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Abstract

This paper describes two methods for predicting the likely behaviors of static con-

tinuous nonlinear systems with varying input values. The methods use a param-

eterized equation model and upper or lower bounds on the joint input density to

bound the likelihood of a behavior, such as a state variable being inside a numeric

range. Using a bound on the density instead of the density itself is desirable be-

cause the density’s parameters and shape are not exactly known. The first method

is limited to using lower density bounds. It finds rough bounds at first, and then

refines them as more iterations of the method are allowed. The second method is

a hit-or-miss version of sample-mean Monte Carlo. Unlike the first method, the

second method can also handle upper density bounds, which are more useful than

lower density bounds, but the generated probability bounds are only approximate.

However, standard deviations on the bounds are given and become small as the

sample size increases. In contrast to other researchers’ methods, the two methods

described here (1) find all the possible system behaviors, and tell how likely they
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are, (2) do not just approximate the distribution of possible outcomes without

some measure of the error magnitude, (3) do not use discretized variable values,

which limit the events one can find probability bounds for, (4) can handle density

bounds, and (5) can handle such criteria as two state variables both being inside a

numeric range.

1 Introduction

This paper describes two methods to predict the likely steady-state behaviors of

a continuous nonlinear system in which the input values can vary. The methods

use a parameterized steady-state equation model and upper or lower bounds on

the joint input probability density to bound the likelihood that one or more state

variables stay inside or outside a given set of numeric ranges. The first method

is called SAB, which stands for split and bound (the method’s basic steps). SAB

utilizes lower density bounds only and produces analytical likelihood bounds. The

second is a form of Monte Carlo and is called HMC, which stands for hit-or-miss

sample-mean Monte Carlo. HMC can utilize both lower and upper density bounds

and produces estimates of likelihood bounds with standard deviations on those

estimates.

The reason for using one or more bounds on the probability density, and not

the density itself, is that density parameters (means, etc.) and density shape are

often not exactly known: One may only have confidence intervals or estimated

ranges for some parameters. In fact, the actual parameters may vary (cyclically)

over time, such as the mean blood pressures in the chest which rise and fall due to

pressure changes caused by the breathing cycle. Even if one has point estimates

for all the parameters, they may be unusable due to slight inconsistencies. For
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example, the correlation estimates may be slightly inconsistent, especially if some

correlations are estimated using intuition or heuristics, as opposed to applying

statistics over a large data-base. By relaxing correlation estimates to be ranges of

values around the original estimates, one can examine densities with that type of

correlation structure. For example, if some correlation coefficient estimate of 0.8

was found to be inconsistent with the other density parameters, one could still do

preliminary analysis with a density where that correlation coefficient is high (near

0.8) by allowing that coefficient to be anywhere in the range of 0.7 to 0.9 (assuming

some value within this range is consistent with all the other density parameters).

An alternative to using bounds on the probability density is to use a sample of

possible probability densities. However, sampling is not as complete an examination

as bounding. Some class of important behaviors may lie between all the samples

and not be observed.

Other prediction-making methods have one or more of the following problems:

not finding the likelihood of behaviors or only finding the likelihood of the variable

values falling in certain ranges; not estimating the result’s error and not being able

to improve on an initial result’s accuracy when given more computation time; not

being able to handle density bounds, or handling them too slowly; needing all the

set(s) of input values that satisfy the criteria to be explicitly mentioned.

Compared to the these other techniques, the two methods described in this

paper can produce estimates of their errors, improve their answers as more samples

or iterations are allowed, and deal with distributions of continuous variable values.

SAB produces analytical answers but can only handle lower density bounds. HMC

is a variation on the Monte Carlo techniques that integrate the density bound. The

variation makes it possible to determine the interval to be integrated over.
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The next section of this paper gives a more detailed description of some other

methods. Section 3 gives a simple example of using the two methods described

in this paper. It is followed by three sections which give in order an overview of

SAB, a demonstration of how SAB runs in the simple example, and some of SAB’s

problems.1 After this is a section on HMC, which describes how it is derived from

and differs from sample-mean Monte Carlo, and then a section on numeric bounding

techniques needed for both SAB and HMC. The paper ends with a discussion

section.

2 Other Techniques

Other prediction-making methods fit into one of four categories. The first category

of methods finds all the possible system behaviors (sometimes including impossible

ones), but does not tell the likelihood of the behaviors. Such methods include sys-

tems either performing qualitative reasoning [1, 15], or providing numeric bounds

[12].

