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Abstract

This thesis investigates the advantages of introducing feedback between the
processes of automated diagnosis and automated knowledge acquisition. The
introduction of such feedback results in an \hybrid" system that can learn
from its own problem-solving experience by analyzing the results of previous
diagnoses and incorporating their key features into an associative knowledge
base which, in turn, assists future diagnosis. Experimental results show that
such a system is capable of an e�ciency/accuracy trade-o� when applied to
the problem of diagnosing multiple disorders.

A primary feature of this work is a new mechanism, called the \diagnostic-
unit" representation, for remembering results of previous diagnoses in a
\decomposed-and-merged" form. The diagnostic-unit representation is ex-
plicitly designed to capture the most likely causal relationships between dis-
orders and clusters of �ndings. Unlike typical bipartite \If-Then" representa-
tions, the diagnostic-unit representation uses a general graph representation
to capture more complex causal relationships between disorders and �ndings.
Diagnostic units provide guides for decomposing a set of �ndings into smaller
subsets for which the most likely explanations can be immediately inferred.
Diagnostic units thus allow decompositional abductive diagnosis to be done
e�ciently and e�ectively. They also can facilitate one's understanding of the
structure inherent in the diagnosis domain.

In addition to the basic diagnostic-unit concept, this thesis develops
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experience-based strategies for incrementally deriving and updating diag-
nostic units and the various relationships between them. Techniques for
selecting diagnostic units relevant to a given problem and then combining
them to generate overall solutions are also described. These strategies and
techniques are implemented in a computer system called HYDI, and have
been tested in the domain of diagnosing heart failure.

Thesis Supervisor: Peter Szolovits

Title: Professor, Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Overview

This thesis addresses three problems. The �rst is the diagnosis problem,

in particular, the problem of e�ciently identifying the most likely causal

events for a given body of evidence. The second is the knowledge acquisition

problem, particularly, the problem of acquiring knowledge about the context

sensitivity of the conclusions that can be drawn from an individual piece of

evidence. This type of knowledge can guide the grouping of a given body of

evidence into easier subproblems, and thus can be called knowledge about

domain structure. The third is the problem of representing such domain-

structure knowledge. The three problems are not independent of each other:

The choice of knowledge to acquire depends on the goal of problem solving,

and mechanisms chosen to represent and use the knowledge a�ect overall

diagnostic performance. Though reasonable methods have been proposed

for solving each of these problems individually, the slow advancement in the

development of a system capable of competent and e�cient medical diagnosis

gives evidence that the direct combination of such independent solutions

does not necessarily yield acceptable results. The methods described in this

thesis seek to achieve e�cient diagnosis, by simultaneously considering the
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1.1 Overview 18

importance and interrelationship of all three problems.

1.1.1 Basic Approach

The basic approach explored in this thesis is the introduction of feedback

between the processes of problem solving and knowledge acquisition. The

introduction of such feedback results in a hybrid system that generates hy-

potheses to account for a given body of evidence, analyzes the results of the

diagnosis, and incorporates their key features into an experiential knowledge

base which, in turn, assists future diagnosis. This hybrid architecture for a

diagnostic system embodies a learning by doing paradigm.

Basic Approach to Diagnosis Problem

The basic approach to the diagnostic problem is hybrid reasoning that makes

use of association-based reasoning in conjunction with causal-model-based

reasoning. The goal is to make the solution of complex diagnostic prob-

lems more robust and e�cient. While reusing an existing system for causal-

model-based reasoning, this thesis develops and analyzes a decompositional

abductive technique for association-based reasoning.

For an intuitive understanding of decompositional abductive diagnosis,

suppose that �ndings f1, f2, : : :, fn are the evidence upon which a diagnosis

is based. One reasonable question to ask is \Can we group these �ndings into

relatively independent subsets of �ndings for which the most likely hypotheses

can be immediately inferred?" In other words, can we solve the problem by

decomposition and abduction? If so, a solution to the original problem can

be generated quickly, by combining solutions to the subsets of �ndings where

each partial solution represents a disorder that explains part of the overall

malfunction.

Problem decomposition allows a complex problem to be solved e�ciently,

by simplifying it into subproblems [24, 32, 70, 95]. Abduction also allows

e�cient problem solving, by avoiding step-by-step reasoning from �rst prin-
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ciples. Abductive inference makes \backward" inferences based on known

causal relations, to explain or justify a conclusion [18, 38, 45, 76, 89]. In

other words, given the truth of proposition Q and the implication P ! Q,

abduction is the immediate conclusion of P as an explanation for Q (even

though this may be an incorrect explanation). For example,

Flu can cause headache.

Headache is present.

) Conclude u as an explanation for the presence of headache.

It is the potential e�ciency that motivates the use of decomposition and

abduction for multidisorder diagnosis.

Decompositional techniques are e�cient, however, only when a problem

is decomposed correctly [60]. Unfortunately, the task of �nding correct de-

compositions for diagnosis is a di�cult task, for there are exponentially many

ways of decomposing a given set of �ndings. Similarly, abduction is an e�ec-

tive technique for solving the diagnosis problem only when all known causal

relations are most likely. Otherwise, poor performance with respect to accu-

racy will result (the actual, or best, explanation for headache may be emo-

tional stress, fatigue, or a serious intracranial disease such as brain tumor).

In light of these observations, this thesis attempts to explicitly represent

knowledge about the context sensitivity of the conclusions that can be drawn

from �ndings. Such knowledge provides guides for decomposing a given set

of �ndings and also can be formulated to capture only the most likely causal

relations.

A part of this thesis describes and analyzes techniques designed to ad-

dress the issue of how to e�ciently use such knowledge in decompositional

abductive diagnosis, more speci�cally 1) a technique, called \deep match-

ing adaptation," for identifying relevant knowledge pieces based not only

on similarity on the surface but also on similarity in underlying causality;

2) a similarity metric, called \speci�city-reected similarity," for determin-

ing levels of relevance of such knowledge pieces; and 3) a technique, called
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\dependency-guided picking," for combining chosen knowledge pieces to gen-

erate a solution to a given diagnostic problem.

Basic Approach to Knowledge Acquisition and Representation Prob-

lems

An important issue is how to acquire and represent knowledge that facilitates

decompositional abductive diagnosis. This research investigates the role of

experience in knowledge acquisition, by viewing problem-solving experiences

as guidance for abstracting the context sensitivity of �ndings associated with

particular disorders. Knowledge about the context sensitivity of �ndings

is acquired from experience, and stored in a structured form that allows

decompositional abductive diagnosis to be reduced to the retrieval of relevant

knowledge pieces.

A new mechanism, called the diagnostic-unit representation, is designed

to organize knowledge about the context sensitivity of �ndings. In the

diagnostic-unit representation, disorders and sets of �ndings that are in the

most likely causal relation are explicitly grouped into diagnostic units. Disor-

ders and sets of �ndings in diagnostic units are linked by causal relationships.

Each diagnostic unit can be conceptualized, at the most abstract level, as

follows:

Disorder d �! Set F of �ndings.

In this relation, a link between a disorder and a set of �ndings means that

the disorder is believed to be the most likely cause for the �ndings in the

set (not just some plausible cause). Unlike in typical bipartite \If-Then"

representations, each association between a disorder and a set of �ndings is

supported by a highly likely causal mechanism that underlies the association.

To e�ciently represent such complex causal relationships between disorders

and sets of �ndings, the diagnostic-unit representation uses a general graph

representation. Diagnostic units provide guides for decomposing a set of

�ndings into smaller subsets for which the most likely explanations can be
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immediately inferred, thereby allowing decompositional abductive diagnosis

to be done e�ciently and e�ectively. Once constructed, diagnostic units also

have the potential to facilitate one's understanding of the structure inherent

in the diagnosis domain. In addition to the basic diagnostic-unit concept, this

thesis develops methods for transforming problem-solving experience (obser-

vations about diagnosis) into diagnostic units (more general problem-solving

rules for decompositional abductive diagnosis).

The e�ciency and e�ectiveness of the techniques and methods developed

in this thesis are tested in the domain of heart failure diagnosis,1 by imple-

menting a computer system called Hydi. Heart failure diagnosis is chosen as

a test domain because 1) the domain is large, 2) causal relationships between

�ndings and disorders are generally many-to-many, uncertain, and indirect,

3) multiple coexisting diseases are common, and 4) a relatively robust causal-

model-based system for heart failure diagnosis is available.

1.1.2 Contributions

The contribution of this work is two-fold. One contribution is the develop-

ment of new methods for solving problems in complex diagnostic domains.

Classical techniques for diagnosis include association-based and model-based

reasoning. In general, an association-based reasoning system [11, 19, 26, 42,

65, 66, 79, 90] can solve problems e�ciently, but is fragile in the sense that it

is only good at solving prespeci�ed, familiar problems. Conversely, a causal-

model-based reasoning system [21, 23, 35, 37, 56, 62, 72, 83, 98] can solve not

only familiar but also unfamiliar problems from �rst principles, but is slow.

This work is motivated by the desire to develop a diagnostic technique whose

e�ciency is comparable to that of association-based reasoning but with ro-

bustness which approaches that of causal-model-based reasoning. This work

1Heart failure is \a condition in which the pumping action of the ventricle of the heart
is inadequate" [59].
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shows that such a system is in fact possible, by combining association-based

and causal-model-based reasoning.

Another contribution would be in automating the acquisition of knowl-

edge about domain structure. Patterns of �ndings can be useful indicators of

the existence of disorders and corresponding underlying causal mechanisms.

Expert physicians seem to examine �ndings for such indications. Unfortu-

nately, the ill-structuredness of the medical diagnosis domain [92] makes the

task of �nding the correct decomposition of �ndings di�cult. A computer

program that can automatically identify such patterns for diagnosis thus has

great utility to physicians. This research explores methods for automatically

discovering such patterns by accumulating a problem-solver's own experi-

ence in a decomposed and merged form: The results of the accumulation are

domain-structure knowledge that identi�es how a given body of evidence can

be structured by grouping it into subproblems.

1.2 Diagnosis of Multiple Disorders

This section describes the assumptions under which the diagnosis problem is

addressed in this thesis. It also describes how diagnostic problems and their

solutions are represented.

1.2.1 Assumptions made for Diagnosis

Multifault assumption: A common diagnosis assumption is the single-

fault assumption, where only a single disorder, or a fault, is assumed to

produce all �ndings [11, 20, 74, 90]. In medical domains like heart failure

or Acquired Immune De�ciency Syndrome (AIDS), however, patients su�er-

ing from multiple coexisting disorders are not uncommon [63]. In light of

the prevalence of multiple disorders, this thesis addresses the diagnosis prob-

lem under the multifault assumption that more than one disorder may be

present simultaneously. While expanding the power and scope of diagnos-
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tic techniques, handling of the multifault assumption generally implies an

increase in computational complexity. In multidisorder diagnosis, multiple

disorders may plausibly explain a set of �ndings. Unfortunately, it is often

unknown a priori how many disorders coexist. For example, when a patient

shows increased Aspartate Aminotransferase (AST) and complains of pain

in the upper quadrant of his or her abdomen, the �ndings could be caused

by hepatic graft-versus-host disease (GVHD), by cardiac cirrhosis,2 by both,

or by any combination of other disorders that can cause these �ndings. As

a consequence, identi�cation of the most likely combinations of disorders

potentially requires a search through a hypothesis space that grows expo-

nentially with the number of disorders [13, 43].

Disorders are not always independent: Most existing systems for diag-

nosing multiple faults perform diagnostic inferences based on the restrictive

disorder independence assumption [42, 65, 66]. This assumption speci�es

that given �ndings are grouped into subsets such that all the �ndings in each

set are caused by the same disorder, and each subset must be explained by

a unique disorder that does not explain �ndings in any other subset. The

disorder independence assumption allows for substantial reduction in the

computation involved in decompositional diagnosis { especially the process

of combining partial solutions to an entire solution. While computationally

attractive, however, the disorder independence assumption makes it di�cult

to deal appropriately with situations in which one disorder can cause other

disorders. In most medical domains, disorders are not always independent

of each other. For example, congestive heart failure can cause cardiac cir-

rhosis. This thesis addresses multidisorder diagnosis without assuming that

disorders are independent. Relaxing the disorder independence assumption

complicates decompositional diagnosis, especially the process of synthesizing

a solution from partial solutions. This thesis develops and analyzes tech-

2Cardiac cirrhosis is a liver disease characterized by the formation of �brous tissue in
the liver as a result of passive congestion of the liver due to congestive heart failure.
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niques for dealing with such increased computational complexity.

1.2.2 Representation of Diagnostic Problems

A diagnostic problem, or case, is to identify, for a given set of �ndings, the

most likely causes producing the �ndings in the set.

Input: Diagnostic problems are represented in the form of a set of �ndings.

Findings include the history of a patient such as known diagnoses and ther-

apies received, subjective symptoms such as a patient's complaints, physical

examination, and objective signs revealed either by observations or by vari-

ous special laboratory tests.

Output: A diagnosis consists of not only the disorders primarily suspected

of causing a given set of �ndings, but also an underlying pathophysiologic

mechanism that explains how these disorders are producing the �ndings in

the set. Providing an underlying causal mechanism as an integral part of

a diagnosis is important for two reasons. First, while a single listing of the

suspected disorders is computationally less burdensome to generate, over-

simpli�ed accounts of underlying causality provide few insights about how

these disorders are producing the �ndings, and thus give little guidance in

therapy planning and management. It is important to provide an underlying

pathophysiologic mechanism, particularly when intermediate links within the

causal chain are important determinants in the appropriate therapy for the

patient. Moreover, because therapies may change existing symptoms or pro-

duce their own symptoms, it is important that one be able to understand the

causes of observed �ndings. Secondly, without a pathophysiologic mechanism

that explains how �ndings are related to their primary suspected disorders,

it is di�cult to evaluate whether the results of a diagnosis \make sense" or

are little more than random guesses.

In general, it is important to �nd not only some explanations for a set

of �ndings but also the most likely explanations, particularly when high risk



1 Introduction 25

and costs are associated with treatments or tests. The computational cost

of �nding the globally most likely explanations may, however, be unaccept-

ably high. The methods presented in this thesis seek to e�ciently identify

explanations that while not necessarily globally optimal, are reasonable ap-

proximations to the desired optimal solutions.

This thesis uses a general graph notation to represent causal explanations

for �ndings. An example of this graph representation is shown in Figure 1.1.

i2

i4

f3f1 f2

d1

i3

i1

f4

d2

Figure 1.1: An example of a causal explanation for given �ndings

Black rectangular and oval nodes represent pathophysiologic states. Patho-

physiologic states are states of living organisms, and their components, that

arise from bodily abnormality or the failure of some organ or mechanism to

function properly. Pathophysiologic states are divided into elemental disor-

ders and intermediate states. Elemental disorders are either pathophysio-

logic states that are de�ned at a level needed for di�erential diagnosis, such

as myocardial infarction,3 or pathophysiologic states that do not require any

3Myocardial infarction, commonly known as a heart attack, is the formation of an
infarct (the morphological changes indicative of cell death) as a result of interruption of
the blood supply in cardiac muscle.



1.3 Research Hypotheses 26

further causes, such as constrictive pericarditis.4 Intermediate states are the

remaining pathophysiologic states, such as salt and water retention. In Fig-

ure 1.1, each black rectangular node represents an elemental disorder, and

each oval node an intermediate state. Each rectangular node represents a

�nding such as pedal edema. Each link represents a direct causal relation

between the two clinical entities represented by the corresponding nodes.

The causal graph shown in Figure 1.1 represents a causal explanation with

the elemental disorders producing the �ndings via the intermediate states

identi�ed in the graph.

The same set of �ndings can be explained in many ways. The main

driving force of this research is the question \How can we e�ciently �nd

causal graphs that represent the most likely causal explanations for a set of

�ndings?"

1.3 Research Hypotheses

This section describes the hypotheses tested in this thesis.

1.3.1 Hybrid Reasoning Approach to Diagnosis

In general, association-based reasoning is faster than model-based reasoning,

while the former is less robust than the latter. This thesis explores a hybrid

reasoning approach which seeks to take advantage of the complementary

strengths of association-based and causal-model-based reasoning. The goal

is to develop a diagnostic system that is both robust and e�cient.

Hypothesis 1 (Hybrid reasoning for diagnosis): The hybrid use of

association-based and causal-model-based reasoning can enhance the over-

all performance of a diagnostic system.

4Constrictive pericarditis is inammation of the membrane surrounding the heart which
leads to thickening.
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The hybrid reasoning architecture investigated in this thesis consists of a

relatively robust causal-model-based component capable of �rst principles

diagnosis and an association-based component for diagnosing disorders that

\have been seen before." The central idea of the hybrid reasoning archi-

tecture for combining association-based and causal-model-based reasoning

is to solve diagnostic problems, whenever possible, using association-based

reasoning; but if association-based reasoning fails to solve a problem, then

causal-model-based reasoning is performed to solve the problem step-by-step

from �rst principles. While reusing an existing causal-model-based reasoning

system, this thesis develops a decompositional abductive technique for the

association-based component.

It is assumed that the associative knowledge base on which the association-

based problem-solving component operates is initially empty, and conse-

quently the component is not initially capable of reliable diagnosis. It is

worth noting that this assumption is analogous to physicians who �rst start

medical practice: In general, while possessing su�cient amounts of domain

knowledge, such physicians lack the experience needed to make e�cient

association-based diagnosis. As various types of diagnostic problems are

solved, the results of diagnoses are incorporated as an integral part of the

associative knowledge base. Familiar kinds of problems then can be solved

more e�ciently, without search, as experienced physicians appear able to

do [25, 27, 46, 47, 48].

1.3.2 Abstraction of Causal Knowledge

In general, \knowledge inundation" makes diagnosis from �rst principles

computationally intensive. For instance, consider the causal relationships

between disorders and �ndings. Such relationships are often many-to-many,

indirect, and uncertain. As knowledge is added, entities in a knowledge base

are increasingly likely to interact in uncertain ways with each other. In light

of this observation, this thesis organizes complex pathophysiologic knowledge

in a structured form so that knowledge relevant to a diagnostic problem can
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be e�ciently identi�ed and retrieved (by the association-based component).

To provide an intuitive understanding of the organization structure, let

us consider the causal knowledge base shown in Figure 1.2(a).

d2 d3d1

i4i3i1 i2

i5
i6 i7

f1 f2 f3 f4 f5 f6 f7

(a)

f4

d2

i6

i3 i4

i7

f6f4

i6

f7

d3

f3

(b)

Figure 1.2: Organizing a knowledge base such that domain decomposability is cap-
tured; (a) Original causal knowledge base; (b) Abstract knowledge base that captures
domain decomposability

The causal knowledge base exhibits little structure, and provides little guid-

ance in detecting patterns of �ndings that may exist in a patient. Now,

suppose that the causal knowledge base is abstracted to the knowledge base

shown in Figure 1.2(b). Underlying this transformation is the premise that

ill-structured causal knowledge can be grouped into relatively independent
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modules that capture the decomposability of the diagnosis domain. In the

abstracted knowledge base, the structure is more apparent, though some

of the nodes and causal links have been removed. Nodes and links are re-

moved if they are deemed to be \diagnostically insigni�cant." This thesis

de�nes diagnostically insigni�cant causal relations as causal relations that

are plausible in principle, but are not likely to appear as parts of diagnoses

in practice. Diagnostically signi�cant causal relations, causal relations that

are not only plausible in principle but also likely to be parts of diagnoses

of patients, remain in the abstracted knowledge base. Remaining nodes and

causal links are organized into two modules where each module consists of

a single disorder, a set of intermediate states, a set of �ndings, and a set of

causal links. While the two modules are not completely decomposable, they

are \nearly decomposable" in the sense that links within each module are rel-

atively dense and strong, but links between two modules are relatively sparse

and weak. Each module then can be used as a whole independently of the

other. Such \structuring" or abstraction provides insights about how given

�ndings can be grouped into subproblems. This thesis develops techniques

for using such knowledge about domain structure to perform decompositional

abductive diagnosis e�ciently and e�ectively.

Case-based reasoning provides another example of a modular representa-

tion of knowledge [36, 44, 53, 55, 84, 94]. In general, cases are stored as atoms.

Each stored case represents a chunk of (relatively low-level) knowledge that is

used independently of other cases, to solve problems. The concept of knowl-

edge modules is also explored in the area of learning [12, 28, 39, 57, 85, 86].

What to Abstract: Context Sensitivity of Findings

The next issue is what knowledge to abstract (in modules shown in Fig-

ure 1.2(b)). What to abstract is not independent of the goal of problem

solving, since it depends heavily on the use to which we intend to put the

knowledge. Abstracting knowledge in an intentional vacuum may result in an

abstraction that is too general to e�ciently and e�ectively lead any particular



1.3 Research Hypotheses 30

problem-solving process to a solution.

This thesis abstracts knowledge which allows search-intensive causal-model-

based diagnosis to be reduced to faster decompositional abductive diagnosis.

To do so, it observes that the context sensitivity of �ndings can greatly af-

fect overall performance. In most medical domains, �ndings in isolation may

have more than one cause, but �ndings as a whole can constrain each other's

cause, consequently reducing the number of causes to consider. In addition,

the signi�cance of a �nding depends on other �ndings that occur together

with it. As a consequence, changing some �ndings may even require �ndings

that remain the same to be explained di�erently. For example, high cardiac

output is often the most likely explanation for systolic ejection murmur.5

If �ndings that strongly suggest low cardiac output are presented, however,

aortic stenosis6 might be a better explanation for systolic ejection murmur

than high cardiac output. This example illustrates that the most likely cause

of a �nding cannot be determined by looking at its immediate cause in iso-

lation, since it generally depends on the relative strength of causes of other

�ndings that occur simultaneously.

The context sensitivity of �ndings implies that �ndings can be grouped

into sets such that the �ndings in each set, taken together, immediately

suggest the most likely disorder and pathophysiologic mechanism that best

explains how this disorder is causing the �ndings in the set. This thesis

explicitly represents, as a unit, such a set of �ndings and its most likely

disorder and underlying pathophysiologic mechanism. Such knowledge about

the context sensitivity of �ndings allows diagnosis of multiple disorders to be

reduced to reasoning about how to decompose a set of �ndings into smaller

subsets which can be solved immediately and relatively independently of each

other.

5Systolic ejection murmur is an adventitious sound heard on auscultation of the heart
that is most intense at the time of maximum ow of blood from the heart.

