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ABSTRACT 
 
The difficulty of exchanging information between heterogeneous medical databases remains one 
of the chief obstacles in achieving a unified patient medical record. Although methods have been 
developed to address differences in data formats, system software, and communication protocols, 
automated data exchange between disparate systems still remains an elusive goal. 
 
The Medical Information Acquisition and Transmission Enabler (MEDIATE) system identifies 
semantically equivalent concepts between databases to facilitate information exchange. 
MEDIATE employs a semantic network representation to model underlying native databases and 
to serve as an interface for database queries. This representation generates a semantic context for 
data concepts that can subsequently be exploited to perform automated concept matching 
between disparate databases. 
 
To test the feasibility of this system, medical laboratory databases from two different institutions 
were represented within MEDIATE and automated concept matching was performed. The 
experimental results show that concepts that existed in both laboratory databases were always 
correctly recognized as candidate matches. In addition, concepts which existed in only one 
database could often be matched with more “generalized” concepts in the other database that 
could still provide useful information. 
 
The architecture of MEDIATE offers advantages in system scalability and robustness. Since 
concept matching is performed automatically, the only work required to enable data exchange is 
construction of the semantic network representation. No pre-negotiation is required between 
institutions to identify data that is compatible for exchange, and there is no additional overhead 
to add more databases to the exchange network. Because the concept matching occurs 
dynamically at the time of information exchange, the system is robust to modifications in the 
underlying native databases as long as the semantic network representations are appropriately 
updated. 
 
Thesis Supervisor: Peter Szolovits 
Title: Professor of Computer Science and Engineering 
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1 INTRODUCTION 

As electronic storage of patient medical information increases, the potential for rapid access to 

the entirety of a patient’s medical record offers tantalizing possibilities for improving clinical 

care and supporting medical research. Patients rarely, however, receive all their medical care 

from a single provider or facility. Consequently, the electronic medical information for any given 

patient is commonly scattered across multiple heterogeneous information systems. 

 

The effort to combine or enable access to all these disparate sources of medical information has 

many obstacles. Techniques have been developed to address basic hardware and software 

incompatibility issues, but it remains difficult to resolve inconsistencies and conflicts at the 

semantic level. Subtle distinctions arise even when the same vocabulary is used to describe the 

same concept. For example, a “thyroid function test panel” (TFTs) at one institution might 

include a “reverse T3 level”, whereas TFTs at a different institution may not. 

 

This investigation demonstrates a new method to combine medical information from disparate 

electronic sources. The Medical Information Acquisition and Transmission Enabler (MEDIATE) 

system automatically determines semantic equivalencies between concepts from different 

databases and enables the retrieval and exchange of data with greater fidelity to the semantic 

content of the information. Using the previous example, MEDIATE enables the automatic 

identification of TFTs from any medical laboratory database, and at the same time preserves the 

unique composition of the test panel for each database. 

 

Fundamentally, MEDIATE facilitates data integration by matching semantically equivalent 

concepts between medical databases. It performs this task by utilizing a semantic network data 

structure to represent the elements of a medical database. During information exchange, 

MEDIATE transmits the semantic network database representations between systems for 

analysis. By operating on characteristics of the semantic network representations, medical 

concepts within one information system are automatically linked with concepts from a disparate 

system through concept matching algorithms.  
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This process allows a user to retrieve data from multiple information systems without regard to 

how that data is actually stored within each system. In addition, the information exchange occurs 

without the need to pre-negotiate the list of data elements to be exchanged, since data 

equivalencies between the databases are revealed automatically.  

 

MEDIATE’s approach to data exchange contrasts with the two most common approaches to 

sharing medical data: construction of a common data model, and manual system-to-system 

mapping of data elements.  

 

The use of a common data model works well if the data model is comprehensive (as in small 

knowledge domains) and requires infrequent modification. Under these circumstances, the work 

required to exchange data between N databases is order(N) for the mapping between each 

database and the common data model. In the medical record domain, however, repeated attempts 

at creating comprehensive data models have failed to gain widespread acceptance. In fact, one of 

the most ambitious collaborative efforts to create such a model, the Health Level 7 Reference 

Information Model [1, 2], has completely changed directions to produce a modeling framework 

instead of an actual data model. 

 

There are other drawbacks to common data models. Modifications to the common model entail 

modifications to the data mapping process for every database involved in data exchange. This 

tends to be most problematic when new databases are added, and deleteriously affects the 

scalability of such systems. In addition, the data mapping process itself may cause the loss of 

information as data concepts are force-fit to the common model. This affects the semantic 

fidelity of information transmitted through these systems. 

 

The other common approach to data exchange, direct system-to-system mapping of data 

elements, is perhaps the method that is most frequently chosen. This occurs because of 

expediency and the lack of accepted common data models. One disadvantage to this approach is 

the lack of scalability. This is an issue because each database must be mapped to every other 

database with which it exchanges data, which makes the amount of work approximately 
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order(N2). This approach is also sensitive to modifications in the participating databases, since 

changes in the data elements may break the mapping links and prevent data exchange. 

 

In comparison, MEDIATE utilizes a dynamic model of data exchange in which semantically 

equivalent data elements are identified at the time of data transfer. This allows the participating 

databases to be modified freely, without creating additional work or overhead for eventual data 

exchange. Adding a new database to the data exchange group only requires creating the semantic 

network representation for that database. 

These functional qualities make MEDIATE easily scalable and robust to changes in the 

underlying databases, and ease the task of data integration across heterogeneous information 

systems. 

1.1 Problem Motivation 

MEDIATE’s capability to retrieve and combine all of a patient’s medical information offers 

many potential advantages. It promotes continuity of care by potentially providing a single 

source of medical information to clinicians, and minimizes the risk that important aspects of the 

past medical history, such as allergies, previous surgery, or recent diagnoses, may be overlooked. 

It can also provide the data to populate a longitudinal record to perform clinical and research 

investigations over time, on an individual or population basis. This longitudinal information 

forms the ideal substrate for continuous analysis processes, such as trend detection or alerts and 

warnings. 

 

The following sections list some of the situations in which the ability to integrate medical data 

from many sources can have an impact. 

1.1.1 Clinical Scenarios 

Emergency care. A 69 year-old relative who is visiting from another state is found to be lethargic 

and confused one morning. During evaluation in the local emergency room, the host family can 

only state that the patient is known to have had recent medical problems. Using a hospital 

identification card found in the patient’s wallet, the treating physician obtains emergency access 

to the patient’s hospital record. Through MEDIATE, the physician is able to locate a set of 

laboratory tests performed just a week ago that indicate borderline renal function, but normal 



11  

hematological and thyroid function. This information allows the physician to focus the 

diagnostic workup and determine that the patient is suffering from acute renal failure, with a 

consequent need for emergency dialysis. 

 

Continuity of care. A 2 year-old male with multiple congenital anomalies including structural 

heart disease, tracheo-esophageal fistula, vertebral anomalies, and renal problems (i.e. VATER 

syndrome), has an appointment to be seen by his new pediatrician. In order to familiarize herself 

with the patient's problems and past treatment, the pediatrician uses MEDIATE to retrieve the 

medical history from several sources: the cardiology foundation computer, the pediatric hospital 

main computer, and the previous pediatrician’s office. The pediatrician locates and reviews the 

last “progress note” from each of the systems. The information gleaned from these notes enables 

the pediatrician to establish an efficient agenda for the initial visit without duplicating 

evaluations that have been performed at the other facilities. 

1.1.2 Research Benefits 

Data collection. Research studies that rely on clinical data often collate information from 

multiple sources. For example, a recent study of jaundice in young infants seen at Children’s 

Hospital, Boston required maternal and infant data from several different hospitals in which the 

infants were born [3]. In this situation, the medical information for any single patient is available 

from a single source, but the research study design requires information from many sources. 

 

Population studies. Large scale population based studies require data collection schemes that 

often encompass multiple institutions and geographic sites. The Framingham Heart Study, for 

example, has followed thousands of men through decades of life in a multi-factorial study of 

heart disease. [4-8]  The study subjects have received their medical care in a variety of settings 

and facilities, and obtaining data about their health status continues to be a major undertaking. 

 

Time series studies. Supporting investigations into the evolution and natural history of medical 

processes requires a longitudinal medical record that contains observations over time. Due to the 

peripatetic nature of health care, completely and efficiently populating such a longitudinal record 

typically necessitates the retrieval of information from many different sources.  
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1.1.3 Decision support platform 

The application of clinical support tools has been one of the central promises of an electronic 

medical record. Trend analysis, automated guidelines, decision support programs, automated 

alerts, and expert systems for diagnosis and therapy are just a few of the applications that have 

been created which depend upon complete and accurate data for optimal function. In the vast 

majority of cases, computerized support tools improve in performance if more data is available 

for input. Again, integrating all the available sources of medical data would have a beneficial 

effect on the function of these tools. 

1.2 Obstacles to Data Integration 

As expressed by McDonald, “Each island system [within a healthcare facility] contains different 

data, different structures, and differing levels of granularity, and each uses a different code 

system to identify similar clinical concepts. The external islands differ even more than those 

within an institution. They each tend to use different patient, provider, and location identifiers, 

and the numbers of such independent systems are legion.” [9] 

 

This inconsistency between systems that store medical information presents the main obstacle to 

integration of medical information. Unfortunately, the inconsistencies exist on multiple levels, 

each of which may require its own solution. Examples of these levels include different hardware 

platforms, different types of databases and data models, different communication protocols, and 

different vocabularies, in addition to the differences listed by McDonald. 

 

The level of inconsistency addressed in this investigation is that of “semantic inconsistency”. At 

this level, many of the inconsistencies listed previously may be resolved, but accurate retrieval of 

data may still be difficult due to differences in the “meaning” of the medical concepts that are 

represented within an information system. A “complete blood count” (CBC), for example, may 

vary in composition from institution to institution, despite the fact that all clinicians would agree 

that the test consists of an analysis of the cellular elements of blood. This problem of semantic 

inconsistency has been recognized as a critical obstacle to data integration. [10-26] 
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Ambiguities inherent in medical terminology and definitions of concepts help create these 

semantic inconsistencies. It is tempting to hypothesize that a standardized data model that 

rigorously defines all medical concepts would be sufficient to eliminate semantic inconsistencies. 

Unfortunately, the majority of medical information existing today does not conform to a standard 

data model of any kind, and would be difficult to fit into a new global data model. Regardless of 

the enormity of such a task, however, there are other considerations that make such an 

undertaking impractical. 

 

One problem is that the semantic meaning of a medical concept is not just determined by the 

“definition” of that concept, but also by the usage of the concept as determined by the local 

clinical environment. For example, “sputum cultures” are a standard way to test for respiratory 

infections. But for hospitals in areas where tuberculosis is endemic, sputum cultures often 

include tests for the tuberculosis bacterium (such as staining of the sputum for microscopic 

examination) that would not be run in other settings. The local clinical environment thus 

determines the meaning and interpretation of the “sputum culture” concept. 

 

This leads to another phenomenon that confounds the use of a global data model: the creation of 

new semantic meanings. As medical concepts are used and modified for a particular clinical 

setting, novel semantic meanings are created and assigned. This may even result in a situation 

like the one at Children’s Hospital, Boston where more than a dozen types of “serum sodium” 

laboratory tests exist.  

 

Although the resolution of semantic inconsistencies is not the only factor in data integration, it is 

an essential part of the solution and is one of the core principles upon which MEDIATE is based. 

1.3 Goals of MEDIATE 

The semantic network representation system and concept matching algorithms used in 

MEDIATE were derived from functional goals delineated during the design stage of the system. 

In turn, many of the functional goals were generated to preserve the semantic meaning of data as 

it is transmitted between different information systems. These functional goals are: 
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1) Reduce the semantic ambiguity of data transmitted between electronic databases. The 

semantic network data representation system accomplishes this goal in several ways. 

First, nodes of the semantic network contain associated information about data elements 

such as concept definitions and formats (detailed further in section 3.1.1). Secondly, the 

network structure allows the representation of conceptual relationships between data 

elements that may otherwise be hidden. Finally, the semantic network itself provides a 

form of “context” for each data element. This context, formed by neighboring nodes and 

the relationships between them, provides a much richer basis of data interpretation and 

supports the concept matching algorithms used to find semantic equivalencies. 

2) Represent the structure and granularity of native databases. Many databases have an 

inherent structure that reflects the logical organization of data and the manner in which it 

is used. The data itself may be represented at various levels of granularity, which is also a 

reflection of the local information environment. The semantic networks can capture this 

structure and granularity, which can make transmission and interpretation of data more 

efficient. [27] 

3) Provide support for automated exchange of data between databases. One of the main 

goals of MEDIATE is to automate the process of data exchange as much as possible. The 

concept matching algorithms enable the discovery of semantically equivalent concepts 

between databases in a dynamic fashion, without a pre-negotiated static list of concepts 

and meanings. This means that any two databases that utilize MEDIATE can exchange 

data without the need to establish a common data model through previous human 

intervention. 

4) Facilitate retrieval of useful information in the absence of exact data correlation between 

databases. If an attempt to retrieve a data element fails because the target database does 

not contain the element, it is sometimes useful to retrieve more “generalized” data, or 

other data elements that are somehow associated with the desired data. [28-30]  The 

structure of the semantic network allows exploration of these alternative data elements, 

although the actual utility of the alternatives is a judgment left to the human user. 
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1.4 MEDIATE Overview 

To achieve the functional goals delineated in the previous section, MEDIATE offers two tools to 

facilitate data exchange: a data representation system utilizing semantic networks, and 

algorithms to match semantic concepts between networks. Additional functionality is layered 

upon this representation and processing framework to capture all the elements required for data 

exchange. These elements include an interface to create and modify the data representation, a 

method to link the representation with native databases, a process for matching information 

between databases, and a method for retrieving and displaying the desired medical data. 

 

MEDIATE attempts to capture some of the richness in medical information by explicitly 

representing some of the conceptual relationships that exist within a medical record system. 

These conceptual relationships form the links of a semantic network representation, and the data 

elements themselves form the network nodes. Several of the defined relationships are 

hierarchical in nature. This permits the representation of complex medical concepts as higher-

level nodes with sub-nodes that are lower in the hierarchy. For example, the “composed-

of/component-of” relationship can be used to state that a “complete blood count” node is 

composed of “white blood cell count”, “hemoglobin level”, “hematocrit”, and “platelet count” 

nodes. 

 

This semantic network representation provides an abstraction layer that is the key element to the 

data exchange process. Any system that implements the MEDIATE interface acquires the 

capability to exchange data with other systems that implement this abstraction layer. The 

MEDIATE system as a whole acts as a kind of “interpreter” for native database systems, 

identifying the semantically equivalent concepts between databases. 

 

Functionally, there are three major components in the system: representation construction, 

concept matching, and query processing. 

 

The representation constructor enables users to build semantic network representations of the 

medical record system using system-defined conceptual relationships. This representation acts as 

a model of the information database, and is stored with the medical record system. The original 
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record system and its MEDIATE representation are packaged with an associated query 

processor, thus forming an information source that can process queries from any requesting 

MEDIATE system. 

 

The concept matching process utilizes the characteristics of the semantic network representations 

to match medical concepts between any two databases. Both networks are matched in an iterative 

process that produces a table of semantic equivalencies between databases. These equivalencies 

are then used in the data query process. 

 

To initiate a query, the requesting database system utilizes the MEDIATE interface to find the 

semantic equivalents of the data elements that are to be retrieved. The request for these 

semantically equivalent data elements is then sent to the target MEDIATE system, which 

controls the actual retrieval of information from the native database. For example, if a user at 

Hospital A wishes to retrieve “Thyroid Function Tests” from Hospital B, the query processor 

would identify the equivalent concept “Endocrine Panel, Thyroid” from the semantic 

equivalency table and request this information from Hospital B. The query processor for Hospital 

B then cooperates with the native database to retrieve the desired information and transmit it 

back to Hospital A. 

 

The system supports two methods of retrieving data from remote databases. The first method 

retrieves the matching nodes from the target database. For example, if “nodeA” in Hospital A is 

matched with “node1” in Hospital B, then when Hospital A’s system makes a data request for 

“nodeA”, Hospital B’s database will return the data elements for “node1”. The second method 

retrieves the matching leaf sub-nodes from the target database. Using the same example, if 

“nodeA” has leaf sub-nodes “nodeB”, “nodeC”, “nodeD”, then a data request for “nodeA” will 

return nodes in Hospital B’s database which match “nodeB”, nodeC”, and “nodeD” (i.e. not 

“node1”). The two match types are illustrated in Figure 1. For the remainder of this report, the 

former retrieval method will be called a “concept match”, whereas the latter retrieval method is a 

“leaf match”. 
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Although the semantic network representation provides the data abstraction layer to support 

information exchange, the complementary process of concept matching provides the 

computational functionality that actually powers MEDIATE. Together, these components 

provide the foundation for the process of data exchange between heterogeneous medical 

databases. 

1.5 System Benefits 

The characteristics of MEDIATE offer many benefits in terms of scalability, robustness, and 

functional operation. 

 

Leaf Match 
NodeA Node1 

NodeB 

NodeC 

NodeD 

Node5 

Node2 Node3 

Node6 Node4 

Node7 Node8 

NodeA Node1 

NodeB 

NodeC 

NodeD 

Node5 

Node2 

Node7 

Node4 Node6 

Node3 

Node8 

Concept Match 

Figure 1. Concept vs. Leaf Match. In the concept match shown at the top of the figure, NodeA has 
been matched to Node1 (as denoted by double arrows). Subsequently, a data query will return five 
component nodes for Node1, namely Node2, Node4, Node6, Node7, and Node8 (bold outlined nodes). 
In the leaf match at the bottom of the figure, the three leaf nodes for NodeA have matched to nodes 
Node4, Node7, and Node8, which would be returned as the results of a data query. 

Hospital A Network Hospital B Network 
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To exchange information with other MEDIATE systems, all that is required of a new database is 

the construction of a semantic network representation. This work is linear in the size of the 

native database if we make the reasonable assumption that there is a limit to the connectedness of 

the network, i.e. the maximum number of connections for any given node is a constant. More 

importantly, this work only needs to be performed for the new database, and no additional 

overhead or work is required to change existing MEDIATE-enabled databases to accommodate 

the new database. The work needed to enable the integration of N databases is thus order (N), or 

linear in the number of databases to connect. These qualities make MEDIATE a highly scalable 

system. 

 

The dynamic nature of data exchange in this system confers desirable traits of stability and 

robustness. Since concept matching occurs at the time of data exchange, each database is isolated 

from the effects of changing or modifying other databases. (The ultimate case is the addition or 

deletion of a database to the data exchange group). Thus, MEDIATE provides an avenue for the 

underlying databases to evolve over time yet continue to exchange data with other MEDIATE-

enabled systems. 

  

In cases where a query request does not find the desired data in the target system, MEDIATE 

fails in a graceful manner by offering “generalized” concept matches that may still prove useful. 

Alternatively, the user may choose to execute a leaf match query if the requested data is a higher-

level concept with subcomponents.  

 

Since MEDIATE functions as an abstraction layer between databases, it facilitates the efficient 

use of legacy database systems. No changes need to be made to the operation of a database or its 

schema to accommodate data exchange through MEDIATE. As an added benefit, the semantic 

network representation helps to preserve and communicate the semantics and granularity of data 

elements, and reflects the way they are used within the legacy system. 

 

The semantic network database representation presents data in a manner that is intuitively 

comprehended by most people. This satisfies one the four requirements for data integration 

software proposed by Rector, namely, “understandability”. [31]  This requirement states that that 
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information can only be maintained if people can understand its structure, despite any 

formalization for software use. 

 

In addition to understandability, the semantic network offers the user a method of searching for 

information that is more intuitive than direct inspection of a database. Especially with the advent 

of the Internet, user interfaces that navigate through information by following “links” have 

become a well-known paradigm. 

1.6 Scope of Investigation 

This investigation is a proof-of-concept for the MEDIATE system. Instead of a large empirical 

data gathering effort, these initial experiments are targeted at characterizing the obstacles and 

possible solutions (within MEDIATE’s representation and inference framework) to the problem 

of data exchange. 

 

The initial test bed for MEDIATE involves two real world medical laboratory databases. 

Semantic network representations of both databases are constructed, and concept matching is 

demonstrated. Testing the ideas of MEDIATE within this restricted domain allows a more 

focused investigation, with the goal of generalizing the findings to other portions of the 

electronic medical record. 

1.7 Thesis Outline 

The remainder of this report is organized as follows. Section 2 will review previous approaches 

to data integration and explore the significance of MEDIATE. Section 3 delineates the details of 

MEDIATE, including system components, processes, and functionality. Section 4 explains the 

experimental setup that utilizes medical laboratory test results from two different hospitals, and 

section 5 presents the results of these experiments. Section 6 presents the analysis and discussion 

of this entire investigation, and concluding remarks are presented in section 7. 
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2 BACKGROUND 

Investigators have tried many different techniques to access information from heterogeneous 

information sources. Since there is extensive research in this area, this section is intended as a 

brief digest rather than an exhaustive review of all possible methodologies and issues. Selected 

examples of major approaches and systems are presented, and the significance of using 

MEDIATE is discussed in relation to this work. 

2.1 Common Data Models 

One method to address the problem with database heterogeneity is to specify a common data 

model which would ensure compatibility if it is utilized. [32-39]  For example, the W3-EMRS 

system by Kohane et al. specifies a Common Medical Record (CMR) structure into which 

information from remote sites must be mapped. [40] The CMR, however, is an abbreviated 

collection of medical information, such as problem lists, medications, allergies, and visit notes. It 

is not a rich semantic model and does not capture many data elements and informational 

relationships. In addition, each time the CMR definition is changed, the manual process of 

mapping remote information into the CMR structure is repeated. Any approach that specifies a 

common model suffers from this problem; if the model changes, then the transformations that 

map the remote information into the model must also change. 

 

As discussed previously in section 1.2, common data models also have problems dealing with 

semantic inconsistencies that are due to the influence of the local clinical environment. The 

assignment of new semantics to existing medical concepts entails changes to the common model 

or to the mapping transformation between the local databases and the common model. 

 

An additional problem to achieving uniform medical information access by this method is the 

proliferation of medical data models, each of which addresses some issue that would make a 

computerized patient record more effective. The large number of data models and system 

architectures, along with the generally slow process of arriving at consensus standards, means 

there is little likelihood of solving system incompatibilities via this method. 
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Well-known examples of common data models in the medical domain include the Reference 

Information Model (RIM) and Clinical Document Architecture (CDA) efforts by the Health 

Level 7 (HL7) organization. [1, 2, 41-43] 

 

The RIM started as an attempt to create an encompassing data model for healthcare, but has 

subsequently become a generically descriptive model in which to frame processes within the 

healthcare system. RIM has 6 high-level “stereotype” classes that are designed to subsume all the 

elements of healthcare. These classes are: Entity, Role, Role_relationship, Participation, Act, and 

Act_relationship. The underlying “vocabularies” which define how concepts are encoded within 

these classes are still in evolution. Although it is certainly possible to represent data within the 

RIM, semantic inconsistencies can still exist because the RIM does not explicitly specify the 

nature of all data elements.  

 

At this point in time, the CDA has not been specified in enough detail to describe the specific 

contents of a clinical document. A generic document header description exists, and work 

continues on descriptions for the document content. 

 

In Europe, the GALEN project represents a multi-year effort to create a rich information model, 

the GALEN Common Reference Model, which can be utilized in a variety of medical 

information settings. [26, 44-53]  In the view of the system designers, this model represents a 

“clinical terminology” which supports multiple perspectives on medical information encoded 

using the model. One of the chief benefits of this model is that concept relationships and 

inferences about those relationships are explicitly supported, partly due to the formal 

characteristics offered by the GALEN Representation And Integration Language (GRAIL). [25, 

48, 54, 55]   

 

Like all central models, however, the GALEN system requires mapping of local concepts to the 

central model (although the GRAIL formalism could be utilized at a local level with subsequent 

linking to the central model). Thus, the problem of resolving semantic differences between 

heterogeneous systems remains. 
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Another variation of the common data model is the use of a central ontology that specifies the 

conceptualization of the knowledge domain. [50, 56, 57]  Since research in this area often 

originates from the knowledge representation field, ontologies are frequently designed from the 

start to deal with semantic issues. Despite this advantage, central ontologies can present 

significant mapping problems. Since central ontologies are designed to be encompassing, the 

formal specifications of such systems are often complex, and may utilize dense logical inferences 

that are difficult to understand without in-depth study. This complicates the mapping of local 

database concepts to the central ontology. 

2.2 Federated Database Systems 

Information management of heterogeneous database systems has led to the development of 

federated database architectures. [58-65]  In contrast to a centralized "composite database" of 

integrated data, a federated system attempts to support local database operational autonomy 

within a design that allows sharing of information among interconnected databases. The goal of a 

federated system is to present a common interface for queries and transactions which are 

ultimately executed by the local databases. 

 

To create the common interface, the designers of a federated system must integrate or reconcile 

the database schemas of its component databases. This integration may require a multi-level 

architecture as shown in Figure 2. This figure reflects the amount of effort that may be required 

to support a common interface. Schemas at various levels of abstraction (e.g. local, component, 

export, etc.) need to be integrated despite diversity from many sources, including different user 

perspectives, differing granularity in the model constructs, and incompatible design 

specifications. 

 

Systems that implement some features of a federated database architecture include: ADDS 

(Amoco Distributed Database System), DATAPLEX (General Motors Corporation), IMDAS 

(National Institutes of Standards and Technology, U. Florida), Ingres (Ingres Corporation), 

Mermaid (Data Integration, Inc.), and Multibase (Xerox Advanced information Technology). 

[66] 
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In all of these systems, manual transformations of database schema must be performed to match 

a "common" model at some level of the system architecture. Each time a new database is added, 

schemas must be integrated, often at multiple levels. If the new database offers unique 

information that must be available to all users, all levels of the federated architecture will be 

affected because of the schema dependencies. Thus, scalability becomes a significant issue if 

numerous databases might be added during future expansion of the system. 

 

The SIMS project (Services and Information Management for decision Systems) is a variation 

that implements a semantic model of the problem domain to integrate various information 

sources. [67]  The domain model represents all the information available in the sources within 

the system. SIMS uses the domain model in conjunction with models for each information 

source to execute a query. 

 

The information source models can be created independently, which decreases the overhead of 

adding new sources. SIMS is also dependent, however, upon the comprehensiveness and 

integrity of the domain model, which must be incrementally enlarged as new sources are added. 

The authors of the SIMS system argue that since SIMS is designed to handle one domain at a 

time, this modeling effort will eventually reach closure. 

 

Component 
Database 

Local schema 

Schema filtering, transformation, and integration 

Federated Schema 

External Schema 

Component 
Database 

Local schema 

Component 
Database 

Local schema 

Figure 2. Federated Database Architecture. Local database schemas are processed, sometimes 
through multiple intermediate steps and transition schemas (indicated by the interrupted link below 
the federated schema), and eventually integrated into an overarching federated schema. 
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Nevertheless, the central domain model has some of the characteristics of a central data model, 

and must be maintained to reflect changes in the sources. The need for continuing modifications 

to the model to capture new sources may affect scalability. 

 

Although federated systems and variants such as SIMS also rely on a central framework, the 

approach differs slightly from fitting new information sources to a static central model. In a 

federated structure, the central framework expands and is adapted to utilize new information 

sources as they are added to the system. The main drawback to this approach is that additional 

effort is required to modify the central framework when new sources are added, and thus 

scalability remains an issue.  

2.3 Mediators and Wrappers 

The Context Interchange (COIN) project aims to make heterogeneous information sources more 

usable and accessible by establishing a structure for context management. [15, 18, 21, 68]   

Within the COIN system, data receivers as well as data sources have an associated "context" 

within which all information transfer is interpreted. Contexts are representations of the 

assumptions underlying the way that data is used within a system (e.g. all prices within a 

particular monetary database are in US dollars). In particular, the semantic meaning of data that 

is expected by the system (either for import or export) can be made explicit within a context. 

 

COIN relies upon a "mediator" architecture, where the mediator acts to reconcile semantic 

conflicts between receivers and sources (Figure 3). By creating a common context mechanism 

for each data receiver or source, the need for static schema integration is transformed to a 

process of dynamic context mediation at the time that data is requested and transferred. The 

semantics of the data are captured in a dispersed manner, improving scalability and stability 

under system evolution. 

 

Other systems that implement mediators to access heterogeneous information sources include 

Cobase and TSIMMIS. 
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In Cobase, an integrated knowledge base provides representation of the data semantics in the 

form of “type abstraction hierarchies” (TAH). [28-30]  This knowledge representation allows the 

system to “cooperatively” provide query answers by automatically generalizing or specializing 

the query when a specific answer does not exist. For example, if the query asks for a list of long-

range runways in southwest Tunisia, Cobase may “relax” the query to obtain the list of all 

runways in Tunisia. In order to perform these cooperative functions, TAHs must be created for 

each information source and integrated into the overall system. An overall TAH directory stores 

the characteristics of all the TAHs. 

 

To facilitate the integration of new information sources, Cobase relies upon a Mediator level that 

coordinates all information flow. The mediators are functional in nature (e.g. Relaxation 

mediator, Association mediator, TAH mediator, etc.) and may utilize other mediators to 

accomplish their function. 

 

The mediator architecture is also a central component of The Stanford-IBM Manager of Multiple 

Information Sources (TSIMMIS). [69, 70]  Other features in TSIMMIS include the use of 

“wrappers” to create uniform interfaces to information sources, and the use of an object model 

Component Database Component Database Component Database Component Database 

Transaction Mediator Inventory 
Mediator 

Client        Client           Client               Client    Client  

Figure 3.  Example Mediator Architecture.  Mediator modules centralize the processing of data queries and 
responses.  Each mediator implements one or more functional processes, mapping transformations, inference 
engines, etc. depending upon the overall system design. 
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called the Object-Exchange Model (OEM) to transfer information between components. 