Category two methods estimate the distributions of possible outcomes without

giving some measure of each estimate’s error and will not improve the accuracy of

those estimates when given more computation time. One of these methods is using

moments [3]. This method uses truncated Taylor series expansions of the model

equations to find various moments (mean, variance, etc.) of the distributions of

interest.

A third category is evidential reasoners [6, 14], which include most of the cur-

rent work done on uncertainty in AI. These reasoners can only handle a variable

1SAB’s details can be found in [16].
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value in terms of the possibility of it belonging to one or more regions in a preset

discretization of the possible variable values. For example, blood pressure (bp)

may be only thought of in terms of being low, normal, or high. This limitation is a

problem because what is considered normal, desirable, etc. can change with each

use of a model. For example, when trying to lower a patient’s bp, an acceptable

pressure depends on the patient’s former normal blood pressure and the patient’s

ability to withstand therapy side-effects.

Monte Carlo techniques [3, 5, 7], which fall into two general classes, constitute

the fourth category. The first class simulates a system by generating samples ac-

cording to some probability distribution. Most methods in this class cannot handle

density bounds. The acceptance/rejection method can handle density bounds, but

it is too slow due to the large number of potential samples it rejects. The second

class of Monte Carlo techniques integrates the density or density bound involved.

These integration techniques include hit-or-miss and sample-mean Monte Carlo.

Unfortunately, determining the interval(s) to be integrated over (the region(s) sat-

isfying the criteria) is very hard. The section on HMC gives more details on this

problem. Also, as with all Monte Carlo techniques, every answer is inexact and

has a standard deviation associated with it.

3 Simple Example Using PV R

A simple example of using the two methods described in this paper involves finding

a patient’s pulmonary vascular resistance (pvr) given the constraint

pvr = (pap− lap)/co (1)
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and information on the patient’s pulmonary arterial pressure (pap), left atrial pres-

sure (lap) and cardiac output (co). pvr is of interest because a high value indicates

that the heart’s right ventricle has to work very hard to keep the blood moving

through the lungs [10, p. 234]. One threshold condition is pvr ≤ 1.62mmHg/(l/min).

Critically ill surgical patients with values above this are less likely to survive [13,

p.54-59].2 pap, lap, and co have patient and time dependent values, and are not

easy to measure accurately. Table 1 gives statistics for the patient of interest, a

heart attack victim. The question is, given information on pap, lap, and co for the

patient involved, is pvr at all likely to be above the threshold? If so, one ought to

monitor pvr.

The numbers are close enough so that the answer is not obvious from looking at

Table 1: For example, substituting the mean values into Equation 1 results in pvr <

1.62, but increasing pap’s value in the substitution by 3.38 (one standard deviation)

while maintaining lap and co’s values would result in pvr > 1.62. However, the

latter is not that likely to happen because lap tends to increase when pap does

(high positive correlation).

So, one has to look at the joint density of pap, lap, and co. Like most statistics,

the ones in Table 1 are subject to sampling error, and in addition, the density shape

is not exactly known. To get around this difficulty, one can hypothesize plausible

bounds on the joint density and bound the probabilities of satisfying the criteria

given each density bound. Ideally, the set of density bounds used will cover all the

possible variations.

In this example, four density bounds are considered. They show the types of

bounds the methods can handle. One-dimensional (marginal) views of these are in

2Assume the patient to have a body surface area of 1.74m2, the average for a human.
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Figure 1: 4 Density Bounds

Figure 1, where the areas under the density bounds are marked by vertical lines.

The one on the right is an upper bound, the middle two are lower bounds, and

the one on the left can be either. The three left-most input bounds are given to

SAB, and the right-most two are given to HMC. As will be described later, the

two right-most bounds cover all Gaussian densities where co’s mean is somewhere

within a bounded interval and all the other parameters are as given in Table 1.

The details on producing the results are given later.

The first “bound” is a regular joint Gaussian density3 with the parameters

listed in Table 1 and a one-dimensional view of it is shown in the left diagram

of Figure 1. A 1000-sample Monte Carlo simulation with this bound (a normal

probability density) indicates that pvr > 1.62 about 20% of the time. SAB analyt-

ically bounds this to be between 4% and 57%. This is consistent with the Monte

Carlo simulation and with patient data, where 4 of 17 (23.5%) data points had

pvr > 1.62.4

The second density bound is a

1. joint Gaussian density with the parameters listed in Table 1

2. in which the maximum density value is limited to that of a jointly uniform

density with the same means and standard deviations.