6Aortic stenosis is narrowing of aortic valve or its ori�ce due to lesions of the wall with
scar formation.
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How to acquire: Role of Experience

The key question that arises is how to acquire rules that capture the context

sensitivity of �ndings. A typical method, often used in expert systems devel-

opment, is an interview with a domain expert. Cognitive and AI researchers

have found, however, that it is generally hard to directly draw, even from ex-

pert physicians, such experiential knowledge [75, 97]. In an attempt to over-

come the di�culties associated with manual compilation, this thesis views

experience accumulation as the processes through which knowledge is struc-

tured into a ready-to-use coherently simpli�ed whole. This view allows the

results of previous diagnoses to be used to acquire general problem-solving

rules for diagnosis, i.e., experiential knowledge. In the results of diagnosis,

causal relationships that are critical to diagnosis are highlighted, while in-

signi�cant ones are suppressed. The results of previous diagnosis, therefore,

provide a useful level of abstraction that allows diagnostic problems to be

solved e�ciently.

Observe that the automation of the experiential knowledge acquisition

process has in e�ect introduced feedback between the reasoning and knowledge-

acquisition processes. The assessment of a hypothesis computed during prob-

lem solving becomes a key link in a feedback loop. Whenever problem solving

is completed, the associative knowledge base is adjusted. Such dynamic in-

corporation of revisions, i.e., new experience, into the associative knowledge

base allows the incorporation of changes in knowledge, prior to beginning a

new problem-solving cycle. This adjustment thus feeds forward to future di-

agnosis. The following hypotheses summarize the notion of feedback between

the reasoning and knowledge-acquisition processes.

Hypothesis 2 (Role of experience in the acquisition of general rules

for diagnosis): The results of previous diagnoses can be used to in-

crementally derive, and update, knowledge about the context sensitivity of

�ndings and thus to guide decompositional abductive diagnosis.
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Hypothesis 3 (Role of experience in domain understanding and

problem solving): As knowledge about the context sensitivity of �nd-

ings is abstracted, understanding of the decomposability of the diagnosis

domain is enhanced, and subsequent problem solving can be done more

e�ciently.

The associative knowledge base investigated in this thesis di�ers from

most existing knowledge bases in the way knowledge is acquired. In most

existing knowledge-based systems, including the causal-model-based system

used in this thesis, knowledge is acquired from domain experts, and then en-

coded manually into a knowledge base. Once encoded, knowledge generally

remains �xed in the knowledge base, and used repeatedly for each problem.

In this regard, this type of knowledge bases can be called static. In contrast,

contents of the associative knowledge base investigated in this thesis are de-

rived from the problem-solver's own experience, and change with experience.

The associative knowledge base thus can be called a dynamic knowledge base.

How to Represent: Representation of Experiences in a Decomposed-

and-Merged Form

The choice of problem-solving algorithms and representational mechanisms

often has a signi�cant impact on overall problem-solving performance. The

issue of how to remember the results of previous diagnoses must therefore

be addressed. More speci�cally, one needs to decide whether to treat each

solved case as \atomic" or decomposable. This choice of a \grain size" can

a�ect overall reasoning performance and domain understanding. A common

approach, investigated in most existing case-based reasoning systems, is to

store every solved case as an independent atom [36, 53, 55, 84, 94]. While

easy to implement, storing each case as an atom can limit the reusability

of previous cases in future problem solving, by reducing the possibility of

�nding matches particularly when only parts of cases match. It may also

result in ine�cient use of memory space, because even very similar cases
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are stored separately. In addition, such \redundancy" can adversely a�ect

overall problem-solving e�ciency. As solved cases are added to a system, we

expect the system to be able to solve a problem without search (by directly

retrieving a solution to a similar previous case). In deliberating about what

case to use, however, all the stored cases need to be considered. If there are

many cases, then simply searching them to �nd the best match(es) can be

very time-consuming.

In an attempt to deal with these di�culties, this thesis stores the results

of previous diagnoses in a \decomposed-and-merged" form. To provide an

intuitive picture, consider two hypothetical solved cases, Case1 and Case2,

shown in Figure 1.3(a). Case1 is decomposable into a, b, c, and d, while

Case2 can be decomposed into a, b0, d0, and e.

Case1 Case2

(a)

(b)

 a               b                 c            d   a'          e               b'              d' 

 e                                      c               

Result of merging
        a and a'

Result of merging
        b and b'

Result of merging
        d and d'

Figure 1.3: An example of storing solved cases in a decomposed-and-merged form; a)
Case1 is decomposable into a; b; c; and d, while Case2 can decomposed into a0; e; b0; and
d0; b) A form in which Case1 and Case2 are stored, supposing that a and a0, b and b0, and
d and d0, respectively, can be merged to produce a combined whole

This thesis attempts to merge components from di�erent solved cases when
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possible. For expository purposes, suppose that a in Case1 and a0 in Case2

can be merged, as can b and b0, and d and d0, respectively. Once merged,

Case1 and Case2 can be stored in the decomposed-and-merged form shown

in Figure 1.3(b).

Storing solved cases in the decomposed-and-merged form raises the issues

of how to decompose and how to merge. The issue of how to decompose is

addressed by decomposing a solved case, more speci�cally a causal graph

representing the most likely causal explanation, such that each component of

the decomposed case captures the context sensitivity of �ndings. The basic

approach taken to address the merging issue is as follows: If components

are instantiations of the same underlying pathophysiologic mechanism of a

disorder, then these components, from di�erent solved cases, can be merged

to produce a coherent combined whole.

By remembering solved cases in a decomposed form, parts of cases can

be accessed and used more easily. By remembering similar cases in a merged

form, resources such as memory space and processing time can be used more

e�ciently.

The primary mechanism investigated in this thesis, for remembering com-

ponents of decomposed diagnoses, is the diagnostic-unit representation. The

diagnostic-unit representation attempts to capture the context sensitivity of

�ndings by explicitly storing, in separation from other plausible causal rela-

tions, the most likely causal relations between disorders and sets of �ndings.

Thus, in the diagnostic-unit representation all known causal relations are

most likely. The diagnostic-unit representation uses a general graph rep-

resentation to e�ciently specify the often complex underlying causal rela-

tionships that link disorders and sets of �ndings. Each diagnostic unit is a

general graph such that the set of �ndings identi�ed in the graph, as a whole,

strongly suggest the identi�ed disorder and underlying causal mechanism.

This thesis investigates experience-based strategies for incrementally de-

riving and updating diagnostic units and the various relationships between
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them.

How to Use: Diagnostic Units as Constraint for Evidence Grouping

The knowledge base that consists of diagnostic units is a categorical knowl-

edge base that contains only the most likely causal associations between dis-

orders and sets of �ndings. Diagnostic units represent grouping constraints

stating how a given set of �ndings can be grouped into subproblems for

which the most likely explanations can be concluded immediately. In the

diagnostic-unit representation paradigm, therefore, the grouping of given ev-

idence into subproblems can be reduced to a search for relevant diagnostic

units. This thesis addresses the issue of how to determine relevant diagnostic

units, by matching diagnostic units against the given evidence.

Unfortunately, in such medical domains as heart failure, patients with the

exact same set of �ndings rarely occur. In addition, di�erent patients can

manifest di�erent �ndings, even when they are su�ering from the same dis-

ease and underlying pathophysiologic mechanism. Since diagnostic units used

in this thesis are acquired from diagnostic experience, knowledge captured in

diagnostic units is generally imperfect. As a consequence, it is generally nec-

essary to translate, or \adapt," existing diagnostic units so that they match a

new problem. This thesis develops an approximate technique for performing

this adaptation. The technique is based on a notion of deep matching which

matches diagnostic units against a problem at the causal level as well as at

the �nding level. The goal is to increase the usability of diagnostic units in

later diagnosis.

In domains where diagnosis is based on categorical knowledge, plausibility

criteria are required to select the best hypotheses [77]: A hypothesis is a set

of disorders, or faulty components, which can explain all the given �ndings

when considered together. A common plausibility criterion used in most re-

cent diagnostic algorithms is minimality [23, 82, 83, 101, 102]. A hypothesis

is minimal when none of its subsets can account for all of the �ndings. In
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general, plausibility criteria such as minimality identify some plausible so-

lutions under the disorder independence assumption or the assumption of

set additivity of observations [73]. Such assumptions reduce computational

complexity. Accuracy is traded for e�ciency, however, by not taking into

consideration the possibility that disorders and �ndings can interact so as

to mask or support each other. This thesis attempts to improve accuracy

without unduly degrading e�ciency. Toward this end, a similarity metric

which takes the speci�city of �ndings into account is developed for gauging

the similarity between a problem and a diagnostic unit. In addition, de-

pendency among disorders is used to guide the process of combining highly

similar diagnostic units into an overall solution. By doing so, interactions

between disorders and �ndings are taken into consideration.

Experimental results indicate that the diagnostic-unit representation ef-

fectively captures domain decomposability. They also support that the tech-

niques developed in this thesis, for using diagnostic units, are able to e�ec-

tively exploit this domain decomposability when performing decompositional

abductive diagnosis.

1.4 Hybrid Diagnostic System with Feedback

To facilitate further discussion, this section describes the logical structure

of a hybrid diagnostic architecture designed explicitly to support feedback

between the problem-solving and knowledge-acquisition processes.

A diagnostic system is said to be a hybrid diagnostic system if it is capable

of performing a diagnostic task both associatively and from �rst principles.

Furthermore, a diagnostic system is said to contain feedback if it is capable

of incorporating its own diagnostic experience into its knowledge base.
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1.4.1 HYDI

Hydi is a hybrid diagnostic system with feedback. It diagnoses multiple

disorders without assuming that disorders are independent, and automati-

cally acquire knowledge about the context sensitivity of �ndings from its own

problem-solving experience. Figure 1.4 summarizes the basic architecture of

Hydi.

AAAAA
AAAAA

  Knowledge   Incorporation

 Diagnosis 

Results of
diagnosis

Results of  analysis 
of results of diagnosis

CMS
KCMS

KAS

Problem  Solvers Knowledge  bases

AS

   KI    

CMS: Causal-model-based reasoner of HYDI (HF)
AS: Association-based reasoner of HYDI (Decompositional abductive diagnosis)
KCMS: Causal knowledge base for use by CMS
KAS: Associative knowledge base for use by AS
KI: Knowledge incorporator of HYDI 

Figure 1.4: Architecture of HYDI

Problem-Solving Component of HYDI

The problem-solving component of Hydi consists of the causal-model-based

problem solver, cms, and the association-based problem solver, as. The
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intention is to take advantage of the robustness of causal-model-based rea-

soning and the e�ciency of association-based reasoning. Since the focus of

this thesis is not on the speci�cs of causal-model-based reasoning, Hydi uses

an existing probabilistic causal-model-based system, Hf, for cms. The Hf

program is a probabilistic causal-model-based diagnostic system which auto-

mates, from �rst principles, heart failure diagnosis in the human cardiovascu-

lar system [62, 61]. For as, this thesis develops a decompositional abductive

diagnosis technique that exploits knowledge structures in the diagnostic-unit

representation.

Knowledge Bases of HYDI

Hydi has two knowledge bases. One is the causal knowledge base, KCMS,

that contains domain causal knowledge. It is used mainly by cms. The

other is the associative knowledge base, KAS, in which associative knowledge,

speci�cally knowledge about the context sensitivity of �ndings, is stored for

use by as.

Initially,Hydi has no associative knowledge, but is able to solve diagnos-

tic problems from �rst principles. As Hydi solves various types of diagnos-

tic problems, however, its associative knowledge base evolves away from its

initial empty state. Hydi automatically acquires knowledge about the con-

text sensitivity of �ndings, by analyzing and accumulating its own problem-

solving experience in the decomposed-and-merged form. As the associative

knowledge base grows with experience,Hydi can solve familiar kinds of prob-

lems more e�ciently.

Hybrid Reasoning for Diagnosis

Hydi performs hybrid reasoning to solve a diagnostic problem. Hydi's ba-

sic hybrid-reasoning ow is as follows. Given a diagnostic problem, as �rst

tries to solve the problem. If it fails to generate an acceptable solution

to the problem, then the more robust cms is called to solve the problem



1 Introduction 39

step-by-step from �rst principles. As the associative knowledge base grows

with experience, cms is expected to be called less to solve a problem from

�rst principles. From the cognitive perspective, it is worth noting that this

problem-solving behavior is analogous to physicians. When students grad-

uate from medical school, they presumably possess considerable amounts of

medical domain knowledge. Their wealth of knowledge does not seem to

be e�ectively activated, however, when they are confronted by real-world

problems. In general, many years of additional training are required before

students are considered \ready to practice." In contrast to \fresh" students

who generally use step-by-step reasoning strategies, those experts in the areas

of the patient's diseases appear able to recognize relevant pathophysiologic

details and zero in on the target immediately [1, 3, 10, 25, 27, 47, 48]. So

much so that an observer might feel that no detailed reasoning is involved

in their thought processes at all. From a pragmatic standpoint, the use of

association-based diagnosis supported by a causal model of knowledge re-

duces the possibility of failing to make a reasonable diagnosis (even though

there is the potential problem that as incorrectly thinks it can solve.).

Knowledge Incorporator

A goal of this dissertation research is to develop an experience-guided mech-

anism for abstracting \expertise" that allows a diagnostic system to get

to believed-to-be good solutions without search. Such general problem-

solving rules for diagnosis are acquired from experience and stored in KAS

by the knowledge incorporator. Whenever a diagnostic problem is solved,

the knowledge incorporator analyzes and decomposes the results of the di-

agnosis (speci�cally, the most likely causal explanations for the given set of

�ndings). The results of the analysis are potential diagnostic units. The

potential diagnostic units are then used to re�ne existing knowledge in KAS.

Two diagnostic units are merged to produce a combined whole if they rep-

resent the same underlying pathophysiologic mechanism of a disorder. It is

the result of merging that is stored in KAS. Such dynamic incorporation of
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new experience into KAS, prior to beginning a new problem-solving cycle, al-

lows the adjustment to feed forward to future diagnosis. The diagnostic-unit

representation allows the perturbation caused by any change in KAS to be

localized only to a�ected diagnostic units.

In general, the knowledge incorporation process attempts to abstract di-

agnostic units whenever possible. The cost of abstraction is that omitted

causal details are sometimes important for problem solving. In Hydi which

is supported by a causal knowledge base, however, this cost is relatively in-

signi�cant: Omitted details can be made available from the causal knowledge.

1.5 Guide to the Thesis

Chapter 2 describes previous work related to the work described in this the-

sis. The hybrid reasoning investigated in this research uses two types of

knowledge representation: a causal representation and a diagnostic-unit rep-

resentation. Chapter 3 describes a causal representation to model medical

domain principles for diagnosis. It also examines features of diagnostic ex-

perience that suggest a possibility of gradual improvement in overall perfor-

mance. Chapter 4 discusses the diagnostic-unit representation for remember-

ing the results of previous diagnoses. This thesis uses diagnostic experience to

acquire and incrementally update diagnostic units and the relationships be-

tween them. Chapter 5 addresses issues that arise in incorporating new diag-

nostic experience into an existing body of experiential knowledge. Chapter 6

describes a decomposition-based abductive diagnosis method that exploits

the domain structure identi�ed through diagnostic experience. Chapter 7

presents the results of experiments, conducted to test the e�ectiveness of the

diagnostic-unit representation and the techniques developed for using diag-

nostic units in decompositional abductive diagnosis. Chapter 8 summarizes

this research, and suggests future directions which this research could extend

to.
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Related Work

2.1 Diagnosis of Multiple Disorders

Gorry addressed the problem of multiple disorders based on \pattern-sorting

function [34]." The pattern-sorting function groups �ndings into clusters. A

�nding cluster is considered to be valid if there exists a disorder that can ex-

plain all the �ndings in the cluster. The program decides sequentially which

clusters to pursue based on probability and utility.

Another system for diagnosing multiple disorders is Internist [42, 65,

66]. Internist is intended to deal with the entire scope of general inter-

nal medicine. Symptoms and diseases are matched based on forward and

backward conditional probabilities. Internist identi�es the disease with

the highest score based on these probabilities, and then builds a di�erential

diagnosis around this disease. The di�erential diagnosis is the list of dis-

eases that are competing explanations for the same �ndings. The top-ranked

disease in the di�erential diagnosis is chosen. If the chosen disease cannot ex-

plain all the given �ndings, another di�erential diagnosis is formed based on

the unexplained �ndings. This process continues until all the given �ndings

are explained.

41
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One problem with Internist's sequential approach is that it does not

handle interacting disorders and �ndings appropriately. After concluding a

disease, Internist removes all the �ndings that can be explained by the

disease from further consideration. This can be particularly problematic, if

removed �ndings may actually be caused by other disease. In general, In-

ternist's sequential approach is e�ective, in domains where each �nding is

caused by a single disorder, and disorders are independent.

The Caduceus program [79] addresses the de�ciencies in internist by

using a combined hierarchical-causal network. The hierarchies contain pre-

speci�ed di�erential diagnoses. Causal links connect physiologically related

disease categories to di�erent hierarchies. Di�erential diagnoses are triggered

by causal links. caduceus derives a hypothesis for a problem, by triggering

multiple di�erential diagnoses in the hierarchies and then following various

subsumption and causal relationships. A main problem with Caduceus is

that it depends on di�erential diagnoses that are hierarchically structured in

advance. In ill-structure domains like medical diagnosis, however, the task

of organizing di�erentials cleanly is a di�cult problem in itself.

synopsis is a system for diagnosing multiple disorders in the domain

of internal medicine [102]. It generates a plausible hypothesis, by �nding a

plausible candidate. A candidate is a set of clusters of �ndings such that the

union of all the clusters in the set is equal to the set of �ndings presented for

diagnosis, and for any two clusters in the set their intersection is an empty set.

A candidate is plausible if all �ndings in a cluster must be explainable by the

same single disorder, and each cluster must be explained by a unique disorder

that does not explain another cluster. A plausible candidate is found by

decompositional search. Decompositional search is done on the search space

which is computed dynamically for each problem, based on known causal

relations between diseases and �ndings. Each causal relation is represented

in the bipartite form of \Disorder d ! Finding f ," where a link represents
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that disorder d can cause �nding f .

The current implementation of Synopsis does not make an attempt to

discern the di�erence in strengths of associations between diseases and �nd-

ings. While this greatly simpli�es computational requirements, there is no

guarantee that a hypothesis found by Synopsis is the most likely diagnosis.

In addition, Synopsis groups �ndings into clusters, implicitly assuming the

context insensitivity of �ndings. It treats �ndings as atoms, and examines

them one at a time independently of each other. As a result, �ndings f and

f 0, each of which can be caused by d, can be grouped together around d, even

though the simultaneous occurrence of f and f 0 could lower the likelihood

d as a cause. Synopsis can be extended by adding probability to take the

di�erence in the strength of a disorder in producing a particular �nding. It

then must compute a probability for each plausible candidate. The computa-

tion of a probability of a candidate is proven to be expensive [102], however,

requiring time that is exponential in the number of �ndings in a case.

More rigorous approaches to multidisorder diagnosis appear in Abel and

Hf. Abel is a program for acid-base and electrolyte disorders [72]. It divides

physiological knowledge along di�erent levels of detail, including clinical,

physiological, and biochemical levels. It reasons about interactions between

diseases at di�erent levels of abstraction. Hf [61, 62] is another system that

reasons with detailed pathophysiological knowledge. Hf makes a diagnosis,

using a probabilistic causal reasoning technique. Both Abel and Hf require

detailed physiologic knowledge to solve problems, and thus are generally

suited to domains with well understood physiology.
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2.2 Combining Association-based and Causal-

model-based Reasoning

Several attempts have been made to combine association-based and causal-

model-based reasoning, to take advantage of their complementary strengths.

For example, Gordius combines association-based and causal reason-

ing techniques under the Generate, Test, and Debug (GTD) paradigm [91].

Association-based reasoning is used to generate a plausible hypothesis. Causal

reasoning is used to test and debug the plausible hypothesis.

Goel's computational model uses association-based and model-based rea-

soning to design a physical device [33]. Association-based reasoning, more

speci�cally case-based reasoning, is used to identify candidate components of

the device. Then, model-based reasoning is then used to modify the candi-

date components so that the components together produce desired behavior

of the device.

Casey is another system which combines association-based and causal-

model-based reasoning for diagnosing heart failure [55]. Association-based

reasoning, more speci�cally comparison-based case-based reasoning, is per-

formed to generate a hypothesis. If a diagnosis cannot be made by association-

based reasoning, then a causal-model-based reasoning system, speci�cally

Hf, is called to solve the problem.

2.3 Knowledge Acquisition

Much of research concern so far has been centered around the development

of problem-solving mechanisms for dealing with computational complexity in

a manageable way. As a result, while the power of a knowledge-based system

derives from domain-speci�c knowledge, the concern about how to �ll out

knowledge entries in a knowledge base has been relatively inactive. In most

of existing systems for medical diagnosis, knowledge was compiled, typically

by knowledge engineers, through expensive lengthy interviews with domain
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experts. In turn, compiled knowledge was encoded into a system, which is

a time-consuming and painstaking task. Not only the construction cost, but

also costs due to human errors make the labor-intensive way of knowledge

acquisition unattractive. It is very unlikely that all of knowledge required in

problem-solving can be known a priori and entered without errors for use by a

program [46, 47]. This might explain why there seem to be many people who

have more con�dence in the medical diagnosis made by \expert physicians"

combining facts in a heuristic manner than in the diagnosis emanating from a

large system which operates on knowledge compiled from a person by another

person.

The automatic acquisition of knowledge becomes increasingly important,

as knowledge-intensity of a domain increases. Problem-solving experience

o�ers a valuable source for knowledge that allows e�cient problem solving.

E�ective utilization of experiences in any organized fashion has emerged as

a pressing concern to overcome the drawbacks of one-time labor-intensive

knowledge acquisition. Early attempts at learning can be traced back to

Arthur Samuel's checkers-playing program. His program not only played

games with its opponents but also exploited experience at games to improve

its later performance [87]. The process of bringing learning into a more

central position in Arti�cial Intelligence was accelerated by Winston's work

on blocks-world learning [100]. Such issues as when, where, and how to

remember for e�ective knowledge acquisition have also received researchers'

attention [10, 31]. Attempts have been made to acquire rules inductively

from particular examples. Inductive learning algorithms enable a system

to automatically extract general rules [4, 80], expertise [9], concepts [6, 39,

40], or structures [8, 41] from externally supplied examples. Another area

of learning is the learning of control knowledge to augment the e�ciency

of problem solving [3, 68, 69]. A system attempts to learn a sequence of

operators that can be grouped as a macro operator. A macro operator is

treated as a single operator by a problem-solving algorithm. By reducing

a search space, chunking of knowledge can improve e�ciency of problem
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solving [12, 29].

