stored.   

        Table 2.4 lists the tables in the database for the physiological data collection unit.  Table 2.5 

lists all the tables for clinical event recordings.   

 

 

HR (heart rate) 
PR (pulse rate) 
RR (respiratory rate) 
ABP (arterial blood pressure) 
NBP (cuff blood pressure) 
O2Sat (arterial oxygen saturation) 
Perf (oxygen perfusion) 
Tp (temperature) 
CO (cardiac output) 
Wedge (pulmonary wedge pressure) 
CO2 (carbon dioxide) 
AllNu (all numeric) 
AllNuAvg (features derived from the numeric)

 

Table 2.4 Physiological data tables  
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Table 2.5 Clinical event recordings tables 

 

 

2.2.6     Time Synchronization      
 

In the previous section, we described the time stamps for all the data records.  Time 

synchronization between two different physiological parameters is achieved by matching their 

time stamps.  Time synchronization between event recordings is achieved by comparing the 

beginning times and the two ending times.  Synchronization between physiological data and event 

recording is achieved by going over all the time intervals defined by the begin and end time of 

each event and identifying those events whose time interval spans the time stamp of the 

physiological data, as illustrated in Figure 2.7.   

     

 

2.2.7     Gold Standard for Alarm Classification      
 

The most difficult part of annotating an alarm-sounding event in the ICU is the accurate 

classification of the alarm.  Even if the definitions of each class, such as those described earlier in 

the chapter (i.e. TP-R, TP-I, or FP), are clearly disjoint, the complexity of the event or how an 

alarm is classified, by whom, and on what basis could make the classification process ambiguous.   

     In their studies, Tsien, Lawless, and Koski all asked the patient’s nurse to classify the alarms.  

The gold standard for alarm classification is then the nurses’ comments.  From personal 

communication with the director of a standard pediatric ICU, we learned that the patient’s nurse 

may not serve as a sufficient gold standard because nurse training focuses on routine care and 

reaction to clinical events rather than on knowledge that enable nurses to detect trends and to  

CMS Alarm 
Tree1 Alarm 
Tree 2 Alarm 
. 
.   (Algorithm alarms) 
. 
Threshold Alarm 
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foresee a deterioration in the patient’s condition. Other studies propose to verify the nurse’s 

classification with the attending physician, but since the attending physician may not have 

followed the course of this particular patient on a minute-to-minute basis, the physician’s 

judgment may not be a good gold standard either. 

     So far, there is not a reliable gold standard for alarm classification in the literature.  Thus, in 

this study, we construct a 2-tier gold standard: we first ask the patient’s nurse or a physician who 

has been closely following the patient to classify the alarm sounding event.  Then, we use the 

patient’s condition in the next 30 minutes to revise the human expert’s classification as needed.  

For example, if an alarm for bradycardia (i.e. heart rate less than the low limit) is classified as a 

false positive, and the patient becomes persistently hypotensive in the next 30 minutes, we would 

revise the classification to either clinically relevant true positive or a class chosen by all 

physicians and nurses at the bedside.  

      

 

2.2.8     Evaluation Procedure      
 

Evaluation of the system was done in three stages: simulation, implementation, and usage.   

Testing was done at each stage.  During simulation, both unit level testing and system-level 

testing were performed.  A simulation database was constructed as the source of patient data.  At 

the beginning of implementation, the RS232 connection was first tested separately from the rest 

of the system.  After it was shown to function normally, system-level testing was performed.  

After this test succeeded, the system was used to run alarm algorithms in real time in a 

completely functional phase, which facilitated stress testing. 

 

 

2.2.9     Implementation 
 

This system has been implemented and used at the Multidiciplinary Intensive Care Unit (MICU) 

of Children’s Hospital in Boston.  The study was approved as a part of a research protocol by the 

Institutional Review Board of Children’s Hospital.  A patient consent form is required to ensure 
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that patients and their families are comfortable with the presence of the observer.  Patient 

confidentiality and privacy have been protected according to the hospital guidelines.   

     A sample protocol for each session is as follows: 

1) After obtaining patient’s/guardian’s consent, the investigator connects the portable 

computer for the study to the bedside monitor via a cable that is installed and tested by 

technicians from the Biomedical Department of Children’s Hospital. 

2) The software-based system on the portable computer collects numeric physiological data 

(e.g. heart rate, blood pressures, oxygen saturation) every second, monitors alarm and 

algorithm alarm recordings as alarms occurs, and gathers annotations of any clinical events 

(e.g. suction, drug injection, change of sensors).  The investigator also obtains the patient’s 

age, gender, primary reason for MICU stay, and the settings of monitor alarm limits from 

the nurse, and records this information into the database.  

3) A half hour or one hour into data collection, intelligent alarm algorithms start to analyze 

the collected data in real-time to generate visual alarms on the screen of the investigator's 

computer.  When such an alarm appears, the investigator will record the time, duration, and 

cause of these generated alarms, along with the nurse's comment regarding the patient's 

state.  The performance of these algorithms may be evaluated either in real time or after the 

session ends. 

4) At the end of each session (2-12 hours after the beginning of the session), collected data 

and annotations may remain stored on the investigator's computer or may be transferred at 

a remote location to a file server.   

   

 

2.3     Results 
 

2.3.1     System Evaluation      
 

We tested our system according to the evaluation procedure described in the last section on a 

Pentium 4 professional notebook with 2.2 GHz CPU speed, 1024 MB memory, 60 GB storage 

disk space, and 64 MB video memory.  It was used to collect patient data over 300 hours in 
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sessions from 2 to 12 hours in duration, and demonstrated no major problem in the last 200 hours 

of data collection.   

     CMSCOM was the most robust and independent component of the system.  Its function was 

not disrupted by disturbances or faults in other parts of the system.  However, to achieve this 

robustness, it required the highest priority among all running applications.  Otherwise, data arrival 

from the bedside monitor would be aperiodic and may cause data loss at unpredictable times. 

     The number of concurrent multiple threads was tested up to 70, which allowed message boxes 

for 70 alarms to be active at the same time.  Because this number far exceeded the amount of 

annotations the observer could handle concurrently, higher numbers were not tried.  The system 

may be able to handle more than 70 concurrent annotations given that the system resources such 

as memory and screen size were sufficiently large.  

     As a data collection system, the system’s performance was consistent.  For the evaluation of 

alarm algorithms, the system performed at a normal level for up to 10 algorithms.  When trials of 

more than 10 alarm algorithms were carried out simultaneously, the amount of computation and 

memory usage started to put a burden on the system, resulting in lower performance and data 

loss.  Such problems were alleviated by decreasing the rate of data collection and analysis (e.g. 

from 1 Hz to 0.5 Hz).  

     The system slowed down globally in response to the notebook heat-up problem.  Nevertheless, 

all processes continued in a synchronized manner.  This problem was also alleviated by 

decreasing the rate of data collection and analysis. 

 

 

2.3.2     Data Collection     
 
The MICU provides intensive care to a diverse group of children.  Its patient population consists 

of all critically ill children admitted to Children’s Hospital except those who have primary cardiac 

disease and require treatments in the Coronary Intensive Care Unit (CCU).  Thus, patients come 

to the MICU for a variety of reasons, such as recovery from surgery, treatments for specific 

diseases, close monitoring and diagnosis.  They range from neonates to adolescents.  Their stays 

at the MICU last from a few hours to a few months.  A nurse simultaneously cares for at most 
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two patients.  One or sometimes two nurses are assigned to a patient who needs frequent 

interventions.                                                                                                                                           

     Different patients were monitored for different sets of physiological parameters.  Some 

parameters, such as heart rate, were measured in every patient, while others were measured only 

in some patients.  Table 2.6 lists the numeric parameters according to how frequently they were 

measured during this research.  

 

 

Always  
Monitored parameters 

Heart rate 
Pulse rate 
Respiratory rate 
Arterial oxygen saturation 

Frequently  
monitored parameters 

Arterial blood pressure (systolic, diastolic, mean) 
Noninvasive blood pressure (systolic, diastolic, mean) 
Oxygen perfusion 
Venous oxygen saturation 

Less frequently  
monitored parameters 

Temperature 
Central venous pressure 
Carbon dioxide level 

Rarely  
monitored parameters 

Wedge pressure 
Cardiac output 
Temperature difference 

 

 Table 2.6 Monitored numeric parameters 

 

 

     During 196 monitoring hours, collected between 8 AM to 2 AM, in sessions of 2-12 hours, the 

bedside monitor sounded 325 clinical alarms.  Of these alarms, 290 were true positives with 

clinical relevance, 20 were true positives but clinically irrelevant, and 15 were false positives.  

Two instances of false negatives were observed. 

     Arterial blood pressure alarms had a false positive rate at 20%, but the other 80% were all true 

positives with clinical relevance.  While 13 out of 15 false alarms were arterial oxygen saturation 

alarms, over 80% of the other arterial oxygen saturation alarms were true positives, and about 

80% of which were clinical relevant, and the rest were clinically irrelevant true positives.  Heart 

rate alarms, respiratory rate alarms, and noninvasive blood pressure alarms were mostly true 

positives without clinical relevance.  There was no oxygen perfusion alarm because the nursing 
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staff did not set limits or turn on the alarm system for this parameter.  Other rarely monitored 

parameters did not generate alarms.   

    Besides alarms that alert the caregiver of possible deterioration in the patient’s condition, the 

CMS monitor generated another kind of audio and visual alerts, called INOPs.   During the 196 

monitoring hours, 1768 INOPs were generated.  They were used to alert the caregivers of setup or 

hardware faults and the system being unable to process signals properly.  Unlike the alarms, they 

were not specifically indicative of the patient’s condition.  For clarity, in the rest of this thesis, we 

refer to regular alarms as alarms, INOP alerts as INOPs, and alarms and INOPs together as alerts.   

      According to our observations at the bedside, the MICU staff responded to the two kinds of 

alerts with different senses of urgency.   Alarms and INOPs were sounded with different tones.   

Upon hearing an alarm, the nurses would immediately check the patient and the values displayed 

on the monitor’s screen.  During the 196 monitoring hours, ten out of the 325 alarms were 

silenced by the MICU staff.  At no times did the MICU staff suspend the monitor’s alarm system.  

For the INOPs, the nurses could wait from seconds to minutes before checking the monitor and 

making appropriate adjustments of sensors and equipment connections.  After identifying the 

cause of an INOP, they usually silenced the audio alert but rarely suspended it.   