3Being a density (has an area of 1), it is both a lower and an upper density bound.
4Here, the data could have been used by itself to answer the question of whether pvr > 1.62 is

at all likely. SAB and HMC are meant to be used when such data are not available.

7



In other words, the density bound looks like a Gaussian far from the variables’

means, but has the low flat top of a uniform density near the means. A one-

dimensional view of it is shown in the middle-left diagram of Figure 1. Integrating

the bound indicates that it includes ∼ 70% of the probability mass. Using this

bound SAB analytically bounds Pr(pvr > 1.62) to be between 4% and 79%. SAB

found the 79% figure by finding a lower bound on Pr(pvr ≤ 1.62) and then sub-

tracting it from 100%. These results are again consistent with the patient data.

The third density bound is the lower bound of a Gaussian density where co’s

mean is allowed to be anywhere between 6.20 to 6.78.5 This constraint might

have been determined by using information in some confidence interval for co’s

mean. The middle-right diagram of Figure 1 shows a one-dimensional view of this

bound: co’s mean can lie anywhere between the two *’s. The lower density bound

is the intersection of the areas under all the densities possible due to allowable

variations in co’s mean. Because Gaussian densities are unimodal, the lower bound

is the intersection of the areas under the two Gaussian density curves6 shown.

Integrating the bound indicates that it includes ∼ 65% of the probability mass.

Using this bound SAB analytically bounds Pr(pvr > 1.62) to be between 1% and

76% and HMC estimates it to be between 12% and 44% with an estimated standard

deviation of < 2% on both figures. Both these results are also consistent with the

patient data.

The fourth density bound is the upper bound version of the third density bound.

Instead of taking the intersection of the areas under the Gaussian density curves

with co means in [6.20,6.78], take the union. HMC estimates that Pr(pvr > 1.62) <

5The variances, covariances, and other means could also be allowed to vary.

6They are the ones with the extreme co mean values.
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33% (standard deviation of 1%). As with all upper bounds, all of the probability

mass is within the bound.

Pr(pvr > 1.62) > 1% is consistent with all four input bound cases, so pvr

should be monitored. Note that the SAB results can be tightened. See the end of

Section 5 for details. Similarly, HMC’s estimates can be made more accurate.

4 SAB (Method 1): Overview

This section gives an overview of SAB’s algorithm. Details can be found in [16].

SAB successively narrows the probability bound of achieving or failing some

criteria by iteratively splitting regions comprising a partition of the possible input

values and then bounding both the possible behaviors within the smaller regions

and the probabilities of being in those smaller regions (using the input probability

density bound). SAB marks the regions whose possibilities always satisfy or fail

the criteria.

Figure 2 shows two examples of splitting. In the one marked Behavior, the

criterion is ab < 3, and the original region is a, b ∈ [0, 2]. In this region ab ∈ [0, 4],

so it sometimes passes and sometimes fails the criterion. Split7 the region along

a = 1 into the two sub-regions X and Y . In X, a ∈ [0, 1], so ab ∈ [0, 2]. Because

the criterion is always satisfied, mark X. In constrast, a ∈ [1, 2] in Y , which means

ab ∈ [0, 4], so Y is not marked.

In the example marked Probability, α = (c ∈ [0, 1]) is the original region and

f(c) is a lower bound on probability density at c. SAB finds the lower bound on

the probability of being in α of Pr(α) > 0.5. This bound is the sum of areas q and

7At present, SAB splits a region by bisecting it.

9



Behavior
6

-
0 2 a

0

2
b X Y

�ab = 3

Probability
6

-
0 1.5 cZ W

0

1
.5

f(c)
qr

s
�

Figure 2: Examples of Splitting

r, found by multiplying 1, α’s length, by 0.5, the lowest value of f(c) in α.8 Split

the region at c = 0.5 into the two sub-regions Z and W . By a method similar to

the one above, SAB finds a lower bound on Pr(Z) of 0.5 (sum areas r and s), and

a lower bound on Pr(W ) of 0.25 (area q). Sum the lower bounds of Pr(Z) and

Pr(W ) to get a new lower bound of 0.75 on Pr(α).