2.4 Explanation-Based Learning

It is possible to use explanation-based learning to learn disease concepts.

Explanation-based learning is a technique for learning a concept without the

use of many training examples [22, 68]. It consists of two steps: generation

of an explanation for a given example, followed by generalization of the ex-

planation. A domain theory is used to generalize the explanation, and it is

the domain theory that makes it possible to learn a concept from only a few

training examples. The direct application of explanation-based learning to

disease concept learning, however, would be problematic without appropriate

extensions to handle the following di�culties.

First, explanation-based learning is generally only e�ective in domains

where pruning is simple. If a domain theory consists of causations where

each e�ect has a single certain corresponding cause, the generation of an

explanation is a relatively simple task: The cause of an e�ect can be identi�ed

with certainty. If there are many \levels" of uncertain multiple causations,

however, exponentially many potential explanations need to be considered

to generate a good explanation. The issue of how to deal with the potential

combinatorial explosion that arises in generating an explanation emerges as

an overriding concern.

Second, explanation-based learning generally assumes that a complete

domain theory is available. This assumption is motivated by the desire to

generalize explanations into provably correct ones. It is hard, if even possible,

to come by a complete domain theory in ill-understood domains likemedicine.

In such domains, learning empirically justi�able experience is likely to be

more sensible.

Third, knowledge learned using explanation-based learning can generally

only be applied when exact matches occur. Within the context of medical

diagnosis, this restriction implies that a learned disease concept cannot be
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used in diagnosis, unless a diagnostic problem matches the concept exactly.

In most medical domains, patients with the exact same �ndings rarely occur.

This characteristic of medical diagnosis suggests that partial matching may

have greater utility.

Finally, much of explanation-based learning focuses primarily on learn-

ing concepts one at a time, independently of each other. In most medical

domains where multiple disorders are not uncommon, however, a disease

can have di�erent descriptions, depending on what other diseases occur with

it. Dependencies among concepts have to be handled appropriately if useful

disease concepts are to be learned.

2.5 Integration of Problem solving and Learn-

ing

What to learn is not independent of the goals of problem solving. In the light

of the interrelationship between problem solving and learning, systems such

as Soar coupled learning to problem solving. Soar is a rule-based general-

purpose problem-solving system which is integrated with explanation-based

learning [57]. An explanation-based learning component of Soar analyzes

explanations and chunks macro rules that summarize the explanations [22,

57, 49, 85].

Prodigy [68] is another general purpose problem-solving system which

is integrated with learning mechanisms. Much of learning in Prodigy is

directed at automatically acquiring control rules from experience. The goal

is to improve e�ciency of a search process. prodigy di�ers from Soar in

that it attempts to learn from its failure as well as success. If it pursues an

unsuccessful path, Prodigy tries to come up with an explanation of reasons

for the failure. This explanation is then used to construct control rules that

will help Prodigy avoid pursuing unpromising search paths in later problem

solving.
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Casey [55] is a diagnostic system that acquires associative knowledge

from experience to improve later diagnostic performance. Casey is a case-

based, more speci�cally comparison-based, reasoning system grounded on

Hf. Casey remembers, individually as independent atoms, cases that have

been successfully solved for its own use in future problem solving. Each

stored case represents an associative rule that links a problem situation to

its solution. Solved cases are stored in a MOP (Memory Organization Packet)

structure [86]. The number of memory structures grow exponentially in the

number of cases. Although a hashing scheme could be used to locate previ-

ous cases relevant to a new case, storing exponentially many generalizations

and cases poses serious di�culties [2]. Casey solves a problem, by directly

inspecting old cases to �nd best matches against the problem. Because all

heart failure cases involve multiple, interacting diseases, diseases and �nd-

ings can combine to form innumerable problem situations. It is di�cult to

�nd two patients with exactly same set of �ndings. This can adversely a�ect

problem-solving performance of Casey which relies on the routine recurrence

of similar cases.

2.6 Case-based Reasoning

Case-based reasoning is an approach to perform problem-solving assignments

based on a collection of stored previous episodes [14, 30, 36, 50, 51, 52, 54,

81, 84, 94]. The use of previous experience in future problem solving raises

the issue of how to store previous cases. A common approach, investigated

in case-based reasoning, is typically to store previous cases individually as

independent atoms. Stored cases represent relatively low-level knowledge for

solving problems which have been encountered previously.

Indexing schemes are required to access stored episodes during future

problem solving. A common indexing scheme, investigated in the literature,

often uses pre-determined features for indexing. In complex domains, like

design or medical diagnosis, however, it is often hard to identify primary fea-
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tures a priori, because cases which are dissimilar on the surface may be more

relevant to a problem than ones which are similar in appearance. To address

the problems of appearance-based indexing, attempts have been made to

retrieve cases based on generalized indices { for instance, relevant indices de-

termined by explanation-based learning [7], underlying common causes [55],

and abstract indexing vocabulary speci�ed in a hierarchy of normative causal

interactions [96].

Once best matches are located, they can be adapted, if necessary, to �t

the current problem. For example consider Chef, a case-based planner ap-

plied in the domain of cooking [36]. It adapts the retrieved recipe to meet

current requirements, by applying a series of modi�cation strategies. Adapta-

tion strategies are generally built around domain-speci�c heuristics. In com-

plex domains, however, the adaptation of retrieved cases based on heuristic

associations and search can be computationally expensive. Computational

burdens can be relieved with an reductionistic approach, by decomposing an

adaptation space into smaller adaptation spaces. In Goel's computational

model for designing physical devices, for example, \modi�cation-generation

plans" are used for decomposing an adaptation space to �x behavioral dif-

ference between a new problem and a retrieved one [33]. Each plan, indexed

by a speci�c type of behavioral di�erences, identi�es candidate components

which need structural modi�cations. Qualitative behavior-structure models

are used for adaptation. Each behavior-structure model speci�es how output

behaviors are produced by the structure of a design.

A case-based reasoning technique can be used in conjunction with a

problem-decomposition mechanism. When presented with a new problem,

the issue that must be dealt with is how to decompose the given prob-

lem. Problem-decomposition techniques, explored in the case-based reason-

ing literature, are generally examined in relatively highly structured domains

where how to decompose a problem can be speci�ed a priori with relative

ease [44, 58, 81, 96]. In ill-structured domains like medical diagnosis, how-

ever, pre-speci�cation of how to decompose a problem is often di�cult. Such
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di�culty appears reected in previous applications of case-based reasoning

to medical diagnosis: Comparison-based reasoning that transfers an entire

solution is usually used [52, 55]. Comparison-based reasoning transfers an

entire solution to a previous case for a new case, by modifying it based on

di�erences between the new and the previous.



Chapter 3

Causal Knowledge

Representation

This chapter formally describes a causal representation of pathophysiologic

knowledge. It also discusses the complexity of diagnosis based on the causal

representation. While causal representation is not new [62, 75, 78], the for-

mal investigation of a causal representation of medical knowledge helps un-

derstand what diagnostic experiences are, and thus facilitates the discussion

of representational and acquisitional approaches explored in this thesis.

3.1 Pathophysiologic Knowledge in Causal Rep-

resentation

A causal knowledge base for medical diagnosis contains pathophysiologic

knowledge that describes the malfunctioning of a human body. This sec-

tion describes a way of modeling pathophysiologic knowledge in terms of

causal relationships between clinical entities. Clinical entities include ele-

mental disorders, intermediate states, and �ndings, which were described in

Section 1.2.2. To facilitate discussion, let D denote a set of variables that

represent elemental disorders, I a set of variables that represent intermediate

51
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states, and F a set of variables that represent �ndings. Let U denote the set

of variables that represent all clinical entities: In other words, U = D[I[F .

An additional notation is introduced to describe value assignments for

variables. For any variable x in U , let Vx denote a set of values that can be

assigned to x. For any v in Vx, value assignment x := v (for example, aortic

stenosis := present) represents the instantiation of the value of x as v. An

instantiated variable is a variable with a value assigned to it. A �nding is

an instantiated �nding variable in F , an elemental disorder an instantiated

elemental disorder variable in D, and an intermediate state an instantiated

intermediate state in I. This thesis assumes that for any variable x in U , its

values can be classi�ed into two classes: normal and abnormal.

Causal mechanisms in a human body are often uncertain. Causal rela-

tionships between clinical entities are thus uncertain. Such uncertainty can

be modeled in probabilistic terms with a particular probability being used to

represent the degree of belief in a causal dependency between clinical entities.

An uncertain direct causal relation can be represented as follows.

Notation (Direct causal relation): For any a 2 D[I and any b 2 U such

that a is a direct cause for b, a
Pr(bja)
����!c b denotes a direct causal relation

from a to b, where given that a (and nothing else) occurred, a can cause

b with probability of Pr(bja).

Conditional probabilities associated with each causal link represents the

strength of a cause in producing a particular e�ect. According to proba-

bility combining rules based on a noisy-or assumption, it can be computed,

from the evidence collected, how likely it is that various disorders are present.

(See [62] for details.)

Note that �ndings only occur as e�ects in direct causal relations. Find-

ings, however, can cause states or other �ndings. LikeHf, this thesis handles

such �ndings as if they are also pathophysiological states by creating corre-

sponding pathophysiologic states. More speci�cally, consider a �nding f with

n e�ects a1, a2, : : :, and an: Each ai is either a �nding or a pathophysiological
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state. These n causal relations are depicted in Figure 3.1(a). For �nding f ,

a variable i representing a corresponding pathophysiologic state is created

(as an element of either D or I accordingly). Then, i is de�ned as a clinical

entity with n + 1 e�ects { more speci�cally, �nding f and its n e�ects, as

shown in Figure 3.1(b). A direct causal link from i to f is established. In

addition, a direct causal relation from �nding f to its e�ect ai is represented

as a direct causal relation from i to a0
i, where a

0
i is ai if ai is a state, or is a

corresponding pathophysiologic state of ai if ai is a �nding.

f

a1

a2

•
•
•

ai

•
•
•

an

i

f

a'1

a'2

•
•
•

a'i

•
•
•

a'n

      (a)       (b)

Figure 3.1: Representation of a �nding f with n e�ects: For all i = 1; 2; : : : ; n, a0

i is ai if

ai is a state, or is a corresponding pathophysiologic state of ai if ai is a �nding.

Finding f may have causes as well. Suppose that f has m causes b1; b2; : : :,

and bm, as shown in Figure 3.2(a). Each cause bj of f is handled as a state

causing i, rather than f . More speci�cally, the causal relation from bj to f is

represented as the causal relation from b0
j to i, where b

0
j is bj if bj is a state,

or is a corresponding pathophysiologic state of bj if bj is a �nding. These

causal relations are shown in Figure 3.2(b).

To provide an intuitive understanding, consider a �nding on-aortic-valve-

replacement which can cause aortic stenosis (an elemental disorder). Fig-

ure 3.3(a) depicts a causal dependency between aortic stenosis and on-aortic-



3.1 Pathophysiologic Knowledge in Causal Representation 54

f

a1

a2

•
•
•

ai

•
•
•

an

      (a)

b1

b2

•
•
•

bj

•
•
•

bm

i

      (b)

f

a'1

a'2

•
•
•

a'i

•
•
•

a'n

b'1

b'2

•
•
•

b'j

•
•
•

b'm

Figure 3.2: Representation of a �nding f with m causes: For all j = 1; 2; : : : ;m, b0

j is bj
if bj is a state, or is a corresponding pathophysiologic state of bj if bj is a �nding.

Replacement

On Aortic 
Valve
      

Aortic 
Stenosis

Aortic 
Valve
Replacement

On Aortic 
Valve
      Replacement

Aortic 
Stenosis

[A] [B]

Figure 3.3: Representation of a causal relation between the �nding on-aortic-valve-

replacement and its cause aortic stenosis. A black rectangular node represents an elemental

disorder variable, and a un�lled rectangular node represents a �nding variable.

value-replacement. Figure 3.3(b) shows how this causal relation is modeled

in this research. Instead of a direct causal link from the node represent-

ing on-aortic-value-replacement to the node representing aortic stenosis, a

pathophysiologic state that represents aortic valve replacement is created,

and two direct causal links are established from the node representing this
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pathophysiologic state to the node representing on-aortic-value-replacement

and to the node representing aortic stenosis, respectively. The modeling of

�ndings that can cause states or other �ndings in this way guarantees that

�ndings always appear as e�ects.

Let L be the set of all possible direct causal relations, i.e.,

L = fa
Pr(bja)
����!c b j a 2 D [ I; b 2 U and 9 a direct causal relation from a to bg.

Pathophysiologic knowledge modeled in terms of direct causal relations can

be conceptualized as a causal graph of nodes and links, where each node

represents a clinical entity variable,1 and each link represents a direct causal

relationship between the two clinical entities represented by the nodes it con-

nects. To facilitate further discussion, this thesis adapts a standard graph

notation [16] to de�ne a causal graph.

Notation (LjD;I;F ): For any D � D; I � I, and F � F , let LjD;I;F denote

the set of all possible direct causal links between elements in D; I, and F .

In other words, LjD;I;F = fa
Pr(bja)
����!c b j a 2 D [ I; b 2 D [ I [ F and 9

a direct causal relation from a to bg.

De�nition 1 (Causal graph): A causal graph G is a list (D; I; F; L), where

D � D; I � I; F � F , and L � LjD;I;F . D; I; F , and L are called

the disorder set, intermediate state set, �nding set, and causal link set,

respectively, of G.

A causal graph is a collection of direct causal relations between clinical en-

tities. Let CG be the universe set of all causal graphs: In other words, CG =

f(D; I; F; L) j D � D; I � I; F � F ; and L � LjD;I;F )g.

Throughout this proposal, the symbol C is used to denote a causal graph

that represents pathophysiologic knowledge de�ned in a medical domain of

concern. In other words, C is the causal graph (D;I;F ;L). Causal graph C

is referred to as a domain causal network, or shortly a causal network.

1Except when noted otherwise, a node and a variable are used interchangeably.
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The causal graph representation of pathophysiologic knowledge can be

made more concrete with an example from the heart failure domain. As an

example, consider the causal graph shown in Figure 3.4. The causal graph is

a part of a domain causal network that models malfunctioning of the human

cardiovascular system. Each black rectangular node represents an elemen-

tal disorder variable in D, an oval node an intermediate state variable in

I, and a rectangular node a �nding variable in F . Even though for con-

venience causal links have not been labeled with conditional probabilities,

corresponding conditional probabilities are associated with each causal link.

As shown in the example causal graph, a �nding can be caused by more

than one disorder. For example, nocturnal dyspnea2 can be caused by any

combination of aortic valve replacement, aortic stenosis, aortic valve disease,

acute as well as chronic mitral regurgitation,3 and mitral stenosis.4 Figure 3.4

also illustrates that a disorder can produce a �nding through more than one

causal path { with di�erent degrees of likelihood. For example, there is more

than one causal path from aortic stenosis to nocturnal dyspnea.

3.2 Diagnosis of Multiple Disorders based on

Causal Knowledge

This subsection discusses diagnosis from �rst principles modeled in terms

of causal relations between clinical entities. It also attempts to touch upon

some related computational issues.

Additional de�nitions are introduced below, to facilitate further discus-

sion.

De�nition 2 (Instantiated causal graph): For any causal graphG 2 CG,

2Dyspnea is a shortness of breath.
3Mitral regurgitation is backow of blood from the left ventricle into the left atrium

due to failure of the value to close completely.
4Mitral stenosis is narrowing ori�ce of the mitral valve obstructing free ow from atrium

to ventricle.
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Figure 3.4: A part of a domain causal network that models malfunctioning of the human

cardiovascular system

G is said to be instantiated if each and every node in G is instantiated to

a certain value.

Similarly, an instantiated set is de�ned as follows:



3.2 Diagnosis of Multiple Disorders based on Causal Knowledge 58

De�nition 3 (Instantiated set): For any variable set X, X is said to be

instantiated if each and every variable in X is instantiated to a certain

value.

De�nition 4 (Equality of instantiated sets): For any two instantiated vari-

able sets X and Y , X and Y are said to be equal if

1. for any variable z 2 X \ Y , the value assignment of z in X is equal

to that of z in Y ,

2. for any variable x 2 X, x 2 Y , and

3. for any variable y 2 Y , y 2 X.

This thesis uses the symbol  to denote a diagnostic problem, i.e., a set

of �ndings collected for diagnosis:  is an instantiated subset of F . Diag-

nostic problem solving is the task of identifying the most likely body state

producing the �ndings in  . Each instantiation of the domain causal net-

work C corresponds to a particular body state. Diagnostic problem solving

thus becomes the task of identifying the most likely instantiation of C0 that

explains the �ndings in  , where C0 is a causal graph such that

1. C0 is a subgraph of C that is obtained by removing from C nodes that

represent �ndings not in  , along with any direct causal links to these

nodes, and

2. The �nding set of C0 is an instantiated set equal to  .

C0 is a domain causal network which is tailored to diagnostic problem  . For

ease of exposition, we may call C0 the tailored causal network for  . Note

that the modeling, as pathophysiologic states, of �ndings that can cause other

states or �ndings guarantees that all �ndings in F always appear as leaves

in C. As a result, the �nding removal process to produce a tailored causal

network can be performed without considering issues of how to remove nodes

with children.
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To provide an intuition on a tailored causal network, consider the �ctional

domain causal network C shown in Figure 3.5. Formally, C is the causal graph

(D;I;F ;L), where

D = fd1; d2; d3g

I = fi1; i2; i3; i4; i5; i6g

F = ff1; f2; f3; f4; f5; f6; f7g

L = a set of direct causal links shown in Figure 3.5.

d1

i1

d2 d3

i2 i3

i6

i4

i7

f1 f2 f3

i5

f4 f5 f6 f7

Figure 3.5: A �ctional domain causal network C used for expository purposes

For expository purposes, it is assumed that each node in the example C is

a binary variable that can take on the value of either present or absent, and

that for any variable x in C present is an abnormal value of x, and absent is

a normal value of x.

Now, let us consider an example diagnostic problem which consists of

�ndings f3 := present, f4 := present, f6 := present, and f7 := present. In

other words,

 = ff3 := present, f4 := present, f6 := present, f7 := presentg

The tailored causal network C0 for  is a causal graph obtained by removing

nodes f1, f2, and f3 from C. Figure 3.6 shows the tailored causal network C0.

The following additional notations are introduced to facilitate the discus-

sion of a diagnostic solution.
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d1
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i4
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i5

f4 = p f6= p f7 = p

Figure 3.6: A tailored causal network for the diagnostic problem  that consists of f3 :=

present, f4 := present , f6 := present, and f7 := present . p's in the tailored causal network

stand for present.

Notation: For any causal graph G in CG, let

dhGi denote the disorder set of G,

fhGi denote the �nding set of G,

ihGi denote the intermediate state set of G,

lhGi denote the causal link set of G,

dihGi denote dhGi [ ihGi, and

difhGi denote dhGi [ ihGi [ fhGi.

The symbol [ used in the above notation represents a union of variable sets

that denotes the conjunction, not logical disjunction, of events asserted by

instantiating the variable set union. For example, consider a variable set A

which consists of a variable a which is instantiated as va, and a variable set

B which consists of a variable b with vb assigned to it. Pr(A [ B) stands

for the probability that a is instantiated as va, and b as vb { in other words,

Pr(a := va; b := vb).

Any instantiation of a tailored causal network for a diagnostic problem

can be an explanation for the �ndings presented in the problem.
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De�nition 5 (Causal explanation): For some instantiated subset F of F ,

let C0 be a tailored causal network for F . A causal explanation for the

�ndings in F is an instantiation of C0.

A causal explanation for the �ndings in  is an instantiated causal graph,

more speci�cally, an instantiated tailored causal network for  .

Due to uncertainty in the domain knowledge itself, it is often di�cult

to �nd a solution to a diagnostic problem with absolute certainty. For such

problems, probabilities that summarize which disorders are more likely than

others can be used to support diagnostic judgments. As mentioned earlier,

any instantiation of a tailored causal network for  can be an explanation

for the �ndings in  . Each of these causal explanations tells us that the

pathophysiologic states in the causal explanation can cause the �ndings ac-

cordingly, but not necessarily do so.

The diagnostic task tackled in this thesis is to �nd the most likely causal

explanations for the �ndings in  , in other words, to �nd the most likely

instantiation of the tailored causal network for  . A diagnostic solution to

 is de�ned as a causal explanation S? , for  , that satis�es the following

qualitative relationship:

For any causal explanation G for  , the �ndings in  are more,

or equally, likely to be caused by the disorders in dhS? i via the

pathophysiologic mechanism identi�ed by S? than by those in

dhGi via the pathophysiologic mechanism identi�ed by G.

This relationship is articulated in the following de�nition of a diagnostic

solution.

De�nition 6.1 (Optimal diagnostic solution): For any diagnostic prob-

lem  , the optimal diagnostic solution to  is a causal explanation S? 

for  such that for any causal explanation G for  , Pr(dihS? i j  ) �

Pr(dihGi j ).
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Despite of the use of tailoring, C and its instantiations are often too large to

convey useful information to a user. A user of a diagnostic system is usually

more interested in abnormal states that produce given �ndings. To make

a diagnostic solution more informative and insightful, this thesis trims the

optimal diagnostic solution in De�nition 6.1, by pruning away nodes with

normal values. The following de�nes a reduced optimal diagnostic solution.

De�nition 6.2 (Reduced optimal diagnostic solution): For any diag-

nostic problem , the reduced optimal diagnostic solution to  is a maximal

subgraph G of the optimal diagnostic solution S? such that

1. difhGi is a subset of difhS? i such that every node in G is instanti-

ated to an abnormal value,

2. every node in difhS? i�difhGi is instantiated to a normal value, and

3. lhGi = fa ! b j a 2 dihGi; b 2 difhGi, and 9 a direct causal

relation from a to b in S? g.

