
Patient-Specific Learning in Real Time for Adaptive

Monitoring in Critical Care

Ying Zhanga,b,∗ and Peter Szolovitsa,b

May 14, 2008

a. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA

b. Division of Health Sciences and Technology, Harvard Medical School-MIT, Cambridge, MA, USA

Abstract

Intensive care monitoring systems are typically developed from population data, but do

not take into account the variability among individual patients’ characteristics. This study

develops patient-specific alarm algorithms in real time. Classification tree and neural

network learning were carried out in batch mode on individual patients’ vital sign numerics

in successive intervals of incremental duration to generate binary classifiers of patient state

and thus to determine when to issue an alarm. Results suggest that the performance

of these classifiers follows the course of a learning curve. After eight hours of patient-

specific training during each of ten monitoring sessions, our neural networks reached average

sensitivity, specificity, positive predictive value, and accuracy of 0.96, 0.99, 0.79, and 0.99

respectively. The classification trees achieved 0.84, 0.98, 0.72, and 0.98 respectively. Thus,
∗Corresponding author. Present address: 32 Vassar Street, Room 32-257, Cambridge, MA 02139, USA.

Email address: yingz@mit.edu. Fax number: +1 617 258 8682.

1



patient-specific modeling in real time is not only feasible but also effective in generating

alerts at the bedside.

Keywords: patient-specific adaptivity; real-time batch learning; classification tree; neu-

ral network, patient monitoring, critical care.

1 Introduction

In the Intensive Care Unit (ICU), an arsenal of medical devices continuously monitor each

patient. The most computation-intensive of these devices is the bedside monitor, which

takes in patients’ physiological measurements from biosensors and other devices, converts

the incoming electrical signals into digitalized waveforms and vital sign numerics, displays

these to caregivers, stores and analyzes them to track patients’ physiological state, and

sounds alarms whenever its built-in algorithms detect a physiological abnormality. While

new biosensors have increased the number and quality of available physiological signals [8],

and color touch screens have made bedside monitors more user-friendly, the clinical utility

of alarm algorithms that are central to timely detection of adverse conditions has continued

to advance at a slower pace than other medical technologies [10, 17, 5, 9, 7].

Until the 1990’s, most alarms were triggered when a specific physiological measurement

fell outside pre-set threshold boundaries, without any specific dependence on other signals

or, more importantly, the overall state of the patient, which was not represented. Even

the most sophisticated algorithms, such as those interpreting electrocardiogram (ECG)

variations, examined only one source of data, from ECG leads. Alarm detection in the

newer generation of patient monitoring systems is more sophisticated than previously. Al-

though the details of the new algorithms have not been disclosed, from publicly available

information we know that they include sensitive artifact detection, noise elimination, pat-

2



tern recognition of specific disease conditions, such as ventricular fibrillation, and some

multiple-signal/multi-channel data analysis. Indeed, we perceive a gradual shift in empha-

sis of ICU monitoring from issuing alarms toward creating alerts that are part of a larger

decision support infrastructure. We will use alerts when we mean this expanded view.

In this paper we address another potential source of improvement: tuning alerting

models to specialized patient populations, or, indeed, to the individual patient. After all,

in critical care no two patients are the same.1 In fact, many patients behave in highly

individual ways that might deviate significantly from the average patient in population-

based models. What counts as “normal” for one patient may be highly abnormal if seen

in another, and patients’ dynamic responses to changing circumstances also vary greatly

from individual to individual [11].

Alarm algorithms today are developed retrospectively, by using previously collected

datasets that encompass thousands of patients to build models that detect adverse clinical

events, namely medical conditions that could become life-threatening. Once built, these

algorithms are applied without further improvement to many patients in the ICU. Yet,

a previous study from our laboratory found that some models built from one patient

population performed significantly worse on data from two other groups of patients, but

simply optimizing the thresholds used in these models to fit data from 9% of these other

patients greatly improved the models’ performance [16]. This finding suggests that for

patient monitoring to be robust, its algorithms must be able to adapt to a focused patient

population or even to the individual patient.

The research reported here explores the most aggressive form of this hypothesis, that we

can build effective patient-specific alarming models from a specific individual’s own data.

Our preliminary findings were reported in [19, 20]. Obviously, such a “pure” strategy will
1Roger G. Mark, MIT, personal communication, 2000.

3



be quite ineffective before any individual data are collected, so we also study the rate at

which this approach can learn to produce accurate detection of clinically relevant events at

the bedside, using the system presented in [19]. As an initial investigation of this approach,

the present study has numerous limitations, which we address in the discussion.