TSIMMIS is similar to MEDIATE in some respects, because the goal of the OEM is to allow 

data representation to be “self-describing”, or parsed without reference to an external schema, 

and the wrappers provide an abstraction layer that isolates the details of the underlying 

databases. 

 

The Garlic system also features information source wrappers and is described as a “middleware” 

system between users and information sources. [71]  Wrappers are used to model the contents of 

information sources as Garlic objects. This allows the Garlic system to invoke methods on the 

objects and retrieve their attributes. Similar to federated systems, Garlic maintains a global store 

of “metadata” that describes the unified schema of Garlic objects available from source systems. 

2.4 Information Translation 

The idea of “translating” information from one system to another system is appealing in its 

elegance and linguistic essence. In reality, however, the sheer variety of information systems 

makes direct translation unfeasible except on a limited basis. Instead, an “interlingua” or 

intermediate representation is often used. Information from one database is translated to the 

interlingua, and then translated from the interlingua to a form that can be utilized by a disparate 

database. [50, 51, 53, 72] 

 

The Ontolingua system is representative of techniques that aim to increase the efficiency of 

sharing knowledge bases. [73] Using Ontolingua, the user can create “portable” ontologies of 

knowledge that can be translated into other knowledge representation systems. This method of 

knowledge sharing presumes that a domain representation with a high level of ontological 

commitment can be translated between different systems. The complexity of this task makes the 

utility of this system an open question in anything other than a research environment. 
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2.5 Other Information Encoding Systems 

2.5.1 HL7 and XML 

At a lower level of information encoding, HL7 provides a standard communications protocol for 

medical information messages. In its current form, however, HL7 is under-specified and does not 

provide the semantics to describe conceptual relationships within a medical record. 

 

An ongoing effort to encode HL7 messages as Extensible Markup Language (XML) documents 

attempts to leverage XML’s descriptive abilities to create a better representation of medical data. 

Some medical concept relationships are captured intrinsically through “containment” between 

XML data tags. Like all efforts to standardize on XML messaging, however, the HL7 endeavor 

still depends upon the creation of a central data model to use when interpreting the meaning of 

the XML field tags (i.e. the XML document type definition, or XML schema). 

2.5.2 LOINC 

The Logical Observation Identifiers Names and Codes (LOINC) system is a specific effort to 

encode laboratory test results in a standard structure that can be used to represent and 

communicate the contents of any laboratory database. A “fully specified” six-part name for the 

laboratory test forms the basis for this standard, and associated LOINC codes are assigned to 

each fully specified name. The six parameters for a fully specified name are: 1) analyte, 2) 

property of measurement (e.g. mass or concentration), 3) time aspect (e.g. point measurement or 

collection over time), 4) type of sample (e.g. urine, serum), 5) scale of measurement (e.g. 

qualitative vs. quantitative), and 6) method of measurement. The overall goal of LOINC is to 

encode all existing laboratory tests using fully specified names and associated code numbers. 

 

LOINC shares the advantages and drawbacks of all common data models (as discussed in 

previous sections). Although LOINC has enjoyed wider implementation than many efforts, it still 

has problems that can impede data exchange. In its current form, there is no support for test 

panels since the fully specified names can only encode atomic laboratory tests. LOINC lacks the 

general structure to support multiple types of conceptual relationship between lab tests. 

Additionally, there is no mechanism for automatically mapping test codes between systems. 
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Consequently, the choice of LOINC codes for local data is non-trivial, and ambiguity in the 

choices can lead to failure of test matching as shown by Baorto (i.e. only exact matches between 

LOINC codes can be identified). [74] 

2.5.3 UMLS and other Clinical Terminologies 

On a terminology level, the Unified Medical Language System has collected many independent 

medical vocabularies under the umbrella of the Metathesaurus. The medical concepts catalogued 

through the Metathesaurus form a fairly comprehensive subset of concepts that are in current 

clinical use. Although the Metathesaurus is not intended to be a common data model per se, the 

collection of medical concepts from many sources allows it to function as a grounding point for 

mapping between vocabularies. MEDIATE utilizes the Metathesaurus for this very purpose 

(discussed in section 3.1.1.1). 

 

The Metathesaurus, however, was not designed to be a data representation system, and therefore 

is not sufficient by itself to be used as a vehicle for data exchange. Similar to LOINC, there is no 

support for aggregating concepts, and little support for representing relationships between 

concepts (although there is some support for synonymy). Again, there is no mechanism for 

automatic mapping of concepts between information systems. 

 

Similar problems exist when attempting to use other clinical terminologies as data representation 

systems. For example, the SNOMED and Read Codes nomenclatures are widely used, but 

neither these systems nor the UMLS Metathesaurus were found to be completely adequate for 

encoding clinical concepts (although SNOMED does support composition of concepts). [39] 

 

The UMLS does provide concept relationships in another of its components, the Semantic 

Network. This system contains (as its name suggests) a semantic network of types and 

relationships. Furthermore, the goal of this system is to provide a broad framework for 

representing medical information rather than to provide an actual data model. The “semantic 

types” (network nodes) are broad categories such as “nucleotide sequence”, “sign or symptom”, 

and “clinical attribute”. Examples of the semantic relationships (network links) include “isa”, 

“surrounds”, “branch-of”, and “complicates”. 
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In total, the Semantic Network is a fairly rich representation framework and in some ways 

encompasses the nature of the semantic network representations within MEDIATE. The two 

systems differ in that the current relationships within MEDIATE are not fully supported by 

UMLS, and the UMLS Semantic Network only supports limited computations that do not extend 

to concept matching. 

2.5.4 KIF, KL-ONE, NIKL, and other Languages 

The Knowledge Interchange Format (KIF) is the standard language in which ontologies are 

defined within Ontolingua. [75]  As a general language that supports first order predicate 

calculus, KIF could be used to fully specify the semantics and conceptual relationships within a 

medical record. The drawback of using KIF as a medical representation language is the amount 

of work that needs to be done to describe each system. MEDIATE aims to be a simpler system 

that provides constructs for common medical concepts and relationships, making it easier to 

describe a medical record. MEDIATE itself could be encoded in KIF or any other language 

general enough to express semantic relationships and operations on those relationships. 

 

Other knowledge representation languages, such as KL-ONE, NIKL, and KOLA, have been 

studied in terms of their capability to encode general medical knowledge. [76-78]  Although 

these languages have known deficiencies for representing general medical knowledge, the scope 

of their capabilities is much greater then the representation scheme for MEDIATE. Unlike the 

general knowledge representation languages, MEDIATE has a restricted and relatively simple 

structure with the goal of representing database concepts rather than general medical knowledge. 

This limited goal provides advantages in terms of understandability and efficiency. As with KIF, 

these other knowledge representation languages form a superset of the representation system 

used in MEDIATE. 

 

One of the advantages of the restricted representation implemented within MEDIATE is that all 

the implemented inferences are decidable and non-exponential. This contrasts with some of the 

reasoning mechanisms of more general representation systems, in which certain problems may 

be undecidable. 
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2.6 Resolving Semantic Ambiguity 

The vast majority of investigators in database integration advocate some form of central model to 

address the issue of semantic ambiguity, although the form of the central model ranges from data 

models, to schemas, to terminologies, to ontologies, to representation languages. Rossi Mori 

performed a survey of these approaches. [79]  Approaches that do not utilize a central data 

model, however, do exist. 

2.6.1 Extensional Definitions 

Zollo and Huff have demonstrated a system where derived data can be used to characterize a 

laboratory test concept. [80]  These “extensional definitions” of a concept are extracted from a 

representative data set for the pertinent concept, and may include parameters such as the mean, 

standard deviation, and units of measure for the concept. In essence, the extensional definitions 

provide additional semantic fields by which to identify the concept. Concept matching proceeds 

through matching of these extensional definitions. 

 

Like many of the other systems, this approach lacks the ability to represent the relationship 

between different concepts. Consequently, it is not apparent how aggregate concepts are 

amenable to extensional definitions. In addition, semantic ambiguity is more of a problem when 

similar concepts have similar measurements (e.g. various forms of serum glucose 

measurements). 

 

Interestingly, these investigators also implement a very crude context measure by including a 

“co-occurrences” field as one of the extensional definitions. The co-occurrences field list the 14 

tests most frequently ordered in conjunction with the pertinent concept. 

2.6.2 Taxonomic Reasoning and Graph-based Semantic Inferences 

In a formal taxonomy of concepts, “classification” of a concept to determine its place in the 

taxonomy is a fundamental reasoning task. Bergamaschi argues that the taxonomic inference is a 

powerful technique to support conceptual schema design, recognize data instances, and validate 

queries. [19]  Although she does not propose automated concept matching in her work, it 



31  

requires minimal extension of her thoughts to arrive at potential mechanisms to accomplish this 

task. 

 

Many similarities exist between MEDIATE and the graph-based system proposed by Palopoli 

named DIPE (database interscheme property extractor). [23, 24]  In DIPE, concepts from 

different database schemes are compared automatically to produce four output “dictionaries”: the 

Synonymy, Homonymy, Type Conflict, and Object Cluster Similarity dictionaries. The 

synonymy dictionary is analogous to MEDIATE’s concept matching, and the dictionaries are 

derived from a form of context comparison that is similar in philosophy to MEDIATE’s concept 

comparisons. 

 

Unlike DIPE, however, MEDIATE does not require initial human judgment and assertion of 

synonymy and “inclusion” (subclass) properties between schemes to start the inference process. 

DIPE also utilizes natural language processing to facilitate the synonymy/homonymy inference 

process, which may work with well-formed words and phrases but is unlikely to perform well 

with abbreviated and arcane medical terminology. 

 

Although the overall approach to inter-scheme concept comparison is similar, DIPE is less 

automated and is therefore more sensitive to choices made during manual input. In addition, the 

definition of context used in DIPE is purely structural and relies upon delineation of relation 

attributes and keys. Database schemas that are constructed along functional lines (e.g. optimizing 

for the most frequently retrieved and updated data) may thus detrimentally impair the synonymy 

inferences. In contrast, MEDIATE utilizes the conceptual context as denoted by neighboring 

nodes in the semantic network representation, which is less sensitive to structural choices in the 

database design. 

 

An example of how differences in context definition affect concept matching is that DIPE would 

seem likely to infer that all laboratory test results are synonymous, since they all share the same 

relational attributes (in the databases tested in this investigation). 
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2.7 Significance of MEDIATE 

In contrast centralized data models, MEDIATE provides a uniform representation and processing 

model that allows information exchange without the need for Procrustean fitting to a static 

model. The ability to describe and quantify the amount of information transmitted via MEDIATE 

also differs from the unknown amount of information that is lost when fitting data to a 

centralized model. The fragility of common data models in the face of modifications and 

semantic change is avoided by the dynamic processing that occurs when MEDIATE executes its 

concept matching. 

 

Compared to federated databases systems, MEDIATE does not enforce a central schema 

framework, which means that no additional overhead is needed to add each new information 

source. Scaling to virtually any number of sources thus has a linear amount of related work that 

involves creating the semantic network representations of the native databases. 

 

The translation approach used by the interlingua systems approximates the goals of MEDIATE. 

In particular, the semantic network representation used in MEDIATE can be construed as an 

interlingua to which all native databases must be mapped. Unlike many of the systems, however, 

MEDIATE requires minimal ontological commitment because the representation system only 

requires a “fuzzy” form of mapping atomic data elements to medical terminology. 

 

“Mediator” and “wrapper” systems are the most architecturally similar to MEDIATE. The 

MEDIATE semantic network that is associated with each information source is an 

implementation of a wrapper, although the specific functions differ from TSIMMIS and Garlic 

wrappers. MEDIATE classes are, however, structurally similar to TSIMMIS object-exchange 

models.  

 

MEDIATE differs from these other systems in that the semantic network “wrapper” is designed 

not as a common database interface that abstracts away details, but as a way to actually reflect 

the structure and complexity of the underlying databases. Also, the functional process of 

identifying semantically equivalent data elements is not supported by the reviewed systems. 

 



33  

Similar to COIN and DIPE, one of the goals of MEDIATE is to explicitly represent and use data 

context to facilitate information exchange. The context implementations differ greatly between 

the systems, and ultimately, only empirical testing can provide evidence of practical efficacy. 

 

Unlike the use of extensional definitions to resolve semantic ambiguity, MEDIATE easily 

supports the representation of aggregate concepts, and also provides a representation that clearly 

delineates the differences between similar concepts. 

 

Current efforts to optimize information exchange in the healthcare field have provided many 

beneficial standards that aid communication of medical information. The HL7 communication 

protocol is widely used and implemented, and the UMLS Metathesaurus is utilized within 

MEDIATE. Most of the data representation efforts in this area, however, are attempts to 

construct common data models (e.g. the RIM, CDA, XML document standards, and the Galen 

Common Reference Model), and thus suffer the drawbacks of all such models. The redirection of 

the RIM effort is testimony to the difficulty inherent in this approach. 

 

LOINC and the UMLS Metathesaurus offer different approaches to standardized vocabularies. 

Although common terminology is required at some level in order to define semantic equivalence, 

these systems lack the flexibility and power to represent complex aggregate medical concepts, 

and so cannot easily address problems with semantic ambiguity in such concepts. MEDIATE 

exploits the benefits of a standardized vocabulary, but also provides a richer representation 

scheme and a computational method to automated the identification of equivalent concepts. 

 

The UMLS Semantic Network uses the same representation formalism for medical information, 

but the details of the system are not designed for facile data exchange. MEDIATE uses a 

different set of semantic relationships, and also employs a different level of computational power 

to achieve automated matching of concepts between database systems. 

 

General knowledge representation systems or languages such as KIF and KL-ONE can be 

viewed as a superset of the representation scheme and functionality offered by MEDIATE. 

However, having a machine shop available to build any tool you desire is not the same as having 
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a specific tool on hand to perform a specific task well. MEDIATE implements a specific type of 

data representation and performs a specific set of computations that are targeted towards the goal 

of data exchange. It is not merely a reduction of a general representation system, but instead 

embodies a set of choices designed to meet specified goals. 

 

In summary, MEDIATE provides the following contributions in its approach to integrating 

disparate sources of medical data.  

1) It provides a way to represent and communicate the semantic context of database 

elements, and ameliorates the problem of semantic ambiguity. 

2) The database representation reflects the way an information source is structured and 

organized, which allows an assessment of the granularity of transmitted information. 

3) The task of identifying semantically equivalent data elements is automated.  

4) The work needed to add new databases for data exchange is order(N), with no additional 

overhead or need to modify existing databases in the exchange group. 

5) By avoiding central data models, it provides better scalability and protects the 

functionality of the system against evolving data element semantics. 

6) The dynamic process of concept matching at the time of data exchange allows the system 

to be robust with respect to modifications in the databases, and even with respect to the 

addition of new databases. 

 

Through the combined use of semantic network representations and concept matching 

algorithms, MEDIATE achieves the goal of data exchange with desirable characteristics that 

differentiate it from other systems of data integration. 
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3 MEDIATE SYSTEM DESIGN 

The overall architecture of the system is illustrated in Figure 4. As described previously, there 

are three main components to the system. The constructor enables a user to build a semantic 

network representation of the native database. The concept matcher takes two semantic networks 

as input, and produces a table of concept equivalencies between the networks. Finally, the query 

processor uses the semantic equivalencies and network representations to retrieve data from the 

native databases. These elements are described further in the following sections. 
 
 

 
Figure 4. MEDIATE Architecture. The MEDIATE network construction routines are used to create the semantic 
network representation for each native database. The semantic network, along with an associated concept matcher 
and query processor, forms the interface to route communication with other databases. Concept matching occurs 
every time data is communicated if the semantic network representations (of the participating databases) have been 
modified since the last data exchange. 
 

3.1 Semantic Network Components 

Like any semantic network, the MEDIATE representation of native databases is composed of 

nodes and links. The nodes represent medical concepts, and the links represent defined 

relationships between those concepts. 
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The overall goal of the semantic network representation is to capture a conceptual view of a 

medical database, which includes “higher-level” concepts as well as the atomic data elements. In 

a medical laboratory database, for example, this would include concepts which denote the 

normal organization of laboratory test types, e.g. hematology, microbiology, pathology, 

chemistry, etc. These higher-level concepts may or may not be encoded as data elements within 

the native database. Along with the information represented by the relationship links, the “meta-

data” contained by these higher-level concepts and the network topology enable MEDIATE to 

perform the computations to determine semantic equivalence between concepts. 

3.1.1 Semantic Network Nodes 

The network node represents a single medical concept, and contains all the information for that 

concept including the relationships to other concepts. The node contains other data structures that 

specify concept identifying information, relationship links, data formats, and database hooks. 

3.1.1.1 Node Identification 

Identifying information is necessary to uniquely classify a node. Identification of a node is 

unique to the database system that the node represents: it is not intended to be a universal 

identifier that carries across database systems. The identification fields include the following:  

1) Name: a human readable label that corresponds to the medical concept.  

2) Unique ID: a unique identifier (perhaps randomly generated) for the node that will never 

be reused. 

3) UMLS link: a link to a standardized vocabulary to associate the node with known terms.  

4) Definition: a plain-text “definition” of the concept embodied within the node. The 

definition is another method for directly representing semantic information about the 

medical concept of interest. 

 

The UMLS link is used to associate the MEDIATE medical concept with concepts contained in 

the Metathesaurus. Although this appears to force MEDIATE to conform to a common data 

model, the UMLS link itself is not a rigid association between the node and a Metathesaurus 

concept. Instead, the link is represented by a list of Metathesaurus concepts with semantics that 

are compatible with the node. This is an important distinction because the semantics of the 

Metathesaurus concepts are often open to interpretation. Therefore, instead of forcing a single 
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semantic association, the UMLS link represents a “fuzzy” set of possible associations. This 

increases the flexibility of the system compared to rigidly conforming to a central data model. 

3.1.1.2 Format 

Format information is divided into two components, the type of information being transmitted, 

and the encoding of the information. The type describes the semantic type of the information 

being represented (e.g. number, text, image, sound, aggregate concept, etc). The encoding 

specifies how the information is actually stored. The encoding for the information may differ 

from the type. For example, a platelet count should be interpreted semantically as type 

“number”, but the value may be encoded as a text string in the source medical record system. 

Also, a variety of encodings may be available for the same type, e.g. type: “image”, encoding: 

JPEG vs. PICT vs. PDF, etc. The explicit representation of encoding information allows the 

usage of standardized routines to display the data or allow conversion between encodings.  

 

This form of format representation contains both semantic (type) and syntactic (encoding) 

information about the data concept. 

3.1.1.3 Database Link 

In order to retrieve data from the native database, there must be a link between nodes and atomic 

data elements. This database link represents a call to the native database system to retrieve the 

actual data item of interest. Currently, the data structure and functionality of the database link 

has been optimized for relational databases, which are the most prevalent type of databases in 

use. (Linking nodes to relational databases is further discussed in section 3.4). 

 

The database link currently contains the following components: 

1) Table: the database table that contains the data element of interest. 

2) Column: the table column that contains the data element of interest. 

3) Next link: the next database link to use when executing some forms of multi-part queries. 

4) Previous link: the previous link in some forms of multi-part queries. 

5) Query type: the method used to retrieve information from the database. The query types 

currently reflect usage within a relational database, and include:  

a. Column value: retrieve data by specifying the name of a column. 
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b. Column domain: retrieve data by specifying a value within the column domain 

(i.e. the values of data elements within the column). 

c. Column pointer: the data value within the column is a pointer to another table or 

column. 

6) Aggregate: the data element is actually composed of lower level data elements. 

Therefore, the database links for the lower level data elements are to be used, possibly in 

a recursive fashion, to retrieve the information for the higher-level data element. 

 

7) Attributes: parameters associated with the node concept that must be retrieved whenever 

the concept data is retrieved, and that will be inherited by all subclasses (specialization 

relationship) of the node. For “laboratory results”, attributes might include the result 

units, a time-stamp for when the result was reported, and an order accession number. 

 

It is difficult to assign a strict definition to an “attribute”, since the core idea of a 

parameter that is always “related to” the main concept is not quantifiable. In a relational 

database, an attribute is most likely to be other columns within the same table. Thus the 

laboratory results table would contain columns for result units, time stamp, etc. 

 

The choice of attributes directly relates to the design choices that are made for inheritance 

in an object-oriented system. There are no strict criteria to follow when deciding on 

inheritable parameters for an object, but many such choices are relatively straightforward. 

 

8) Constraints: a set of Boolean expressions that constrain the data values to retrieve. 

 

Using these defined database links, MEDIATE directly generates SQL queries that are executed 

by the native database system. This function is part of the query processor, and needs to be 

customized for different types of databases. 

 

The SQL statements generated by the query processor are generic in form in order to be 

compatible with the broadest range of relational databases. One corollary disadvantage is that 
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these statements are not optimized, and therefore may not produce the best performance in terms 

of retrieval speed. 

3.1.1.4 Relationships 

The data structure for relationships contains the information specifying how the node is related to 

other nodes. The relationships are directional, so each node directly specifies its relationship with 

the target of that relationship. For example, if “time stamp” is an attribute of “Lab Result”, then 

“time stamp” contains the relationship “attribute-of” “Lab Result”, and “Lab Result” contains the 

relationship “has-attribute” “time stamp”. More information about relationships is contained in 

the following section. 

3.1.2 Network Links 

Links within the semantic network represent conceptual relationships between medical concepts. 

The network itself is defined to be a directed acyclic graph, in order to facilitate the function of 

the concept matching algorithms.  

3.1.2.1 Relationship semantics 

3.1.2.1.1 Identity: same-as 

This relationship states that two medical concepts are synonymous. In particular, all the 

components of the node data structure are identical except for the name and Unique ID fields in 

the Identification data structure. 

3.1.2.1.2 Specialization: subclass-of, superclass-of 

This relationship follows the semantics of traditional object-oriented class specialization, where 

subclasses inherit attributes and functionality (or “methods”) of their superclasses. Subclasses are 

restricted to modifications that preserve the attributes (i.e. may add more attributes) and retain 

the method call forms (i.e. may change the function of the method but preserve the call and 

parameter list, or may add a new method) of the superclass. 

3.1.2.1.3 Composition: component-of, composed-of 

The composition relationship states that the semantic content of the higher-level node (the 

“construct”) is built from the semantic content of the lower-level nodes (the “components”). In 
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addition, all the components must be present in order for the construct to be a valid entity. The 

components are necessary and sufficient parts to define the higher-level node, and the addition or 

elimination of a component creates a different construct. For example, if a “bleeding screen” is 

composed-of the prothrombin time (PT), the partial thromboplastin time (PTT), and a fibrinogen 

level, then ordering the PT and PTT without the fibrinogen level does not constitute a “bleeding 

screen”. 

 

This relationship is analogous to the “part-whole” relationship discussed in the linguistics and 

knowledge representation fields. [31] 

3.1.2.1.4 Aggregation: element-of, collection-of 

In contrast to composition, aggregation does not require all of the lower-level nodes (the “sub-

elements”) to be present in order to define the higher-level node (the “aggregate”). The semantic 

content of the aggregate is defined by the content of the sub-elements, whatever those sub-

elements might be. This relationship enables the representation of lists with variable size (e.g. a 

medication list) and aggregates of data that may have variable membership (e.g. the aggregate 

symptoms required for the diagnosis of Rheumatic fever). 

3.1.2.1.5 Set relationships: subset-of, superset-of 

This relationship follows the standard mathematical definition, with set elements defined by 

lower-level nodes. 

3.1.2.1.6 Attribution: attribute-of, has-attribute 

Attributes are lower level nodes that are associated with a higher-level node (the “foundation”) 

through the property of inheritance. Attributes are the characteristic bits of information that are 

inherited by subclasses of the foundation. As illustrated previously, a “Lab Result” may have 

attributes of “result units”, a “time stamp” for when the result was reported, and an “accession 

number”. These attributes are inherited by all subclasses of “Lab Result". 

 

The attribution relationship must be included on an engineering basis in order to facilitate the 

proper retrieval of data with related properties (e.g. the “Lab Result” discussed above). In 
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particular, the structure of relational databases confers a practical definition in terms of the 

associated (single table) columns that are retrieved during a query. 

 

Since the definition of an attribute is not fully specified, MEDIATE treats this relationship as 

orthogonal to the other relationships. Attribution is the only relationship included in the database 

link, but it is not included within any of the search algorithms used in the concept matching 

process.  

3.1.2.2 Relationship properties 

Properties of the relationship links are shown in Table 1. 

 
 
 Commutative Transitive Hierarchy Inheritance Dependence Overlap 
Identity Yes Yes No No No Yes 
Specialization No Yes Yes Yes No Yes 
Composition No Yes Yes No Yes No 
Aggregation No Yes Yes No No No 
Set relations No Yes Yes No No Yes 
Attribution No Yes Yes No No No 
 
Table 1. Relationship properties. For a given relationship * (or its inverse), the properties have the following 
meaning. Commutative: a * b implies b * a. Transitive: a * b and b * c implies a * c. Hierarchy: a * b implies a is a 
“higher-level” class and b is a “lower level” class. Hierarchy has transitive closure. Inheritance: a * b implies b inherits 
attributes from a. Dependence: a * b implies the semantic meaning of a is dependent upon b. Overlap: a * b implies 
there are overlapping properties or elements between a and b. 
 

3.2 Network Construction 

Constructing the semantic network representation of a native database constitutes the primary 

work required to implement MEDIATE. This work is only performed for the local database, 

without regard to the nature or number of other databases with which information exchange will 

occur. Modifications to the semantic network are required only to reflect changes in the local 

database, and do not need to reflect changes in remote databases. 

 

As a representation of the native database, MEDIATE provides functionality that correlates 

directly with the accuracy and completeness of the representation. Thus, time and energy spent 

during the representation construction phase will have a direct payoff in terms of later 
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functionality. Unfortunately, the corollary is also true, that inaccurate or incomplete 

representations may hide underlying information or actually mislead users about the contents of 

the legacy database. 

3.2.1 User Interface 

A graphical user interface was designed to facilitate the construction of the semantic network. A 

screen shot of main interface window is shown in Figure 5. The semantic network itself is shown 

graphically in a sub-window that allows navigation through a point-and-click interface. This 

allows users to easily visualize the node nodes and relationship links as they are created or 

modified. 

 

  
 
Figure 5. Semantic Network user interface main window. The “Browse Network” view has been selected, and 
relationships for the highlighted class “Blood Counts” are displayed in the sub-window on the right. Attributes are not 
displayed in the network view sub-window on the left. 
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All the functionality required to construct the semantic network is supported within the interface, 

including node creation, modification, and deletion. Other functions of MEDIATE are also 

accessed through this interface, and those aspects will be discussed in following sections. 

 

One way of facilitating the construction of the semantic network is to use external programs to 

read information from the native database and convert that information to MEDIATE system 

nodes and relationships. This approach can be used to initially populate the network, with further 

refinement performed by utilizing the graphical interface. (This was done to help construct one 

of the semantic networks used in the experimental phase of this investigation). The design and 

finalization of many of the relationship links, however, must be performed within the MEDIATE 

interface since the relationship semantics are seldom (if ever) directly extractable from the native 

databases. 

3.2.2 Node Identification 

Most data elements within a native database can be represented by a node that uses the data 

element “name” for the node name. When the data element names are cryptic, an expanded node 

name using basic medical terminology is desirable but not always possible if the original data 

naming convention is too obscure to interpret. The node unique ID can be assigned in any 

manner that ensures non-duplication of the field within the semantic network. (The MEDIATE 

interface does not allow entry of duplicated unique ID fields). 

 

Implementing a unique ID field allows the reuse of node names if the underlying data element 

changes but the semantics of the concept remain the same. 

3.2.3 UMLS concept assignment 

One of the most important tasks in constructing the semantic network is linking a node with 

UMLS Metathesaurus concepts. The “standardized” vocabulary embodied in the Metathesaurus 

provides fundamental support for concept matching. The user interface window for 

accomplishing this task is shown in Figure 6. 
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Figure 6. UMLS Link sub-window. This 
window is used to link a list of UMLS 
concepts to the selected node. 

The UMLS link is constructed by creating a list of Metathesaurus concepts that are semantically 

equivalent to the node. Ideally, semantic equivalence should imply semantic identity, but this is 

not possible for several reasons. 

 

Even in a standardized vocabulary, semantic ambiguity exists. For example, “sodium level” and 

“sodium in sample” are listed as two non-synonymous concepts in the UMLS. Yet any medical 

professional would most likely interpret the two concepts to mean the same thing. 

 

The Metathesaurus also lacks the semantic richness to 

describe the type of relationships that are integral to 

MEDIATE. Thus, “serum sodium level” is a more 

specialized concept than “sodium level”, but this 

relationship is not possible to represent within the 

Metathesaurus. 

 

As previously discussed, the semantics for a node in any 

given database are highly contingent upon the usage of 

that concept within the local clinical environment. 

Therefore, there is no guarantee that any Metathesaurus 

concept will be “identical” to a node. 

 

To address these semantic obstacles, MEDIATE 

constructs the UMLS link by allowing the user to choose 

from a list of concepts. Since the individual users may 

differ in their judgment of “semantically equivalent” 

terms, the UMLS link is not a precise or rigorous 

parameter. Instead, it functions as a “possibility set” of 

semantic states that the node might attain. 

 

To create the UMLS link, the user specifies a list of terms 

that are used in a matching algorithm to retrieve locally 
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stored Metathesaurus concepts. Several features are implemented within the matching algorithm 

to optimize the presentation of candidate Metathesaurus concepts. 

 

One feature is a parser that allows the search terms to be entered as a boolean expression. 

Another feature is an automatic plural form generator that produces the plural forms of match 

terms using standard rules of English. When the match term “cell” is entered, the plural form 

“cells” is automatically generated, and when “fungus” is entered, “fungi” is automatically 

generated. 