Suppose, for example, that the instantiated tailored causal network shown

in Figure 3.7 is the most likely causal explanation for f3 := present, f4 :=

present, f6 := present, and f7 := present.

d3 = p

i4 = p

i7 = p

d1 = a

i1 = a

f6 = p f7 = pf3 = p f4 = p

d2= p

i2 = a

i5 = a i6 = p

i3 = p

Figure 3.7: The most likely instantiation of the tailored causal network shown in Figure 3.6.

p's and a's shown in the instantiated causal network denote present and absent , respectively.
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Then, the reduced optimal diagnostic solution to our diagnostic problem is

the trimmed best instantiation shown in Figure 3.8. For convenience, reduced

optimal diagnostic solutions are generally referred to as \optimal diagnostic

solutions."

d3 = p

i4 = p

i7 = p

f6 = p f7 = pf3 = p f4 = p

d2= p

i6 = p

i3 = p

Figure 3.8: The optimal diagnostic solution to  obtained by trimming the best instanti-
ation shown in Figure 3.7

Note that an underlying pathophysiologic mechanism, as well as the dis-

orders primarily suspected of causing a given set of �ndings, is returned as

an integral part of a diagnostic solution. The pathophysiologic mechanism

in a diagnostic solution can provide additional assurance by explaining how

the primary disorders and the �ndings are related to each other. In addition,

the underlying pathophysiologic mechanism in a diagnostic solution makes it

easier to reason about the solution, and determine if the solution found by a

program \makes sense." Finally, the underlying pathophysiologic mechanism

in a diagnostic solution makes it easier to detect possible sources of aws in a

diagnostic solution. This will, in turn, help con�rm or re�ne the correctness

of the knowledge base used by a program.

Unfortunately, a causal network can be instantiated in exponentially

many ways, and thus there are exponentially many causal explanations to

consider, in order to �nd the most likely one. The exhaustive enumeration-

and-evaluation approach is likely to be unwieldy. Fortunately, the search can

be reduced by using heuristics. For example, in order to relieve computa-
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tional complexity, Hf uses heuristics such as pruning [61]. It still, however,

has to search exponentially many relevant pathways.5

Heuristic-based diagnostic systems apply heuristics to �nd diagnostic so-

lutions that approximate the desired optimal ones.

De�nition 7 (S-generated diagnostic solution): For some heuristic-

based diagnostic system S and some diagnostic problem  , a diagnostic

solution to  which is computed by S is called an S-generated diagnostic

solution to  .

Diagnostic solutions generated by heuristic-based systems, thus, are gener-

ally \satis�cing" solutions [93], in other words, causal explanations that are

judged to be the most likely ones based on the heuristics employed.

3.3 Nature of Diagnostic Experience

This section attempts to describe, at a broad level, the implication of pre-

vious diagnostic solutions for an understanding of the diagnosis domain and

for future diagnosis. Observe that diagnostic solutions identify diagnostically

useful knowledge: In a diagnostic solution, the most likely causal relation-

ships between clinical entities are selected, while insigni�cant ones are pruned

away. The resulting pruned version of a detailed causal network thus can

provide diagnostically valuable abstraction of disease models. Such abstrac-

tion raises the level of an understanding of vital causal dependencies among

disorders and �ndings. In addition, diagnostic episodes provide a valuable

source for acquiring \expertise" which allows subsequent problem solving to

be done more e�ciently. As mentioned in Chapter 1, this thesis develops

methods for automatically acquiring such expertise from a problem-solver's

own experience.

5Hf has to consider at least an average of 1030 possible causal explanations for a
diagnostic problem [2].
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This thesis remembers solved cases (speci�cally, instantiated causal graphs

representing the most likely causal explanations for �ndings) in a decomposed

form by analyzing them with respect to elemental disorders. Each diagnos-

tic solution is decomposed into smaller instantiated causal graphs each of

which is obtained by collecting, for each elemental disorder in the solution,

all nodes and causal links in the solution that are reachable from the ele-

mental disorder. For example, consider again the diagnostic solution shown

in Figure 3.8. Since the diagnostic solution shown in Figure 3.8 consists of

two elemental disorders, it is decomposed into the two components shown in

Figure 3.9. Each component is a subgraph of the diagnostic solution rooted

at a particular elemental disorder in the diagnostic solution.

f3 = p

d2= p

f4 = p

i6 = p

i3 = p

d3 = p

i4 = p

i7 = p

f6 = p f7 = pf4 = p

i6 = p

Figure 3.9: Components of the diagnostic solution shown in Figure 3.7 as a result of the
decomposition

By remembering solved cases in a decomposed form, parts of cases can be

accessed and used more easily. Such exibility increases the possibility of

�nding matches particularly when parts of cases match.

The components of a solved case are then merged with components of

other solved cases to produce a coherent whole. Components of solved cases

can be merged if they are instantiations of the same underlying pathophysio-

logic mechanism of a particular elemental disorder. It is the combined whole,

not individual similar components, that is remembered for use in future di-

agnosis. By remembering similar cases in a merged form, resources such as

memory space and processing time can be used more e�ciently.



3.3 Nature of Diagnostic Experience 66

Chapter 4 describes the diagnostic-unit representation which provides a

basis for storing components of solved cases. Chapter 5 addresses the issues

of decomposing solved cases and merging components. Chapter 6 describes

new techniques for using knowledge, gained from previous diagnoses and

represented in the diagnostic-unit representation, to perform decompositional

abductive diagnosis.



Chapter 4

Diagnostic-Unit Representation

The diagnostic-unit representation is a new mechanism for representing knowl-

edge about the context sensitivity of �ndings. It forms a basis for storing

components of solved cases for use in future diagnosis. Primary constructs

of the diagnostic-unit representation include diagnostic units and links that

represent relationships between diagnostic units.

4.1 Diagnostic Units

Diagnostic units are designed to capture the context sensitivity of �ndings

associated with particular disorders. They are clusters of evidence and hy-

potheses where all of the �ndings in each cluster are more, or equally, likely

to be explained by the hypothesis identi�ed in the cluster than by any other

hypothesis for the same �ndings. To facilitate the formal discussion of diag-

nostic units, the following de�nitions are made.

De�nition 8 (Source set of a causal graph): For any causal graph

G 2 CG, the source set of G, denoted by shGi, is the set of nodes in G

which do not have incoming links in G.

67
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De�nition 9 (Optimal diagnostic unit): For some instantiated subset

F of F and some d 2 D, an optimal diagnostic unit of d, denoted by

du?(d; F ), is an instantiated subgraph of C such that

1. shdu?(d; F )i = fdg,

2. fhdu?(d; F )i = F , and

3. for any instantiated subgraph G of C such that fhGi = F ,

Pr(dihdu?(d; F )i jF ) � Pr(dihGi jF ).

Less formally, an optimal diagnostic unit is an instantiated causal graph,

with a single elemental disorder root, such that the causal explanation iden-

ti�ed by the graph can be immediately inferred to be the most likely causal

explanation for all the �ndings in the graph.

Optimal diagnostic units are designed to identify diagnostic contexts in

which global optimality is implied. A diagnostic context speci�es that when

all of the �ndings identi�ed in a diagnostic unit occur together, the disorder

and underlying causal mechanism identi�ed in the diagnostic unit can be

concluded as a diagnosis for the �ndings. Global optimality means that the

disorder and underlying mechanism identi�ed in a diagnostic unit are the

most likely diagnosis for the �ndings.

In principle, for any combination of an elemental disorder and a subset of

F , the corresponding optimal diagnostic unit can be computed. The issue is

one of computational resources. The number of subsets of F to consider grows

exponentially in the number of variables in F . This thesis deals with such

combinatorial explosion by acquiring diagnostic units that appear empirically

useful. In e�ect, it views diagnostic problem solving as a process by which

diagnostic units and relationships between them are gradually recovered.

De�nition 10 (Empirical approximation of an optimal diagnostic

unit): For some instantiated subset F of F and some d 2 D, an em-

pirical approximation to the optimal diagnostic unit du?(d; F ), denoted by

du(d; F ), is an instantiated subgraph of C such that
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1. shdu(d; F )i = fdg,

2. fhdu(d; F )i = F , and

3. for any previously encountered, instantiated subgraph G of C such

that fhGi = F , Pr(dihdu(d; F )i jF ) � Pr(dihGi jF ).

An empirical approximation of an optimal diagnostic unit is an instantiated

causal graph, with a single elemental disorder root, such that previous expe-

riences indicate that the causal explanation identi�ed by the graph can be

immediately inferred to be the most likely causal explanation for the �ndings

in the graph. To provide an intuitive understanding of a diagnostic unit, an

example of a diagnostic unit is shown in Figure 4.1.

Systolic Ejection
       Murmur

          Chronic
Mitral Regurgitation

High LA Press 
     

Chronic

High LA Press 
     

Low Renal
     Perfusion

     Nocturnal 
     Dyspnea

Low Cardiac 
Output

     BUN: High
    

     Creat: High

Figure 4.1: An example of a diagnostic unit

The diagnostic unit shown in Figure 4.1 is an instantiated causal graph with

a single root representing the elemental disorder chronic mitral regurgitation.

The following qualitative relationship is embedded in the diagnostic unit:

Experiences so far indicate that the �ndings in the graph are

more, or equally, likely to be caused by chronic mitral regurgita-

tion via the underlying mechanism identi�ed in the graph than

by any other causal explanation for the same �ndings.

Empirical approximations of optimal diagnostic units are designed to

identify diagnostic contexts in which approximate optimality is implied. A
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diagnostic unit is approximately optimal if, according to past experience,

the disorder and underlying mechanism identi�ed in the diagnostic unit are

believed to be the most likely diagnosis for the �ndings. Empirical approxi-

mations of optimal diagnostic units are generally referred to simply as diag-

nostic units.

Di�erent sets of �ndings can suggest the same elemental disorder via

di�erent underlying pathophysiologic mechanisms. For example, myocardial

infarction frequently produces ventricular systolic dysfunction with relatively

high likelihood. Myocardial Infarction can also be a highly likely cause of ven-

tricular diastolic dysfunction { though with less frequency. Each of the dys-

functions has a di�erent underlying pathophysiologic mechanism, and thus

corresponds to a di�erent diagnostic unit of myocardial infarction. In light

of the possibility that an elemental disorder can be associated with more

than one diagnostic unit, a set of diagnostic units for an elemental disorder

is de�ned as follows:

De�nition 11 (Optimal diagnostic-unit set): For some d in D, the op-

timal diagnostic-unit set of d, denoted by DU?(d), is the set of optimal

diagnostic units of d.

This thesis acquires approximations of optimal diagnostic-unit sets from ex-

perience.

De�nition 12 (Empirical approximation of optimal diagnostic-unit

set): For some d in D, an empirical approximation to the optimal

diagnostic-unit set DU?(d), denoted by DU(d), is a set of diagnostic units

of d that are acquired from experience.

Empirical approximations of optimal diagnostic-unit sets are generally re-

ferred to simply as diagnostic-unit sets.
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4.2 Links between Diagnostic Units

The de�nition of a diagnostic unit does not mention how a diagnostic unit is

related to other diagnostic units. This section de�nes two types of links, to

represent relationships between diagnostic units. One type of link is called

a causal relation link. A causal relation link represents a causal dependency

between two diagnostic units.

De�nition 13 (Causal relation link): For any two diagnostic units du1

and du2 rooted at d1 (2 D) and d2 (2 D), respectively, du1 is said to be

causally related to du2 if there exists a diagnostic solution S such that

1. du1 and du2 are subgraphs of S , and

2. there exists a causal path W in S from d1 to d2 such that d1 and d2

are the only elemental disorders in W .

The other type of link, called a non-causal relation link, represents a

dependency between diagnostic units which are not causally related but still

share common nodes.

De�nition 14 (Non-causal relation link): For any two diagnostic units

du1 and du2 rooted at d1 (2 D) and d2 (2 D), respectively, du1 is said to

be non-causally related to du2 if there exists a diagnostic solution S such

that

1. both du1 and du2 are subgraphs of S ,

2. there exists no causal path in S either from d1 to d2 or from d2 to

d1, and

3. there exists a node n such that there exist in S a causal path W1

from d1 to n and a causal path W2 from d2 to n such that d1 and d2

are the only elemental disorders in W1 and W2, respectively.
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Knowledge represented in the diagnostic-unit representation can be con-

ceptualized as a graph where each node represents a diagnostic-unit set,

and each link represents a relationship between diagnostic units in di�erent

diagnostic-unit sets. Such a graph is called a diagnostically-operative causal

graph, or simply a doc graph.

De�nition 15 (Diagnostically-operative causal graph): A diagnostically-

operative causal graph G is a pair (CU;L), where CU is a set of diagnostic-

unit sets and L is a set of links between diagnostic units in the diagnostic-

unit sets in CU .

A pictorial notation is used to represent the primary constructs of the

diagnostic-unit representation. A �lled oval node denotes a diagnostic-unit

set, while an oval node surrounded by a �lled oval node denotes an element of

the \surrounding" diagnostic-unit set. A causal relation between diagnostic

units is denoted by an arrow with a circle on it, while a non-causal relation

between diagnostic units is denoted by a solid line with a square on it. To

make the pictorial notation more concrete, an example of a doc graph is

shown in Figure 4.2.

du(d,F1)

du(d,Fi)

du(d,Fm)

du(d,Fp)

...

...

...

...

du(d',F'1)

du(d',F'j)

du(d',F'n)

du(d',F'q)

DU(d) DU(d')

...

...

...

Figure 4.2: An example of a diagnostically-operative causal graph

The example doc graph consists of two diagnostic-unit sets: DU(d) and

DU(d0) for some elemental disorders d and d0, respectively. Diagnostic-unit set
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DU(d) has p diagnostic units, du(d; F1); du(d; F2), : : : ; and du(d; Fp), where

all Fi's are instantiated subsets of F . Diagnostic-unit set DU(d0) consists of q

diagnostic units, du(d0; F 0

1); du(d
0; F 0

2), : : : ; and du(d
0; F 0

q), where each F
0

j is an

instantiated subset of F . The example doc graph shows that diagnostic unit

du(d; Fi) is causally related to du(d0; F 0

j), and that du(d; Fm) and du(d0; F 0

n)

are connected by a non-causal relation link.

4.3 Implications of Diagnostic Units for Di-

agnosis

Each optimal diagnostic unit groups as a unit a disorder, a underlying patho-

physiologic mechanism, and a set of �ndings that are in the most likely causal

relation. Diagnostic contexts and global optimality captured in diagnostic

units facilitate the identi�cation of how to group a diagnostic problem into

subsets of �ndings for which the most likely causal explanations can be imme-

diately inferred. Diagnostic units thus provide \good" abstraction of causal

knowledge for diagnostic tasks. Chapter 5 describes an experience-based

knowledge incorporation technique for acquiring diagnostic units that ap-

proximate optimal ones.





Chapter 5

Experience-based Acquisition

of Diagnostic Knowledge

Once diagnostic units are available, a solution to a diagnostic problem can

be proposed by selecting and combining the diagnostic units relevant to the

problem. In addition, diagnostic units can enhance an understanding of

the vital relationships between disorders and sets of �ndings. The issue that

must be dealt with is where and how to acquire diagnostic units and relation-

ships between them. One approach is manual compilation by interviewing

expert physicians. Manual compilation is, however, often expensive and time-

consuming. In an attempt to deal with di�culties associated with manual

compilation, this research seeks to automatically acquire diagnostic units and

relationships between them, by analyzing results of diagnoses. As discussed

in Section 3.2, in the results of diagnosis highly likely causal relations are

highlighted, while insigni�cant ones are pruned away. This feature suggests

the possibility of using the results as a source of gradually recovering optimal

diagnostic units and relationships between them.
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5.1 Knowledge Incorporation Process

This section investigates an experience-based method for acquiring diagnostic

units and the relationships between them. It is assumed in this research

that the associative knowledge base KAS, in which knowledge acquired from

experience is stored, is initially empty. In other words, no diagnostic units are

known a priori. As diagnostic experience grows, however, empirically useful

diagnostic units and relationships between them are gradually recovered.

New diagnostic experience is assimilated into the existing KAS by the process

called knowledge incorporation process. The knowledge incorporation process

is a two-stage process that consists of the \diagnostically-operative causal

graph transformation process" and the succeeding \joining-up process."

5.1.1 Diagnostically-Operative Causal Graph Transfor-

mation Process

The diagnostically-operative causal graph transformation process, or in short

the doc transformation process, constructs doc graphs for new diagnostic

solutions.

The following additional de�nitions are introduced to facilitate further

discussion.

De�nition 16 (Restricted intermediate state set ihd jGi): For any causal

graph G 2 CG and any d 2 dhGi, the intermediate state set of d restricted

to G, denoted by ihd jGi, is the set of intermediate states in G that are

reachable from d. Thus, ihd jGi � ihGi.

De�nition 17 (Restricted causal link set lhd jGi): For any causal graph

G 2 CG and any d 2 dhGi, the causal link set of d restricted to G, denoted

by lhd jGi, is the set of causal links in G that are reachable from d. Thus,

lhd jGi � lhGi.
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De�nition 18 (Restricted �nding set fhd jGi): For any causal graphG 2

CG and any d 2 dhGi, the �nding set of d restricted to G, denoted by

fhd j Gi, is the set of �ndings in G that are reachable from d. Thus,

fhd jGi � fhGi.

Given a new diagnostic solution, the doc transformation process �rst

compiles diagnostic units by collecting, for each elemental disorder in the

diagnostic solution, all nodes and causal links in the diagnostic solution that

are reachable from the elemental disorder. This procedure for the doc trans-

formation process is summarized in the algorithm shown in Figure 5.1.

DOC Transformation Algorithm:

Input: A diagnostic solution S 
Output: The corresponding doc graph for S 

Step I: For each elemental disorder d in dhS i, compile a diagnos-
tic unit du by collecting all nodes and causal links in S that
are reachable from d: In other words, du is an approximate
diagnostic unit such that shdui = d; ihdui = ihd jdui; lhdui =
lhd jdui; and fhdui = fhd jdui.

Step II: For any two approximate diagnostic units compiled in Step
I, establish either a causal or a non-causal link between them
accordingly (See De�nitions 13 and 14).

Figure 5.1: An algorithm for the doc transformation process

The transformation of a new diagnostic experience to a doc graph can be

made concrete with an example. Consider a diagnostic problem described

below:
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History: 61 year old male with normal weight and orthopnea.

Having known diagnosis of old MI, and aortic valve replacement.

Vital signs: Blood pressure = 90/50 mmHg

Heart rate = 72 bpm

Respiration rate = 16 bpm

Physical exams: Chest revealed basilar rales

JVP (Jugular Veneous Pressure) = 15cmH20

Normal jugular pulse was observed.

Auscultation revealed a systolic ejection murmur in I-II/VI at apex

and mild pedal edema.

Lab �ndings: Chest X ray: generalized cardiac enlargement

and vascular redistribution

Na = 140 meg=l

K = 4.0 meg=l

BUN (Blood Urea Nitrogen) = 15 mg=100ml

Creatinine = 1.0 mg=100ml

Normal acid base status

A diagnostic solution to the example diagnostic problem is shown in Fig-

ure 5.2.

The three diagnostic units rooted at aortic stenosis, aortic value replace-

ment, and old MI, respectively, can be compiled from the diagnostic solution

shown in Figure 5.2. Each diagnostic unit is obtained by collecting all nodes

and causal links in the diagnostic solution that are reachable from the cor-

responding elemental disorder. For example, the diagnostic unit du(Aortic

Stenosis) shown in Figure 5.3 is the diagnostic unit complied from the di-

agnostic solution, by collecting all nodes and causal links that are reachable

from aortic stenosis.

The diagnostic solution shown in Figure 5.2 shows that aortic valve re-

placement is causing aortic stenosis. A causal relation link is thus estab-

lished from the diagnostic unit rooted at aortic value replacement (du(Aortic

valve replacement)) to the diagnostic unit rooted at aortic stenosis (du(Aortic

stenosis)). In addition, the diagnostic solution shows that old MI and aor-

tic stenosis are non-causally related to each other. Thus, the diagnostic

unit rooted at old MI (du(Old MI)) and the diagnostic unit rooted at aortic
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Old MI Cardiac
Dilation

Generalized Cardiac
     Enlargement

Known Diagnosis
       of MI

Aortic Stenosis

Aortic Valve
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     Output

Low Renal
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Salt & Water
     Retention
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High LA Press 
     

Pulmonary
     Congestion
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Figure 5.2: A diagnostic solution to the example diagnostic problem

stenosis (du(Aortic stenosis)) are connected by a non-causal relation link.

Figure 5.4 shows the corresponding doc graph for the diagnostic solution in

Figure 5.2.

5.1.2 Joining-Up Process

The joining-up process incorporates newly acquired doc graphs into the ex-

isting associative knowledge base KAS. In particular, the joining-up process

incorporates the following types of experiential knowledge into KAS by the

joining-up process.

� Newly compiled diagnostic units and relationships between them.

� Statistical information such as the frequency with which a diagnostic

unit occurs.
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Old MIAortic Stenosis

Aortic Valve

Fixed High Outflow
     Resistance

Systolic Ejection
       Murmur

Slow Ejection
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     Output

Low Blood
     Press

Pressure
Mean Arterial

Redistribution
cxr: Vascular

Basilar Rales

Low Renal
     Perfusion

Salt & Water
     Retention

High Blood
  Volume

High Venous
     Volume

High RA
     Press

     jvp: 15cmH20

High Renin
     
Angiotensin

Mild Pedal 
    Edema

Orthopnea

Low LV
     Emptying

High LA Press 
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Figure 5.3: Diagnostic unit du(Aortic stenosis), rooted at aortic stenosis, compiled
from the diagnostic solution shown in Figure 5.2

du(Old MI)

Replacement)
du(Aortic valve
     

du(Aortic stenosis)

Figure 5.4: The corresponding doc graph for the diagnostic solution shown in Figure 5.2

To facilitate further discussion, the following additional de�nition is in-

troduced.

De�nition 19 (Union of causal graphs): For any set of causal graphs G1;

G2; : : : ; and Gn; where Gi = (Di; Pi; Fi; Li), the union of the Gi's is

de�ned as follows:
S

n

i=1
Gi = (

S
n

i=1
Di;
S

n

i=1
Pi;
S

n

i=1
Fi;
S

n

i=1
Li).

Let doc denote the doc graph, for a diagnostic solution S , produced

by the preceding doc transformation process. Each diagnostic unit in doc 
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is incorporated into KAS. An algorithm for incorporating a diagnostic unit in

doc into KAS is described in Figure 5.5.

Diagnostic Unit (DU) Incorporation Algorithm:

Input: 1. A diagnostic unit du, rooted at an elemental
disorder d, in doc 

2. KAS

Output: Updated KAS as a result of incorporating du

Let dDU(d) be a diagnostic-unit set of d in KAS.

� If dDU(d) exists in KAS, then

{ if there exists a diagnostic unit cdu in dDU(d) which du can

be incorporated into, then modify the structure of cdu by
unioning cdu and du. The union of causal graphs is de�ned
in De�nition 19. Increase the frequency with which cdu has
occurred by 1.

