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ABSTRACT

The repetitive behavior of a device or system
can be described in two ways: a detailed de-
scription of one iteration of the behavior, or
a summary description of the behavior over
many repetitions. This paper describes an im-
plemented program called AIS that transforms
the first type of description into the second
type. AIS deals only with behavior where each
repetition changes parameters by the same
amounts. At present, the summary consists
of the symbolic average rates of change in pa-
rameter values and information on how those
rates would be different if various constants
and functions had been different. Unlike some
other approaches, AIS does not require that
a repeating behavior be described in terms of
a set of differential equations. Two examples
of running AIS are given: one concerns the
human heart, the other a steam engine.

INTRODUCTION: I have implemented a program
called AIS (short for Analyzer of Iterated Sequences)
that when given a continuous state-description of a sys-
tem and a sequence of actions or transformations on
that state, symbolically finds some of the time-averaged
effects of continually iterating that sequence. The spe-
cific effects found at present include 1) the symbolic
average rate of change in parameters that have a net
increase or decrease in value with each iteration, and 2)
how those rates of change would be different with differ-
ent values of various constants and functions (sensitiv-
ity analysis). The sequences handled by AIS are ones
which have the following “constancy”: the sequence al-
ways has the same actions in the same order and each
occurrence of a particular action changes the param-
eters by the same amounts. An example of such an
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iterated action sequence is the one taken by a heart in
going through a beat cycle at steady-state. Effects to
be found include the average rate at which blood en-
ters the heart and how increasing the pressure of that
entering blood affects that rate.

A motivation for finding such effects is that while
modeling some system, there may be some sub-system
β which iterates a sequence of actions at such a fast
rate that the rest of the system only responds to β’s be-
havior averaged over many iterations. Then a steady-
state model for the entire system would only need a
description of β’s averaged behavior; β can be modeled
as constantly iterating the same sequence of parameter
value changes. Examples of such sub-system and sys-
tem combinations include 1) the heart and the human
circulatory system, and 2) an engine and a car.

Some other approaches of finding the behaviors of
a continually iterating sequence have combined qual-
itative simulation with cycle detection [1]. For com-
plicated systems (such as the heart), these simulations
predict many possible sequences of actions besides the
actual sequence. If the actual sequence can be isolated,
one can use aggregation [10] to find which parameters
change as the sequence repeats and use comparative
analysis [11] to find the effects of perturbing model con-
stants.

Another approach [6] uses piecewise-linear approx-
imations of differential equations. This approach re-
quires that one describe a system with a single set of al-
ways applicable differential equations. Creating such a
description may often be hard, such as when describing
a human heart or a steam engine. In contrast, the input
for both the qualitative simulation approaches and AIS
can have many sets of simple equations along with the
conditions to determine when a particular set is appli-
cable.

The next section describes the form of input for AIS.
Following this are sections on how AIS processes that
input and on what AIS can output. Afterwards are sec-
tions that give examples of AIS running on a description
of a heart and a steam engine, respectively. The paper
ends with a summary.
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AIS INPUT: An input description consists of three
parts: the parameters which describe the system state,
static conditions on those parameters, and the sequence
of actions (transformations) that gets iterated. The de-
scription only has to try to describe what happens in
a sequence of actions, not necessarily how or why that
sequence occurs or repeats.

Parameters are divided by the model-builder into
four types. The first three types are classified by how
a parameter behaves as the action sequence is iterated:

1. Constant parameters do not change in value at all
during the iterations.

2. Periodic parameters change in value, but the se-
quence of values repeats exactly with each new ac-
tion sequence iteration.

3. Accumulating parameters monotonically increase
or decrease in value with each sequence iteration.

In general, parameters are represented by symbols. The
constant parameter type also includes numbers and ar-
bitrary functions of expressions of constant parameters
such as f [x+ 3, g[5]], where x is a constant. The fourth
type of parameter is the rate at which the action se-
quence iterates. At present, the rate must be expressed
as a constant parameter that is a symbol or number.

