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This paper introduces a method for predicting the likely behaviors of continu-
ous nonlinear systems in equilibrium in which the input values can vary. The
method uses a parameterized equation model and a lower bound on the input
joint density to bound the likelihood that some behavior will occur, such as a
state variable being inside a given numeric range. Using a bound on the den-
sity instead of the density itself is desirable because often the input density’s
parameters and shape are not exactly known. The new method is called SAB
after its basic operations: split the input value space into smaller regions, and
then bound those regions’ possible behaviors and the probability of being in
them. SAB finds rough bounds at first, and then refines them as more time
is given. In contrast to other researchers’ methods, SAB can (1) find all the
possible system behaviors, and indicate how likely they are, (2) does not ap-
proximate the distribution of possible outcomes without some measure of the
error magnitude, (3) does not use discretized variable values, which limit the
events one can find probability bounds for, (4) can handle density bounds, and
(5) can handle such criteria as two state variables both being inside a numeric
range.

1 Introduction

This paper introduces a method called SAB to predict the likely behaviors of a contin-
uous nonlinear system in equilibrium in which the input values can vary. SAB uses a
parameterized equation model and a lower bound on the input joint density to bound
the likelihood that one or more state variables stay inside or outside of a given set of
numeric ranges (the likelihood of meeting some criteria).

The reason for using one or more bounds on the probability density, and not the
density itself, is that density parameters (means, etc.) and density shape are often not
exactly known: One may only have confidence intervals or estimated ranges for some
parameters. In fact, the actual parameters may vary (periodically) over time, such as
the mean blood pressures in the chest which rise and fall due to pressure changes caused
by the breathing cycle. Even if one has point estimates for all the parameters, they may
be unusable due to slight inconsistencies. For example, the correlation estimates may
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be slightly inconsistent, especially if some correlations are estimated using intuition or
heuristics, as opposed to applying statistics over a large data-base. By relaxing corre-
lation estimates to be ranges of values around the original estimates, one can examine
densities with that type of correlation structure. For example, if some correlation coef-
ficient estimate of 0.8 was found to be inconsistent with the other density parameters,
one could still do preliminary analysis with a density where that correlation coefficient
is high (near 0.8) by allowing that coefficient to be anywhere in the range of 0.7 to 0.9
(assuming some value within this range is consistent with all the other density param-
eters).

An alternative to using bounds on the probability density is to use a sample of
possible probability densities. However, sampling is not as complete an examination as
bounding. Some class of important behaviors may lie between all the samples and not
be observed.

Other prediction-making methods have one or more of the following problems: not
finding the likelihood of behaviors or only finding the likelihood of the variable values
falling in certain ranges; producing approximate results without estimating the error and
being unable to improve on an initial result’s accuracy when given more computation
time; not being able to handle density bounds, or handling them too slowly; needing all
the set(s) of input values that satisfy the criteria to be explicitly mentioned.

Compared to the these other techniques, SAB produces analytic bounds, improves
its answers as more samples or iterations are allowed, and deals with distributions of
continuous variable values.

The next section of this paper gives a more detailed description of some other meth-
ods. Section 3 gives a simple example of using SAB. It is followed by three sections
which give in order an overview of SAB, a demonstration of how it runs in the simple
example, and SAB’s details. The paper ends with a discussion section and an appendix
on some bounds derivations.

2 Other Techniques

Other prediction-making methods fit into one of four categories. The first category of
methods finds all the possible system behaviors (sometimes including impossible ones),
but does not tell the likelihood of the behaviors. Such methods include systems either
performing qualitative reasoning [1, 2], or providing numeric bounds [3].

Category two methods estimate the distributions of possible outcomes without giv-
ing some measure of each estimate’s error and will not improve the accuracy of those
estimates when given more computation time. One of these methods is using moments
[4]. This method uses truncated Taylor series expansions of the model equations to find
various moments (mean, variance, etc.) of the distributions of interest.