 

Finally, Metathesaurus concepts that contain the node match terms are assessed using a metric 

that takes into account the number of matched node terms as well as the position of those terms 

within the concept phrase. Concepts with the highest score are placed at the top of the candidate 

list so that the user is presented with the most likely matches first. 

 

Once the user has chosen any number of equivalent Metathesaurus concepts (from zero to n), he 

or she confirms these concepts and they are placed in the node UMLS Link. 

3.2.4 Relationship assignments 

Once a node has been created, it can be linked to other existing nodes using the predefined 

relationships. These relationships are then displayed within the user interface as network links 

between the participating nodes. Relationships cannot be created between non-existent nodes. 

3.2.5 Network structure 

As previously stated, the semantic network representation is restricted to a directed acyclic graph 

topology for any given relationship link. In practice, the networks are more likely to resemble 

trees because of the hierarchical property of many of the relationship links. The terminal nodes, 

or “leaves” of these networks often correlate with atomic data elements within the native 

database. 

 

The overall structure of the semantic network is not explicitly represented. Instead, each node 

describes its own local network using its relationship links, and the sum total of all the node 

relationships gives rise to the whole network. The basic granularity of the network representation 
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thus resides at the node level, which makes it more robust to change and easier to scale (add 

more nodes). Similarly, all the network traversal and matching algorithms operate at the node 

level and do not depend upon knowledge of the overall network topology. 

3.3 Concept matching 

The central functionality of MEDIATE resides in the algorithms that match concepts between 

semantic network representations. As discussed previously, the ability to reduce semantic 

ambiguity and discover semantic equivalencies forms the fundamental basis for integrating 

heterogeneous databases within this system. Given semantic network representations of two 

databases, this problem reduces to finding “matching” concepts between the semantic networks. 

 

Matching cannot occur between more than two databases simultaneously because finding the 

semantic equivalent of multiple concepts simultaneously is not a well-defined problem within 

this system. MEDIATE “views” information exchange from the perspective of a single database, 

and data integration takes place with respect to that database. Multi-network matching is more 

akin to finding a “common” semantic model that satisfies all the networks, and this perspective is 

not supported by MEDIATE. 

3.3.1 Matching Algorithms 

3.3.1.1 Overall matching process 

The general process of concept matching utilizes an algorithm that has three phases. 

 

In the first phase, each of the two networks is enumerated on a node-by-node basis and matches 

are attempted using multiple algorithms (detailed in section 3.3.1.2). The majority of node 

matches will be found during this phase. 

 

In the second phase, an iterative matching process is used for unmatched nodes from the first 

phase. Some of the algorithms depend upon matches between neighboring nodes in order to 

match the target node, and thus may fail during the first matching phase but succeed in 

subsequent iterations. The iterations in the second phase continue until the total number of 

matched nodes remains static. 
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Throughout the first two matching phases, all the identified concept matches are stored in a hash 

table for later referral.  This improves the efficiency of the matching algorithms which rely on 

finding similarities between concept contexts, since multiple neighboring nodes may also need to 

be matched. 

 

In the third phase, the remaining unmatched nodes are put through an iterative “generalize and 

match” process. During this process, the system generalizes a node by finding its superclass, 

using the subclass-of relationship links. If the subclass-of relationship does not exist for the 

pertinent node, the subset-of, component-of, and element-of hierarchical relationships are tested 

successively until a higher-level class is found. The higher-level class is then matched if 

possible. The generalization and match process is recursively iterated until the superclass is 

matched, or no superclass is found. The theory for this phase is derived from the query 

“relaxation” function provided by Cobase systems (discussed previously in section 2.3). This 

theory postulates that even if a semantic equivalent is not found, information of a generalized 

form may still prove useful. 

3.3.1.2 Specific matching algorithms 

There are currently six specific matching algorithms employed during the three phase matching 

process, and one algorithm which may be employed in a discretionary fashion after the 

automated concept matching process. A node is matched if at least one of the six basic 

algorithms returns a matching node from the remote network. If multiple matching nodes are 

returned, each node is displayed by the system with an associated “match quality” metric 

(discussed further in section 3.3.2). This quality metric can be a guide for users to choose the 

best match from the candidate matches, or it can be used to automate the choice of matches. 

 

The matching algorithms can be categorized in the following manner: 

1) Terminological match. This algorithm matches concepts using links to the UMLS 

Metathesaurus. 

2) Context match. These algorithms execute matching by examining the context (network 

neighborhood) of the target node. 
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a) Subcomponent context. Use the context represented by subcomponents (leaves) of the 

target node. 

b) Nearest neighbors context. Use the context represented by all the neighbors of the 

target node. 

c) Sibling context. Use the context represented by sibling nodes. 

3) Leaf match. Match as many of the subcomponents as possible. 

 

The specific matching algorithms are described in the following sections, with some illustrative 

pseudo-code. 

3.3.1.2.1 Terminological Match by UMLS link 

This algorithm uses the UMLS links to find matching nodes. Nodes from the two semantic 

networks match if they have any common elements in their UMLS links. Due to the 

indeterminate content of the UMLS links, there is no guarantee that matches can be found, or 

that they will be unique. 

 

In contrast to the other algorithms, the local “neighborhood” of a node is not considered in this 

algorithm. In situations where a node has sparse relationship links (e.g. in leaf nodes), this 

algorithm may be the main determinant of the matching outcome. 

 
For each target-node in the local network 

 target-UMLS-list <= UMLS list of target-node 

 For each remote-node in the remote network 

  remote-UMLS-list <= UMLS list of remote-node 

  For each target-item in the target-UMLS-list 

   For each remote-item in the remote-UMLS-list 

    If (target-item equals remote-item) then 

     Add remote-node to matching-nodes  

Return matching-nodes 

     

3.3.1.2.2 Subcomponent context match: finding the “lowest common superclass” 
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To match a given “NodeA” in the local network, the algorithm starts by finding any leaf nodes 

that are in NodeA’s sub-hierarchy. These leaf nodes are then matched to nodes in the remote 

network. Within the remote network, a search process is started from each of the matching 

nodes. The search proceeds in a breadth-first (BFS) fashion “up” the network hierarchy from 

each of the remote matching nodes. The “lowest common superclass” is the lowest node with the 

greatest number of search “hits” from the remote matching nodes.  

 
For each leaf-node of the target-node 

 Retrieve remote-matching-node from matching hash table 

 While termination condition is false 

 For each remote-matching-node in the remote network 

  Perform BFS up the remote network hierarchy 

  Mark each node traversed with a unique “hit” label 

  Count hits for each node traversed 

  If ((maximum hit count remains static) or  

   (no more nodes to Search)) then 

Terminate condition for While loop is true 

Return remote node with maximum hit count 

  

3.3.1.2.3 Subcomponent context match: variation on lowest common superclass 

Specialization links contain hierarchical information about the semantic network. These links, 

however, are much less constraining than the other hierarchical relationships. To narrow the 

search space, this algorithm implements a variation of the lowest common superclass algorithm 

that excludes specialization links from any network traversal operation (e.g. while finding leaves 

or during BFS). 

 

This algorithm and the previous algorithm are somewhat complementary. The previous 

algorithm uses the broadest search space available, which is useful when the semantic network is 

sparse. By narrowing the search space, this algorithm returns more accurate results when the 

network is denser. 

3.3.1.2.4 Nearest neighbor context match: match by ripples 
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The intuition for this algorithm originates from the ripples that result when pebbles are cast into a 

calm body of water. As the ripples spread from each pebble’s impact, they intersect in various 

patterns. The points of greatest ripple intersection are the “centroids” of interaction between the 

original pebble impacts. 

 

In this algorithm, a BFS is executed within the local network to find the nodes closest to the 

target “NodeA”. These neighboring nodes are then matched in the remote network. The remote 

matching nodes are analogous to the cast pebbles, and performing BFS from these nodes is 

analogous to creating ripples. The remote network node(s) with the greatest number of hits from 

the intersecting BFS pathways are returned as the overall match for NodeA. 

 
Local-neighbors <= perform BFS for 1 link distance from target node 

Remote-neighbors <= retrieve match for each Local-neighbor from  

  matching hash table 

While termination condition is false 

 For each Remote-neighbor 

Perform BFS in remote network 

  Mark each node traversed with a unique “hit” label 

 Count hits for each node traversed 

If ((maximum hit count remains static) or  

    (no more nodes to Search)) then 

Terminate condition for While loop is true 

Return remote node with maximum hit count 

 

3.3.1.2.5 Nearest neighbors context variation 

This process essentially duplicates the ripples algorithm, but the surrounding BFS nodes in the 

local network are also matched in the remote network, and these matched nodes are then 

excluded from the final result. 

3.3.1.2.6 Sibling context match: neighbor exclusion 

To perform a match using this algorithm, the parent node and “sibling” nodes are matched in the 

remote network, then excluded as candidate matches. For example, assume there exists parent 

NodeA and children NodeB, NodeC, and NodeD. When attempting to match NodeB, the parent 
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NodeA is found and matched in the remote network to find NodeARemote. The children of 

NodeARemote are then found. NodeC and NodeD are then matched in the remote network, and 

the matching NodeCRemote and NodeDRemote are excluded from consideration by eliminating 

them from the children of NodeARemote. The remaining children of NodeARemote are returned 

as candidate matches for NodeB. 

3.3.1.2.7 Leaf match 

After the three-phase general concept matching process is performed, the user can choose one 

more algorithm if the previous match results are unsatisfactory. For nodes that have 

subcomponents, the user may execute this algorithm to match the leaves of the sub-hierarchy 

instead of matching the target node itself. The purpose of this algorithm is utilitarian: it does not 

attempt to find the semantic equivalent of the target node, but instead tries to match all the data 

elements that make up the sub-hierarchy of the target node.  

 

In some circumstances, this may be preferable to using the semantically equivalent match to 

retrieve information from a remote database. For example, if the sub-hierarchy for the target 

node in the local network is larger than the equivalent sub-hierarchy in the remote network, more 

information may be retrieved using this algorithm than by using the semantically equivalent 

match to the target node. 

3.3.2 Match Quality Metric 

Once the concept matching process is completed, a method to assess the quality of node matches 

can assist the user in evaluating the efficacy of the matching process. In particular, if a local node 

is matched to more than one node in the remote network, the quality metric can be used to judge 

the relative “fit” of the matches. 

 

Several parameters are used within the quality metric to capture different aspects of the match. 

These parameters include: 

1) Overall quality. A match between two nodes is called a “perfect” match if the all 

subcomponents of both nodes also match. Otherwise, the match is a “partial” match. 
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2) Coverage. A match has “full set coverage” with respect to the local target node if all the 

subcomponents of the local target node are matched and contained in the subcomponents 

of the remote node. Otherwise the match has “partial set coverage”. 

3) Score. The score is calculated by taking the number of matching subcomponents 

(intersection between the subcomponents) divided by the total number of unique 

subcomponents (union of the subcomponents), multiplied by 100. This produces a range 

from 0 to 100. Using the subcomponent context (nodes in the sub-hierarchies) is a more 

specific measure of concept similarity than using the more general context, which 

includes all neighboring nodes. 

 

If more than one candidate matching node is found in the remote database, the system can 

calculate a “best match” based on the highest quality score. In the case where two or more 

candidate matches have the same quality score, the node with the smallest sub-hierarchy is 

returned as the most “specific” node (i.e. least generalized). 

3.3.3 Match Types 

Match types are differentiated by the method used to establish the match. The differentiation is 

necessary because different network traversal routines and variations of the quality metric 

algorithms are required for the different types. From the concept matching process described 

previously, the match types are:  

1) Direct match. The match is made during the initial concept matching process. 

2) Generalized match. The match is made during the “generalize and match” process 

because the node was previously unmatched. 

3) Leaf match. The user manually directs the system to perform a leaf match. 

4) Validated match. During review of the concept matches, the user manually confirms that 

a match is semantically equivalent and should be used for all future data integration 

purposes. A validated match is always preferentially used regardless of the quality metric. 

3.3.4 User Interface 

To assist the user in evaluating the semantic concept matches, a graphical user interface was 

designed to display the two networks along with user-selected node matches. This interface is 

illustrated in Figure 7. 



53  

 

The graphical interface displays the network environments within which the matches are made. 

The quality metric for each node match is also displayed. This allows the user to better judge the 

suitability of the automated matches and decide which matches to validate.  

 

 
 
Figure 7. Concept matching review window. The left and middle panels display the semantic networks and allow 
the user to select node matches for review by clicking on the target node within either window. Below the network 
windows is a display for the quality metric of the current match. The right panel allows the user to choose various 
functions, including validation of matches. 
 

3.4 Database Linkage 

Currently, MEDIATE has a user interface which enables linkage between node nodes and 

database elements within a relational database. A sample window is shown in Figure 8. 
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Four different query types are currently recognized within the node database link. It is important 

to correctly delineate the query type in order to process the retrieved data elements. These types 

are: 

1) Column value. The information content for the node is directly contained within the table 

column. For example, the node for “serum sodium” would have its primary link to the 

column “serum sodium” within the table “serum electrolyte values”. 

 
Figure 8. User interface for linking a node to a relational database. The user selects the table and column to link 
with each element of the node database link, including the main concept (serum sodium in this example) and 
attributes (e.g. Result value, Test ID, etc.) 

 

2) Column domain. This is the example given in Figure 8, where the node main concept is in 

the domain of the column, i.e. one of the possible values of the column. In the majority of 

cases, the column contains a label that is equivalent to the node identity and the actual 

data elements are contained within other columns. 
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3) Column pointer. The column does not contain data directly related with the MIC, but 

instead contains a pointer to another column, possibly in a different table. 

4) Aggregate. As discussed previously, this storage type indicates that the node is not 

directly linked to the database, but derives its information from nodes within its sub-

hierarchy. 

 

Database links also contain information linking attributes of the node to their respective data 

elements. In many relational databases, all the data elements for a node are contained within one 

table. This makes the linking process relatively straightforward. 

3.5 Query Processing 

Once the semantic equivalencies between networks have been identified through the matching 

process, queries are executed by retrieving the matching nodes from remote networks. To 

retrieve a thyroid function panel, for example, the system identifies the semantically equivalent 

concept in the remote network by looking up the node match. The information contained in the 

remote nodes database link is then used to retrieve the data directly from the remote database. 

 

To facilitate the retrieval and formatting of data, a graphical interface for query processing has 

been designed to enable basic organization and sorting of the query results. An example of this 

interface is shown in Figure 9. 

3.6 Platform considerations 

MEDIATE was developed using the Java programming language to utilize Java’s portability and 

its network and database capabilities. Support for Java applications is almost ubiquitous among 

operating systems, and standard Java classes can implement many network operations. The many 

drivers that are available to support Java database calls facilitate linking semantic networks to 

native databases. 

 

To benefit from emerging data interchange standards, nodes are encoded using tagged fields that 

can easily be exported as XML documents. Since the nodes contain all the information needed to 
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construct the semantic network, information exchange between MEDIATE systems can 

piggyback on standard communications protocols such as HL7 in a simple fashion. 

  
 
Figure 9. User interface for customizing a query. Once the query classes have been selected, either manually or 
automatically by the system, the presentation of the results can be organized in the panels on the right. The order of 
data presentation as well as the manner in which the data is sorted can be specified. 
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4 EXPERIMENTAL DESIGN 

To evaluate the ideas and functionality of MEDIATE, two laboratory databases were represented 

and tested. Laboratory databases have several characteristics that make them attractive as an 

initial test platform. 

1) Clinical importance. Laboratory information is critical to clinical decision making, as 

illustrated by the scenarios in section 1.1.1. Healthcare providers depend upon accurate 

delivery of test results on a daily basis, and communication of these results between 

providers also has an extremely high priority. 

2) Ubiquitous implementation. Within large health care facilities, laboratory test results are 

often the first type of medical information to be made accessible electronically. Some 

form of laboratory database is available in virtually all hospitals and in many large 

clinics. 

3) Organized data structure. Laboratory tests have traditionally been divided into categories 

that are used to support effective communication between health care providers. 

Although these categories are not always reflected within the database structure, they 

help inform the structure of the semantic network representations within MEDIATE. 

Examples of some of the top level categories include: hematology, chemistry, 

microbiology, pathology, and radiology. These categories, along with others, will be 

represented as nodes within the semantic networks. 

4) Ability to leverage other healthcare standards. Because of the clinical importance of 

laboratory information, there are efforts in many areas to improve communication of test 

results. Some of these systems can be utilized by the MEDIATE platform. For example, 

the medical vocabulary contained in the UMLS Metathesaurus is specified in great detail 

for the laboratory domain, which enhances its utility in MEDIATE. And communications 

between medical information systems can utilize HL7 as a standard messaging protocol 

that is widely implemented. 

 

The experimental setup is designed to provide initial insight into the feasibility of this system 

and serves as a proof-of-concept rather than as an investigation to gather data for empirical 

analysis. Although the original intent was to implement and evaluate MEDIATE on multiple 
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laboratory databases, a variety of factors precluded this possibility. Nevertheless, the two 

laboratory databases which were included in this experiment proved disparate enough to provide 

a rich testing environment for MEDIATE. 

4.1 Databases 

4.1.1 Pediatric Hospital 

The first database is a test database of laboratory results from a large academic pediatric hospital 

(Hospital A). This test database contains actual laboratory results, but identifying patient 

information has been altered. A “scrubbed” database such as this one can be use for testing 

without the need to consider issues of informed consent or patient confidentiality.  

 

The database itself is a relational database that contains the vast majority of laboratory results in 

a single table named “Pat_Test_HistV”. Although all the database tables are available through 

the user interface, all the laboratory tests that were represented within MEDIATE are actually 

from Pat_Test_HistV. 

 

The table structure for Pat_Test_HistV stores test results as column domains, where the columns 

are attributes of a laboratory test such as Test_ID , Test_Abbr and Rslt_Val, and the test results 

themselves are possible values for each column. Thus, a specific test result is obtained not by 

addressing a specific column, but by using a test attribute as a constraint on a column within the 

table. Although this is the most space efficient way to store these results, elucidating the nature 

of the tests has a higher-level of complexity because of inadequate documentation. 

 

A “data dictionary” relating test names with other identifiers (i.e. the Test_ID and Test_Abbr) 

does not exist. Linking a node representation of a laboratory test to the database then becomes an 

exercise in decoding cryptic test abbreviations contained in the Test_Abbr field of 

Pat_Test_HistV. In addition, the evolution of the database over time has led to variations in some 

of the test abbreviations that make it difficult to discern the true meaning of the abbreviation. 

The lack of documentation for the test abbreviations leads to some of the semantic ambiguity 

discussed in previous sections. 
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The semantic ambiguity is not only a problem for testing MEDIATE. In discussions with 

Information Systems personnel at Hospital A and other research investigators, the difficulty in 

interpreting results from Pat_Test_HistV has had a negative impact on many projects. Ideally, 

the entire database should have appropriate documentation to address some of these problems. 

With the lack of such documentation, the semantic network representations in MEDIATE could 

actually serve as ad hoc documentation in many situations. The difficulty, of course, lies in the 

creation of the network representations in the first place. 

4.1.2 Oncology Institute 

The second database is represented by table information from the laboratory database at a large 

academic oncology institute (Hospital B). No scrubbed information or test database was 

available from this institution, so no actual patient data was used. 

 

The Hospital B database is also a relational database, and all the laboratory test results are 

contained in a single table, named (appropriately enough) Lab_Results. Similar to the database 

for Hospital A, the table structure for Hospital B stores test results as column domains. 

 

This database also had tables that relate test orders to test abbreviations. This is useful because a 

test “order” may consist of one or more actual tests. For example, a serum sodium order is linked 

directly to a serum sodium test, whereas a white cell differential count order is linked to multiple 

tests each representing a different type of white cell. All of this structure is captured in the 

semantic network representation. 

 

Unfortunately, the Hospital B database is similar to that of Hospital A in that there is no table or 

“data dictionary” which relates test abbreviations to clinical test names. Since the database tables 

utilize test abbreviations, this leads to similar problems of name interpretation as discussed 

previously for Hospital A. 

4.1.3 Other Databases 

A similar theme of semantic ambiguity was a deterrent to the utilization of a third database from 

an academic general hospital (Hospital C). The motivation to include this database in the 
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investigation is that the database is based on the MUMPS file system, which is a hierarchical 

system rather than relational. 

 

The semantic ambiguity in the Hospital C laboratory system is even greater than in the two 

previous systems. All laboratory tests are referenced by alphanumeric designations that have no 

correspondence with the clinical names. These designations, such as “a1” and “b2”, actually 

correspond to “print fields” within hard-coded report forms which are used to display test results. 

 

Although data dictionaries exist to relate the print fields with test names, these dictionaries are 

scattered and have not necessarily been updated to reflect the current use of the system. During 

attempts to represent the Hospital C database within MEDIATE, it was difficult for the database 

administrators to produce a collated list of test orders, names, and print fields. Because of this 

difficulty, the database was eventually excluded from testing because the semantic structure of 

the database was not possible to ascertain at a detailed level in time for the completion of this 

investigation. 

 

A fourth relational database from another academic general hospital was excluded because of 

similar difficulties obtaining detailed documentation about the relationships between test orders, 

test names, and database fields. 

4.2 Semantic Network Representation 

The semantic network representing the laboratory database from Hospital A was constructed in a 

top-down fashion. Higher-level concepts were added to the network first (e.g. Hematology, 

Chemistry, and Microbiology), and sub-concepts were iteratively added until the level where 

component test results from the database were required. 

 

To determine which component laboratory tests were available, a database query was executed to 

retrieve all unique entries in the Test_Abbr field of Pat_Test_HistV. The investigator then parsed 

these abbreviations, and subsets of the available tests were assigned to nodes within the semantic 

network. As discussed previously, some of the test abbreviations were not interpretable, and 
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these were not assigned to nodes. Concepts that fell outside the scope of the higher-level nodes 

were also excluded from the semantic network. In total, 101 nodes were assigned. 

 

Because the component test results from Hospital B were available as a list, the semantic 

network representation for that database was built in a bottom-up fashion. A small auxiliary 

program was written to create the lowest hierarchical levels of the network using the table which 

links test orders to component tests. All the component tests were instantiated as leaf nodes of 

the network, and the test orders were instantiated as higher-level nodes. Building upon the test 

orders, concepts were iteratively assigned to group lower level concepts until the “root” concept 

of Laboratory Test was reached. 353 total nodes were assigned in the semantic network 

representing Hospital B. 

 

For both Hospital A and Hospital B network representations, the relationship links and UMLS 

links for all nodes were assigned by the investigator. 

 

To test the robustness of the semantic concept matching algorithms, variations of the semantic 

networks for both hospitals were created. The first variation eliminates all the UMLS links from 

non-leaf nodes of the network. In other words, all higher-level nodes were not instantiated with 

UMLS Metathesaurus concepts. This forces the concept matching process to function by only 

utilizing contexts for higher-level nodes. Forcing this mode of concept matching is a more 

“pure” test of the theory that useful semantic information is embodied in the relationship links of 

the networks. 

 

Other variations in the semantic networks implement different relationship links to determine the 

effects those links may have on the matching process. These relationship variations represent 

alternative methods of encoding semantic information into a network. For example, 

“bacteriology” laboratory tests can be viewed as a subclass or subset of “microbiology”, with 

different ramifications in terms of inheritance. 

 

In total, four variations of the semantic network were produced for each hospital. These are: 
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1) Baseline network using subclass and subset relationships for higher-level group tests, with 

fully instantiated UMLS links,  

2) Same network as above with instantiated UMLS links only for leaf nodes. 

3) Network using subclass relationships for higher-level group tests, UMLS links only for leaf 

nodes. 

4) Network using subset relationships for higher-level group tests, UMLS links only for leaf 

nodes.  

 

Although variations in the relationship links can still result in a semantically “valid” network, 

constraints and dependencies between the relationships do exist. Perhaps the most important of 

these is the inheritance relationship, where subclasses are highly dependent upon superclasses for 

the establishment of the subclass attributes. Thus, changing bacteriology from a subclass of 

microbiology to a subset means that all the subclasses of bacteriology lose the properties they 

originally inherited from microbiology and the superclasses of microbiology. Breaking the 

subclass/superclass hierarchy has profound effects on the inheritance of attributes for all 

subclasses lower in the hierarchy. Modifications to the semantic network must take these 

inheritance effects into consideration. 

4.3 Database Queries 

Only the database from Hospital A was available in a scrubbed form suitable for testing. Using 

this database, sample queries were executed for multiple higher-level nodes (aggregates of lower 

level nodes) as well as leaf node nodes. Query results were also formatted and sorted by different 

combinations of data fields to test those functions.  

 

Exhaustive querying of all the nodes was not performed. Instead, representative samples of 

nodes were queried using MEDIATE, and the results were compared with the results of direct 

SQL queries of the database. 

 

The interface with the laboratory database was accomplished with MySQL, an open software 

database manager freely available for several operating systems. MySQL provides its own 
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software drivers for interfacing with Java applications (through the JDBC database classes), 

which eased integration of the native database into the MEDIATE test system. 

4.4 Concept matching 

Concept matching was performed between all configurations of semantic networks for both 

hospitals. Since there are 4 variations of each semantic network, a total of sixteen concept 

matching runs were performed, and the results were analyzed for the following measures: 

1) Percentage of direct matches, generalized matches, and non-matches. 

2) Quality scores for all matched nodes. 

3) Comparison of variation in node matches based on semantic network configuration. 

 

In addition to the concept matches which were performed during the concept matching runs, leaf 

matches were performed for all the aggregate (non-leaf) nodes in both networks, and these 

results are presented separately. 
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5 EXPERIMENTAL RESULTS 

Several iterations of testing, evaluation, and modification of the system were performed before 

arriving at the results presented here. No major changes were made to the system architecture or 

the fundamental nature of the concept matching algorithms. There were many fine nuances, 

however, which required tweaking for optimal performance. 

 

The hierarchical tree-like structure of the semantic network representations for both databases 

forced a modification in the matching algorithms to limit the number of candidate matches that 

were produced. Because of the large “fan-out” of linkages between some concepts and their 

subcomponents, the search patterns of the matching algorithms sometimes returned multiple leaf 

nodes that could not be distinguished based on contextual information. In this situation, literally 

dozens of nodes might be returned as specious candidate matches from one of the matching 

algorithms, overwhelming the signal of more reasonable matches from a different algorithm. 

Therefore, a threshold was enforced which limited the number of candidate matches from any 

given algorithm. If the threshold (currently set at three nodes) is exceeded, all the candidate 

matches from that algorithm are discarded as probable noise. 

 

Another modification that produced minor improvements in the matching performance utilized 

the quality metric to dynamically assess candidate matches as the algorithms were executed. In a 

small number of cases, a node that was traversed earlier in the network search was a better 

candidate match than the “final” node discovered at the end of the search. Although using the 

quality metric slows down the matching process, the improved matching performance outweighs 

the inconvenience of a drop in efficiency. 

 

Encouragingly, the experimental results did not undergo a radical change in nature after all the 

optimizations were in place (compared to the first “clean” run in which no gross programming 

errors were discovered). Quantitative results such as matching percentage and average quality 

scores did not change by more than a few percentage points. Manual inspection of the concept 

matches revealed a small number of improvements as judged by clinical relevance, but the 

majority of the matching results remained stable throughout the test iterations. 
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5.1 Database Queries 

Sample queries using the scrubbed database from Hospital A revealed no differences between 

the data retrieved by MEDIATE and data retrieved through direct SQL queries. Although 

exhaustive testing was not performed, both leaf nodes and higher-level aggregate nodes were 

accurately retrieved when results were compared with direct database queries using manually 

coded SQL.  

5.2 Overview of Concept matching Results 

Of the 101 nodes in Hospital A, 68 nodes (67%) were “direct” matches that were found during 

the first two phases of the matching processes. The presence of a direct match implies that the 

target concept exists in both networks. 87 (25%) of the 353 nodes from Hospital B had direct 

matches identified. 

 

Direct matches can be subcategorized into “UMLS” matches and “non-UMLS” matches. In a 

UMLS match, the matched nodes correspond to the match obtained through the UMLS link. In 

other words, the match found through the context-sensitive algorithms is the same as the match 

found through the UMLS terminology link. For example, node “CBC” from Hospital A matched 

node “cbc” from Hospital B, and both nodes are linked to the UMLS concept “blood count, 

complete”. 

 

There are cases, however, where the quality metric indicates that an optimal match differs from 

the UMLS match. For example, the node “ldlp” from Hospital B and the node “Lipid profile” 

from Hospital A match through the UMLS concept “test, lipids profile”. This match, with a 

quality score of 40, is not as the good as the match between “ldlp” and the node “Lipids” from 

Hospital, A which has a quality score of 80. This discrepancy arises because “ldlp” actually 

consists of 5 subcomponents, whereas “Lipid profile” consists of 2 subcomponents and “Lipids” 

consists of 4 subcomponents. Manual inspection of the subcomponents reveals that the non-

UMLS match of “ldlp” with “Lipids” is the better match. (See section 5.8 for another discussion 

of this example.) 

 



66  

Generally, most non-UMLS matches are performed because no matching UMLS concepts could 

be identified to instantiate the UMLS link for the pertinent nodes. In the experimental setup, this 

situation was mimicked by creating network configurations where only leaf nodes were 

instantiated with UMLS links. This tested the performance of the context-sensitive algorithms 

more rigorously and allowed a direct comparison with matches utilizing UMLS terminology. 

 

Evaluation of the matches in the networks where UMLS links were not fully instantiated shows 

very few cases where they differed from the matches in the UMLS fully instantiated networks. 

These cases from Hospital A are shown in Table 2. 