As hinted by these two examples, as long as the bounding method used tends

to reduce the range of possibilities as a region of input values gets smaller, this

continued splitting will mark more and more of the interval of all possible input

values. And as long as the bounding method tends to reduce the gap between a

density bound’s upper and lower bound9 in a region as the region gets smaller, the

bound on the probability of being in a marked region will improve.

To find a lower bound on Pr(satisfy criteria) sum the lower probability bounds

of all the regions marked as satisfying the criteria. Similarly, one can find a

lower bound on Pr(fail criteria). One minus the latter is an upper bound on

Pr(satisfy criteria).

8Better methods of bounding probabilities are described in [16].

9Yes, we are bounding a bound here.
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5 SAB: PV R Example Revisited

This section re-examines the pvr example when using the Gaussian density as

a “bound” (first density bound) and SAB as the bounding method. To bound

Pr(pvr > 1.62), SAB looked at the interval of all possible inputs10 (given to SAB

as one region):

pap ∈ [1.0, 88.0], lap ∈ [1.0, 88.0], co ∈ [1.0, 100].

A lower bound on pvr, written lb(pvr), is

max(0, [lb(pap)− ub(lap)]/ub(co)) = 0,

and an upper bound (ub(pvr)) is

[ub(pap)− lb(lap)]/lb(co) = 87.0.

pvr can be either greater or less than 1.62, so SAB split the region in two along

the co dimension:

subspace1 : pap ∈ [1.0, 88.0], lap ∈ [1.0, 88.0], co ∈ [1.0, 50.5]

subspace2 : pap ∈ [1.0, 88.0], lap ∈ [1.0, 88.0], co ∈ [50.5, 100.0]

SAB then checked and split as appropriate. Regions like

pap ∈ [20.75, 25.47], lap ∈ [15.95, 17.32], co ∈ [6.41, 7.19], (pvr ∈ [0.756, 1.484])
10Note that the given range of possible values is wider than necessary. For example, one could

tighten them to co ≤ 30 and lap ≤ 45. These wider bounds will not affect the correctness of the

results. They will slow SAB down, but probably not by much: the inputs should have little (if

things are slightly inconsistent) or no chance of being in the extra area included by the wider

bounds, and SAB concentrates first on the regions of the possible input values that have the

highest estimated probability of occurring. So when in doubt about the bounds, err on the side

of including something that cannot occur.
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where pvr is either always >, or ≤ 1.62, were marked. SAB found lower bounds on

the probabilities of being in these marked regions (the one above has a probability

≥ 0.002).

As SAB recursively splits and checks regions, it tightens the probability bound

for satisfying the criteria. When the bound is tight enough, or SAB runs out of

time or another resource, it can be stopped. In this example, when SAB was

stopped, it gave a lower bound of 0.042 on the probability of being in a passing

region (one where pvr > 1.62), and 0.438 for a failing region (pvr ≤ 1.62). If a

tighter bound was desired, one could have restarted SAB with the then current

set of regions. Since this joint density bound includes all of the probability mass,

SAB can, barring round-off error in the floating point math, get the bound to

be arbitrarily tight if given enough computing time. In general, if a joint density

bound includes n×100% of the probability mass, SAB can, barring round-off error,

get the bound to have a gap of 1.0−n between the upper and lower figure. So if a

lower density bound includes 70% of the probability mass, the tightest bound SAB

could give on the chances of passing some criteria would have a gap of 0.3 between

the lower and upper figures (such as a lower bound of 0.6 and an upper bound of

0.9).

6 Problems with SAB

SAB has two difficulties. First, as the number of inputs increases, the complexity

of the density bound often increases to beyond SAB’s capacity. In fact, SAB is not

fast for small problems either. The examples with SAB in Section 3 each took 30

to 60 minutes (1 to 10 thousand iterations) to run on a Symbolics 3640 (or 3650)
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Lisp machine.11

SAB’s second problem is that it can make little use of upper density bounds.

This is because SAB derives its bounds by summing the bounds of the sub-regions.