The second part of the input are static conditions
between constant parameters. These conditions are in-
equalities between numbers and expressions made up
of constant parameters. The expressions can have alge-
braic and the more common transcendental functions.
Also permissible are (partial) derivatives of constant pa-
rameters which are arbitrary functions.1 The inequali-
ties can be either definitions that are always true or con-
ditions that are required for the given action sequence
to iterate. An example of a definition is to say that
some volume is ≥ 0. An example of a necessary condi-
tion is to say that for a normal sequence of actions in
the heart, (input pressure) < (output pressure).2

The last part of the input gives the sequence of ac-
tions (transformations) that is iterated. The sequence is
partitioned into phases so that each part of a sequence is
put into exactly one phase and each part where different
actions are occurring is put in a separate phase. What
is desired is that all the important and possibly extreme
parameter values appear at the end of some phase. The

1Such a condition only makes a statement of the derivative
with respect to the symbol mentioned. For example, mentioning
that 0 < d2f(x)/dx2 says nothing about d2f(y)/dy2. The deriva-
tive of a constant parameter here makes sense and may need to
be described because: 1) the function itself is not constant, only
the arguments are; and 2) one may need to describe how an argu-
ment’s value being different would affect the function’s “output”.

2Otherwise, all the heart valves will open, letting blood flow
freely through the heart.

specific requirements are that the phases must be cho-
sen so that 1) every part of a sequence (including all
the parts with parameter value changes) is put in ex-
actly one phase, and 2) during each phase, every pa-
rameter’s value is either monotonically non-decreasing
or non-increasing.

Beyond these two requirements, a model-builder is
free to divide a sequence into as few or many phases as
desired. Also, a model-builder might violate the above
requirements if the violation’s consequences are judged
to be negligible.

For each phase, the input description needs to sup-
ply an expression for every parameter that changes in
value during that phase. For a periodic parameter π,
the corresponding expression gives π’s value at the end
of the phase.3 For an accumulating parameter α, the
expression gives the change in α’s value each time that
phase occurs. An expression may have algebraic and the
more common transcendental functions. The expres-
sion’s arguments can consist of constant parameters,
periodic parameters’ values at the beginning or end of
that phase, and/or accumulating parameters’ change in
values4 each time that phase occurs.

The limitations on describing parameter changes are
to assure that each occurrence of a phase alters the
parameters by the same constant amount. Without
some restrictions on how phases alter parameters, it
will be hard to impossible for AIS to determine the ef-
fects of steadily iterating the sequence of actions. There
are at least two interesting alternatives to having con-
stant alterations. The first is a generalization of con-
stant alterations and has as what stays constant be the
change in the amount changed (or an even higher or-
der of change). The second is having the alterations
form a converging series [9, Ch. 18]. Neither of these
alternatives has been needed so far to model a “steadily
running” device.

It is sometimes difficult to provide expressions for the
periodic parameter values at the end of a phase. For
example, one might not be able to explicitly give the
pressure at any point in a water pipe circuit. Unfortu-
nately, if one provides only changes to the periodic pa-
rameter values, finding their actual values during the se-
quence would be impossible or hard, involving symboli-
cally solving simultaneous (nonlinear) equations. With
only changes in their value solved for, periodic param-
eters would be just like accumulating parameters that
have a zero net change on each sequence iteration.

3Due to the requirements on choosing phases, a periodic pa-
rameter’s value at a phase’s beginning and the preceding phase’s
end is the same. And because the sequence iterates, the last phase
in the sequence is also considered to “precede” the first phase.

4Only the change in value can be referred to because it stays
the same from one iteration of the sequence to the next. The
actual value changes with each iteration of the sequence.
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Each phase also has a list of the conditions that either
are true by definition or need to be true for the phase to
occur as stated. The conditions are inequalities between
expressions and numbers. Note that the definitions of
phase expressions and conditions are slightly different
from the definitions given earlier for static conditions
between constant parameters.

AIS makes the “closed world” assumption that all
changes are mentioned. So if some phase’s description
does not mention a new value for a parameter α, α is
assumed not to change in value during that phase.