2 Methods

2.1 Clinical Setting

This research was carried out in collaboration with the pediatric Multidisciplinary ICU

(P-MICU) at Boston Children’s Hospital, with the approval by the hospital’s Institutional

Review Board. The P-MICU staff allocated a spacious bedspace to the study and assisted

with clinical annotations. Before each study session, informed consent was obtained from

the patients and their families to ensure that they were willing to participate in the study

and felt comfortable with the presence of the computer equipment and a trained observer.

The first author served as the trained observer. During study sessions, which took place

between 2001 and 2003, between 8 AM and 2 AM, the trained observer sat at the bedspace

with a laptop computer connected to the bedside monitor, with a curtain drawn between

the patient and the observer whenever necessary. Patient confidentiality and privacy have

been protected according to the hospital’s guidelines.

A total of 196 hours of monitoring data were collected and analyzed from 11 different

patients ranging in age from infants to adolescents, five of whom were in especially critical

condition. Data collection took place during 23 sessions, of which 14 were at least eight

hours long, and four more lasted at least four hours. The shortest five sessions lasted

between 2 and 3.5 hours.

4



2.2 Synchronized Data Collection

To support our study, we collected and recorded the following information during each

session:

• The second-by-second numerics computed from the measured waveform data by the

HP Viridia Neonatal Component Monitoring System (CMS) used in the P-MICU.

These include the heart rate derived from ECG waveforms, pulse rate from plethys-

mography, respiration rate, blood pressure (systolic, diastolic and mean) either arte-

rial or measured by non-invasive means, arterial and venous oxygen saturation, and

oxygen perfusion.

• One-minute running averages of all numerics. These averages are less prone to mo-

mentary noise, though they are obviously not as quickly responsive to changing con-

ditions.

• Interpretations made by CMS and related information, including (a) clinical alarm

status and severity, (b) whether any of the threshold alarms on individual signals have

been triggered, (c) sensor or monitor malfunction (INOP) alarm status and severity,

(d) monitor status, and (e) alarm suspension (when an alarm has been silenced by

the nurse on duty).

• Clinical events noted and interpreted by the bedside observer, under each of the

following circumstances:

1. the bedside monitor issues an alarm other than an INOP

2. any of our alarm algorithms under investigation issues an alarm

3. the patient became irritated and required immediate attention even when no

alarm is issued

5



Figure 1: Example of an annotation box that allows the bedside observer to record the nature
and duration of an event, as well as an indication of whether the clinical staff consider it a false
positive, true positive that is clinically relevant, or true positive that is clinically irrelevant.

For each clinical event, the bedside observer recorded the start and end time of the

event, whether the patient was moving, whether a medical procedure (e.g., suctioning) was

in process, and the medical staff’s response to the alarm, such as checking the patient,

adjusting sensors, or silencing alarms without other intervention. In addition, the observer

asked the nurse or physician at the bedside to classify the event into one of three categories:

1. true positive, clinically relevant (TP-R)

2. true positive, clinically irrelevant (TP-I)

3. false positive (FP)

Figure 1 shows the dialog box for annotating one event, in this case resulting from one

of the algorithms under investigation issuing an alarm.

6



2.3 Models Derived from Different Amounts of Past Data

As we described in the Introduction, we investigate the degree to which models learned

from a patient’s own data can be effective in interpreting future data points. Rather

than doing this continually, we have chosen to construct interpretive models based on all

previously collected data at 30 minutes, 1 hour, 2 hours, 4 hours, and 8 hours into each

12-hour recording session.

After each model is built, all subsequent data (i.e., one each second) are interpreted by

each of the models and the results are recorded. In addition, we recorded each second the

single-signal threshold alarms and the more integrated CMS alarms issued. These records,

along with the clinicians’ interpretations of clinical events, are then used both for training

of our subsequent models and for evaluation of these models and their comparison against

the outputs of the monitoring system.

2.4 Gold Standard Data

The goal of our patient-specific alarm models is to make a binary judgment at each second’s

data whether an alarm should or should not be called. To train these models, we assume

that the answer should be “alarm” during any clinical event where the clinicians had called

the event a true positive, whether or not it was considered clinically relevant. Conversely,

if no event occurred, or if an event occurred that was annotated as a false positive, the

answer should be “stable”. Because events could be created not only by an alarm from

CMS but also by alarms from our own models or from observations by the clinicians or

observer, we are also able to recognize instances of false negatives, where an algorithm

should have issued an alarm but did not do so. We assume that all data points at times

when no clinical event was recorded are true negatives (i.e., when none of the models, CMS,

the clinicians or the observer saw an event).

