LABORATORY FOR %% MASSACHUSETTS
COMPUTER SCIENCE INSTITUTE OF

MIT/LCS/TR-525

AUTOMATIC ANALYSIS
OF SYSTEMS AT STEADY-STATE:
HANDLING ITERATIVE
DYNAMIC SYSTEMS AND
PARAMETER UNCERTAINTY

Alexander Sen Yeh

December 1991

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Automatic Analysis of Systems at Steady-State:
Handling Iterative Dynamic Systems and
Parameter Uncertainty

by
Alexander Sen Yeh

December 21, 1991

(©Massachusetts Institute of Technology 1991

This report is a slightly modified version of a dissertation submitted to the Depart-
ment of Electrical Engineering and Computer Science on August 17, 1990 in partial
fulfillment of the requirements for the degree of Doctor of Philosophy. The research
was supported by the National Institute of Health through grant R01-LM04493 from
the National Library of Medicine and grant R01-HL33041 from the National Heart,
Lung, and Blood Institute.

Keywords: artificial intelligence, steady-state systems, dynamic systems, iterative
systems, Monte Carlo, probability bound, uncertainty propagation, uncertainty rep-
resentation

Abstract

A way to analyze a system at steady-state is to construct and then analyze (use) a
static model which describes that steady-state. This thesis deals with two problems
in carrying out this task. The first concerns constructing a static model of an iterative
dynamic sub-system: a sub-system that at steady-state is steadily iterating some set
of parameter value changes. The second problem is being uncertain not just about
parameter values, but also their distribution of values, when analyzing a static model.

To deal with the iterative dynamic system problem, an implemented computer
program called AIS is described. AIS takes in a description of the parameter changes
over time during an iteration of the iterative sub-system and produces a summary
description of how that sub-system behaves over many repetitions. At present, the
summary consists of the extreme values of some parameters, the symbolic average
rates of change in parameter values and information on how those rates would be
different if various constants and functions had been different. Parts of this summary
can then be used to represent the iterative sub-system in a static model of the overall
system. One way to view AIS is that it takes in a description of an iterative dynamic
sub-system that is easy for users to give, and produces a description that is easy to
analyze and incorporate into steady-state models. Another way to view AIS is that
it analyzes iterative dynamic systems at steady-state.

AIS deals only with behavior where each repetition changes parameters by the
same amounts. This limitation lets AIS perform the needed computations and still
lets it handle an important subset of dynamic systems. Unlike some other approaches,
AIS does not require that a repeating behavior be described in terms of a set of
differential equations. Three examples of running the current version of AIS are
given: two concern the human heart, the third a steam engine.

A standard approach to the problem of parameter uncertainty when using a model
is to use a joint input probability density on the parameter values to estimate the
likelihood of some behavior, such as a state variable being inside a numeric range.
However, this input density’s parameters and shape are often also not exactly known.
To deal with this added uncertainty, this thesis describes two methods that use in-
stead an upper or lower bound on the joint input density to bound the likelihood
of a behavior. The first method produces analytic bounds, but is limited to using
lower density bounds. It finds rough bounds at first, and then refines them as more
iterations of the method are allowed. The second method is a hit-or-miss version of
sample-mean Monte Carlo. Unlike the first method, the second method can also han-
dle upper density bounds, which are more useful than lower density bounds, but the
generated probability bounds are only approximate. However, standard deviations
on the bounds are given and become small as the sample size increases.

Besides these two methods, various moment schemes can also use density bounds
to estimate bounds on the likelihood of some behavior, but such schemes’ estimates
can be quite bad. However, moment schemes can be useful for estimating how average
parameter values and variations in values affect each other, and this thesis describes
a moment scheme for estimating such effects.

Acknowledgments

For years I have been in a steady-state of steadily accumulating more semesters as
a graduate student by iteratively traveling between my apartment and my office. I
have finally broken that steady-state, and I have many people to thank for taking
part in making this possible. Below is but a partial list.

My thesis supervisor Peter Szolovits supplied many years of financial support and
insightful comments, even when on the other side of the country.

William Long also supplied many years of financial assistance. In addition, he
served as my “expert” on the cardiovascular system and supplied the cardiovascular
model which I played with so much while hunting for thesis ideas. Outside of the
cardiovascular domain, he prodded me to clarify my examples and supplied some of
the utilities that AIS is dependent on.

Alvin Drake kept urging me on during my early years working on this thesis, and
he and Peter Kempthorne helped me with some of the probability and statistics.

During the last several years, I have been fortunate enough to have had the follow-
ing office-mates: Elisha Sacks conceived of, programmed and maintained the Bounder
system used in this thesis. Dennis Fogg asked questions that made me think hard
about various topics. Ira Haimowitz had an enthusiastic outlook that would rub off
on me.

Nearby my office was Jon Doyle, who along with Peter Szolovits helped in formal-
izing AIS’ abilities. Mike Wellman was also nearby, and one of my discussions with
him lead to the idea for SAB.

The past and present various members of “Club MEDG” (including most of the
people mentioned above), a group of people who are always willing to help one an-
other. Various members have aided me in numerous ways, including helping me to
clarify my ideas and presentations and to get the computer systems to do my bidding.
They have also been a fun group to be with. Graduate school would not have been
the same without them.

Outside of MEDG, Peter Huber and several other members of the MIT math-
ematics and statistics communities provided useful advice, as have the conference
and workshop reviewers of my various submissions and the conference and workshop
participants with whom I have had discussions.

Eric Sollee and the other fencers at MIT kept injecting tempo changes in my day-
to-day life. My practice with them came in handy at times during presentations and
heated discussions.

The friends I had “accumulated” before I started my recent steady-state of being
in the MEDG group were a reminder that I did not have to stay in that steady-state
forever.

Saida Memon was always around, made life pleasant and kept encouraging me
onward. She likes to get things done quickly, but she definitely displayed a lot of
patience in waiting for me to finish.

Contents

1 Introduction

1.1 The Iterative Dynamic System Problem.
1.2 The Parameter Uncertainty Problem
1.3 AIS: Handling Repetitive Actions
1.4 SAB and HMC: Handling Uncertainty in the Uncertainty

1.5 Moments: Finding Relationships Between Averages and Variances . .
16 ThesisOutline., ..

2 Description of AIS

21 Input e e e e e e e e
2.2 Preliminary Processing
23 Output. e
3 AIS Examples
3.1 Normal Ventricle
3.2 Ventricle with Mitral Stenosis
33 SteamEngine
3.3.1 Using the Engine Equations in a Train Model
4 Using Probability Bounds: a Simple Example and Alternatives
4.1 Simple Example Using PVR ¢ .o o v v v v i
4.2 Alternatives
5 SAB
5.1 Overview. e e
5.2 PVRExampleRevisited
5.3 Details L
3.1 MainLoop.
5.3.2 Ranking Regions & Estimating Region Probabilities
5.3.3 Bounding Region Probabilities
5.3.4 Splitting Regions
5.3.5 Numeric Boundingin SAB
54 Limitations

HMC

6.1 Sample-Mean MonteCarlo

6.2 From Sample-Mean MCto HMC

6.3 ALargerExample

6.4 More Testing with the Larger Example
6.4.1 Description of Trials and Data Collected
6.42 Analysisof Trials

GLO. A Moment Approximation Method.

7.1 Introduction
7.2 Current Moment Manipulation Methods
7.3 Example & Graphing Discussion
74 Basis
7.5 Empirical Accuracy Tests
7.6 Summary

Conclusions

8.1 Future Directions for AIS

8.2 Future Directions for SABand HMC

83 Observations. i
83.1 AIS.,
8.3.2 Predicting with VaryingInputs
833 Al TheSystems0.....

84 Final Comments

Some Region Probability Bounds Derivations

Al BasicBound
A.2 Bound Using Monotonicity
A.3 Bound Using Convexity0.0.

Cardiovascular Model

B.1 Variablesand Constants
B.2 Inequality Constraints
B3 Equations

Derivations for GLO

C.1 Linear Combinations
C.2 Correspondence Between Y and X =lnY
C3 Products
C4 Expomentiations
C.5 Differences Between Lognormals and Gaussians

D Using the AIS Implementation 104

Dl Accesso i e e 104
D2 Imput 105
D.2.1 Simplified Example 105
D.2.2 ExplanationofInput 105
D.23 Arbitrary Functions. 108

D3 Output 109
E AIS Source Code 110
El FileCyclelisp i 110
E.2 File Cycle-Analyzelisp 125
E3 FileCycle-Utillisp 140
E4 BounderSystem. 148
Eb5 FileQmfixlisp 149
E6 File: Cycle-exlisp. 150

List of Figures

2.1 Example of Possible Intervals for Phases 19
3.1 Left Ventricle 25
3.2 Curves for a Normal Left Ventricle 25
33 SteamEngine 35
4.1 FourDensityBounds 45
5.1 Examplesof Splitting 49
5.2 One Dimensional Convex Density and Lower Bound 53
6.1 Regions Delineated by the Criteria 57
6.2 HMCExampleo uiii.. .. 59
7.1 Density Parameters for the Sum bv —vo+pv+dv 75
7.2 Density Parameters for the Product svr «—bp-co™® 75
7.3 Alternative Graphs for E[svr]and V[bv] 7
8.1 Strange “Periodic” Curve 83

List of Tables

2.1
3.1
4.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1

B.1
B.2

Restrictions on the possible curve shapes from derivative information 22
Steam engine: some derivatives and curve shapes 40
PVRExample 44
HMC Example Sample 59
Input for Larger Example 60
Criteria: PVR<03and 245<SVR 65
Criteria: PVR<03and 225<SVR 66
Criteria: PVR<03and 205<SVR 67
Criteria: PVR<03and 165 <SVR v\ 69
Criteria: PVR<03and 125<SVR v 70
Input Statistics for the Blood Volume Problem 75
Lower and Upper Bounds for Cardiovascular Model Variables. 95
Mitral Stenosis Patient Statistics 97

Chapter 1

Introduction

Building and using models are common ways of analyzing many continuous systems,
including the human body, spacecraft, and ecological and social systems. The models
may be used to predict what will happen, indicate what should have happened if
nothing went wrong, or show how and why some result occurs the way it does. These
models may either be dynamic or static in nature. Dynamic models describe how
various system quantities (parameters) change over time in response to an input.
These models are often used to simulate a system. Static models can either describe
a system’s condition at a point in time or describe aspects of a system response that
do not change with time. These models may either describe a static system or a
dynamic one. This thesis deals with static models of either static systems or of time
invariant aspects of dynamic systems that have reached a steady-state (equilibrium).
A static model for a dynamic system (when such a model can be made) is simpler
than a dynamic model of that same system. Even so, both building and using static
models can be complicated.

This thesis deals with two problems. One concerns iterative dynamic systems.
This problem occurs when building a static model to describe some of a steady-state
dynamic system’s time invariant properties: Sometimes, one finds that at steady-
state, parts of the system form an iterative dynamic sub-system that cannot be really
viewed as lying still at a single state (set of parameter values). Instead, a better
way to view the situation is that these parts constantly repeat a set of actions that
change the parameter values at a constant rate. For example, consider the human
circulatory (cardiovascular) system. A person at rest for some time is considered to be
at a steady-state. At this steady-state, the heart is (one would hope) still pumping:
Parameters like the instantaneous blood pressure and amount of blood in the heart
have values that are changing periodically, and the amount of blood that has exited
the heart is steadily increasing.

The other problem concerns parameter uncertainty and occurs when one wants
to use the model. Often, one is uncertain about what values to assign to the model
parameters, and in fact is not quite even certain of what the distribution of possible
values is.

1.1 The Iterative Dynamic System Problem

For the first problem, it is still possible to build a static model of a system with
iterating parts if only system properties that are time invariant at steady-state need to
be described: one can either ignore the parameters (quantities) that change at steady-
state or substitute for the changing parameters some variation that is constant, which
may be their average or extreme values, or their rate of change. As mentioned in the
cardiovascular system example above, many parameters change in value over time
at steady-state. However, variations of those parameters do stay constant over time
at steady state. Examples include the average and extreme values of blood pressure
and amount of blood in the heart, and the average rate at which blood exits the
heart (cardiac output). Since for many purposes, one can describe the cardiovascular
system state with these types of “parameters” that stay constant at steady-state, a
static model of these properties is useful.

