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ABSTRACT: The repetitive behavior of a device
or system can be described in two ways: a detailed
description of one iteration of the behavior, or a sum-
mary description of the behavior over many repeti-
tions. In this paper, an implemented program called
AIS is applied to a model of a steadily beating ventri-
cle (part of the heart). AIS transforms the first type of
description into the second type. The output consists
of the symbolic average rates of change in parameter
values and how those rates would be different if vari-
ous constants and functions had been different. AIS’s
results are compared to results in the literature.

INTRODUCTION: A program called AIS (short
for Analyzer of Iterated Sequences) has been developed
and applied to a model of a steadily beating ventricle.
When given a state-description of a system and a se-
quence of actions or transformations on that state, AIS
symbolically finds some of the time-averaged effects of
continually iterating that sequence. The specific ef-
fects found at present include 1) the symbolic average
rate of change in parameters, and 2) an assessment of
how those rates of change would be different with dif-
ferent values for various constants and functions (sen-
sitivity analysis). The sequences handled by AIS are
ones which have the following “constancy”: the se-
quence always repeats the same actions in the same
order and each occurrence of a given action changes
the parameters by the same amounts. Such an iterated
sequence of actions is exemplified by the beat cycle of
a heart at steady-state. Effects to be found include
the average rate at which blood enters the heart and
how increasing that entering blood’s pressure affects
that rate.

A motivation for finding such effects is that many
periodic sub-systems iterate at such a fast rate that the
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other parts of a system respond only to the behavior
of such a sub-system β averaged over many iterations.
Then a steady-state model for the entire system would
only require a description of β’s averaged behavior; β
can be modeled as a constant iteration of the same
sequence of parameter value changes. In this paper,
the sub-system and system combination is the heart
and the human circulatory system.

Some other approaches of finding the behaviors of
a continually iterating sequence have combined qual-
itative simulation with cycle detection [1]. For com-
plicated systems (such as the heart), these simulations
predict many possible sequences of actions besides the
actual sequence. Aggregation [9] and comparative anal-
ysis [10] are useful after isolating the actual sequence.

Another approach [6] takes in a system description
that consists of a single set of differential equations
that are always applicable. Creating such a description
may often be hard, such as when doing so for a heart.

The next two sections summarize the methodology
behind AIS. More details are given in [11]. Afterwards
is a section giving the results of AIS for a ventricle.
The paper ends with a summary.

METHOD (AIS Input): An input description
consists of three parts: the parameters which describe
the system state, static conditions on those param-
eters, and the sequence of actions (transformations)
that gets iterated.

Parameters are divided by the model-builder into 4
types. The first 3 types are classified by how a param-
eter behaves as the sequence of actions is iterated:

1. Constant parameters do not change in value at all.

2. Periodic parameters change in value, but the se-
quence of values repeats exactly with each se-
quence iteration.

3. Accumulating parameters monotonically change
in value with each sequence iteration.
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In general, parameters are represented by symbols.
The constant parameter type also includes numbers
and arbitrary functions of expressions of constant pa-
rameters. The fourth parameter “type” has only one
parameter: the rate at which the sequence of actions
is iterated. At present, the rate must be expressed as
a constant parameter that is a symbol or number.

The second part of the input is a set of static con-
ditions between constant parameters. These condi-
tions are inequalities between numbers and expressions
made up of constant parameters. The expressions can
have algebraic and the more common transcendental
functions. Also permissible are (partial) derivatives of
constant parameters which are arbitrary functions.

The last part of the input gives the sequence of ac-
tions (transformations) that is iterated. The sequence
is partitioned into phases so that 1) every part of a
sequence is put in exactly one phase, and 2) during
each phase, every parameter is either monotonically
non-decreasing or non-increasing in value.