{ Otherwise, update dDU(d) by adding du to the set, setting
the frequency associated with du to 1.

� If no dDU(d) exists in KAS, then create dDU(d) with du as its
element, setting the frequency associated with du to 1.

Figure 5.5: An algorithm for incorporating a newly compiled diagnostic unit into KAS

The incorporation of new diagnostic units raises the issue of determin-

ing whether a new diagnostic unit du should be used to update an existing

diagnostic unit cdu in KAS or be considered to be a new element of the cor-

responding diagnostic unit set. In other words, the question that needs to

be answered is whether or not du and cdu should be considered to be both

a partial recovery of the same optimal diagnostic unit. The merging issue
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is addressed with a merging threshold. If two diagnostic units are a partial

recovery of the same optimal diagnostic unit, then they are likely to have a

similar underlying structure. Two diagnostic units are merged to produce

a combined diagnostic unit if they have the roots representing the same el-

emental disorder and the underlying structure of the two diagnostic units

match by more than a certain percentage, i.e., the merging threshold.

The merging threshold can a�ect the sizes of diagnostic-unit sets and of

individual diagnostic units. The size of a diagnostic-unit set is de�ned as the

number of diagnostic units in the diagnostic-unit set. The size of a diagnostic

unit is de�ned as the number of nodes in the diagnostic unit. The sizes of

diagnostic unit sets can a�ect reasoning e�ciency, accuracy of solutions, and

an understanding of domain structure. An experiment conducted to examine

the e�ect of merging threshold on the sizes of diagnostic-unit sets is presented

in Chapter 7.

Dependencies between diagnostic units are also updated in KAS. Depen-

dencies between diagnostic units in a doc graph are by no means certain.

Instead, a dependency between diagnostic units represents that the diag-

nostic units are related to each other with relatively high likelihood. An

experiment, which is to be reported in Chapter 7, shows that a diagnostic

unit can appear in a solution without the diagnostic units that are connected

to it in the associative knowledge base. Nonetheless, links between diagnos-

tic units provide useful information for guiding the construction of an overall

solution to a diagnostic problem. Chapter 6 develops an algorithm which

uses dependency among diagnostic units to construct an overall diagnostic

solution.

In addition, the joining-up process also performs bookkeeping for use in

later diagnosis, updating statistics such as how frequently a diagnostic unit

has occurred so far. Such statistical information provides a useful guide for

recognizing diagnostic units that are relevant to a diagnostic problem.
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5.2 Knowledge in the Associative Knowledge

Base

As diagnostic solutions are incorporated, the chunks of knowledge about the

context sensitivity of �ndings are stored in the associative memoryKAS, ready

for use in future diagnosis. Note that the associative knowledge KAS is a doc

graph. Unlike a causal knowledge base (as shown in Figure 3.4) which ex-

hibits little structure, KAS shows more apparent structure in which patterns

of �ndings that may exist in a diagnostic problem can be detected with rela-

tive ease. Such patterns of nodes and causal links are grouped into diagnostic

units. Each diagnostic unit identi�es a diagnostic context. While diagnostic

units are not completely decomposable, they are \nearly decomposable" in

the sense that links within each diagnostic unit are relatively strong, and

hence each diagnostic unit is generally used as an atom. On the other hand,

links between diagnostic units are relatively weak, as empirically veri�ed by

the experiment described in Chapter 7: Diagnostic units appear in solutions

without the diagnostic units that are connected to them in the associative

knowledge base. The abstraction of causal knowledge in the form of a doc

graph e�ectively provides insights about how given �ndings can be grouped

into immediately solvable subproblems.

The knowledge incorporation process generalizes diagnostic experience

(low-level rules for problems that have actually been encountered) to more

general problem-solving rules for diagnosis (diagnostic units). The general-

ization is done gradually by accumulating diagnostic episodes that the pro-

gram has encountered. Diagnostic units represent what the program knows

from its own past experience. Unfortunately, in such medical domains as

heart failure, di�erent patients can manifest di�erent �ndings, even when

they su�er from the same disorder via the same underlying mechanism. As

a result, a diagnostic unit compiled from a particular diagnostic solution is

generally an imperfect disease description. A more general disease descrip-
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tion is acquired by merging such imperfect disease descriptions, based on

similarity in underlying structure. The degree to which a disease description

is generalized depends on previous experiences. Even though imperfect, gen-

eralized descriptions are then used to solve subsequent problems presented

to the program.

The knowledge incorporation process di�ers from explanation-based learn-

ing [22, 49, 68, 69] or example-based, inductive learning [4, 6, 9, 50, 80] in that

it does not attempt to learn perfect units before they can be used in problem

solving: Diagnostic units can be used in problem solving even though they

are imperfect. Explanation-based learning learns rules from few training ex-

amples, using domain theories. Example-based learning learns a rule from

many training examples which are believed to be covered by the rule. In gen-

eral, both explanation-based and example-based learning techniques assume

a unidirectional sequential relationship between the learning and problem-

solving processes: a \learning �rst, and then problem solving" paradigm.

Under this paradigm, these techniques attempt to learn rules that are gen-

eralized to the point where the rules can be directly applied to problems on

an exact matching basis.

The issue here is the tradeo� between problem-solving e�ciency and the

cost of learning general rules. If rules are not general enough to cover most

of the cases that they could ever cover, then they need to be modi�ed, case

by case, to solve problems. On the other hand, if rules are general enough to

cover the full set of cases, then problem solving can be done by directly apply-

ing the rules to a problem, without any modi�cation. While such straightfor-

ward application of rules on an exact matching basis reduces problem-solving

time, learning such completely general rules can be expensive, if possible at

all.

This thesis explores a strategy for solving diagnostic problems with what-

ever imperfect rules are available. The available rules are locally modi�ed,

case by case, so that they are applied to a given diagnostic problem.



Chapter 6

Decompositional Abductive

Diagnosis

The previous chapters described the diagnostic-unit representation for orga-

nizing knowledge about the context sensitivity of �ndings, and the knowl-

edge incorporation process for transforming experience into such general

problem-solving rules. This chapter develops and analyzes a decomposi-

tional abductive diagnosis technique which exploits knowledge structures in

the diagnostic-unit representation.

This thesis views decompositional abductive diagnosis as a two-stage pro-

cess. The �rst stage is the grouping of a given body of evidence into sub-

problems. The basic approach is to �nd relevant diagnostic units based on

an approximate technique called \deep matching adaptation." The second

stage is to construct a diagnostic solution to the problem, from the relevant

diagnostic units selected by the preceding evidence-grouping process.

6.1 Evidence-Grouping Process

The macro-�nding captured in each diagnostic unit, as a whole, represents

a clinical indicator that the speci�ed set of �ndings strongly supports the

85
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existence of the disorder and underlying pathophysiologic mechanism iden-

ti�ed in the diagnostic unit. In other words, diagnostic units provide guides

for decomposing a set of �ndings into smaller, immediately solvable subsets.

In the diagnostic-unit representation paradigm, therefore, the grouping of

given evidence becomes a search for relevant diagnostic units. This thesis

addresses the issue of how to select relevant diagnostic units, by matching

existing diagnostic units against the given evidence.

Depending on control strategies used to select relevant diagnostic units,

the use of diagnostic units may degrade or improve overall problem-solving

performance. Not all diagnostic unit selected are ones that are part of a

correct diagnosis. Some diagnostic units are falsely chosen as relevant ones.

De�nition 20 (True- and false- positive diagnostic units): A diagnos-

tic unit that is part of a correct diagnosis is called a true-positive diagnostic

unit, or shortly a true positive. A diagnostic unit that is not part of a cor-

rect diagnosis is called a false-positive diagnostic unit, or in short a false

positive.

A common matching method is to simply count the number of �ndings

that match on the surface. While easy to implement, this matching method,

called \simple matching" in this thesis, is only e�ective when cases that

are similar on the surface occur frequently. Unfortunately, in most medical

domains, patients with the exact same �ndings rarely recur. Since diagnostic

units used in this thesis are acquired from experience, knowledge captured in

diagnostic units is generally incomplete. As a consequent, a diagnostic unit

with syntactically dissimilar �ndings could be a better choice than that with

more �ndings that match on the surface [2].

Type I matching error: If a true-positive diagnostic unit is overlooked due

to dissimilarity in appearance, then a Type I matching error has occurred.
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The straightforward application of simple matching to incomplete diagnostic

units is prone to Type I matching errors. This type of errors may be reduced

by adapting existing diagnostic units so that they match a new problem. This

thesis explores this possibility by developing an approximate method, called

\deep matching adaptation." A key feature of deep matching adaptation is

that it considers not only similarities in appearance, but also similarities in

underlying causality.

The issue that arises in matching a diagnostic unit against a diagnostic

problem is what to do with those �ndings that are unmatched on the surface.

There are two kinds of unmatched �ndings. One is unmatched �ndings in

a diagnostic unit. The other is unmatched �ndings in a diagnostic problem.

Since unmatched �ndings in a diagnostic unit are not known to a patient,

they have no e�ect on the patient's state. In light of this observation, this

thesis handles unmatched �ndings in a diagnostic unit by removing them

from the diagnostic unit. Such removal can invalidate the diagnostic unit,

however. The issue regarding the validity of a diagnostic unit is addressed in

the succeeding hypothesis-construction process.

For unmatched �ndings in a diagnostic problem, this thesis checks to see

if they can be explained by the diagnostic unit. To this end, a technique

called \causal accounting" is investigated.

6.1.1 Causal Accounting

Causal accounting is a simple method for tailoring diagnostic units based

on underlying causality of �ndings. Causal accounting allows an unmatched

�nding in a diagnostic problem to be added to a diagnostic unit (and treated

as a matching �nding), if there exists in the diagnostic unit a pathophysiologic

state which can directly cause the unmatched �nding. Causal accounting can

be made more concrete with an example. Suppose that the diagnostic unit

in Figure 6.1 is being matched against a diagnostic problem which consists of
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the �ndings of systolic ejection murmur,1 high BUN (Blood Urea Nitrogen),

high creatinine,2 and orthopnea.3

Systolic Ejection
       Murmur

          Chronic
Mitral Regurgitation

High LA Press 
     

Chronic

High LA Press 
     

Low Renal
     Perfusion

     Nocturnal 
     Dyspnea

Low Cardiac 
Output

     BUN: High
    

     Creat: High

Figure 6.1: A diagnostic unit rooted at chronic mitral regurgitation

Orthopnea is an unmatched �nding in the problem. According toHf's causal

model, high LA (Left Atrial) pressure can directly cause orthopnea as well as

nocturnal dyspnea. Thus, causal accounting allows orthopnea to be added

to the diagnostic unit as an e�ect of high LA pressure.

De�nition 21 (Causally matching �nding and accounting state): Let

 be a diagnostic problem, and du be a diagnostic unit being matched

against  . For any unmatched �nding f in  , f is said to be explainable

by du if there exists a pathophysiologic state i such that

1. i 2 dihdui, and

2. 9 a causal relation i �! f 2 lhCi, where C is the domain causal

network.

f is called a causally matching �nding, and i an accounting state of f .

1Systolic ejection murmur is an adventitious sound heard on auscultation of the heart
that is most intense at the time of maximum ow of blood from the heart.

2Creatinine is one of the nonprotein constituents of blood, and increased quantities of
it are found in advanced stage of renal disease.

3Orthopnea is a shortness of breath in any but erect sitting or standing position.
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In our example, orthopnea is a causally matching �nding, and high LA pres-

sure is an accounting state of orthopnea. For expository simplicity, a �nding

that matches on the surface is called a syntactically matching �nding.

De�nition 22 (Syntactically matching �nding): Let  be a diagnostic

problem, and du be a diagnostic unit being matched against  . A syntac-

tically matching �nding is a �nding that matches on the surface, i.e., is

an element of both  and fhdui.

Systolic ejection murmur, high BUN, and high creatinine are syntactically

matching �ndings in our example.

Causal accounting o�ers the potential to reduce the possibility of making

Type I matching errors, and can e�ciently increase the usability of diagnostic

units in problem solving. In addition, it does not require any particular

domain-speci�c heuristics to adapt diagnostic units. Only knowledge about

direct causal dependencies, available in the causal knowledge base KCMS and

used primarily for �rst principles diagnosis by cms, is needed for adaptation.

The depth of causality examined by causal accounting is limited to direct

causal dependencies, however, in order to avoid a costly complete propaga-

tion of new evidence impact throughout the entire network. In this regard,

causal accounting can be viewed as a one-step lookahead version of a more

general accounting principle. From this viewpoint, it becomes apparent that

causal accounting trades accuracy for computational e�ciency, and hence can

degrade the extent to which end results represent reasonable approximations

to the desired optimal hypotheses.

Type II matching error: If a diagnostic unit selected by a matching strategy

is false positive, a Type II matching error has occurred.
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Causal accounting can increase the possibility of making Type II matching

errors. Techniques for dealing with Type II matching errors are investigated

in the succeeding hypothesis-construction process.

Casey [55], a case-based reasoning system for heart failure diagnosis,

explored an adaptation method similar to causal accounting. To solve a

new diagnostic problem, Casey directly inspects and adapts previous cases,

treating each case as an independent atom. It then transfers the entire diag-

nostic solution of the best matching previous case to the new problem.

Casey matches a previous case as follows: Let  and  0 denote a new

diagnostic problem and a previous diagnostic problem, respectively. Let S 0

be the stored solution to the previous case  0 (speci�cally, a causal explana-

tion for  0). Casey takes a set of the pathophysiological states in S 0 which

have direct causal links to at least one of the �ndings in  0, and matches this

set against a set of the pathophysiological states which can directly cause at

least one �nding in  . For expository convenience, let I1 be the former set

and I2 the latter. Then,

I1 = fiji 2 dihS 0i and 9 a causal relation i �! f 2 lhS 0i for some

f 2 fhS 0 ig

I2 = fiji 2 dihCi and 9 a causal relation i �! f 2 lhCi for some f 2  g,

where C is the domain causal network. As shown in I1, in order for a patho-

physiologic state in S 0 to be used in matching, it has to be a direct cause for

at least one �nding in S 0 . Casey determines the similarity between  0 and

 , by counting the number of pathophysiological states that are both in I1

and in I2, i.e., jI1\ I2j. A previous case with the largest number of matching

pathophysiologic states is then chosen as the best match.

Casey's matching method is essentially the same as determining match-

ing degrees based on the number of underlying causes, as opposed to �ndings,

in common. In principle, therefore, a previous case can be chosen as the best

match in Caseyeven when a new case and the chosen one do not have any
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common �nding. Such generous adaptation could adversely a�ect the suit-

ability of a solution, transferred from the best match, as the most likely

causal explanation.

6.1.2 Deep Matching Adaptation

The evidence-grouping process �nds relevant diagnostic units by a technique

called \deep matching adaptation." In an attempt to take into account

similarity in underlying causality as well as similarity in appearance, deep

matching adaptation uses causal accounting in determining relevant diagnos-

tic units.

Deep matching adaptation adapts diagnostic units to �t a given diagnostic

problem, as follows: For a diagnostic unit, 1) make a copy of the diagnostic

unit, 2) for each unmatched �nding f in the diagnostic problem, if f can

be explained by causal accounting, then add to the copy a node n that

represents f and a direct causal link to n from the corresponding accounting

state, 3) remove all unmatched �ndings in the diagnostic unit from the copy,

and then 4) return the modi�ed copy. This procedure for deep matching

adaptation of a diagnostic unit is summarized in Algorithm dmat shown in

Figure 6.2.

Algorithm dmat takes as input a diagnostic unit and a diagnostic prob-

lem. It adapts the diagnostic unit to �t the problem. To provide an intuitive

understanding of how Algorithm dmat adapts a diagnostic unit, let us ap-

ply Algorithm dmat to the diagnostic unit shown in Figure 6.3(a) and a

diagnostic problem  which consists of �ndings f1; f5; f7; f8; and f9. For

expository purposes, it is assumed that intermediate states i1 and i2 can di-

rectly cause �ndings f7 and f8, respectively { in other words, i1 �! f7 2 lhCi

and i2 �! f8 2 lhCi. Let du0 be a copy of the diagnostic unit shown in Fig-

ure 6.3(a). Algorithm dmat modi�es the setM of matching �ndings and du0

as follows:
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Algorithm Deep Matching Adaptation (DMAT):

Input: 1. A diagnostic unit du in KAS

2. A diagnostic problem  

Output: An adapted diagnostic unit du0 of du

Step I: Copy du to du0. Let M be the set of matching �ndings. It
is initialized to fhdui \  .

Step II (Adaptation by adding causally matching �nd-
ings): For any unmatched �nding f in  , if f can be explained
by causal accounting,

� add to du0 a node n representing f and a direct causal
link from i to n, where i is a node in du0 representing an
accounting state of f , and

� add f to M .

Step III (Adaptation by pruning away unmatched �nd-
ings in a diagnostic unit): Remove from du0 modi�ed by
Step II all nodes with no paths to any �ndings in M modi�ed
by Step II.

Step IV: Return the adapted diagnostic unit du0 produced by Step
III.

Figure 6.2: Algorithm dmat for adapting a diagnostic unit based on deep matching
adaptation

1. M  � ff1; f5g, the intersection of fhdui and  .

2. M  � ff1; f5; f7g since i1 can directly cause f7. Add to du0 a node

representing f7 and a causal link from the node representing i1 to the

newly added �nding node.
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d

i2

i4

f5f3 f4 

i3

i1

f6f1 f2 

Ψ = {f1,f5,f7,f8,f9},  i1 → f7 ∈ l〈C〉 , and i2 → f8 ∈ l〈C〉 

Matching findings = {f1,f5}
Unmatched findings in Ψ = {f7,f8,f9}
Unmatched findings in du(d) = {f2,f3,f4,f6}

d

i2

i4

f8

i1

f5f1 f7

(b)(a)

Matching findings = {f1,f5,f7,f8}
Syntactically matching findings = {f1,f5}
Causally matching findings = {f7,f8}

Figure 6.3: An example of deep matching adaptation; (a) A diagnostic unit to be matched
against  = ff1; f5; f7; f8; f9g; (b) An adapted diagnostic unit returned by Algorithm dmat

3. M  � ff1; f5; f7; f8g since i2 can directly cause f8. Add to du0 a node

representing f8 and a causal link from the node representing i2 to the

newly added �nding node.

All unmatched �ndings in the diagnostic unit { f2; f3; f4; and f6 { are then

removed from the modi�ed du0. Figure 6.3(b) shows the adapted diagnostic

unit returned by Algorithmdmat. All �ndings in the adapted diagnostic unit

shown in Figure 6.3(b) are matching �ndings. The matching �ndings include

two syntactically matching �ndings f1 and f5 and two causally matching

�ndings f7 and f8.

6.1.3 Algorithm for Evidence-Grouping Process

The evidence-grouping process applies deep matching adaptation to each

diagnostic unit that exists in KAS. Algorithm Evidence-Grouping shown in
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Figure 6.4 summarizes the evidence-grouping process. Adapted diagnostic

units returned by Algorithm Evidence-Grouping are passed to the succeeding

hypothesis-construction process. The hypothesis-construction process then

constructs an overall solution to the given problem from these adapted diag-

nostic units.

Algorithm Evidence-Grouping:

Input: 1. A diagnostic problem  

2. KAS

Output: A set Q of adapted diagnostic units

1. Q  � Nil;
2. For each diagnostic unit du in KAS

Q  � dmat(du;  );
3. Return Q;

Figure 6.4: Algorithm Evidence-Grouping for selecting relevant diagnostic units

Indexing refers to choosing the features of an object that will be used

as pointers to it in memory. As shown in Algorithm Evidence-Grouping, the

evidence-grouping process does not use any pre-speci�ed features as an index

to access diagnostic units. Instead, it simply examines all diagnostic units in

KAS. This method appears reasonable in medical domains like heart failure.

In most medical domains, all of the �ndings shown in a case are not equally

important. Moreover, the relative importance of �ndings can change from

patient to patient, depending on the relative strength of causes for other �nd-

ings that occur together. Such patient-speci�city of primary clinical features

makes it di�cult to specify the a priori signi�cance of �ndings in a case. In

addition, diagnostic units in KAS are modi�ed by experience, and their �nd-
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ings are likely to change dynamically with experience. As a consequence, the

accessing of diagnostic units based on pre-determined �xed pointers is not

desirable in medical domains. Casey is another diagnostic system which

takes the patient-speci�city of primary features into account for indexing.

Instead of indexing by pre-speci�ed features, Casey uses indexing by every

feature. It uses all the �ndings of a case for indexing. The price that has to be

paid for not using particular pre-speci�ed indices is computational e�ciency.

The amount of computation involved in the evidence-grouping process grows

proportionally to the number of diagnostic units to examine.

6.1.4 Related Algorithms for Adaptation

This subsection describes two adaptation techniques based on existing match-

ing methods: Casey-style matching adaptation and simple matching adap-

tation. These methods will be compared to the deep matching adaptation

method, by empirical study reported in Chapter 7.

CASEY-Style Matching Adaptation

Casey-style matching adaptation is an adaptation method based on Casey's

matching method, which was described in Section 6.1.1. The procedure for

Casey-style matching adaptation of a diagnostic unit is summarized in Al-

gorithm cmat shown in Figure 6.5.

To provide an intuitive understanding of Casey-style matching adap-

tation, let us apply Algorithm cmat to the diagnostic unit shown in Fig-

ure 6.3(a) and the diagnostic problem which consists of �ndings f1; f5; f7; f8;

and f9. Given the input, Algorithm cmat modi�es the set M of matching

�ndings and a copy du0 of the diagnostic unit as follows:

1. M  � ff1; f5g, the intersection of fhdui and  .

2. M  � ff1; f5; f7g since i1 not only can directly cause f7 but also has

f1 and f2, as its direct e�ects, in the diagnostic unit. Add to du0 a
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Algorithm Casey-style Matching Adaptation (CMAT):

Input: 1. A diagnostic unit du in KAS

2. A diagnostic problem  

Output: An adapted diagnostic unit du0 of du

Step I: Copy du to du0. Let M be the set of matching �ndings. It
is initialized to fhdui \  .

Step II: For any an unmatched �nding f in  , if there exists a
pathophysiologic state i in du0 such that i

1. has at least one �nding in du0 as its direct e�ect, and

2. can directly cause f , in other words 9 a causal relation
i �! f 2 lhCi,

then

� add to du0 a node n representing f and a direct causal link
from i to f , where i is an accounting state in du for f ,
and

� add f to M .