Here is an example of an input description for a
phase. Let XB stand for parameter X’s value at the
beginning of a phase, XE for the value at the end, and
XC for X’s change in value when the phase occurs. Fur-
thermore, let a be an accumulating parameter, q and r
be periodic parameters, and c be a constant parameter.
The sample phase description is:

(5 ≤ qE), qE = (c+ aC), aC = (qB · r)

Whenever this phase occurs: r’s value is constant, q is
≥ 5 at the phase’s end, a changes by the product of
q’s value at the phase’s beginning and r’s value during
the phase, and q ends with c’s value plus a’s change in
value.

AIS PRELIMINARY PROCESSING: Before
producing output, AIS needs to solve the equations
given in the phase description and to check for obvious
inconsistencies between the equations and given condi-
tions.

To solve the equations, AIS computes for each phase:
the change in value for each accumulating parameter,
and the beginning and end values for each periodic pa-
rameter. These values and changes are expressed in
terms of constant parameters. The beginning value of
each periodic parameter is taken from that parameter’s
value at the end of the previous phase.5 The solver cur-
rently handles only simple substitutions of the solved
for the unsolved. Complicated equations like quadrat-
ics are left unsolved.

As an example of equation solving, suppose the equa-
tions

VE = Y, AC = (VE − VB), WC = (P ·AC)

are given, where Y is a constant and P is a periodic
parameter that does not change during the phase. Let
AIS find VB = Z and P = Pi by looking at the values
of VE and PE in the previous phase (Z and Pi are

5The reason is given in a previous footnote. Also mentioned
there is the consideration of the last phase in the sequence as
“preceding” the first.

constants). Then AIS derives VE = Y , P = Pi, AC =
Y − Z, WC = Pi · (Y − Z).

To check for obvious inconsistencies, AIS enters the
solved equations, the assumption that the rate of se-
quence repetition is positive, and the conditions given
in the input (with periodic and accumulation parame-
ter values substituted by the appropriate expression of
constants) into the Bounder system [6]. This system
checks for consistency by deriving an upper and lower
numeric bound for every constant parameter. An in-
consistency is declared if some parameter’s lower bound
is greater than its upper bound. Bounder derives the
bounds with the bounds propagation and substitution
methods. The former method reasons over numeric
bounds. The latter method will also perform substitu-
tions of symbolic expressions for symbols. For example,
if c > d + 5, then the latter can find a lower bound on
(c− d) of c− (c− 5) = 5. In addition to these methods,
the Bounder system uses an algebraic simplifier. These
methods are also used to perform the bounding and in-
equality testing needed in the steps described below to
produce the output.

AIS OUTPUT: After performing the above equa-
tion solving and inconsistency checking, AIS can infer
the following about continually repeating the input se-
quence: 1) the average rate of change in an accumulat-
ing parameter including numeric bounds on that rate
and the relative contribution of each phase to that rate,
and 2) how that rate would differ if a constant symbol
or function had a different value (sensitivity analysis).

To derive the average rate of change in an accumulat-
ing parameter a, AIS locates the change in that param-
eter’s value (aC) during each phase of a sequence, adds
all those changes together, and then multiplies the sum
by the rate of cycle repetition. Next AIS finds numeric
bounds on this rate. Then AIS tries to determine which
phases helped to increase or decrease this rate by ob-
serving which phases have aC values that are bounded
above and/or below by zero. As an example of deriving
a rate of change, let A be an accumulating parameter
and R be the rate of sequence repetition. Furthermore,
let two phases in this sequence alter A’s value. One
phase has AC = C and the other has AC = K, where
C and K are constant parameters. Then the average
rate of change in A is dA/dt = R · (C +K).

After deriving an average rate for a, AIS can observe
how that rate would be different if any one constant
symbol or function were different. For each symbol,
AIS takes the first two (symbolic) derivatives of the rate
with respect to that symbol, obtains numeric bounds on
those derivatives, and tries to determine which phases
helped to increase or decrease each derivative. Each
constant symbol is considered to be independent of all
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other symbols. AIS performs the phase determination
task by looking at the derivatives (with respect to the
symbol) of each phase’s contribution to the rate (the
phase’s aC value multiplied by the sequence repetition
rate) and observing which are bounded above and/or
below by zero. Those phases with a derivative of aC

that is > 0 made a positive contribution to the deriva-
tive, etc.