After choosing the parameters of the static model to be built, there still remains
the task of finding and describing time-invariant relationships between these param-
eters at steady-state. Unfortunately, it may not be easy to do this directly. For
example, when describing a steadily beating ventricle (part of a heart), it is hard to
give directly the simultaneous equations that describe the relationships between such
parameters as the input and output blood pressure, the beat rate, and the rate of
blood entering and leaving the ventricle.

An easier method of describing what happens with system parts that repeat a
sequence of actions (parameter value changes or transformations over time) may be
to give the sequence and the relationships that hold in each part of the sequence.
With the ventricle example, let P and V be the ventricle’s pressure and volume
respectively, Bi be the amount of blood that has moved into the ventricle, Bo be
the amount that has moved out, Pi be the pressure of the entering blood, Po be the
pressure of the exiting blood, Vd[Pi] (a function of Pi) be the amount of blood in the
ventricle when it is relaxed, and Vs[Po, HR)] be the amount of blood in the ventricle
when it is squeezing as hard as it can. HR is the rate at which the ventricle beats.
Then part of such a description may be as follows: The sequence is that

1. The ventricle squeezes the blood in it without releasing any: V, Bi and Bo stay
the same. P changes to a value of Po.

2. The squeezing continues with blood exiting out the ventricle’s output: P and
Bi stay the same. V changes to a value of Vs[Po, HR]. Bo increases by the
opposite of the change in V’s value.

3. The ventricle relaxes: V, Bi and Bo stay the same. P changes to a value of Px.

4. The relaxation continues with blood entering via the ventricle’s input: P and
Bo stay the same. V changes to a value of Vd[Pi]. Bi increases by the change
in V’s value.

While such a description is easier to give, it alone does not complete the static
model. To complete the model, one needs to derive from that description the time-

9

invariant parameter relationships at steady-state. In the case of the ventricle, two of
the relationships are (dX/dt is the average rate of change in parameter X):

d(Bi)/dt = d(Bo)/dt = HR - (Vd[Pi| — Vs[Po, HE]),

where the symbols are as described above. AIS (short for Analyzer of Iterated Se-
quences), a program to automatically perform such derivations, is described in the
first part of this thesis. AIS also performs sensitivity analysis on how such relation-
ships would be different if various constants had different values. This analysis can
be useful both in getting a feel for how the relationships behave and also in giving
something to compare against experiments done on the system of interest.

1.2 The Parameter Uncertainty Problem

Problems exist even after a static model is built. One such problem is that when
trying to use the model to determine if the parameters satisfy some criterial, one or
more of the input parameters may not have a precise value, or that precise value may
be unknown. One way to handle such imprecision is to specify a set of numeric bounds
on each input parameter value and then propagate those bounds to the output values
by using algorithms like the ones found in [36, 38]. Unfortunately, the bounds get
broader with each successive level of propagation through the parameter relationships,
so the bounds on the output parameters tend to be too broad to indicate anything
useful.

Another way to handle imprecision is to give the joint probability distribution
for the input parameter values, and then use this distribution and some method
like Monte Carlo [16, 22] to estimate the probability of satisfying the criteria of
interest. There are at least two possible complications to this approach. The first is
that specifying the input value joint distribution usually requires estimates for the
joint distribution’s parameters?, such as the means and standard deviations. These
estimates may be based on only statistics from a few samples, or even intuition or
heuristics, and so may be subject to error or be slightly inconsistent with each other.
For example, in the control run in [14], a parameter called PWP had a sample mean
of 23 and a sample variance of about 37. Like in many other medical studies, these
numbers were the averages of ten patients, so assuming that the sample variance is
roughly correct, the sample mean itself has a standard deviation of V/37/10 =~ 2.
This implies that the mean value’s estimate has a good chance of being off by 10
to 20%. Assuming an approximately Gaussian distribution for the sample mean, its
95% confidence interval is between 19 and 27.

A second complication is that even when one gets the input value distribution’s
parameters, the distribution’s form may be hard to approximate. As an example,
data from [14] is used to estimate the means, variances and correlations of variables

! An example of some criteria is that neither the blood pressure nor the heart rate exceed certain
thresholds.

2These parameters are not to be mistaken with the previously mentioned parameters of the
model.

10

in that paper. Sets of those variables were treated as either having a jointly Gaussian
or lognormal probability distribution® and considered to be inputs to a model of
the human cardiovascular system (described in Appendix B). When Monte Carlo
simulations of the system were performed®, many of the samples (from a third to over
half) were rejected for violating a numeric limit on some model variable. Rejecting
these samples produced results with generally lower means and standard deviations
than the corresponding data. Some of the worst offenders were differences between two
variables that became negative. Among other things, this led to samples that implied
that blood was flowing in the reverse direction. Trying to remodel the system with
the offending differences as lognormal variables® would help when it could be done.
But often, the correlation estimates indicated that no jointly lognormal distribution
was possible, and the correlations were too high to ignore.

A way out of these two complications of specifying a set of distribution param-
eters and a distribution form is to give a bound on the distribution rather than
specifying the exact distribution. SAB (short for Split And Bound) and HMC (short
for Hit-or-miss sample-mean Monte Carlo), two methods for analyzing models with
such bounds, are described in the second part of this thesis. Among other things,
using a distribution bound lets one relax the estimates of only slightly inconsistent
distribution parameters from point estimates to some range of values.

An alternative to specifying a bound on the probability density is to use a sample
of possible probability densities. However, sampling is not as complete an examination
as bounding. Some class of important behaviors may lie between all the samples and
not be observed.

An issue related to that of finding/bounding the chances of some criteria being
fulfilled is to find how average parameter values and variations in values affect each
other. This is useful when one can change some averages or variations (say by taking
more measurements to reduce variability) and one wants to find if taking the effort
to produce these changes can help the chances of satisfying the criteria, etc. Unfortu-
nately, the methods discussed in this section (Monte Carlo, SAB, HMC) do not find
the relationships between parameter averages and variations. Using various moment
equation schemes can find these relationships, but these schemes have problems of
their own. Moment schemes are discussed in a section at the end of this chapter.

1.3 AIS: Handling Repetitive Actions

AIS is an implemented program that deals with the problem described in Section 1.1:
building models of iterative dynamic systems at steady-state. When given a con-
tinuous state-description of a system and a sequence of actions or transformations
on that state, AIS symbolically finds some of the extreme and time-averaged effects
of continually iterating that sequence. The specific effects found at present include

3Examinations of the few data points involved did not indicate that this was unreasonable.

“To perform a simulation, repeatedly take samples from the distribution of input values and
propagate each sample through the model.

®Lognormal variables are always positive and have a unimodal distribution [3].

11

1) the extreme values of parameters that vary periodically with each iteration, 2) the
symbolic average rate of change in parameters, and 3) an assessment of how those
rates of change would be different with different values for various constants and func-
tions (sensitivity analysis). The sequences handled by AIS are ones which have the
following “constancy” (invariant property over time): the sequence always repeats
the same actions in the same order and each occurrence of a particular action always
changes the parameters by the same amounts. Examples of such iterated sequences
of actions include the ones taken by a heart in going through a beat cycle at steady-
state and the actions taken by a steam engine in making one rotation of its drive
shaft at steady-state. Effects to be found include the extreme pressures in an engine,
the average rate at which blood enters the heart, and how increasing that entering
blood’s pressure affects that rate.

As eluded to in Section 1.1, one motivation for finding such effects may be to find
what stresses a device needs to tolerate, such as the maximum pressure an engine or
heart is subject to. A second motivation is that many periodic sub-systems iterate
at such a fast rate that the other parts of a system respond only to the behavior of
such a sub-system § averaged over many iterations. Then a steady-state model for
the entire system would only require a description of A’s averaged behavior; 8 can
be modeled as a constant iteration of the same sequence of parameter value changes.
Examples of such sub-system and system combinations include 1) the heart and the
human circulatory system, and 2) an engine and a car.

An alternative way to describe a repetitive system is to characterize all the forces
in the system and the parameters that they affect. Then, analyze the description with
a method that combines qualitative simulation with cycle detection [6]. For compli-
cated systems (such as the heart), these methods predict many possible sequences
of actions besides the actual sequence. If the actual sequence can be isolated, one
can use aggregation [50] to find which parameters change as the sequence repeats and
comparative analysis [51, 52, 53] to find the effects of perturbing model constants.

Another alternative for describing a repetitive system is via a single set of differ-
ential equations that is always applicable. A system to analyze such sets of equations
is described in [38, 39]. However, coming up with such a description for a compli-
cated system like a ventricle or a steam engine is quite difficult (especially for the
current implementation in [39], which is limited to 2nd order differential equations).
In contrast, the input for both the qualitative simulation approaches and AIS can
have many sets of simple equations along with the conditions to determine when a
particular set is applicable.

Examples of trying to model the ventricles using differential equations are given
in [30] and [24]. In [30], instead of using a single set of equations that is always
applicable, the authors use one set of auxiliary variables and equations for modeling
a ventricle’s contraction and another set for relaxation. In [24], a ventricle’s contrac-
tion and relaxation are modeled by elastance/capacitance versus time graphs rather
than differential equations. With enough additional auxiliary variables, functions like
step functions®, and additional equations, one could probably model ventricular con-

SFor a step function u(t), u(t) = 1 when ¢ > 0 and u(t) = 0 otherwise. This function is often

12

traction and relaxation using a single set of differential equations. But the resulting
model will be large, and hard to derive, to comprehend and to reason about.

1.4 SAB and HMC: Handling Uncertainty in the
Uncertainty

SAB and HMC are two methods that deal with the problem described in Section 1.2
on uncertainty in the distributions of parameter values. The two methods predict
the likely steady-state behaviors of a continuous nonlinear system in which the input
values can vary. The methods use a parameterized steady-state equation model and
upper or lower bounds on the joint input probability density to bound the likelihood
that one or more state variables stay inside or outside a given set of numeric ranges.
SAB stands for split and bound, the method’s basic steps. SAB utilizes lower density
bounds only and produces analytical likelihood bounds. HMC is a form of Monte
Carlo. It can utilize both lower and upper density bounds and produces estimates of
likelihood bounds with standard deviations on those estimates.

Other prediction-making methods have one or more of the following problems:
not finding the likelihood of behaviors or only finding the likelihood of the variable
values falling in certain ranges; not estimating the result’s error and not being able to
improve on an initial result’s accuracy when given more computation time; not being
able to handle density bounds, or handling them too slowly; needing to explicitly find
and describe every region of input values that satisfies the criteria.

Compared to these other techniques, SAB and HMC can produce estimates of
their errors, improve their answers as more samples or iterations are allowed, and deal
with distributions of continuous variable values. SAB produces analytical answers but
can only handle lower density bounds. HMC is a modification of the Monte Carlo
techniques that integrate the density bound. The modification makes it possible to
determine the interval to be integrated over.

1.5 Moments: Finding Relationships Between Av-
erages and Variances

Equations between statistical moments (averages, variances, etc. of parameters) give
relationships on how these moments affect each other. For example, if one has the
equation

E[Y] = exp(E[X] + V[X]/2)

for the variables Y and X, where E[a] is o’s average (expected) value and V[a] is o’s
variance, then one knows that increasing either E[X] or V[X] will increase E [Y], etc.
Such equations are useful to have when one wants to alter some parameter’s moment
but can only do so indirectly via other parameter moments (typically moments of
inputs).

used to combine expressions that are valid under different conditions.

13

Except for special cases, one cannot find exact equations between statistical mo-
ments. One method to find the approximate moments is to use truncated Taylor series
expansions {16, Ch. 7]. It is exact only when finding the moments of linear combi-
nations. For example, when Z = X + Y, then the corresponding moment equations
derived by this method, E[Z] = E[X]+ E[Y] and V[Z] = V[X]+ V[Y]+2.C[X,Y],
are exact (C[X,Y] is the covariance between X and Y).