 

Concept Node match (networks with UMLS 
links fully instantiated) 

Node match (networks with only leaf 
nodes UMLS links) 

Bacteriology Culture Bacteriology Culture Bacteriology  
Bacteriology Labs*   
cbc*  cbca  
cbca* long1 
cbcd*   

CBC  

long1   
ldlp*  ldlp Lipid profile  
 Chemistry Labs 
bmauto  bmauto  
iepu  iepu 

Proteins  

tp*   
bmaut2  bmaut2 Virology  
Virology Labs*   
cbca  cbca 
difa*  difa 
diff*   

WBC differential  

WBC differential count*  
 
Table 2. Comparison of matches in networks fully instantiated with UMLS links vs. networks in which only leaf nodes 
had UMLS links. Concepts marked with a star (*) indicate a UMLS terminology match. 
 

Direct matches are produced when the local target concept is also “found” in the remote 

database. Importantly, the lack of a direct match implies that the concept does not exist in the 

remote database. To evaluate this proposition, all the nodes that did not have direct matches were 

manually inspected for both hospitals. With the exception of attribute nodes (i.e. nodes for which 

the sole relationship is “attribute-of”), none of these remaining concepts could be identified in 



67  

the other remote network. a  Therefore, the lack of a direct match has 100% negative predictive 

value for the existence of a concept in the remote network (with the exception of attribute 

nodes). This characteristic enables the automatic identification of concept disparities between 

databases, which may play an important role in data integration efforts such as the creation of a 

data repository. 

  
The corollary proposition, that direct matches identify all concepts that exist in both databases, is 

true with two caveats.  

 

The first caveat is that “terminological equivalence” is not the same as “semantic equivalence” 

within this system. In MEDIATE, semantic equivalence implies some degree of commonality in 

the semantic context of the two nodes. In particular, there must be some information content, as 

indicated by matched subcomponents, that both nodes have in common. For example, the fact 

that “WBC differential” directly matches with “difa” implies that both nodes have 

subcomponents that are equivalent (e.g. “PMN” = “neutrophils”, “Bands” = “band”, 

“Monocytes” = “mono”, etc.)b. 

 

Referring again to Table 2, there are some a few concepts in which the UMLS matches (which 

correspond to terminological equivalence) are not found when the networks are not fully 

instantiated with UMLS links. For example, the match between “Virology” and “Virology Labs” 

is not found. Closer analysis reveals that although the two concepts are terminologically 

equivalent, they have absolutely zero commonality in the data that they contain (as represented 

by their respective subcomponents). This reflects in a quality score of 0 for this match. In cases 

such as the “CBC” concept, some UMLS matches are not discovered because the matching 

algorithms produced more optimal matches. Thus, “cbca” was found because it is a better match 

than “cbcd” or “cbc” for the “CBC” concept. 

 

                                                
a Examples of attributes that were found in both databases: “Test name” and “Test name”, “Test result” and “Result 
value”, and “Result units” and “Units”. 
b To prevent this from becoming a circular argument, semantic equivalence is grounded at the level of the leaf nodes 
where the lack of a sub-hierarchy forces the equivalence inference to be based the terminological equivalence of the 
UMLS links. 
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The second caveat involves the issue of how semantic equivalence relates to real world 

practicality. The fact that two concepts are “semantically equivalent” by computation does not 

necessarily correspond directly with “clinical equivalence”. For example, the direct match 

between Hospital B concept “newa” and Hospital A concept “Chemistry” indicates a high degree 

of overlap, but the clinical equivalence of this match remains an open question.a Manual 

inspection of the direct matches, however, reveals that the majority of matches have clinical 

equivalence in addition to semantic equivalence. 

 

Overall, the experimental results support the assertion that MEDIATE enables automated 

identification of semantically equivalent concepts, bearing in mind the previously discussed 

caveats. Detailed quantitative results and further analysis are presented in the following sections. 

5.3 Matching Percentages 

The results from the sixteen concept matching experiments for Hospital A are displayed in Table 

3. There were a total of 101 nodes in the semantic network representing the database from 

Hospital A. The sixteen matching runs are the result of applying the matching process to every 

cross-combination of network configuration from Hospital A and Hospital B (as explained 

previously in sections 4.2 and 4.4). 

 
There is surprisingly little variation in the percentage of nodes matched throughout the sixteen 

experimental runs. As expected, there were more UMLS matches in the experiment involving 

full instantiation of UMLS links in networks from both Hospital A and Hospital B (run #1). 

Other than that, the percentage of matches remained unchanged throughout the matching 

experiments. 

 
Similar results can be seen for the 353 nodes in the semantic network from Hospital B, shown in 

Table 4. In run #1, there is the expected rise in the percentage of UMLS matches due to the fact 

that both networks are instantiated with UMLS links to the fullest extent possible.  Otherwise, 

there is essentially no variation between the sixteen different network configurations. 

                                                
a Without access to the database designer, the name “newa” remains undecipherable at this time. 
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Match Run 

Direct 
Matched 

UMLS 
Matched 

Non-UMLS 
Matched 

Generalized 
Matched 

 
Unmatched 

#1: 1 x A 68 (67.0%) 54 (53.0%) 14 (14.0%) 19 (19.0%) 14 (14.0%) 
#2: 1 x B 68 (67.0%) 46 (46.0%) 22 (22.0%) 19 (19.0%) 14 (14.0%) 
#3: 1 x C 68 (67.0%) 46 (46.0%) 22 (22.0%) 19 (19.0%) 14 (14.0%) 
#4: 1 x D 68 (67.0%) 46 (46.0%) 22 (22.0%) 19 (19.0%) 14 (14.0%) 
#5: 2 x A 68 (67.0%) 46 (46.0%) 22 (22.0%) 19 (19.0%) 14 (14.0%) 
#6: 2 x B 68 (67.0%) 46 (46.0%) 22 (22.0%) 19 (19.0%) 14 (14.0%) 
#7: 2 x C 68 (67.0%) 46 (46.0%) 22 (22.0%) 19 (19.0%) 14 (14.0%) 
#8: 2 x D 68 (67.0%) 46 (46.0%) 22 (22.0%) 19 (19.0%) 14 (14.0%) 
#9: 3 x A 68 (67.0%) 46 (46.0%) 22 (22.0%) 19 (19.0%) 14 (14.0%) 
#10: 3 x B 68 (67.0%) 46 (46.0%) 22 (22.0%) 19 (19.0%) 14 (14.0%) 
#11: 3 x C 68 (67.0%) 46 (46.0%) 22 (22.0%) 19 (19.0%) 14 (14.0%) 
#12: 3 x D 68 (67.0%) 46 (46.0%) 22 (22.0%) 19 (19.0%) 14 (14.0%) 
#13: 4 x A 68 (67.0%) 46 (46.0%) 22 (22.0%) 19 (19.0%) 14 (14.0%) 
#14: 4 x B 68 (67.0%) 46 (46.0%) 22 (22.0%) 19 (19.0%) 14 (14.0%) 
#15: 4 x C 68 (67.0%) 46 (46.0%) 22 (22.0%) 19 (19.0%) 14 (14.0%) 
#16: 4 x D 68 (67.0%) 46 (46.0%) 22 (22.0%) 19 (19.0%) 14 (14.0%) 
 
Table 3. Results for Hospital A concept matching experiments. Directly matched nodes are comprised of UMLS 
matched and non-UMLS matched nodes (Direct = UMLS + non-UMLS). Total matches are comprised of Direct and 
Generalized matches (Total nodes = Direct + Generalized + Unmatched). Legend for Matching Run network 
configurations: Hospital A => 1: base network, 2: UMLS links only on leaf nodes, 3: subset/superset relationships 
excluded, and 4: subclass/superclass relationships excluded. Hospital B => A: base network, B: UMLS links only on 
leaf nodes, C: subset/superset relationships excluded, and D: subclass/superclass relationships excluded.  
 
 
Match Run 

Direct 
Matched 

UMLS 
Matched 

Non-UMLS 
Matched 

Generalized 
Matched 

 
Unmatched 

#1: 1 x A 88 (25.0%) 64 (18.0%) 24 (7.0%) 148 (42.0%) 117 (33.0%) 
#2: 1 x B 87 (25.0%) 49 (14.0%) 38 (11.0%) 149 (42.0%) 117 (33.0%) 
#3: 1 x C 87 (25.0%) 49 (14.0%) 38 (11.0%) 150 (42.0%) 116 (33.0%) 
#4: 1 x D 87 (25.0%) 49 (14.0%) 38 (11.0%) 149 (42.0%) 117 (33.0%) 
#5: 2 x A 87 (25.0%) 49 (14.0%) 38 (11.0%) 149 (42.0%) 117 (33.0%) 
#6: 2 x B 87 (25.0%) 49 (14.0%) 38 (11.0%) 149 (42.0%) 117 (33.0%) 
#7: 2 x C 87 (25.0%) 49 (14.0%) 38 (11.0%) 150 (42.0%) 116 (33.0%) 
#8: 2 x D 87 (25.0%) 49 (14.0%) 38 (11.0%) 149 (42.0%) 117 (33.0%) 
#9: 3 x A 87 (25.0%) 49 (14.0%) 38 (11.0%) 149 (42.0%) 117 (33.0%) 
#10: 3 x B 87 (25.0%) 49 (14.0%) 38 (11.0%) 149 (42.0%) 117 (33.0%) 
#11: 3 x C 87 (25.0%) 49 (14.0%) 38 (11.0%) 150 (42.0%) 116 (33.0%) 
#12: 3 x D 87 (25.0%) 49 (14.0%) 38 (11.0%) 149 (42.0%) 117 (33.0%) 
#13: 4 x A 87 (25.0%) 49 (14.0%) 38 (11.0%) 149 (42.0%) 117 (33.0%) 
#14: 4 x B 87 (25.0%) 49 (14.0%) 38 (11.0%) 149 (42.0%) 117 (33.0%) 
#15: 4 x C 87 (25.0%) 49 (14.0%) 38 (11.0%) 150 (42.0%) 116 (33.0%) 
#16: 4 x D 87 (25.0%) 49 (14.0%) 38 (11.0%) 149 (42.0%) 117 (33.0%) 
 
Table 4. Results for Hospital B concept matching experiments. Format is identical to Table 3. 
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5.4 Match Quality 

The percentage tables offer a rough evaluation of number of nodes that were matched, but do not 

contain information about the quality of the node matches that were made. The “score” portion 

of the match quality metric is a distillation of the match appropriateness between two nodes. 

Tables 5 and 6 show the average quality scores for the matches that were obtained for each of the 

network configurations. 

 
 
Match Run 

Direct 
Matched 

UMLS 
Matched 

Non-UMLS 
Matched 

Generalized 
Matched 

Total 
Matches 

#1: 1 x A 80.06 92.39 32.50 0.00 53.90 
#2 - #16 80.06 100.00 38.36 0.00 53.90 
 
Table 5. Average quality scores for Hospital A concept matching experiments. Range of scores is 0 to 100. 
Legend for Matching Run network configurations: Hospital A => 1: base network. Hospital B => A: base network. The 
quality score for runs 2 through 16 did not vary, and are therefore presented as one row. 
 
The lower average quality score for UMLS matches in run #1 arises from the fact that many non-

leaf nodes in that particular network configuration have UMLS matches. Since quality scores are 

dependent upon variations in the sub-hierarchy, UMLS leaf matches are assigned the maximum 

score by default, whereas non-leaf matches will almost always have a slightly lower score. For 

example, the leaf node “Reticulocytes” from Hospital A is a UMLS match with the leaf node 

“ret” from Hospital B, with a quality score of 100. The non-leaf node “WBC differential”, 

however, is a UMLS match with non-leaf node “difa”, but only has a quality score of 46. 

 

Despite the lower average quality scores for UMLS and non-UMLS matches in run #1 compared 

to the other matching runs, the overall quality score of 53.90 remains the same as for all the other 

experimental matching runs. This reflects the fact that there are a significantly higher proportion 

of UMLS matches in run #1 (see table 3), which balances the lower individual scores.  

 

For Hospital B, run #1 again illustrates the lower average quality score for UMLS matches. In 

addition, non-UMLS matches also demonstrate a markedly lower average quality score. Again, 

the total quality score for runs #1 is the same as for runs #2 - #4 because of the greater 

percentage of UMLS matches in run #1 (see Table 4). 
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Match Run 

Direct 
Matched 

UMLS 
Matched 

Non-UMLS 
Matched 

Generalized 
Matched 

Total 
Matches 

#1: 1 x A 69.90 85.44 28.46 0.00 17.42 
#2: 1 x B 70.70 100.00 32.92 0.00 17.42 
#3: 1 x C 70.69 100.00 32.89 0.00 17.42 
#4: 1 x D 70.69 100.00 32.89 0.00 17.42 
#5: 2 x A 70.97 100.00 33.53 0.00 17.49 
#6: 2 x B 70.97 100.00 33.53 0.00 17.49 
#7: 2 x C 70.95 100.00 33.50 0.00 17.49 
#8: 2 x D 70.95 100.00 33.50 0.00 17.49 
#9: 3 x A 70.97 100.00 33.53 0.00 17.49 
#10: 3 x B 70.97 100.00 33.53 0.00 17.49 
#11: 3 x C 70.95 100.00 33.50 0.00 17.49 
#12: 3 x D 70.95 100.00 33.50 0.00 17.49 
#13: 4 x A 70.97 100.00 33.53 0.00 17.49 
#14: 4 x B 70.97 100.00 33.53 0.00 17.49 
#15: 4 x C 70.95 100.00 33.50 0.00 17.49 
#16: 4 x D 70.95 100.00 33.50 0.00 17.49 
 
Table 6. Average quality scores for Hospital B concept matching experiments. There are minor fluctuations in 
the scores through the various network configurations. 
 
Legend for Matching Run network configurations: Hospital A => 1: base network, 2: UMLS links only on leaf nodes, 3: 
subset/superset relationships excluded, and 4: subclass/superclass relationships excluded. Hospital B => A: base 
network, B: UMLS links only on leaf nodes, C: subset/superset relationships excluded, and D: subclass/superclass 
relationships excluded. 
 
Lower average quality scores are seen in runs #1 - #4. These scores result from the difference in 

a single concept match. For the Hospital B concept “iepu”, runs #1 - #4 had Hospital A concept 

“Chemistry” as the best overall match with a quality score of 6. For the remaining runs #5 - #16, 

the best overall match was with Hospital A concept “Proteins”, which had a quality score of 29. 

This result most likely represents an experimental artifact of the network configuration used for 

Hospital A in runs #1 - #4, in which a relationship link was inadvertently altered compared to the 

networks used for the remaining runs.a   

 

                                                
a There is no computational reason to suspect that fully instantiating the UMLS links for Hospital A would 
otherwise produce this pattern of matching, since the corresponding networks for Hospital B have varying degrees 
of UMLS link instantiation in runs #1 - #4, and thus would be expected to produce varying match results if the 
UMLS link was the critical influence. 
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For both hospitals, generalized matches resulted in a quality score of zero. In retrospect, this is 

not surprising because generalized matches only occur when the system is unable to match the 

target node through any other means. This implies a lack of network “overlap” for the target 

node, and the lack of commonality in the local neighborhood of the node reflects in the quality 

score. 

5.5 Unmatched Nodes 

Unmatched nodes in both networks occurred in two categories. The first category consists of 

nodes that are attributes of other concepts. These nodes are connected to other nodes solely by 

the “attributeOf” relationship. Examples of these nodes include: Accession number, Lower 

Reference Range, Patient ID, Result status, and Result value. 

 

As explained earlier in section 3.1.2.1.6, the attribute relationship is orthogonal to other 

relationships within this system. Therefore, the “attribute-of” relationship is not utilized in any of 

the concept matching algorithms, and the consequent result is that attributes are not matched. 

 

The other category consists of disconnected nodes. These nodes were created at some point 

during construction of the semantic networks, but were not connected to the main network by 

any relationship links. This happened either through oversight, or because it was not possible to 

interpret the clinical meaning of the node from the hospitals’ abbreviated name. Examples of 

these nodes include: hemogram, afp, ahbs, aldo, ana, apad, apai, b12, b2m, bhgbe, and biopsy. 

5.6 Clinical Relevance 

The quality scores give a “structural” measure of how well two nodes match, based upon the 

similarity between their network sub-hierarchies. To determine the clinical relevance of the node 

matches, however, requires detailed human examination of the actual matches. The following 

section provides a summary of pertinent results, while the complete list of matches is provided in 

Appendix A. 
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5.6.1 Direct matches 

5.6.1.1 UMLS leaf matches 

UMLS matches of leaf nodes were straightforward and unexciting. For semantic networks from 

both Hospital A and Hospital B, all the UMLS matches of leaf nodes were clinically accurate 

and reflected the matching of synonymous concepts between the hospitals. There were a few 

cases in which there were multiple leaf nodes in the Hospital B network, which were 

semantically identical (e.g. neutrophils and poly). Under these circumstances, the matching 

algorithms appropriately matched the node from Hospital A (e.g. PMNa) with all of the 

synonymous nodes from Hospital B.  

5.6.1.2 UMLS non-leaf matches 

Non-leaf node matches were more interesting because there was more inherent semantic 

ambiguity about the concepts being matched.  

 

In cases where there was a 1-to-1 node match, all the node matches were clinically accurate and 

relevant. For example, the node “DIC screen” from Hospital A matched appropriately with the 

node “dic” from Hospital B. The quality score for this match was 50, indicating differences 

between the components which were contained in the test panel. 

 

In some cases, one node matched with multiple nodes from the other hospital’s semantic network 

through the UMLS link. For example, the node “WBC differential” from Hospital A matched 

nodes “difa”, “diff”, and “WBC differential count” from Hospital B. All three nodes from 

Hospital B represent variations of differential counts for white blood cells, and none are more 

“correct” than the others: they merely contain different component tests. In addition, the Hospital 

B nodes share similar UMLS links because no UMLS concepts differentiate between them. 

Choosing the best match for the Hospital A node involves choosing the node with the highest 

quality score. In this case, matching with “difa” gave the highest quality score of 46, vs. 35 for 

“diff” and 32 for “WBC differential count”. 

 

                                                
a PMN = polymorphonuclear white cell, synonymous with neutrophil and poly (abbreviation of PMN). 
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It is not always true, however, that the UMLS match for a non-leaf node presents the highest 

quality match. The node “Bacteriology” from Hospital A matches Hospital B node “Bacteriology 

Labs” with a quality score of 25. Although this is a UMLS match, the quality score is lower than 

the non-UMLS match with Hospital B node “Bacteriology Culture”, which has a score of 27, 

indicating a higher degree of overlap between the concepts. 

5.6.1.3 Non-UMLS matches 

If nodes are matched through the primary matching process (phases 1 and 2 in section 3.3.1.1) 

but do not match through their UMLS links, then they are “direct Non-UMLS” matches. These 

node matches rely upon the interaction between the matching algorithms and the semantic 

context rather than the common terminology provided by the UMLS links. The utility of this 

type of matching was particularly tested by the network configurations in matching runs #6 - 

#16, where only leaf nodes in both hospital networks had UMLS links instantiated. 

 

Many direct non-UMLS matches accurately matched synonymous medical concepts. Examples 

of these matches include: “Chem 7” = “basic7”, “Blood gas” = “bg”, “Liver Function Tests” = 

“hfp”, and “Lipid profile” = “ldlp”a.  

 

Importantly, these matches were found despite differences in the composition of the test 

components. For example, “Liver Function Tests” is composed of the concepts “SGOT”, 

“SGPT”, and “bilirubin”, while “hfp” is composed of the concepts “sgot”, “sgpt”, “bili, total”, 

“bili, direct”, “tp”, “alb”, and “ap”.b Overall, 32% of the direct non-UMLS matches for Hospital 

A produced synonymous concepts, and 16% of the direct non-UMLS matches for Hospital B 

were synonymous. 

 

Along with clinical accuracy and relevance, these matches also provided some interesting 

insights into the clinical usage of the tests. The “Chem 7” profile of serum chemistry 

measurements is a fairly standard panel of seven tests used in medical centers throughout the 

world. Yet the “basic7” panel from Hospital B actually contains 8 tests! The extra laboratory test 

                                                
a ldlp = low density lipoprotein profile (interpretation by investigator).  
b sgot = serum glutamic oxaloacetic transaminase, sgpt = serum glutamic pyruvic transaminase, tp = total protein, 
alb = albumin, ap = alkaline phosphatase (tp, alb, and ap interpretation by investigator). 
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is “ca” (calcium), which is a metabolite that is often irregular in patients with oncological 

disease. 

 

There were no matches in which the nodes were completely unrelated on a clinical basis. Instead, 

the remaining matches had variable degrees of clinical relevance. In addition, there were no 

cases in which a more clinically “appropriate” match was apparent. 

 

The degree of clinical relevance in the non-synonymous matches is more difficult to evaluate, 

although the quality score gives some idea of the “overlap” between concepts as measured by the 

similarity between sub-hierarchies. On the lower end of clinical relevance, some matched 

concepts fall into the same general “category” of laboratory test. For example, Hospital B node 

“g6p”a matches with Hospital A node “CBC”. The nodes are matched because both concepts 

contain the subcomponent “hemoglobin”. Clinically, “g6p” tests would be used to screen for 

anemia secondary to a deficiency in the enzyme G6PD, and a CBC gives information about 

various blood components, among which are red blood cell parameters which are important in 

the evaluation of anemia. 

 

As the network configurations changed through the sixteen matching runs, only a few of the non-

leaf node matches exhibited minor variations. For example, Hospital B node “comp12” was 

matched with two different Hospital A nodes (“Chem 7” and “Chemistry”) depending on the 

network configurations. As reflected by the quantitative results shown previously, the vast 

majority of matches were stable through all the different network configurations. For the few 

matches that exhibited variation, all of the variations were “reasonable” choices as judged by the 

component contents of the tests. 

 

One of the most difficult circumstances to judge clinical relevance occurs when a concept has no 

corresponding clinical concept in the other hospital database or in the UMLS Metathesaurus. In 

other words, the semantic concept is nonexistent in the universe of the other network. In this 

investigation, this arose more commonly with concepts from Hospital B because of the large 

variety of oncology specific test panels present in the database. There are a large number of 

                                                
a g6p = glucose 6-phosphate dehydrogenase profile (interpretation by investigator). 
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variations on hematological tests, and also several panels of tests used for bone marrow 

evaluations and bone marrow transplant profiling.  

 

Generally, this type of node match showed useful areas of clinical overlap, but failed to capture 

the “essence” of the originating concept. For example, Hospital B node “bma”a matched with 

Hospital A node “WBC differential”. In some ways, this is a very good match because many of 

the component tests are identical. The purpose of a bone marrow aspirate is to visualize the types 

of cells that are present in the marrow, and the WBC differential performs essentially the same 

task on circulating white blood cells. The crucial difference, however, is that the bone marrow 

aspirate panel contains components for evaluation of red blood cell elements as well as a 

comment field that can be used to evaluate other cell types, including tumor cells that have 

metastasized to the bone marrow. Although the difference between the component tests is small, 

the clinical “meaning” of a bone marrow aspirate is not totally captured by the WBC differential 

count. 

 

Other matches for nonexistent semantic concepts proved even more problematic. The bone 

marrow transplant test panels from Hospital B often combine elements of several major test 

categories (e.g. “higher” level concepts such as hematology, microbiology, and chemistry). None 

of the concepts from Hospital A, however, inherit or combine elements from multiple higher-

level concepts in the same manner. As a result, these matches generally pair the Hospital B bone 

marrow test with only one of the higher-level Hospital A concepts and exclude the other higher-

level concepts. For example, the bone marrow test panel “bmallo” consists of 43 component tests 

contained within the sub-hierarchies of the concepts hematology, chemistry, and virology. This 

node matched with the node “Hematology” from Hospital A (because of the greater overlap with 

this concept) and excluded any concepts from the “Chemistry” and “Virology” sub-hierarchies. 

 

In general, the clinical relevance of matches for concepts that are nonexistent in the other 

database is open to question. If a match is made at all, it implies an overlap between the concepts 

which MEDIATE exploits in order to define the match. Human clinical judgment, however, must 

still prevail when evaluating the usefulness of the overlap found in such matches.  

                                                
a bma = bone marrow aspirate (interpretation by investigator). 
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5.6.2 Generalized matches 

Generalized matches occur when no direct match is found during the initial phases of the 

matching process. MEDIATE subsequently attempts to match a higher-level concept that might 

encompass the concept that is being matched. 

 

One gauge of utility is the number of generalized matches that correspond to the root concept of 

“laboratory test”. This is a default match that does not contain any useful information, but very 

few matches fell into this category. For Hospital A, none of the nodes were generalized to the 

Hospital B node “Lab Test”. For Hospital B, however, nine nodes were generalized to Hospital 

A node “Laboratory Test”.a 

 

Overall, clinical relevance is difficult to evaluate for generalized matches, since by definition the 

matching concept is nonexistent in the other database. This is reflected in the quality scores of 

zero for all generalized matches. Nevertheless, some matches clearly have the potential to be 

clinically useful. For example, Hospital B node “plasma cell” generalized to Hospital A nodes 

“CBC” and “Hematology”. It is easy to envision that a clinician looking for information on 

plasma cells might find information about complete blood counts or hematology tests useful. 

 

At the other end of the spectrum, it is not surprising to find that some generalized matches have 

little clinical relevance. Some of these matches involve concepts that cross sub-hierarchy 

boundaries, such as the bone marrow tests from Hospital B. But other matches that do not cross 

sub-hierarchy boundaries are still clinically irrelevant. For example, the Hospital B node “herpes 

ii antibody” matched with the Hospital A node “Chem 7”. This match occurred because there are 

some matches between “Chem 7” and higher-level concepts in Hospital B that contain “herpes ii 

antibody” as a component. Clinically, however, there is no foreseeable circumstance under 

which a clinician searching for herpes antibody values would be satisfied by serum chemistries 

from a “Chem 7” panel. 

 

                                                
a Nodes generalized to Hospital A node “Laboratory Test”: balld3, bmall3, bmaut3, hbc, s/n ratio, samples to cell 
bank, serum storage, ua, and Virology Labs. 
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As is the case with direct matches, there is no way within this system to quantify “clinical 

relevance”, and the final evaluation of clinical utility must still be rendered by human judgment. 

5.7 Leaf Matches 

Leaf matches were performed for only one representative network configuration, and the results 

are shown in Tables 7 and 8. The network configuration used for these leaf matches corresponds 

to run #6 from the previous matching experiments, where all relationships are instantiated but 

only the leaf nodes have UMLS links. Detailed leaf node matches are shown in Appendix B. 
 

Node Score Leaves 
matched 

Leaves 
Unmatched 

Bacteriology 75 3 1 
Blood gas 100 5 0 
CBC 100 12 0 
Chem 7 86 6 1 
Chemistry 78 25 7 
Cultures 100 3 0 
DIC Screen 75 3 1 
Electrolytes 58 7 5 
Enzymes 60 3 2 
Gram 100 1 0 
Hematology 85 17 3 
Laboratory 
test 

74 46 16 

Node Score Leaves 
matched 

Leaves 
Unmatched 

Lipid profile 100 2 0 
Lipids 100 4 0 
Liver Function 
Tests 

100 3 0 

Microbiology 40 4 6 
Other 
Chemistry 

100 1 0 

Proteins 100 3 0 
Serum lytes 100 6 0 
Stains 50 1 1 
Virology 17 1 5 
WBC 
differential 

100 8 0 

 
Table 7. Hospital A Leaf Matches. Node: target node. Score: leaf match quality score = percentage of leaves 
matched. Leaves matched: number of leaves matched. Leaves unmatched: number of leaves unmatched. 
 
 
The quality scores are the most pertinent parameter presented in the tables. Leaf matches are 

scored by the percentage of leaves that are matched for a given node. Thus, the score is a direct 

reflection of the amount of information retrievable from the remote database for an aggregate 

node. For leaf matches, the match quality score does not reflect “semantic equivalence” or the 

degree to which the target concept overlaps with a matching concept in a remote network. 

Instead, the quality score is a direct measure of the retrievable “information content” for the 

node. If the leaf match quality score is 100 (indicating all the leaves are matched), then the full 

information content of the node is available for retrieval. 



79  

Node Score Leaves 
matched 

Leaves 
Unmatched 

Bacteriology 
Culture 

30 3 7 

Bacteriology 
Labs 

27 3 8 

balld4 43 12 16 
balld5 80 16 4 
basic7 88 7 1 
bg 33 5 10 
bili 50 1 1 
Blood Counts 33 14 28 
BM Transplant 
Tests 

38 33 55 

bma 11 1 8 
bmall2 13 1 7 
bmall4 37 14 24 
bmall5 79 15 4 
bmallo 51 22 21 
bmaut2 20 1 4 
bmauto 51 25 24 
cbc 50 4 4 
cbca 35 13 24 
cbcd 32 13 28 
Chemistry 47 27 30 

Node Score Leaves 
matched 

Leaves 
Unmatched 

Labs 
comp12 87 13 2 
dic 80 4 1 
difa 55 6 5 
diff 40 6 9 
Electrolytes 86 6 1 
fmmbmt 67 2 1 
frap 50 1 1 
g6p 50 1 1 
Hematology 
Labs 

30 18 42 

hfp 86 6 1 
iepu 33 2 4 
iglb 33 1 2 
Lab Test 27 49 130 
ldlp 80 4 1 
long1 38 12 20 
lyte 75 3 1 
newa 61 11 7 
WBC 
differential 
count 

41 7 10 

 
Table 8. Hospital B Leaf Matches. Node: target node. Score: leaf match quality score = percentage of leaves 
matched. Leaves matched: number of leaves matched. Leaves unmatched: number of leaves unmatched. 
 