A third category is evidential reasoners [5, 6], which include most of the current
work done on uncertainty in AI. These reasoners can only handle a variable value in
terms of the possibility of it belonging to one or more regions in a preset discretization
of the possible variable values. For example, blood pressure (bp) may be only thought
of in terms of being low, normal, or high. This limitation is a problem because what is
considered normal, desirable, etc. can change with each use of a model. For example,
when trying to lower a patient’s bp, an acceptable pressure depends on the patient’s
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former normal blood pressure and the patient’s ability to withstand therapy side-effects.
Monte Carlo techniques [4, 7, 8], which fall into two general classes, constitute the

fourth category. The first class simulates a system by generating samples according to
some probability distribution. Most methods in this class cannot handle density bounds.
The acceptance/rejection method can handle density bounds, but it is too slow due to
the large number of potential samples it rejects.

The second class of Monte Carlo techniques integrates the density or density bound
involved. These integration techniques include hit-or-miss and sample-mean Monte
Carlo. Unfortunately, determining the interval(s) to be integrated over (the region(s)
satisfying the criteria) is very hard. As an illustration of this, consider the PV R example
to be given in Section 3. The interval of all possible input values is the region defined by
PAP ∈ [10, 80], LAP ∈ [2, 45], and CO ∈ [1, 30]. To find a bound on Pr(PV R > 1.62),
one needs to integrate over the density bound in all the regions of possible input values
where the criterion of 1.62 < PV R = (PAP − LAP )/CO is satisfied. Two of these
regions are

PAP ∈ [19, 80], LAP ∈ [2, 15], CO ∈ [1, 2]
and

PAP ∈ [19, 80], LAP ∈ [2, 11], CO ∈ [2, 4].

Finding all such regions in the interval of all possible input values is difficult. Also, as
with all Monte Carlo techniques, every answer is inexact and has a standard deviation
associated with it.

3 Simple Example Using PV R

A simple example of using SAB involves finding a patient’s pulmonary vascular resis-
tance (PV R) given the constraint

PV R = (PAP − LAP )/CO (1)

and information on the patient’s pulmonary arterial pressure (PAP ), left atrial pressure
(LAP ) and cardiac output (CO). PV R is of interest because a high value indicates that
the heart’s right ventricle has to work very hard to keep the blood moving through the
lungs [9, p. 234]. One threshold condition is PV R ≤ 1.62mmHg/(l/min). Critically ill
surgical patients with values above this are less likely to survive [10, p.54-59].1 PAP ,
LAP , and CO have patient and time dependent values, and are not easy to measure
accurately. Table 1 gives some statistics for the patient of interest, a heart attack victim.
The question is, given information on PAP , LAP , and CO for the patient involved, is
PV R at all likely to be above the threshold? If so, one ought to monitor PV R.

The numbers are close enough so that the answer is not obvious from looking at
Table 1: For example, substituting the mean values into Equation 1 results in PV R <
1.62, but increasing PAP ’s value in the substitution by 3.38 (one standard deviation)
while maintaining LAP and CO’s values would result in PV R > 1.62. However, the
latter is not that likely to happen because LAP tends to increase when PAP does (high
positive correlation).

1Assume that patients have a body surface area of 1.74m2, the average for humans.
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Correlation Coef.
NAME MEAN STD DEV PAP LAP CO
PAP 23.94 3.38 1.0 .861 .096
LAP 15.29 3.08 .861 1.0 -0.044
CO 6.49 1.20 .096 -0.044 1.0

Table 1: PV R Example

6

-�
��
�

Gaussian

6

-

��
��

Uniform Max

6

-
* *

�
��

��
��

�
Vary Mean

Figure 1: 3 Lower Density Bounds

So, one has to look at the joint density of PAP , LAP , and CO. Like most statistics,
the ones in Table 1 are subject to sampling error, and in addition, the density shape is
not exactly known. To get around this difficulty, one can hypothesize plausible bounds
on the joint density and let SAB bound the probabilities of satisfying the criteria given
each density bound. Ideally, the set of density bounds used will cover all the possible
variations.

In this example, three lower density bounds are considered. They show the types of
bounds that SAB can handle. One dimensional views of these are in Figure 1, where
the areas under the density bounds are marked by vertical lines. As will be described
later, the right-most bound covers all Gaussian densities where CO’s mean is somewhere
within a bounded interval and all the other parameters are as given in Table 1. The
details on getting the results are given later on.