     Not only were the nurses’ prioritizations of the INOPs different from that of the alarms, but 

also the rates of the two types of alerts varied widely from session to session and patient to 

patient.  Figure 2.8 is a histogram of the number of patients in each bracket of different alarm 

rates.  Out of the 16 patients included in this study, five patients were in especially critical 

conditions, so that the study sessions had to end and the observer had to withdraw from 

the bedside within the first two hours.  These patients had the highest alarm rate and 

contributed to the distribution above 10 alarms per hour.  However, no INOPs were 

generated during the observation of these patients.  The other eleven patients were 

followed in sessions of 2-12 hours in the total 196 monitoring hours.  Figure 2.9 is the 

histogram of the number of patients in each bracket of different alarm rates for the eleven 

patients.  It is in fact a zoomed-in view of Figure 2.8 for the patients whose alarm rate was below 

10 alarms per hour.   
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Figure 2.8 Distribution of alarm rate over all patients 
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Figure 2.9 Distribution of alarm rate over the patients monitored for 2-12 hours 
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Three of these eleven patients had no alarms.  Others’ alarm rates were relatively distributed 

closed to the mean of 1.7 alarms/hour.  The total 1768 observed INOPs were randomly 

distributed among these patients. 

 

 

2.4     Discussion 
 

This system for synchronized collection of physiological signals and clinical annotations has been 

shown to synchronize the physiological data and clinical event recordings in a consistent manner.  

Although its performance could be influenced by hardware capabilities, it is robust in achieving 

real-time data collection at the bedside. 

     Using this system, we were able to collect a set of annotated physiological data with more 

certainty in data correlation than previous studies had.  It can be easily backed up or restored.  

The data storage format also allows easy access during both prospective and retrospective data 

analysis. 

     A major new finding in this study is the unexpectedly low volume of clinical alarms generated 

by the bedside monitor.  In the study by Tsien, there were 2942 alarms during 298 monitored 

hours: about 9.9 alarms/hour. [45]  In the similar study by Lawless, there were 2176 alarms 

during 928 monitoring hours: about 2.3 alarms/hour. [25]  Our results show only 325 clinical 

alarms during 196 monitoring hours: about 1.7 alarms/hour. 

     One explanation for the low volume of clinical alarms in comparison to the study by Tsien is 

that Tsien’s study counted what we now call INOPs as clinical alarms.  That study obtained its 

data from the previous generations of patient monitoring systems, which did not have the 

capability to distinguish the abnormal measurements that were due to hardware or operational 

malfunction of the monitor itself from those that were due to some physiological changes in the 

patient.   In fact, the number of alarms and INOPs per hour is about 10.7 alerts/hour, which is 

similar and even slightly higher than the alarm rate of 9.9 alarms/ hour that was found by Tsien.  

     This reasoning may also help explain the unexpected low rate of false alarms.  Comparing to 

previous studies in which the false alarm rate is as high as 86%, a false alarm rate of 4.6% found 

in this study suggests a significant reduction in false alarm rate with the newer monitoring 

system. [45]  Since all the technical alarms are false alarms by our alarm classification and we 
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exclude them from the alarm count, our false alarm rate should be lower than those in previous 

studies. 

     Table 2.7 gives a breakdown of alert categorization with two counting schemes.  The first 

scheme includes alarms only, and the second scheme includes both alarms and INOPs, where 

INOPs are considered as false positive alarms.   

 

 

Average Alarm Rate  (Number of Alarms / Hour) Study 

Total TP-R TP-I FP 

Tsien 9.9 0.79 0.59 0.79 

Lawless 2.3 0.12 0.62 0.12 

This study (W/O INOPs) 1.7 1.49 0.10 0.05 

This Study (W/ INOPs) 10.7 1.49 0.10 9.14 

 

  Table 2.7 Frequencies of different types of alerts 

 

 

Including the INOPs in the alarm number count has no effect on the rate of true positive alarms; 

only the false positive rate and total alert rate are changed.   

     As in the study by Tsien, Lawless’ alarm statistics include alarms that were strictly due to 

hardware or operational malfunctions; yet, its alarm rate, 2.3 alarms/hour, is only about 0.5 

alarms higher than this study’s alarm rate that does not include the INOPs.  One explanation may 

be that the actual number of alarms is higher than the recorded alarm rate.  Lawless obtained his 

alarm statistics by asking the pediatric ICU staff to voluntarily record the source, time (shift), and 

the number of alarm soundings for each patient during a 7-day period. [25]  Given the intense 

workload in an environment such as the ICU, and for reasons that we will elaborate in Chapter 3, 

the nurses may not had time to record all the occurrences of alarms at the bedside.   

     Another reason for our significantly different results compared to previous studies may be the 

differences among the three patient populations.  One characteristic of a patient population is the 

critical nature of the patient’s state.  We could expect that a population of less severely ill patients 

would have a lower average alarm rate.  The number of clinically relevant true positive alarms 
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serves as a measure of this characteristic.  Table 2.7 shows that our study has the highest rate of 

clinically relevant true positive alarms among the three studies.  The TP-R rate in Tsien’s study is 

about a half of what our study observed.  Lawless’ TP-R rate is the lowest.  Thus, the results 

suggest that the patient populations for the three studies are different, but the lower alarm rate in 

this study is not necessarily a result of having a population of less clinically critical patients.  On 

the contrary, the relatively high rate of clinically relevant true positive alarms suggests that the 

patient population in this study overall may be more critical than that in the previous two studies.   

     Although the alarm statistics are dependent on the overall patient population, we must 

emphasize that individual patients within the study may be clinically very different from one 

another.  We do not have the distribution of patient population over the true alarm rates from the 

previous studies, but the patient distribution in our study, as illustrated by Figure 2.8 and Figure 

2.9, suggests that the alarm rate could vary significantly within the patient population for a study.  

For example, four patients had an alarm rate of less than 0.5 alarms per hour, while five patients 

had more than 10 alarms per hour.  Even within the range of 10 alarms per hour, seven out of the 

eleven patients had different alarm rates. 

     Table 2.7 shows another major new finding in this study: the rate of clinically irrelevant true 

positive alarms is lower than that in the previous studies by about six fold.  This decrease is 

further illustrated by the statistics of the TP-I alarms in Table 2.8.      

    

 

Percentage of Total Number of Alarms in Each Class Study 

TP-R TP-I FP 

Tsien 8% 6% 86% 

Lawless 5.5% 26.5% 68% 

This study (W/O INOPs) 89.2% 6.2% 4.6% 

This Study (W/ INOPs) 13.8% 1.0% 85.2% 

 

Table 2.8  Distribution of the alarms among different alarm classes 
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Statistics of different types of alerts averaged over 196 monitoring hours.  The alarm 

classification methods for Tsien’s study and this study are the same, as described in Section 2.2.  

Lawless’ categorization of TP-R and TP-I is slightly different.  His TP-R statistics are for alarms 

that lead to change in therapy, while TP-I alarms are true alarms that do not lead to change in 

therapy.  

     Counting the INOPs, only 1% of the alarms in this study were clinically irrelevant true 

positives.  This percentage is far less than that found by Lawless, and this result may be due to the 

different definitions for TP-I alarms and TP-R alarms in the two studies.  However, this 

percentage is also less than that found by Tsien, who used the same alarm classification method 

and found a similar false positive alarm rate as did this study, with INOPs counted as false 

alarms.  Thus, the results overall suggest that the newer generation of patient monitoring 

systems has improved data analysis and alarm algorithms.   
     The significant reduction in the clinically irrelevant true alarms is not the only evidence for the 

improvements in the new monitors.  Without counting the INOPs, about 89.2% of all alarms are 

true positives with clinical relevance.  Even with the INOPs counted (and thus the false alarm rate 

being comparable to those in the previous studies), the percentage of clinically significant true 

alarms under the same classification method has improved from 8% to 13.8%.   

      Due to intensive competition in the market of patient monitoring systems, individual vendors 

guard their special techniques as proprietary information, so the new data analysis techniques and 

specialized algorithms in the current generation of monitors have not been made public.  We 

hypothesize that more sophisticated signal processing is applied to physiological signals to reduce 

noise and to derive more accurately the numeric values.  Data analysis that incorporates 

information from multiple parameters may also facilitate the observed improvements.  

Furthermore, specialized algorithms, such as that for ST elevation detection, may also contribute 

to the increased specificity of alarm sounding decisions. 

     Given these unexpected results, we then would like to ask: is there still room or a need to 

improve patient monitoring systems?  The answer seems to be yes.  Why?  Data from this study 

only represents a subset of patients in one pediatric ICU.  Adult patient population may have a 

wider range of disease courses.  Moreover, the purpose of patient monitoring systems is not only 

to generate sensitive and specific alarms but also to make patient data more readily useable and 

informative to the medical professionals.  Thus, much more work still need to be carried out.  
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Things we have learned from this study help us to find the direction for this future work.  In the 

next chapter, we explore some of the ideas in this direction. 
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Chapter 3 

Real-Time Development of Alarm Algorithms 
 

3.1 Motivation 
 

Machine learning has typically been used to learn patterns in the data collected from multiple 

patients in medical applications.  As a result, the models learned represent the average patient.  In 

clinical medicine, however, many patients behave in highly individual ways that might deviate 

significantly from the average.  Even what counts as “normal” for a specific patient may be 

highly abnormal if seen in another, and patients’ dynamic responses to changing circumstances 

also vary greatly from individual to individual.  One of our main goals, therefore, is to develop 

learning methods that will create models specific to the individual patient.  There is, innately, a 

trade-off in choosing this strategy, however.  The amount of data that is available about a large 

population is typically far richer than what can be gathered about an individual patient.  

Therefore, the population model is more likely to include aspects that represent rare events, which 

are likely to have been seen in the population but not in the individual.  Nevertheless, we have 

chosen to try to learn individualized models in order to explore our ability to recognize events 

that are most relevant to the specific individual. 

     A previous study that applies a machine learning-based event discovery process to detecting 

“true alarm” events from physiological data of multiple patients showed that some models 

perform significantly worse on data from two other groups of patients.  After adjusting the 

thresholds in these models to levels that were more suited to 9% of one evaluation dataset, the 

refined models’ performances on the rest of that dataset showed significant improvement. [48]  

This finding suggests that a robust model must have a component that “adapts” to the targeted 

patient population or to individual patient whenever possible.  
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     In patient monitoring, there could be significant patient variability within the same patient 

population; thus, adaptation to individual patient is necessary.  Yet, how to incorporate patient-

specific data into modeling?  How to design a model component that changes with the patient?  In 

this research, we carried out an exploratory study towards helping answer these questions.  The 

study examined the feasibility and potential of developing alarm algorithms, using machine 

learning techniques, based on patient-specific data, in real time at the bedside.  If these algorithms 

could achieve acceptable performance, our methodology could be used in constructing 

comprehensive models that generalize over both disease processes and patient population.   