Another method to find the approximate moments is described in a later chap-
ter of this thesis and is called GLO. Like the truncated Taylor series method, it is
exact when the relationships between the original parameters are a linear combina-
tion. GLO is also exact when finding the moments of products or exponentiations of
parameters that are jointly lognormally distributed. So if the parameters Xi’s are
jointly lognormally distributed, then GLO can find the exact moments of expressions

of the form
Db - TT(Xa)em),
i k

where the b;’s and a;;’s are constants. As previously mentioned, lognormal variables
are always positive and have a unimodal distribution [3]. Parameters which look
close to being normally distributed but only have positive values will resemble being
lognormally distributed.

Unfortunately these approximate methods sometimes give bad approximations.
For example, when data from [14] is used as input to the model of the human car-
diovascular system described in Appendix B, the resulting moment values often came
out quite different from the ones generated by the approximation methods. Neither
method was convincingly “better”. Sometimes one method would generate a moment
that was close to the data’s, and sometimes the other method would.

Another complication is that if there are n original parameter equations, there will
be n? moment equations.” If some of these equations have to be solved as simultaneous
nonlinear equations (such as when testing for therapies in the model in Appendix B),
this increase from n to n? equations can spell the difference between a problem that
the equation solver can solve and one that the solver cannot. In fact this was true
when I tried to use the model in Appendix B with a Newton-Raphson equation solver
(31, Ch. 9.6].

There are two possible solutions to these complications. One solution is to use
Monte Carlo or some other more accurate method to calculate the moments and
then use a moment approximation equation when it “agrees” with the more accurate
method. If one just compares the final results, it will be a fast, but not a very thorough
check. On the other hand, if one compares all the intermediate results generated by
each subset of operands/inputs, it will be a slow (for m operands, there are 2™ subsets
of operands), but thorough check. Intermediate levels of checking are possible.

Another possible solution is to use a version of Monte Carlo to find the derivative
between anything and a moment of the input parameters [45, Ch. 5.6). This version
requires that the analytic form of the input parameter joint probability density be
known and is restricted to looking at how moments of input parameters that are

"There n? pairs of equations to find covariances for. This was pointed out to me by an anonymous
workshop paper referee.

14

explicitly mentioned in that distribution affect other things. So one cannot look at
the relationship between the moments of two intermediate parameters. For example,
let z and y be the inputs and let them be jointly Gaussian. Then z and y’s joint
density is an expression involving the moments E[z], Ely], V([z], V[y], and Cl[z,y].
As a result, one can only examine how changing these five moments will affect things.
One cannot examine how changing V[z], where z = z - y2, will affect things.

1.6 Thesis Outline

The next two chapters concern AIS. First, AIS is described in detail, and then, ex-
amples of using AIS are given. The examples illustrate AIS’s mechanics, compare
AIS’s results with results derived either by hand or from empirical experiments, and
illustrate a use of AIS results in building a steady-state model of a system which has
a quickly iterating sub-system. The examples also show how AIS’s results degrade as
the input description becomes more vague. In addition, the normal ventricle exam-
ple shows how being consistent with experimental results is no guarantee of model
accuracy. These two chapters show that AIS can analyze a small but useful subset of
dynamic systems by exploiting time invariant properties present in that subset.
These two chapters also show that AIS is an example of three general ideas in
artificial intelligence. The first is that one can often solve a small subset of a general
problem that is very hard to solve (and maybe unsolvable). With AIS, the general
problem is predicting the behavior of dynamic systems, and the small subset that is
solved is the set of iterative systems that have certain constancy properties. The sec-
ond general idea illustrated is the power of having a good representation in facilitating
problem solving [55, Ch. 2]. Trying to describe a steadily iterating system directly in
terms of the simultaneous equations that give the steady-state relationships of its pa-
rameters is hard. AIS lets one describe such a system in terms of how the parameters
change during one iteration of the system. This latter type of description is much
easier to give. In addition, as the chapter that describes AIS in detail shows, once
this latter type of description is given, the steady-state relationships are quite easy to
derive. The third general idea also concerns good representations. The idea is that
what constitutes a good representation often depends on the aspect of a problem be-
ing tackled. Hence, one may need multiple representations to solve a given problem.®
For a system like the human cardiovascular system at a steady-state, using a set of si-
multaneous equations to describe its parameter relationships is useful way to look at it
when trying to determine its behavior and how altering parameter values will change
that behavior. As has been previously mentioned, giving the simultaneous equations
describing steadily iterating sub-systems is hard, and an easier way to describe such
sub-systems is to describe how their parameters change during an iteration. So when
the problem is to take in a description of a system like the cardiovascular system at
steady-state and then determine its behavior, the former part is facilitated by using
a representation that includes how parameters change during an iteration, while the

8This need has been mentioned in the form of needing multiple ontologies to predict the behavior
of certain systems [13].

15

latter part is facilitated by using simultaneous equations to represent the parameter
relationships. AIS is a way of obtaining the form of representation that is easier to
use/analyze for determining behavior from the form that is easier for users to give
when describing steadily iterating sub-systems.

After the chapters on AIS are four chapters on SAB and HMC. The lead chapter
gives a simple example of using SAB and HMC and also describes some alternatives
to SAB and HMC in more detail. This is followed by a chapter on SAB and one
on HMC. The chapter on SAB describes how it works and also discusses some of its
limitations. These limitations led to the work producing the HMC algorithm. The
chapter on HMC describes how it works and also gives some large examples of using
HMC.

A chapter on the moment approximation method called GLO follows the SAB
and HMC chapters.

Unfortunately, SAB, HMC and GLO illustrate a “converse” of the first general
idea illustrated by AIS: often, generalizations of solvable subsets of problems may be
real hard to solve or as yet unsolvable. With SAB and HMC, the solvable subset
is the class of problems of predicting how likely certain system behaviors are when
the input parameter values have a known joint probability distribution that is of
a standard type, such as a multi-variate Gaussian. With this subset, one can use
Monte Carlo simulation. But say the class of problems is generalized to include ones
where the input parameter value probability distribution is either not exactly known
or for which no fast pseudo-random generator exists, and so one needs to use SAB or
HMC. Then a result can take a very long time to find and the result found may be an
ambiguous one. With GLO, the solvable subset is the class of problems of determining
the relationships between the means, variances and covariances of an expression like a
linear combination (and certain forms of multiplication and exponentiation) with the
corresponding moments of the expression’s components. Exact moment relationships
exist for this class. But for generalizations of this class, GLO and the other moment
equation generation schemes can produce moment relationships that are quite bad
approximations. Another way of viewing what the SAB, HMC and GLO results show
is that there are at present many uncertain parameter value problems for which no
good method exists to solve them.

The last chapter gives some conclusions, including a discussion on possible future
directions. The first appendix gives some derivations for SAB. The second describes
the cardiovascular model used in parts of this thesis. The third gives some derivations
for the GLO method. The last two appendices respectively describe how to use the
current implementation of AIS and give a listing of the code for that implementation.

16

Chapter 2

Description of AIS

This chapter describes AIS, a program that analyzes an iterative dynamic system by
taking in a description of that system iterating its sequence of parameter value changes
(transformations), and then finding some of the effects of iterating that sequence. In
order, the sections describe the input for AIS, some of AIS’s preliminary processing,
and AIS’s output. Appendix D describes how to use the current implementation of
AIS. Appendix E gives a listing of the code for that implementation.

2.1 Input

An input description consists of three parts: the parameters which describe the system
state, static conditions on those parameters, and the sequence of transformations
(actions) that gets iterated. The description only has to try to describe what happens
in a sequence of actions, not necessarily how or why that sequence occurs or repeats.

Parameters are divided by the model-builder into four types. The first three types
are classified by how a parameter behaves as the sequence of actions is iterated:

1. Constant parameters do not change in value at all during the iterations.

2. Periodic parameters change in value, but the sequence of values repeats exactly
with each new action sequence iteration.

3. Accumulating parameters monotonically increase or decrease in value with each
action sequence iteration.

In general, parameters are represented by symbols. The constant parameter type also
includes numbers and arbitrary functions of expressions of constant parameters such
as flz + 3,9[5]], where z is a constant. The fourth parameter “type” has only one
parameter: the rate at which the sequence of actions is iterated. At present, the rate
must be expressed as a constant parameter that is a symbol or number.

The second part of the input is a set of static conditions between constant pa-
rameters. These conditions are inequalities between numbers and expressions made
up of constant parameters. The expressions can have algebraic and the more com-
mon transcendental functions. Also permissible are (partial) derivatives of constant

17

parameters which are arbitrary functions.! The inequalities can be either definitions
that are always true or conditions that are required for the given sequence of actions
to iterate. An example of a definition is to say that some volume is > 0. An example
of a necessary condition is to say that for a normal sequence of actions in the heart,
the input pressure is less than the output pressure.?

A note on conditions with expressions that involve (partial) derivatives of constant
parameters which are arbitrary functions: currently, such a condition only makes a
statement of the derivative with respect to the argument(s) mentioned. For example,
mentioning that 0 < d?f(x)/dz? says nothing about d%f(y)/dy® because z and y are
syntactically different. It is conceptually straightforward to modify AIS in the future
to be able to represent a derivative’s properties more abstractly (like representing the
properties of the mth derivative of a function with respect to its nth argument inde-
pendently of the particular symbol(s) being used for the nth argument). However, the
ability to describe derivative properties that are dependent on syntactically different
arguments is a useful one to keep. For example, if £ can take on different values from
y, then d® f(z)/dz?® may indeed have different properties from d?f(y)/dy?.

The last part of the input gives the sequence of actions (transformations) that is
iterated. The sequence is partitioned into phases so that each part of a sequence is
put into exactly one phase and each part where different actions are occurring is put
in a separate phase. What is desired is that all the important and possibly extreme
parameter values appear at the end of some phase. The specific requirements are that
the phases must be chosen so that 1) every part of a sequence (including all the parts
with parameter value changes) is put in exactly one phase, and 2) during each phase,
every parameter is either monotonically non-decreasing or non-increasing in value.

Beyond these two requirements, a model-builder is free to divide a sequence into
as few or many phases as desired. As an example, look at Figure 2.1, where the values
of the parameters A and B versus time (for one iteration) are given. A model-builder
may put each of the five marked intervals into a separate phase. An alternative is to
have two phases, with intervals 1 and 2 in one phase and intervals 3 through 5 in the
other. Other groupings of the intervals are also possible, as is dividing an interval
over more than one phase. One constraint on the grouping is that if two intervals of
an iteration belong to one phase, then so do all the intervals in between those two
(intervals 1 and 5 count as being adjacent). Another constraint is that intervals 2
and 3 have to be in different phases because parameter B is increasing in interval 2
and decreasing in 3. For a similar reason, intervals 1 and 5 have to be in different
phases.

A model-builder might violate these requirements if the violation’s consequences
are judged to be negligible. For example, a modeler may deem some pressure to be
constant during some time period and therefore may put that period into one phase,
when in fact the pressure at first rises and then falls a little.

For each phase, the input description needs to supply an expression for every

1The derivative of a constant parameter here makes sense and may need to be described because:
1) the function itself is not constant, only the arguments are; and 2) one may need to describe how
an argument’s value being different would affect the function’s “output”.

2Otherwise, all the heart valves will open, letting blood flow freely through the heart.

18

4:5<+Interval

eleccccccadacaay
PRPRpEpE, PR (Rp—
coaheccccapdeana g
cofoacsafaccccanaq

time
Figure 2.1: Example of Possible Intervals for Phases

parameter that changes in value during that phase. For a periodic parameter, the
corresponding expression gives that parameter’s value at the end of the phase.> For
an accumulating parameter, the expression gives the change in that parameter’s value
each time that phase occurs. An expression may have algebraic and the more com-
mon transcendental functions. The expression’s arguments can consist of constant
parameters, periodic parameters’ values at the beginning or end of that phase, and/or
accumulating parameters’ change in values* each time that phase occurs.

The limitations on describing parameter changes are to assure that each occur-
rence of a phase alters the parameters by the same constant amount. Without some
restrictions on how phases alter parameters, it will be hard to impossible for AIS to
determine the effects of steadily iterating the sequence of actions. There are at least
two interesting alternatives to having constant alterations. The first is a generaliza-
tion of constant alterations. In the current version of AIS, a particular parameter
changes by the same constant amount each time a particular phase occurs. In the
generalization, what needs to stay constant will be not the amount of change, but
rather the change in the amount of change (or an even higher order of change). The
second is having the alterations form a converging series [49, Ch. 18]. Neither of these
alternatives has been needed so far to model a “steadily running” device.