The first “bound” is a regular joint Gaussian density with the parameters listed
in Table 1 and is shown in the left diagram of Figure 1. A 1000-sample Monte Carlo
simulation with this bound (a normal probability density) indicates that PV R > 1.62
about 20% of the time. SAB analytically bounds this to be between 4% and 57%. This
is consistent with the Monte Carlo simulation and with patient data, where 4 of 17
(23.5%) data points had PV R > 1.62.2

The second density bound is a

1. joint Gaussian density with the parameters listed in Table 1

2. in which the maximum value is limited to that of a jointly uniform density with
the same means and standard deviations.

In other words, the density bound looks like a Gaussian far from the variables’ means,
but has the low flat top of a uniform density near the means. It is shown in the middle
diagram of Figure 1. Integrating the bound indicates that it includes ∼ 70% of the
probability mass. Using this bound SAB analytically bounds Pr(PV R > 1.62) to be
between 4% and 79%. This is again consistent with the patient data.

The third density bound is the lower bound of a Gaussian density where CO’s mean
is allowed to be anywhere between 6.20 to 6.78.3 This constraint might have been

2Here, the data could have been used by itself to answer the question of whether PV R > 1.62 is at
all likely. SAB is meant to be used when such data is not available.

3The variances, covariances, and other means could also be allowed to vary.
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Figure 2: Examples of Splitting

determined by using information in some confidence interval for CO’s mean. The right
diagram of Figure 1 shows this bound: CO’s mean can lie anywhere between the two *’s.
The lower density bound is the intersection of the areas under all the densities possible
due to allowable variations in CO’s mean. Because Gaussian densities are unimodal,
the lower density bound is the intersection of the areas under the two Gaussian density
curves4 shown. Integrating the bound indicates that it includes ∼ 65% of the probability
mass. Using this bound SAB analytically bounds Pr(PV R > 1.62) to be between 1%
and 76%. This is also consistent with the patient data.

In all three input bound cases, Pr(PV R > 1.62) > 1%, so PV R should be monitored.
Note that the results for each of the input bounds can be tightened. See the end of
Section 5 for details.

4 SAB: Overview

SAB tightens the probability bound of achieving or failing some criteria by repeatedly
selecting a region of possible input values, splitting that region into smaller regions αi’s,
and then bounding both the possible behaviors within the αi’s and the probability of
being in the αi’s (using the input probability density bound). SAB marks the αi’s whose
possibilities always satisfy or fail the criteria.

Figure 2 shows two examples of splitting. In the one marked Behavior, the criterion
is ab < 3, and the original region is a, b ∈ [0, 2]. In this region ab ∈ [0, 4], so it sometimes
passes and sometimes fails the criterion. Split the region along a = 1 into the two sub-
regions X and Y . In X, a ∈ [0, 1], so ab ∈ [0, 2], and the criterion is always satisfied.
Mark X. a ∈ [1, 2] → ab ∈ [0, 4] in Y , so Y is not marked. In the example marked
Probability, α, the original region, is c ∈ [0, 1], and f(c) is a lower bound on probability
density at c. SAB finds a lower bound on Pr(α), the probability of being in α, of 0.5
(sum areas q and r) by multiplying 1, α’s length, by 0.5, the lowest value of f(c) in α.5

Split the region at c = 0.5 into the two sub-regions Z and W . By a method similar to
the one above, SAB finds a lower bound on Pr(Z) of 0.5 (sum areas r and s), and a
lower bound on Pr(W ) of 0.25 (area q). Sum the lower bounds of Pr(Z) and Pr(W ) to
get a new lower bound of 0.75 on Pr(α).

As hinted by these two examples, as long as the bounding method used tends to
reduce the range of possibilities as a region of input value space gets smaller, this
continued splitting will mark more and more of the value space. And as long as the
bounding method tends to reduce the gap between a density bound’s upper and lower

4They are the ones with the extreme CO mean values.
5Better methods of bounding probabilities are described later.
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bound6 in a region as the region gets smaller, the bound on the probability of being in
a marked region will improve.

To find a lower bound on Pr(satisfy criteria) sum the lower probability bounds of all
the regions marked as satisfying the criteria. Similarly, one can find a lower bound on
Pr(fail criteria). One minus the latter is an upper bound on Pr(satisfy criteria).

5 PV R Example Revisited

This section re-examines the introduction’s PV R example when using the Gaussian
density as a “bound” (first density bound). To bound Pr(PV R > 1.62), SAB looked at
the space of inputs (given to SAB as one region):

PAP ∈ [1.0, 88.0], LAP ∈ [1.0, 88.0], CO ∈ [1.0, 100].