 

 

3.2 Methods 

 
In this section, we describe our methods in four parts: system requirements, training alarm 

algorithms, evaluating these algorithms, and learning incrementally in real time.  We also explain 

the rationale for choosing the tools that we used and the methodologies that we adopted. 

    As for any supervised learning in machine learning, the learning process consists of 

training/model building and testing/evaluation.  The core learning algorithm takes in a set of 

examples with input-output pairs of the target function to be learned and generates all the 

parameters of the model (weights and biases in the case of neural network models).   

 

 

3.2.1     System Requirements 
 

In order to develop alarm algorithms in real time, we must have a system that obtains 

physiological data from a patient monitoring system, that collects clinical annotations at the 

bedside, whose applications generate alarm algorithms within a bounded time, and that includes a 

mechanism to evaluate these algorithms on subsequent incoming data. 

     We expanded our system for synchronized collection of physiological signals and clinical 

annotations to include modules for training and evaluating alarm algorithms.  Alarms generated 

by these algorithms were annotated in a similar manner as for recording alarm events generated 
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by the bedside monitor.  To maintain modularity, each new application was designed to function 

on its own processing thread and to be independent of a maximum number of other system 

components.   

 

 

3.2.2 Real-Time Training of Alarm Algorithms 
 

In this study, we experimented with two machine learning techniques that had shown potential in 

generating intelligent alarm algorithms for patient monitoring systems: classification tree learning 

and neural network learning.  We focused on classifying each stream or instance of physiological 

data into an “alarm class,” if it corresponds to an adverse event for the patient, or a “non-alarm 

class,” if it represents some normal patient condition.  

     This section describes the two machine learning techniques and their implementation in our 

study.  At the end of the section, we also elaborate on key issues that we have encountered in 

real-time training of alarm algorithms. 
 

 

3.2.2.1     Classification Tree Learning 
 

3.2.2.1.1 Overview of Classification Tree Learning      

 

Classification tree learning is a method for inductive inference that takes on continuous-valued, 

discrete-valued, and/or Boolean inputs and generates a discrete-valued output, and the learned 

function is represented by a classification tree or a set of if-then rules.  It is one of the most 

widely used classifiers, and it classifies each instance by sorting it down a tree from the root, 

through branching nodes that depend on the values of the instance’s attributes, to a leaf node, 

which represents the instance’s class.  It also forms a disjunction of conjunction of ranges of 

attribute values of training instances.   
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3.2.2.1.2 Why Choose Classification Tree Learning?      

 
Classification tree learning is a useful classification method for many practical problems.  It is 

generally best suited to problems in which instances are represented by a fixed set of attributes; 

the classification output is discrete-valued; disjunctive description may be required; training data 

may contain errors; and the training data may contain missing attribute values. [28]  The problem 

of deciding whether to sound an alarm has all of these characteristics.  Thus, classification tree 

learning is particularly useful for the classification of patient state as needing prompt medical 

attention or not.   

      Another reason for choosing classification tree learning is that a previous study showed that 

classification trees are effective in classifying ICU data from a pediatric patient population into 

the alarm class and non-alarm class. [47]  It demonstrated the potential of classification tree 

learning in providing decision support. 

     Furthermore, the core algorithm for classification tree learning is well developed and readily 

available.  It is often referred to as ID3 in the literature, and it conducts a top-down, greedy search 

through the space of possible classification trees. [33]  ID3’s successors C4.5 and C5 have been 

widely used. [28]  The software that implements C5 can be called in batch-mode as an 

independent, embedded application, running at very high speed, with almost no limit on the 

amount of training data or test data.  This feature allows the software to be incorporated into our 

system. 

 

3.2.2.1.3     Real-Time Generation of Classification Trees        

 
For this study, we obtained the software See5, the Windows version of C5. (RuleQuest Research, 

St. Ives, Australia) [41]  To run See5 in batch-mode for training, two text files of specified format 

were required.  One file, called the Name file, specified the number and type of each attribute, the 

type of the output, the order of attributes for the input data, and special training options, such as 

boosting, cross-validation, and pruning.  The other file, called the Data file, contained the training 

data in the specified order.  A third text file, called the Cost file, could be used, but is not 

required, to specify an asymmetric cost function. 

     Before a trained observer initializes training from the command center, he or she can specify a 

training size, which is the number of data points to be written to the data file.  After initialization, 
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PAAT automatically creates the Name file based on the available physiological data specified on 

the user interface, writes the most recent data of the specified training size into the Data file, and 

then calls See5 to process the training data and generate a classification tree.  The resulting 

classification tree is stored in a file called the Tree file.   

 

3.2.2.1.4     Classification Tree Training Options      

 

There are several options available for modifying the training process in classification tree 

learning.  The ones used in See5 are boosting, cross-validation, differential misclassification 

costs, fuzzy thresholds, local pruning, global pruning, final minimum cases, winnowing, subset, 

and sampling.  The following subsections provide an overview of each option and specify how 

each was set in this study. 

 

Boosting.   When this option is selected with the specification of the number of trials, the training 

process builds a classifier in each trial.  When an instance is classified, each classifier votes for its 

predicted class with a weight equal to the confidence of its prediction, and the class assignment 

that has the weighted majority vote from all the classifiers is the final decision.  The classification 

tree model is then this set of classifiers.  Depending on the nature of the data, boosting often gives 

higher predictive accuracy but at the expense of increased training time.  In our study, we used 

the standard setting of 10 trials for boosting. 

 

Cross-validation.     This option can be used to estimate the accuracy of the classifier even when 

there are no separate test cases.  The training data are divided into a user-specified number of 

blocks, and this number is referred to as the number of folds.  Each block contains approximately 

the same number of cases and the same distribution of classes.  A classifier is built for data in the 

other blocks and then tested on the data in the block.  Because the data division changes each 

time a cross-validation is carried out, the results also change each time for the same data.   

     We experimented with cross-validations with 5 to 15 folds.  This option further lengthened the 

training time.  Since we were going to estimate the accuracy of the classifier(s) on separate data 

instances, we chose not to carry out cross-validation in real time. 
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Differential misclassification costs.   Without this option, by default, the core learning algorithm 

assumes that the costs of all types of misclassification are equal.  Some problems, however, have 

an asymmetric cost function.  For example, in medicine, the cost of diagnosing a patient with a 

disease as not having the disease is much higher than the cost of diagnosing the patient positive 

for the disease when the patient in fact does not have the disease.  Thus, we first used differential 

misclassification costs in training.  However, due to the bias this cost assignment created, as to be 

discussed in the later sections under the topic of handling imbalanced dataset, we decided not to 

assign differential misclassification costs. 

 

Local Pruning.     To prevent the classification tree from overfitting the training data, local 

pruning examines each subtree and replaces it by a leaf or a sub-branch if by doing so the entire 

tree’s estimated predictive accuracy would be improved.  The Pruning CF parameter for this 

option controls the extent of local pruning.  A lower value causes more extensive simplification.  

In this study, we used the default Pruning CF value of 25%. 

 

Global pruning.   Global pruning looks at the tree as a whole and may prune relatively weak 

subtrees to prevent the final tree from overfitting the training data.  No parameter specifies the 

extent of global pruning in See5.  We used this option to obtain shorter trees, which may 

generalize better over instances not in the training data.       

 

Final Minimum Cases.  The parameter for this option also influences the complexity of the 

classifier.  A higher minimum number of cases restricts the tests that can be used near the leaves 

of the classification tree and usually leads to smaller classification trees.  In this study, we used 

the default parameter value of 2 cases. 

 

Winnowing.    Selecting this option directs the core learning algorithm to analyze the training 

cases and discard attributes that are only marginally relevant to classification prior to constructing 

a classifier.  In this study, we assumed that all data could potentially be useful for classification, 

and this option was not selected. 
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Subset.   By default, the core learning algorithms deals separately with each value of an 

unordered discrete attribute.  If this option were chosen, these values would be grouped into 

subsets.  In this study, all attributes are continuous-valued, so we did not select this option. 

 

Sampling.     Selecting this option causes only the specified percentage of the training instances 

to be used for constructing the classifier.  Samples are redrawn every time a classifier is 

constructed.  Since we could lose interesting patterns or informative training instances in 

sampling, we chose not to use this option.  This rationale is elaborated further in section 3.3. 

 

 

3.2.2.2 Neural Network Learning 
 

3.2.2.2.1 Overview of Neural Network learning  
 

Neural Network learning is inspired in part by the complex webs of interconnected neurons in 

biological learning systems in the brain.  It is a general, practical method for learning real-valued, 

discrete-valued, and vector-valued nonlinear functions.  It has the structure in Figure 3.1. 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1   Neural network structure 
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A neural network consists of a layer of input nodes, a user-specified number of layers of hidden 

nodes, and a layer of output nodes.  Each input node outputs the value of the corresponding 

attribute, and this output feeds into every node in the next layer with a specific weight, and this 

weighted value becomes the input of this next node.  A bias may be added to each hidden layer.  

The values of the output layer nodes specify the output of the network.  The number of nodes in 

each hidden layer can be user-specified or optimized during learning.  Each hidden node transfers 

its input to the output with a specific transfer function. 

 

3.2.2.2.2 Why Choose Neural Network Learning?  
 

Neural network learning is among the most effective methods for learning to interpret complex 

real-world sensor data and also applicable to problems for which more symbolic representations 

are often used.  With the commonly-used transfer functions, it is inherently nonlinear and is 

useful especially to capture nonlinear patterns.  The training examples may contain errors, and 

evaluation of the learned target function is fast. [28]  These capabilities work well for our 

problem. 

      Another reason for choosing neural network learning is that a previous study showed that 

neural network classifiers are effective in classifying ICU data from a pediatric patient population 

into the alarm class and non-alarm class. [48]  It demonstrated the potential of neural network 

learning in providing decision support. 