It is sometimes difficult to provide expressions for the periodic parameter values at
the end of a phase. For example, one might not be able to explicitly give the pressure
at any point in a water pipe circuit. Unfortunately, if one provides only changes to the
periodic parameter values, finding their actual values during the sequence would be
impossible or hard, involving symbolically solving simultaneous (nonlinear) equations.
With only changes in their value solved for, periodic parameters would be just like
accumulating parameters that have a zero net change on each sequence iteration.

Each phase also has a list of the conditions that either are true by definition or
need to be true for the phase to occur as stated. The conditions are inequalities
between expressions and numbers. Note that the definitions of phase expressions and
conditions are slightly different from the definitions given earlier for static conditions
between constant parameters.

AIS makes the “closed world” assumption that all changes are mentioned. So if

3Due to the requirements on choosing phases, a periodic parameter’s value at a phase’s beginning
and the preceding phase’s end is the same. And because the sequence iterates, the last phase in the
sequence is also considered to “precede” the first phase.

4Only the change in value can be referred to because it stays the same from one iteration of the
sequence to the next. The actual value changes with each iteration of the sequence.

19

some phase’s description does not mention a new value for a parameter, that param-
eter is assumed not to change in value during that phase.

Here is an example of an input description for a phase. Let Xj stand for parameter
X’s value at the beginning of a phase, X, for the value at the end, and X, for X’s
change in value when the phase occurs. Furthermore, let a be an accumulating
parameter, ¢ and r be periodic parameters, and ¢ be a constant parameter. The
sample phase description is:

(5 < Qc), gde = (c+a6)’ ac = (Qb -7‘)

Whenever this phase occurs: r’s value is constant, ¢ is > 5 at the phase’s end, a
changes by the product of ¢’s value at the phase’s beginning and r’s value during the
phase, and g ends with ¢’s value plus the change in a’s value.

2.2 Preliminary Processing

Before producing any of the desired output, AIS needs to solve the equations given in
the phase description and to check for obvious inconsistencies between the equations
and given conditions.

To solve the equations, AIS computes for each phase: the change in value for
each accumulating parameter, and the beginning and end values for each periodic
parameter. These values and changes are expressed in terms of constant parameters.
The beginning value of each periodic parameter is taken from that parameter’s value
at the end of the previous phase. The solver currently handles only simple substitu-
tions of the solved for the unsolved. Complicated equations like quadratics are left
unsolved.

As an example of equation solving, suppose the equations

‘/c=},, Ac=(‘/;_%)a Wc=(PAc)

are given, where Y is a constant and P is a periodic parameter that does not change
during the phase. Let AIS find V; = Z and P = Pi by looking at the values of V,
and P, in the previous phase (Z and Pi are constants). Then AIS derives V, = Y,
P=Pi, A.=Y-Z, W.,=Pi (Y-2).

To check for obvious inconsistencies, AIS enters the solved equations, the assump-
tion that the rate of sequence repetition is positive, and the conditions given in the
input (with periodic and accumulation parameter values substituted by the appropri-
ate expression of constants) into the Bounder system [36, 38]. This system checks for
consistency by deriving an upper and lower numeric bound for every constant param-
eter. An inconsistency is declared if some parameter’s lower bound is greater than its
upper bound. Bounder derives the bounds with the bounds propagation and substitu-
tion methods. The former method reasons over numeric bounds. The latter method
will also perform substitutions of symbolic expressions for symbols. For example, if
¢ > d+35, then the latter can find a lower bound on (c—d) of ¢—(c—5) = 5. In addition
to these methods, the Bounder system uses an algebraic simplifier. Bounder is also
used to perform the bounding and inequality testing needed in the steps described
below to produce the output.

20

2.3 Output

After performing the above equation solving and inconsistency checking, AIS can infer
the following about continually repeating the input sequence: 1) the extreme values
of a periodic parameter, 2) the average rate of change in an accumulating parameter,
including numeric bounds on that rate and the relative contribution of each phase to
that rate, and 3) how that rate would differ if a constant symbol or function had a
different value (sensitivity analysis).

To try to derive the minimum and maximum values of a periodic parameter pis
fairly easy. The requirements for the phase description input assures that the extreme
periodic parameter values can be found at the end of some phase. So AIS just needs
to look for p’s value at the end of every phase (p.) and find the possible minimums
and maximums from among those values.

To derive the average rate of change in an accumulating parameter a, AIS locates
the change in that parameter’s value (a.) during each phase of a sequence, adds all
those changes together, and then multiplies the sum by the rate of cycle repetition.
Next, AIS finds numeric bounds on this rate. Then AIS tries to determine which
phases helped to increase or decrease this rate by observing which phases have a,
values that are bounded above and/or below by zero. As an example of deriving a
rate of change, let A be an accumulating parameter and R be the rate of sequence
repetition. Furthermore, let two phases in this sequence alter A’s value. One phase
has A; = C and the other has A, = K, where C and K are constant parameters.
Then the average rate of change in A is dA/dt = R- (C + K).

After deriving an average rate for a, AIS can observe how that rate would be
different if any one constant symbol or function were different. For each symbol, AIS
takes the first two (symbolic) derivatives of the rate with respect to that symbol,
obtains numeric bounds on those derivatives, and tries to determine which phases
helped to increase or decrease each derivative. Each constant symbol is considered to
be independent of all other symbols. AIS performs the phase determination task by
looking at the derivatives (with respect to the symbol) of each phase’s contribution to
the rate (the phase’s a, value multiplied by the sequence repetition rate) and observing
which are bounded above and/or below by zero. Those phases with a derivative of a,
that is > 0 made a positive contribution to the derivative, etc.

At present, AIS also tries to plot a “qualitative” graph of the rate versus each
constant symbol. The first derivative described above provides slope information and
the second provides convexity information. AIS makes the assumption that the curve
for the rate versus each constant is smooth (differentiable). If the second derivative
can be both more or less than zero, AIS gives up. Otherwise, depending on how the
second derivative is bounded by zero and on how the first derivative’s bounds relate
to zero, AIS determines which of the following shapes the curve may possibly have:

\,—,/,\,U,J,K,m and/or).

For example, if the first derivative is < 0 and the second is = 0 (such as when the
rate is —3z and the symbol is z), then the curve shape is \. However, if the second
is instead > 0 (such as when the rate is exp[—z]) then the shape is _ . If the first

21

1st derivative | 2nd derivative | Possible curve shapes
=0 0< impossible curve
<0 0< (.
0< 0< J
any value 0< L\,
<0 =0 N
0< =0 /
<0 =0 \, —
0< =0 -,/
any value =0 \, —,”
=0 <0 impossible curve
<0 <0 R
0< <0 r
any value <0 0,0
<0 0< o\
=0 0< —
0< 0< .
<0 0< W\, —
0< 0< -, /7,
any value 0< w,\,—,/, 2,
<0 <0 Y, N\
=0 <0 —
0< <0 /.
<0 <0 D\, —
0< <0 -,/
any value <0 N,N\,—, /., C,M

Table 2.1: Restrictions on the possible curve shapes from derivative information

derivative has no bounds, but the second is < 0, then the possible shapes are/” /)
or). Table 2.1 shows the restrictions on the possible curve shapes given knowledge
on how the first and second derivatives are bounded with respect to zero. If the
second derivative can be both more than and less than zero, no inferences can be
made about the curve shape.

In the future, the QS system [37, 39] will probably be used to perform the plotting.
The advantage of QS is that it can detect complications like discontinuities and sketch
curves with such complications. However, before QS can be used, it needs to be
extended to handle functions for which derivative and smoothness information exists,
but where the exact analytic form is unknown. Such functions are often used in
system descriptions.

Besides deriving the effects of symbols having different values on a rate, AIS also
derives the effects of functions having different values. One cannot take a derivative
with respect to a function. But if one wants to observe how rates would be different
if function f were larger in value, one can substitute f (z) + e(z) for every occurrence

22

of f(z) in the rate (making the side assumption that Vz : [e(z) > 0]), symbolically
subtract the original rate from this altered rate, and bound the difference. If the
difference is > 0, then if f were larger, the rate would be also, and so on.

Chapter 3
AIS Examples

Three examples of using AIS are presented in this chapter. The input to run them in
the implementation is given in Appendix E.6.

The first concerns a normal ventricle (part of the heart). It is the most detailed in
illustrating the mechanics of AIS and in comparing AIS’s results with results either
derived by others by hand or determined empirically from experiments. The exam-
ple shows how some of these previous results are inaccurate even though they are
consistent with experimental results.

The second example is on a ventricle with a disease called mitral stenosis. The
model in this example is larger and more ambiguous (“qualitative”) than in the first
example. The example shows that AIS can handle fairly ambiguous models, but that
the results will reflect that ambiguity.

The third example changes domains and is on a steam engine. This example is
like the second in that it is larger than the first. But unlike the second one, the
steam engine model is a lot more precise on the forms of the functions involved, and
AIS’s output reflects this. This example also shows how some of AIS’s results can be
incorporated into a steady-state model.

While examining these examples, one may notice that AIS has many known short-
comings that are termed “conceptually straightforward to fix in the future.” The
reason they haven’t been fixed yet is that things that are “conceptually straightfor-
ward” may not be straightforward and easy to program, and the shortcomings cited
are examples of such things.

3.1 Normal Ventricle

This section describes the current version of AIS running on a model of the beating of
the part the human heart called the left ventricle.! The example given in this section
is the most detailed in illustrating AIS’s mechanics and in comparing AIS’s results
with results either derived by hand or from empirical experiments.

1The description is based on various texts and articles [35, 41] [7, Ch. 13: Mechanisms of Cardiac
Contraction and Relaxation] and makes many assumptions. One assumption is that blood is an
incompressible fluid without inertia.

24

Cha.mbm()ne-wa.y Valves
(Bi, Pi) In = w=> Out (Po, Bo)
Figure 3.1: Left Ventricle

a) Diastole b) Systole c) Beat Path

V' V[P Vl
r J V[P, HR]
P P

Figure 3.2: Curves for a Normal Left Ventricle

The ventricle (shown in Figure 3.1) is a chamber with two one-way valves: one
valve lets in blood from the lungs at a pressure of P%, and the other valve lets out blood
going to the rest of the body at a pressure of Po. The chamber consists of muscle
which can either relax or contract. When relaxed (diastole), the ventricle’s volume
(V) versus pressure (P) curve (Vd[P]) is roughly as shown in Figure 3.2a (the P and
V axes are interchanged from their usual positions). When contracted (systole), the
V versus P curve (Vs[P, HR]) is roughly as shown in Figure 3.2b. The symbol HR
appears because with Vs, V decreases as the rate at which the ventricle contracts and
relaxes increases. This rate is known as the heart rate (HR). Figure 3.2c shows with
a dashed line the V versus P path that ventricle takes as it contracts and relaxes
once (a beat sequence): 1) The ventricle contracts, but no blood moves. So, V stays
the same while P incréases to Po. Move from a to b in the diagram. 2) The ventricle
continues contracting, but now, blood is ejected out the output valve. P stays the
same while V' decreases to Vs[Po, HR]. Move from b to c. 3) The ventricle now starts
to relax and the blood movement stops. V becomes constant as P decreases to Pi.
Go from c to d. 4) The ventricle continues relaxation, but now blood enters from the
input valve. P stays the same while V increases to Vd[Pi]. Go from d back to a.

The input to AIS has the following: The symbol HR gives the rate at which the
ventricle beat sequence repeats. The constants are Pi, Po, Vd[Pi] and Vs[Po, HR).2
The periodic parameters are P and V. The accumulating parameters are the amount
of work done by the blood in moving through the ventricle (W), and the amount of
blood that has gone into the ventricle (Bi) and out of the ventricle (Bo). The static
conditions on the constants are:

Pi< Po, Vd[Pi| > Vs[Po,HR], 0< Vd[P{, 0 < Vs[Po, HR],

2 Pi and Po are assumed to be constant during the ventricle beats. These assumptions then force
Vd[Pi] and Vs[Po, HR] to be also constant during the beats.