For each phase, the input description needs to sup-
ply an expression for every parameter that changes in
value during that phase. For a periodic parameter, the
corresponding expression gives that parameter’s value
at the end of the phase.1 For an accumulating parame-
ter, the expression gives the change in that parameter’s
value each time that phase occurs. An expression may
have algebraic and the more common transcendental
functions. The expression’s arguments can consist of
constant parameters, periodic parameters’ values at
the beginning or end of that phase, and/or accumu-
lating parameters’ change in values2 each time that
phase occurs.

The limitations on describing parameter changes are
to assure that each occurrence of a phase alters the
parameters by the same constant amount. Without
some restrictions on how phases alter parameters, it
will be hard to impossible for AIS to determine the
effects of steadily iterating the sequence of actions.

Each phase also has a list of the conditions that are
inequalities between expressions and numbers.

METHOD (AIS Output): AIS takes the input
equations, solves them and checks for inconsistencies
(using the Bounder system [6]). Bounder is also used
to find the numeric bounds mentioned below.

Then, to derive the average rate of change in an
accumulating parameter a, AIS locates the change

1Due to the requirements on choosing phases, a periodic pa-
rameter’s value at a phase’s beginning and the preceding phase’s
end is the same. And because the sequence iterates, the last
phase in the sequence is also deemed to “precede” the 1st phase.

2Only the change in value can be referred to because it stays
the same from one iteration of the sequence to the next. The
actual value changes with each iteration of the sequence.

in that parameter’s value during each phase of a se-
quence, adds all those changes together, and then mul-
tiplies the sum by the rate of cycle repetition. Next
AIS finds numeric bounds on this rate.

After deriving an average rate for a, AIS can observe
how that rate would be different if any one constant
symbol or function were different. For each symbol,
AIS takes the first two (symbolic) derivatives of the
rate with respect to that symbol and obtains numeric
bounds on those derivatives. Each constant symbol is
considered to be independent of all other symbols.

At present, AIS also tries to plot a “qualitative”
graph of the rate versus each constant symbol. The
first derivative described above provides slope infor-
mation and the second provides convexity information.
AIS makes the assumption that the rate versus con-
stant function is smooth (differentiable). If the second
derivative can be both more or less than zero, AIS gives
up. Otherwise, depending on how the second deriva-
tive is bounded by zero and on how the first deriva-
tive’s bounds relate to zero, AIS determines which of
the following shapes the curve may possibly have: @
, , � ,�,�, ,�,

��
and/or
�
. For

example, if the first derivative is < 0 and the second
is = 0 (such as when the rate is −3x and the symbol
is x), then the curve shape is @ .

Afterwards, AIS derives the effects of functions hav-
ing different values by performing some symbolic sub-
stitution & subtraction and some expression value
bounding to observe how the rates would be different
if a function were larger in value.

RESULTS for Ventricle Model: This section de-
scribes the current version of AIS running on a model
of the beating of the left ventricle.3 The ventricle is
a chamber with two one-way valves: one valve lets
in blood from the lungs at a pressure of Pi, and the
other valve lets out blood going to the rest of the body
at a pressure of Po. The chamber consists of muscle
which can either relax or contract. When relaxed (di-
astole), the ventricle volume (V ) versus pressure (P )
curve (Vd[P ]) is roughly as shown in Figure 1a (the
P and V axes are interchanged from their usual po-
sitions). When contracted (systole), the V versus P
curve (Vs[P,HR]) is roughly as shown in Figure 1b.
The symbol HR appears because with Vs, V decreases
as the rate at which the ventricle contracts and relaxes
increases. This rate is known as the heart rate (HR).
Figure 1c shows with a dashed line the V versus P
path that ventricle takes as it contracts and relaxes

3The description is based on various texts and articles [5, 8]
[2, Ch. 13: Mechanisms of Cardiac Contraction and Relaxation]
and makes many assumptions. One assumption is that blood is
an incompressible fluid without inertia.
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Figure 1: Curves for a Left Ventricle

once (a beat sequence): 1) The ventricle contracts,
but no blood moves. So, V stays the same while P
increases to Po. Move from a to b in the diagram. 2)
The ventricle continues contracting, but now, blood
ejects out the output valve. P stays the same while
V decreases to Vs[Po,HR]. Move from b to c. 3) The
ventricle now starts to relax and the blood stops mov-
ing. V becomes constant as P decreases to Pi. Go
from c to d. 4) The ventricle continues relaxing, but
now blood enters from the input valve. P stays the
same while V increases to Vd[Pi]. Return from d to a.