     This machine learning technique does have the drawbacks of possible long training times and 

difficulty with interpretation of the input-output relations.  Because we were using data from one 

patient and the estimated data size was not significantly large, we expected the training time to be 

tolerable.  Also, at this stage in our research, we would like to focus on pattern recognition first 

before going onto pattern elucidation.  Thus, these drawbacks would not prevent us from 

achieving our current research goals. 
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3.2.2.2.3 Real-time Generation of Neural Network  
 

We use the backpropagation algorithm as our core learning algorithm.  Each hidden node is 

designed as a sigmoid threshold unit, which is best illustrated by Mitchell, as adopted in Figure 

3.2. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2   The primitive unit for the neural networks’ hidden nodes 
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number and type of each attribute, the type of the output, the order of attributes in the training 

dataset, and options for the training process.  The other file, called the Data file, contains the 

training data.   

     Before a trained observer initializes training from the command center, he or she specifies a 

training size, the number of data points to be written to the data file.  After initialization, PAAT 
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user interface, writes the most recent data of the specified training size into the Data file, and then 

calls EasyNN to process the training data and generate a neural network.  The resulting neural 

network is stored in a file called the Network file.   

 

3.2.2.2.4    Neural Network Learning Specifications 
 

Learning rate.     Learning rate determines the step size in the gradient descent search of the 

BACKPROPAGATION algorithm by moderating the degree to which weights are changed at 

each step.  The trade-off on learning rate is that a smaller rate enables a more thorough learning 

process but lengthens the training time.  In our study, training data varied from patient to patient 

and even over different monitoring periods of the same patient, so an “optimal” learning rate 

could not be pre-determined.  We balanced over this trade-off in real time by setting the initial 

learning rate at 1.0, letting the core learning algorithm optimize it during training, and making it 

decay over training cycles.  EasyNN-plus optimizes the learning rate by running a few learning 

cycles with different values prior to actual training to determine a learning rate that allows quick 

learning and convergence.  Then, the learning rate is automatically reduced if erratic learning or 

oscillations in training error occur.   

 

Momentum.     Momentum is used to alter the weight-update rule in the BACKPROPAGATION 

algorithm to speed up convergence.  For our purposes, we first set the momentum to be 0.8 and 

then let the core learning algorithm to optimize it and to allow it to decay over training cycles.  

EasyNN-plus optimizes the momentum by running a few learning cycles with different values 

prior to the actual training and then automatically reduces the value during learning if oscillations 

in training error occur.  

 

Network reconfiguration.  This option allows the number of nodes in a specified hidden layer to 

grow during training.  A previous study had found that neural networks with one hidden layer are 

sufficient to capture the complexity in the physiological data. [48]  Thus, we started with one 

hidden layer in neural network learning.  The number of nodes in each hidden layer was set to be 

the number of inputs and then allowed to grow during training.   
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Validation.      To help prevent the neural network from becoming overfitted to the training data, 

we designated 30% of the training data for validation.  The learning and validating process was 

set to stop after 100% of the validating examples were correct after rounding or if the number of 

correctly classified validating instances decreased. 

 

Target error stops.   The core algorithm can stop the learning after a target error is reached.  In 

our study, we set the average error of 0.1 as the target error. 

 

Fixed period stops.  The core algorithm allows the user to preset a time limit on the training.  To 

allow adequate training while staying within the time needed for real-time training, we set the 

upper bound for training time at 120 seconds. 

 

 

3.2.2.3     Key issues in real-time training 
 

3.2.2.3.1 Handling Imbalanced Dataset 

 
As discussed in Chapter 2, clinical events were few in number and sparse in time at the bedside.  

The available dataset for training alarm algorithms was highly imbalanced or skewed.  As a 

result, the classification trees or neural networks derived from such imbalanced training dataset 

were biased towards classifying every new instance as belonging to the non-alarm class.  We 

could in theory have an alarm algorithm that would never generate an alarm. 

     To address this problem with the imbalanced dataset, we experimented with three ways to 

reduce its effects.  One method was to introduce an asymmetrical cost function: the cost of a false 

negative greatly exceeds the cost of a false positive.  This method was applicable in classification 

tree learning but not in neural network learning.  The second method was to include only a 

sample of the non-alarm instances in the training dataset such that the two classes were equally 

represented during training.  The third method was is to duplicate the instances in the alarm class 

multiple times in the training dataset to reduce the imbalance. 
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3.2.2.3.2 Feature Derivation 

 
Features of clinical time-series data are information derived from the data either over time or 

from multiple time-series or both.  Extracting features that effectively characterize the trends in 

the training data is an important step in building generalized models for patient monitoring.  A 

number of features have been derived from clinical time-series in previous studies, but their 

techniques for feature derivation cannot be readily employed in real-time learning, which requires 

a large memory space to keep track of the data over time and fast calculations.  As the number of 

features and the complexity of the features increase, the time needed to derive these features can 

increase exponentially.  Thus, in this study, we used both the actual value of the measurements 

and simple features such as time averages.   

 

3.2.2.3.3 Handling Missing Values 

 
The problem of missing values occurs in two forms.  The first form usually results from 

unavailability of the measurements (i.e. the caregiver removes a sensor from the patient).  The 

parameter with missing values might not have any measurement readings for a period of time or 

the rest of the session.  With the second form, the measurement of a particular parameter is not 

available or the monitor does not generate a value occasionally because of corrupted signals. 

     The trained observer could readily detect the second form at the bedside.  Our action in this 

case was to exclude the attribute(s) with missing values from the training of new algorithms, but 

we continued to run existing algorithms through the incoming data.  For the second form, we 

chose to let the core learning algorithms’ built-in functions handle the missing values. 

     The built-in function in See5 estimates a probability for each of the possible value of the 

attribute at each sample based on the observed frequencies among the training instances and 

substitutes the missing value with the value with the highest probability.  To classify new 

instances whose attribute values are unknown, See5 computes the most probable classification by 

summing the weights of the instance fragments classified according to different path down the 

tree at the leaf nodes. [34] 

     The built-in function for handling missing values in EasyNN-plus substitutes the missing 

value with the median of the affected attribute in the training dataset.  This method is used during 

both training and evaluation. [12]  
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3.2.3     Real-Time Evaluation of Alarm Algorithms 
 

After developing the alarm algorithms, we evaluated them in real time because real-time trials of 

alarm algorithms have three major advantages.  First, they run the alarm algorithm as soon as the 

physiological data and clinical annotations are collected.  Therefore, physiological data, clinical 

annotations, and alarms generated by the alarm algorithms are synchronized and time-stamped 

within the same time frame.  This synchronized setup allows better correlation between alarm 

algorithm output and the clinical data.   

     Second, when an alarm algorithm generates an alarm, the trained observer can immediately 

annotate what is going on at the bedspace and proceed to classify the alarm.  He or she can seek 

and verify information about the patient’s state with the medical professionals.  In contrast, the 

conventional approach to evaluating alarm algorithms might not have recorded this information, 

especially if the clinical staff did not observe anything unusual.  Thus, evaluating alarm 

algorithms in real-time provides more informative assessment of the algorithms.   

     Third, the real time trials allow the detection of false negatives when the bedside monitor and 

the alarm algorithms all fail to detect these clinical significant events.  Unlike in retrospective 

evaluations where the access to clinical information is limited to what has been recorded, the 

observer can obtain the information about these false negatives from the ICU staff during real-

time evaluation.  This information is valuable in either refining the alarm algorithm under study 

or re-tuning of the learning process.   

     After the trained observer initializes the evaluation of the classification tree, a new data stream 

is written into a file called the Cases file.  The application then uses the Tree file and the Cases 

file to classify the data stream and outputs the classification result into a file called the Class file. 

     For the evaluation of the neural network, a new data stream is input into an application that 

obtains the weights and bias values from the Network file and calculates the output.   We created 

this application independently of EasyNN-plus because that software’s memory requirement may 

potentially slow down other processes. 
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3.2.4     Incremental Learning 
 

In this part of the study, we would like to explore the question: how much data is needed to 

capture the states of a patient over time.  In the framework of our research, how much data is 

needed to develop a patient-specific yet adequate model of the patient state in real time?   

     As the first step, we built classification trees and neural networks in incremental periods at 30 

minutes, 1 hour, 2 hours, 4 hours, and 8 hours after the beginning of 12-hour sessions.  Each 

model was evaluated immediately on the incoming data in the parallel processes illustrated in 

Figure A.2 to A.4.  Model evaluation first used the clinical annotations to determine the actual 

class of each instance in the database.  Then, four performance metrics were calculated for each 

model, based on the classification given by the model and the actual class of each instances, and 

averaged over 10 study sessions.    

     The four performance metrics are sensitivity, specificity, positive predictive value (PPV), and 

accuracy.  Sensitivity measures the percentage of actual alarm-class instances that are correctly 

classified by the model.  Sensitivity measures the percentage of actual no-alarm class instances 

that are correctly classified by the model.  Positive predictive value measures the percentage of 

true positives of all the instances that are classified by the model as in the alarm-class.  It is one 

minus the false positive rate. Accuracy measures the percentage of correctly classified instances 

by the model over all instances.  Below is an illustration of the four performance metrics, based 

on an illustration adopted from Tsien [48]: 
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      Figure 3.3     Performance metrics illustration 

 

 

3.3 Results 
 

3.3.1     Training Time Assessment 
 

The duration of the training process varies with the training size and training options.  Table 3.1 

lists the training time for classification trees during a typical 12-hour study session in the ICU. 

 

 

Training Time for Classification Tree Learning (seconds) Number of 
Examples 10 Boosting Trials 

10-fold Cross-validation 
Global Prunning 25% 

10-fold Cross-validation 
Global Prunning 25% 

Global Prunning 
25% 

1800 0.1 0.1 < 0.1 
3600 2.5 0.2 0.1 
7200 3.2 0.7 0.2 
14400 11.0 2.0 0.5 
28800 53.5 6 1.1 

 

Table 3.1 Classification tree training time 

 

a                  b
 
c                  d 

     Actual class: 
 

     0                 1 

Classified as: 
 
 
0 
 
1 
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The actual training time for each study could vary within ±50% from the figures given in Table 

3.1.  When applications other than those of the system are also running, the training time could 

lengthen significantly. 

     Training neural networks in general took more time than training classification trees.  

EasyNN-plus does not keep track training time; thus, precise estimates of training times are not 

available for neural network learning.  A rough estimate based on repeated observations was in 

the ranges of a few seconds to several minutes for 1800 to 28800 examples, corresponding to 30 

minutes to 8 monitoring hours.  Training time could vary significantly with different training 

specifications, such as learning rate, momentum, the number of validation cycles, and the target 

error for each cycle.  EasyNN-plus was set to stop training at 120 seconds.  Thus, the 

comparatively long training time for neural network learning did not disrupt the overall system, 

although at the expense of modeling accuracy.      