25

0 < d(Vd[Pi))/d(Pi), 0> d*(Vd[Pi])/d(Pi)?, 0 < 8(Vs[Po, HR])/d(Po),
0 < 8*(Vs[Po, HR])/8(Po)?, 0> O(Vs[Po, HR])/d(HR).

The first two conditions (Pi < Po and Vd[Pi] > Vs[Po, HR]) set up the proper
operating conditions for a ventricle to pump blood. The rest of the conditions describe
the shape of Vd[Pi] and Vs[Po, HR].

There are four phases in the sequence. Each phase has a name, condition(s), and
equation(s) for value changes. In order, the phases are (as before, 7, and . stand for
the periodic parameter n’s value at the beginning and end of the phase respectively,
and o, stands for the accumulating parameter a’s change in value during the phase):

1. Isovolumetric Contraction: 0 < V, P, = Po.
The ventricle is contracting and both valves are shut. Assumptions: The valves
do not leak or move (the latter would let blood move with the moving valve), so
V stays constant. Also, the ventricle is strong enough (and V is high enough)
so that a pressure of Po is reached.

2. Ejection: 0 <V, 0< V,, V. = V5[Po,HR|, W, = —P - Bo,, Bo, = V; — V..

The ventricle is contracting, but the output valve is open, letting blood out.
Assumptions: Despite the ventricle pumping blood out, the area by the ventricle
output stays at a constant pressure of Po. P is constant at Po: blood pumps
out of the contracting ventricle fast enough so that P does not rise above Po;
if P every drops just below Po, the output valve immediately closes, ceasing
blood flow, and the contracting ventricle will repressurize with the remaining
blood in the chamber so that P is immediately at Po again.

3. Isovolumetric Relaxation: 0 <V, P, = Pi.
The ventricle is relaxing and both valves are shut. Assumptions: The valves do
not leak or move (the latter would let blood move with the moving valve), so V
will stay constant. Also, the ventricle is elastic enough (and V is low enough)
so that a pressure of Pi is reached.

4. Filling: 0<V;, 0<V,, V.= Vd[Pj], W.=P.Bi, Bi. =V, - V.

The ventricle is relaxing, but the input valve is open, letting blood in. Assump-
tions: Despite the ventricle taking blood in, the area by the ventricle input
stays at a constant pressure of Pi. P is constant at Pi: blood enters the re-
laxing ventricle fast enough so that P does not drop below P if P every rises
just above Pi, the input valve immediately closes, ceasing blood flow, and the
relaxing ventricle will depressurize with the blood in the chamber so that P is
immediately at Pi again.

AIS takes in this input (parameters and expressions) and solves the equations in
the following manner: First, AIS scans all the phases to find what aspects of the
periodic and accumulating parameters need to be solved and what other periodic and
accumulating parameter values need to be found in order to solve these “aspects”
(dependencies of the aspects). For example, in the ejection phase, P, V, W, and Bo
are all the periodic and accumulating parameters of interest. For the accumulating

26

parameters W and Bo, the aspect of interest is W, and Bo,, their change in value
during the phase. From the phase’s equation for W, solving for W,’s value requires
that one have the phase’s P and Bo, values. Similarly, Bo, requires the values of V;
and V.. For a periodic parameter that keeps a constant value during the phase, such
as P (no equation for P, is given), the aspect of interest is that constant value, which
will just be labeled with the parameter name itself (P). “Solving” such aspects in this
case requires that one look up the parameter’s value at the end of the preceding phase
(and as mentioned before, the last phase is considered to precede the first phase). For
a periodic parameter that changes in value during the phase, such as V, the aspects
of interest are its values at the beginning (V;) and end (V.) of the phase. Its value
at the beginning of the phase is gotten by looking up the parameter’s value at the
end of the preceding phase. Its value at the end of the phase is gotten by solving
the appropriate equation in the phase. In this example, the phase’s V, equation has
no unsolved parameter values (Vs[Po, HR] is a constant and is considered already
“solved”). As a result of this scan, the ejection phase has the following aspects to be
solved and their dependencies:

W. — (P,Bo), Bo.+ (Vi,V,), P, V.e(), Wd,

where 7< stands for 7 needing to be solved by looking at 4’s parameter value at the
end of the previous phase, and a « (B, /3,,...) stands for a needing to be solved
and the solution depends on the values for 8;, §;, etc. The aspects to be solved (and
their dependencies) for all the phases are as follows:

1. Isovolumetric Contraction: V<, P, P.« ().
2. Ejection: P4, W<, V.« (), W.« (P,Bo.), Bo.+ (V;,V.).
3. Isovolumetric Relaxation: V<, P, P.« ().

4. Filling: P4, Vid, Ve (), W.« (P,Bi;), Bi.— (V;,V.).

Now that AIS knows what it needs to look for, it repeatedly scans the above list
of aspects and dependencies. Whenever AIS finds an aspect whose dependencies have
all been solved, it solves that aspect’s value and takes the aspect off the list of items
to be solved. In this example, on the first scan of the above list, AIS first notices that
P, in the first phase is not dependent on anything, so it can be solved by using the
appropriate phase equation to get P, = Po. Then, looking at the second phase, AIS
notices the same conditions for V, and so finds that V, = Vs[Po, HR]. AIS also notices
that this phase’s P has the same value as P’s value at the end of the first phase (P,
which has been solved), so P = Po is also derived. In the third phase, all aspects are
solvable: P, depends on nothing (use the equation P, = Pi), V is the same as V,, of the
previous phase (so V = Vs[Po, HR]), and P, is the same as last phase’s P end value
(so P, = Po). At this point, the last phase is mostly solvable: V, is dependent on
nothing (V. = Vd[Pi]), P and V; have the same value as the corresponding parameters
at the end of the previous phase (P = Pi and V; = Vs[Po, HRY)), and AIS can solve
for Bi, by substituting in the just solved for V} and V, values into the phase equation
Bi. = V. —V, to get Bi, = Vd[Pi] — Vs[Po, HR]. At the completion of this first scan,
the following are solved:

27

1. Isovolumetric Contraction: P, = Po.

2. Ejection: V, = Vs[Po, HR], P = Po.

3. Isovolumetric Relaxation: V = Vs[Po,HR], P, = Po, P, = Pi.

4. Filling: V; = Vs[Po, HR), V, = Vd[Pi, P = Pi, Bi, = Vd[Pi] — Vs|[Po, HR).

Additional scans of the above list of aspects results in AIS solving the rest of the
aspects to get:

1. Isovolumetric Contraction: V = Vd[Pi}, P, = Pi, P, = Po.

2. Ejection: V, = Vd[Pi], V, = Vs[Po,HR], P = Po,
W, = —Po . (Vd[Pi]| — Vs[Po, HR]), Bo, = Vd[Pi] — Vs[Po, HR).

3. Isovolumetric Relaxation: V = Vs[Po, HR], P, = Po, P, = Pi.

4. Filling: V;, = Vs[Po,HR], V.= Vd[Pi], P = P,
W. = Pi.(Vd[Pi]| — Vs[Po, HR]), Bi.= Vd[Pi] — Vs|[Po, HR).

After this “aspect” solving, AIS substitutes in the solutions to the phase condi-
tions. For example, in the ejection phase, the condition 0 < V; becomes 0 < Vd[Pi).
After these substitutions, the solved phase equations and conditions are:

1. Isovolumetric Contraction: 0 < Vd[Pi, V = Vd[Pi], P,= Pi, P, = Po.

2. Ejection: 0 < Vd[Pi], 0< Vs[Po,HR], V,= Vd[Pi], V,= Vs[Po, HR),
P = Po, W.= —Po-(VdPi— Vs[Po,HR]), Bo,= Vd[Pi]— Vs[Po, HR).

3. Isovolumetric Relaxation: 0 < Vs[Po, HR], V = Vs[Po, HR), P, = Po, P. = Pi.

4. Filling: 0 < Vs[Po, HR], 0 < Vd[Pi], V; = Vs[Po,HR], V.= Vd[Pi,
P = Pi, W= Pi.(Vd[Pi] - Vs[Po, HR]), Bi.= Vd[Pi]— Vs[Po, HR).

Now AIS checks all the equations and conditions for inconsistencies. None are
found.

After this solving and consistency checking, AIS discovers that while the beat
sequence is iterating, the periodic parameter P ranges from a lower value of Pi to an
upper value of Po. V ranges from Vs[Po, HR] to Vd[Pi).

AIS also discovers the following average rates of change for the accumulating
parameters and bounds on those rates:

dW/dt = HR-((Pi-(Vd[Pi~ Vs[Po, HR])) + (—Po- (Vd[Pi{] — VsPo, HR))))

d(Bj) d(Bo)
i = —g = HR-(VAP]- Vs{Po,HR)) >0 (3.1)

The accumulating parameter rates were derived by summing all the changes in an
accumulating parameter’s value that occur in a sequence and then multiplying the
sum by the rate of sequence iteration. For example, the accumulating parameter

28

W changes in value during the ejection (W, = —Po - (Vd[Pi] — Vs[Po, HR])) and
filling (W, = Pi-(Vd[Pi] — Vs[Po, HR])) phases. Sum these two changes together and
multiply by HR, the rate of iteration, to get the above equation for dW/dt.

AIS does not always find the tightest bounds on the rates. For example, one can
show that dW/dt < 0 by noting that

dW/dt = HR - (Vd[Pi) — Vs[Po, HR]) - (Pi — Po),

which is a product of two positive values with a negative value, but the bounding
mechanism cannot pick this up.

After finding and bounding the rates, AIS looks at the contributions of the phases
to these rates. In this example, AIS discovers that the ejection phase is the only phase
to affect d(Bo)/dt, making it as positive as it is. Similarly, the filling phase is the
only phase to affect d(Bi)/dt. AIS can deduce that the ejection and filling phases are
the ones that affect dW/dt, but cannot deduce how they affect dW/dt because AIS
doesn’t know whether Pi and Po are bounded above or below by 0. Declaring that
Pi and Po are positive (their usual sign) would let AIS deduce that filling increases
dW/dt while ejection decreases it.

After finding the rates, AIS derives and bounds the first two derivatives of those
rates with respect to each constant symbol, and tries to give the shape of the curve
of each rate versus each constant. For d(Bi)/dt, its first derivative with respect to
HR is > 0, but no bounds are found for the second derivative. No curve shape is
deduced. With respect to the constant Pi, the first derivative is > 0 but the second
is < 0. Assuming smoothness, AIS deduces a/~ shape for d(Bi)/dt versus Pi. This
shape is consistent with the Frank-Starling mechanism [35, p. 212]. With respect
to Po, both derivatives are < 0, so the curve has a) shape. These results also
apply to d(Bo)/dt. As a check on the ventricle model, these rate shape results are
compared to experimental results. The results for Pi and Po agree [40] in that the
corresponding AIS and experiment curves have the same general shapes (signs of the
first and second derivatives are the same). For HR, the AIS and experimental results
are incomparable because the latter came from intact systems where changing HR
can change Pi and Po.

For the rate dW/dt, the only bound AIS can derive is that this rate’s second
derivative with respect to either Pior Po is > 0. So for dW/dt versus either Pi and
Po, the possible curve shapes are _, _J or _J.

As for the Vd and Vs functions, AIS deduces that if Vd were larger, both the
d(Bi)/dt and d(Bo)/dt rates would be also. But if Vs were larger, these rates would
be smaller. These results agree with the description in [41].

When modeling a circulatory system that has been averaged over many heart
beats and is in a steady-state, such as done in [15, 41] and Appendix B, most of the
system’s mechanics can be modeled by using direct current electrical circuit analogies,
such as [pressure drop] = [resistance]-[flow] and [pressure] = [amount]/ [compliance].
Too complicated to be modeled this way is the part of the mechanics that relates
the Pi, Po, HR, Vs, and Vd for each ventricle to the average rate at which blood
flows through that ventricle (d(Bi)/dt = d(Bo)/dt). Current modeling efforts either
directly use empirically derived relationships (like [40]) or derive the needed equations

29

by hand from an AIS-input-like description (done in [41]). AIS can perform the latter
derivations automatically: equation (3.1) found by AIS for d(Bi)/dt provides the
desired relationship for the left ventricle. The right ventricle is similar. Actually,
to use equation (3.1) numerically, one must be more specific about the Vs and Vd
curves, such as specifying that Vd[z] = logz.