At present, AIS also tries to plot a “qualitative”
graph of the rate versus each constant symbol. The
first derivative described above provides slope infor-
mation and the second provides convexity information.
AIS makes the assumption that the rate versus con-
stant function is smooth (differentiable). If the second
derivative can be both more or less than zero, AIS gives
up. Otherwise, depending on how the second derivative
is bounded by zero and on how the first derivative’s
bounds relate to zero, AIS determines which of the fol-
lowing shapes the curve may possibly have:

@ , , � ,�,�, ,�,
��

and/or
�
.

For example, if the 1st derivative is < 0 and the 2nd is
= 0 (such as when the rate is −3x and the symbol is
x), then the curve shape is @ . However, if the 2nd is
instead > 0 (such as when the rate is exp[−x]) then the
shape is�. If the 1st derivative has no bounds, but
the 2nd is < 0, then the possible shapes are

�
,
��

or
�
.

In the future, the QS system [6] will probably be used
to perform the plotting. The advantage of QS is that it
can detect complications like discontinuities and sketch
curves with such complications. However, before QS
can be used, it needs to be extended to handle functions
for which derivative and smoothness information exists,
but where the exact analytic form is unknown. Such
functions are often used in system descriptions.

Besides deriving the effects of symbols having dif-
ferent values on a rate, AIS also derives the effects of
functions having different values. One cannot take a
derivative with respect to a function. But if one wants
to observe how rates would be different if function f
were larger in value, one can substitute f(x) + e(x) for
every occurrence of f(x) in the rate (making the side
assumption that ∀x : [e(x) > 0]), symbolically subtract
the original rate from this altered rate, and bound the
difference. If the difference is > 0, then if f were larger,
the rate would be also, and so on.

HEART EXAMPLE: This section describes the
current version of AIS running on a model of the beating
of the part the human heart called the left ventricle.6

6The description is based on various texts and articles [5, 8]
and makes many assumptions. One assumption is that blood is
an incompressible fluid without inertia.
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Figure 1: Curves for a Left Ventricle

The ventricle is a chamber with two one-way valves:
one valve lets in blood from the lungs at a pressure
of Pi, and the other valve lets out blood going to the
rest of the body at a pressure of Po. The chamber
consists of muscle which can either relax or contract.
When relaxed (diastole), the ventricle volume (V ) ver-
sus pressure (P ) curve (V d[P ]) is roughly as shown in
Figure 1a. When contracted (systole), the V versus P
curve (V s[P,HR]) is roughly as shown in Figure 1b.
The symbol HR appears because with V s, V decreases
as the rate at which the ventricle contracts and relaxes
increases. This rate is known as the heart rate (HR).
Figure 1c shows with a dashed line the V versus P path
that ventricle takes as it contracts and relaxes once (a
beat sequence): 1) The ventricle contracts, but no blood
moves. So, V stays the same while P increases to Po.
Move from a to b in the diagram. 2) The ventricle con-
tinues contracting, but now, blood is ejected out the
output valve. P stays the same while V decreases to
V s[Po,HR]. Move from b to c. 3) The ventricle now
starts to relax and the blood movement stops. V be-
comes constant as P decreases to Pi. Go from c to d.
4) The ventricle continues relaxation, but now blood
enters from the input valve. P stays the same while V
increases to V d[Pi]. Go from d back to a.