 

 

3.3.2     Sample Classification Tree 
 

An example of a classification tree model for detecting true alarms is shown in Figure 3.4.  This 

tree was the classifier that had the smallest training error among a community of classifiers that 

were built on 14400 training examples (data from 4 monitoring hours) with 10 trials of boosting.  

Cross-validation and asymmetric cost function are not used.  In the classification tree, true-alarm 

class is labeled as “1” and the non-alarm class is labeled as “0”.  The parentheses after the class 

label indicate the number of training examples that arrived at that node, followed by the number 

out of these examples that were incorrectly classified at that node.  These numbers can have 

decimals because of pruning the tree. 

     To read this tree, we start with the first line.  If the arterial oxygen saturation is greater than 

91, the instance is classified into the non-alarm class.  There were 10645.6 training examples that 

were classified into the non-alarm class at this node, and 187.7 of these examples were classified 

incorrectly.  If the arterial oxygen saturation is less than 87, the instance is classified into the true-

alarm class.  There were 130.2 training examples that were classified into the true-alarm class at 

this node, and 0.3 of which were classified incorrectly.  If the arterial oxygen saturation is greater 

than or equal to 87 but less than 91, we look at the heart rate: if the heart rate is greater than 211, 
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O2Sat > 91:  0  (10645.6/187.7) 
O2Sat <= 91: 
:…..O2Sat <= 87:  1  (130.2/0.3) 
       O2Sat > 87: 
    :.…..HR > 211:  1  (47.9/0.4) 
            HR <= 211: 
        :…...PRAvg > 117.4:  1  (252.4/52.1) 
                PRAvg <= 117.4: 
            :…...O2SatAvg > 89.2:  0  (1185.1/47.5) 
                    O2SatAvg <= 89.2: 
                :…...O2Perf > 4.1:  1  (499.5/41) 
                        O2Perf <= 4.1: 
                    :.…..PRAvg > 110.8:  1  (76.9/0.2) 
                            PRAvg <= 110.8: 
                        :.…..HRAvg > 111.6:  1  (58.6/2.5) 
                                HRAvg <= 111.6: 
                            :.…..O2PerfAvg <= 2.74:  1  (262.2/114) 
                                    O2PerfAvg > 2.74:  0  (1241.6/123) 

 

  Figure 3.4     An example of classification tree. 

 

 

the instance is in the true-alarm class; otherwise, we look at the time average of the pulse rate, 

and so forth.  

 

 

3.3.3     Sample Neural Network 
 

An example of neural network model for alarm detection contains 16 input nodes, 1 hidden layer 

with 18 nodes, and one output node. The number of training examples was 14400.  During 

network training, the optimal step size was 0.2, momentum was 0.8, target error for stopping each 

training cycle was 0.1. 

 

 

3.3.4     Imbalanced Dataset 
 

Using an asymmetric cost function to rebalance the dataset caused about a 4 to 10 fold increase in 

training error for cost ratios (false positive: false negative) from 1:10 to 1:1000.  The 

classification trees generated with such cost function generated at least twice more false alarms 

than those with a symmetric function.  The increase in the false alarm rate depended on the nature 
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of the training data, so only a lower bound has been observed.  For two classification trees, the 

false alarm rate jumped by 50 fold. 

     Rebalancing the dataset by sampling instances in the larger class also increased the false alarm 

rate, although not as dramatically as we have seen with the first approach.  The increase depended 

on both the training data and the evaluation data. 

     Rebalancing the dataset by duplicating the instances in the smaller class multiple times 

showed improved sensitivity and no general increase of the false alarm rate.  However, the 

training time for a larger training dataset could slow down the system.  Some classifiers also 

showed the effects of overfitting the duplicated training examples.  The classification tree in 

Figure 3.5 illustrates some of these effects.  

 
O2SatAvg > 89.2: 
:.…..PRAvg <= 117.4:  0  (14227.6/5) 
:       PRAvg > 117.4: 
:   :.…..PRAvg <= 118:  1  (13) 
:           PRAvg > 118:  0  (24.1) 
O2SatAvg <= 89.2: 
:.…..O2Perf > 4.1:  1  (35.1/1.1) 
        O2Perf <= 4.1: 
    :.…..O2Sat <= 87:  1  (12) 
            O2Sat > 87: 
        :.…..PRAvg > 110.8:  1  (12) 
                PRAvg <= 110.8: 
            :.…..O2Perf <= 2.5:  1  (9/1) 
                    O2Perf > 2.5:  0  (67.1/7) 

 
Figure 3.5 An example of an overfitted classification tree. 

 

 

3.3.5     Feature Derivation 
     

     Although both classification tree models and neural network models varied from patient to 

patient and time interval to time interval, time averages were selected more frequently for the 

node in classification trees than the actual parameter.  In neural network models, they in general 

had larger weights.   
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3.3.6     Incremental Learning 
 

The performances of classification tree models averaged over 10 sessions are presented in Table 

3.2. 

 

 

Performance Averaged Over 10 Sessions (~120 Hours) Performance 
Metrix CMS Threshold Tree1 Tree2 Tree3 Tree4 Tree5 

Sensitivity 1 1 0.0036 0.0083 0.1111 0.4286 0.8432 
Specificity 0.9913 0.8765 0.9991 0.9843 0.9794 0.9828 0.9829 

PPV 0.8235 0.6958 0.625 0.1667 0.1429 0.3749 0.7214 
Accuracy 0.9917 0.9621 0.9575 0.9510 0.9533 0.9700 0.9751 

 

Table 3.2 Performance comparison of classification tree models 

 

 

The column with the header “CMS” is for the alarm algorithm(s) of the bedside monitor.  

“Threshold” stands for the standard threshold alarm algorithm.  “TreeX” stands for the Xth 

classification tree model in a session.  Tree1 were usually built with 30 minutes or 1800 instances 

of training data, Tree2 with 60 minutes or 3600 instances, Tree3 with 2 hours or 7200 instances, 

Tree4 with 4 hours or 14400 instances, and Tree5 with 8 hours or 28800 instances. 

     The performances of neural network models averaged over 10 sessions are presented in Table 

3.3. 

 

 

Performance Averaged Over 10 Sessions (~120 Hours) Performance 
Metrix CMS Threshold ANN1 ANN2 ANN3 ANN4 ANN5 

Sensitivity 1 1 0.0501 0.2301 0.5948 0.8034 0.9562 
Specificity 0.9913 0.8765 0.9940 0.9704 0.9822 0.9856 0.9873 

PPV 0.8235 0.6958 0.7000 0.1598 0.3719 0.7134 0.7928 
Accuracy 0.9917 0.9621 0.9606 0.9515 0.9605 0.9742 0.9861 

 

Table 3.3 Performance comparison of neural network models 
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The column with the header “CMS” is for the alarm algorithm(s) of the bedside monitor.  

“Threshold” stands for the standard threshold alarm algorithm.  “ANNX” stands for the Xth 

neural network model in a session.  ANN1 were usually built with 30 minutes or 1800 instances 

of training data, ANN2 with 60 minutes or 3600 instances, ANN3 with 2 hours or 7200 instances, 

ANN4 with 4 hours or 14400 instances, and ANN5 with 8 hours or 28800 instances. 

     Figures 3.6 to 3.9 present the performance comparison of the CMS alarm algorithm(s), the 

standard threshold alarm algorithm, the classification tree models, and the neural network models. 
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 Figure 3.6 Sensitivity comparison graph 
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Figure 3.7 Specificity comparison graph 
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Figure 3.8 Positive predictive value comparison graph 
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Accuracy Comparison Graph
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Figure 3.9 Accuracy comparison graph 
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3.4 Discussion 
 

The results show that the development of alarm algorithms based on machine learning is feasible 

in real time.  Furthermore, these algorithms are useful for integrating multiple physiological 

signals in detecting adverse clinical events.  We conclude this chapter with a discussion of the 

results and relevant issues arisen during our research. 

 

 

3.4.1     Real-Time Development of Models 
 

In real-time learning, specifically in developing alarm algorithms, we found that the training time 

is determined by the type of learning, the core learning algorithm, the number of training 

examples, and the options for fine-tuning the training process.  For example, training neural 

networks takes more time than training classification trees in general, and this training time 

increases fast for neural networks as the number of training examples increases.  Training options 

such as boosting and cross-validation can significantly increase the training time, and because the 

intermediate models during boosting and cross-validation can be different from trial to trial, the 

training time has a larger variance than training without these options. 

     Uncertainties in the training time may not affect the overall process if the system does not 

require instantaneous model generation.  However, even in such systems, the allowed timeframe 

is within a few minutes.  Thus, any artificial intelligence techniques that require training time that 

is over minutes to hours cannot be used for this purpose. 

 

 

3.4.2     Imbalanced Dataset 
 

Using asymmetric cost function to rebalance the training dataset did not show promising results.  

Experiments demonstrate that using the cost function in training classification trees not only leads 

to a higher training error on the training set but also produces a high rate of false alarms.  This 

observation is consistent independent of other training specifications. 
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     In sampling the larger class, the amount of information available for learning the patterns of 

normal patient conditions could be lost.  Thus, the models derived from the final training set are 

more likely to misclassify a non-alarm instance as in the alarm class. 

     The results suggest that rebalancing the dataset by expanding the rare class could produce 

more sensitive and specific models.  However, this method is not guaranteed to do so.  For 

example, in Figure 3.x, we saw a classification tree that was overfitted to the training data.  

Because the training examples in the smaller class were duplicated multiple times, the 

mechanisms that prevent overfitting, such as pruning of the classification trees, were unable to 

minimize overfitting to these training examples.  Another drawback is that the amount of training 

data is increased by thousand and tens of thousand fold.  The overall effect on the system might 

not be tolerable in real-time learning.    

 

 

3.4.3     Feature Selection 
 

Data averages over a time window of the raw data can help eliminate some of the artifacts that 

create spikes of abnormally high or abnormally low values.  As a result, they more accurately 

reflect the actual value of the parameters.  Both the classification tree models and neural network 

models indicate that the time averages have a larger information gain despite the natural bias in 

the information gain measure that favors attributes with many values over those with few values. 

     To improve our system, we have implemented slopes as a new feature.  The results are yet to 

be obtained.  The hypothesis is that they could be useful in detecting trends that involve multiple 

parameters over time.  For example, sudden decoupling between two parameters that are highly 

correlated under normal physiological conditions would suggest the presence of disease 

processes, adverse reaction to therapy, or both. 