The input to AIS has the following: The symbol
HR gives the rate at which the ventricle beat se-
quence repeats. The constants are Pi, Po, Vd[Pi] and
Vs[Po,HR].4 The periodic parameters are P and V .
The accumulating parameters are the amount of work
done by the blood in moving through the ventricle
(W ), and the amount of blood that has entered the
ventricle (Bi) and left the ventricle (Bo). The static
conditions on the constants are:

Pi < Po, Vd[Pi] > Vs[Po,HR], 0 ≤ Vd[Pi],
0 ≤ Vs[Po,HR], 0 < d(Vd[Pi])/d(Pi),

0 > d2(Vd[Pi])/d(Pi)2, 0 < ∂(Vs[Po,HR])/∂(Po),
0 < ∂2(Vs[Po,HR])/∂(Po)2,
0 > ∂(Vs[Po,HR])/∂(HR).

Most of the conditions help describe the shape of
Vd[Pi] and Vs[Po,HR]. There are four phases in the
sequence. Each phase has a name, condition(s), and
equation(s) for value changes. The notation is: Xb

stands for parameter X’s value at the beginning of a
phase, Xe for the value at the end, and Xc for X’s
change in value when the phase occurs. In order, the
phases are:

4Pi and Po are assumed to be constant during the ventricle
beats. These assumptions then force Vd[Pi] and Vs[Po,HR] to
be also constant during the beats.

1. Isovolumetric Contraction: 0 ≤ V , Pe = Po.

2. Ejection: 0 ≤ Vb, 0 ≤ Ve, Ve = Vs[Po,HR],
Wc = −P · Boc, Boc = Vb − Ve.

3. Isovolumetric Relaxation: 0 ≤ V , Pe = Pi.

4. Filling: 0 ≤ Vb, 0 ≤ Ve, Ve = Vd[Pi],
Wc = P · Bic, Bic = Ve − Vb.

After solving these phases’ equations, AIS discovers
the following average rates of change for the accumu-
lating parameters and bounds on those rates:

dW/dt = ((Pi · (Vd[Pi]−Vs[Po,HR])) +
(−Po · (Vd[Pi]−Vs[Po,HR]))) ·HR

d(Bi)/dt = HR · (Vd[Pi]−Vs[Po,HR]) > 0 (1)

Also, d(Bo)/dt = d(Bi)/dt. One can show that
dW/dt < 0, but the bounding mechanism misses this.

After finding the rates, AIS derives and bounds the
first two derivatives of those rates with respect to each
constant symbol, and tries to give the shape of the
curve of each rate versus each constant. For d(Bi)/dt,
its first derivative with respect to HR is > 0, but no
bounds are found for the second derivative. No curve
shape is deduced. With respect to the constant Pi, the
first derivative is > 0 but the second is < 0. Assum-
ing smoothness, AIS deduces a

�
shape for d(Bi)/dt

versus Pi. This shape is consistent with the Frank-
Starling mechanism [5, p. 212]. With respect to Po,
both derivatives are < 0, so the curve has a

�
shape.

These results also apply to d(Bo)/dt. As a check on
the ventricle model, these rate shape results are com-
pared to experimental results. The results for Pi and
Po agree [7] in that the corresponding AIS and ex-
periment curves have the same general shapes (signs
of the first and second derivatives are the same). For
HR, the AIS and experimental results are incompara-
ble because the latter came from intact systems where
changing HR can change Pi and Po.