7



We used one additional method to modify these classifications: if the patient’s condition

changed within the 30 minutes following an event, the classification of that event could be

revised as appropriate. For example, if an alarm for bradycardia is classified as a false

positive, and the patient becomes persistently hypotensive in the next 30 minutes, we

would revise the classification to clinically relevant true positive. Thus, the gold standard

for our classification tasks consists of human experts’ classification at the time the data

become available and either verification or re-classification using subsequently obtained

information. When event classifications changed, we did not re-do training of models that

had been built from data about that time period; however, models built at times after the

correction would incorporate the revised classification. Such reclassification is rare, having

occurred only five times in our 196 hours of data collection.

2.5 Training of Patient-Specific Alarm Algorithms

We chose to investigate two machine learning techniques that had shown potential in

generating intelligent alarm algorithms in earlier studies [16, 18], classification trees and

artificial neural networks. Classification tree learning is suited for the learning tasks in

critical care because it is a useful classification method for problems in which 1) instances

are represented by a fixed set of attributes; 2) the classification output is discrete-valued;

3) disjunctive description may be required; 4) training data may contain errors; and 5)

the training data may contain missing attribute values [14]. Neural network learning is

a general, practical method for learning real-valued, discrete-valued, and vector-valued

nonlinear functions. It is especially useful for capturing nonlinear patterns. The training

examples may contain errors, and evaluation of the learned target function is fast [12].

These capabilities work well for learning tasks in critical care settings.

For both learning algorithms, the input data consisted of the eight second-by-second

8



numerics and the corresponding minute-by-minute running averages, as described in Sec-

tion 2.2. The classification label for the training data samples, as well as the output of each

learned model, is binary: an “alarm” if the gold standard assignment of the data point was

“alarm”, or “stable” otherwise, as described in Section 2.4.

For classification tree learning, we chose See5 [2] to conduct a top-down, greedy search

through the space of possible classification trees. See5 is a Windows implementation of

C5.0, a new-generation data mining tool that is built upon its predecessors C4.5 and ID3

for generating classification trees and rule-based classifiers more accurately, faster, and

with less memory [3]. It includes the ability to handle discrete as well as continuous input

values and a variety of pruning methods to try to avoid overfitting. The details of these

methods are proprietary, but the software supports a number of user-tunable parameters.

After experimenting with 5- to 15-fold cross-validation and differential misclassification

costs (see below), we chose the following settings: 10 trials for boosting, no cross-validation

(to speed up training time), no differential misclassification costs, 25% local pruning, global

pruning, 2 final minimum cases, no winnowing, no subset selection, and no sampling to

obtain more balanced and generalized classification trees. A classification tree that is

produced represents a branching sequence of binary decisions that successively subdivide

the hyperspace of data points until each terminal region contains only points whose labels

are (preponderantly) the same. Figure 2 shows an example.

For neural network learning, we chose a model with a single output node and one layer

of hidden nodes in which the number of nodes initially equalled the number of inputs. Each

input is connected to each of the hidden nodes, and each hidden node feeds into the output

node. We employ back-propagation as the core learning algorithm. Each hidden node is a

sigmoid unit that takes in individual inputs x1, . . . , xn, calculates their weighted sum, and

9



O2Sat > 91: 0 (10645.6/187.7)
O2Sat <= 91:
:..O2Sat <= 87: 1 (130.2/0.3)

O2Sat > 87:
:..HR > 211: 1 (47.9/0.4)

HR <= 211:
:..PRAvg > 117.4: 1 (252.4/52.1)

PRAvg <= 117.4:
:..O2SatAvg > 89.2: 0 (1185.1/47.5)

O2SatAvg <= 89.2:
:..O2Perf > 4.1: 1 (499.5/41)

O2Perf <= 4.1:
:..PRAvg > 110.8: 1 (76.9/0.2)

PRAvg <= 110.8:
:..HRAvg > 111.6: 1 (58.6/2.5)

HRAvg <= 111.6:
:..O2PerfAvg <= 2.74: 1 (262.2/114)

O2PerfAvg > 2.74: 0 (1241.6/123)

Figure 2: An example classification tree. This asymmetric tree encodes a succession of decision
criteria, where each condition leads either to a classification (0/stable or 1/alarm) or to a subsequent
threshold test. For example, according to this tree, if the patient’s O2Sat exceeds 91, that is
considered stable. If it is below 87, that is considered an alarm condition. In-between, we need to
examine the heart rate, which, if above 211, means alarm. Otherwise, we continue to apply further
threshold tests until we reach a classification. The numbers in parentheses show the total number
of training instances that fell into this region of the hyperspace and the number of these that were
misclassified. These counts are not generally integers and the number of misclassifications is not
zero because of See5’s pruning methods, which try to avoid overfitting. This tree had the smallest
training error among a community of classifiers that were built on 14,400 training data points (from
4 monitoring hours) with 10 trials of boosting. Reproduced with permission from [20]. Copyright
c© 2007 IEEE.