Other than needing more specific curve shapes, the AIS d(B)/dt equation is sim-
ilar to the equations derived by others. The differences are caused by modeling with
slightly different sets of assumptions and beliefs on what relationships exist and are
important.

Sagawa [40] experimentally measured the effects of different Pi and Po values on
the flow of blood (d(Bi)/dt = d(Bo)/dt) through the left ventricles of dogs. The
results were numerically fitted to a relationship (curve) of the form (translated to the
notation used in this thesis):

d(Bi)/dt = K, - (Pi— Pio) - (1 — exp[~(1 — Po/Popa;) /(K2 - (Pi— Pip))]),

where Kj, Pi, Pome, and K, are constants. This result agrees with AIS’s result in
that both have a positive first derivative for rate d(Bi)/dt with respect to Pi and
a negative first and second derivative for that rate with respect to Po. The major
difference between this result and AIS’s result is that this result does not consider
the effects of HR at all. This omission is not surprising given that HR's effects
were never tested in the experiments. Another difference is that with Sagawa, the
minimum Pf{ and maximum Po needed to keep d(Bi)/dt above zero are given by the
simple thresholds Pig and Po,,,, respectively. With the AIS result, the minimum Pi
is a more complex function of Po, and similarly with the maximum Po and Pi. A
possible reason for this difference is that Sagawa determined the effects of Pi and Po
on d(Bi)/dt separately in the experiments and then combined the resulting equations.
A third difference is that the effects of Pi have been linearized somewhat to simplify
the relationship: the actual data in the reference indicates that at large values of P,
d(Bi)/dt starts to increase sub-linearly with respect to Pi, which agrees with AIS’s
result rather than the equation fitted in the reference.

Sato and associates [41] have built a simultaneous equation model of the cardio-
vascular system at steady-state. The model was built to show the effects of heart
failure (the heart muscle gets weaker or less elastic) and to help find the optimum
drug dosages for heart failure therapies. Among the equations are the ones that give
d(Bi)/dt for each ventricle (as before, the d(Bo)/dt equations are equivalent). These
equations have the form (translated to the notation used in this thesis):

d(Bi)/dt = K - In(Pi— Pig) — H - Po+ M,

where K, Pig, H and M are constants. As mentioned above, these d(Bt)/dt equations
were derived by essentially carrying out what AIS does by hand. The shape of the
d(Bi)/dt versus Pi curve from these equations is /~ , which is the same shape as the
one given by the AIS results. A difference between these equations and the ones found
by AIS is due to Sato et al. having more specific forms for the Vd and Vs functions:

VdPi| = (K -In(Pi— Pi)+ Md)/HR
Vs[Po,HR] = (H - Po— Ms)/HR,

30

where M = Md + Ms, so their equations have those more specific forms in place of
the Vd and Vs functions. Also, their Vs function has been linearized with respect to
Po, so the resulting d(Bi)/dt versus Po curve has a \ shape instead of the) shape
found by AIS. Another difference is that their versions of the Vd and Vs functions are
proportional to 1/HR, so their d(Bi)/dt is independent of HR instead of increasing
with increases in HR. More will be said about this latter difference later on.

Another simultaneous equation model of the cardiovascular system at steady-
state was built earlier by Greenway [15]. This model was built to show the effects of
a multitude of drugs on the cardiovascular system. Greenway uses some of the same
relationships given to AIS as input. But a relationship® comparable to equation (3.1)
is never explicitly derived. Instead, Po is solved out by the addition of the parameters
for the arterial capacitance and the body’s resistance to blood flow. However, by
noting that d(Bi)/dt = HR - SV, where SV is the stroke volume, one can rearrange
Greenway’s equations into one comparable to equation (3.1) to derive (translated to
the notation used in this thesis):

d(BZ)/dt = HR. ((PZ+ K. FA) -Cpy — PO/Emaz — VD),

where K, Fy, E,.; and Vp are constants, and Cpy is a “constant” that decreases as
Pi gets very large. This equation matches the ones produced by AIS and Sato et al.
in that all three predict a/~ shape for the d(Bi)/dt versus Pi curve (Cpv decreases
in size as Piincreases). And like with Sato and associates, this equation has more
specific forms in the place of the Vd and Vs functions in AIS’s result. In this equation:

VAP = (Pi+ K -F,)-Cpy and Vs[Po, HR] = Po/Epmys + Vp.

Also like Sato et al. and unlike AIS’s result, the Vs function in this equation has
been linearized with respect to Po, so the resulting d(Bi)/dt versus Po curve also has
a \shape. On the other hand, this equation predicts that d(B7)/dt will increase as
HR increases, which is what the AIS result predicts but not Sato et al.’s result. A
difference between this equation and the ones given by both Sato et al. and AIS is
that this one has some terms to account for the affects of the atria (the K - Fy term)
while the other two do not (they were given models that assume that the atrial effects
are either negligible or can be folded into the expressions for the ventricles). Also,
unlike the AIS result, Vs in this equation is independent of HR.

This comparison of AIS’s results to previous work on steady-state ventricle mod-
els shows that the former is fairly similar to the latter. Furthermore, the existing
differences are due to different assumptions being made about the ventricles, not to
deficiencies in AIS itself. Two major differences between AIS’s results and the exist-
ing models are that the latter have more specific relationships for the volume versus
pressure curves than the former and that these more specific curves are also more
linearized. In addition, in Sagawa’s and Sato et al.’s ventricular models, the blood
flow rate (d(Bt)/dt = d(Bo)/dt) is independent of the heart rate (HR), which is often
quite inaccurate, especially during exercise or other times of increased venous return
[7, p. 414] [35, p. 222]. Also, even when this independence is true (when a person

3d(Bi)/dt as a function of HR, Pi, Po, Vd and Vs.

31

is at rest), [35, p. 222, 294] attributes the constancy of d(Bi)/dt as HR increases to
a decline in Pi. So the independence arises from interactions between parts of the
cardiovascular system (the interactions that cause Pi to decline as HR increases), not
from the ventricle itself, as is implied by the two models.

3.2 Ventricle with Mitral Stenosis

This next example is of a model of a left ventricle in which the mitral (input) valve
cannot open wide enough to let blood flow freely through that valve [7, Ch. 33:
Valvular Heart Disease]. The model in this section is larger and more ambiguous
(“qualitative”) than the normal ventricle model in the previous section. AIS can
handle this fairly ambiguous model, but the results will reflect the ambiguities.

The defective mitral valve in this ventricle causes a pressure drop across the valve
during the filling (4) phase: the pressure inside the ventricle (P) is lower than the
pressure of Pi at the input. Also, after the filling phase, there will be less blood in
the ventricle than if the mitral valve were normal.

Like in the previous example of the normal ventricle, the amount of blood in the
ventricle at the end of filling is dependent on Pi. In addition, in this example, this
amount of blood is also dependent on the amount of time spent in filling. The longer
the ventricle spends in filling, the more time it has to let more blood in to raise P
to closer to Pi. Two other factors that influence the amount of blood at the end of
filling are the amount of blood at the start of filling (Vs[Po, HR]) and the amount of
blood the ventricle can hold (Vd[Pi]) at the given input pressure Pi. All else being
equal, an increase in any of these four factors increases the amount of blood in the
ventricle at the end of filling. A fifth factor affecting this amount of blood is the time
needed for a contracted ventricle to fully relax. The faster it can relax, the more fully
the ventricle can fill.

Added to these partial dependencies of the amount of blood in the ventricle at the
end of filling on various constants is the overall effect that this amount will increase
as Pi increases. This overall effect is the net of the direct effect and indirect effects
via effects on filling time and the maximum volume. Reasons for this include the
fact that a relaxing ventricle will let blood enter the ventricle earlier as Pi increases
and the fact that a higher Pi value will force more blood through the defective input
valve. The latter reason is what the partial effect of Pi mentioned in the preceding
paragraph is about. Another way to look at this is that a higher Pi should lead to a
higher pressure in the ventricle (P) at the end of filling. P is an increasing function
of volume, so a higher P at the end of filling means that the volume of blood at this
time is also higher.

The amount of time that can be spent in the filling phase is limited by 1 /HR, the
amount of time that is available for all the phases of a heart beat cycle. Also, as HR
increases, ventricular muscle contracts and relaxes faster [23].

The input to AIS is similar to the input given in the normal ventricle example.
The constant parameters are as before plus the following additions and changes:
Tr{HR] is the amount of time needed to fully relax the ventricle. Tc[HR] is amount

32

of time needed to fully contract the ventricle. Note that when HR is high enough,
the ventricle may not fully contract or relax. TfPi, Po, HR, Tc[HR), Tr{HR]] is the
function that gives the amount of time spent in the filling phase (abbreviation is
Tf...]). Vd2[Vs[Po, HR], Vd[Pi], Tf...], Tr{HR), Pi] (abbreviation is VdZ[...]) is now
the function that gives the filling phase’s V.. Vd![VdZ...]] now gives the same
phase’s P,. The last new constant is Vd='[Vs[Po, HR]], which gives filling’s P. if no
blood were to enter the ventricle during filling (when the only blood in the ventricle
after the filling phase was already there as the ventricle started to relax).

The periodic parameters do not change, and the only change to the accumulating
parameters is that W is eliminated.® The static conditions on the constants are as
before plus the following additions: the relations

0 < Tr{HR], 0> d(Tr{HE])/d(HR), 0< Tc[HE], 0> d(Tc{HR])/d(HR)

describe the relaxation and contraction time functions; 0 < Tf...] < HIR is the
condition that describes the filling time function;

0 < 3(Vd2...])/d(Vs[Po, HR]), 0 < &(Vdé[. ..))/d(Vd[Py),
0<9(vde..]))/o(Tf...]), 0> ad(Vdg...])/d(THHR)),
0 < d(Vag...])/a(Pi), 0<d(Vdd..])/d(Pi)

give the conditions of the function for the amount of blood at the end of the filling
phase (note that the last derivative describes the overall effect of a different Pi value
on Vd2); the shape of the inverse of the Vd function as applied to two different
arguments is described by

Vd [Vs[Po, HR]| < Pi, 0 < d(Vd'[Vs|Po, HE]))/d(Vs|Po, HE]),
0 < d?(Vd='[Vs[Po, HR]))/d(Vs|Po, HR))?,
0 < d(Va[Vdd...l)/d(Vdd..]), 0<&(Vd[Vdd..]))/d(Vde..])>.

The shape of Vd itself was given in Figure 3.2a.

From this static conditions description, one can observe that two improvements
for AIS would be for it to be able to handle function descriptions independent of
the arguments and to be able to link descriptions of functions and their inverses.
In this example, Vd '’s derivatives had to be described even after Vs derivatives
were given. In fact, Vd™'’s derivatives had to be described twice, once for each set
of arguments. Both of these abilities are conceptually straightforward to add in the
future. . _

Like the previous example, there are four phases in the sequence, and except for
the W. equations being taken out, the first three phases are as before. The new
equations for the fourth (filling) phase are as follows:

OSVb, OSVe, B’!:':‘/e_‘,b’ ‘/b<‘/87 ‘/e<Vd[P'],
Va[Vs|Po, HR]| < P., P.<Pi, V.= Vdd..], P.= Vi'[Vid..]

“The Tc function should not be confused with T, which represents the change in value of an
accumulating parameter T'.

SWith mitral stenosis, the ventricle no longer is assumed to fill at constant pressure, so the
equations for work given in the normal ventricle example are no longer valid.

33

The changes in the V}, and V, expressions from the previous example’s filling phase
indicate that V still increases during filling, but not as much as it did with a normal
ventricle (V, = Vd[Pi]). The P. expressions reflect the effects of the new V values on
the P values.

Two caveats should be mentioned about the model being given here. The first
is that P is nonmonotonic during the filling phase: P starts at Pi, drops, and then
rises back towards Pi. Fortunately, the expressions in the model for accumulating
parameters do not depend on P being monotonic during filling, so one can get away
with the nonmonotonicity for the average rate determinations. The second caveat is
that no relationship is given between how strongly a ventricle can contract (Vs) and
how fast it can contract (T¢). A similar shortcoming is true for the corresponding
relaxation functions Vd and Tr. So any conclusions AIS reaches concerning these
functions (none are reached) should be treated cautiously. The relationships were not
modeled because I am not sure of what the relationships are.