On a lower input density bound, SAB sums up lower probability bounds, and on

an upper density bound, SAB sums up upper probability bounds. If a few of the

upper sub-region probability bounds being summed are loose, say close to one,

then the entire sum will be close to one or more (since all the probability bounds

are at least zero), which will make for a loose bound. With lower bounds on the

other hand, a few loose lower sub-region probability bounds, say close to zero, will

not affect the sum very much. For example, let there be 5 sub-regions, each with

a probability of 0.1 of containing the measured input values. Then the chances of

event α, that the measured values are in one of the sub-regions, is 5(0.1) = 0.5.

If the upper bound on the chances of each of four of these sub-regions is 0.1, and

is 0.9 in the fifth sub-region, then an upper bound on Pr(α) is 4(0.1) + 0.9 ≥ 1, a

loose bound. On the other hand, if the lower bound on the chances of each of four

of these sub-regions is 0.1, and is 0.0 in the fifth one, then a lower bound on Pr(α)

is 4(0.1) = 0.4, which is still close to the actual chance of 0.5.

Unfortunately for SAB, if one gives an input density bound where a mean or

some other parameter can vary over a wide range, the upper bound becomes much

more important than the lower one. This is because as some parameter varies

over a wider range, the intersection of the densities with all the different allowable

parameter values gets small, so the lower bound covers little (is loose). For example,
11Part of the reason for the slowness was that the small examples were run with all the bounding

machinery needed for the larger problems. No attempt was made to optimize. LISP was used

because of its storage management, which was needed to easily handle the newly split regions.
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in the “vary mean, LB” bound in Figure 1, if the mean is allowed to vary more, the

two extreme Gaussian curves depicted will move farther away from each other, and

the area in common to them (the lower bound) will shrink. When a lower bound

covers little, most of the probability mass will not be covered by the bound and

can go anywhere. At this point, one will not be able to infer much on the chances

of any input values occurring. An example of a lower bound covering little is one

which only has 0.05 (5%) of the probability mass under its curve. If one uses this

bound to bound the chances of some event α, one will get a lower bound on Pr(α)

of x and a lower bound on Pr(¬α) of 0.05 − x, where x is a number between 0.0

and 0.05. An upper bound on Pr(α) is one minus a lower bound on Pr(¬α), so

the upper bound is 1− (0.05− x) = 0.95 + x. Then the lower bound on Pr(α) is

at most 5% while the upper bound is at least 95%, which does not tell one much

about Pr(α).

While a loose lower density bound is useless, a loose upper density bound can

still yield useful probability upper bounds. This is because there may be large

regions of possible input values which are known to be very unlikely to occur.

7 HMC (Method 2)

These problems with SAB led to trying to apply Monte Carlo (MC) techniques in

conjunction with density upper bounds. As mentioned in Section 2, the common

MC techniques are inadequate. This section describes HMC, a hit-or-miss version

of sample-mean Monte Carlo which applies to the problems of interest. The first

subsection describes the original sample-mean MC and why it is inadequate for the

problems of interest. The next subsection describes how to convert sample-mean

MC into HMC. The last subsection gives an example of a large problem to which
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HMC was applied.

7.1 Sample-Mean Monte Carlo

Sample-mean Monte Carlo (called crude Monte Carlo in [5]) estimates the area

under a curve c within some region (interval) as follows:

1. Randomly sample the curve in the region of interest: first take some random

samples of sets of input values in that region, and then for each set of values,

xi, find c(xi), the value of the curve at xi.

2. Estimate the average value of the curve in the region by finding the average

value of the c(xi)s: Ac =
∑

i c(xi)/n, where n is the number of samples. The

sample standard deviation of the c(xi)s is

s =
√∑

i

(c(xi)−Ac)2/(n− 1).

The standard deviation of Ac is estimated by sA = s/
√
n.

3. Multiply Ac by the size or volume S of the region or interval: Ac × S. This

result estimates the area under the curve within the region of interest. The

standard error of this estimate is sA × S. Since S is constant and sA ∝

1/
√
n, the estimate becomes more accurate as the number of samples increase.

However, since the proportionality is to 1/
√
n and not to 1/n, each additional

sample added has less effect on the accuracy.

As previously mentioned, sample-mean MC is an MC integration technique.