A lower bound on PV R, written lb(PV R), is

max(0, [lb(PAP )− ub(LAP )]/ub(CO)) = 0,

and an upper bound (ub(PV R)) is

[ub(PAP )− lb(LAP )]/lb(CO) = 87.0.

PV R can be either greater or less than 1.62, so SAB split the space in two along the
CO dimension:

subspace1 : PAP ∈ [1.0, 88.0], LAP ∈ [1.0, 88.0], CO ∈ [1.0, 50.5]

subspace2 : PAP ∈ [1.0, 88.0], LAP ∈ [1.0, 88.0], CO ∈ [50.5, 100.0]

SAB then checked and split as appropriate. Regions like

PAP ∈ [20.75, 25.47], LAP ∈ [15.95, 17.32], CO ∈ [6.41, 7.19], (PV R ∈ [0.756, 1.484])

where PV R is either always >, or ≤ 1.62, were marked. SAB found lower bounds on the
probabilities of being in these marked regions (the one above has a probability ≥ 0.002).

As SAB recursively splits and checks regions, it tightens the probability bound for
satisfying the criteria. When the bound is tight enough, or SAB runs out of time
or another resource, it can be stopped. In this example, when SAB was stopped, it
gave a lower bound of 0.438 on the probability of being in a passing region (one where
PV R ≤ 1.62), and 0.042 for a failing region (PV R > 1.62). If a tighter bound was
desired, one could have restarted SAB with the then current set of regions. Since this
input joint density bound includes all of the probability mass, SAB can, barring round-
off error in the floating point math, get the bound to be arbitrarily tight if given enough
computing time. In general, if an input joint density bound includes n × 100% of the
probability mass, SAB can, barring round-off error, get the bound to have a gap of
1.0− n between the upper and lower figure. So if a density bound includes 70% of the
probability mass, the tightest bound SAB could give on the chances of passing some
criteria would have a gap of 0.3 between the lower and upper figures (such as a lower
bound of 0.6 and an upper bound of 0.9).

6Yes, we are bounding a bound here.
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6 SAB: Details

6.1 Main Loop

Perform the following cycle until told to stop:

1. Select the region α with the highest rank (see below). SAB can start with either
one universal region (as in the example), or any number of predefined regions.

2. What type of region is it?

(a) Marked for being known to always satisfy or fail the given criteria. An
example is when a region’s PV R range is 0.0 to 1.2 and the criterion is
PV R ≤ 1.62. Here, split the region into two, and using the given density
bound, estimate and bound the greatest lower probability bound of being in
each of the two sub-regions. Mark them for the same reason as the original
region.

(b) Unsure. The region can still either pass or fail the given criteria. An example
is when a region’s PV R range is 0.0 to 2.0 and the criterion is PV R ≤ 1.62.

i. If the possibilities of the region (PV R’s range in the PV R example) have
not been bounded yet, bound them (in the PV R example, use the given
formulas for an upper and lower bound on PV R). If the region should
be marked, do so and bound the probability of being in it.

ii. If the possibilities have been bounded, split the region in two. Bound
both sub-regions’ possibilities, and estimate the greatest lower probabil-
ity bound of being in each sub-region. If a sub-region should be marked,
do so and bound that sub-region’s probability.

The probability estimations made are just used to suggest the next best step for
SAB by helping to rank the sub-regions. They are not used as part of any probability
bound.

The only overlap allowed between regions is shared borders. No overlap is permitted
if the probability density bound has impulse(s).7

6.2 Ranking Regions & Estimating Region Probabilities

A region’s rank estimates how much splitting it will increase the known lower bound
on the probability of either satisfying or failing the criteria. An “unsure” (unmarked)
region’s rank is the estimated greatest lower probability bound (using the given density
bound) of being in that region. Estimate as follows:

1. Observe how many input and parameter sample points (out of a thousand picked
using a “density” which resembles the given joint density bound) fall within the
region. If > 10 samples (1%) fall inside, the fraction falling inside is the estimate.

7An impulse occurs when part of the bound becomes infinitely high and leads to a non-zero prob-
ability of the variables taking on a particular set of values. An example of such a set for the variables
PAP and LAP is (PAP = 45) ∧ (LAP = 30).
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2. If ≤ 10 samples fall inside, estimate with a formula that quickly, but approxi-
mately integrates the density bound in the region. The PV R example uses formula
Cn : 3-3 in [11, page 230].