10



generates an output using the transfer function

Ok = 1/(1 + e−
∑n

i=1 wk,ixi−δk)

for the k-th node. In the equation, wk,i is the weight for input xi, and δk is the neuron

offset. The output node, by contrast, is a threshold unit producing a binary result. We

employed the software EasyNN-plus because it could run back-propagation as an embedded

application in batch-mode [1]. The learning rate was initially set at 1.0 and then optimized

over the training cycles. The momentum for the weight-updating rule was first set at 0.8

and then optimized over training cycles. These parameters, as well as the number of nodes

in the hidden layer, were adjusted using sequential multi-fold leave one out validation.

Thirty percent of the training data were used as test data for the internal optimization of

parameters. The training time was capped at 120 seconds. The detailed rationale for the

settings for both learning methods is given in [19].

2.6 Implementation

All computations were performed on a Dell laptop computer running Windows 2000 on

a 2.2 GHz Pentium 4 CPU with 1GB of RAM. The most demanding computational load

arose during the times when new classification models were being built. This occurred

five times during each session, and at each time both a classification tree and a neural

network model were constructed. At all times, including while building new models, the

computer was acquiring data from the bedside monitor, storing these data into its own

database, running each previously trained model on the current data, opening annotation

windows corresponding to newly detected events from the CMS data, our algorithms, or the

observer, and managing the user interface, which could simultaneously display numerous

annotation windows if the staff were busy taking care of the patient and had not yet had

11



time to make their interpretations of the events.

To support this highly heterogeneous workload, and to permit interfacing to the com-

munication programs, the database, and the machine learning programs, our program was

multi-threaded and relied on the facilities of the operating system to permit the simulta-

neous execution of all these tasks. Some of the limits imposed on the learning algorithms

resulted from the system’s inability to keep up with all the necessary computations if the

learning algorithms were allowed to demand more computing power. For example, during

execution of the learning algorithms, we did note instances where the CMS interface would

miss some incoming data points because the overall system did not respond quickly enough

to data appearing in the input buffer.

3 Results

We were able to collect data during 23 sessions from 11 patients over a total of 196 moni-

toring hours, and to build and test our learning algorithms in real time on these data. We

describe the incidence of alarm conditions for the monitored patients and the computer

time needed to train our models, and we present the performance of our algorithms in

terms of sensitivity, specificity, positive predictive value, and overall accuracy.

3.1 Adverse Events

During the 196 monitoring hours, there were 325 clinical alarms sounded by the bedside

monitor and two false negatives observed at the bedside by the trained observer. Of the

alarms, 290 were true positives that required clinical interventions, 20 were true positives

that did not require clinical intervention, and 15 were false positives. The 312 adverse

clinical events generally were both sparse and brief in time, totaling 4.35% of the 196

monitoring hours. The number of such events experienced by each patient in the study

12



Data Global Pruning 25% 10-fold Cross-validation 10 Boosting Trials
Points Global Pruning 25% 10-fold Cross-validation

Global Pruning 25%
1800 < 0.1 0.1 0.1
3600 0.1 0.2 2.5
7200 0.2 0.7 3.2
14400 0.5 2.0 11.0
28800 1.1 6.0 53.5

Table 1: Training Time for Classification Tree Learning (seconds). Reproduced with permission
from [20]. Copyright c© 2007 IEEE.

Metric CMS Threshold Tree built after n hours of data
1
2 1 2 4 8

Sensitivity 1.00 1.00
0.00

[.00,.18]
0.01

[.00,.30]
0.11

[.04,.36]
0.43

[.29,.63]
0.84

[.70,.93]

Specificity 0.99 0.88
1.00

[.97,1.0]
0.98

[.69,.99]
0.98

[.90,.98]
0.98

[.94,.98]
0.98

[.96,.99]

PPV 0.82 0.70
0.63

[.00,.72]
0.17

[.00,.20]
0.14

[.02,.23]
0.37

[.15,.57]
0.72

[.60,.80]

Accuracy 0.99 0.96
0.96

[.92,.96]
0.95

[.89,.96]
0.95

[.93,.98]
0.97

[.95,.99]
0.97

[.96,.98]