Such techniques have the disadvantage that one has to find all the regions of possible

input values that satisfy the criteria, as these regions are the ones to be integrated

over. As an illustration of this, consider the pvr example in Section 3. The interval
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of all possible input values is the region defined by pap ∈ [10, 80], lap ∈ [2, 45],

and co ∈ [1, 30]. To find a bound on Pr(pvr > 1.62), one needs to integrate over

the density bound in all the regions of possible input values where the criterion of

1.62 < pvr = (pap− lap)/co is satisfied. Two of these regions are

pap ∈ [19, 80], lap ∈ [2, 15], co ∈ [1, 2]

and

pap ∈ [19, 80], lap ∈ [2, 11], co ∈ [2, 4].

Finding all such regions in the interval of all possible input values is difficult.

7.2 From Mean-Sample MC to HMC

Although it is hard to find all the regions of input values that satisfy the criteria,

one can easily tell if a given set of values do so. In the pvr example, if one were

given the input values of pap = 80, lap = 30, and co = 5, one could substitute

them into the equation (pap − lap)/co to find that the corresponding pvr is 10,

which passes the criterion.

Another observation is the following. Suppose one defines a new curve c∗(x):

c∗(x) =


c(x) if x satisfies the criteria

0 otherwise

where c(x) is the original curve and x can take on all possible input values. Then

the area under c∗ within the region of all possible input values is equivalent to the

area under c within the regions of values that satisfy the criteria.

One can use these two ideas to modify sample-mean MC to obtain HMC by

substituting all occurrences of c(xi)s with c∗(xi)s in the three-step algorithm de-

scribed in Section 7.1. To obtain c∗(xi) for each sample, xi, see if xi satisfies the
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criteria. If it does, find c(xi); otherwise use 0. When the xis come from the interval

of all possible input values, the result Ac × S in the last step estimates the area

under c which satisfies the criteria.12 When c is a density upper bound, the result

estimates an upper bound on the probability of satisfying the criteria. Similarly,

when c is a density lower bound, the result estimates a lower probability bound.

An example of using this routine is as follows: let x range from 0 to 10 (so

S = 10), let the criteria be q(x) = x3/3−4x2 +15x ≥ 18, and let the density upper

bound, c(x), be 0.02(10− |x− 5|). The modified density bound is

c∗(x) =


c(x) if q(x) ≥ 18

0 otherwise

Let the sample-mean routine pick 10 independent random samples of x. 13 Then

the resulting samples are as shown in Table 2 and Figure 3.

An estimate of the area under the upper density bound is 1.5, which is derived

by multiplying the size S, by 0.15, the average of the sample c values. The estimated

standard deviation on this estimate is 0.1, which is derived by multiplying S, by

0.01, the sample standard deviation for the average of c. The actual area equals

the estimate of 1.5.
12HMC, the resulting algorithm, is related to conditional Monte Carlo [5, Ch. 6] [4, p. 12]. HMC

may be a type of the rejection technique described on page 12 of Halton [4].
13To simplify the example, the “independent random” samples “happen” to be the integers

between 0 and 9.
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To get an estimate of the upper bound on Pr(q(x) ≥ 18) and a guess of the

standard deviation on this estimate, multiply the corresponding summary figures

for c∗ by S. The result is Pr(q(x) ≥ 18) ≤ 0.76 with a standard error of about

0.26. The actual upper bound is 0.56, which is less than one standard error from

the estimate.

7.3 Summary of a Larger Example

For a larger example, I ran HMC on a 30+-variable, 25+-equation cardiovascular

model that includes Equation 1 [8, 9].14 Using data on mitral stenosis patients [2],

an upper density bound for the six input variables was constructed. It basically had

the form of a joint Gaussian density, but the mean blood pressure was allowed to

be anywhere in the interval between 85.7 and 89.7, and the mean heart rate, in the

interval between 80.9 and 84.9. The bound was formed by finding the maximum

possible value for the density at each sample point by using some of the bounding

techniques in Section 8. This density bound was used with HMC to bound the

chances of both pvr ≤ 5.0 and svr ≥ 40.0 occurring in a population of mitral

stenosis patients. The variable svr is the systemic vascular resistance, or general

body resistance to blood flow. The technique found that the upper bound on the

probability of satisfying this criteria is less than 0.0085 (with a standard deviation

of 0.0012 on the figure). Unfortunately, getting these results took over 100,000

sample points (4000 minutes on a Symbolics 3640 Lisp machine).15

14The model in the references used several piecewise linear equations. In this example they were

replaced with ones which used exponentiation to constant powers.
15It took a long time to run each sample point because testing each sample on the constraints

involved solving nonlinear simultaneous equations. These were solved using the bounding mecha-

nism to be described in the next section. The mechanism is slow and does not solve all possibly
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8 Finding Numeric Bounds