These two parts compensate for each other’s weaknesses:

1. The first part is bad for low probabilities because any region α will have large
gaps between the sample points within it. So many sub-regions of α will have no
sample points even though they may have high values for the lower probability
density bound.

2. The second part is bad for high probabilities because the regions involved are either
large or probably contain a complicatedly shaped part of the density bound.8 The
integration formulas only work well when a region’s section of the density bound
is easily approximated by a simple polynomial.

A marked region’s rank is the gap between the estimated greatest lower probability
bound of being in the region and the known lower bound on that probability. This
works better than the gap between the upper and lower bounds on the greatest lower
probability bound because SAB often finds very loose upper bounds, while the estimates
are usually accurate.

6.3 Bounding Region Probabilities

The basic way SAB finds a lower bound on the probability of being in a region is to
multiply the region’s volume9 by its minimum probability density lower bound value
(found by the bounding mechanism described below). I derived the PV R example’s
first density bound expression (a Gaussian density) by taking the density parameters
(Table 1) and substituting them into the general form for a Gaussian density. After
some simplification, I got (numbers rounded-off):

0.01033 exp(−0.01323(13.70P 2− 26.09PL− 10.36PC + 16.42L2 + 10.77LC + 28.08C2))

where P = (PAP − 23.94), L = (LAP − 15.29), and C = (CO − 6.487).
To help tighten this bound, SAB tries to use any monotonicity and/or convexity

present in the region’s part of the density bound in the following manner (derivations
in Appendix A):

Let f(x1, . . . , xn) be the probability density and within a region α let xi range be-
tween li and hi. The probability of being in α is

F =
∫ hn

ln
· · ·

∫ h1

l1
f(x1, . . . , xn)dx1 . . . dxn.

If ∂f/∂x1 is always > 0 in α, then

F ≥ [
n∏

i=1

(hi − li)][(min
∗
f(l1, x2, . . . , xn)) + (min

∂f

∂x1

(x1, . . . , xn))(
h1 − l1

2
)],

8Most of the common probability densities only have complicated shapes where the density values
are high. I am assuming that this complication will be reflected in the corresponding part of the bound.

9For a region α, let its variables xi (i = 1 . . . n) range between li and hi. Then α’s volume is∏n
i=1(hi − li). SAB only deals with n-dimensional rectangular regions.
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Figure 3: 1-D Convex Density and Lower Bound

where the minimization of f is over the x2 through xn values within α (min∗ means
that x1 is NOT part of the minimization) and the minimization of ∂f/∂x1 is over the
x1 through xn values within α. This bound is tighter than the basic lower bound:

[
n∏

i=1

(hi − li)][min f(x1, . . . , xn)].

Similar expressions can be derived for the other variables and for when ∂f/∂xi < 0.
If ∂2f/∂x2

1 is always ≤ 0 in α (convex down), then

F ≥ [
n∏

i=1

(hi − li)][(min
∗
f(l1, x2, . . . , xn)) + (min

∗
f(h1, x2, . . . , xn))]/2,

where the minimizations of f are over the x2 through xn values within α. This bound is
also tighter than the basic one. See Figure 3 for the one dimensional case: the ∩ curve
is the density, the area under the diagonal line is F ’s new lower bound, and the area
under the horizontal line is the original bound. Similar expressions can be derived for
the other variables.

Several methods exist to integrate a region’s probability density bound, including
Monte Carlo [7] and quadrature (numeric integration) methods [11]. These cannot truly
bound the integration error because they only take numeric samples at particular points.

6.4 Splitting Regions

SAB may split a selected region α in either step 2a or step 2(b)ii. In either, SAB picks
a variable in α to split along and then bisects α. Select the variable as follows: in
step 2(b)ii, find the one with the largest difference between its upper and lower bound
within the region, normalized by its standard deviation. In step 2a, find the one with
the largest apparent variation in the density’s slope with respect to it.