 
Because of this difference between semantic equivalence and information content, leaf matches 

are complementary to concept matches in terms of their clinical relevance. Some nodes may 

have concept matches that have low clinical relevance, yet have leaf matches that have high 

information content and therefore a higher clinical relevance. This is particularly evident for 

concepts with leaves that are representative of several different categories in the remote network, 

such as the “BM Transplant Tests” from Hospital B. For example, the “bmallo” node from 

Hospital B has a concept match with the “Hematology” node from Hospital A, yet it has leaves 

which fit into the “Chemistry” sub-hierarchy. The leaf match for “bmallo” shows approximately 

51% of the leaves matched, and a detailed examination of the matches shows nodes for both 

hematological and blood chemistry tests appropriately matched.a 

                                                
a Matched leaf nodes for “bmallo”. Node(matching node): lymphs(Lymphs); hemoglobin(Hemoglobin); 
mono(Monocytes); wbc count(WBC); bili, total(Bilirubin); na(Serum sodium); ap(Alkaline phosphatase); 
eo(Eosinophils); ret(Reticulocytes); neutrophils(PMN); alb(Albumin); bun(BUN); plt(Platelet count); 
baso(Basophils); sgot(SGOT); cret(Creatinine); igg(IgG); sgpt(SGPT); k(Serum potassium); 
hematocrit(Hematocrit); blast(Blast); cl(Serum chloride). 
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Conversely, there are times when a concept match has a higher clinical relevance than the leaf 

match even if the leaf match quality score is 100. This is easily seen when there is true semantic 

equivalence between two nodes, but one of the nodes has a more extensive sub-hierarchy. For 

example, the “Liver Function Tests” node from Hospital A matches all of its leaves in a leaf 

match, but only has 3 leaves in its sub-hierarchy. The concept match “hfp” from Hospital B 

contains 7 leaves in its sub-hierarchy (which subsume the 3 leaves from “Liver Function Tests”), 

and represents a better match than the leaf match. 

 

Like concept matches, the “clinical relevance” is only partially captured by the quality score. 

Thus, the utility of the leaf match vs. the concept match is still a judgment best left to the human 

user. 

5.8 Matching asymmetry 

Matching is not necessarily a symmetrical operation. For example, Hospital node “Lipid profile” 

is matched with Hospital B node “ldlp”, but “ldlp” is matched with Hospital A node “Lipids”, 

which is a more general concept than “Lipid profile”. In this particular case, the match “ldlp” => 

“Lipids” occurs because “ldlp” shares more subcomponents with “Lipids” than it does with 

“Lipid profile”, as illustrated in Table 9. In other words, “ldlp” is more semantically equivalent 

to “Lipids” than it is to “Lipid profile”. 

 

Matching symmetry can only be assured if there is a 1-to-1 relationship between semantically 

equivalent nodes in different networks. If there is a 1-to-many or many-to-many relationship, 

then MEDIATE attempts to find the best match in both directions and asymmetry may result. 

 

Hospital Node Subcomponent nodes 
A Lipid 

profile 
Cholesterol, Triglycerides 

A Lipids Cholesterol, Triglycerides, HDL, LDL 
B ldlp cholesterol, triglyeride, high dens. lipoprotein, ldl-cholesterol, very low 

density lipoprotein 
 
Table 9. Subcomponents of lipid related nodes in semantic network representations. 
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6 DISCUSSION 

6.1 Knowledge Representation 

The basic problem of data exchange is one of knowledge representation. Within the domain of 

medical information, many different knowledge representation schemes have been investigated 

to facilitate the exchange of electronically stored data, although the most common 

representations are still those of organized free text and rigidly structured databases. MEDIATE 

attempts to leverage the ubiquitous presence and controlled structure of medical databases by 

tying those databases into the elements of a semantic network. The constraints of a formal 

network structure and the addition of procedural knowledge in the form of matching algorithms 

provide the basis for achieving the functionality provided by MEDIATE. 

 

MEDIATE’s knowledge representation system targets the “content” level of medical databases. 

At this point, no attempt is made to represent medical care processes or general medical 

knowledge that is not stored in the database. This level of representation reflects the goal of 

automatically identifying equivalent information content for exchange. Consequently, the 

complexity of more general knowledge representation systems can be avoided, the representation 

is easily understandable, and computation may take place more efficiently. 

6.1.1 Semantic Networks 

The choice of a semantic network as the basis for knowledge representation within MEDIATE 

was dictated by the design goals. The semantic network provides the power and the flexibility 

required to represent the myriad possible concepts of native databases, and the network structure 

provides an intuitive interface for a user to see and understand the native database. 

 

The main reason for utilizing a semantic network data model is to capture more of the semantic 

content of an electronic data source. This semantic content may be explicit in the declaration of 

data elements, or it may be implicit in hidden relationships between the elements. Semantic 

networks help capture semantic content through the following mechanisms. [17, 81] 
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A semantic network makes relationships between concepts explicit. Since there are no 

restrictions on these relationships, they can be customized to provide the exact semantics 

required by the user. This contrasts with the “semantic overloading” that occurs frequently with 

relational databases, where multiple relationships between concepts are implicitly and 

imprecisely embodied in the table structures. These implicit relationships are not only hard to 

interpret, they are also difficult to communicate between information systems. 

 

In the typical relational database schema, conceptual relationships must be inferred from the 

table structure and names. This may be problematic if the relationships are not apparent from 

casual inspection. In the database for Hospital B, for example, there are many examples of 

duplicated test result fields.a Since there is no way to indicate the synonymy relationship in the 

standard relational schema, these duplications will need to be documented either separately from 

the system or by creating an extraneous and complex “synonymy” table. This complexity differs 

markedly from the ease with which a “same-as” relationship can be added to a semantic network. 

 

Semantic networks can also increase the separation between logical and physical components of 

information. This allows the system designer to explicitly delineate logical concepts and 

processes separately from the physical components with which they interact. Within the 

laboratory test domain used for this investigation, this capability is not yet fully exploited. It is 

easy to envision, however, the manner in which the current experimental system can be extended 

by representing the process by which certain laboratory tests are performed. For example, the 

sequence of steps used to type and cross-match a unit of blood may affect the risk of a 

transfusion reaction or the length of time before the unit is expired. Explicitly representing these 

steps within the semantic network can provide information about the blood unit that is separate 

from the information provided by the type and cross-match result. 

 

The flexibility of a semantic network representation is crucial to capturing the variety and 

richness of native databases. The adaptability of the network structure enables the 

implementation of this representation over virtually any database structure. Compared to typical 

                                                
a Duplicate data fields: trig = triglycerides, ap = alk phosphatase, abs neutrophil = abs polys, promyel = promyelo, 
and poly = neutrophil. 
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database schemas, a higher-level of fidelity to the granularity and conceptual structure of the data 

is possible. For example, hematology laboratories in large tertiary care hospitals may be 

subdivided into functional units that provide cell typing and microscopic examinations, clotting 

factor analysis, and functional tests on blood elements (e.g. platelet aggregation tests). 

Representing such a system is clearly a different task than representing the simple hematology 

laboratory of a community hospital, yet a semantic network easily accommodates both systems. 

 

The ability to create “layers” of concepts within a network representation provides a natural 

framework for abstraction. On a practical level, concepts within the network can be grouped 

together for comparison purposes or to perform computation. Using one of the laboratory test 

networks in this investigation, it would be trivial to define an abstract concept named “expensive 

lab tests” and then assign data elements to be components of the new group. This abstract 

concept could then be used to calculate patient care costs and resource utilization. 

 

As a user interface, a semantic network data model is easily understood and easy to navigate 

using a point-and-click interface such as the one implemented in MEDIATE. Relationships 

between concepts are clearly delineated, and it is easy to view the composition of aggregate 

concepts. The meta-information provided by the network representation is much richer than the 

typical relational database schemas. This allows users who are unfamiliar with the native 

database to quickly locate the data they seek. During informal presentations of the MEDIATE 

system to physicians, all the users easily comprehended the data model and successfully 

navigated to the data that they wished to view without any trouble. 

 

The flexibility of a semantic network, however, needs to be constrained in order for meaningful 

comparisons to be made between different database representations. The relationships currently 

implemented within MEDIATE form an initial set of semantically useful relationships which 

allow adequate modeling of medical laboratory tests while limiting the possible network 

configurations enough to perform useful comparisons. The properties of the chosen relationships 

subsequently constrain the manner in which the semantic networks can be traversed, allowing 

repeated computations to be performed on networks representing different underlying native 

databases. 
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6.1.2 Network Nodes and System Functionality 

Nodes within the MEDIATE semantic network function as more than just placeholders for 

concepts. The data structure of the node is designed to accomplish multiple purposes, including: 

1) semantic identification, 2) facilitation of data interpretation, and 3) linkage of the concept with 

the underlying native database.  

 

Semantic identification of the node concept is represented in several different ways. The basic 

semantic information about the node is contained within the “node name” and “node definition”. 

The node name may sometimes be less useful, since it usually reflects the native database 

terminology and can be somewhat cryptic (as illustrated by the test names from the Hospital B 

database). The node definition, however, is a plain text message designed to enable an 

unambiguous description of the pertinent concept. This should be interpretable by any user. 

 

“UMLS links” and “relationship links” embody the other ways in which a node contains 

semantic identification. By associating the concept with a standardized vocabulary through the 

UMLS links, terminology-associated semantic ambiguity is reduced, although it is not 

eliminated. It is the relationship links, however, that form the lynchpin of the representation 

system. The relationship associations with other concepts contain the crucial semantic 

information that allows the concept matching to take place. 

 

It is not within the scope of this investigation to address the problem of interpreting the raw 

information contained in native databases. Nevertheless, some accommodation must be made in 

order to give MEDIATE practical functionality. The “format” data structure has been 

implemented to facilitate data interpretation by providing both semantic and syntactic 

information. As described previously, the two format parameters of “type” and “encoding” allow 

a basic explanation of how to interpret the data retrieved from the native database. Furthermore, 

a simple extension of the format data structure could be used to point to executable code that 

correctly displays or otherwise interprets the raw data. Although this feature is not currently 

implemented, the addition of this functionality is straightforward. 
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The “database link” data structure plays an important role in increasing the practicality of this 

representation system. By implementing a direct hook to the underlying database system, the 

network node creates the essential bridge between the semantic network representation and the 

raw data. Without this bridge, the network representation would merely be an interesting view of 

the data and would not facilitate data retrieval to nearly the same extent. 

 

All of these functions (semantic identification, data interpretation, and database linkage) are tied 

directly into the node structure to create an encompassing “container” for the medical concept. 

Similar to the “self-describing objects” within the TSIMMIS system, the MEDIATE network 

node is self-contained and requires no other data structures to fully describe the concept that it 

encapsulates. [69, 70] 

6.1.3 Network Relationships and Inferences 

The current relationships implemented within MEDIATE support a flexible and descriptive set 

of network configurations. Although the relationships are far from all-inclusive, they are rich 

enough to support the representation of all the medical laboratory test concepts encountered in 

this investigation. 

 

The relationships supported within this system differ from the stereotypical “isa” relationship by 

offering more semantic variety in the association between two concepts. As explained 

previously, the semantics for each implemented relationship is unique. Inheritance of attributes, 

for example, is only associated with the specialization (subclass/superclass) relationship, which 

is the direct analogue to the “isa” relationship. The limitations of the “isa” relationship are 

evident when trying to relate any two concepts that should logically be related by the 

composition (composed-of/component-of) relationship. To say that a serum sodium “isa” Chem 

7 is clearly unreasonable, and serum sodium probably should not inherit all the attributes of 

Chem 7 as the “isa” relationship would mandate. 

 

Support for computation and inference depends upon the nature of the semantic network links. In 

MEDIATE, the relationships support generalization and decomposition in a relatively 

straightforward manner, and these inferences are used in the concept matching algorithms.  
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Strictly speaking, generalization involves traversal of the “subclass-of” links up the hierarchy. 

From a functional viewpoint, however, climbing up the network using any kind of hierarchical 

relationship is a form of generalization (e.g. using “component-of” or “subset-of” relationships). 

The concept matching algorithms subscribe to this functional viewpoint and utilize all the 

hierarchical relationships when generalizing a concept for matching. 

 

Similarly, strict decomposition should only utilize the “composed-of” relationship to descend the 

network hierarchy, but the matching algorithms actually use all the hierarchical relationships 

(e.g. “collection-of” and “superclass-of”) to decompose concepts. 

 

The rationale for using the broader forms of generalization and decomposition grows out of 

uncertainty about network configurations. Although the relationships themselves have clear 

semantics, the association between two concepts may include elements of several different 

relationships. Thus, “electrolytes” could correctly be related to “blood chemistries” through the 

“subset-of”, “subclass-of”, and “component-of” relationships.  

 

There is no practical way of forcing users to choose a given relationship if they are all applicable, 

and instantiating all the possible relationships is somewhat redundant even if it is technically 

correct. These relationship overlaps produce an “intrinsic” form of semantic ambiguity in which 

multiple “correct” network configurations are possible for the exact same concepts. Because of 

this uncertainty, broader forms of inferences that utilize network traversal may be more 

practically useful than the strictly correct inferences. This was the motivation for utilizing all the 

hierarchical relationships during generalization and decomposition within the matching 

algorithms. 

 

Inferences that are supported by the relationship links depend not only upon the semantics of the 

relationship, but also upon some of the basic properties of the relationship (as outlined 

previously in Table 1). The most important of these properties is transitive closure, which 

supports unidirectional traversal across the network using the pertinent relationship. Transitive 

closure and hierarchy are the properties that support the inferences of generalization and 
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decomposition. Other inferences are possible based upon other properties, although they are not 

currently utilized within MEDIATE. For example, the transitive closure and dependency 

properties could be used to generate a list of concepts that must be examined for a change in their 

semantics when a concept is deleted from the system. 

 

The functional distinction between relationships blurs a bit when the considering the differences 

between the specialization (subclass/superclass) and set (subset/superset) relationships. On the 

surface, the semantic distinction is obvious. But from another perspective, set elements can be 

viewed as instantiated instances of classes. This corresponds to the “extensional” notion of a 

class, where the class is defined by the elements that are members of the class.a 

 

Using this viewpoint, subsuming the set relationship within the specialization relationship may 

have little functional impact. Within the experimental setup of the current investigation, there 

was essentially no effect on the matching outcomes when set relationships were excluded from 

the network configurations. Of course, much more data is required before the utility of the set 

relationship can be addressed. 

6.1.4 Procedural Information and Inferences 

Within any knowledge representation system, inferences are performed not only by manipulating 

the data structure, but also by more general computational methods. Within MEDIATE, the 

concept matching algorithms and the quality metric calculations store procedural information 

that provides two forms of inter-network inferences, equivalence and subsumption. 

 

The equivalence inference is a result of the direct matching process, where two concepts in 

different networks are inferred to be semantically equivalent if they are produced as the output of 

a match. This inference creates the foundation for automating the data exchange process between 

heterogeneous databases. 

 

The subsumption inference is a product of the generalized matching process, where a target 

concept in one network is subsumed within the hierarchy of a higher-level concept in another 
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network. In this particular process, the subsumption inference can itself be decomposed into a 

generalization inference followed by an equivalence inference. Overall, the subsumption 

inference adds utility to the data exchange process by finding alternative concepts that may 

encompass the target concept. 

 

Leaf matching provides a complementary pathway for data retrieval by utilizing the 

decomposition and equivalence inferences. By decomposing an aggregate node into its 

constituent concepts and finding the equivalents for those concepts, the leaf match retrieves 

information that is different from either direct or generalized concept matching. Viewing the 

matching computations through the perspective of the inference processes helps delineate the 

differences between the types of matches that are performed. 

 

By modifying the basic inference processes, slightly different results may be obtained. For 

example, if the decomposition process were modified to stop after only one level of 

decomposition (rather than continuing until the leaves of the network are reached), the “leaf 

match” would become a “decomposition match” that may retrieve different information from the 

remote database. 

 

In order to measure the variations produced by changes in the inference processes, a metric must 

be used. The match quality metric currently implemented within MEDIATE essentially measures 

the set “coverage” or overlap between two concepts. The quality metric functions as a proxy for 

the degree of semantic equivalence between two concepts, since there is no direct measurement 

available. Similarly, in the case of a leaf match, the quality score measures the set coverage for 

the target concept itself. In this setting, the quality score functions as a proxy for information 

content, or the “amount” of information that is available for a given concept. 

 

Unfortunately, there is no way to capture “clinical relevance” directly within a metric, since 

clinical relevance is a subjective judgment that varies depending upon the circumstances and 

motivation of the user. For generalized concept matches in particular, the current quality metric 

                                                                                                                                                       
a The “intensional” definition of a class is given by defining parameters of the class which must then hold true for 
instantiated instances of that class. 
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is fairly useless, and the clinical relevance of the match depends entirely upon the nature of the 

data the user is seeking. 

 

As the central computational mechanism for MEDIATE, the success of the equivalence 

inference process drives the utility of the system. There are many ways in which this inference 

may fail, from both computational as well as semantic standpoints. 

 

Semantically, the most obvious way in which the equivalence inference fails is if a concept is 

absent from the universe under consideration. There were many examples of this phenomenon 

within this investigation, such as the concept “newa” which was present in Hospital B’s database 

but not present in Hospital A’s database.  

 

Yet the issue of semantic absence is not black and white, but instead exists on a continuous scale. 

There is a gray zone where it is difficult to discern whether a concept is present or absent. For 

example, Hospital B’s database contains the concepts “cbc”, “cbca”, and “cbcd”, and Hospital A 

only has the concept “CBC”.a Does this indicate that the concepts “cbca” and “cbcd” are absent 

from the universe of concepts in Hospital A? It is true that compared to the concept “CBC”, the 

match quality scores indicate that the Hospital A concept “Hematology” is actually a better 

match for “cbca” and “cbcd”. However, the semantics conveyed by the names “cbca” and “cbcd” 

seem to indicate at least some degree of equivalence with “CBC”. 

 

The current matching algorithms in MEDIATE support a liberal equivalence inference process. 

The algorithms err on the side of producing an equivalence match even if there is very little 

similarity between the concepts (as measured by the quality score). Additionally, the 

subsumption inference is also very liberal. The end result is that unmatched nodes represent 

concepts that are not only absent from the remote network, but also disconnected from other 

nodes within the local network, or connected only through the attribute relationship. 

 

                                                
a The abbreviation “cbc” stands for “complete blood count”, which implies that “cbca” and “cbcd” are variations of 
a complete blood count. 
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From the computational standpoint, the equivalence inference may be affected by many factors, 

including: network configuration, UMLS links, search algorithms, and the matching algorithms. 

Failure to find existing semantically equivalent concepts can arise from problems within any of 

these areas. 

 

Network configurations have an obvious effect since they provide the semantic “context” which 

is used for the equivalence inference. Since there is no guarantee of how a user will configure a 

given network, concepts may be assigned relationships in a way that reduces the effectiveness of 

the matching process. In the worst case, a node may fail to be connected to the network (as in the 

case of the “Hemogram” node for Hospital A).  

 

UMLS links are an important source of semantic information about the concept, and certain 

types of link assignments may hinder matching. The specificity of Metathesaurus terms may be 

problematic in some cases. For example, if a concept for “serum sodium” is linked only to a 

Metathesaurus term that indicates a specific technique for measuring sodium, it will not match 

other “serum sodium” concepts that do not include that technique. In a similar fashion, the 

number of Metathesaurus terms used in the UMLS link affects matching. For concepts with a 

large number of potential links to the Metathesaurus, instantiating fewer links will decrease the 

possibility of matching another concept with the same pool of potential links. 

 

MEDIATE addresses these problems with UMLS links in an ad hoc fashion by enabling users to 

link all applicable Metathesaurus terms to a concept, from the specific to the general. This blurs 

the semantic distinctions between Metathesaurus terms and creates a “possibility set” of 

associations, which allows a more flexible matching process.  

 

A more elegant solution, however, would be to create a semantic network of the Metathesaurus 

terms and allow MEDIATE to apply the computational machinery which already exists. Thus, if 

equivalence inferences did not find a match for a concept linked to a very specific Metathesaurus 

term, generalization inferences could be used to match concepts linked to more general 

Metathesaurus terms. Although this technique was not explored in the scope of this current 
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investigation, it would certainly be worthwhile to implement in future investigations of this 

system. 

 

At the heart of the equivalence inferences lay the search and matching algorithms, which 

perform the requisite computations. Changes in these algorithms will certainly affect the 

outcome of the matching process. 

 

Searching by BFS is uncomplicated, but the parameters used for terminating the search can 

affect the search outcome. Currently, a simple limit on search distance is enforced. Changing 

these limits affects the number of nodes searched and consequently affects the number of nodes 

that are considered as potential matches for the target node. All of the BFS searches in 

MEDIATE are currently limited to a single link traversal before terminating. This may not be 

appropriate if there are large differences in the size of the networks to be matched, especially if 

the size differences are reflective of differences in granularity of the concept representations. 

 

The current matching algorithms implemented within MEDIATE are certainly not exhaustive, 

although they represent a studied attempt to exploit the semantic network linkages and patterns. 

In addition, there is some overlap between the algorithms, which may not be an optimal way to 

explore the entire solution space. Clearly, expanding the number of matching algorithms or 

modifying the current algorithms affects the results of the equivalence inference. Proving the 

correctness of the outputs, however, is still an open question. 

 

In the end, the correctness of the equivalence inference depends upon some measure of what it 

means for two concepts to be semantically equivalent. As stated previously, the quality metric 

attempts to capture semantic equivalence by utilizing a form of set coverage, but ultimately only 

acts as a proxy for the subjective judgment of clinical relevance. 

 

The quality metric can be used in conjunction with the matching algorithms to help choose the 

“best match”, or the candidate node most likely to be semantically equivalent to the target node. 

In order to allow the user to perform the ultimate judgment of semantic equivalence, however, 

this technique is not automatically implemented in MEDIATE. 
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6.1.5 Context Representation 

One of the advantages of a semantic network representation arises from the natural association 

between network neighborhoods and concept context. By definition, the nodes surrounding a 

target concept are related to that concept. Nodes that are more than one link distance away from 

the target concept are also related in either a direct way (if the relationships support transitive 

closure) or an indirect way. Of course, the strength of the relationship falls off as some function 

of the distance from the target node. 

 

These neighboring nodes create a semantic context grounded in the relationship links and in the 

nodes themselves. This context contains information that facilitates the semantic interpretation of 

a given node. An example from the semantic network construction phase of this investigation 

illustrates the power of these contexts. 

 

During the creation of the semantic network for Hospital B, many of the test abbreviations were 

so terse that they were not interpretable. This caused a problem during creation of the UMLS 

links, since the target concept needs to be clearly identified to create the link. For many nodes, 

however, the identification problem was resolved when relationship links that were specified in 

the native database were instantiated. These links were composition links that specified test 

panels composed of other tests. The node “bg”, for example, was an unknown entity until its 

component nodes were instantiated. Once the relationship to nodes “pH”, “pCO2”, and “pO2” 

was established, it became obvious that node “bg” represents the concept of a “blood gas” test. 

 

The neighboring nodes also create a topological context that translates naturally into a graphical 

user interface. As stated previously, the graphical network interface was easily understood by 

many users, and enabled the location of desired data without any problems. 

 

Capturing the semantic context in the network representation not only facilitates interpretation of 

the data, but also supports the inference process that forms the basis of concept matching. 

Conceptually, the matching algorithms boil down to methods of matching node contexts. Thus, 

the search algorithms explore the neighborhood nodes in various ways, and the matching 
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algorithms attempt to recognize equivalence by finding similarities between the patterns of the 

nodes explored. 

 

Although MEDIATE provides the framework to construct representations that reflect the 

underlying database structure, strict faithfulness to the logical structure of the native database 

may not be the most informative representation scheme. Generally, the most complex networks 

will also be the most informative in terms of providing semantic context for searching and 

matching. Therefore, network representations that mirror very simple database structures may 

contain less semantic context and provide a poorer substrate for the matching algorithms. 

 

The most extreme example of this phenomenon is an entire database consisting purely of 

attribute-value pairs, i.e. one table column with labels and another column with values. If the 

network representation only reflects this database structure, the network would assume a 

completely flat topology with no relationships between the concepts. This representation clearly 

provides no semantic context and blocks the concept matching algorithms. Figure 10 illustrates 

this problem. 

 

In this situation, the user can improve the context representation by superimposing semantic 

structure based on common clinical usage of the concepts. This will likely occur to some extent 

for all database representations because of semantic overloading and the implicit nature of 

relationships within database schema. Many databases, however, will have more logical structure 

than simple attribute-value columns, and will provide a richer substrate for context 

representation. 

6.1.6 Semantic Representation Summary 

Within the framework of the functional goals established for MEDIATE, the representation 

system supports both human interpretation and machine computation of concept semantics. 

 

From a human viewpoint, the semantic information contained within the network allows accurate 

recognition of the concept embodied within a node, and the graphical representation of the 

network enables facile navigation to locate desired data. 

Attribute Value 
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From the computation viewpoint, the representation enables the execution of several inference 

methods that support the goals of automatic data exchange. The most important of these 

inferences are the equivalence and subsumption inferences between networks. In addition, the 

calculation of a match quality metric allows comparison of various algorithms used to carry out 

these inferences, and also allows a rough evaluation of concept equivalence.  

 

Other forms of semantic information can be computationally derived and represented without 

changing the topology of the network. For example, the extensional definitions from Zollo and 

Huff can be used as another form of semantic identification. This type of information could 

easily be added to the network node as another parameter for the equivalence inference. 

Blood Culture Result Positive 
Blood Culture Organism S. aureus 
Blood Culture Antibiotic Sensitivity Vancomycin 
Sodium Level Fluid Urine 
Sodium Level Result 45 
Sodium Level Units meq 
Sodium Level Volume 2 liters 

Analyte Fluid Result Units Volume 
Sodium Urine 45 meq 2 liters 

Source Result Organism Abx Sensitivity 
Blood Positive S. aureus Vancomycin 

Laboratory Test 

Value Attribute 

Tables Semantic Networks 

Laboratory Test 

Cultures 

Source 

Organism 

Result 

Sensitivity 

Electrolyes 

Analyte 

Result 

Fluid 

Units 

Volume 

Figure 10. Table structure and network structure. If the semantic network reflects only the table structure, simple 
attribute-value pairs will induce a simple network with minimal concept differentiation. Equivalent tables with more 
complex structure (shown in the lower half of the figure) induce networks with more concept differentiation. 
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6.2 Engineering Considerations 

To incorporate MEDIATE into a real world production system for data exchange, many 

engineering issues need to be addressed. The following sections examine some of these issues, 

although this investigation did not attempt to implement all the processes required to support a 

production system. 

6.2.1 Supporting Environment 

A general infrastructure to support data exchange will require at least the following elements: 

communication protocols, data interpretation/decoding, and security measures. 

 

Thankfully, basic communication protocols for medical information are mature enough that there 

is no need to create new processes for MEDIATE. In particular, the HL7 protocol is now widely 

implemented and supported on many platforms and medical information systems. This protocol 

is suitable for communicating both the semantic network representation and medical data 

between systems that are MEDIATE-enabled. 

 

The XML extensions to HL7 are even more suitable as an underlying communication protocol, 

since all the data structures within MEDIATE have already been encoded in an XML-like 

syntax. It would take trivial modifications to make the system fully XML compliant. 

 

At a more basic level, the hypertext transfer protocol (HTTP) has become a standard platform 

onto which other communications can be layered. There are many Internet based medical 

information systems that implement this basic communication layer, and the utility of using 

HTTP for data exchange has been proven repeatedly in the financial arena. 

 

Interpreting or decoding data requires a combination of tools within both MEDIATE and the 

supporting information system. One of the benefits of the representation system within 

MEDIATE is that complex data can be decomposed into simple parts, which are then much 

simpler to interpret. Any laboratory test result, for example, is likely to have multiple pieces of 

associated information (e.g. result value, units, specimen number, etc.) that can be represented as 
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attributes. Since each attribute is an individual concept, the format data structure can be used to 

represent information about interpreting that concept.  

 

Once concepts have been decomposed to the appropriate level within MEDIATE, standard tools 

can be used to decode the more elemental formats. Tools to convert and format text strings, 

convert between number systems, convert measurement units, and perform other simple 

transformations could easily be incorporated within MEDIATE. Tools to interpret binary objects 

such as images, sound files, video, etc. might be incorporated into the supporting information 

systems for transmission with the data. These tools can even be represented as concepts and 

included as attributes of other concepts within the semantic network. 

 

Security and confidentiality are vital concerns for communication of any medical information, 

but the complexity of this topic is well beyond the scope of this investigation. It is worth noting, 

however, that system and human processes are much more important than any technical solutions 

in protecting the transmission of sensitive medical information. Therefore, the use of access 

control and encryption technology or protocols such as Secure Socket Layer transmissions will 

be necessary, but not sufficient to protect data transmission. The bulk of the design work and 

implementation of security measures will need to be performed not just for MEDIATE, but for 

the underlying information system as a whole. 

6.2.2 Performance Issues 

Speed of execution and space requirements is always a consideration in production systems. 

 

The matching algorithms within MEDIATE currently operate in O(n3) time, where n is the 

greatest number of nodes in either of the two semantic networks to be matched. This worst case 

scenario may occur because the iteration matching algorithms may traverse every node of a 

network during a match for each node in the other network, and may perform this procedure up 

to n times before the algorithm terminates. Although this geometric growth is not a theoretical 

computational barrier, it may have real world consequences depending on the size of the 

networks and the actual execution speed of the system. 
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Space requirements are O(n2) in the size of the semantic networks. In the current 

implementation, all of the data structures used to represent the semantic network and to perform 

the inferences are kept in memory. Depending on the available memory and size of the networks, 

there will be the usual trade-offs in space vs. performance if virtual memory is required. 

 

Optimization of the algorithms could conceivably decrease the execution time, but it is not 

apparent that any procedures exist which will operate in less than Ω(n2) time. Optimization 

seems most likely to occur in the constant factors of the algorithms. This optimization should 

certainly be explored for a production system, but only empirical testing can prove the utility of 

such an effort. 