 

 

3.4.4     Incremental Learning 

 

Comparison of the sensitivity of different alarm algorithms showed that the first models are not 

sensitive in detecting alarm events.  One reason may be that for most session, there were no alarm 

events during the first 30 minutes.  Thus, these models automatically classify all data instances 
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into the non-alarm class. Even though there were a few sessions with true clinical events during 

the first 30 minutes and the resulting classification trees and neural networks had better 

performance, their sensitivity was still below 50%.  When averaged over 10 sessions, the overall 

sensitivity was low.    

     While the first models were not sensitive, their specificity was higher than any other models, 

CMS’s alarm algorithm(s), and threshold alarm algorithm.  This high specificity came from their 

ability to classify most non-alarm instances correctly.  This result is expected, because sensitivity 

and specificity are inversely related.  Also, due to their high specificity, the first trees managed to 

have a relative high positive predictive value.   

     Subsequent learning models improved steadily in sensitivity, as on a learning curve.  The 

improvement was moderate for Tree2 and Tree3 and for ANN2, and their specificity and positive 

predictive value were low.  One reason for this phenomenon may be that the models have learned 

the patterns in the alarm instances, but because the training data did not capture all the patterns of 

the normal physiological conditions, when these models encounter a new non-alarm event, they 

are likely to classify it as abnormal, alarm instance. 

     The fourth and fifth models showed improvements in sensitivity, specificity, and positive 

predictive value.  These models were trained with more data; hence, they may capture more 

patterns, both of the normal physiological conditions and of abnormal patient states.   

     The performance of Tree5 and ANN5 approached that of the CMS’s alarm algorithm in all 

four performance metrics.  Their positive predictive values also exceed that of the standard 

threshold alarm algorithm, which represents the alarm algorithms in the last generation of patient 

monitoring system.  This result suggests that more training data may help build a more robust 

model for the patient, and 8 hours of training data may be adequate. 

     Overall, the neural network models performed better than the classification trees.  They also 

seemed to improve faster than classification tree learning did.  This result may be attributed to the 

stronger learning capabilities for nonlinear problems.   

     There are several reasons for the learned models not to perform as well as CMS’s alarm 

algorithm(s).  First, alarm detection in the newer generation of patient monitoring system is more 

sophisticated than that in the last generation.  Although the details of the new algorithm(s) have 

not been disclosed, from publicly available information we know that they include sensitive 

artifact detection, noise elimination, pattern recognition of specific disease conditions, such as 

ventricular fibrillation, and some multiple-signal/multi-channel data analysis.  For example, from 
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observations at the bedside and retrospective data analysis, we found that when the value of a 

parameter went beyond the thresholds, the CMS’s alarm system would wait for at least 6 seconds 

before sounding an alarm.   

     Another reason is that each product line of patient monitoring systems has its unique platform 

and operating system that allow fast, real-time processing of data in formats that take up little 

memory.  The monitoring system itself has more processing power than a standard professional 

laptop.  Furthermore, our alarm algorithms were developed from only the numeric data, while the 

bedside monitor had more information than just the numerics.  Thus, it is not surprising that our 

models did not outperform the CMS’s alarm algorithm(s).   

     Even with much less data and processing power, our algorithms’ performances did come close 

to that of the CMS’s algorithms.  Furthermore, these models are intended to be part of a larger 

decision support system for detecting and predicting adverse events.  Their value lies in their 

specificity to individual patient’s baseline values and adaptivity to the course of patient outcome.  

Thus, it is reasonable to predict that with more information, such as waveforms and their features, 

classification tree learning and neural network learning have promising potential in helping 

generate intelligent alarm sounding decisions. 
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Chapter 4 

Related Work 
 
 

Efforts to develop better, more intelligent patient monitoring systems have been ongoing, both in 

academia and industry.  In this chapter, we present related work in four areas: data acquisition in 

the ICU, understanding patient monitoring and alarms in critical care, intelligent patient 

monitoring, and real-time systems and design issues.  There are necessarily areas of overlap 

among these topics. 

 

 

4.1   Data Acquisition in the ICU 
 

Data acquisition is an essential step in the development and evaluation of patient monitoring 

systems.  Due to restricted accessibility of patient data, building systems that collect 

physiological signals and record clinical information has become a serious research topic.  This 

section presents some of the data collection / annotation systems in the literature. 

     Tsien and Fackler developed and implemented a prospectively annotated data collection 

system to support intelligent analysis of intensive care unit data at Children’s Hospital, Boston.  

This system had two components: automated collection of bedside monitor data and computer-

based, human operated recording of the clinical events at the bedside.  The first component 

collected numerical data directly from SpaceLab bedside monitor into a laptop via a serial 

connection at a rate of every 5-6 seconds.  This physiological data was saved in a text file.  The 

second component recorded detailed annotations of relevant clinical events such as alarm 

soundings, staff interventions, equipment malfunction, etc.  These annotations were stored in a 

Microsoft Access database.  All the data were time-stamped to allow retrospective analysis and 

correlation between the clinical events and the actual numeric data during these events.  The 

system was used to collect annotated data over 298 hours.  One area for improvement, as noted 

by the authors, is to make sure that physiological data and clinical annotations are time-stamped 

in a synchronized manner. [48] 
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     Moody et al. developed and implemented a data collection system that acquired signals from 

the bedside monitors (Hewlett Packard Merlin CMS) in the medical, surgical, and cardiac ICUs 

of Boston’s Beth Israel Hospital.  This system communicated with the bedside monitors via two 

RS232 interface links to a Digiboard PC/4e “smart” serial interface on a standard PC at the 

monitor’s maximum output baudrate.  It allowed the recording of up to three ECG signals that 

were sampled at 500 Hz and four or five other waveforms that were sampled at 125 Hz, or two 

ECG signals and six other signals.  This system also recorded numeric data, the monitor’s status 

messages, and alarm information.  Clinical information from the patient’s medical records and 

from the hospital’s clinical computing system was recorded separately into three relational 

databases.  The physiological data and clinical information together make up a database called 

MIMIC, which supports research on multi-parameter intelligent monitoring for intensive 

care. [30] 
     Sukuvaara et al. constructed a signal preprocessor called DataLog, which continuously 

collected patient’s vital signs from bedside monitors via an RS232 interface.  Their system also 

included a patient data management system (PDMS) that directly connected to the bedside 

monitor.   It provided clinical information for a knowledge-based alarm system, called InCare, 

which we will describe in section 4.2. [43] 

     As shown in the three systems described above, Chambrin made the observation that the 

RS232 interface has been widely used in collecting data from bedside monitors. [6]  Eddleman 

also found that, although more and more bedside monitors are networked and connected to a 

hospital’s LAN system, the RS232 interface has continued to be used in the development of 

prototype patient monitoring systems because of its position as a de facto standard in the medical 

community. [11]   

     We do, however, anticipate that future generations of patient monitoring systems will have 

more networking and data sharing capabilities to allow easy remote access to patient data from 

the bedside.  As a pilot study, Wang et al. built a real-time patient monitoring system on the 

Internet to facilitate intelligent on-line monitoring for the intensive care unit and showed 

promising test and evaluation results.  One of the major concerns for such system is the security 

of data over the Internet. [51] 

     Goldstein et al. also built a remote data acquisition system for the study of disease dynamics in 

the intensive care unit.  They acquired physiological data from multiple bedside monitors at 

different ICUs simultaneously via the hospital intranet and the Internet. The advantages of this 



CHAPTER 4.     RELATED WORK 

 

73

system include remote access to data, some patient selection (from any 6 out of the 16 PICU 

bedside), and continuous data capture on a 24-hour by 7 days schedule.  Their study went a step 

further to analyze the physiological data. Both linear and nonlinear analysis methods in the time 

and frequency domains were used; most outputs were signal visualizations of data 

transformations such as autocorrelation, power spectral density, and wavelet correlation.  These 

analyses were carried out retrospectively off-line, and the clinical annotations were being 

appended to the physiological data retrospectively as well. [14]   

     Another data acquisition system that employs networking capabilities and the hospital’s 

information system is the data collection system for a temporal ICU patient database called 

MIMIC II.  Saeed et al. recorded physiological data and clinical information from patients 

admitted to an 8-bed medical intensive care unit and an 8-bed coronary care unit from the 

patient’s admission to his or her discharge.  The physiological data (2 ECG leads, arterial blood 

pressure waveform, pulmonary arterial pressure waveform, and 30 1-minute parameters such as 

heart rate) as well as monitor-generated alarms and INOPs were collected from Philips CMS 

bedside monitors via an information center database server.  Clinical information was 

automatically captured from the ICU’s information system (CareVue by Philips Medical 

Systems) using the Philips Information Support Mart (ISM).  A web-enabled rational database 

was used to transfer, store, and manage the clinical data.  A text search engine facilitated queries 

of the database.  Some of the clinical information was aligned with the 1-minute physiological 

data, which was also processed using wavelet analysis techniques. [38] 

 

 

4.2     Understanding Patient Monitoring and Alarms 
 

     In general, researchers in patient monitoring believe that continuous monitoring of vital signs 

and other relevant physiological variables is indispensable in critical care, as the caregiver cannot 

be at the bedside at all times and measure all signals. [43]  However, it was generally 

acknowledged that the previous generation of patient monitoring systems generated false alarms 

at an undesirably high rate, as we have noted earlier.  Although our studies have shown that the 

false alarm rate is significantly reduced by distinguishing INOPs from clinical alarms and by 

more sophisticated alarm algorithms, examining how researchers have tackled the previous 
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problem with false alarms in the ICU might help us understand the requirements of patient 

monitoring and the decision process for alarm generation. 