6.5 Finding Numeric Bounds

Many of SAB’s parts need to bound expressions. For algebraic expressions (the type
in the models to be used), perfect bounding algorithms have not been built. The type
of algorithm used here will find bounds that indicate the truly unachievable,10 but may
not be the tightest possible. Example: saying that x < 7, when in fact, x < 3. I have
implemented an augmented version of bounds propagation [3]. It does the following
interval arithmetic [12]:

• Bound an operation’s result using bounds on the operation’s operands. For exam-
ple: ub(a+ b) ≤ ub(a) + ub(b).

10In practice, the accuracy of this may be limited by round-off error.
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• Bound an operand using bounds on an operation’s result and the operation’s other
operands. For example: ub(a) ≤ ub(a+ b)− lb(b).

The “bounder” examines expressions and updates bounds with these operations. It
iterates over the expressions until every one that might produce a change has been
examined at least once and all the recent bound changes are below a certain threshold.

7 Discussion

This paper introduces a method called SAB which uses a lower bound on the input joint
density to analytically bound the likelihood of some possible behavior.

SAB entails much computation. When possible, first estimate the probability with
some approximation method like moments [4] and then use SAB to insure that the
probability is within certain bounds. Also, once regions are made in response to one set
of criteria, they can be reused when examining other sets. This will cut down much of
the computation for the remaining sets.

Future work on SAB itself includes testing how large a problem it can handle and
expanding it to more quickly bound a variable’s mean, variance, median, 90% confidence
interval, etc. I will also explore splitting a region at the selected variable’s median value
(or some approximation) within the region. This can handle infinite intervals (bisection
cannot), which permits an initial region where each variable is within the all-inclusive
range of [−∞,∞].

Another question about SAB is how important is its inability to handle upper density
bounds. Some preliminary answers to this question and the question of SAB’s speed
can be found in [13], which is based on work done after the original version of this paper
was written.

On matters other than algorithms, work needs to be done on finding the types of
density bounds that are the most common, easiest to specify, and most useful. Candi-
dates for easy-to-specify bounds are common densities with bounded parameters. An
example is a Gaussian density with a mean between 0 and 1. One can generate such
bounds by using information from parameter confidence intervals.

Despite uncertainty in input density shapes and parameter values, bounds on in-
put densities have not really been utilized to bound the chances of events. This work
describes a bounding method which has the features of being able to handle events
beyond the ones in a pre-enumerated list, producing analytic probability bounds, and
giving better answers as more iterations or samples are allowed.

A Some Region Probability Bounds Derivations

This appendix shows derivations for some of the expressions that bound the probability
of being in a region α. Let f(x1, . . . , xn) be the probability density, and within α let xi

range between li and hi. Then the probability of being in α is

F =
∫ hn

ln
· · ·

∫ h1

l1
f(x1, . . . , xn)dx1 . . . dxn.
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A.1 Basic Bound

This subsection derives the following lower bound on F :

[
n∏

i=1

(hi − li)][min f(x1, . . . , xn)],

which is the ‘volume’ of the region multiplied by the lowest density value within it. The
minimization of f is over the x1 through xn values within α.

F ≥
∫ hn

ln
· · ·

∫ h1

l1
[min f(x1, . . . , xn)]dx1 . . . dxn

[min f(x1, . . . , xn)]
∫ hn

ln
dxn · · ·

∫ h1

l1
dx1

[min f(x1, . . . , xn)]
n∏

i=1

(hi − li)

A.2 Bound Using Monotonicity

This subsection shows that if ∂f/∂x1 is always > 0 in α, then

F ≥ [
n∏

i=1

(hi − li)][(min
∗
f(l1, x2, . . . , xn)) + (min

∂f

∂x1

(x1, . . . , xn))(
h1 − l1

2
)],

where the minimization of f is over the x2 through xn values within α (min∗ means that
x1 is NOT part of the minimization), and the minimization of ∂f/∂x1 is over the x1

through xn values within α.