 

On an architectural level, processing of semantic nets using a dataflow model on massively-

parallel computers has been explored by Bic. [82]  Although this approach does not change the 

fundamental nature of the problem, it may offer an advantage in execution time given the right 

computing environment. 

6.2.3 Representation Construction 

Construction of the semantic network will almost certainly form the bulk of the work required to 

implement MEDIATE within an information system. A systematic approach to facilitate this 

process will pay dividends not only in saving time, effort, and money, but may also result in a 

more complete and useful network representation. 

 

Improvements to the user interface will certainly ease the process of network construction. For 

example, adding the ability to choose which relationship links to display will allow the user to 

focus on relevant links and nodes. Other graphical interface modifications, such as selective 

collapse/expansion of links and 3-D display techniques, may also help the user to organize the 

network more easily. Improving random access to the network nodes (rather than having to 

navigate through the network) will decrease the time users require to check or modify existing 

nodes. The implementation of a grep-like pattern-matching utility would be a great improvement 

over the alphabetical drop-down menu that is currently implemented. 
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Programs to help perform batch-processing of network node creation greatly speed up the 

creation of a representation. As stated previously, an auxiliary program to perform this task was 

used for the Hospital B network in the experimental setup. This program cut the amount of time 

required to create the network by an order of magnitude compared to the Hospital A network. 

Further investigation of the nature of these programs may reveal a more general framework that 

can be applied to a variety of information systems. This would ameliorate some of the work 

required to build customized batch-processing programs for every database system. 

 

To retrieve information from a database, the semantic network representation must be correctly 

hooked into the database. This requires two components: procedural knowledge about how the 

database system functions, and a database driver that can be called by other applications. In the 

current investigation, MEDIATE contains the procedural knowledge to interface with most 

relational databases. The database link component of a node contains data structures and 

algorithms to specify the elements of relational tables and generate SQL queries for data 

retrieval. Fortunately, most common relational databases also provide various drivers for use by 

external programs. 

 

For other database systems, new procedural knowledge and interface drivers must be provided to 

enable MEDIATE to cooperate with the database. This type of functionality may be provided in 

an approximate form for general types of databases (e.g. hierarchical, flat file, CORBA-

mediated, etc.), but is likely to require some customization to attain complete functionality and 

integration with the host database system. This work contributes to the overall task of creating 

the network representation, but does not need to scale with the number of concepts represented, 

i.e. it is a constant factor. 

 

Another tool that would be useful in constructing the semantic network is a network validation 

program. Checking for cycles and unconnected nodes is relatively straightforward, but searching 

for possible logical inconsistencies is more complex and not easily specified. It may be unlikely, 

for example, that a node is related by the “component-of” relationship to two other concepts that 

are in the same specialization hierarchy, but it is not impossible. Thus, the implementation of 

logical filters is likely to be based on heuristics rather than strict constraints on the network.  



99  

6.2.4 Usability Issues 

Like any system, the design of the user interface greatly affects the ability to effectively utilize 

the system. The graphical interface for semantic network construction was discussed previously, 

but another important problem is the display of data from multiple sources. This issue was not 

addressed within this investigation because only two databases were represented. The problem is 

obviously compounded as more databases are added. Although multi-database information 

display is outside the scope of this investigation, it is likely that easy access to the semantic 

network representation of the data will be an important part of the interface. 

 

Another issue that affects usability of the system is the amount of network traffic that is 

generated by data retrieval requests. For MEDIATE, the amount of data that must be 

communicated is greater than for a simple data request because the semantic network 

representations must be transmitted beforehand. In the worst case, the semantic network might 

need to be transmitted before every data query. In reality, however, this is highly unlikely since 

changes to the structure of a database do not occur several times a day. 

 

Version control of the semantic networks can reduce the network traffic. One method is to have 

each semantic network maintain a modification field indicating the date and time that it was last 

modified. Other systems would then check this field to determine whether the semantic network 

needs to be transmitted again for matching before a data request is processed. The tradeoff for 

decreasing the network load and access time is an increase in the local storage required for each 

system to keep track of concept matching that has been performed with other systems. 

 

Finally, one of the most important usability issues is the degree of automation employed in 

equivalence matching and retrieving data. This issue requires much more empirical data to 

resolve than this investigation provides. The degree of automation, however, clearly affects the 

function of the system in the following areas: estimation of the best concept match, processing of 

leaf matches, and retrieval of data. 

 

As stated previously, the match quality metric could be used to automatically select the “best” 

match based on the quality score, with the highest scoring match theoretically representing the 
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most semantically equivalent concept. Currently, MEDIATE displays all candidate node matches 

with their respective quality metrics. This allows the user to choose the most appropriate match 

based on human judgment. If, however, the highest scoring match were chosen the vast majority 

of the time, then automating this choice would save the user time and effort. 

 

Processing of leaf matches is currently performed automatically for all nodes, and the user is 

given an option to view the leaf matches within the user interface. This process could be 

customized so that less automation is performed in order to speed up the system response time. 

For example, the system could defer performing a leaf match until a user specifically requests it. 

Or a leaf match could be performed if the concept match has a quality score below a certain 

threshold. The tradeoffs for these decisions are difficult to quantify without further empirical 

data. 

 

The actual retrieval of data from the native database can be automated if certain decisions are 

made about the contents of the query. Specifically, the query can be constructed in a very broad 

fashion to retrieve the data for all candidate matching nodes as well as leaf node matches, or the 

query can be narrowed to a given match type based on criteria such as the quality score. These 

choices are currently determined manually by the user, which requires time and effort that could 

be eliminated through automation.  

 

In the end, a system interface that allows the user to set the degree of automation for each 

function will allow the greatest flexibility and most likely result in optimal usability. 

6.3 System Evaluation 

The overall goal of MEDIATE is to facilitate data exchange across multiple heterogeneous 

databases by automatically identifying semantically equivalent concepts between those 

databases. The experimental setup detailed in this investigation is a proof-of-concept, and the 

results demonstrate that within the boundaries of this study, MEDIATE achieves the goal of 

automatic concept matching. 
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6.3.1 Match Types 

Direct concept matching drives the equivalence inference for all nodes. Leaf nodes of the 

semantic network representations are often analogous to atomic data elements in the native 

databases. These match without problems through the UMLS links if the equivalent concept 

exists in the other network. 

 

UMLS links, however, are not required for direct concept matching to succeed. In the majority of 

the matching runs (nine out of sixteen), UMLS links were instantiated only for the leaf nodes. In 

this circumstance, the direct non-UMLS node matches illustrate the capability of MEDIATE. 

The ability to automatically find clinically relevant matches between concepts that do not share a 

common terminology distinguishes MEDIATE from almost all other existing systems. At this 

time, the only other system known to demonstrate this ability is the previously mentioned 

“extensional definition” system of Zollo and Huff, which does not support relationships between 

concepts. 

 

As reported in the results section, detailed examination of the direct matches indicates that all 

possible matches were found when equivalent concepts were present in each of the two 

networks. This level of automated performance is highly encouraging, even for a limited test 

system. 

 

When the concept was absent from one of the networks, however, the matches were much more 

variable and open to question. Since the matching algorithms utilize concept context to find 

equivalence, any overlap between neighboring nodes may be construed as possible equivalence. 

For example, the Hospital B concept “bmall5” matched with Hospital A concepts “Chemistry”, 

“Serum lytes”, and “Chem 7”, with the highest quality score for the “Chemistry” match. Even 

though the test panel “bmall5” does not exist in Hospital A’s database, there is a large overlap 

between the semantic contexts for “bmall5” and “Chemistry”. Therefore, the inference of 

semantic equivalence may be reasonable, depending upon the motivation or judgment of the 

user. 
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By performing the subsumption inference, generalized matches provide useful information in the 

following form. First, the generalized match allows automated retrieval of information that may 

encompass the target concept. Second, the generalized match narrows the search space for 

equivalent information to a set of concepts with a high probability of semantic similarity to the 

target concept. This allows the user to locate pertinent information more efficiently if automated 

retrieval of information does not satisfy the user’s requirements. 

 

The current implementation of MEDIATE performs generalized matching after all attempts at 

direct concept matching fail. This algorithm is biased towards finding a direct concept match 

even if there is minimal semantic overlap between the concepts that are matched. Generalized 

matches are secondary matches that only performed if the target concept is absent from the 

remote database. This approach completely separates the equivalence and subsumption 

inferences. 

 

As demonstrated by the experimental results, the equivalence inference sometimes produces a 

concept match that is only marginally relevant. In this case, it might be useful to perform the 

subsumption inference on the same target node to cast a broader data retrieval net. The decision 

to perform a generalized match could be based on the quality score (e.g. by using a threshold), or 

generalized matches could be performed on all nodes.  

 

Since MEDIATE does not currently have a good metric for the relevance of a generalized match, 

automating the data retrieval in a useful way for these matches does not seem feasible. As in 

other parts of this system, the user has the ability to choose from candidate generalized matches 

and exercise judgment about the clinical relevance of the matches. 

 

Leaf matches provide a complementary source of information for aggregate nodes by executing 

the decomposition and equivalence inferences in succession. This is a reductionist form of 

semantic equivalence, where the aggregate concept is ignored in favor of its constituent parts. If 

the leaves of a semantic network are fully matched, this form of data retrieval works well and 

provides all of the information content inherent in the aggregate concept. 
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But even if a leaf match has fully matched leaves, the concept match may still be a preferable 

method of retrieving data, particularly if the concept is present in both networks. Test panels are 

often ordered to assess the function of a particular organ system or physiological process. When 

retrieving data from a remote hospital, the clinical intent is often to assess a particular organ 

system or physiological process, not merely to see the results of a few tests. Thus, retrieving the 

concept match from a remote hospital may be more true to the clinical intent than just retrieving 

the matching leaves. 

 

Concept matches such as the one between Hospital A node “Liver Function Tests” (LFTs) and 

Hospital B node “hfp” illustrate this line of reasoning. The leaf match results for “LFTs” reveals 

that all three leaf nodes – SGPT, SGOT, and Bilirubin – are matched. It is thus possible to 

retrieve the entire informational content of “LFTs” through the leaf match. But the matching 

concept “hfp” has seven component nodes that include SGPT, SGOT, and total bili, thus 

providing all the information in the leaf match and more. In this case, the concept match 

obviously surpasses the leaf match as a method to retrieve data.  

 

Even in the other direction, however, retrieving the concept match for “hfp” (which happens to 

be “LFTs”) might be more clinically useful than retrieving the seven leaf components. This may 

be true because the three components of “LFTs” will always be ordered together in a compatible 

clinical scenario. On the other hand, the other four components of “hfp” might be ordered for 

completely different reasons at different times, and thus might represent extraneous and possibly 

confusing information. 

 

The leaf match reveals its true utility when a concept is absent from the remote network. In this 

situation, the direct and generalized concept matches are open to interpretation and are variably 

relevant in terms of their ability to capture the information content desired by the user. The leaf 

match, however, directly retrieves as much of the information content as possible for the target 

concept. In addition, the quality score for a leaf match is precisely related to the amount of 

information retrievable. 
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MEDIATE does not automate the choice of concept vs. leaf matches for data retrieval. Until a 

better model can be created to capture the idea of clinical relevance, this choice has been left for 

the user. 

6.3.2 Network Configuration Effects 

The experimental setup for this investigation employed four different network configurations for 

each hospital in order to explore the effects that different relationships might have on concept 

matching (as discussed in section 4.2). Enumerating all the unique combinations of these 

network configurations produced sixteen matching runs. Through all sixteen of these matching 

runs, the experimental results displayed remarkably small variations. 

 

Analysis of the matching algorithms reveals the reason for this strong consistency in the results. 

In order to accommodate variations in network representations, the matching algorithms treat all 

the hierarchical relationships in almost the same manner for generalization and decomposition 

inferences (previously discussed in section 6.1.3). Whenever network traversal is required as part 

of the algorithm, the traversal of one of the hierarchical relationship links implies that traversal 

of the other relationships will also be utilized. Thus, the consistency in the matching results 

actually springs from one of the design goals for the matching algorithms, although the extent to 

which this consistency was achieved was a little surprising. 

 

The experimental results demonstrate that the chief benefit of the current approach to 

generalization and decomposition is robust matching behavior with respect to different network 

configurations. This makes the performance of the system less sensitive to the vagaries of 

representation construction that are sure to arise among disparate database systems. 

 

Conversely, the insensitivity to network configurations might signify a drawback to the current 

matching algorithms. Since one of the primary goals of MEDIATE is appropriate representation 

of semantic context, delineating distinctions between relationships is an important way of 

differentiating concepts. If these relationship distinctions are important in the semantic 

representation but unimportant in the matching process, some of the system functionality is lost. 
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In addition, finely delineated relationship links only add complexity to representation system if 

the distinctions between them are not functionally relevant. 

 

Exploring the balance between robust performance and fine-grained semantic representations 

requires further investigation. Accumulation of empirical data will help reveal the circumstances 

that may tip the balance one direction or the other.  

6.3.3 Clinical Use 

Because of the semantic modeling capabilities built into the system, MEDIATE can be used for 

more than just information exchange between databases. It can be also be used as a tool to 

organize information and create new concepts, as a navigational tool to browse databases, and as 

a form of documentation for the native database system. 

 

Organizing information into customized structures allows users to view and manipulate data in 

new ways. An immunologist, for example, could create a sub-network that groups together tests 

for white blood cells from the hematology laboratory, tests for antibody levels from the 

chemistry lab, and functional stimulation tests from the immunology lab. This sub-network 

represents a certain view of the data that helps the immunologist to assess a patient’s immune 

status. 

 

Once a sub-network has been created, it is even possible to create a new concept to label the sub-

network using the composition relationship. The aggregate concept “immune function panel” 

becomes a new semantic entity that precisely captures the information that the immunologist 

seeks. This new concept could remain a permanent part of the network representation, or it could 

just be used in a temporary fashion and eventually be discarded. The ease with which such new 

views of the data can be created, labeled, and used demonstrates one of the most powerful 

features of this representation system. In essence, this tool enables users to create new semantic 

concepts that embody the precise amount of information they wish to analyze. 

 

These novel semantic concepts are useful for viewing data in both local and remote databases. 

Retrieval of information from the local database should return the desired elements without 
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complication. For data retrieval from remote databases, identifying direct semantic equivalence 

may prove difficult. Performing leaf matches for the novel concepts, however, will yield the 

maximal amount of available information from the remote databases. 

 

Utilization of novel data views enables MEDIATE to fulfill the data collection role for multi-

institutional research projects. By defining a “data collection” aggregate concept at the central 

analysis site, all the pertinent data elements can be collected from participating remote sites with 

minimal effort (assuming all the systems are MEDIATE-enabled). Additionally, research 

investigators can easily modify the data elements by simply changing the composition of the 

“data collection” concept. 

 

Another example of the utility of this feature is the ability to perform public health surveillance. 

A panel of pertinent test results could be aggregated as a “weekly surveillance” concept that is 

used to retrieve information from multiple institutions. If an event such as a disease outbreak 

occurs, the panel may be modified or a new panel created to retrieve additional pertinent data 

elements. The fact that representation modifications only need to occur at the data collection site 

showcases the simplicity and efficiency of this system. 

 

As noted previously, the semantic network representation is useful not only as a means of data 

collection, but also as a means of data navigation. If all attempts at concept matching fail to meet 

the user’s needs, or if the user merely wishes to explore some portion of the database, the 

semantic network provides an organized and facile way to search for pertinent data. 

 

The navigational aspects of the semantic network reveal another feature of this system that may 

be utilized: the representation serves as another form of documentation for the underlying native 

database. The data structures within MEDIATE enable the documentation of concept location in 

the database (database link), associated concepts (attributes), concept interpretation (format), and 

concept relationships. The additional semantic information in the form of concept definitions and 

UMLS links may also prove useful at times for disambiguating a concept from other similar 

concepts. 
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This type of database documentation may also help prevent problems with duplicate data 

elements, as encountered in the Hospital B database. Many data elements are differentiated in 

relational tables being a unique key value for a column domain. These column domain elements 

may not be as visible or easy to find, and thus are easier to duplicate by mistake. In contrast, the 

semantic network concepts are structural elements of the representation that clearly define their 

place in the concept space. This is true even if the database link connects to a data element that is 

a column domain value. 

 

Although data retrieval and exchange provide the primary functionality in MEDIATE, the other 

features that have been discussed enhance the clinical utility of this system. 

6.3.4 Summary 

The experimental results show that when a concept is present in both networks, MEDIATE 

always finds the match between the networks. Furthermore, MEDIATE goes beyond simple 

terminology matching by discovering matches between concepts based on their semantic context. 

These matches may differ from matches based solely on UMLS links, and often offer more 

information. 

 

When a concept is absent from one network, alternative matches are found which may prove 

useful. Generalized matches provide some of the same functionality found in the Chu’s Cobase 

system by utilizing a subsumption inference to encompass the target concept. Leaf matches 

provide a complementary method of retrieving data based on information content rather than 

semantic equivalency. At this time, the final choice of match retrieval remains with the user due 

to the absence of a suitable clinical relevance metric. 

 

The databases used in this experiment were truly disparate, both in size and in concepts. Given 

this heterogeneity, the experimental results provide good evidence that MEDIATE achieves its 

primary goal of automated concept matching. 
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6.4 Experimental and System Limitations 

Conclusions about the real world utility of MEDIATE are limited by drawbacks in the 

experimental setup. In addition, there are system limitations which were outside the scope of this 

investigation, but still worthwhile to address in anticipation of future work. 

6.4.1 Single User Construction of Experimental Model 

Construction of semantic network representations is open to influence by the user’s perspectives 

and goals. Thus, having a single user (the investigator) construct the network representations for 

both of the experimental databases creates bias towards increased similarity between the 

databases. The aggregate nodes and levels of hierarchy (not already specified by the native 

database structure) are likely to exhibit increased resemblance compared to networks constructed 

by different users. This increases the probability that nodes will have similar semantic contexts, 

and consequently the probability that the matching process will successfully identify the match. 

 

On the other hand, many elements of the semantic network representation for a given database 

would be similar even if different users were asked to construct the network. This similarity 

occurs because all the leaf nodes and predefined aggregate concepts (e.g. test panels) will be the 

same no matter who performs the construction. The main degrees of freedom are in the more 

abstract concepts or higher-levels of the network hierarchy. Although the abstract concepts are 

likely to exhibit more variety, the restricted knowledge domain helps to increase the likelihood 

that some similarity exists. 

 

In addition to the network structure, the UMLS links may also be biased towards similarity 

because they were instantiated by a single user. This directly affects the matching process for 

leaf nodes, which depend almost entirely on UMLS matching for the equivalency inference. The 

net effect again biases the system towards increased matching and better experimental results. 

 

A more insidious problem than representation bias is the possibility that the matching algorithms 

have been over-fit to the experimental model. Like most new systems, MEDIATE progressed 

through repeated iterations of the develop-test-evaluate loop. All the iterations of this 
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development loop, however, were based on the semantic network representations created for the 

two test databases from Hospital A and Hospital B.  

 

Modifications to the matching algorithms were made to improve performance after analysis of 

the results from each test phase. The theoretical intent of these modifications, of course, was to 

correct “logical errors” in the matching algorithms. But no clear way of separating the errors 

from the experimental framework exists. Given the dependency between the experimental model 

and testing, the possibility arises that over-fitting of the matching algorithms may impede 

generalization of the techniques to other databases and network representations. Or, even if the 

techniques can be used, the performance may degrade in other environments. 

 

Assessing the effects of single user representation construction and possible over-fitting of the 

experimental model requires further experiments with different users constructing 

representations for other databases. This expansion of the experimental model is a normal phase 

in the evolution of a new system, and the data derived from these experiments are crucial for 

further development of the system. 

6.4.2 Insufficient Sample Size 

As indicated previously in section 4.1.3, other databases were also considered for this 

investigation, but were eventually excluded. Therefore, any conclusions about the MEDIATE 

system must be tempered by the fact that only two databases were used in this investigation.  

 

As in any empirical experiment, the samples used for data collection should reflect the 

characteristics of the general population towards which the experiment is targeted. Using only 

two laboratory databases increases the possibility that important characteristics of the general 

population of laboratory databases remain unexplored, which consequently skews the results. 

Although the two databases used were quite different in both size and content, it is unlikely that 

they capture the full range of concept and relationship possibilities. This raises the risk that the 

conclusions cannot be generalized to other laboratory databases. 
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6.4.3 Restricted Medical Domain 

The ultimate goal of MEDIATE is to facilitate the exchange of all medical data, not just 

laboratory test results. The reasons to restrict the scope of this investigation were previously 

delineated in section 4. Given the restricted domain, however, generalizing the findings of this 

investigation to the broader medical database arena is not a feasible task. 

 

On a theoretical basis, the structures required for representation of general medical information 

exist within MEDIATE. The UMLS Metathesaurus provides grounding for the atomic medical 

concepts, and the relationship links were designed to accommodate a broad range of concepts. 

But no method exists to predict in advance the performance of the system on general medical 

databases. 

 

Assessment of MEDIATE’s suitability for general medical information exchange awaits further 

experiments that utilize broader medical databases. 

6.4.4 Information Required for Representation Construction 

One of the real world limitations for constructing the semantic network limitations became 

evident during the course of this investigation. The type of database information and 

documentation needed may be difficult to acquire.  

 

On casual inspection, the required parameters seems fairly straightforward: 1) a list of data 

elements which correspond to atomic elements in the native database, 2) the database call or 

routine to retrieve each of these data elements, 3) the database schema or general structure, and 

4) a list of component data elements for each aggregate concept (if aggregate concepts exist). 

 

In reality, each of the parameters listed above can be difficult to obtain if the database system 

does not have adequate documentation that is kept up to date. The list of data elements, for 

example, may be difficult to obtain from a relational database where the data element is a value 

in a column domain. Unless the values of the column domain are documented separately, the 

only way to ascertain the values present in the system is to perform a query on all the unique 

values of that column (as was done for Hospital A). The documentation of the database call for 
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each data element sometimes gets muddled over time, particularly if the underlying database 

structure has changed. In the case of one of the hospitals (which was not included in this study), 

the problem was compounded because the syntax for the database call was constructed on the 

basis of a hard-coded print form. All links between the syntax and the semantics of the data 

concepts were lost, and the documentation was scattered and not well maintained. 

 

During the experimental setup for this investigation, problems were encountered in each of the 

four previously listed parameters. In the end, solutions were found for only two of the hospital 

databases in a time frame that allowed inclusion in this investigation. With sufficient time and 

motivation, however, all the requisite information could be obtained. In a production system, the 

problems with acquiring the needed information might delay the implementation of MEDIATE, 

but is unlikely to completely prevent it. 

 

Once the requisite database information is available, the construction of the semantic network 

requires skills that include: 1) familiarity with the database and all four parameters of the 

required information, 2) sufficient computer proficiency to utilize the MEDIATE interface to 

construct the network, and 3) enough medical domain knowledge to instantiate the UMLS links 

and create the overall structure of the network. 

 

Personnel in the information technology (IT) department are likely to possess the first two skills, 

and clinicians are the most likely to possess the third skill. If a single person who possesses all 

the skills cannot be found, then the task of creating the semantic network can be divided as 

follows. The IT department can create the network nodes corresponding to atomic data elements 

(leaves of the network) and instantiate the database link for each node. A computer savvy 

clinician can then instantiate the UMLS links and create the overall network structure with 

aggregate nodes and hierarchy that are appropriate for the institution.  

6.4.5 Attribute Relationship Representation 

During the course of this investigation, it became apparent that the attribute relationship lacked 

the crispness of definition that was present in the other relationships. Difficulties in precisely 

defining attributes are well known in the knowledge representation field. This imprecision 
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influences the decisions made about semantic network structure and increases the possibility of 

semantic ambiguity. 

 

The working definition of an attribute states that concept A is an attribute of concept B if all the 

subclasses of concept B should inherit the attribute concept A. Semantically, concept A is some 

property of concept B that is so closely associated that all examples and variations of concept B 

should also have concept A associated with them. Functionally, relational database columns from 

a single table can be often be directly mapped into attributes for the concept that represents the 

entire table. For example, the columns of a laboratory results table form the attributes for the 

concept laboratory test. 

 

The main difficulty with the attribute relationship arises in attempting to differentiate it from the 

composition relationship. The composition relationship also states that two concepts are tightly 

associated, so that the aggregate concept depends upon the component concept for its semantic 

value. When constructing a network representation, the differences between the attribute and 

composition relationships can blur. 

 

For example, the concept “address” usually has sub-concepts “street address”, “city”, “state”, 

and “zip code”. Are these sub-concepts components or attributes? If the sub-concepts are the 

columns in a relational table titled “address”, the argument can be made that they are attributes 

that would be inherited by subclasses such as “home address” and “business address”. On the 

other hand, a home address could be “composed-of” all these sub-concepts, while a business 

address would be “composed-of” these sub-concepts plus “business name” and “department” 

sub-concepts. Neither representation seems more inherently correct than the other.  

 

From the semantic context perspective, some attributes may not allow distinguishing between 

concepts. In the entire “laboratory test result” network, for example, all the concepts share 

common attributes of “test name”, “result value”, and “units”. Thus, attempting to distinguish 

between laboratory tests based on these attributes is an exercise in futility. This is the main 

reason that the attribute relationship is not included in the search algorithms used in the matching 

process for MEDIATE. Conversely, components usually create distinguishing semantic contexts.  
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Yet it is also clear that choosing between attribution vs. composition can sometimes be arbitrary 

and depend completely upon the user’s judgment. This semantic ambiguity can create problems 

in the matching process, since network searching does not traverse the attribute links at this time. 

 

After more experiments, the usefulness of including the attribute relationship in the matching 

process may become clear. Until that time, or until a more lucid definition of the attribute 

relationship is created, all semantic networks are at some risk for disparity in the choice between 

composition and attribute links. 

6.4.6 Concept Ordering and Cardinality 

Ordering of elements is a fundamental property of many types of data, but MEDIATE currently 

lacks a principled way of applying ordering to concepts within the semantic network. Different 

methods of implementing ordering include a new type of ordering relationship, or subtypes of 

the current relationships. The effects of the ordering scheme on the semantic context and 

matching of concepts must be considered before any implementation is included within the 

system. 

6.4.7 Relationship Composition 

Composing relationships implies the traversal of relationship links of different types across the 

network. Certain relationships have semantics that support composition, such as: Concept A is an 

element-of Concept B that is a subset-of Concept C => Concept A is an element-of Concept C. 

The effects of relationship composition are not fully explored in the current investigation, nor is 

the validity of the compositional relationships fully delineated. Many of the relationships are not 

commutative when composed, and only some compositions have logical consistency. Cohen 

explored the induction of plausible inferences from composing relationships, and found a 

correlation with relationship properties such as transitivity and inheritance. [83] 

6.4.8 Lack of Storage Model 

MEDIATE exists to facilitate the automated retrieval of information from remote medical 

databases. Once the information is received, however, the system does not address the issue of 

what to do with the information beyond displaying it. 
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Storage of information from multiple sources presents entirely new issues that are beyond the 

scope of this investigation. Whether the goal is local storage of information or creation of a data 

repository, many issues require thought beyond the consideration of semantic equivalence. The 

choice between a unifying data model vs. separate storage of information remains one of the 

primary issues. 

 

Information storage could utilize MEDIATE interfaces to manage multiple information caches, 

but there are clearly different tradeoffs in terms of space, efficiency, and performance compared 

to the data retrieval problem. 

 

Overall, storage of information from multiple sources is a large-scale problem that requires 

extensive investigation in its own right. 

6.4.9 UMLS Link Dependency 

The use of a standard terminology to “ground” the system is the closest that MEDIATE gets to 

utilizing a central data model. To some extent, this exposes the system to some of the 

weaknesses inherent in central data models. Namely, modifications to the Metathesaurus, 

absence of terms, and addition of new terms may all affect UMLS links within the semantic 

network. 

 

On a practical level, however, MEDIATE depends on the UMLS links only for leaf concepts. 

These atomic concepts are much easier to associate with a standardized terminology, and no 

relationship or structural considerations involving other concepts interfere with this association. 

The main problem is semantic ambiguity within the Metathesaurus itself, which MEDIATE 

addresses by using a “possibility set” model for the UMLS link. 

 

As discussed previously, the UMLS link provides one of the many forms of semantic 

information that MEDIATE incorporates. For leaf nodes, the UMLS link provides good 

functionality because the Metathesaurus terms associate with semantic network concepts with 

high degrees of semantic equivalence, and the link supports a simple computation for matching 
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concepts. For non-leaf nodes, the semantic context of the concept assumes greater importance, 

and the dependency upon the UMLS link does not have as great an influence. 

6.4.10 Lack of Clinical Relevance Metric 

Semantic equivalence in MEDIATE is based on structural similarities between the network 

representations, i.e. the semantic context. This is not, however, a direct proxy for “clinical 

relevance”, which is much harder to quantify. 

 

Very complex models would be required to capture user motivation, goals, and preferences. All 

of these parameters affect the manner in which a user judges clinical relevance. Unfortunately, 

the problem remains intractable at this time, and it seems unlikely that a rigorous metric can be 

developed in the near future. 

6.4.11 Lack of Process Modeling 

MEDIATE is intended to facilitate the exchange of database “content” and currently lacks the 

capability to represent medical processes or general medical reasoning. This narrow scope 

provides advantages in terms of system complexity and understandability but has obvious 

drawbacks in terms of general knowledge representation. However, an automated content 

exchange system such as MEDIATE could provide the foundation for other representation and 

inference systems with more ambitious goals. 