Table 2: Performance Comparison for Classification Tree Learning. CMS is the bedside monitor’s
alarm algorithm. Threshold stands for a standard threshold-based alarm algorithm. The rightmost
five columns are results for the classification models built after the five given times. PPV is positive
predictive value. The measures shown are averages from 10 sessions of monitoring, with the ranges
of values shown in brackets.

varied significantly. Four patients had only one event in more than two hours, three

patients experienced an average of three events per hour, and one suffered six events per

hour. Although the typical percentage of time each patient spent in an alarm condition

was low, these also varied widely, from essentially zero to a high of 42% of the time, for

the patient experiencing six alarms per hour.

13



Metric CMS Threshold ANN built after n hours of data
1
2 1 2 4 8

Sensitivity 1.00 1.00
0.05

[.00,.11]
0.23

[.00,.29]
0.60

[.39,.66]
0.80

[.61,.90]
0.96

[.81,.98]

Specificity 0.99 0.88
0.99

[.97,1.0]
0.97

[.84,.99]
0.98

[.94,.99]
0.99

[.95,.99]
0.99

[.96,.99]

PPV 0.82 0.70
0.70

[.00, .74]
0.16

[.00,.24]
0.37

[.02,.72]
0.71

[.49,.78]
0.79

[.63,.80]

Accuracy 0.99 0.96
0.96

[.92,.96]
0.95

[.90,.96]
0.96

[.90,.99]
0.97

[.92,.99]
0.99

[.95,1.0]

Table 3: Performance comparison for neural network learning. Labels are as described in the
caption for Table 2.

3.2 Training Time

Table 1 shows the amount of time that See5 took to train classification tree models using

various numbers of data points and several settings of parameters for one typical 12-hour

study session. Training times for other sessions varied by as much as ±50%. We always

used the 25% setting for See5’s global pruning, to help avoid overfitting. A 10-fold cross

validation is useful for estimating the accuracy of the classification tree, but it also increased

the training time approximately three-fold for every doubling in the number of data points.

Boosting generally yields a higher predictive accuracy for the classifier, but at the cost of

a nonlinear increase in training time.

Training neural networks in general took more time than training classification trees.

EasyNN-plus does not keep track of training time; thus, precise estimates of training

times are not available for neural network learning. A rough estimate based on repeated

observations was in the range of a few seconds to several minutes for 1800 to 28800 training

data points, corresponding to 30 minutes to 8 monitoring hours. Training time could

vary significantly with different training specifications, such as learning rate, momentum,

the number of validation cycles, and the target error for each cycle. EasyNN-plus was

14



set to stop training at 120 seconds, despite a toll on modeling accuracy, to prevent its

computational demands from disrupting the overall system.

3.3 Performance of Learned Models

We present performance data for our learned models averaged over those ten sessions that

lasted at least eleven hours, which accounted for about 120 of the 196 total monitoring

hours. We chose this threshold so that there would be adequate test data in each session

after computing the final models at the eight-hour time.

Performance of the models learned purely from previous data about the individual

patient is shown in Tables 2, for models using classification trees, and 3, for models using

neural networks. For comparison, we also show the performance (in each table) of the CMS

algorithm built into the bedside monitor and of a simple threshold algorithm representative

of the previous generation of monitors. Both classification tree and neural network derived

models have extremely low sensitivities based on only the first half hour of data, and

gradually improve as more data become available. With eight hours of data, the two

methods attain average sensitivities of 0.84 and 0.96, respectively. Positive predictive

value (PPV) starts high for both methods based on very little data, drops dramatically,

and then recovers to exceed the PPV of the threshold algorithm after training on eight

hours of data. Both specificity and overall accuracy start high, drop slightly, and then

increase to close to 1.0 with additional training data. Comparing the average performance

measures of the two learning methods shows that for each length of training data the neural

network learned models seem better than the classification tree ones.

15



0

0.2

0.4

0.6

0.8

1

0 0.5 1 2 4 8

Training Data (Hours)

S
en

si
ti

v
it

y

CMS

Threshold

Tree

ANN

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 0.5 1 2 4 8

Training Data (Hours)
S

p
ec

if
ic

it
y

(a) (b)

0

0.2

0.4

0.6

0.8

1

0 0.5 1 2 4 8

Training Data (Hours)

P
P

V

0.9

0.92

0.94

0.96

0.98

1

0 0.5 1 2 4 8

Training Data (Hours)

A
cc

u
ra

cy

(c) (d)

Figure 3: Plots of averaged (a) sensitivity, (b) specificity, (c) positive predictive value, and (d)
accuracy of models trained on increasing amounts of patient-specific data, compared to the perfor-
mance of the CMS algorithm and a simple threshold algorithm. The horizontal axes are logarithmic
in time, and the vertical axes for (b) and (d) are expanded to show differences in a narrow range of
values. Vertical bars indicate the ranges of the individual values that comprise the averages. The
data come from Tables 2 and 3.