Many of SAB’s parts need expressions to be bounded. For expressions with alge-

braic, logarithmic, and exponential functions (the type in the models to be used),

perfect bounding algorithms have not been built. The type of algorithm used here

will find bounds that indicate what is truly unachievable,16 but those bounds may

not be the tightest possible. For example, having a program find that x < 7, when

in fact, it can be shown that x < 3. I have implemented an augmented version of

bounds propagation [12], which does the following interval arithmetic [11]:

• Bound an operation’s result using bounds on the operands. For example:

ub(a+ b) ≤ ub(a) + ub(b).

• Bound an operand using bounds on an operation’s result and the other

operands. For example: ub(a) ≤ ub(a+ b)− lb(b).

The “bounder” examines expressions and updates bounds with these operations.

It iterates over the expressions until every one that might produce a change has

been examined at least once and all the recent bound changes are below a certain

threshold.

solvable sets of equations. But because of the type of bounding the mechanism does, if there are

multiple solutions to the equations, the mechanism will warn about the possibility and give an

interval in which all the solutions are located. Most equation solvers will just present the first

solution they find. Using standard numeric techniques like Newton-Raphson will save time.

16In practice, the accuracy of this may be limited by round-off error.
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9 Discussion

This paper describes two methods which use a bound on the joint density of the

inputs to bound the likelihood of some possible behavior. The first is called SAB. It

analytically bounds the likelihood, narrowing the bound as more iterations are per-

mitted. However, SAB can only use lower-bound information on the joint density.

This information is less useful than upper-bound information. The second method

is a hit-or-miss version of sample-mean Monte Carlo technique called HMC. It only

finds approximate likelihood bounds – but the accuracy increases with the num-

ber of samples taken – and it gives a measure of the error magnitude. Also, unlike

SAB, HMC can handle both upper and lower density bounds, and can handle larger

problems than SAB can.

Future work on SAB itself includes testing how large a problem it can handle

and expanding it to more quickly bound a variable’s mean, variance, median, 90%

confidence interval, etc. I will also explore splitting a region at the selected vari-

able’s median value (or some approximation) within the region. This can handle

infinite intervals (bisection cannot), which permits an initial region where each

variable is within the all-inclusive range of [−∞,∞].

Future work on HMC includes employing it to run the cardiovascular model

mentioned in Section 7.3 in order to examine the effects of heart disease therapies,

and trying variance reduction techniques for MC algorithms (like stratified sam-

pling) to speed up HMC. To speed-up instances of solving simultaneous equations,

I may use more standard numeric programming methods such as Newton-Raphson.

At present, both algorithms are slow, so it would be useful to generate prelim-

inary results by applying some fast method like moments [3], which just need to

solve a few equations (without need for iterations) to give an estimate.
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On matters other than algorithms, work needs to be done on finding the types

of density bounds that are the most common, easiest to specify, and most useful.

Candidates for easy-to-specify bounds are common densities with bounded param-

eters. An example is a Gaussian density with a mean between 0 and 1. One can

generate such bounds by using information from parameter confidence intervals.

Despite uncertainty in input density shapes and parameter values, bounds on

input densities have not really been utilized to bound the chances of events. This

work describes two bounding methods which have the features of being able to

handle events beyond the ones in a pre-enumerated list, estimating the amount of

error in an answer, and giving better answers as more iterations or samples are

allowed.
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Correlation Coef.

NAME MEAN STD DEV pap lap co

pap 23.94 3.38 1.0 .861 .096

lap 15.29 3.08 .861 1.0 -0.044

co 6.49 1.20 .096 -0.044 1.0

Table 1: PV R Example
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x 0 1 2 3 4 5 6 7 8 9 Ac sA

c(x) 0.10 0.12 0.14 0.16 0.18 0.20 0.18 0.16 0.14 0.12 0.15 0.01

c∗(x) 0.0 0.0 0.0 0.16 0.0 0.0 0.18 0.16 0.14 0.12 0.076 0.026

q(x) 0.0 11.3 16.7 18.0 17.3 16.7 18.0 23.3 34.7 54.0

Table 2: HMC Example Samples
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