6.4.12 Functional Decentralization 

The decentralized architecture and computation of this system provide a benefit in terms of 

system scalability robustness. For certain functional processes, however, centralization of the 

computation offers advantages in efficacy and efficiency. For example, Zeng described a method 

of displaying different “views” of medical information (e.g. time-oriented, source-oriented, and 

concept-oriented) by using semantic networks to construct a central ontology. This ontology 

supports the inferences necessary to generate the different views from local databases. [84]   

 

Although the functional goals enumerated for MEDIATE led to a decentralized system 

implementation, adding any new functionality will entail additional examination of the benefits 

and drawbacks of this distributed system. The current architecture does not preclude adding 
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centralized components, but the balance between centralized and distributed computation 

obviously requires careful consideration. 

6.4.13 Limitations summary 

This current investigation into the application of MEDIATE is a proof-of-concept, rather than a 

large-scale data collection experiment. As such, the limitations of the experimental setup clearly 

affect generalization of the results and conclusions. In addition, MEDIATE has inherent 

limitations that require further exploration before firm statements can be made about the 

performance and utility of the system. 

 

The experimental limitations can be expected at this stage of development, and further 

investigation can expand the conclusions in a fairly straightforward manner. The inherent system 

limitations, however, require much more thought and consideration, and addressing some of the 

limitations may remain beyond the scope of implementing an effective production system. 

6.5 Future Direction 

Further investigation of MEDIATE will explore several different areas involving generalization 

of the system, consideration of current limitations, and extension of the system to add more 

functionality. 

6.5.1 Generalization to Full Medical Record 

The structure of an experiment to represent a full medical record can be very similar to the 

structure used in this investigation. Online medical records from different institutions will have 

semantic network representations created, and the performance of the matching process can be 

tested on these representations. The sample size will depend upon the availability of databases 

and the pertinent parameters for those databases (section 6.4.4), with the attendant correlation 

between sample size and the ability to generalize the results. 

 

Modifications required within MEDIATE mainly involve revision of the UMLS link to include 

more of the Metathesaurus. Because the entire Metathesaurus might potentially be required, a 

local database version (provided on CD-ROM by the National Library of Medicine branch of the 
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National Institutes of Health) might need to be implemented. Utilizing the rudimentary synonym 

links within the Metathesaurus could also augment the functionality of the UMLS link. 

6.5.2 Generalization of Concept matching 

The core process of MEDIATE is execution of the equivalence inference based on the semantic 

context (neighboring nodes) of concepts represented within a semantic network. It may be 

possible to generalize the process to facilitate automated concept matching within other semantic 

networks. 

 

In order to test the concept matching process in other systems, several issues require extensive 

consideration. These include: 

1) The nature of relationships between concepts within the system. The relationship links 

currently implemented within MEDIATE may not apply in other systems, or other 

relationships may already be in widespread use. The characteristics of the relationships 

that might be utilized in the semantic network representations need analysis to see if they 

support the inferences required for concept matching. 

2) The availability of a starting point to “ground” the match process. This necessitates 

some form of commonality or structure that can be exploited for matching of atomic 

concepts. In many cases, this may be a standard vocabulary or data model. Eventually, 

natural language processing may be efficacious enough to fill this role. The use of 

“possibility sets”, as implemented in MEDIATE, can help ameliorate problems with 

semantic ambiguity in the grounding system. 

3) Customization of matching algorithms to achieve system goals. Although the semantic 

context of a concept is easily understood to be the neighboring nodes in the network, the 

true goal of a match might include optimization for some particular relationship or local 

network structure. For example, in network representations of financial concepts, it might 

be desirable to maximize the matching of relationships relating to monetary flow. 

4) An appropriate metric of utility for the concept match. A metric that truly captures the 

most important parameter of utility may be difficult to derive, as evident in the lack of a 

true clinical relevance metric for this investigation. Nevertheless, proxy parameters such 

as the MEDIATE quality score enable the objective evaluation of concept matches. 
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5) The final objective of concept matching. Within MEDIATE, the process of concept 

matching is merely a means to an end goal of automated data exchange. For other 

systems, concept matching may be the end goal, or it might be utilized for other purposes 

such as measuring the content similarity between two knowledge bases. 

 

Some examples of areas where automated concept matching by semantic equivalence may prove 

useful are: 

1) Data exchange in other knowledge domains in which no standard data model exists, or for 

which the existing standards are inadequate. The need for this functionality is evident in the 

proliferation of standards for data exchange, particularly in the financial and business arena.  

2) Integration or interchange of ontologies. Since many ontologies are already expressed as 

semantic networks, this appears to be a natural area to apply the methods used in this 

investigation. However, conversion of an existing ontology to a form amenable for concept 

matching may prove to be a complex exercise, since many ontologies are heavily invested in 

the concepts and relationships used within their representations. 

3) Navigation of semantic nets, including the World Wide Web (Web). As the Semantic Net 

efforts of the World Wide Web Consortium gain traction, more of the Web will have 

organized semantic content. The methods utilized within the investigation may be 

incorporated into automated systems that facilitate concept matching across different Web 

sites. These matching efforts could serve as the foundation for navigational directories that 

enable users to locate pertinent information. 

4) Search utilities. Similar to the previous item, the location of pertinent information could 

utilize directories constructed by previous concept matching. Searching for system-wide 

information through real-time concept matching may be appropriate for limited systems, but 

will not scale to large systems such as the Web. 

 

Further exploration of automated concept matching will undoubtedly reveal more issues and 

problems that require intensive investigation. But the potential for broader application of the 

methodology seems high, and the benefits may provide sufficient motivation to drive further 

research in these areas. 
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6.5.3 Addressing Current Limitations 

The issues with the current attribute relationship deserve further investigation immediately. A 

better definition of the relationship will allow either elimination of the relationship, or a clearer 

picture of appropriate applications of the relationship. 

 

Adding new relationships to enable ordering of concepts is an important objective that also 

assumes a fairly high priority. Examples of ordered lists that may require representation include 

patient problem lists, clinical practice guidelines, and historical lists of significant events and 

procedures. The nature of these ordered relationships, however, is complex, and their effect on 

the semantic context deserve close scrutiny. 

 

Better metrics to measure either semantic equivalence or clinical relevance may be developed 

with further study. In particular, a metric for generalized matches would help objectively 

quantify the relative usefulness of different matches. In addition, a metric to measure the “match 

quality” of the entire network could be utilized to refine the concept matches on a network-wide 

basis. An iterative process to optimize this network metric may improve the overall performance 

of the system. 

 

Other system limitations, such as relationship composition, the lack of a storage model, and 

system interactions with the Metathesaurus, require more long-term investigations to address. 

The cost-benefit ratio of tackling these limitations depends upon the ultimate use of MEDIATE. 

For data retrieval within a small network of systems, the current capabilities may suffice. More 

extensive implementations or attempts at data aggregation and storage may mandate further 

development of a storage architecture and better methods of utilizing the Metathesaurus or other 

concept grounding models. 

6.5.4 Augmenting System Capabilities 

One natural way to extend the capabilities of MEDIATE is to add additional relationships to 

create more complex and precise semantic representations. Temporal relationships in particular 

have a high priority because many concepts in medicine as well as other domains have a 

temporal component. Other types of relationships have already been implemented in systems 
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such as the UMLS Semantic Network, and these relationships may be further explored within 

MEDIATE. Anatomic, spatial, and process-related relationships all have the potential to provide 

increased functionality to the system. 

 

Additional matching algorithms may be used to take advantage of richer network 

representations. Heuristic search algorithms might add efficiency and increased performance. 

And matching algorithms tuned to nuances of semantic context representation could provide 

better or more specific matches. 

 

As the tools to create a rich semantic context become more elaborate, the risk for disparity in the 

network representations also increases. Therefore, methods to accommodate varying degrees of 

network diversity also need continued development. One approach might involve a 

“simplification” process, in which complex networks are reduced to simpler structures. The 

simplification process would facilitate comparisons between complex and simple networks. A 

corollary need arises for a metric to measure network complexity. Such a metric would support 

the ability to modify network structures in order to increase the comparability of the networks, 

which in turn supports better concept matching. 

 

More elaborate computations with new functionality can be created to leverage new 

relationships. For example, processing of time sequences may be possible using temporal 

relationships, and following the natural history of a disease may be a feasible task. Even the task 

of automated or assisted disease diagnosis can be approached through concept matching of real 

world data with stereotypical disease concepts. 

 

Two general themes emerge for expanding the capabilities of MEDIATE beyond simple data 

retrieval. One theme centers on the creation of ever richer representations and semantic contexts, 

allowing more accurate and complex descriptions of information. The second theme involves the 

creation of more powerful inference engines that are supported by the more informative 

representations. Both themes are well known in the knowledge representation field. But this 

system distinguishes itself by the central role of automated concept matching, which forms the 

basis for virtually any process that requires information comparison or exchange. 
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7 CONCLUSION 

The goal of facilitating information exchange between heterogeneous databases can be 

approached in many ways. MEDIATE was designed to address the critical issue of identifying 

semantically equivalent concepts, a task that must always be performed at some level in order to 

correctly interpret information transmitted between disparate systems. The representation system 

and computational processes chosen for MEDIATE enable the equivalence inference to be 

performed in an automated fashion, and support the functional goals delineated at the start of this 

investigation. To reiterate, these goals include reducing the semantic ambiguity of transmitted 

data, representing the internal structure and granularity of native databases, and facilitating the 

retrieval of “useful” information even in the absence of direct correspondence between data 

concepts. 

 

Although the limitations inherent in the experimental system must be kept in mind, the results 

obtained in this investigation support the assertion that MEDIATE achieves these goals. 

Automated matching of equivalent concepts from two different databases was accomplished, the 

representation system supported all levels of information granularity, and the implementations of 

generalized and leaf matches provided clinically relevant information for many concepts that 

would otherwise have produced null fields in a database query. 

 

The system limitations of MEDIATE appear resolvable with further investigation and sufficient 

motivation. As in all real world systems, compromises and optimizing assumptions will 

inevitably be required. But for the declared goal of data exchange, this investigation did not 

uncover any insurmountable obstacles. Indeed, the results show promising performance 

characteristics given the disparity between the test databases. 

 

Compared to other systems, MEDIATE offers potential benefits in the areas of scaling, 

robustness, efficient use of legacy databases, information navigation, documentation, and 

preservation of local semantics for each participating institution. Further testing will prove 

whether these benefits are realizable on a more ambitious level. 
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As an information platform, the fundamental mechanisms of MEDIATE provide a fertile 

environment for exploring new functionality in the areas of data sharing and information location 

and retrieval. With a sufficiently rich representation of semantic context, high level knowledge-

based computation can also be supported. Future investigations of this system harbor great 

promise for contributions in the venture of information management. 
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APPENDIX A. LISTING OF CONCEPT MATCHES 
 
The following tables display the detailed results of matching run #1 from the experimental 
results. In this matching run, the network configurations for both hospitals had all relationships 
instantiated, and all possible UMLS links were instantiated. This configuration shows node 
matches that are both terminologically based and context based. 

1. Hospital A node matches 
 
Table 1. Direct matches for Hospital A semantic network nodes.  
Node: Hospital A node name. Matching nodes: Hospital B node names. UMLS: match 
corresponds to UMLS link. Coverage: matching set coverage for the node from Hospital A and 
all its leaf nodes. Score: quality score. 
 
Node                 Matching Node        UMLS Coverage Score 
Albumin              alb                  Yes Full 100 

ap                   Yes Full 100 Alkaline phosphatase 
alk phosphatase      Yes Full 100 

Atypical Lymphs      atyps                Yes Full 100 
Bacteriology Culture No Full 27 Bacteriology         
Bacteriology Labs    Yes Full 25 

Bands                band                 Yes Full 100 
Base deficit         base excess          Yes Full 100 
Basophils            baso                 Yes Full 100 
Bilirubin            bili, total          Yes Full 100 
Blast                blast                Yes Full 100 
Blood culture        blc                  Yes Full 100 
Blood gas            bg                   Yes Full 33 
BUN                  bun                  Yes Full 100 

long1                No Partial 33 
cbca                 Yes Full 32 
cbcd                 Yes Full 29 

CBC                  

cbc                  Yes Partial 25 
Chem 7               basic7               Yes Full 67 

Lab Test             No Full 13 
balld5               No Partial 44 

Chemistry            

Chemistry Labs       Yes Full 39 
Cholesterol          chol                 Yes Full 100 
Creatinine           cret                 Yes Full 100 
CSF culture, gram stain csff                 Yes Full 100 
Cultures             Bacteriology Culture Yes Full 30 
DIC Screen           dic                  Yes Full 50 

bmall5               No Partial 24 
Electrolytes         No Partial 46 

Electrolytes         

Chemistry Labs       No Full 11 
Enzymes              Chemistry Labs       No Full 5 
Enzymes              hfp                  No Full 33 
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Node                 Matching Node        UMLS Coverage Score 
Eosinophils          eo                   Yes Full 100 
Fibrin split products fsp                  Yes Full 100 
Fibrinogen           fibr                 Yes Full 100 
Gram                 Bacteriology Culture No Full 10 
HCO3                 sodium bicarbonate   Yes Full 100 
HDL                  high dens.lipoprot   Yes Full 100 
Hematocrit           hematocrit           Yes Full 100 

Lab Test             No Full 9 
Blood Counts         No Partial 27 
balld4               No Partial 33 

Hematology           

Hematology Labs      Yes Full 27 
Hemoglobin           hemoglobin           Yes Full 100 
IgG                  igg                  Yes Full 100 

Chemistry Labs       No Partial 27 Laboratory test      
Lab Test             No Full 24 

LDL                  ldl-cholesterol      Yes Full 100 
Lipid profile        ldlp                 Yes Full 40 

Chemistry Labs       No Full 7 Lipids               
ldlp                 Yes Full 80 

Liver Function Tests hfp                  Yes Full 43 
Lymphs               lymphs               Yes Full 100 

bmaut2               No Partial 7 Microbiology         
Bacteriology Culture No Partial 18 

Monocytes            mono                 Yes Full 100 
Other Chemistry      bili                 No Full 50 
pCO2                 pco2                 Yes Full 100 
PCR                  pcr                  Yes Full 100 
pH                   ph                   Yes Full 100 
Platelet count       plt                  Yes Full 100 

neutrophils          Yes Full 100 PMN                  
poly                 Yes Full 100 

pO2                  po2                  Yes Full 100 
tp                   Yes None 0 
bmauto               No Full 6 

Proteins             

iepu                 No Partial 29 
PT                   bpt                  Yes Full 100 
PTT                  bptt                 Yes Full 100 
Reticulocytes        ret                  Yes Full 100 
Serum calcium        ca                   Yes Full 100 
Serum chloride       cl                   Yes Full 100 
Serum Glucose        glu                  Yes Full 100 

bmall5               No Full 32 Serum lytes          
Electrolytes         No Full 86 

Serum magnesium      mg                   Yes Full 100 
Serum phosphorus     phos                 Yes Full 100 
Serum potassium      k                    Yes Full 100 
Serum sodium         na                   Yes Full 100 
SGOT                 sgot                 Yes Full 100 



130  

Node                 Matching Node        UMLS Coverage Score 
SGPT                 sgpt                 Yes Full 100 
Stains               Bacteriology Culture No Full 9 
Total protein        tp                   Yes Full 100 

trig                 Yes Full 100 Triglyceride         
triglyceride         Yes Full 100 

Urine culture        urnc                 Yes Full 100 
Virology Labs        Yes None 0 Virology             
bmaut2               No Full 10 

WBC                  wbc count            Yes Full 100 
cbca                 No Full 22 
difa                 Yes Partial 46 
diff                 Yes Partial 35 

WBC differential     

WBC differential count Yes Partial 32 
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Table 2. Generalized matches for Hospital A semantic network nodes.  
Node: Hospital A node name, Matching nodes: Hospital B node names. No matching metrics are 
given because generalized matches are performed only on nodes where the concept exists only in 
one of the networks (i.e. match quality scores are always zero). 
 
Node                 Matching Node        

Hematology Labs      
Lab Test             
Blood Counts         

Activated clotting 
time 

balld4               
Hematology Labs      
Lab Test             
Blood Counts         

Bleeding time        

balld4               
hfp                  Creatine kinase      
Chemistry Labs       
Hematology Labs      
Lab Test             
dic                  
Blood Counts         

fibrin d-dimers      

balld4               
hfp                  GGT                  
Chemistry Labs       
Virology Labs        HBsAg                
bmaut2               
Virology Labs        HSV Culture          
bmaut2               
Virology Labs        HSV II antigen       
bmaut2               

KOH                  Bacteriology 
Culture 

RSV antigen          Virology Labs        

Node                 Matching Node        
RSV antigen bmaut2               

Virology Labs        RSV Culture          
bmaut2               
bmall5               
Electrolytes         
Chemistry Labs       

Total CO2            

basic7               
Virology Labs        Viral Antigen tests  
bmaut2               
Virology Labs        viral cultures       
bmaut2               
bmall5               
Electrolytes         

WB chloride          

Chemistry Labs       
bmall5               
Electrolytes         

WB glucose           

Chemistry Labs       
bmall5               
Electrolytes         

WB potassium         

Chemistry Labs       
bmall5               
Electrolytes         

WB sodium            

Chemistry Labs       
bmall5               
Electrolytes         

Whole blood lytes    

Chemistry Labs       
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Table 3. Unmatched nodes for Hospital A. All unmatched nodes are either disconnected from 
the network, or linked only by the “attribute-of” relationship. 
  
Accession number 
Comments 
Hemogram* 
Lower Reference Range 
Patient ID 
Result status 
Result value 

Source 
Specimen source 
Test ID 
Test name 
Time-stamp 
Units 
Upper Reference Range 

 
* Unconnected node (no links) 
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2. Hospital B node matches 
 
Table 4. Direct matches for Hospital B semantic network nodes.  
Node: Hospital B node name. Matching nodes: Hospital A node names. UMLS: match 
corresponds to UMLS link. Coverage: matching set coverage for the node from Hospital A and 
all its leaf nodes. Score: quality score. 
 
Node                 Matching Node        UMLS Coverage Score 
alb                  Albumin              Yes Full 100 
alk phosphatase      Alkaline phosphatase Yes Full 100 
ap                   Alkaline phosphatase Yes Full 100 
atyps                Atypical Lymphs      Yes Full 100 
Bacteriology Culture Cultures             Yes Full 30 

Bacteriology         Yes Full 25 Bacteriology Labs    
Cultures             No Full 27 

balld4               Hematology           No Full 33 
Chemistry            No Full 44 balld5               
Chem 7               No Partial 29 

band                 Bands                Yes Full 100 
base excess          Base deficit         Yes Full 100 
basic7               Chem 7               Yes Partial 67 
baso                 Basophils            Yes Full 100 
bg                   Blood gas            Yes Full 33 

Liver Function Tests No Full 25 bili                 
Other Chemistry      No Full 50 

bili, total          Bilirubin            Yes Full 100 
blast                Blast                Yes Full 100 
blc                  Blood culture        Yes Full 100 

Hematology           No Partial 27 Blood Counts         
CBC                  No Partial 29 

BM Transplant Tests   Laboratory test      No Partial 27 
bma                  WBC differential     No Full 6 
bmall2               Chem 7               No Full 7 

Chemistry            No Partial 4 
Laboratory test      No Partial 15 

bmall4               

CBC                  No Partial 25 
Chemistry            No Full 42 
Electrolytes         No Partial 24 

bmall5               

Chem 7               No Partial 30 
Chemistry            No Partial 17 bmallo               
Laboratory test      No Full 27 
Microbiology         No Full 7 bmaut2               
Virology             No Full 10 
Chemistry            No Partial 17 bmauto               
Laboratory test      No Partial 28 

bpt                  PT                   Yes Full 100 
bptt                 PTT                  Yes Full 100 
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Node                 Matching Node        UMLS Coverage Score 
bun                  BUN                  Yes Full 100 
ca                   Serum calcium        Yes Full 100 
cbc                  CBC                  Yes Full 25 
cbca                 CBC                  Yes Partial 32 
cbcd                 CBC                  Yes Partial 29 
Chemistry Labs       Chemistry            Yes Partial 39 
chol                 Cholesterol          Yes Full 100 
cl                   Serum chloride       Yes Full 100 

Chemistry            No Full 38 comp12               
Chem 7               No Partial 38 

cret                 Creatinine           Yes Full 100 
csff                 CSF culture, gram stain Yes Full 100 

Hematology           No Full 19 dic                  
DIC Screen           Yes Partial 50 

difa                 WBC differential     Yes Full 46 
diff                 WBC differential     Yes Full 35 

Serum lytes          No Full 86 
Electrolytes         No Full 46 

Electrolytes         

Chem 7               No Partial 27 
eo                   Eosinophils          Yes Full 100 
fibr                 Fibrinogen           Yes Full 100 
fmmbmt               Chem 7               No Full 25 
frap                 Enzymes              No Full 17 
fsp                  Fibrin split products Yes Full 100 
g6p                  CBC                  No Full 8 
glu                  Serum Glucose        Yes Full 100 
hematocrit           Hematocrit           Yes Full 100 
Hematology Labs      Hematology           Yes Partial 27 
hemoglobin           Hemoglobin           Yes Full 100 

Liver Function Tests Yes Partial 43 hfp                  
Chemistry            No Full 18 

high dens.lipoprot   HDL                  Yes Full 100 
iepu                 Chemistry            No Full 6 
igg                  IgG                  Yes Full 100 
iglb                 Proteins             No Full 20 
k                    Serum potassium      Yes Full 100 

Laboratory test      No Partial 24 Lab Test             
Microbiology         No Partial 2 

ldl-cholesterol      LDL                  Yes Full 100 
Lipid profile        Yes Partial 40 ldlp                 
Lipids               Yes Full 80 

long1                CBC                  No Partial 33 
lymphs               Lymphs               Yes Full 100 

Serum lytes          No Full 43 lyte                 
Chem 7               No Full 38 

mg                   Serum magnesium      Yes Full 100 
mono                 Monocytes            Yes Full 100 
na                   Serum sodium         Yes Full 100 
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Node                 Matching Node        UMLS Coverage Score 
neutrophils          PMN                  Yes Full 100 
newa                 Chemistry            No Full 28 
pco2                 pCO2                 Yes Full 100 
pcr                  PCR                  Yes Full 100 
ph                   pH                   Yes Full 100 
phos                 Serum phosphorus     Yes Full 100 
plt                  Platelet count       Yes Full 100 
po2                  pO2                  Yes Full 100 
poly                 PMN                  Yes Full 100 
ret                  Reticulocytes        Yes Full 100 
sgot                 SGOT                 Yes Full 100 
sgpt                 SGPT                 Yes Full 100 
sodium bicarbonate   HCO3                 Yes Full 100 

Total protein        Yes Full 100 tp                   
Proteins             Yes None 0 

trig                 Triglyceride         Yes Full 100 
triglyceride         Triglyceride         Yes Full 100 
urnc                 Urine culture        Yes Full 100 
Virology Labs        Virology             Yes None 0 
wbc count            WBC                  Yes Full 100 
WBC differential count WBC differential     Yes Partial 32 
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Table 5. Generalized matches for Hospital B semantic network nodes.  
Node: Hospital B node name, Matching nodes: Hospital A node names. No matching metrics are 
given because generalized matches are performed only on nodes where the concept exists only in 
one of the networks (i.e. match quality scores are always zero). 
 
 

Node                 Matching Node        
aat3                 Chemistry            

Hematology           abs atyps            
CBC                  
Hematology           
Chemistry            
Laboratory test      

abs band             

CBC                  
WBC differential     
Hematology           
Chemistry            
Laboratory test      

abs basos            

CBC                  
WBC differential     
Hematology           
Chemistry            
Laboratory test      

abs blasts           

CBC                  
WBC differential     
Hematology           
Chemistry            
Laboratory test      

abs eos              

CBC                  
Hematology           abs fissured lymphs  
CBC                  
WBC differential     
Hematology           
Chemistry            
Laboratory test      

abs lymphs           

CBC                  
Hematology           abs meta             

        CBC                  
WBC differential     
Hematology           
Chemistry            
Laboratory test      

abs monos            

CBC                  
Hematology           abs myelo            
CBC                  
WBC differential     
Hematology           
Chemistry            

abs neutrophils      

Laboratory test      

Node                 Matching Node        
abs neutrophils      CBC                  

Hematology           abs plasma cell      
CBC                  
WBC differential     
Hematology           
Chemistry            
Laboratory test      

abs polys            

CBC                  
Hematology           abs promyel          
CBC                  
Laboratory test      acetest              
Microbiology         

ahav                 Virology             
amy                  Chemistry            

WBC differential     asp cellurity        
Hematology           

balld3               Laboratory test      
Liver Function 
Tests 
Chemistry            
Laboratory test      
Electrolytes         
Chem 7               

bili, direct         

Other Chemistry      
Laboratory test      blood                
Microbiology         
WBC differential     bm site              
Laboratory test      

bmall3               Laboratory test      
bmaut3               Laboratory test      

WBC differential     bone marrow comment  
Laboratory test      
Hematology           
Chemistry            
Laboratory test      

bwh type/screen      

CBC                  
bwh vaccine abc typing CBC                  
c125                 CBC                  
c2729                CBC                  
cct                  Hematology           
ceah                 Chemistry            
ceah                 CBC                  
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Node                 Matching Node        
Laboratory test      clinitest            
Microbiology         
Hematology           
Chemistry            
Laboratory test      
CBC                  

cmv ab igg           

PCR                  
Viral Antigen 
tests  

cmv ab igg           

viral cultures       
PCR                  
Viral Antigen 
tests  

cmv chemilumin assay 

viral cultures       
PCR                  
Viral Antigen 
tests  

cmv enzymatic digest 

viral cultures       
PCR                  
Viral Antigen 
tests  

cmv infec agent/dna-rna 
dir pr 

viral cultures       
PCR                  
Viral Antigen 
tests  

cmv molec dx extract 

viral cultures       
CMV tests            Virology             

PCR                  
Viral Antigen 
tests  

cmvvla               

viral cultures       
Chemistry            co2                  

 Laboratory test      
Serum lytes          
Electrolytes         

co2 

Chem 7               
Laboratory test      comments             
Microbiology         

csf comment          Hematology           
cytocentrifuge       Hematology           

Hematology           
Chemistry            
Laboratory test      
Chem 7               
Microbiology         
CBC                  

ebv-vca              

Virology             
erythroid            WBC differential     

Node                 Matching Node        
 Hematology           

Hematology           
Chemistry            

esr                  

Laboratory test      
Chemistry            
Laboratory test      

ferr                 

CBC                  
fio2                 Blood gas            

Hematology           fissured lymphs      
CBC                  

fluid appearance     Hematology           
fluid rbc count      Hematology           
fluid wbc count      Hematology           
genc                 Cultures             

Chemistry            
Laboratory test      

globulin             

CBC                  
Hematology           
Chemistry            

gluc.6 phos.deh.scr. 

CBC                  
hbc                  Laboratory test      

Chemistry            hbs                  
Virology             
Chemistry            hcv                  
Virology             

heart rate           Blood gas            
Enzymes              heat stab.alk.phos.  
Chemistry            
PCR                  hep b surface ab     

 Viral Antigen 
tests  

hep b surface ab viral cultures       
PCR                  
Viral Antigen 
tests  

hepatitis a ab       

viral cultures       
PCR                  
Viral Antigen 
tests  

hepatitis a antibody 

viral cultures       
PCR                  
Viral Antigen 
tests  

hepatitis be ab      

viral cultures       
Chemistry            
Laboratory test      
Chem 7               

herpes i antibody    

Microbiology         
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Node                 Matching Node        
CBC                  
PCR                  
Viral Antigen 
tests  
viral cultures       

 

Virology             
Chemistry            
Laboratory test      
Chem 7               
Microbiology         
CBC                  
PCR                  
Viral Antigen 
tests  
viral cultures       

herpes ii antibody   

Virology             
Chemistry            
Laboratory test      

hsv interpretation   

Chem 7               
Microbiology         
CBC                  

hsv interpretation   

Virology             
PCR                  
Viral Antigen 
tests  

htlv1 antibody       

viral cultures       
Chemistry            
Laboratory test      
CBC                  

iga                  

Proteins             
Chemistry            
Laboratory test      
CBC                  

igm                  

Proteins             
immunoelectro        Chemistry            

PCR                  
Viral Antigen 
tests  

infec agent/dna-rna 
amp probe 

viral cultures       
Chemistry            
Laboratory test      
Electrolytes         

ldh                  

Chem 7               
WBC differential     lymphoid             
Hematology           
Hematology           
Chemistry            

mch                  

Laboratory test      

Node                 Matching Node        
 CBC                  

Hematology           
Chemistry            
Laboratory test      

mchc                 

CBC                  
Hematology           
Chemistry            
Laboratory test      

mcv                  

CBC                  
WBC differential     megakaryocyte        
Hematology           
Hematology           meta                 
CBC                  

mpcr                 Chem 7               
Hematology           myelo                
CBC                  
WBC differential     myeloid              
Hematology           
WBC differential     
Hematology           

nucleated rbc's      

CBC                  
o2 admin. device     Blood gas            
o2 liters per min.  Blood gas            
oap                  Cultures             
oxygen saturation    Blood gas            

PCR                  
Viral Antigen 
tests  

parainfluenza 1      

viral cultures       
PCR                  
Viral Antigen 
tests  

parainfluenza 2      

viral cultures       
PCR                  
Viral Antigen 
tests  

parainfluenza 3      

viral cultures       
Hematology           plasma cell          
CBC                  
WBC differential     
Hematology           
Chemistry            
Laboratory test      

plt morphology       

CBC                  
Hematology           promyel              
CBC                  
WBC differential     promyelo             
Hematology           
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Node                 Matching Node        
prot electro         Chemistry            

PCR                  
Viral Antigen 
tests  

rapid adenovirus     

viral cultures       
PCR                  
Viral Antigen 
tests  

rapid hsv            

viral cultures       
PCR                  
Viral Antigen 
tests  

rapid influenza a    

viral cultures       
PCR                  
Viral Antigen 
tests  

rapid influenza b    

viral cultures       
PCR                  
Viral Antigen 
tests  

rapid rsv            

viral cultures       
rbc count            Hematology           

Chemistry            
Laboratory test      

rbc count 

CBC                  
WBC differential     
Hematology           
Chemistry            

rbc morphology       

Laboratory test      
rbc morphology       CBC                  

Laboratory test      rbcs in urine        
Microbiology         

rdspec               Virology             
PCR                  
Viral Antigen 
tests  

reference lab        

viral cultures       
resp                 Cultures             
respiratory rate     Blood gas            

Chemistry            
Bacteriology         

rpr                  

Cultures             
s/n ratio            Laboratory test      
sample               Blood gas            
samples to cell bank Laboratory test      
serum storage        Laboratory test      
skin                 Cultures             
stlc                 Cultures             

Node                 Matching Node        
stlk                 Cultures             
t3u                  Chemistry            
t3u                  Chem 7               

Chemistry            t4                   
Chem 7               

temperature          Blood gas            
test site            Blood gas            
thsc                 Cultures             

Hematology           tot cells counted    
CBC                  
Blood gas            total carbon dioxide 
Chemistry            

total globulin       Chemistry            
Chemistry            
Laboratory test      

toxoplasmosis ab igg 

CBC                  
Chemistry            
Laboratory test      
Chem 7               

tsh                  

CBC                  
Hematology           tt                   
DIC Screen           
Laboratory test      ua                   
Microbiology         
Chemistry            
Electrolytes         

uric                 

Chem 7               
Laboratory test      urine appearance     
Microbiology         

urine bacti          Laboratory test      
urine bacti          Microbiology         

Laboratory test      urine bilirubin      
Microbiology         
Laboratory test      urine casts          
Microbiology         
Laboratory test      urine crystals       
Microbiology         
Laboratory test      urine epithelial     
Microbiology         
Laboratory test      urine glucose        
Microbiology         
Laboratory test      urine ketones        
Microbiology         
Laboratory test      urine mucus          
Microbiology         

urine ph             Laboratory test      
urine ph Microbiology         
urine protein        Laboratory test      
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Node                 Matching Node        
 Microbiology         

Laboratory test      urine spec gravity   
Microbiology         
Laboratory test      urobilinogen         
Microbiology         
Chemistry            
Laboratory test      
CBC                  
PCR                  

varicella antibody   

Viral Antigen 
tests  

Node                 Matching Node        
 viral cultures       

Lipid profile        very low density 
lipoprotein Lipids               
Viral serology       Virology             
volume               Chemistry            

Laboratory test      wbc in urine         
Microbiology         
Hematology           
Chemistry            
Laboratory test      

wbc morphology       

CBC                  
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Table 6. Unmatched nodes for Hospital B. All unmatched nodes are either disconnected from 
the main network, or linked only by the “attribute-of” relationship. 
 