Step III (Adaptation by pruning away unmatched �nd-
ings in a diagnostic unit): Remove from du0 modi�ed by
Step II all nodes with no paths to any �ndings in M modi�ed
by Step II.

Step IV: Return the adapted diagnostic unit du0 produced by Step
III.

Figure 6.5: Algorithm cmat for adapting a diagnostic unit based on the Casey-style
matching method.
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node representing f7 and a causal link from the node representing i1

to the newly added �nding node. Even though i2 can directly cause

f8, i2 does not have any �nding as its direct e�ect in the diagnostic

unit. Thus, unlike deep matching adaptation, Casey-style matching

adaptation does not add f8 to du0.

d

i2

i4

f8

i1

f5f1 f7

(a)

d

i2

i4

i1

f5f1 f7

(b)

d

i2

i4

i1

f5f1 

(c)

Figure 6.6: Results of various adaptation techniques applied to the diagnostic unit shown
in Figure 6.3(a) and the diagnostic problem which consists of f1; f5; f7; f8 and f9; (a) An
adapted diagnostic unit returned as output by Algorithm dmat; (b) An adapted diagnostic
unit returned by Algorithm cmat; (c) An adapted diagnostic unit returned by Algorithm smat

All unmatched �ndings in diagnostic unit { f2; f3; f4; and f6 { are then re-

moved from the modi�ed du0. Figure 6.6(b) shows the adapted diagnostic

unit returned as output by Algorithm cmat. The matching �ndings, i.e.,

the �ndings in the adapted diagnostic unit shown in Figure 6.6(b), include

two syntactically matching �ndings f1 and f5 and a �nding f7 which do not

match on the surface but is accounted for by Casey-style matching.

Casey-style matching adaptation di�ers from deep matching adaptation

in the way that an unmatched �nding in a diagnostic problem is considered

to be explainable by a diagnostic unit (as well as in that in Casey, a whole
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case corresponds to a diagnostic unit). Casey-style matching adaptation

considers an unmatched �nding f in a diagnostic problem to be explainable

by a diagnostic unit du, if there exists a pathophysiologic state i in the

diagnostic unit that both can directly cause f and has at least one �nding in

the diagnostic unit as its direct e�ect { i.e., 9 a causal relation i �! f 2 lhCi,

and 9f 0 2 fhdui such that 9 a causal relation i �! f 0 2 lhdui.

Simple Matching Adaptation

Simple matching adaptation is an adaptation technique for selecting relevant

diagnostic units based on appearance. All the �ndings in a diagnostic unit,

except the syntactically matchings, are removed. This procedure for simple

matching adaptation is summarized in Algorithm smat shown in Figure 6.7.

Algorithm Simple Matching Adaptation (SMAT):

Input: 1. A diagnostic unit du in KAS

2. A diagnostic problem  

Output: An adapted diagnostic unit du0 of du

Step I: Copy du to du0. Let M be the set of matching �ndings. It
is initialized to fhdui \  .

Step II (Adaptation by pruning away unmatched �nd-
ings in a diagnostic unit): Remove from du0 all nodes
with no paths to any �ndings in M .

Step III: Return the adapted diagnostic unit du0 produced by Step
II.

Figure 6.7: Algorithm smat for adapting a diagnostic unit based on syntactic similarity
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Figure 6.6(c) shows the adapted diagnostic unit as a result of applying

Algorithm smat to the diagnostic unit shown in Figure 6.3(a) and the diag-

nostic problem which consists of �ndings f1; f5; f7; f8; and f9. All unmatched

�ndings in diagnostic unit { f2; f3; f4; and f6 { are removed from a copy of the

diagnostic unit. The matching �ndings, i.e., the �ndings in the adapted di-

agnostic unit shown in Figure 6.6(c), include only two syntactically matching

�ndings f1 and f5.

Simple matching adaptation di�ers from deep matching adaptation in

that causal accounting is not performed. Simple matching only takes syntac-

tic similarity into account to select relevant diagnostic units.

6.2 Hypothesis-Construction Process

The hypothesis-construction process generates a solution to the original prob-

lem by combining the adapted diagnostic units chosen by the evidence-

grouping process. Note that each diagnostic unit returned by the evidence-

grouping process is adapted to explain some subset of the given �nding set.

As a consequence, any combination of adapted diagnostic units can be an

explanation for all of the given �ndings if the union of adapted diagnostic

units in the combination is equal to the given �nding set. The issue is how

to �nd a combination which results in the most likely causal explanation.

The problem is that not all adapted diagnostic units selected by the

evidence-grouping process are ones that are part of a correct diagnosis. Some

of the adapted diagnostic units are, in fact, falsely chosen as relevant ones.

Unfortunately, during testing, the evidence-grouping process using Algorithm

Evidence-Grouping returned many diagnostic units, and most of them were

false positives: More speci�cally, the evidence-grouping process returned an

average of 66 adapted diagnostic units, and over 90% of them were false pos-

itives. The issue is how to pick \correctly" true positives from the output

of the evidence-grouping process. Before addressing this issue, Section 6.2.1

analyzes deep matching adaptation. The analysis shows that there is no guar-
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antee that a causal explanation identi�ed in an adapted diagnostic unit is

the most likely causal explanation for the �ndings in the adapted diagnostic

unit.

6.2.1 Analysis of Deep Matching Adaptation

Although adaptation can e�ciently increase the usability of diagnostic units,

it could make it di�cult to isolate true-positive diagnostic units. Two types

of adaptation are performed in deep matching adaptation: causal accounting

and removal of �ndings from a diagnostic unit. This subsection analyzes the

impacts of causal accounting and removal of �ndings on the approximate

optimality that is implied in diagnostic units.

Observe that deep matching adaptation does not propagate the impacts of

the addition of new �ndings to, and the removal of �ndings from, a diagnostic

unit throughout the entire network. Instead, it only examines direct causal

dependencies. In this regard, it can be considered as a one-step lookahead

technique. This narrowing of perspective gives valuable insights and ana-

lytical simplicity. By doing so, however, deep matching adaptation trades

accuracy for computational e�ciency. While it maintains local consistency

in causation, addition or removal of �ndings in such a one-step lookahead

way could a�ect global optimality unfavorably.

More speci�cally, consider a conditional probability statementPr(B jA) = p.

The statement means that if A is known to be true and A is the only thing

known, a probability p can be attached to B. It does not convey any in-

formation about the probability of B under any other condition. What is

identi�ed in a diagnostic unit du is that given that all the �nding in the diag-

nostic unit occur, then the causal explanation identi�ed in the diagnostic can

be concluded as a highly likely causal explanation for the identi�ed �ndings,

in relation to other causal explanations for the same �ndings. This qualita-

tive relationship of du to other causal explanations holds when all �ndings in

du occur. Thus, if all of the �ndings in the diagnostic unit are present in a
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patient, the diagnostic unit can be used, with relatively high con�dence, as (a

part of) a diagnosis for the patient. On the other hand, if any of the �ndings

in the diagnostic unit are absent or new �ndings are present, then the use of

the diagnostic unit to explain the patient' �ndings could be accompanied by

signi�cant errors.

Vulnerable Causal Accounting

The depth of causality examined by causal accounting is restricted to di-

rect causal dependencies. By avoiding propagating impacts of new evidence,

causal accounting may not preserve the approximate optimality that is im-

plied in diagnostic units.

For a more formal discussion of the vulnerability of causal accounting,

suppose that for a set F of �ndings, H;H1;H2; : : : ; and Hp are hypotheses

for F , and that H is the most likely hypothesis for F . Now suppose that a

new �nding f (62 F ), which can also be caused by H;H1;H2; : : : ; and Hp, is

observed. Figure 6.8 graphically summarizes the causal relations de�ned in

this example.

H         H1     H2         . . . . . .          Hp      

F                         f 

Figure 6.8: Examples of causal relations

The question is what is the most likely hypothesis for all of f and the

�ndings in F . H could be a reasonable candidate which can be suggested

without computation. Unfortunately, however, the fact that H is the most

likely hypothesis for F does not guarantee that H is also the most likely one
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for ffg[F . It can be proven as follows. Conditional independence between

�ndings allows the impact of the new datum f to be computed incrementally.

By Bayes' theorem [75],

Pr(H jF; f) = Pr(H jF )
Pr(f jH)

Pr(f jF )
(6.1)

Pr(Hi jF; f) = Pr(Hi jF )
Pr(f jHi)

Pr(f jF )
;8i = 1; 2; : : : ; p (6.2)

Consider the righthand side of each of equations (6.1) and (6.2). BecauseH is

the most likely hypothesis for F , for all i = 1; : : : ; p Pr(H jF ) � Pr(Hi jF ).

This, however, does not necessarily imply that for all i = 1; : : : ; p

Pr(H j F; f) � Pr(Hi j F; f)

because there is no guarantee that it is always true that for all i = 1; 2; : : : ; p

Pr(f jH) � Pr(f jHi):

For example, suppose that the diagnostic unit shown in Figure 6.9(a) is

being matched against the problem which consists of systolic ejection mur-

mur, orthopnea, and high BUN. The diagnostic unit shown in Figure 6.9(b)

is the adapted diagnostic unit returned by Algorithm dmat. What is cap-

tured in the diagnostic unit shown in Figure 6.9(a) is that nocturnal dyspnea

is computed to be evidence in strong favor of high LA pressure. This does

not necessarily imply, however, that orthopnea can also be strong evidence

for high LA pressure. In order to determine that, the impact of new evidence

must be fully propagated.

Vulnerability of Removal of Unmatched Findings

Similarly, the removal of unmatched �ndings in a diagnostic unit from the

diagnostic unit can invalidate the diagnostic unit. For formal discussion,
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Systolic Ejection
Murmur

   
Chronic Mitral      
Regurgitation

Chronic High
   LA Press

High LA Press 
     

Low Renal Perfusion
     

Low Cardiac 
Output

     BUN: High
    

 Nocturnal Dyspnea 
    

     Creatinine: High

(a)

Systolic Ejection
Murmur

   
Chronic Mitral      
Regurgitation

Chronic High
   LA Press

High LA Press 
     

Low Renal Perfusion
     

Low Cardiac 
Output

 Orthopnea
    

     BUN: High
    

(b)

Figure 6.9: An example of deep matching adaptation, for a diagnostic problem which
consists of systolic ejection murmur, orthopnea, and high BUN

reconsider the set F of �ndings for which hypotheses include H;H1;H2; : : : ;

and Hp, and for which the most likely hypothesis is H. Suppose that a

�nding f 0 in F is absent (see Figure 6.10 for causal relations de�ned in this

example).

It can be proven that there is no guarantee that H is the most likely

hypothesis for F� ff 0g, in a similar way that new evidence impacts were

proven. The impact of the absent datum f 0 can be computed incrementally.

By Bayes' theorem [75],
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H         H1     H2         . . . . . .          Hp      

F−{f'}                    f' 

Figure 6.10: Examples of causal relations

Pr(H jF ) = Pr(H jF � ff 0g; f 0)

= Pr(H jF � ff 0g)
Pr(f 0 jH)

Pr(f 0 jF � ff 0g)
(6.3)

Pr(Hi jF ) = Pr(Hi jF � ff
0g; f 0)

= Pr(Hi jF � ff
0g)

Pr(f 0 jHi)

Pr(f 0 jF � ff 0g)

for all i = 1; 2; : : : ; p (6.4)

Consider the lefthand side of each of equations (6.3) and (6.4). Because H

is the most likely hypothesis for F , for all i = 1; : : : ; p

Pr(H jF ) � Pr(Hi jF );

and thus for all i = 1; : : : ; p

Pr(H jF � ff 0g)Pr(f 0 jH) � Pr(Hi jF � ff
0g)Pr(f 0 jHi).

This does not, however, necessarily imply that for all i = 1; : : : ; p

Pr(H jF � ff 0g) � Pr(Hi jF � ff
0g) (6.5)

The inequality in equation (6.5) is true only when for all i = 1; 2; : : : ; p
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Pr(f 0 jHi) � Pr(f 0 jH):

For example, the diagnostic unit shown in Figure 6.9(a) speci�es that

high BUN and high creatinine together are evidence in strong support of low

renal perfusion. It is not implied in the diagnostic unit, however, that high

BUN alone can be strong evidence for low renal perfusion. The impact of

absent evidence is uncertain until it is fully propagated.

Implication of One-Step Lookahead Adaptation

Unfortunately, the impact of new, or absent, evidence is computationally

more intensive to propagate if causes can inuence �ndings indirectly via sev-

eral causal links [62, 75, 78]. Causal accounting and the removal of �ndings

avoid the costly complete propagation of new/absent-evidence impacts. The

sum of local consistency ensured in adaptation, however, does not guarantee

that the end result of adaptation is globally optimal. Indeed, the application

of adaptation to a diagnostic unit that does not share enough points of simi-

larity with a given case could overlook context sensitivity of �ndings captured

in the diagnostic unit, and consequently result in an adapted diagnostic unit

which is essentially dysfunctional.

The issue is how to select, from the output of the evidence-grouping pro-

cess, adapted diagnostic units that approximate the desired global optimum.

One approach is to check each adapted diagnostic unit du, to see if the causal

explanation identi�ed in du is the most likely causal explanation for the �nd-

ings in du. Such a check can be performed by computing Pr(G jfhdui), for

each other causal explanation G for the same �ndings, and then comparing

this probability with Pr(dihdui jfhdui). Unfortunately, this approach is com-

putationally expensive, for there are exponentially many causal explanations

to consider (as discussed in Section 3.2). The rest of this chapter describes

techniques developed to address the issue of how to e�ciently pick adapted

diagnostic units that approximately meet global optimality.
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6.2.2 Speci�city-Reected Similarity Metric

A common picking method is to count the number of matching �ndings, and

then pick the units with the largest number, as used in Casey [55]. This

method, called a simple similarity metric in this thesis, is easy to implement.

Not all matching �ndings in an adapted diagnostic unit are, however, of the

same kind. Some �ndings are included because they match on the surface

(syntactically matching �ndings). Some �ndings are included because they

are considered to be matching �ndings by causal accounting (causally match-

ing �ndings). Causally matching �ndings are added to an adapted diagnostic

unit, but their impact is not fully propagated. As a result, it is unknown

how strongly these causally matching �ndings support the existence of the

diagnostic unit, while for syntactically matching �ndings, it is indicated by

previous experience that they strongly do. This thesis develops a similar-

ity metric, called speci�city-reected similarity metric, to take this di�erence

into account.

The speci�city-reected similarity metric is motivated by the observation

that some �ndings do better than others in identifying the existence of a

disorder. Findings in a diagnostic unit are divided into two groups: speci�c

�ndings and non-speci�c �ndings.

De�nition 23 (Speci�c and non-speci�c �ndings): For some diagnostic

unit du in KAS, speci�c �ndings of du are �ndings that play a signi�cant

role in identifying the existence of du. Findings in du that are not speci�c

�ndings are called non-speci�c �ndings of du.

\Playing a signi�cant role" clause in De�nition 23 is implemented via com-

parison of the speci�city attached to each �nding in a diagnostic unit with a

threshold. The speci�city of a �nding represents a level of the signi�cance of

a �nding in identifying a particular disorder and the underlying pathophysio-

logic mechanism. Hf is capable of providing speci�cities that range between

0 and 1, which the knowledge incorporation process of Hydi remembers for

each �nding in a diagnostic unit. The remembered speci�city of a �nding in
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a diagnostic unit is compared with a threshold, to determine if the �nding

can be considered to be speci�c. During testing, a �nding in a diagnostic

unit with the speci�city higher than 0.8 was considered as a speci�c �nding

of the diagnostic unit. In order to determine a threshold value, a test was

conducted to learn the threshold which gives the best outcome in identifying

diagnostic units. The test showed that the threshold of 0.8 produced the

best outcome.

Unlike the simple similarity metric, the speci�city-reected similarity

metric uses the following three measures for gauging the similarity between

the problem and an adapted diagnostic unit:

� The number of matching speci�c �ndings

� The total number of matching �ndings

� The frequency with which a diagnostic unit has occurred so far, specif-

ically the number of merging operations that have been applied to the

diagnostic unit.

A matching speci�c �nding is a �nding that is both a speci�c �nding of a di-

agnostic unit and a matching �nding in the adapted version of the diagnostic

unit.

De�nition 24 (Matching speci�c �nding): For some diagnostic unit du

in KAS, let du0 be an adapted diagnostic unit of du returned by Algorithm

dmat. A matching speci�c �nding is a �nding that is both a speci�c

�nding of du and a �nding in du0.

For some adapted diagnostic unit du, let s(du), t(du), and f(du) denote the

number of matching speci�c �ndings, the total number of matching �nd-

ings, and the frequency with which du has occurred so far, respectively. To

provide an intuitive understanding of s(du) and t(du), let us reconsider the
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Specific findings = {f1,f2,f3,f5}
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(b)(a)

Original diagnostic unit (du) Adapted diagnostic unit (du')   
      by Algorithm DMAT

Matching specific findings = {f1,f5}
Thus, s(du') = 2

Matching findings = {f1,f5,f7,f8}
Thus, t(du') = 4

Figure 6.11: An example of measures used in the speci�city-reected similarity metric

deep matching adaptation example used in Section 6.1.2. For expository

convenience, the original diagnostic unit du is shown again in Figure 6.11(a).

Figure 6.11(b) reshows the adapted version du0 of du. The original diagnostic

unit shown in Figure 6.11(a) has four speci�c �ndings { f1; f2; f3, and f5. Of

them, two speci�c �ndings f1 and f5 remain in the adapted diagnostic unit:

Thus s(du0) = 2. There are four matching �ndings in the adapted diagnostic

unit. In other words, t(du0) = 4.

The speci�city-reected similaritymetric picks an adapted diagnostic unit

with the highest rank, where ranks of adapted diagnostic units are determined

as follows: For any two adapted diagnostic units, the one with the larger

number of matching speci�c �ndings gets higher rank. In case of a tie, the

one with the larger total number of matching �ndings gets higher rank. In

case of a tie, the one that has occurred more commonly gets higher rank.
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Underlying this ranking procedure is the following heuristics.

Heuristic 1: Two cases with the same underlying causes will share more �nd-

ings than two cases with di�erent underlying causes.

Heuristic 1, which is a straightforward observation on the property of the

causal regularity of pathophysiologic functioning of a human body, provides

guidance for selecting more likely causes for �ndings. It allows adapted di-

agnostic units which share more �ndings with a given problem to get higher

ranks.

The algorithm shown in Figure 6.12(a) summarizes the speci�city-reected

similarity metric. Note that matching speci�c �ndings are all syntactically

matching �ndings. In this regard, the speci�city-reected similarity metric

gives more weight to syntactically matching �ndings than to causally match-

ing �ndings. For comparison purposes, an algorithm for the simple similarity

metric is presented in Figure 6.12(b). The simple similarity metric, used in

Casey, determines similarity by counting the total number of �ndings in

adapted diagnostic units. Syntactically and causally matching �ndings are

thus given the same weight.

6.2.3 Dependency-Guided Picking Method

If the adapted diagnostic unit picked by the speci�city-reected similarity

metric does not explain all of the given �ndings, other adapted diagnostic

units need to be chosen to account for the unexplained �ndings. A com-

mon approach is to choose these units based on the disorder independence

assumption. In most medical domains, however, disorders are not always

independent of each other. In light of such dependency between disorders,

this thesis uses dependencies between diagnostic units to guide the picking

process.

Basically, additional units are chosen by applying the speci�city-reected

similarity metric to adapted diagnostic units which have causal or non-causal
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Similarity Metrics

Input: A set Unsel of adapted diagnostic units
Output: An adapted diagnostic unit in Unsel with the

highest rank

(a) Algorithm for Speci�city-Reected Similarity Metric
(SRSM):

Return an adapted diagnostic unit in Unsel with the highest
rank, where the rank is determined as follows:
For any two adapted diagnostic units, du and du0, in Unsel
du gets the higher rank,

1. if s(du) > s(du0),

2. if t(du) > t(du0), when s(du) = s(du0), or

3. if f(du) � f(du0),
when t(du) = t(du0) and s(du) = s(du0).

(b) Algorithm for Simple Similarity Metric (SSM):

Return an adapted diagnostic unit in Unsel with the highest
rank, where the rank is determined as follows:
For any two adapted diagnostic units, du and du0, in Unsel
du gets the higher rank,

1. if t(du) � t(du0).

Figure 6.12: (a) Algorithm for Speci�city-Reected Similarity Metric; (b) Algorithm for
Simple Similarity Metric



6 Decompositional Abductive Diagnosis 111

relation links to the adapted diagnostic units which have already been picked.

If there are no such adapted diagnostic units, all remaining adapted diagnos-

tic units are considered. This picking process is repeated either until all of

the given �ndings are explained or until there is no unselected adapted di-

agnostic unit. The dependency-guided picking process is summarized in the

algorithm shown in Figure 6.13.

Algorithm for Dependency-Guided Picking (DGP):

Input: 1. A set Unsel of adapted diagnostic units that
have not been selected

2. A set Sel of adapted diagnostic units that
have been selected

3. A set E of �ndings that have been explained
4. A diagnostic problem  

Output: Modi�ed Sel and E

1. While E 6=  and Unsel 6= Nil

2. Candidates � The set of adapted diagnostic units in Unsel
that are causally or non-causally related to
at least one adapted diagnostic unit in Sel;

3. du � IF Candidates 6= Nil

4. THEN srsm(Candidates)
5. ELSE srsm(Unsel);
6. Sel � Sel [ fdug;
7. Unsel � Unsel � fdug;
8. E  � E [ fhdui;
9. Return Sel and E;

Figure 6.13: Dependency-Guided Picking Algorithm for picking next units
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Algorithm dgp returns a set of adapted diagnostic units that are selected to

be parts of a diagnostic solution, and a set of �ndings that are explained by

these selected units.

6.2.4 Algorithm for Hypothesis-Grouping Process

The hypothesis-construction process generates a diagnostic solution to the

given problem from the output of the evidence-grouping process. The speci�city-

reected similarity metric (Algorithm srsm) and the dependency-guided

picking method (Algorithm dgp) are used to select, from the output, diag-

nostic units that are judged to be parts of a diagnostic solution. If adapted

diagnostic units chosen by Algorithm dgp can explain all the �ndings in

the problem, then the hypothesis-construction process constructs a diagnos-

tic solution by unioning the adapted diagnostic units: The union of causal

graphs was de�ned in De�nition 19. Otherwise, it returns a \Failed" signal

to notify that the generation of a diagnostic solution to the problem is failed.