      For the previous generation of patient monitoring system, there were many factors that 

contribute to the high false alarm rate.  First, these monitoring systems used single variable limit 

alarms: an alarm was generated if a patient parameter exceeds a threshold determined separately 

and independently for each signal.  Some essential problems with this approach were the 

difficulty of determining appropriate alarm thresholds, irritations resulting from frequent false 

positive alarms, and the fact that each signal is assessed separately without considering the 

clinical context (e.g. the values of other signals or recent medications). Thus, a conventional 

alarm often could not give appropriate information about the patient’s state.  It may even be 

“meaningless in the context of all information about the patient’s state.” [39]  Koski also found 

that an individual limit alarm does not infer specific physiologic deterioration. [22]   

     Arnell and Koski proposed that a combination of several signals should be used to generate 

alarms that are more context relevant. [2, 22]  Schecke et al. constructed AES-2, a knowledge-

based decision support system for patient monitoring in cardioanesthesia.  This system 

incorporated multiple signals and provided an interactive user interface via a touch-screen color 

graphics monitor.   A fuzzy set approach was applied to the uncertainty in decision-making. [39]  

Bloom demonstrated that the interpretation of any single physiologic variable could be improved 

by examining its interrelationships with other variables, and that the significance of the composite 

of these variables varied depending on the clinical state of the patient. [5] 

     Multivariable monitoring does not imply that using more variables would necessarily lead to 

better patient monitoring.  Mylrea et al. showed that sometimes when a smaller number of 

parameters were considered at the same time, the monitoring produced better results.  They 

examined 10 published reports of operating room critical incidents, accidents, and deaths since 

1975 to determine the percentages of anesthesia-related critical incidents that could have been 

detected with knowledge of patient airway variables. Their estimates indicated that integrated 

monitoring of “only 5 patient airway variables could potentially identify and warn when 50 to 

60% of the preventable anesthesia mishaps occur.” [32]  

      Some variables may also be more informative of a patient’s state than others.  Koski et al. 

were interested in clinicians’ opinions on alarm limits and urgency of therapeutic responses.  

They found that clinicians view heart rate, end tidal CO2, and systemic arterial blood pressure as 

the most important vital signs and place less emphasis on the pulmonary arterial pressures. [22] 
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     In addition to multivariable monitoring, safe ranges of monitored vital signs must always be 

determined based on the individual patient’s state. [22]  In Makivirta’s study, physicians’ choice 

of alarm limits did not vary significantly from the mean limit values observed in postoperative 

cardiac patients. However, as the variables contain recurrent transient excursions beyond the 

threshold, these limit values would result in the relatively frequent occurrence of false alarms. 

[26]  This study suggests that the alarm thresholds should be set according to the patient’s state 

instead of completely based on established limits. 

     Fewer false alarms may be possible by automatically changing alarm limits during a 

procedure.  Shifts also can occur with drug administration, incision, etc.  Automated event 

recognition and limit adjustment, using multivariable analysis, can provide these corrections.  

Recognition of intubation has been accomplished using measured variables from clinical 

monitors interfaced to a personal computer.  Recorded data from 20 general surgical cases were 

used to test a rule-based algorithm for detecting changes in oxygen level, breathing rate, and heart 

rate to identify preoxygenation, start of intubation, and completion of intubation.  Fifteen of 19 

intubations were recognized, producing a 42% reduction in “low CO2” false alarms.  

“Determination of appropriate limits could be further enhanced using information on initial 

patient status and diseases.” [32]  Moreover, automatically setting the limits at predetermined 

ranges from the latest variable levels can speed up the adjustment and promote the use of alarm 

limits. [22] 

     Manually changing the alarm limits could also increase the positive predictive value of the 

alarms.  Schoenberg et al. developed an algorithm that allowed users to first define a 

physiological trend, such as the difference between the heart rate variability over one minute in 

the last minute and that from three minutes ago.  Then, a threshold for this trend was chosen to 

yield one of the three outcomes: above the threshold, below the threshold, or unknown due to 

missing values.  Each outcome was assigned a score, and the sum of the scores was compared 

with a second threshold to determine whether an alarm should sound or not.  This algorithm 

required an expert to manually set its parameters, but it showed that the positive predictive value 

of the algorithm’s alarm exceeded that of the bedside monitor’s alarm by 31.9%. [40]  

     Another area for improvement is the detection and removal of noise from physiological 

signals.  Real-time systems for monitoring and therapy planning, which receive their data from 

on-line monitoring equipment and computer-based patient records, require reliable data.  Horn 

suggested that “data validation has to utilize and combine a set of fast methods to detect, 
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eliminate, and repair faulty data, which may lead to life-threatening conclusions.  The strength of 

data validation resulted from the combination of numerical and knowledge-based methods 

applied to both continuously assessed high-frequency data and discontinuously assessed data.  

The data validation benefited from the temporal data-abstraction process, which provides 

automatically derived qualitative values and patterns.  The temporal abstraction was oriented on a 

context-sensitive and expectation-guided principle.”  [18] 

      Horn et al. constructed VIE-VENT, an open-loop, knowledge-based monitoring and therapy-

planning system for artificially-ventilated newborn infants.  It consisted of data selection, data 

validation, data abstraction, data interpretation and therapy planning.  The strength of the system 

was that it used time-point, time-interval, and trend-based methods to validate data.  Automatic 

elimination of invalid measurements resulted in reduced false positive alarm rate. [18] 

     To increase noise immunity, alarm delays and trend analysis are usually added. [32]  Tsien 

studied four algorithms that filter output signals of a bedside monitor: moving average, moving 

median, delay, and sampling rate. Moving average algorithms and delay algorithms decreased 

false alarms up to a particular window size.  Moving median algorithms seemed more likely to 

eliminate true alarms than false alarms.  The sampling rate algorithm showed no consistent effect 

on the positive predictive value of the alarms. [46] 

     From interviews with neonatal ICU staff, ward observations, and experimental techniques for 

investigating the role of computerized monitoring in neonatal intensive care, Alberdi et al. found 

that the monitors played a secondary role in the clinicians’ decision making and that the ICU staff 

used the information resources provided by the monitors less often than expected.  The study 

suggested that computerized monitoring could improve through the development of intelligent 

algorithms, systematic staff training, integration and presentation of clinical information, and 

better user interfaces. [1] 

 

 

4.3   Intelligent Patient Monitoring 
 

Studies in patient monitoring have been applying techniques in artificial intelligence and related 

disciplines to improve patient monitoring systems.  A collection of such studies is presented here 

to give an overview of the area. 
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      Cohn et al. modeled the progression of hemodynamic abnormality by a sequence of clinical 

phases or “scenes”, which reflected the predominant physiologic process involved (e.g. increased 

pericardial pressure, vasodilation, hypotension).  A prototype intelligent cardiovascular monitor, 

DYNASCENE, implemented this paradigm as a parallel process lattice running on a 

multiprocessor. [8]  Bloom used cluster analysis, discriminant analysis, and statistical predictors 

to identify changes in clinical context. [5]  

      Sukuvaara et al. developed and tested a knowledge-based alarm system for monitoring 

cardiac operated patients.  It consisted of two parts: DataLog and InCare.  DataLog was a signal 

preprocessor for the continuously monitored patient signals.  InCare was a knowledge based 

alarm system that implements 87 rules that helped deduce a specific pathological condition from 

a combination of measured signals and estimated trends. InCase could continue to operate with 

incomplete data.  Rules used both numeric data and detected trends in the numerical data over a 

time window.  Multiple rules and multiple conditions in the rules were combined by logical OR 

operator to maintain the reliability of the system when data was incomplete. [43]  During a 171.9-

hour trial with 35 patients, the sensitivity of the system was 100%, and the specificity was 71%.  

In the second phase of their study, with 73 cases, the sensitivity of the system remained at 100%, 

and the specificities for the alarms and for the alerts were 73.9% and 70.0%. [23] 

     Mylrea et al. suggested that addition of pattern recognition capability using neural networks 

would allow the development of systems that would meet the stringent and complex requirements 

of the medical environment.  Neural networks could be more easily updated than rule-based 

systems. Two neural networks could also be operated in parallel. [32] 

      In the words of Kickert and Mamdani, fuzzy control is “the incorporation of the experience of 

a human process operator; the description of the operator’s control strategy by linguistic rules 

where the words are defined as fuzzy sets; and the main advantage of this approach is the 

possibility of implementing rules of thumb, experience, intuition, and heuristics without the need 

for a mathematical model.” [20]  Fuzzy control has wide applications in industry, because 

computational algorithms with fuzzy control can derive inferences from vague data using vague 

logical statements.  In medicine, fuzzy control has been used to control pacemaker rate [42] and 

to monitor left ventricular assist device (LVAD) controller [53].  Since determining the 

appropriate threshold for individual signals in monitoring devices is difficult, the fuzzy inference 

approach may be useful in dealing with the vagueness of a precise threshold and in modeling 

physicians’ decision-making process. 
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     In a study by Rau et al., 14 experienced cardioanesthetists formulated a set of defined terms, 

membership functions for the input parameters, and a knowledge base, which had 188 fuzzy 

rules.  The rule of inference was compositional. [35]  Zong et al. used a fuzzy logic approach to 

analyze the relationship between electrocardiogram and arterial blood pressure waveform in an 

effort to reduce false arterial blood pressure alarms in the ICU.  A fuzzy variable, called 

“Signal_quality_good” (SQG), was derived from the linguistic variables for describing local 

waveform characteristics, and it was used to describe the quality of the arterial blood pressure 

signal. [54]  

     Another study detected time-varying relationships between physiological variables using 

graphical modeling.  It explored the statistical methodology of graphical models based on partial 

correlations between different signals.  It showed that distinct clinical states of a patient were 

characterized by distinct partial correlation structures. [19] 

     Tsien et al. used classification tree induction on multiple signals to detect false alarms in the 

intensive care unit.  Features such as the maximum, minimum, range, mean, median, linear 

regression slope, absolute value of this slope, and standard deviation were calculated for 

successively overlapping time windows of three-minute, five-minute, and ten-minute durations as 

inputs into the decision tree learning algorithm C4.5.  This study showed that using machine 

learning techniques such as decision tree induction on derived features from physiological data 

may be a viable approach to distinguishing false alarms from true positives in the ICU. [47]  

Tsien went further to detect “true alarm” situations in the ICU using a pipeline for event 

discovery in medical time-series data.  This study demonstrated that machine learning techniques, 

such as decision tree classifiers, neural networks, logistic regression, radial basis function 

networks, and support vector machines, were useful in discovering knowledge from physiological 

data and their correlation with clinical events. [48, 49] 

 

 

4.4  Real-Time Systems, Design Issues, and Decision Support 
 

According to Laplante, a real-time system is a system that must satisfy explicit (bounded) 

response-time constraints or risk severe consequences, including failure.  It is one whose logical 

correctness is based on both the correctness of the outputs and their timeliness. [24] 
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      Some of the design issues are: 1) the selection of hardware and software; 2) the decision to 

take advantage of a commercial real-time operating system or to design a special operating 

system; 3) the selection of an appropriate software language for system development; 4) the 

maximizing of system fault tolerance and reliability through careful design and rigorous testing; 

5) the design and administration of tests, and the selection of test and development equipment. 