For the rate dW/dt, the only bound AIS can derive
is that this rate’s second derivative with respect to
either Pi or Po is > 0. So for dW/dt versus either Pi
and Po, the possible curve shapes are�,�or .

As for the Vd and Vs functions, AIS deduces that
if Vd were larger, both d(Bi)/dt and d(Bo)/dt would
be also. But if Vs were larger, these rates would be
smaller. These results agree with the description in
[8].

When modeling a circulatory system that has been
averaged over many heart beats and is in a steady-
state, such as done in [3, 4, 8], most of the sys-
tem’s mechanics can be modeled by using direct cur-
rent electrical circuit analogies, such as [pressure drop]



= [resistance]·[flow]. Too complicated to be modeled
this way is the part of the mechanics that relates
the Pi, Po, HR, Vs, and Vd for each ventricle to
the rate at which blood flows through that ventricle
(d(Bi)/dt = d(Bo)/dt). Current modeling efforts ei-
ther directly use empirically derived relationships (like
[7]) or derive the needed equations by hand from an
AIS-input-like description (done in [8]). AIS can per-
form the latter derivations automatically: equation (1)
found by AIS for d(Bi)/dt provides the desired rela-
tionship for the left ventricle. The right ventricle is
similar. Actually, to use this relationship numerically,
one must be more specific about the Vs and Vd curves,
such as specifying that Vd[x] = log x.

Other than needing more specific curve shapes, the
AIS d(Bi)/dt equation is similar to the equations de-
rived by others. The differences are caused by mod-
eling with slightly different sets of assumptions and
beliefs on what relationships exist and are important.

Sagawa [7] experimentally measured the effects of
different Pi and Po values on the flow of blood
(d(Bi)/dt = d(Bo)/dt) through the left ventricles of
dogs. The results were numerically fitted to a rela-
tionship (curve) of the following form (translated to
the notation used in this paper): d(Bi)/dt =

K1 · (Pi− Pi0) ·
(1− exp[−(1− Po/Pomax)/(K2 · (Pi− Pi0))]),

where K1, Pi0, Pomax and K2 are constants. This re-
sult agrees with AIS’s result in that both have a pos-
itive first derivative for rate d(Bi)/dt with respect to
Pi and a negative first and second derivative for that
rate with respect to Po. The major difference between
this result and AIS’s result is that this result does not
consider the effects of HR at all. This omission is not
surprising given that HR’s effects were never tested
in the experiments. Another difference is that with
Sagawa, the minimum Pi and maximum Po needed
to keep d(Bi)/dt above zero are given by the simple
thresholds Pi0 and Pomax respectively. With the AIS
result, the minimum Pi is a more complex function
of Po, and similarly with the maximum Po and Pi. A
possible reason for this difference is that Sagawa deter-
mined the effects of Pi and Po on d(Bi)/dt separately
in the experiments and then combined the resulting
equations. A third difference is that the effects of Pi
have been linearized somewhat to simplify the relation-
ship: the actual data in the reference indicates that
at large values of Pi, d(Bi)/dt starts to increase sub-
linearly with respect to Pi, which agrees with AIS’s
result rather than the equation fitted in the reference.

Sato and associates [8] have built a simultaneous
equation model of the cardiovascular system at steady-
state. The model was built to show the effects of heart

failure (the heart muscle gets weaker or less elastic)
and to help find the optimum drug dosages for heart
failure therapies. Among the equations are the ones
that give d(Bi)/dt for each ventricle (as before, the
d(Bo)/dt equations are equivalent). These equations
have the form (translated to the notation used in this
paper):

d(Bi)/dt = K · ln(Pi− Pi0)−H · Po +M,

where K, Pi0, H and M are constants. As mentioned
above, these d(Bi)/dt equations were derived by essen-
tially carrying out what AIS does by hand. The shape
of the d(Bi)/dt versus Pi curve from these equations
is
�

, which is the same shape as the one given by the
AIS results. A difference between these equations and
the ones found by AIS are due to Sato et al. having
more specific forms for the Vd and Vs functions:

Vd[Pi] = (K · ln(Pi− Pi0) + Md)/HR
Vs[Po,HR] = (H · Po−Ms)/HR,

where M = Md + Ms, so their equations have those
more specific forms in place of the Vd and Vs functions.
Also, their Vs function has been linearized with respect
to Po, so the resulting d(Bi)/dt versus Po curve has a
@ shape instead of the

�
shape found by AIS. An-

other difference is that their versions of the Vd and Vs
functions are proportional to 1/HR, so their d(Bi)/dt
is independent of HR instead of increasing with in-
creases in HR. In experiments on intact circulatory
systems at rest, this independence does hold for a wide
range of HR values [5, p. 222, 294]. However, the lat-
ter source attributes the constancy of d(Bi)/dt as HR
increases to a decline in Pi. In [8], as HR increases, Pi
stays the same while Vd and Vs decrease.

Another simultaneous equation model of the car-
diovascular system at steady-state was built earlier by
Greenway [3]. This model was built to show the effects
of a multitude of drugs on the cardiovascular system.
Greenway uses some of the same relationships given
to AIS as input. But a relationship5 comparable to
equation (1) is never explicitly derived. Instead, Po is
solved out by the addition of the parameters for the ar-
terial capacitance and the body’s resistance to blood
flow. However, by noting that d(Bi)/dt = HR · SV,
where SV is the stroke volume, one can rearrange
Greenway’s equations into one comparable to equa-
tion (1) to derive (translated to the notation used in
this paper) the following: d(Bi)/dt =

HR · ((Pi +K · FA) · CDV − Po/Emax − VD),

5d(Bi)/dt as a function of HR, Pi, Po, Vd and Vs.



where K, FA and VD are constants, and CDV is a “con-
stant” that decreases as Pi gets very large. This equa-
tion matches the ones produced by AIS and Sato et al.
in that all three predict a

�
shape for the d(Bi)/dt ver-

sus Pi curve (CDV decreases in size as Pi increases).
And like with Sato and associates, this equation has
more specific forms in the place of the Vd and Vs func-
tions in AIS’s result. In this equation:

Vd[Pi] = (Pi +K · FA) · CDV

Vs[Po,HR] = Po/Emax + VD.

Also like Sato et al. and unlike AIS’s result, the Vs
function in this equation has been linearized with re-
spect to Po, so the resulting d(Bi)/dt versus Po curve
also has a @ shape. On the other hand, this equation
predicts that d(Bi)/dt will increase as HR increases,
which is what the AIS result predicts but not Sato et
al.’s result. A difference between this equation and the
ones given by both Sato et al. and AIS is that this one
has some terms to account for the affects of the atria
(the K · FA term) while the other two do not (they
were given models that assume that the atrial effects
are either negligible or can be folded into the expres-
sions for the ventricles). Also, unlike the AIS result,
Vs in this equation is independent of HR.

This comparison of AIS’s results to existing steady-
state ventricle models shows that the former are fairly
similar to the latter. Furthermore, the existing dif-
ferences are due to different assumptions being made
about the ventricles, not to deficiencies in AIS itself.
Two major differences between AIS’s results and the
existing models are that the latter have more specific
relationships for the volume versus pressure curves
than the former and that these more specific curves
are also more linearized. In addition, in two of the
existing ventricular models, the blood flow rate is in-
dependent of the heart rate, which is often not true,
especially during exercise or other times of increased
venous return [2, p. 414] [5, p. 222].

SUMMARY: A program called AIS has been ap-
plied to a description of a ventricle. AIS takes in a
description of the parameter changes in a heart-beat
sequence and finds the symbolic average rate of change
for various parameters. These rates form a steady-
state model of a ventricle, and this model is similar to
existing ones. The differences that exist can be traced
back to differing assumptions one can make about a
ventricle. A major difference is that two of the exist-
ing models have the shortcoming of letting the blood
flow rate be independent of the heart rate.
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