The input to AIS has the following: The symbol
HR gives the rate at which the ventricle beat se-
quence repeats. The constants are Pi, Po, V d[Pi] and
V s[Po,HR].7 The periodic parameters are P and V .
The accumulating parameters are the amount of work
done by the blood in moving through the ventricle (W ),
and the amount of blood that has entered the ventricle
(Bi) and left the ventricle (Bo). The static conditions
on the constants are:

7Pi and Po are assumed to be constant during the ventricle
beats. These assumptions then force V d[Pi] and V s[Po, HR] to
be also constant during the beats.
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Pi < Po, V d[Pi] > V s[Po,HR], 0 ≤ V d[Pi],
0 ≤ V s[Po,HR], 0 < d(V d[Pi])/d(Pi),

0 > d2(V d[Pi])/d(Pi)2, 0 > ∂(V s[Po,HR])/∂(HR),
0 < ∂(V s[Po,HR])/∂(Po),

0 < ∂2(V s[Po,HR])/∂(Po)2.

Most of the conditions help describe the shape of V d[Pi]
and V s[Po,HR]. There are four phases in the sequence.
Each phase has a name, condition(s), and equation(s)
for value changes. In order, the phases are:

1. Isovolumetric Contraction: 0 ≤ V , PE = Po.

2. Ejection: 0 ≤ VB , 0 ≤ VE , VE = V s[Po,HR],
WC = −P ·BoC , BoC = VB − VE .

3. Isovolumetric Relaxation: 0 ≤ V , PE = Pi.

4. Filling: 0 ≤ VB , 0 ≤ VE , VE = V d[Pi], WC =
P ·BiC , BiC = VE − VB .

After solving these phases’ equations, AIS discovers
the following average rates of change for the accumu-
lating parameters and bounds on those rates:

d(W )/dt = ((Pi · (V d[Pi]− V s[Po,HR]))
+(−Po · (V d[Pi]− V s[Po,HR]))) ·HR

d(Bi)/dt = HR · (V d[Pi]− V s[Po,HR]) > 0 (1)

Also, d(Bo)/dt = d(Bi)/dt. One can show that
dW/dt < 0, but the bounding mechanism cannot pick
this up. In looking at the contributions of the phases
to these rates, AIS discovers that the ejection phase is
the only phase to affect d(Bo)/dt, making it as positive
as it is. Similarly, the filling phase is the only phase
to affect d(Bi)/dt. AIS can deduce that the ejection
and filling phases are the ones that affect d(W )/dt, but
cannot deduce how they affect d(W )/dt.

After finding the rates, AIS derives and bounds the
first two derivatives of those rates with respect to each
constant symbol, and tries to give the shape of the curve
of each rate versus each constant. For d(Bi)/dt, its 1st
derivative with respect to HR is > 0, but no bounds
are found for the 2nd derivative. No curve shape is de-
duced. With respect to the constant Pi, the 1st deriva-
tive is > 0 but the 2nd is < 0. Assuming smoothness,
AIS deduces a
�

shape for d(Bi)/dt versus Pi. With
respect to Po, both derivatives are < 0, so the curve has
a
�
shape. These results also apply to d(Bo)/dt. As

a check on the ventricle model, these rate shape results
are compared to experimental results. The results for
Pi and Po agree [7]. For HR, the AIS and experimental
results are incomparable because the latter came from
intact systems where changing HR can change Pi and
Po.

For the rate dW/dt, the only bound AIS can derive is
that this rate’s second derivative with respect to either

Pi or Po is > 0. So for dW/dt versus either Pi and Po,
the possible curve shapes are�,�or .

For the V d and V s functions, AIS deduces that if
V d were larger, both the d(Bi)/dt and d(Bo)/dt rates
would be also. But if V s were larger, these rates would
be smaller. These results agree with the description in
[8].

When modeling a circulatory system that has been
averaged over many heart beats and is in a steady-state,
such as done in [3, 8], most of the system’s mechanics
can be modeled by using direct current electrical circuit
analogies (such as [pressure drop] = [resistance]·[flow]).
Too complicated to be modeled this way is the part of
the mechanics that relates the Pi, Po, HR, V s, and
V d for each ventricle to the rate at which blood flows
through that ventricle (d(Bi)/dt = d(Bo)/dt). Current
modeling efforts either directly use empirically derived
relationships (like [7]) or derive the needed equations
by hand from an AIS-input-like description (done in
[8]). AIS can perform the latter derivations automati-
cally: equation (1) found by AIS for d(Bi)/dt provides
the desired relationship for the left ventricle. The right
ventricle is similar. Actually, to use this relationship
numerically, one must be more specific about the V s
and V d curves, such as specifying that V d[x] = log x.