Given this input, AIS deduces that while the beat sequence is iterating, the pe-
riodic parameter P ranges from a lower value of Vd™'[Vd2]...]] to an upper value of
Po. V ranges from Vs[Po, HR] to VdZ...]. AIS’s deduction for P’s minimum value
is wrong. This is due to (as mentioned above) P not being monotonic during the
filling phase. The actual minimum P value is below the one given by AIS, but it is
unknown by how much.

AIS also derives the following rates and bounds on those rates: d(Bi)/dt =
d(Bo)/dt = (Vd2[...] — Vs[Po, HR))) - HR > 0.

Out of all of the first two derivatives of these rates with respect to each constant
symbol, AIS can only bound the first derivative with respect to Pi to > 0. The
second derivative with respect to Pi is unboundable because no information is given
on the second derivatives of the Vd2 function. With respect to Po, the derivatives are
unbounded because Po being larger has an unknown effect on VdZ...]: a larger Po
would increase VdZ2[. ..] via an increase in Vs[Po, HR], but would also have an unknown
effect on Vd2|..] via an unknown effect on Tf...]. HR being larger would also have an
unknown effect on Vd2|...] because HR has an unknown effect on T1...]. In fact, even
if increasing HR would have the direct effect of decreasing TH...] by shortening the
amount of time allotted to a beat cycle, HR being larger would still have an ambiguous
overall effect on T...]: HR being larger would now directly decrease Tf...], but still
have an unknown indirect effect on it via changing (decreasing) Tc[HR] and Tr{HR).

AIS can only deduce the effects of a difference in one function, Vd2 if Vd2 were
larger, both d(Bi)/dt and d(Bo)/dt would also be larger. The current implementation
of AIS cannot deal with the Vs, Vd, Tr, Tc and Tffunctions because it cannot handle
functions that are arguments of other functions. This shortcoming is conceptually
straightforward to repair in the future.

The unambiguous results produced by AIS make sense. These results are incom-
parable to the qualitative descriptions given in such sources as [7, Ch. 33: Valvular
Heart Disease]: the results deal with a ventricle in isolation, while the sources deal
with the ventricle in an intact circulatory system.

The problem with the AIS results is that most of them are ambiguous. Less am-
biguous and more quantitative results can be achieved by applying a fluid mechanics

34

Cylinder <
(Pi, Ti, Ai, E%) Tnlet ==

17
(Po, Eo) Exhaust =

Vi Vh

PiSt(\iIl Connecting Rod
/ Flywheel

Figure 3.3: Steam Engine

formula that states that the fluid flow through a valve is proportional to both the
valve area and the square root of the pressure difference across the valve [7, Ch. 9:
Cardiac Catherization]. However, this formula assumes that the fluid flow is steady
when it occurs and that the valve area is constant while the valve is open. Both
assumptions are only approximately true with the mitral valve. Hence this attempt
to model mitral stenosis without using the fluid mechanics formula. I will leave it to
others to try modeling with intermediate numbers of assumptions.

3.3 Steam Engine

AIS has been applied to a second example of an iterative system, a simple steam
engine (simplified version of the ones in [8]). The engine model is fairly precise
concerning the forms of the functions involved, and AIS’s output reflects this. This
section ends with a demonstration of how to incorporate some of AIS’s results into a
steady-state model.

The engine in this example (shown in Figure 3.3) has one cylinder and a piston
that slides back and forth along the inside of that cylinder. The piston also covers
the main opening in the cylinder. The sequence of actions is that the piston slides
further out in the cylinder and then back in. As the piston slides out, the volume
contained by the cylinder and piston combination (V) increases, moving from a low
value of Vto a high of Vh. Steam (at a pressure of Pi and a temperature of Ti) is
let into the cylinder from V = Vito V = Vez. From V = Vez to V = Vh, no steam
is let in or out (steam in the cylinder expands adiabatically [17]). At V = VA, the
inertia of a rotating flywheel (connected to the piston via a connecting rod) pushes
the piston back into the cylinder. As the piston slides back in, V decreases from a
value of VA back to VI. From V = Vhto V = Vep, steam is let out of the cylinder
via an exhaust port (at a pressure of Po). From V = Vep to V = VI, no steam is
let in or out (steam in the cylinder is compressed adiabatically). At V = VI, the
sequence repeats. The model makes many assumptions, including one that steam
behaves almost like an ideal gas.®

The model is in terms of the following parameters: The symbol RPM (for revolu-

6Steam is assumed to behave like an ideal gas except that in addition to translational motion, the
molecules may store energy in the form of rotational or vibrational motion using an equipartition of
energy. As a result, k (a constant to be described later) may be greater than 3/2.

35

tions per minute) gives the rate of sequence repetition. The constants are Pi, T4, Po,
Vi, Vez, Vcp, Vh, R and k. R is the constant in the ideal gaslaw P -V =n - R- T,
and k- R is the molar specific heat of steam at constant volume [17]. The periodic
parameters are V and the pressure inside the cylinder (P). The accumulating pa-
rameters are the amount of work done in driving the piston (W), the energy of all
the steam entering the cylinder (E%) and leaving the cylinder (Eo), and the amount
of steam that has entered the cylinder (A4s).
Static conditions on the constants are:

0<Po<Pi, 0<Vi<Vex<Vh, Vi<Vep<Vh 0<Ti 0<R, $<k

All but the last three conditions (ones for Ti, R and k) are to set up the proper
operating conditions for a steam engine. All the conditions that place numeric lower
bounds (mostly zeroes) on the constants are due to the way that nature is modeled.
For example, with ideal gases, where thelaw P-V =n-R.T holds, P, V, n, R and
T all have to be non-negative, and in fact, as long as some gas is present, even a zero
value is not reachable.

The sequence has six phases, which are in order:

1. Open steam inlet: 0<V, 0< B <P, 0< Ti, 0L E:, 0<Ai,
The inlet port opens and the exhaust port stays closed. Assumptions: The
inlet can supply steam at a pressure of Pi and a temperature of T even though
steam is getting sucked into the cylinder. The cylinder pressurizes to P = P;i
fast enough so that the piston does not have the chance to move before the
pressurization occurs (V stays constant).

2. Admit steam: 0< P, 0<V,<V.,, 0< T, 0<W,, 0< FEi, 0<As,

Ve=Ver, We=P-(V.-W), EBi.=(14+k)-W,, Ai= W./(R - T%).

The exhaust port stays closed, the inlet port stays open and the piston is sliding
out of the cylinder (pushed out by the steam). Assumptions: The inlet can
supply steam at a pressure of Pi and a temperature of Ti even though steam
is getting sucked into the cylinder from the piston sliding out and increasing
V. As a result, P stays constant at Pi. The environment around the engine
(what the open end of the cylinder is exposed to) is a gas or liquid that is at a
pressure less than Pi.

3. Adiabatically expand steam: 0< P,, 0<P,, 0< Vi, 0<V.,
Ve=Vh, F.=PF-(W/V)MR, W=k -P-V;-(1- YW/VL).
Both valves are closed. Assumption: the cylinder’s steam (being at a higher

pressure than the environment) expands according to the adiabatic expansion
laws for gases.

4. Open exhaust: 0 <V, P, > P, >0,0< Eo., P, = Po, Eo.=k-(P,-P,)-V.
The exhaust port opens and the inlet port stays closed. Assumptions: The
exhaust can maintain a pressure of Po even though steam is getting sucked into
the exhaust. The cylinder depressurizes to P = Po fast enough so that the

36

piston does not have the chance to move before the depressurization occurs (V
stays constant).

5. Exhaust steam: 0 < P, V,>V.>0, 0>W,, 0< Eo,,
Ve=Vep, We=P.(V,-V;), Eo.=(1+k)-P-(Vs-V.).
The exhaust port stays open, the inlet port stays closed and the piston is sliding
into the cylinder (pushed in by the fiywheel inertia). Assumptions: The exhaust
can maintain a pressure of Po even though steam is getting pushed into the
exhaust from the piston sliding in and decreasing V. As a result, P stays
constant at Po.

6. Adiabatically compress steam: 0< P, 0<P,, 0<V;, 0<V,,
Ve = VI’ Pe =Pb'(‘,b/‘,e)(1+llk)a Wc= k'Pb"/b'(]-_ \k/‘lb/‘/e)
Both valves are closed. Assumption: the cylinder’s steam is compressed accord-
ing to the adiabatic expansion laws for gases by the flywheel’s inertia pushing
the piston in.

In addition, each phase has the conditions 3/2 < k, and 0 < R, and has the additional
assumptions that no steam heat is lost through the cylinder or piston walls, that the
engine parts are frictionless and that the valves and piston/cylinder “seam” are not
leaky. In the last two phases, if the environment’s pressure is greater than Po, then
the flywheel is not needed to push the piston in: the environment will push the piston
from the open end of the cylinder. If the flywheel is needed, last two phases assume
that the flywheel has enough inertia to push the piston appropriately.

This phase description comes from using some simplifying assumptions to link
the verbal description in [8] with equations from the chapters on the kinetic the-
ory of gases and thermodynamics in [17]. The open steam inlet and open ezhaust
Phase descriptions assume that a large opening valve connects the cylinder to a much
(infinitely) larger body of gas (the steam source or exhaust) and so P immediately
changes to the pressure of that much larger body. This pressure change at constant
volume in turn alters the amount of steam (and energy contained in the steam) in
the cylinder as given by the equations. The admit steam and ezhaust steam phase
descriptions assume that the piston is moving (so the volume of the cylinder/piston
combination is increasing or decreasing in size) with the steam at a constant pressure.
So the equations are the ones for a gas changing volume at a constant pressure. The
descriptions for the two phases with adiabatically expanding/compressing steam use
the equations for a gas that is adiabatically expanding/compressing (the basic equa-
tion is that P - V(1*1/B) jg 5 constant): the only energy loss or gain for the cylinder’s
steam comes from pushing or being pushed by the cylinder. Steam does not lose or
gain energy from contact with the cylinder or piston walls, and no steam is let in to
or out of the cylinder.

After solving these phase equations, AIS discovers that while the sequence is
iterating, the periodic parameter V ranges from a lower value of VIto an upper value
of Vh. P ranges from Po to Pi. In addition, AIS finds that Pi. (Vez/ Vh)1+1/k) (P’s
value at the end of adiabatic expansion) may be as low as Po and Po-(Vep/ VI)(1+1/¥)
(P’s value at the end of adiabatic compression) may be as high as Pi.

37

AIS also deduces the following average rates of change for the accumulating pa-
rameters:

d(Ai)/dt (V1. (Pi— Po-(Vep/ V)(+YBy (R . T))
+Pi.(Vez— VI)/(R- Ti)) - RPM
d(Ei)/dt = (k- VI-(Pi~ Po-(Vep/VI)1+1/0)
+Pi-(Vez— VI)-(1+k))- RPM

(k- Vh- (Pi-(Vez/ VR)I+VE) _ po)

+Po-(1+k)-(Vh— Vep))- RPM
dW/dt = (Pi-(Vez— VI)+ k- Pi- Vez- (1 — {/ Vez/ Vh)
+Po-(Vep— Vh)+k-Po- Vep- (1 — ¢/ Vep/ VI)) - RPM

These rates all have expressions of the form o - RPM, where « is the change in the
accumulating parameter’s value per sequence iteration.

For the rate d(A1)/dt, « consists of two parts: VI-(Pi— Po-(Vep/ VI)(+1/R) /(R- Ti)
is the contribution from the open steam inlet phase, when steam enters the cylinder
(at a constant volume of Vi) to increase P from Po - (Vep/ VI)a+1/F) (P at the end
of last iteration’s adiabatically compress steam phase) to the inlet pressure of Pi.
Pi.(Vez— VI)/(R- Ti) is the contribution from the admit steam phase, when steam
enters the cylinder at a constant pressure of Pi to push the piston so that V increases
from Vito Vex.