16



4 Discussion

Our goal in this work was to explore the hypothesis that effective classification models for

identifying when it is appropriate to alarm during ICU monitoring could be learned from

the individual patient’s own history in the ICU and from annotations by the clinical staff

of those earlier data. If this approach is valid, we would expect that more sophisticated

systems than the ones we have built would combine the best current population-based

monitoring algorithms with patient-specific learned models such as we explore here to

produce better combined monitors. We have not directly studied this broader expectation,

but we believe that our results make a good plausibility argument for it.

4.1 Learning Curve for Patient-Specific Learning

At the onset of this research, we expected that patient-specific learning would exhibit the

characteristics of a standard learning curve. Indeed, we see a number of such characteristics

in Figure 3, which shows the data in Tables 2 and 3 as plots that demonstrate the changes

in average sensitivity, specificity, positive predictive value, and accuracy of the patient-

specific models as a function of the amount of training data. Although our models as

trained on 2 hours or less of patient data generally perform much more poorly than either

CMS or a simple threshold model, our models, especially those based on neural networks,

exhibit improvements in each of our performance measures that demonstrate significant

learning with additional data. In fact, models trained on four and eight hours of data

approach (or sometimes surpass, in the case of the threshold algorithm) the performance

of systems that have been optimized over large populations and many more data points.

We could not have expected the models based on only a half-hour of data to do very

well, because in many monitoring sessions there had been very few alarm events during that

brief time. Thus, these models have been unable to learn alarm events, leading to their low

17



sensitivity. To our surprise, however, these models’ specificity is high. One explanation of

their high specificity is that they properly (although not very intelligently) call all stable

points correctly. Even models built from one, two and four hours of data suffer from this

finding. We believe that this same phenomenon probably also accounts for the sharp dip

in positive predictive value and the milder dip in accuracy of the models trained on one

and two hours of data.

The monotonic increase with time in sensitivity of our models, as shown by Figure 3,

suggests that after approximately eight hours, the algorithms have encountered most of

the alarm conditions that they need to recognize. Although the average performances of

the models from both classification tree learning and neural network learning are not as

high as that of the current bedside monitors, the models built from eight hours of training

data are more specific, accurate, and able to predict correctly than the threshold alarm

algorithm does, although their sensitivity remains lower. We had not anticipated this

result, though as in most machine learning applications, additional training data tend to

lead to better performance. Indeed, we now expect that these performance measures would

continue to improve with additional patient-specific training data. The principal limits to

such improvement come from the possibility that the models would eventually over-fit the

available data and that patients’ physiological state would eventually change so as to make

predictions based on past data incorrect.

4.2 Implications for Learning Methods

In our experiments, models built using neural networks do better on almost every measure

than those built using classification trees. Perhaps this should not be surprising given

the continuous nature of the input data and the greater ability of neural networks to

model non-linear interactions among the data. As illustrated by the classification tree

18



in Figure 2, the minute averaged data play a critical role toward the leaves of the tree,

probably because they better take into account the context within which each data point is

interpreted. Perhaps additional derived features, such as local slopes, or the parameters of

linear models fit locally to the data might additionally improve classification, as has been

the case in earlier work by Tsien [16].

There are many possible improvements to our methods, which may move us toward

more accurate monitoring systems. We have already mentioned the need to combine the

best existing models for decision support with patient-specific learning methods. Especially

early during a patient’s ICU stay, the general models trained on population data must bear

the brunt of recognizing alarm events because the patient-specific learning methods have

not yet had a chance to learn much. Later, we should put greater reliance on the learning

methods, though there will remain circumstances novel to any individual patient that

should be better recognized by a more broadly trained monitoring algorithm. For any such

combined model, it would be helpful for each component to issue not only a classification

label for each data point but also some indication of its certainty. For example, our neural

network models could use a sigmoid rather than a threshold output unit, so that their

results could be combined with other monitoring outputs using some method that relies

on continuous risk or probability scores from its inputs.

In retrospect, we believe that a better set of experiments would have learned the shorter-

term models from the last rather than the first n hours of data. That would have reflected

the most recent history of the patient and thus been a more fair indication of their value.