Other than needing more specific curve shapes, the
AIS d(Bi)/dt equation is similar to the equations de-
rived by others. The differences are caused by modeling
with slightly different sets of assumptions and beliefs on
what relationships exist and are important.

STEAM ENGINE EXAMPLE: This next exam-
ple of running AIS concerns a simple steam engine (sim-
plified version of the ones in [2]). This engine has one
cylinder and a piston that slides back and forth along
the inside of that cylinder. The piston also covers the
main opening in the cylinder. The sequence of actions
is that the piston slides further out in the cylinder and
then back in. As piston slides out, the volume contained
by the cylinder and piston combination (V ) increases,
moving from a low value of V l to a high of V h. Steam
(at a pressure of Pi and a temperature of Ti) is let
into the cylinder from V = V l to V = V ex. From
V = V ex to V = V h, no steam is let in or out (steam
in the cylinder expands adiabatically [4]). At V = V h,
a flywheel (connected to the piston via a crankshaft)
pushes the piston back into the cylinder. As the piston
slides back in, V decreases from a value of V h back to
V l. From V = V h to V = V cp, steam is let out of
the cylinder via an exhaust port (at a pressure of Po).
From V = V cp to V = V l, no steam is let in or out
(steam in the cylinder is compressed adiabatically). At
V = V l, the sequence repeats. The model makes many
assumptions, including one that steam behaves almost
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like an ideal gas.
The parameters are: The symbol RPM (for revolu-

tions per minute) gives the rate of sequence repetition.
The constants are Pi, Ti, Po, V l, V ex, V cp, V h, R and
k. R is the constant in the ideal gas law PV = nRT ,
and kR is the molar specific heat of steam at constant
volume [4]. The periodic parameters are V and the
pressure inside the cylinder (P ). The accumulating pa-
rameters are the amount of work done in driving the
piston (W ), the energy of all the steam entering the
cylinder (Ei) and leaving the cylinder (Eo), and the
amount of steam that has entered the cylinder (Ai).

Static conditions on the constants are:

0 < Po < Pi, 0 < V l < V ex < V h, V l < V cp < V h,
0 < Ti, 0 < R, 3/2 ≤ k

The sequence has six phases, each with a set of phase
equations. After AIS solves these phase equations, it
deduces the average rates of change for the accumulat-
ing parameters. For example,

d(Ei)/dt = (k · V l · (Pi− Po · (V cp/V l)(1+1/k))
+Pi · (V ex− V l) · (1 + k)) ·RPM

AIS can determine which phases affect these rates, but
cannot always determine how these phases affect the
rates. A reason for this is that the bounding algorithms
do not always find the tightest bounds on a given ex-
pression. This reason also causes AIS’ inability to put
numeric bounds on any of the rates.

In addition, this general shortcoming affects AIS’
ability to bound the derivatives of the rates with re-
spect to various constants. AIS cannot bound the 1st
derivatives of any rate with respect to RPM , nor bound
any of the 1st derivatives of the W rate. For the Ai,
Ei and Eo rates, AIS can do better. For example, the
1st derivative of d(Ei)/dt with respect to Pi is > 0 and
the 2nd is = 0, so the d(Ei)/dt versus Pi curve has a
� shape.

SUMMARY: A program called AIS has been im-
plemented and tested. It takes in a description of a
sequence of actions and tries to find information associ-
ated with the symbolic average rate of change in various
parameters.

Compared to some other work on automatically an-
alyzing dynamic systems, AIS is limited in that it only
analyzes systems which steadily repeat a fixed sequence
of parameter value changes. In exchange for this limi-
tation, AIS does not get lost trying to find the iterated
sequence, nor is AIS limited to descriptions in the form
of a single set of differential equations. So work on
AIS helps further the ability to automatically analyze
dynamic systems, a goal of much work in artificial in-
telligence.
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