This hypothesis-construction process is summarized in the algorithm shown

in Figure 6.14.

6.3 Algorithm for Decompositional Abduc-

tive Diagnosis

Decompositional abductive diagnosis is performed by the evidence-grouping

process followed by the hypothesis-construction process. The grouping of ev-

idence is done by applying Algorithm Evidence-Grouping to a given diagnostic

problem. The construction of a diagnostic solution to the problem is done

by applying Algorithm Hypothesis-Construction to the output of Algorithm

Evidence-Grouping. The procedure for decompositional abductive diagnosis

is summarized in Algorithm dad shown in Figure 6.15.

Algorithm dad takes as input a diagnostic problem and the existing KAS.

It returns as output either a diagnostic solution to the problem or a \Failed"
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Algorithm Hypothesis-Construction:

Input: 1. A diagnostic problem  

2. The set Q of adapted diagnostic units
returned by the evidence-grouping process

Output: A diagnostic solution to  

1. du � srsm(Q);
2. Sel � fdug;
3. E  � fhdui;
4. Sel and E  � dgp(Q� Sel; Sel; E;  );
5. IF E =  

6. THEN Return a diagnostic solution obtained by unioning
all the adapted diagnostic units in Sel

7. ELSE Return \Failed" signal;

Figure 6.14: Algorithm Hypothesis-Construction

signal. Algorithm dad �rst adapts each diagnostic unit in KAS to �t the

problem, by applying Algorithm Evidence-Grouping. Each adapted diagnos-

tic unit returned by Algorithm Evidence-Grouping represents a disorder and

underlying mechanism that can explain part of the overall malfunction. Al-

gorithm dad then applies Algorithm Hypothesis-Construction to the output

of Algorithm Evidence-Grouping, to select adapted diagnostic units that are

considered to be parts of a diagnostic solution. Such adapted diagnostic units

are selected by taking into account di�erences in syntactically and causally

matching �ndings and dependency among disorders.
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Algorithm Decompositional Abductive Diagnosis
(DAD):

Input: 1. A diagnostic problem  

2. KAS

Output: A diagnostic solution to  

1. Q  � Evidence-Grouping( ;KAS);
2. S  � Hypothesis-Construction( ;Q);
3. Return S ;

Figure 6.15: Algorithm Decompositional Abductive Diagnosis

6.4 Problem-Solving Algorithm for HYDI

Hydi performs hybrid reasoning to solve a diagnostic problem. Hydi's

hybrid problem-solving ow is summarized in the algorithm shown in Fig-

ure 6.16.

Given a set of �ndings, the associative problem solver as �rst tries to generate

a diagnostic solution, by applying Algorithm dad to the problem. as uses de-

compositional abductive diagnosis which �nds relevant diagnostic units based

on deep matching adaptation, and constructs a diagnostic solution based on

the speci�city-reected similarity metric and the dependency-guided picking

method. If a diagnostic solution generated by as is not acceptable, then

the more robust cms is called to solve the problem step-by-step from �rst

principles. Hydi uses Hf as its causal-model-based problem solver cms. Ac-

ceptability of diagnostic solutions generated by as is discussed in Chapter 7.
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Algorithm HYDI-Diagnosis:

Input: A diagnostic problem  

Output: A diagnostic solution to  

1. S  � dad( ;KAS);
2. S  � IF S is acceptable
3. THEN S 
4. ELSE Call CMS;

Figure 6.16: Problem-Solving Algorithm for HYDI





Chapter 7

Empirical Analysis

An empirical study was conducted to test the e�ciency and e�ectiveness of

the techniques developed in this thesis. The data set used for the empirical

analysis consisted of 300 cardiac patients from The New England Medical

Center Hospital. Graphic results reported here were smoothed by the Systat

program [99].

In order to reduce bias due to case ordering, 50 independent trials were

conducted on 50 di�erent random case orderings, and their results were aver-

aged together. In each trial, the associative knowledge base,KAS, ofHydiwas

initially empty, and all 300 patients were run. Each diagnostic problem was

solved with knowledge that was available in the knowledge bases at the time

of problem solving. Each time a diagnostic problem was solved, a diagnostic

solution was incorporated into KAS, and hence used in the next diagnosis.

For evaluation purposes, the most likely causal explanations generated by

Hf were assumed to be \correct" diagnoses.1

Section 7.1 presents an experiment conducted to examine the e�ect of

merging threshold (used to determine if two diagnostic units can be merged)

on the number of diagnostic units in KAS. The remainder of the chapter

1Experience with physicians shows that the performance of Hf is at a level acceptable
by experts [63, 64].

117
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presents experiments conducted to evaluate the problem-solving performance

of the techniques developed in this thesis. While absolute performance is

interesting, of more interest is the relative performance of previously stud-

ied alternative algorithms. Section 7.2 compares deep matching adaptation

with simple and Casey-style matching adaptation. Section 7.3 compares

the speci�city-reected similarity metric and the dependency-guided picking

method with the simple similarity metric and the simple picking method. Fi-

nally, Section 7.4 compares hybrid reasoning with each of causal-model-based

and association-based reasoning.

7.1 Final Size of the Associative Knowledge

Base of HYDI

The amount of computation involved in decompositional abductive diagno-

sis depends on the number of diagnostic units that are available in KAS,

which in turn is a�ected by the setting of the merging threshold. Because

computational e�ciency is an important aspect of automated diagnosis, an

experiment was conducted to evaluate the e�ect of the merging threshold

on the number of diagnostic units in KAS. Experimental runs were made for

�ve di�erent merging threshold values { 75%, 80%, 85%, 90%, and 95%. For

each merging threshold value, independent trials were conducted on the 50

random case orderings. In each trial, as diagnostic problems were solved,

diagnostic units and relationships between them were discovered and incor-

porated into KAS, which was initially empty. The procedure for each trial

is summarized in the algorithm shown in Figure 7.1. A merging threshold

value �, given as input, was used for knowledge incorporation. At the end

of each trial, the size of KAS was measured. The size of KAS is de�ned as the

total number of diagnostic units available in KAS.

At the end of the experiment, of the total 83 elemental disorders de�ned

in Hf, diagnostic units for 77 disorders were identi�ed in KAS. Table 7.1
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Procedure used in each trial to examine the e�ect of
merging threshold on the size of KAS:

Input: 1. A set 	 of the 300 patients in random order
2. Empty KAS

3. Merging threshold value �

1. For each patient  in 	
2. Solve the diagnostic problem;
3. Incorporate a veri�ed diagnostic solution into KAS by the

knowledge incorporation process, using the merging
threshold value �;

4. Measure the �nal size of KAS;

Figure 7.1: The procedure used by each trial to examine the sensitivity of the �nal size of
KAS to merging threshold

summarizes the average �nal size of KAS for each of the various merging

threshold values.

Merging Avg. size of a Avg. size Avg. # of links of
threshold diagnostic-unit set of KAS a diagnostic unit

75% 1.26 97 5.4
80% 1.33 102 5.1
85% 1.56 120 5.0
90% 1.99 153 4.6
95% 3.35 258 4.5

Table 7.1: Average size of KAS at the end of the experiment

The size of the diagnostic-unit set of a disorder is de�ned as the number

of elements in the diagnostic-unit set, i.e., the number of diagnostic units
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identi�ed for the disorder. Average �nal sizes of diagnostic-unit sets are

shown in the second column of Table 7.1. The average size of KAS was

measured by multiplying the average size of a diagnostic-unit set by the

number of disorders identi�ed inKAS. The experiment shows that the average

size of KAS grows asymptotically with experience. For example, Figure 7.2

shows how the size of KAS changed as experience grew for a 95% merging

threshold.
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Figure 7.2: Change in the size of KAS (i.e., the total number of diagnostic units available
in KAS) as a function of experience for a 95% merging threshold

The average �nal sizes of KAS are shown in the third column of Table 7.1.

As shown in the table, an average of approximately 3 diagnostic units were

identi�ed for each disorder, even at the \tightest" merging threshold of 95%.

Recall that, as shown in Algorithm Evidence-Grouping, the evidence-grouping

process examines each diagnostic unit in KAS. The experimental results im-
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ply that an average of only 258 diagnostic units2 need to be examined by the

evidence-grouping process. Each diagnostic unit had an average of approxi-

mately 5 causal and/or non-causal relation links to other diagnostic units.

7.2 Empirical Analysis of Adaptation Tech-

niques

This thesis developed deep matching adaptation for modifying diagnostic

units, which are generally imperfect, so that they are applicable to a given

diagnostic problem. An experimentwas conducted to compare deep matching

adaptation with two other existing adaptation techniques: Casey-style and

simple matching adaptation.

7.2.1 Adaptation Techniques Compared

The following three di�erent evidence-grouping strategies were compared:

� eg-dmat: The evidence-grouping strategy that applies deep matching

adaptation (i.e., Algorithm dmat described in Section 6.1.2) to each

diagnostic unit in KAS.

� eg-cmat: The evidence-grouping method that applies Casey-style

matching adaptation (i.e., Algorithm cmat described in Section 6.1.4)

to each diagnostic unit in KAS.

� eg-smat: The evidence-grouping method that applies simple matching

adaptation (i.e., Algorithm smat described in Section 6.1.4) to each

diagnostic unit in KAS.

2The total number of diagnostic units available in KAS can be obtained by multiplying
the average size of a diagnostic-unit set by the number of disorders identi�ed. At the end
of the experiment, the average size of a diagnostic-unit set was 3.35, and a total of 77
disorders were identi�ed. Thus, the total number of diagnostic units available in KAS was
on average about 258 (� 3:35� 77).
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7.2.2 Performance Dimensions Used

Each of the evidence-grouping strategies returned diagnostic units which had

been adapted to explain subsets of �ndings in a diagnostic problem. Some

of the adapted diagnostic units were true positives, and some were false

positives. Performance was measured along the dimensions of false-positive

rate and true-positive accountability. The false-positive rate is de�ned as the

ratio of the number of false positives to the total number of diagnostic units

selected by an evidence-grouping strategy. The true-positive accountability

is de�ned as the percentage of �ndings in a diagnostic problem that the true

positives selected by an evidence-grouping strategy can explain. For clarity,

let  be a diagnostic problem, and Q be the set of adapted diagnostic units

returned by an evidence-grouping strategy. Then,

False-positive rate =
jQF j

jQj

True-positive accountability =
j[du2QT

fhduij

j j
� 100

where QT and QF are the sets of true and false positives, respectively, in Q:

Q = QT [QF .

7.2.3 Test Procedure

Independent trials were conducted on 50 di�erent random orderings of the

300 patients. In each trial, KAS was initially empty, and all 300 patients

were run. For each diagnostic problem, an adaptation technique was applied

to diagnostic units that were available in KAS at the time of problem solv-

ing. Each time a diagnostic problem was solved, a diagnostic solution was

incorporated into KAS which was in turn used in the next diagnosis. A 95%

merging threshold was used for knowledge incorporation. This procedure for

each trial is summarized by the algorithm shown in Figure 7.3.
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Procedure used by a trial for comparing adaptation tech-
niques

Input: 1. A set 	 of the 300 patients in random order
2. Empty KAS

1. For each patient  in 	
2. For each diagnostic unit du in KAS

3. QD  � dmat(du;  ) ; for analysis of eg-dmat
4. QC  � cmat(du;  ) ; for analysis of eg-cmat
5. QS  � smat(du;  ) ; for analysis of eg-smat
6. Measure false positive rate and true-positive accountability

for QD; QC; and QS;
7. Incorporate a veri�ed diagnostic solution into KAS by the

knowledge incorporation process, using a 95% merging
threshold;

Figure 7.3: The procedure used by each trial for comparing adaptation techniques

7.2.4 Analysis

Figure 7.4 plots true-positive accountability as a function of experience. It

also summarizes the average true-positive accountability of each evidence-

grouping strategy. The results demonstrate that deep and Casey-style

matching adaptation is empirically able to do better than simple matching

adaptation, in translating patterns from one case to another.

One thing to note in Figure 7.4 is that after a certain number of cases are

solved, changes in the true-positive accountability appear to remain fairly

small. This could either be because all possible cases have already been

seen or because similar problems occur infrequently. In this study, the latter
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Figure 7.4: Comparison of evidence-grouping strategies with respect to true-positive ac-
countability

seemed to be a more likely reason for this phenomenon, because if all possible

cases had already been seen, then higher accountability than observed (closer

to 100%) would be expected. In order to verify this speculation, the following

statistic was gathered: For each diagnostic problem, it was measured, retro-

spectively, what percentage of the diagnostic units in a diagnostic solution

had been seen before the problem was solved. One would expect that at

least these patterns should be recognized as relevant ones. Such a percent-

age is referred to as the expected true-positive accountability, or for short

expected accountability. According to the experiment, the most likely causal

explanation for a problem consisted of an average of 8 diagnostic units (i.e.,
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8 true positives), and 40% of them were ones that had been seen before the

problem was solved. In other words, the average expected accountability was

40%. Figure 7.5 graphically summarizes the distribution of cases in terms

of expected accountability. This result empirically veri�es that cases with

the same particular combinations of diagnoses do not recur routinely, even

though precedents could account for di�erent parts of the solution.
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Figure 7.5: The distribution of cases, during the study, in terms of expected accountability

Figure 7.6 attempts to compare evidence-grouping strategies in terms of

expected accountability and the true-positive accountability that was actu-

ally achieved. For expository convenience, the latter is referred to as ac-

tual accountability. In Figure 7.6(a), the x-coordinate represents expected

accountability, and the y-coordinate represents actual accountability. The

evidence-grouping strategies based on deep and Casey-style matching adap-

tation achieved actual accountability higher than expected accountability for

most of cases. On the other hand, simple matching adaptation produced rel-

atively poor performance. In terms of average actual accountability, all of the

three evidence-grouping strategies achieved an average actual accountability

higher than the average expected accountability (40%). Average account-

abilities are plotted, for ease of comparison, in Figure 7.6(b). These results

empirically demonstrate the advantage of techniques that adapt rules to �t
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Figure 7.6: Actual accountability vs. expected accountability

a problem, over techniques that apply rules on an exact match basis, partic-

ularly when rules are imperfect.

Figure 7.7 shows the change in false-positive rates as experience grew. It

also shows a table of average false-positive rates for each evidence-grouping

strategy. The results shown in the �gure empirically verify that adaptation

of diagnostic units results in high false-positive rates as well as high true-

positive accountability. While false-positives are not desirable, Section 7.3

presents an experiment which demonstrates that to construct a diagnostic

solution, such a high false-positive rate is less problematic than one may

think, and what is more important is the number of true positives selected.

For ease of comparison, Table 7.2 summarizes the average true-positive

accountability and false-positive rate results. The table suggests that deep

matching adaptation enjoys an advantage over simple matching adaptation

in transferring knowledge from case to case. Causal accounting used in deep
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Evidence-grouping method eg-dmat eg-cmat eg-smat

Avg. true-positive
Accountability 82% 73% 49%

Avg. false-positive rate 90% 92% 89%

Table 7.2: Summary of average true-positive accountability and false-positive rate for each
evidence-grouping strategy

matching adaptation appears to degrade false-positive rates only slightly,

while substantially enhancing true-positive performance. This result em-

pirically supports the importance of causal similarity in recognizing rele-

vant diagnostic units, particularly when matches between cases are only par-
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tial. Deep matching adaptation also appears to do better than Casey-style

matching adaptation. The former achieved higher true-positive accountabil-

ity but lower false-positive rates than the latter (even though the di�erence

in false-positive rates is marginal). From this experiment, we may conclude

that deep matching adaptation is an e�ective technique for taking advantage

of similarity between cases, in domains where cases similar on the surface

rarely occur.

Finally, Figure 7.8 summarizes the average number of true and false pos-

itives chosen by each evidence-grouping strategy. The second column shows

the average total number of adapted diagnostic diagnostic units returned by

each evidence-grouping strategy. Diagnostic units returned are either true

positive or false positive. The third column lists the average number of true

positives selected, while the fourth column lists the average number of false

positives selected.

As mentioned previously, the most likely explanation for a diagnostic

problem consisted of an average of 8 diagnostic units, 3 of them being ones

that had been seen before the problem was solved. Note that eg-dmat was

able to �nd 82% of them i.e., about 6.55 true positives. This demonstrates

the capability of deep matching adaptation to identify relevant diagnostic

units, particularly when experience is limited, and consequently diagnostic

units are imperfect.

Table 7.8 also shows that adaptation substantially reduced the number

of diagnostic units that need to be considered to construct a solution (from

258 diagnostic units that were available in KAS

3 to 66 diagnostic units (26%

of 258), 67 diagnostic units (26% of 258), and 38 diagnostic units (15% of

258), for eg-dmat, eg-cmat, and eg-smat, respectively). The outputs of

all three evidence-grouping strategies were, however, still heavily populated

with false positives. More speci�cally, 90%, 92%, and 89% of the adapted di-

agnostic units returned by eg-dmat, eg-cmat, and eg-smat, respectively,

3As discussed in Section 7.1, the average number of diagnostic units in KAS, for a 95%
merging threshold, was 258.
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Figure 7.8: Performance of evidence-grouping strategies in selecting true positives and
false positives for a diagnostic problem

were false positives. The next section reports on an evaluation of the capabil-

ity of the hypothesis-construction process to deal with such high false-positive

rates.
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7.3 Empirical Analysis of Hypothesis Con-

struction Strategies

An experiment was conducted to test the e�ectiveness of the speci�city-

reected ranking method and the dependency-guided picking method. In par-

ticular, these techniques were compared with the simple similaritymetric and

the simple picking method. Toward this end, four hypothesis-construction

strategies were implemented based on di�erent combinations of similarity

metrics and picking methods. The experiment was run on the output of the

evidence-grouping process that selects relevant diagnostic units by applying

deep matching adaptation (i.e., Algorithm dmat).

7.3.1 Hypothesis-Construction Strategies Compared

The following four hypothesis-construction strategies were compared.

� hc-strategy1: The hypothesis-construction strategy based on the

speci�city-reected similarity metric and the dependency-guided pick-

ing method. AlgorithmHypothesis-Construction shown in Section 6.2.4

is used for hc-strategy1.

� hc-strategy2: The hypothesis-construction strategy based on the

speci�city-reected similarity metric and the simple picking method.

An algorithm for the picking diagnostic units based on these techniques

is given in Figure 7.9.

� hc-strategy3: The hypothesis-construction strategy based on the

simple similarity metric and the dependency-guided picking method.

An algorithm for picking diagnostic units based on these techniques is

given in Figure 7.10.

� hc-strategy4: The hypothesis-construction strategy based on the

simple similarity metric and the simple picking picking method. An

algorithm for this picking method is given in Figure 7.11.



7 Empirical Analysis 131

Simple Picking Algorithm for hc-strategy2 based on the
speci�city-reected similarity metric (SPSRSM):

Input: 1. A set Unsel of adapted diagnostic units that
have not been selected

2. A set Sel of adapted diagnostic units that
have been selected

3. A set E of �ndings that have been explained
4. A diagnostic problem  

Output: Modi�ed Sel and E

1. While E 6=  and Unsel 6= Nil

2. du � srsm(Unsel);
3. Sel � Sel [ fdug;
4. Unsel � Unsel � fdug;
5. E  � E [ fhdui;
6. Return Sel and E;

Figure 7.9: Simple Picking Algorithm, based on the speci�city-reected similarity metric,
for picking next adapted diagnostic units

For clarity, the four hypothesis-construction strategies are also summarized

in Figure 7.12, and algorithms for them are shown in Figure 7.13.

7.3.2 Performance Dimensions used

Each of the four hypothesis-construction strategies returns a set Sel of adapted

diagnostic units that are judged to be parts of a diagnostic solution, and a

set E of �ndings that can be explained by the selected adapted diagnostic

units. Not all adapted diagnostic units in Sel are true positives. Perfor-

mance was measured along the dimensions of true-positive accountability

and false-positive rate. Because true-positive accountability is the percent-
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Dependency-GuidedPicking Algorithm for hc-strategy3

based on Simple Similarity Metric (DGPSM):

Input: 1. A set Unsel of adapted diagnostic units that
have not been selected

2. A set Sel of adapted diagnostic units that
have been selected

3. A set E of �ndings that have been explained
4. A diagnostic problem  

Output: Modi�ed Sel and E

1. While E 6=  and Unsel 6= Nil

2. Candidates � The set of adapted diagnostic units in Unsel
that are causally or non-causally related to
at least one adapted diagnostic unit in Sel;

3. du � IF Candidates 6= Nil

4. THEN ssm(Candidates)
5. ELSE ssm(Unsel);
6. Sel � Sel [ fdug;
7. Unsel � Unsel � fdug;
8. E  � E [ fhdui;
9. Return Sel and E;

Figure 7.10: Dependency-Guided Picking Algorithm, based on the simple similaritymetric,
for picking next adapted diagnostic units
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Simple Picking Algorithm for hc-strategy4 based on the
simple similarity metric (SPSSM):

Input: 1. A set Unsel of adapted diagnostic units that
have not been selected

2. A set Sel of adapted diagnostic units that
have been selected

3. A set E of �ndings that have been explained
4. A diagnostic problem  

Output: Modi�ed Sel and E

1. While E 6=  and Unsel 6= Nil

2. du � ssm(Unsel);
3. Sel � Sel [ fdug;
4. Unsel � Unsel � fdug;
5. E  � E [ fhdui;
6. Return Sel and E;

Figure 7.11: Simple Picking Algorithm, based on the simple similarity metric, for picking
next adapted diagnostic units



7.3 Empirical Analysis of Hypothesis Construction Strategies 134

Dependecy-guided                Simple 

Specificity-
reflected

Simple

HC-STRATEGY1

          
HC-STRATEGY2

          

HC-STRATEGY3

          
HC-STRATEGY4

          

Picking method

Si
m

ila
ri

ty
 m

et
ri

c

Figure 7.12: Hypothesis-construction strategies based on various combinations of similar-
ity metrics and picking methods

age of �ndings that are explained by the true positives in Sel, one minus

true-positive accountability is the percentage of �ndings that are either ex-

plained by false positives or not explained by any of the diagnostic units in

Sel. False-positive rate is the percentage of diagnostic units in Sel that are

false positives. Formally,

True-positive accountability =
j[du2SelT fhduij

j j
� 100

False-positive rate =
jSelF j

jSelj
� 100

where  denotes a diagnostic problem, and SelT and SelF are the sets of

true and false positives, respectively, in Sel: Sel = SelT [ SelF .