[24] 

     For real-time systems, a major problem is maintaining consistency, both temporal and among 

the data, between the computerized model and the process to be managed.  The first question is 

one of precision in the representation of time.  For ONCOCIN, the maximally precise unit of time 

was the day.  SEPIA’s precision was one minute.  GUARDIAN selected its unit of timeaccording 

to the working context of the system.  The second question rises from the synchronization of the 

computer process and the real process being monitored: gaps can occur if the system must wait 

too long for a piece of information, or if the computer crashes. [31] 

     Sampling rate of physiological signals must be high enough to yield useful information about 

the patient’s state.  Schecke et al. suggested that their approach required a very precise data 

recording; sampling interval of vital signs must be considerably shorter than 1 minute.  A 

comprehensive semi-automatic anesthesia information and documentation system is a 

prerequisite. [39] 

     User-interface is an important part of designing patient monitoring systems.  Coiera proposed 

a user and dialogue modeling approach for the development of user interfaces for intelligent 

patient monitoring systems.  He believed that this method could facilitate communication 

between human and computer.  He pointed out that the emphasis should be on the process of 

development of an interface rather than the final product.  Furthermore, the process of 

development should follow the user’s natural cognitive processes and structures. [7] 

     Very few references on real-time learning on medical data or real-time decision support for 

critical care have been found in the literature.  One study presented the architecture of an 

intelligent alarm system for patient monitoring during anesthesia, called the Adaptive Real-Time 

Anesthesiologist Associate (ARTAA).  It planned to implement a hybrid expert system based on 

neural networks and fuzzy logic theories for real-time and adaptive detection of which monitor is 

connected to the patient and common machine malfunctions. [15]  Another study by Fried et al. 

compared autoregressive models, phase space models, and dynamic linear models for online 

detection of artifacts, baseline change, and trends that could help classify the patient’s state in 
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retrospective case studies on physiological data from 19 critically ill patients.  They showed that 

no single statistical methodology could model all the patterns in physiological time-series data 

and suggested a combination of methods and pattern-specific models could achieve better results. 

[13] 
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Chapter 5 

Conclusion 
 
 
In this thesis, we have presented the design, implementation, and evaluation of a system for 

synchronized collection of physiological signals and clinical annotations, and then described an 

expansion of this system for real-time learning in the application of developing alarm algorithms 

for patient monitoring systems.  We conclude with a summary of our studies and findings, and 

questions for future research.   

 

 

5.1     Studies and Findings 
 

We began, in Chapter 2, by outlining the structure of the system for synchronized collection of 

physiological signals and clinical annotations and describing the design of its functional 

components. During the evaluation of this system and the subsequent study, we found that this 

system achieved its design goals and enabled time synchronization and accurate correlation 

between physiological data and clinical annotations.   

     Using this system, we collected numerical time-series data from the patient monitoring system 

and clinical event annotations at a bedside in a typical pediatric medical ICU.  We found that the 

new monitor generated alarms at a frequency much lower than what had been reported in the 

literature.  The finding that very few of these alarms were false positives further contrasts with 

the high false alarm rates observed in previous studies.   

     In discussion, we attempted to explain why our results gave a seemingly complete picture of 

the state of patient monitoring.  One of our hypotheses was tested in the subsequent study of this 

research; it clearly showed that the new generation of patient monitoring systems, including the 

one used in our research, has significantly improved data analysis capabilities and alarm 

algorithms. 
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     In Chapter 3, we presented learning in real time as a novel approach to help develop patient-

specific algorithms for patient monitoring.  We first explored the feasibility of this approach in 

the critical care setting by training and evaluating classification tree models and neural network 

models to detect adverse events at the bedside.  Then, we assessed the utility of this approach by 

carrying out classification tree learning and neural network learning at incremental time intervals 

in an adaptive manner.     

      Our expanded system of real-time data collection and algorithm development demonstrated 

that learning in real time is a feasible approach to developing alarm algorithms.  Performances of 

the trained classification trees and neural networks were consistent with the course of a 

generalized learning process.  The ones that are trained with eight hours of monitored numerics 

data outperformed the standard threshold alarm algorithm, which represented the alarm 

algorithms in previous generations of patient monitoring systems, and came close in performance 

to the alarm algorithm(s) in the new-generation monitors.  Contrary to our initial expectations, 

our individualized learned monitoring algorithms did not improve on the current generation of 

alarm methods incorporated in proprietary monitoring equipment. 

 

 

5.2     Questions for Future Research 
 

In this section, we elaborate four key questions that have arisen from our studies.  We will also 

discuss relevant ideas for future research in patient monitoring. 

 

What should be the gold standard for event classification in the ICU? 

 
Correct event classification is central to obtaining a useful annotated dataset and developing 

intelligent alarm algorithms.  As described in Chapter 2 and Chapter 4, event classification has 

relied on human experts as the gold standard.  Yet, we know that asking either the nurses to 

classify the alarm at the bedside or experienced physicians to do so retrospectively based on 

known patterns in the physiological data could bias the annotation toward misclassifying a true 

alarm as a false positive because of inadequate medical knowledge or clinical information.  

Decisions made with this gold standard are also subject to inter-observer variability.   
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     In our study, we used a combination of human experts at the bedside and patient outcome 

within a windowed timeframe after the event as a new gold standard for event classification.  

While our results contain no instances where future patient outcome was used to revise the 

classification by human experts, they do not suggest that incorporating patient outcome as a part 

of the gold standard is not necessary nor that classification by human experts alone is sufficient.    

     Since future patient outcome could yield significant information about the current patient state 

because living system and disease processes are causal and memory driven, one idea for future 

research is to carry out a rigorous evaluation of the proposed gold standard, a study that goes 

beyond the scope of this research.  Another idea is to identify new sources of information that 

could either facilitate or validate event classification.  It is also important to develop a gold 

standard that allows comparison of results across studies.   

 

How to best deal with the missing value problem in real time? 
 

As described in Chapter 3 and Chapter 4, the data from patient monitoring systems often have 

missing values for one or more parameters, either transiently in time or consistently over minutes 

and hours.  These missing values cannot be simply ignored or set to zero; parameters that 

frequently have missing values cannot be simply removed from the study.  Thus, we need a 

systematic approach to deal with the missing value problem. 

     In our study, we recorded both the transient and consistent missing values during data 

collection.  We relied on the core learning algorithms’ specialized mechanisms for dealing with 

missing values in real-time learning.  We need to investigate whether there are more effective 

ways to handle missing values other than what we have tried.  These methods should offer a 

general, systematic approach to the problem and yet could be easily implemented for specific 

studies.   

 

What features of clinical time-series data are most informative of patient condition? 
 

As we discussed in Chapter 3, features that are derived from clinical time-series data may capture 

patterns in the data and allow easy detection of adverse events by machines or humans.  There are 

many features that can be derived, such as averages, slopes, statistical characteristics, frequency 

characteristics, etc., and many more have yet to be derived and examined.  Researchers seem to 
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know that a wealth of information in clinical time-series data have not been extracted and 

utilized, but there is not a systematic way of deriving and selecting new features.   

     Due to the time constraint on feature derivation, we used the basic and widely used feature, 

time averages, in our study.  While we are currently experimenting with slopes and simple 

statistical characteristics, we would like to have in the near future a repertoire of features that 

yield high information gains and are quick to derive.  Furthermore, we would like to know which 

features to use in what kind of problem. 

 

In real-time learning, is it more effective to adaptively update existing models or to 

build a new set of models with newly obtained patient data? 
 

Real-time learning is a potentially useful approach to discover knowledge and to provide decision 

support in many real-world applications.  It is a new concept, and the methodologies for this 

approach are yet to be formulated and tested.  In Chapter 3, we presented a study that explored 

real-time learning in the medical domain. Two machine learning techniques were employed to 

build models that help generate alarm-sounding decisions in incremental time intervals, 

successively with more patient data.  Our results showed that learning from scratch requires 

patient-specific data from a sufficient period of time.  Thus, in providing clinical decision support 

for a specific patient, we still need to use the knowledge or models from a larger, relevant patient 

population during this period.      

     An interesting exploration would be to adaptively update existing models instead of building 

new ones from scratch.  The questions would then be how to do it, which of the two approaches 

has more advantages and fewer limitations, and are their performances highly dependent on 

clinical context. 

     One idea for updating existing models is to use N hours of training data from a group of 

patients with similar conditions and add the data from the current patient to the training dataset.  

This method might dramatically improve the performance of the learned models before all the 

data from this patient can capture possible clinical states.  The hypothesis is that the models 

derived from a larger patient population are better than the relative ignorance of the newly 

learned models derived from only limited amounts of data from this particular patient.  

Nevertheless, as we monitor this patient for more and more hours, at the Nth hour, we would have 

about equal amounts of population and individual data to train from, at 2xNth hour, we would 
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have twice as much data from the individual.  Thus, we should eventually get a very specific 

model for your patient.   While the details of this method are yet to be worked out, some 

interesting questions already arise: how to select the initial N hours of training data; what value 

should N take on, is it dependent on the clinical context, and if so, how to determine it under the 

constraints of time and data processing power for real-time learning. 

  

 

5.3     Summary 
 

     From an engineering standpoint, this research developed a computer-based system and 

realized real-time learning using artificial intelligence techniques for a real-world application.  

From a clinical standpoint, it facilitated the understanding of physiological signals at the bedside 

and may help improve clinical decision-support systems.  Overall, this research demonstrated that 

obtaining useful information in an environment that is over-loaded with data is a challenging but 

feasible task.  It also showed that unexpected results could lead to a better understanding of and 

creative ways to tackle a multidisciplinary problem.  Our challenges in medical engineering 

research will continue to be formulating problems arising from specific applications such as 

patient monitoring in terms of more general engineering problems and balancing between 

application and theory to produce specific engineering solutions for patient care. 
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Appendix A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    Figure A.1     The primary thread and main thread in PAAT      

 

 Start PAAT 

Initialize variables 

Start Monitoring 

Create Trees and 
ANNs 

Save patient info 

Stop monitoring 

Stop PAAT 

Main 
thread 

Read data 

Derive features

Th alarm  

 Save data to DB 

CMS alarm 

 

Tree alarm 

ANN alarm 

Monitoring

Monitor 
Alarms 

 

Algorithm 
Alarms 

Alarm System

Alarm Variables 

PAAT System

Primary 
thread 



APPENDIX A 

  

92

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
    
   Figure A.2     Multiple threads for incremental learning 
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Figure A.4     Multiple threads for algorithms’ alarm annotations 