F =
∫ hn

ln
· · ·

∫ h1

l1
f(x1, . . . , xn)dx1 . . . dxn

=
∫ hn

ln
· · ·

∫ h1

l1
[f(l1, x2, . . . , xn) +

∫ x1

l1

df

dx1

(x1, . . . , xn)dx1]dx1 . . . dxn

=
∫ hn

ln
· · ·

∫ h1

l1
[f(l1, x2, . . . , xn) +

∫ x1

l1
[
∑ ∂f

∂xi

(x1, . . . , xn)
dxi

dx1

]dx1]dx1 . . . dxn

Since the xi’s are integrated independently of one another, dxi/dx1 is 0 for i 6= 1 and 1
for i = 1. So, the sum collapses down to the ∂f/∂x1 term:

F =
∫ hn

ln
· · ·

∫ h1

l1
[f(l1, x2, . . . , xn) +

∫ x1

l1

∂f

∂x1

(x1, . . . , xn)dx1]dx1 . . . dxn

≥
∫ hn

ln
· · ·

∫ h1

l1
[(min

∗
f(l1, x2, . . . , xn)) +

∫ x1

l1
(min

∂f

∂x1

(x1, . . . , xn))dx1]dx1 . . . dxn

≥ [
∫ h1

l1
[(min

∗
f(l1, x2, . . . , xn)) + (min

∂f

∂x1

(x1, . . . , xn))
∫ x1

l1
dx1]dx1]×

[
∫ hn

ln
dxn · · ·

∫ h2

l2
dx2]

≥ [
∫ h1

l1
[(min

∗
f(l1, x2, . . . , xn)) + (min

∂f

∂x1

(x1, . . . , xn))(x1 − l1)]dx1]
n∏

i=2

(hi − li)

11



≥ [[(min
∗
f(l1, x2, . . . , xn))− l1(min

∂f

∂x1

(x1, . . . , xn))]
∫ h1

l1
dx1

+(min
∂f

∂x1

(x1, . . . , xn))
∫ h1

l1
x1dx1)]

n∏
i=2

(hi − li)

≥ [(min
∗
f(l1, x2, . . . , xn))(h1 − l1)

+(min
∂f

∂x1

(x1, . . . , xn))[−l1(h1 − l1) + (
h2

1 − l21
2

)]]
n∏

i=2

(hi − li)

≥ [(min
∗
f(l1, x2, . . . , xn))(h1 − l1) + (min

∂f

∂x1

(x1, . . . , xn))
(h1 − l1)2

2
]

n∏
i=2

(hi − li)

≥ [(min
∗
f(l1, x2, . . . , xn)) + (min

∂f

∂x1

(x1, . . . , xn))
(h1 − l1)

2
]

n∏
i=1

(hi − li)

A.3 Bound Using Convexity

This subsection shows that if ∂2f/∂x2
1 is always ≤ 0 in α (convex down), then

F ≥ [
n∏

i=1

(hi − li)][(min
∗
f(l1, x2, . . . , xn)) + (min

∗
f(h1, x2, . . . , xn))]/2,

where the minimization of f is over the x2 through xn values within α (min∗ means that
x1 is NOT part of the minimization). Within α, f is convex down with respect to x1,
so f(x1, . . . , xn) is ≥ than the linear combination of

q(x1)f(l1, x2, . . . , xn) + (1− q(x1))f(h1, x2, . . . , xn),

where q(x1) = (x1 − l1)/(h1 − l1). So,

F ≥
∫ hn

ln
· · ·

∫ h1

l1
[q(x1)f(l1, x2, . . . , xn) + (1− q(x1))f(h1, x2, . . . , xn)]dx1 . . . dxn

≥
∫ hn

ln
· · ·

∫ h1

l1
[q(x1)(min

∗
f(l1, x2, . . . , xn))

+(1− q(x1))(min
∗
f(h1, x2, . . . , xn))]dx1 . . . dxn

≥ [(min
∗
f(l1, x2, . . . , xn))

∫ h1

l1
q(x1)dx1

+(min
∗
f(h1, x2, . . . , xn))

∫ h1

l1
(1− q(x1))dx1]

∫ hn

ln
dxn · · ·

∫ h2

l2
dx2

≥ [(min
∗
f(l1, x2, . . . , xn))[

x2
1/2− l1x1

h1 − l1
]h1
l1

+(min
∗
f(h1, x2, . . . , xn))[x1 −

x2
1/2− l1x1

h1 − l1
]h1
l1

]
n∏

i=2

(hi − li)

≥ [(min
∗
f(l1, x2, . . . , xn))(

h1 − l1
2

) + (min
∗
f(h1, x2, . . . , xn))(

h1 − l1
2

)]
n∏

i=2

(hi − li)

≥ [(min
∗
f(l1, x2, . . . , xn)) + (min

∗
f(h1, x2, . . . , xn))][

n∏
i=1

(hi − li)]/2
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