7.3.3 Test Procedure

Once again, independent trials were conducted on 50 di�erent random order-

ings of the 300 patients. Each hypothesis-construction strategy constructed

diagnostic solutions from the diagnostic units chosen by applying deepmatch-

ing adaptation. A 95% merging threshold was used for knowledge incorpo-
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Strategies for hypothesis construction

Input: 1. A diagnostic problem  

2. A set Q of adapted diagnostic units returned
by Algorithm Evidence-Grouping

Output: Sets of adapted diagnostic units

(a) HC-STRATEGY1;
;; Select adapted diagnostic units by the speci�city-reected
;; similarity metric and the dependency-guided picking method.
1. du � srsm(Q);
2. Sel  � fdug;
3. E  � fhdui;
4. Sel and E  � dgp(Q� Sel; Sel; E;  );

(b) HC-STRATEGY2;
;; Select adapted diagnostic units by the speci�city-reected
;; similarity metric and the simple picking method
1. du � srsm(Q);
2. Sel  � fdug;
3. E  � fhdui;
4. Sel and E  � spsrsm(Q� Sel; Sel; E;  );

(c) HC-STRATEGY3;
;; Select adapted diagnostic units by the simple similarity
;; metric and the dependency-guided picking method.
1. du � ssm(Q);
2. Sel  � fdug;
3. E  � fhdui;
4. Sel and E  � dgpsm(Q� Sel; Sel; E;  );

(b) HC-STRATEGY4;
;; Select adapted diagnostic units by the simple similarity
;; metric and the simple picking method.
1. du � srsm(Q);
2. Sel  � fdug;
3. E  � fhdui;
4. Sel and E  � spssm(Q� Sel; Sel; E;  );

Figure 7.13: Algorithms for various hypothesis-construction strategies
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ration. This test procedure is summarized in Figure 7.14.

Procedure used by a trial for Comparing Hypothesis-
Construction Strategies

Input: 1. A set 	 of the 300 patients in random order
2. Empty KAS

1. For each patient  in 	
2. For each diagnostic unit du in KAS

3. Q � Evidence-grouping(du;  );
4. Q1 � hc-strategy1( ;Q) ;
5. Q2 � hc-strategy2( ;Q) ;
6. Q3 � hc-strategy3( ;Q) ;
7. Q4 � hc-strategy4( ;Q) ;
8. Measure false positive rate and true-positive accountability

for Q1; Q2; Q3, and Q4;
9. Incorporate a veri�ed diagnostic solution to  into KAS by the

knowledge incorporation process using a 95% merging threshold;

Figure 7.14: A test procedure used for comparing various hypothesis-construction strate-
gies

7.3.4 Analysis

Figure 7.15 summarizes the average performance of each hypothesis-construction

strategy, with respect to average true-positive accountability and false-positive

rate. For ease of comparison, the results are shown in a matrix format as

well as in a tabular form. For each picking method, the speci�city-reected

similarity metric did better than the simple similarity metric, with respect
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Strategy Avg. True-Positive Avg. False-Positive
Accountability (�) Rate (�)

hc-strategy1 81% 13%
hc-strategy2 71% 12%
hc-strategy3 77% 19%
hc-strategy4 67% 31%
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Figure 7.15: Performance of hypothesis-construction strategies based on various combi-
nations of similarity metrics and picking methods; (a) Average true-positive accountability; (b)
Average false-positive rate

to both average true-positive accountability and average false-positive rate.

Similarly, for each similarity metric, the dependency-guided picking method

did better than the simple picking method.

In order to determine the likelihood that these results could be achieved

by random chance, the t-test [88] was conducted for each pair of hypothesis-

construction strategies. In particular, we are interested in the di�erences in

performance, �d and �0

d, of two hypothesis-construction strategies x and y,

where �d is the di�erence between the true-positive accountability of strategy

x and that of strategy y, and �0

d is the di�erence between the false-positive

rate of strategy x and that of strategy y. With respect to true-positive

accountability, the data in the samples are the pairs (txi; tyi), 1 � i � 50,

where txi and tyi are the average true-positive accountabilities of strategies
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x and y, respectively, for the ith trial. One hypothesis tested is that strategy

x does better, with respect to true-positive accountability, than strategy y,

in other words,

�d > 0.

Similarly, with respect to false-positive rate, the data in the samples are the

pairs (fxi; fyi), 1 � i � 50, where fxi and fyi are the average false-positive

rates of strategies x and y, respectively. Another hypothesis tested is that

�0

d < 0

i.e, strategy x has lower false-positive rate than strategy y.

The results of the t-tests of di�erences are summarized in Table 7.3.4 The

results statistically verify that, with respect to true-positive accountability,

the hypothesis that �d > 0 is true with probability higher than 99% for

each pair of hypothesis-construction strategies shown in the table, except

the pair hc-strategy2 and hc-strategy3. In other words, the probability

that �d � 0 is true is less than 1%. For the pair hc-strategy2 and hc-

strategy3, the t-test shows that with probability higher than 99% hc-

strategy3 does better than hc-strategy2 with respect to true-positive

accountability. It may be concluded from these results that with probability

higher than 99%, hc-strategy1 does better than hc-strategy3, which

does in turn better than hc-strategy2, which in turn does better than

hc-strategy4.

4cttp and ctfp, in Table 7.3, are computed by the following formula:

t̂ =
�di=nq

�di2�(�di)2=n
n(n�1)

where n is the number of observations, speci�cally 50 in this experiment. Each di is
the di�erence of true positive accountabilities (i.e., txi � tyi) for the hypothesis that
�d > 0, and of false-positive rates (i.e., fxi � fyi) for the hypothesis that �0d < 0. The
corresponding t value for the signi�cance level of 1% for the one sided test is 2.405 when
the degree of freedom is 49 [88].
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Strategies Compared w.r.t TPA w.r.t. FPR
Strategy x Strategy y cttp ctfp

hc-strategy1 hc-strategy2 14.48 1.25
hc-strategy1 hc-strategy3 6.49 -8.08
hc-strategy1 hc-strategy4 16.43 -23.26
hc-strategy2 hc-strategy3 -6.88 -10.59
hc-strategy2 hc-strategy4 4.82 -22.39
hc-strategy3 hc-strategy4 11.21 -16.40

Table 7.3: Results of t-test of di�erence with respect to true-positive accountability and
false-positive rate; TPA and FPR stand for true-positive accountability and false-positive rate,
respectively; cttp is signi�cant at the 1% level provided cttp � 2:405, while ctfp is signi�cant at

the 1% level provided ctfp � 2:405.

With respect to false-positive rate, the results statistically verify that

for each pair of hypothesis-construction strategies shown in the table, the

hypothesis that �0

d < 0 is true with probability higher than 99%. Overall,

we may conclude that with the probability higher than 99%, hc-strategy1

does better than hc-strategy2, which does in turn better than hc-strategy3,

which does in turn better than hc-strategy4.

The results of the t-tests statistically illustrate the e�ectiveness of com-

bining the speci�city-reected similarity metric and the dependency-guided

picking method, in selecting true positives to construct diagnostic solutions.

7.4 Diagnostic Performance of HYDI

An experiment was conducted to test the e�ectiveness and e�ciency of hybrid

reasoning, by comparing it with both of causal-model and association-based

reasoning.

Hybrid reasoning was implemented in Hydi. Hydi used Hf as its causal-

model-based solver. For Hydi's association-based solver, decompositional

abductive diagnosis (for expository convenience, referred to as dad) was

implemented that selects relevant diagnostic units based on deep matching
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adaptation, and constructs a diagnostic solution by applying the speci�city-

reected similarity metric and the dependency-guided picking method. The

experiment also included a comparison of Hydi with both of Hf and dad.

Hydi performs hybrid reasoning to solve diagnostic problems. The cen-

tral idea of the hybrid reasoning architecture is that for a diagnostic problem,

dad �rst tries to solve the problem; if a diagnostic solution generated by dad

is not acceptable, then Hf is called to solve the problem. Two strategies for

determining whether or not a diagnostic solution generated by dad is ac-

ceptable were considered. One strategy is to accept a causal explanation

generated by dad if the explanation can account for all the �ndings in the

problem. This strategy was implemented in Hydi1. The other strategy is

to accept a causal explanation if the explanation not only can explain all

the �ndings in the problem, but also is \close to a correct diagnosis." The

\close to a correct diagnosis" clause was implemented as a comparison of

true-positive accountability with a threshold. During testing, 88%, which is

the average true-positive accountability achieved by Hydi1, was used as the

threshold value. This strategy was implemented in Hydi.

Performance was measured along the dimensions of accuracy and running

time. Accuracy was measured in terms of true-positive accountability and

false-positive rate. Running time was measured on a SUN SPARC Station 2.

Figure 7.16 plots the change in true-positive accountability and false-

positive rate for Hydi1 and Hydi, as experience grew. Hydi did better than

Hydi1, with respect to both true-positive accountability and false-positive

rate.

Table 7.4 summarizes average percentage of �ndings in a diagnostic prob-

lem that are explained by a diagnostic solution. Unlike the three other sys-

tems, dad was able to explain only an average of 89% of �ndings in a di-

agnostic problem. This empirically demonstrates that the association-based

dad is less robust than the other systems.

Figure 7.17 summarizes the results of the experiment, in terms of aver-
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Figure 7.16: Changes in true-positive accountability and false-positive rate as experience
grew

A diagnostic solution S to a problem Average % of �ndings
explained by S

DAD-generated diagnostic solution 88.9%

HF-generated diagnostic solution 100%

HYDI1-generated diagnostic solution 100%

HYDI-generated diagnostic solution 100%

Table 7.4: Average percentage of �ndings that were explained by a diagnostic solution
generated by each system

age accuracy and running time. During evaluation, Hf-generated diagnostic

solutions were assumed to be \correct" diagnoses. In other words, Hf has 0

false-positive rate and 100% true-positive accountability. As summarized in

the table shown in Figure 7.17, the experiment indicates that Hydi achieved

an average of 96.8% true-positive accountability and 4.3% false-positive rate.
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System Accuracy Avg. Running
Avg. TPA Avg. FPR Time (�)

HF 100% 0 52.3 sec (138.2 sec)
DAD 81.0% 13.1% 3.7 sec (12.2 sec)
HYDI1 88.1% 10.9% 4.0 sec (13.6 sec)
HYDI 96.8% 4.3% 17.7 sec (43.1 sec)
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Figure 7.17: Average accuracy and running time

This result may appear disappointing, but in fact is relatively good, given

the fact that most of the problem solving in Hydi was done by as (which

based its problem solving on previous experience), and the fact that similar

cases occurred infrequently (only an average of 40% of the diagnostic units

in a solution were seen previously).

For ease of comparison, the performance �gures shown in the table are

also plotted in Figure 7.17. This result empirically suggests that attractive

tradeo�s between accuracy and e�ciency can be achieved. In particular,
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compared with Hf, Hydi was able to achieve a 300% increase in speed, at

only a 3% decrease in accuracy. Hydi also shows a smaller standard deviation

in running time than Hf.

Finally, the experiment shows that as experience was accumulated, cms

was called less frequently for diagnosis. In Hydi1, after an average of 27

cases, dad was generally able to �nd some diagnostic solutions that explain

all the �ndings. In Hydi, even though cms was called more frequently than

in Hydi1, it was still called less as experience was gathered (See Figure 7.18).

50th

1   AS
(DAD)

CMS
(HF)

1st 100th 150th 200th 250th 300th

Cases solved and stored in the diagnostic-unit representation

Figure 7.18: Changes in problem solvers within Hydi





Chapter 8

Conclusion

8.1 Summary

This thesis has developed a new approach to diagnosis, based on integrat-

ing association-based reasoning, causal-model-based reasoning, and learning

techniques into a single system. The result is a hybrid system that can solve

familiar problems e�ciently by learning from its own experience, while main-

taining the ability to reason from �rst principles when necessary. Algorithms

for the hybrid system have been developed, and the e�ciency and e�ective-

ness of the algorithms have been tested against existing techniques. Major

results of this thesis are summarized in this chapter.

8.1.1 Hybrid Reasoning Architecture

An hybrid reasoning architecture was designed for combining association-

based reasoning and reasoning from a causal model. The central idea is to

solve diagnostic problems, whenever possible, using only association-based

reasoning; if association-based reasoning fails to solve a problem, then the

problem is solved step-by-step from �rst principles. While an existing causal-

model-based system was reused, novel techniques were developed for per-

forming decompositional abductive diagnosis with rules which are generally

145
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imperfect. The work on decomposition and abduction was motivated by their

potential e�ciency.

The e�ectiveness and e�ciency of the hybrid reasoning architecture was

tested, in the domain of heart failure diagnosis, against each of causal-model-

based and association-based reasoning. The empirical results indicate that

the hybrid system achieves e�ciency comparable to that of association-based

reasoning but with robustness which approaches that of causal-model-based

reasoning.

8.1.2 Modular Representation of Knowledge about Con-

text Sensitivity of Findings

This thesis developed a new formal representation for domain-structure knowl-

edge. This representation accounts, to a large extent, for the e�ciency and

e�ectiveness of decompositional abductive diagnosis.

A common existing representational scheme is the bipartite \If-Then"

representation in which the unit of rules is an entire problem-solving situation

and its solution, i.e., \If a problem, then a solution." In the diagnosis domain,

a problem is a set of �ndings upon which a diagnosis is based, and a solution

is a hypothesis which can account for all the �ndings in the problem. In

the multifault diagnosis domain, a hypothesis is typically a set of disorders.

The direct mapping of problem situations to their solutions allows a problem

to be solved quickly, by simply applying applicable rules. The method is

fragile, however, unless all possible problem-solving situations are speci�ed in

advance. Unfortunately, because domains like medical diagnosis often involve

multiple, interacting diseases, �ndings and disease states can be combined in

a prohibitively large number of ways. As a consequence, these domains are

not amenable to the If-Then representation, because they require that too

many rules be speci�ed. Another problem with this representation is that

it generates \rote memory" solutions which do not specify which disorders

cause which �ndings and how.
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This thesis has dealt with these problems by using smaller, modular ab-

stractions that encode the context sensitivity of �ndings. The approach was

motivated by the following observation about diagnoses. While the domain

at the level of problems and solutions appears to have little regularity, collec-

tions of �ndings, intermediate states, and diseases often recur individually,

thus suggesting a �ne-grain regularity in the domain. Diagnostic units are

modular abstractions that capture such regularity in the domain. Each diag-

nostic unit includes a single disease and its pathophysiologic e�ects. It also

records the co-occurring diseases that can directly inuence this pathophys-

iology, to account for disease interactions. By identifying the various �nding

contexts associated with each disease, diagnostic units, unlike If-Then rules,

provide guides for structuring evidence into subproblems for which the most

likely explanations can be immediately inferred.

8.1.3 Transformation of Experiences into General Problem-

Solving Knowledge

This thesis has described possible experience-based strategies for acquiring

and re�ning diagnostic units. Instead of storing a problem and its solution

as an atom, Hydi analyzes them, and incorporates the derived knowledge

into abstract, general principles. The basic approach is to transform expe-

rience into such knowledge by remembering solved cases in a decomposed-

and-merged form. Such knowledge is then used in solving familiar problems

in the future.

8.1.4 Decompositional Abductive Diagnosis

Once knowledge is available in the diagnostic-unit representation, diagnosis

for a problem can be made by activating the diagnostic units supported by

the �ndings, and then combining selected diagnostic units. The following

techniques were developed for performing such decompositional abductive

diagnosis.
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Deep Matching Adaptation: The selection of the diagnostic units rele-

vant to a problem raises the issue of how to match. One approach

would be to �nd exact partial matches, in other words, to select a di-

agnostic unit if the �ndings speci�ed in it are a subset of the given

�ndings. Unfortunately, diagnostic units that are acquired from expe-

rience are generally imperfect, and exact partial matches are not likely

to be found. This thesis developed deep matching adaptation which

locally adjusts diagnostic units so that they can match a problem.

Deep matching adaptation tailors a diagnostic unit to a particular case

in two ways { by adding unmatched problem �ndings to the diagnos-

tic unit and by removing unmatched diagnostic-unit �ndings from the

unit. For adding unmatched problem �ndings to a diagnostic unit,

causal accounting was investigated. Experiments empirically support

the advantage of deep matching adaptation over the existing simple

and Casey-style matching adaptation techniques, particularly when

diagnostic units are imperfect.

Speci�city-Reected Similarity Metric: The speci�city-reected simi-

larity metric was designed for gauging the level of similarity between

adapted diagnostic units and a problem. Experiments indicate that

taking into account the ability of a �nding to identify the existence of

a diagnostic unit is useful heuristics when selecting relevant diagnostic

units.

Dependency-Guided Picking Method: In addition, a disorder-dependency-

based technique was developed for constructing overall solutions from

adapted diagnostic units. The empirical results indicate that depen-

dency among disorders is a good guide for directing the hypothesis-

construction process, handling interacting disorders and �ndings ap-

propriately.
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8.1.5 Summary of Analysis

Hydi starts out with a causal model and an empty associative knowledge

base. It then develops its associative knowledge by learning, from its own

problem-solving experience, \essential" disease descriptions that identify which

causal relations in a causal model are important for diagnosis and which can

be ignored. These descriptions are associations of sets of �ndings and dis-

eases that regularly appear in diagnoses, and are represented as diagnostic

units. In diagnostic units, detailed reasoning structures are compiled into

simple associations between sets of �ndings and their most highly likely hy-

potheses. Hydi can save time by retrieving relevant descriptions rather than

dynamically generating new ones each time a problem is solved.

� As empirically demonstrated, the diagnostic-unit representation ap-

pears to be an e�ective way of capturing domain decomposability. The

capture of domain decomposability in turn facilitates the recognition of

problem structure, and allows an expanded capability to solve complex

diagnostic problems.

� As it solves more problems, Hydi automatically acquires and re�nes,

from its own experience, diagnostic units. Hydi then gains e�ciency

by retrieving and combining diagnostic units, which represent partial

solutions, rather than recomputing them from scratch. Thus, Hydi's

e�ciency improves with experience.

Hydi also demonstrates that combining association-based reasoning with

reasoning from �rst principles can have signi�cant advantage over eachmethod

used alone.

� Hydi overcomes the e�ciency limitations of model-based reasoning

and the inability of association-based reasoning to deal with unfamiliar

problem situations. It e�ciently solves familiar problems by retrieving

diagnostic units, making small local changes to them, and then combin-

ing them. When Hydi recognizes that it does not know how to solve a
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particular problem, however, it solves the problem from �rst principles

by using Hf.

Hydi also overcomes some of the major weaknesses of case-based reason-

ing.

� First, parts of past cases can be accessed and used easily, by transform-

ing the coarse-grain cases into �ner-grain diagnostic units and relation-

ships between them.

� Second, even though dissimilar on the surface, Hydi can discern that

retrieved diagnostic units are applicable to a new problem by analyzing

di�erences and tailoring them to the problem. Empirical results suggest

that the techniques developed for using diagnostic units to perform

decompositional abductive diagnosis e�ectively exploit the structure

inherent in the diagnosis domain.

8.2 Future Work

There are many ways in which the work described here could be extended

This section describes some of them.

Hypothesize-test-re�ne model: Hydi can be extended to a hypothesize-

test-re�ne paradigm. In many diagnostic problems, determining what

to do next is as important as determining what disorders are present.

Diagnostic units could help determine the next set of tests to perform,

and make predictions outlining the expected results. According to a

comparison of the expected results to the observed results, a system

could select amongst competing diagnostic units and re�ne its diag-

noses.

Multiple-level models and reasoning on multiple levels of detail:

Diagnostic units could be generalized to multiple-level models, by not-
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ing similarities between them. For example, diagnostic units represent-

ing aortic valve disease and aortic stenosis could be generalized to aortic

disease. The similarity between aortic valve disease and aortic steno-

sis and the ways of di�erentiating them can be speci�ed within aortic

disease unit. The issue that must be dealt with is how to determine

suitable levels of abstraction. One approach would be a generalization

method used in Casey. Casey generalizes two diagnostic solutions

if they share �ndings, disorders, or intermediate states. The result of

generalization is a concept which consists of �ndings, disorders, and

intermediate states that are common in both of the solutions. Un-

fortunately, this method exhibits substantial combinatorial complexity

problems. More importantly, not all generalizations are meaningful

abstractions. It is worth noting that a mechanism which can automat-

ically discover appropriate levels of abstraction would be useful for not

only diagnosis but also medical training.

Reasoning on multiple levels of description also raises the issue of how

to access generalized descriptions. An indexing mechanism is required

that gives the problem solver control over the level of detail being used

at a given time.

Reasoning about noise: LikeHf, the current implementation of Hydi as-

sumes that input �ndings have been interpreted and �ltered by a user.

In medical diagnosis, like many other real-world domains, some �ndings

can be \noisy" (including �ndings outside of the domain) or insignif-

icant, and need not be explained. Hydi could be extended to reason

about noisy, insigni�cant �ndings, using a detailed causal model and

knowledge represented as diagnostic units.

Learn from failure: Failure could be used to reduce the chances of making

faulty diagnoses in the future. When a solution produced by dad is

judged to be unacceptable, Hydi simply stores the solution generated

by Hf. It does not, however, make use of the information to determine
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what mistake it made in arriving at the faulty solution. By examining

the faulty solution generated by dad and the correct solution generated

byHf, Hydi could �nd the di�erences between the correct solution and

the knowledge used to make a faulty substitution, and adjust knowledge

in KAS to reect that the substitution is not acceptable.

Similarly, Hydi can be extended to incorporate a user's opinion, by

allowing a user to correct a solution generated by Hydi. By examining

the solution corrected by the user and the original faulty solution, Hydi

could once again �nd the di�erences, and adjust knowledge in KAS

accordingly.

Re�ning Hf's knowledge base: This thesis uses Hf as a standard, as-

suming that Hf produces correct solutions. While Hf contains many

basic principles of physiology, it also contains uncertain knowledge, and

employes heuristics to generate solutions. As a result, it is not always

guaranteed that the solutions generated by Hf are correct diagnoses;

occasionally Hf gives incorrect answers. Hydi could be extended to

identify the knowledge in Hf that might have led to the faulty conclu-

sions. This would also require Hydi to examine the solution generated

byHf and the solution corrected by a user, and determine what knowl-

edge in Hf was responsible.

Evaluation: Currently, the techniques developed in this thesis are tested

on only 300 patients. It would be interesting to see how accuracy

and e�ciency change with larger numbers of patients. In addition,

evaluation of these techniques in other domains would help to further

develop them.
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