5hia 
5nuc 
a1cb 
Accession Number* 
adcic 
afp 
ahbs 
ahclot 
aldo 
ana 
apad 
apai 
b12 
b2m 
bcyt 
bhgbe 
biopsy 
blood component type 
bwbm 
bwbx 
bwh cytology result 
ca199 
cal mean glucose 
cdif 
cglu 
ch50 
cmgtl4 
corti 
cortisol 
cpk 
crca 
creat clearance 
crpq 
ctp 
culture 
cycl 
dig 
dihy 
dil 
estr 
fa2 

fa5l 
fa7 
fa8 
fa9 
factor 8 antigen 
factor 8 functional 
fenret 
fol 
fsh 
fti 
genp 
ggtp 
glur 
gly a1c equivalent 
granin 
hapt 
hbea 
hcgb 
hcgt 
hepatitis be ag 
iron 
kathu 
lh 
lipa 
Medical Record Number* 
Normal range* 
npbank 
osfr 
oxim 
pap 
pcp 
period 
pk 
po 
protc 
prots 
psa 
pv 
qacp 
qandr 
qdhea 

qdheas 
qestn 
qpacp 
qshbg 
ravb 
rbcu 
report status 
Result Type* 
Result units* 
rhcg 
rosu 
slbw 
special requests 
specimen description 
sppb 
status of unit 
tacro 
teg 
test 
Test name* 
Text result* 
tibc 
time 
tpch 
trans 
transfusion status 
una 
unit number 
upr24 
urine creatinine 
urine protein 24hr 
valp 
visc 
von willebrand fac. 
vwfw 

 
* Attribute concept. The node is linked to other nodes only through the “attribute-of” 
relationship. 
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APPENDIX B. LEAF MATCHES 
 
The following tables display the detailed leaf matches of matching run #6 from the experimental 
results. In this matching run, the network configurations for both hospitals had all relationships 
instantiated, but only the leaf nodes had UMLS links instantiated. In other words, all non-leaf 
nodes were matched on a purely algorithmic basis utilizing concept contexts. 
 
Table 1. Hospital A leaf matches. Node: target node. Score: leaf match quality score, or the 
percentage of leaf nodes matched. Matched leaves: leaf nodes which were successfully 
matched, with the matching Hospital B node in parentheses. Unmatched leaves: self-
explanatory. 
 
Node Score Matched leaves (matching node) Unmatched leaves 
Bacteriology 75 CSF culture, gram stain(csff); Blood culture(blc); Urine 

culture(urnc) 
KOH 

Blood gas 100 Base deficit(base excess); HCO3(sodium 
bicarbonate); pO2(po2); pCO2(pco2); pH(ph) 

 

CBC 100 Hemoglobin(hemoglobin); Blast(blast); 
Monocytes(mono); Basophils(baso); Eosinophils(eo); 
Bands(band); PMN(neutrophils; poly); WBC(wbc 
count); Platelet count(plt); Hematocrit(hematocrit); 
Lymphs(lymphs); Atypical Lymphs(atyps) 

 

Chem 7 86 Serum chloride(cl); Serum Glucose(glu); 
Creatinine(cret); Serum potassium(k); Serum 
sodium(na); BUN(bun) 

Total CO2 

Chemistry 78 SGPT(sgpt); SGOT(sgot); Serum phosphorus(phos); 
Serum magnesium(mg); Serum calcium(ca); Serum 
chloride(cl); Serum Glucose(glu); Creatinine(cret); 
Serum potassium(k); Serum sodium(na); Base 
deficit(base excess); BUN(bun); HCO3(sodium 
bicarbonate); pO2(po2); pCO2(pco2); pH(ph); 
Bilirubin(bili, total); IgG(igg); Albumin(alb); Total 
protein(tp); HDL(high dens.lipoprot); LDL(ldl-
cholesterol); Cholesterol(chol); Triglyceride(trig; 
triglyceride); Alkaline phosphatase(ap; alk 
phosphatase) 

GGT; Creatine kinase; WB 
glucose; WB chloride; WB 
potassium; WB sodium; Total 
CO2 

Cultures 100 CSF culture, gram stain(csff); Blood culture(blc); Urine 
culture(urnc) 

 

DIC Screen 75 PT(bpt); Fibrinogen(fibr); PTT(bptt) fibrin d-dimers 
Electrolytes 58 Serum phosphorus(phos); Serum magnesium(mg); 

Serum calcium(ca); Serum chloride(cl); Serum 
potassium(k); Serum sodium(na); HCO3(sodium 
bicarbonate) 

WB glucose; WB chloride; 
WB potassium; WB sodium; 
Total CO2 

Enzymes 60 SGPT(sgpt); SGOT(sgot); Alkaline phosphatase(ap; 
alk phosphatase) 

GGT; Creatine kinase 

Gram 100 CSF culture, gram stain(csff)  
Hematology 
 
 
 
 

85 PT(bpt); Hemoglobin(hemoglobin); Reticulocytes(ret); 
Blast(blast); Monocytes(mono); Basophils(baso); 
Eosinophils(eo); Bands(band); PMN(neutrophils; 
poly); WBC(wbc count); Platelet count(plt); 
Hematocrit(hematocrit); Lymphs(lymphs); Fibrin split 

Activated clotting time; fibrin 
d-dimers; Bleeding time 
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Node Score Matched leaves (matching node) Unmatched leaves 
Hematology 
(cont.) 

products(fsp); Fibrinogen(fibr); Atypical 
Lymphs(atyps); PTT(bptt) 

Laboratory 
test 

74 SGPT(sgpt); PT(bpt); SGOT(sgot); 
Hemoglobin(hemoglobin); Reticulocytes(ret); 
Blast(blast); Monocytes(mono); Basophils(baso); 
Eosinophils(eo); Bands(band); PMN(neutrophils; 
poly); CSF culture, gram stain(csff); WBC(wbc count); 
Platelet count(plt); Hematocrit(hematocrit); Serum 
phosphorus(phos); Serum magnesium(mg); Serum 
calcium(ca); Serum chloride(cl); Serum Glucose(glu); 
Creatinine(cret); Lymphs(lymphs); Serum 
potassium(k); Serum sodium(na); BUN(bun); Base 
deficit(base excess); HCO3(sodium bicarbonate); 
pO2(po2); pCO2(pco2); pH(ph); Bilirubin(bili, total); 
IgG(igg); Albumin(alb); Fibrin split products(fsp); Total 
protein(tp); Fibrinogen(fibr); Atypical Lymphs(atyps); 
PCR(pcr); PTT(bptt); Blood culture(blc); Urine 
culture(urnc); HDL(high dens.lipoprot); LDL(ldl-
cholesterol); Cholesterol(chol); Triglyceride(trig; 
triglyceride); Alkaline phosphatase(ap; alk 
phosphatase) 

GGT; Creatine kinase; WB 
glucose; WB chloride; RSV 
antigen; WB potassium; WB 
sodium; HSV Culture; HSV II 
antigen; Total CO2; RSV 
Culture; HBsAg; Activated 
clotting time; fibrin d-dimers; 
Bleeding time; KOH 

Lipid profile 100 Cholesterol(chol); Triglyceride(trig; triglyceride)  
Lipids 100 HDL(high dens.lipoprot); LDL(ldl-cholesterol); 

Cholesterol(chol); Triglyceride(trig; triglyceride) 
 

Liver 
Function 
Tests 

100 SGPT(sgpt); SGOT(sgot); Bilirubin(bili, total)  

Microbiology 40 CSF culture, gram stain(csff); PCR(pcr); Blood 
culture(blc); Urine culture(urnc) 

RSV antigen; HSV Culture; 
HSV II antigen; RSV Culture; 
HBsAg; KOH 

Other 
Chemistry 

100 Bilirubin(bili, total)  

Proteins 100 IgG(igg); Albumin(alb); Total protein(tp)  
Serum lytes 100 Serum phosphorus(phos); Serum magnesium(mg); 

Serum calcium(ca); Serum chloride(cl); Serum 
potassium(k); Serum sodium(na) 

 

Stains 50 CSF culture, gram stain(csff) KOH 
Virology 17 PCR(pcr) RSV antigen; HSV Culture; 

HSV II antigen; RSV Culture; 
HBsAg 

WBC 
differential 

100 Blast(blast); Monocytes(mono); Basophils(baso); 
Eosinophils(eo); Bands(band); PMN(neutrophils; 
poly); Lymphs(lymphs); Atypical Lymphs(atyps) 
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Table 2. Hospital B leaf matches. Node: target node. Score: leaf match quality score, or the 
percentage of leaf nodes matched. Matched leaves: leaf nodes which were successfully 
matched, with the matching Hospital A node in parentheses. Unmatched leaves: self-
explanatory. 
 
Node Score Matched leaves (matching node) Unmatched leaves 
Bacteriology 
Culture 

30 blc(Blood culture); urnc(Urine culture); 
csff(CSF culture, gram stain) 

oap; skin; stlc; genc; stlk; thsc; resp 

Bacteriology 
Labs 

27 blc(Blood culture); urnc(Urine culture); 
csff(CSF culture, gram stain) 

oap; skin; stlc; genc; stlk; rpr; thsc; 
resp 

balld4 43 lymphs(Lymphs); bptt(PTT); 
hemoglobin(Hemoglobin); mono(Monocytes); 
wbc count(WBC); eo(Eosinophils); 
neutrophils(PMN); plt(Platelet count); 
baso(Basophils); hematocrit(Hematocrit); 
blast(Blast); bpt(PT) 

abs blasts; abs neutrophils; gluc.6 
phos.deh.scr.; abs eos; plt 
morphology; abs lymphs; ebv-vca; 
bwh type/screen; mchc; mcv; rbc 
morphology; mch; cmv ab igg; rbc 
count; abs monos; abs basos 

balld5 80 ca(Serum calcium); bili, total(Bilirubin); 
na(Serum sodium); glu(Serum Glucose); 
ap(Alkaline phosphatase); trig(Triglyceride); 
mg(Serum magnesium); tp(Total protein); 
alb(Albumin); bun(BUN); sgot(SGOT); 
cret(Creatinine); sgpt(SGPT); k(Serum 
potassium); cl(Serum chloride); phos(Serum 
phosphorus) 

co2; uric; bili, direct; ldh 

basic7 88 ca(Serum calcium); na(Serum sodium); 
glu(Serum Glucose); bun(BUN); 
cret(Creatinine); k(Serum potassium); 
cl(Serum chloride) 

co2 

bg 33 pco2(pCO2); sodium bicarbonate(HCO3); 
ph(pH); po2(pO2); base excess(Base deficit) 

o2 admin. device; temperature; 
respiratory rate; o2 liters per min.; 
total carbon dioxide; sample; test 
site; oxygen saturation; heart rate; 
fio2 

bili 50 bili, total(Bilirubin) bili, direct 
Blood 
Counts 

33 lymphs(Lymphs); hemoglobin(Hemoglobin); 
mono(Monocytes); wbc count(WBC); 
eo(Eosinophils); atyps(Atypical Lymphs); 
ret(Reticulocytes); neutrophils(PMN); 
band(Bands); plt(Platelet count); poly(PMN); 
baso(Basophils); hematocrit(Hematocrit); 
blast(Blast) 

abs band; abs blasts; abs myelo; 
nucleated rbc's; abs fissured lymphs; 
tot cells counted; wbc morphology; 
abs neutrophils; myelo; abs eos; abs 
plasma cell; abs atyps; abs meta; 
fissured lymphs; meta; abs lymphs; 
plt morphology; plasma cell; mchc; 
mcv; rbc morphology; abs promyel; 
promyel; mch; abs polys; rbc count; 
abs monos; abs basos 

BM 
Transplant 
Tests 
 
 
 
 
 
 
 
 

38 lymphs(Lymphs); bptt(PTT); pcr(PCR); 
ca(Serum calcium); hemoglobin(Hemoglobin); 
mono(Monocytes); wbc count(WBC); bili, 
total(Bilirubin); na(Serum sodium); glu(Serum 
Glucose); ap(Alkaline phosphatase); 
trig(Triglyceride); eo(Eosinophils); 
ret(Reticulocytes); neutrophils(PMN); 
band(Bands); mg(Serum magnesium); 
tp(Total protein); alb(Albumin); bun(BUN); 
plt(Platelet count); poly(PMN); 
baso(Basophils); sgot(SGOT); 

wbc morphology; tsh; hsv 
interpretation; hbs; hepatitis a ab; 
hbc; bwh type/screen; mcv; rbc 
morphology; bili, direct; mch; 
myeloid; erythroid; abs polys; s/n 
ratio; promyelo; esr; toxoplasmosis 
ab igg; abs basos; herpes ii antibody; 
hepatitis a antibody; rbc count; abs 
monos; varicella antibody; hep b 
surface ab; htlv1 antibody; co2; asp 
cellurity; abs neutrophils; gluc.6 
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Node Score Matched leaves (matching node) Unmatched leaves 
BM 
Transplant 
Tests (cont.) 

cret(Creatinine); igg(IgG); sgpt(SGPT); 
k(Serum potassium); hematocrit(Hematocrit); 
blast(Blast); cl(Serum chloride); phos(Serum 
phosphorus); bpt(PT) 

phos.deh.scr.; uric; t4; abs eos; plt 
morphology; abs lymphs; rpr; ebv-
vca; ldh; herpes i antibody; mchc; 
lymphoid; bm site; abs band; t3u; abs 
blasts; globulin; bone marrow 
comment; ferr; hcv; megakaryocyte; 
igm; samples to cell bank; cmv ab 
igg; serum storage; iga 

bma 11 blast(Blast) asp cellurity; bm site; bone marrow 
comment; megakaryocyte; myeloid; 
erythroid; promyelo; lymphoid 

bmall2 13 glu(Serum Glucose) tsh; t4; hsv interpretation; ebv-vca; 
herpes i antibody; t3u; herpes ii 
antibody 

bmall4 37 lymphs(Lymphs); hemoglobin(Hemoglobin); 
mono(Monocytes); wbc count(WBC); 
eo(Eosinophils); trig(Triglyceride); 
neutrophils(PMN); tp(Total protein); 
alb(Albumin); plt(Platelet count); poly(PMN); 
baso(Basophils); hematocrit(Hematocrit); 
blast(Blast) 

abs blasts; tsh; abs neutrophils; abs 
eos; hsv interpretation; plt 
morphology; abs lymphs; ebv-vca; 
herpes i antibody; bwh type/screen; 
mchc; mcv; rbc morphology; herpes ii 
antibody; globulin; mch; ferr; abs 
polys; cmv ab igg; rbc count; abs 
monos; varicella antibody; 
toxoplasmosis ab igg; abs basos 

bmall5 79 ca(Serum calcium); bili, total(Bilirubin); 
na(Serum sodium); glu(Serum Glucose); 
ap(Alkaline phosphatase); mg(Serum 
magnesium); tp(Total protein); alb(Albumin); 
bun(BUN); sgot(SGOT); cret(Creatinine); 
sgpt(SGPT); k(Serum potassium); cl(Serum 
chloride); phos(Serum phosphorus) 

co2; uric; bili, direct; ldh 

bmallo 51 lymphs(Lymphs); hemoglobin(Hemoglobin); 
mono(Monocytes); wbc count(WBC); bili, 
total(Bilirubin); na(Serum sodium); ap(Alkaline 
phosphatase); eo(Eosinophils); 
ret(Reticulocytes); neutrophils(PMN); 
alb(Albumin); bun(BUN); plt(Platelet count); 
baso(Basophils); sgot(SGOT); 
cret(Creatinine); igg(IgG); sgpt(SGPT); 
k(Serum potassium); hematocrit(Hematocrit); 
blast(Blast); cl(Serum chloride) 

abs blasts; co2; abs neutrophils; abs 
eos; plt morphology; abs lymphs; 
mchc; mcv; rbc morphology; bili, 
direct; mch; igm; ldh; cmv ab igg; rbc 
count; abs monos; esr; varicella 
antibody; toxoplasmosis ab igg; iga; 
abs basos 

bmaut2 20 pcr(PCR) hsv interpretation; ebv-vca; herpes i 
antibody; herpes ii antibody 

bmauto 
 
 
 
bmauto 
(cont.) 

51 lymphs(Lymphs); hemoglobin(Hemoglobin); 
mono(Monocytes); wbc count(WBC); bili, 
total(Bilirubin); na(Serum sodium); ap(Alkaline 
phosphatase); eo(Eosinophils); 
ret(Reticulocytes); neutrophils(PMN); 
band(Bands); tp(Total protein); alb(Albumin); 
bun(BUN); plt(Platelet count); poly(PMN); 
baso(Basophils); sgot(SGOT); 
cret(Creatinine); igg(IgG); sgpt(SGPT); 
k(Serum potassium); hematocrit(Hematocrit); 
blast(Blast); cl(Serum chloride) 

abs band; abs blasts; wbc 
morphology; co2; abs neutrophils; 
abs eos; plt morphology; abs lymphs; 
mchc; mcv; rbc morphology; bili, 
direct; mch; igm; ldh; abs polys; cmv 
ab igg; rbc count; abs monos; esr; 
varicella antibody; toxoplasmosis ab 
igg; iga; abs basos 

cbc 50 hemoglobin(Hemoglobin); wbc count(WBC); mchc; mcv; mch; rbc count 
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Node Score Matched leaves (matching node) Unmatched leaves 
plt(Platelet count); hematocrit(Hematocrit) 

cbca 35 lymphs(Lymphs); hemoglobin(Hemoglobin); 
mono(Monocytes); wbc count(WBC); 
eo(Eosinophils); atyps(Atypical Lymphs); 
neutrophils(PMN); band(Bands); plt(Platelet 
count); poly(PMN); baso(Basophils); 
hematocrit(Hematocrit); blast(Blast) 

abs band; abs blasts; abs myelo; 
nucleated rbc's; tot cells counted; 
wbc morphology; abs neutrophils; 
myelo; abs eos; abs atyps; abs meta; 
meta; plt morphology; abs lymphs; 
mchc; mcv; rbc morphology; abs 
promyel; promyel; mch; abs polys; 
rbc count; abs monos; abs basos 

cbcd 32 lymphs(Lymphs); hemoglobin(Hemoglobin); 
mono(Monocytes); wbc count(WBC); 
eo(Eosinophils); atyps(Atypical Lymphs); 
neutrophils(PMN); band(Bands); plt(Platelet 
count); poly(PMN); baso(Basophils); 
hematocrit(Hematocrit); blast(Blast) 

abs band; abs blasts; abs myelo; 
nucleated rbc's; abs fissured lymphs; 
tot cells counted; wbc morphology; 
abs neutrophils; myelo; abs eos; abs 
atyps; abs plasma cell; abs meta; 
fissured lymphs; meta; plt 
morphology; abs lymphs; plasma 
cell; mchc; mcv; rbc morphology; abs 
promyel; promyel; mch; abs polys; 
rbc count; abs monos; abs basos 

Chemistry 
Labs 

47 pco2(pCO2); ca(Serum calcium); ldl-
cholesterol(LDL); bili, total(Bilirubin); 
na(Serum sodium); glu(Serum Glucose); 
ap(Alkaline phosphatase); chol(Cholesterol); 
trig(Triglyceride); sodium bicarbonate(HCO3); 
mg(Serum magnesium); tp(Total protein); 
alb(Albumin); bun(BUN); ph(pH); po2(pO2); 
base excess(Base deficit); sgot(SGOT); 
cret(Creatinine); sgpt(SGPT); igg(IgG); 
k(Serum potassium); high dens.lipoprot(HDL); 
cl(Serum chloride); phos(Serum phosphorus); 
triglyceride(Triglyceride); alk 
phosphatase(Alkaline phosphatase) 

hcv; heat stab.alk.phos.; amy; 
temperature; o2 admin. device; tsh; 
co2; gluc.6 phos.deh.scr.; respiratory 
rate; uric; very low density 
lipoprotein; t4; hbs; o2 liters per min.; 
ceah; total carbon dioxide; sample; 
t3u; globulin; test site; bili, direct; rpr; 
ferr; oxygen saturation; igm; aat3; 
heart rate; ldh; fio2; iga 

comp12 
 
 
 
 
comp12 
(cont.) 

87 ca(Serum calcium); bili, total(Bilirubin); 
na(Serum sodium); glu(Serum Glucose); 
ap(Alkaline phosphatase); tp(Total protein); 
alb(Albumin); bun(BUN); sgot(SGOT); 
cret(Creatinine); sgpt(SGPT); k(Serum 
potassium); cl(Serum chloride) 

co2; bili, direct 

dic 80 bptt(PTT); fsp(Fibrin split products); 
fibr(Fibrinogen); bpt(PT) 

tt 

difa 55 lymphs(Lymphs); mono(Monocytes); 
eo(Eosinophils); neutrophils(PMN); 
baso(Basophils); blast(Blast) 

abs neutrophils; abs eos; abs 
lymphs; abs monos; abs basos 

diff 40 lymphs(Lymphs); mono(Monocytes); 
eo(Eosinophils); poly(PMN); baso(Basophils); 
blast(Blast) 

abs blasts; nucleated rbc's; abs eos; 
plt morphology; abs lymphs; rbc 
morphology; abs polys; abs monos; 
abs basos 

Electrolytes 86 ca(Serum calcium); na(Serum sodium); 
mg(Serum magnesium); k(Serum potassium); 
cl(Serum chloride); phos(Serum phosphorus) 

co2 

fmmbmt 67 bun(BUN); cret(Creatinine) mpcr 
frap 50 alk phosphatase(Alkaline phosphatase) heat stab.alk.phos. 
g6p 50 hemoglobin(Hemoglobin) gluc.6 phos.deh.scr. 
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Hematology 
Labs 

30 lymphs(Lymphs); bptt(PTT); 
hemoglobin(Hemoglobin); mono(Monocytes); 
wbc count(WBC); fsp(Fibrin split products); 
eo(Eosinophils); atyps(Atypical Lymphs); 
ret(Reticulocytes); neutrophils(PMN); 
band(Bands); fibr(Fibrinogen); plt(Platelet 
count); poly(PMN); baso(Basophils); 
hematocrit(Hematocrit); blast(Blast); bpt(PT) 

abs band; abs blasts; abs myelo; 
nucleated rbc's; fluid rbc count; abs 
fissured lymphs; csf comment; 
cytocentrifuge; tot cells counted; fluid 
wbc count; wbc morphology; asp 
cellurity; abs neutrophils; myelo; abs 
eos; abs atyps; abs plasma cell; abs 
meta; fissured lymphs; meta; plt 
morphology; abs lymphs; plasma 
cell; bwh type/screen; mchc; mcv; 
rbc morphology; abs promyel; 
promyel; fluid appearance; mch; 
megakaryocyte; myeloid; erythroid; 
abs polys; rbc count; abs monos; 
promyelo; esr; lymphoid; abs basos; 
tt 

hfp 86 bili, total(Bilirubin); ap(Alkaline phosphatase); 
tp(Total protein); alb(Albumin); sgot(SGOT); 
sgpt(SGPT) 

bili, direct 

iepu 33 tp(Total protein); alb(Albumin) prot electro; total globulin; volume; 
immunoelectro 

iglb 33 igg(IgG) igm; iga 
Lab Test 
 
 
 
 
 
 
 
 
 
 
 
Lab Test 
(cont.) 

27 lymphs(Lymphs); pco2(pCO2); bptt(PTT); 
ca(Serum calcium); pcr(PCR); blc(Blood 
culture); hemoglobin(Hemoglobin); 
mono(Monocytes); ldl-cholesterol(LDL); wbc 
count(WBC); bili, total(Bilirubin); fsp(Fibrin 
split products); na(Serum sodium); glu(Serum 
Glucose); ap(Alkaline phosphatase); 
chol(Cholesterol); trig(Triglyceride); 
eo(Eosinophils); urnc(Urine culture); sodium 
bicarbonate(HCO3); atyps(Atypical Lymphs); 
ret(Reticulocytes); neutrophils(PMN); csff(CSF 
culture, gram stain); band(Bands); mg(Serum 
magnesium); fibr(Fibrinogen); tp(Total 
protein); alb(Albumin); bun(BUN); plt(Platelet 
count); poly(PMN); ph(pH); po2(pO2); 
baso(Basophils); base excess(Base deficit); 
sgot(SGOT); cret(Creatinine); igg(IgG); 
sgpt(SGPT); k(Serum potassium); high 
dens.lipoprot(HDL); hematocrit(Hematocrit); 
blast(Blast); cl(Serum chloride); phos(Serum 
phosphorus); bpt(PT); alk 
phosphatase(Alkaline phosphatase); 
triglyceride(Triglyceride) 

stlk; test site; mch; parainfluenza 3; 
parainfluenza 2; oxygen saturation; 
myeloid; heart rate; abs polys; fio2; 
promyelo; esr; toxoplasmosis ab igg; 
abs basos; herpes ii antibody; 
hepatitis a antibody; hepatitis be ab; 
rbc count; abs monos; varicella 
antibody; nucleated rbc's; fluid rbc 
count; abs fissured lymphs; hep b 
surface ab; htlv1 antibody; 
cytocentrifuge; o2 admin. device; 
skin; co2; myelo; abs eos; rapid rsv; 
o2 liters per min.; plt morphology; 
herpes i antibody; plasma cell; genc; 
mchc; globulin; bone marrow 
comment; ferr; igm; megakaryocyte; 
urine ph; urine bilirubin; cmv ab igg; 
iga; urobilinogen; abs blasts; oap; 
hcv; csf comment; urine epithelial; 
serum storage; wbc morphology; 
hbs; urine crystals; rapid influenza  

ldlp 80 ldl-cholesterol(LDL); chol(Cholesterol); high 
dens.lipoprot(HDL); triglyceride(Triglyceride) 

very low density lipoprotein 

long1 38 lymphs(Lymphs); hemoglobin(Hemoglobin); 
mono(Monocytes); wbc count(WBC); 
eo(Eosinophils); atyps(Atypical Lymphs); 
plt(Platelet count); poly(PMN); 
baso(Basophils); igg(IgG); 
hematocrit(Hematocrit); blast(Blast) 

abs blasts; nucleated rbc's; c125; 
abs eos; abs atyps; plt morphology; 
abs lymphs; ceah; mchc; mcv; 
c2729; rbc morphology; mch; igm; 
abs polys; rbc count; abs monos; 
bwh vaccine abc typing; iga; abs 
basos 
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lyte 75 na(Serum sodium); k(Serum potassium); 

cl(Serum chloride) 
co2 

newa 61 ca(Serum calcium); bili, total(Bilirubin); 
glu(Serum Glucose); ap(Alkaline 
phosphatase); tp(Total protein); alb(Albumin); 
bun(BUN); sgot(SGOT); cret(Creatinine); 
sgpt(SGPT); phos(Serum phosphorus) 

hcv; uric; hbs; ceah; bili, direct; rpr; 
ldh 

WBC 
differential 
count 

41 lymphs(Lymphs); mono(Monocytes); 
eo(Eosinophils); neutrophils(PMN); 
poly(PMN); baso(Basophils); blast(Blast) 

abs blasts; nucleated rbc's; abs 
neutrophils; abs eos; plt morphology; 
abs lymphs; rbc morphology; abs 
polys; abs monos; abs basos 

 
 