Nevertheless, we suspect that the patient-specific models trained on longer data series

would still have performed better.

Our method learned five different sets of models during monitoring session that lasted

eight hours or more. Consecutive sets of models were built using twice as much data as

19



the previous set did, and each time we learned new models, we did so by running batch

training algorithms over all the previously collected data. Had we run truly incremental

(on-line) learning algorithms [6], we would not have had to choose particular training

durations because any model would have kept completely up to date to interpret each

new data point. However, the feasibility of running incremental learning algorithms for

model development in clinical settings such as the ICU still needs to be examined; thus,

as a first step in realizing patient-specific learning in real time, this research has focused

on the incremental nature of the learning tasks itself and used non-incremental learning

algorithms to carry out these tasks. We plan to use truly incremental learning algorithms

to develop patient-specific models in the future. Because the first two commandments for

implementing clinical information systems are “speed is everything” and “doctors won’t

wait for the computer’s pearls” [15], we still face the challenging question of how to optimize

on-line training. Methods that learn more sophisticated models or ones that explore a larger

set of parameter settings for learning may be too slow to run on-line. Some delays in using

the most recent data may even be desirable if it takes time for clinicians to give their gold

standard annotations or for the patient’s future course to modify an annotation.

4.3 Imbalanced Datasets

Because appropriate alarm events are relatively rare, the vast preponderance of data points

collected in a study such as this one should be classified as stable. As a result, learning

algorithms may be justified to learn to classify all data points as “stable” and to consider the

true positives simply as “noise” that could be suppressed by the learners during pruning.

One way to overcome this problem is to use an asymmetric cost function, one that pe-

nalizes misclassification of alarm points (false negatives) more heavily than misclassification

of stable points (false positives). This seems clinically reasonable, because in a monitoring

20



situation we may be willing to accept more false alarms in order to avoid missing true

ones. We did some limited experiments with asymmetric cost functions ranging from 10:1

to 1000:1 for penalizing false negatives, but the resulting models seemed generally inferior

to the ones reported above, mainly due to significant decreases in specificity. We do not

know what the right cost ratio should be; a careful cost-benefit analysis to determine this

ratio has not been performed, to our knowledge.

We also experimented using resampling methods to overcome the problem introduced

by the imbalanced datasets, but also without positive results. For example, sub-sampling

the “stable” points to equalize the number of alarm and stable training points increased

the number of false positives called by our models without notable improvement in other

measures. Perhaps by discarding many of the stable points, the models learn fewer of what

are considered clinically normal conditions in critical care.

We also tried replicating the data points labeled as alarm, but the resulting training

dataset became much bigger in size. While each model did not take much time to classify

each new data point, the training time increased significantly with more training examples.

Other, more sophisticated resampling methods such as bagging [4] might do a better job

at addressing this problem.

4.4 Time

Perhaps the major impediment to further development and deployment of the new methods

introduced here lies in the need for correctly annotated data from a very busy, tense, and

pressured environment. Clinical staff are unlikely to have the time to annotate all clinical

events listed in Section 2.2 or the resources to hire trained observers to perform that task,

as done by the first author in our experiments. Therefore, automated methods to annotate

clinical events are essential to patient-specific learning in real time. The sources of data we

21



have for developing such annotations are the responses of clinicians to alarms and an ability

to judge the appropriateness of an alarm based on what happens in the (near) future course

of the patient. These, perhaps combined with data from additional instruments in the ICU,

may suffice to provide a basis for learning improved patient-specific models. One capacity

of human observers that no automated methods could completely emulate, however, is the

timely identification of events where an alarm should have been considered but was not.

Computer time was also an impediment in our experiments, as we have mentioned.

A single-processor laptop machine was barely able to keep up with our computational

demands. Of course this type of problem is normally overcome by technical advances

according to Moore’s Law [13]. For example, the computers being manufactured in 2008

typically have multiple processors, faster memory buses, and both computers and monitors

have more robust and faster serial communication ports. Despite these improvements, it

appears that added sophistication in the nature of the learning algorithms, the complexity

of the models being learned, the amount of training data, and optimization by investigating

a space of tunable learning parameters might demand enough additional computing time

to overtake even faster computers. For example, we artificially limited the slower neural

network training program to 120 seconds of training time; yet Table 1 suggests that training

times may increase non-linearly, especially when boosting and cross-validation are used,

even for the faster classification tree learner. Furthermore, because variations in parameter

settings can lead to significantly different models being constructed, the learning time

becomes less predictable.

5 Conclusion

Our expanded system of real-time data collection and algorithm development demonstrated

that patient-specific learning in real time is a feasible approach to developing alarm algo-

22



rithms for monitoring purposes in the ICU. Performance measures of the trained classifi-

cation trees and neural networks were consistent with the course of a generalized learning

process. The ones that were trained with eight hours of monitored numerics data outper-

formed the standard threshold alarm algorithm, which represented the alarm algorithms

in previous generations of patient monitoring systems, and came close in performance to

the alarm algorithm in the new-generation monitors. These algorithms are also useful for

integrating multiple physiological signals to detect adverse clinical events and to generate

informative alerts at the bedside. Our methodology could be used in constructing com-

prehensive models that, in tracking the state of a patient, generalize over both disease

processes and patient populations.

Acknowledgments

The authors would like to thank Adrienne Randolph, Christine Tsien Silvers, Isaac Ko-

hane, David Martin, the P-MICU staff at Boston Children’s Hospital, the patients who

participated in the study and their families. This manuscript is based on the first author’s

Master’s thesis [19] and is a heavily revised expansion of a conference paper published

earlier [20]. The work presented here was supported in part by DARPA contract F30602-

99-0509, a MEMP (Medical Engineering Medical Physics) Fellowship from the Harvard-

MIT Division of Health Sciences and Technology, Biomedical Informatics training grant

T15-LM07092 from the National Library of Medicine, and research grant R01-EB001659

from the National Institute of Biomedical Imaging and Bioengineering.

References

[1] EasyNN-plus help manual. Technical report, Neural Planner Software, 2003.

23



[2] See5 help manual. Technical report, RuleQuest Research, 2003.

[3] Data mining tools see5 and c5.0. http://rulequest.com/see5-info.html, accessed

3/18/2008.

[4] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[5] M. C. Chambrin, P. Ravaux, D. Calvelo-Aros, A. Jaborska, C. Chopin, and B. Boni-

face. Multicentric study of monitoring alarms in the adult intensive care unit (icu): a

descriptive analysis. Intensive Care Med, 25(12):1360–6, 1999.

[6] C Giraud-Carrier. A note on the utility of incremental learning. AI Communications,

13(4):215–223, 2000.

[7] R. R. Hagenouw. Should we be alarmed by our alarms? Curr Opin Anaesthesiol,

20(6):590–4, 2007.

[8] W. W. Hay, D. J. Rodden, S. M. Collins, D. L. Melara, K. A. Hale, and L. M. Fashaw.

Reliability of conventional and new pulse oximetry in neonatal patients. J Perinatol,

22(5):360–6, 2002.

[9] M. Imhoff and S. Kuhls. Alarm algorithms in critical care monitoring. Anesth Analg,

102(5):1525–37, 2006.

[10] S. T. Lawless. Crying wolf: false alarms in a pediatric intensive care unit. Crit Care

Med, 22(6):981–5, 1994.

[11] A. Lepape, R. P. Gillibert, J. P. Perdrix, J. M. Grozel, and V. Banssillon. Practical

aspects of indirect calorimetry in post-anesthesia recovery [in French]. Agressologie,

31(1):74–6, 1990.

[12] T. M. Mitchell. Machine Learning. WCB McGraw-Hill, Boston, 1997.

24



[13] G. E. Moore. Craming more components onto integrated circuits. Electronics Maga-

zine, 38(8), 1965.

[14] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo,

CA, 1993.

[15] M. M. Shabot. Ten commandments for implementing clinical information systems.

Baylor University Medical Center Proceedings, 17(3), 2004.

[16] C. Tsien. TrendFinder: Automated detection of alarmable trends. PhD thesis, Mas-

sachusetts Institute of Technology, Cambridge, MA, 2000.

[17] C. L. Tsien and J. C. Fackler. Poor prognosis for existing monitors in the intensive

care unit. Crit Care Med, 25(4):614–9, 1997.

[18] M. van Gils, H. Jansen, K. Nieminen, R. Summers, and P.R. Weller. Using artificial

neural networks for classifying icu patient states. IEEE Engineering in Medicine and

Biology Magazine, 16(6):41–47, 1997.

[19] Y. Zhang. Real-time analysis of physiological data and development of alarm algo-

rithms for patient monitoring in the intensive care unit. Master’s thesis, Massachusetts

Institute of Technology, Cambridge, MA, 2003.

[20] Y. Zhang. Real-time development of patient-specific alarm algorithms for critical care.

Conf Proc IEEE Eng Med Bio Soc, 1:4351–4, 2007.

25