These contributions of steam are the energy input into the engine. So for d(E%)/dt,
o also has two parts: k- VI.(Pi~ Po-(Vcp/ VI)1+1/R) | the energy of the steam entering
during the open steam inlet phase, and Pi- (Vez— VI)- (1 + k), the energy of letting
in steam during the admit steam phase.

d(Eo)/dt is another rate with a two part a: k- Vh- (Pi- (Vez/ Vh)(+1/K) _ po)
is the loss in energy during the open ezhaust phase, when steam escapes from the
cylinder (at a constant volume of VA) to decrease P from Pi - (Vez/ VR)1+1/E) (P at
the end of the preceding adiabatically ezpand steam phase) to the exhaust pressure of
Po. Po-(1+k)-(Vh— Vcp) is the loss in energy during the ezhaust steam phase from
pushing steam out the cylinder (V decreases from VA to Vep) at a constant pressure
of Po.

Each of the four phases where the piston moves (V changes) affects dW/dt, so
its a has four parts: Pi-(Vez — VI) and Po - (Vep — Vh) are the contributions
from steam pushing (admit steam phase) and being pushed (ezhaust steam phase)

d(Eo)/dt

by the piston at constant pressure respectively. k- Pi- Vez- (1 — {/Vez/ Vh) and

k-Po-Vep.(1— {/Vep/VI) are the contributions from steam pushing (adiabatically
ezpand steam phase) and being pushed (adiabatically compress steam phase) by the
piston adiabatically respectively.

AIS can determine which phases affect these rates, but cannot always determine
how these phases affect the rates. In addition, the fact that the d(Aq)/dt, d(E5)/dt
and d(Eo)/dt rates are all positive also eluded AIS’s inference abilities. A reason
for this shortcoming is that the bounding algorithms do not always find the tightest

38

bounds on a given expression. An example of this shortcoming is that in phase 1
(open steam inlet), AIS finds that the condition 0 < A4i, becomes

0 < (VI-(Pi— Po- (Vep/ V)R /(R Ty).

However, the bounding mechanism never stores this condition in this form, so it
cannot bound Ai.’s value of

(VI-(Pi— Po - (Vep/ V)40 /(R . Ty)

in this phase to be > 0, even though this condition was just asserted. Because of this,
AIS cannot tell that phase 1 did not decrease A, nor can AIS bound the rate d(Ai)/dt
to be > 0. Another example is that the bounding mechanism cannot conclude that
(@ —b)/(b—a) = —1 even when told that a > b (to eliminate divide by 0). It is
conceptually straightforward to fix these cited specific examples of shortcomings, but
in general, one has to find a specific type of shortcoming before one knows what to
add to eliminate it. A theoretical limit on what bounding mechanisms can accomplish
is given in [34], which proves the following: Let A(z) be an arbitrary expression that
can be composed of addition, subtraction, multiplication, and function composition
of the following primitives: log2, m, exp(z), sin(z), z and rational numbers. Then
determining the truth of 3z :[z is real and A(z) < 0] is undecidable. Another limit
of a theoretical nature is that the problem of determining the satisfiability of a set
of arithmetic constraints is NP-hard. One can show this property by mapping in
linear time the problem of determining the satisfiability of a boolean expression in
conjunctive normal form (CNF) into a problem of the former type.” The problem for
boolean expression satisfiability is NP-complete [2, p. 383].

In addition, this general shortcoming affects AIS’s ability to bound the derivatives
of the rates with respect to various constants. Among the inferences that AIS missed
were ones to indicate that the d(Az7)/dt, d(E)/dt and d(Eo)/dt rates all would be
larger if either RPM or k were larger, that the d(A¢)/dt versus k curve has a/~ shape
and the d(A1)/dt versus T4 curve has a _ shape, and that dW/dt would be larger if
either Veror Pi were larger, but would be smaller if either Vep or Po were larger.

However AIS could still deduce many of the relationships, especially ones for the
Ai, Ei and Eo rates. Among the ones found by AIS: With respect to the constant
parameter Pi, all three of these rates have first derivatives of > 0 and second deriva-
tives of 0. This means that the plot of each of these rates versus Pi has an upward
slope with no curvature (shape is /) Bounds on the first two derivatives of these
rates with respect to some other constants are given in Table 3.1. Also given in that

"The mapping is as follows: Let the boolean expression in CNF have the form I1; i, where each
; has the form)", Bix, each By is either z;; or -z, each z;; is a boolean variable, the summations
are disjunctions, and the products are conjunctions. To convert this boolean expression into a set of
arithmetic constraints in linear time, let 0 and 1 represent false and irue respectively. Then, letting
the summations now represent additions, converting each —-z;; into (1 — z;;), and replacing IT;
with ¢; > 0 for each value of 4, []; ; in the original notation (boolean) is satisfiable iff Vi : [a; > 0]
is true in the new notation (arithmetic). In the worst case, each two symbols in the original notation
produce five symbols in the new notation (The worst case is —z;x, which becomes (1 — ;1) in the
new notation.), so the problem reformulation is in linear time.

39

Constant Parameter
Po Vez Vep
Rate 1d | 2d sh 1d | 2d [sh| 1d | 2d |sh
d(Ad)/dt | <0 [=0 N 0<|[=0|/[<0]<0])
d(Ej)/dt | <0 |=0 AN 0<|=0|/|<0]<0[D
d(Eo)/dt | none [=0 | \,—ar /J0<|0<| | <0|=0]\

Table 3.1: Steam engine: some derivatives and curve shapes

table are the possible shapes of the “rate versus constant” curves, assuming that the
curves are smooth. The “1d” and “2d” columns give bounds on the first and second
derivatives respectively, and the “sh” columns give the possible curve shapes. For
example, both the first and second derivatives of d(Eo)/dt with respect to Vez are
> 0, so the shape of the d(Eo)/dt versus Vez curve is an upward slope with an upward
curve (/). The results make intuitive sense. For example, if Pi were larger, more
steam at higher pressure would have entered the cylinder on each sequence repetition
and there would also be more steam to exhaust on each repetition. So the Ai, Ei and
Eo rates should all be larger as a result. Similarly, as Vez increases, steam will be let
into the cylinder longer on each cycle, so on each repetition, more steam will enter
and there will be more steam to exhaust.

Compared to the other rates, AIS can make relatively few deductions about
dW/dt. Some of this is probably due to dW/dt’s expression being larger than the
others, and some of this is probably due to less being deducible about the dW/dt
expression’s general properties. For example, depending on the exact values of var-
ious constants, dW/dt can either be positive or negative and can either increase or
decrease as RPM increases.

3.3.1 Using the Engine Equations in a Train Model

One of the motivations of having AIS is to find the steady-state relationships of some
quickly iterating sub-system so that one can build a steady-state model of the slower
overall system. In this example, the steam engine that AIS just analyzed is placed
into a locomotive pulling a large train full of sightseers. The question of interest is
to find the stea.dy-sta.te speed of the train on level ground.® It is assumed that the
train’s mass is large enough to smooth out the force variations of the steam engine
as it goes through an iteration.

The engine is connected so that one revolution of the locomotive drive wheels
corresponds to one iteration of the steam engine. Assuming that the drive wheels
do not slip or slide on the tracks, the train’s speed S = RPM. D, where D is the
diameter of the drive wheels. There are three forces on the train:

1. The steam engine, which produces power (dW/dt) at the rate found by AIS
earlier in this example.

8Level ground is chosen so that no gravitational potential energy effects are present.

40

2. Air resistance to the train’s movement. The force is assumed to be proportional
to the train’s speed with a positive proportionality constant of B.

3. Friction from the train wheels moving over the tracks. The force is assumed to
be constant at a positive value of F.?

One can derive the train’s steady state speed by looking at the train’s rate of
change in kinetic energy (KE), which is equal to the net rate of change in energy due
to the three forces:!°

d(KE)/dt = dW/dt — (B-S).S - F .. (3.2)
AIS gives the dW/dt result, which can be put in the form of RPM - WPI, where

WPI = Pi-(Vex— V) + k- Pi- Vez- (1 — {/ Vez/ Vh)
+Po-(Vep— VR)+ k- Po- Vep- (1 — \/ Vep/ V)

is the work done per steam engine iteration. At a steady state, the train’s speed is
constant, so its kinetic energy is constant (d(KE)/dt = 0). Combining this with the
two equations just given and the relationship S = RPM- D yields

0 = RPM-WPI-B-S-RPM-D—F.RPM-D
S = (WPI/D - F)/B.

This last relationship uses AIS’s rate results for W to find the train’s overall steady
state speed as a function of various steam engine and overall train parameters.

In fact, in the case of this train model, one can also find the train’s change in
velocity over time when one or more of these parameters is altered. To do 80, note
that KE = M - §%/2, where M is the train’s mass. Then assuming a constant M ,
d(KE)/dt = M - S - (dS/dt). Combine this with equation 3.2 and the relationships
dW/dt = RPM- WPl and S = RPM . D to get

dS/dt = (WPI/D — F — B . S)/M.

This is a first order linear differential equation, which can be solved by using the
technique given in [49, Ch. 20.5]. Given Sp, the train’s speed at ¢ = 0 (just before
the parameter change(s)), the train’s speed over time after a parameter(s) change is:

S= v—V}-)I/é)—_F[l — exp(—B - t/M)] + 5o - exp(—B - t/ M),

Att=0, S = So. Ast increases, the altered parameter(s) take effect (exp(—B -t/M)
decreases from one to zero) and the train smoothly changes from this initial speed to
the new steady-state speed of (WPI/D — F)/B.

One model of friction over a smooth surface is that it is proportional to the mass. The mass in
this example is assumed to stay the same: the loss of fuel and water to the steam engine over time
is assumed to have a negligible effect on the train mass.

19The change in energy due to air resistance or friction equals the force multiplied by the train’s
speed.

41

The derivations in this subsection give an example of how one can use AIS’s results
for an iterative sub-system (steam engine) to help construct a steady-state model of
an overall system (train moving at a steady speed). By handling the iterative sub-
system, AIS makes the modeling of the overall system easier. With this particular
example, a model of how the system responds to a step change in some parameter

also emerges. Such models for changes will probably be more likely to be derivable
for simpler systems.

42

Chapter 4

Using Probability Bounds: a
Simple Example and Alternatives

The thesis now shifts from the problem of analyzing an iterative dynamic system to
construct a model to the problem of handling parameter uncertainty when using a
model. These next three chapters describe SAB and HMC, two methods that use
a model to bound the probability of some steady-state system behavior when given
a bound on the joint probability density of the input parameters. This particular
chapter has two parts. The first gives a simple example of using SAB and HMC
on some bounds of probability densities. The second part describes some current
alternatives to using probability density bounds and either SAB or HMC. Following
this is a chapter on SAB and then one on HMC.

4.1 Simple Example Using PVR

A simple example of using SAB and HMC involves finding a patient’s pulmonary
vascular resistance (PVR) given the constraint

PVR = (PAP - LAP)/CO (4.1)

and information on the patient’s pulmonary arterial pressure (PAP), left atrial pres-
sure (LAP) and cardiac output (CO). PVR is of interest because a high value indi-
cates that the heart’s right ventricle has to work very hard to keep the blood moving
through the lungs [27, p. 234]. Ideally to look at PVR, one should have a curve that
gives the “cost” of having any particular PVR value and use this curve in conjunction
with indications of how likely each PVR value is to see if PVR should be monitored.
Alternatively, one could have several ranges of PVR values, each with a cost of being
in that range. For now, what I could find in the medical literature are partitions of
parameters into two ranges with a threshold in between. One threshold condition for
PVR is PVR < 1.62 (in mmHg/(l/min)). Critically ill surgical patients with values
above this are less likely to survive [44, p.54-59].1 PAP, LAP, and CO have patient

! Assume that patients each have a body surface area of 1.74m?, the average for humans. The PVR
threshold has three significant figures (and not two or one) in this example because the threshold

43

Correlation Coef.
NAME | MEAN | STD DEV | PAP LAP CO

PAP 23.94 |3.38 1.0 .861 .096
LAP 15.29 | 3.08 861 1.0 -0.044
CcO 6.49 1.20 | .096 -0.044 1.0

Table 4.1: PVR Example

and time dependent values, and are not easy to measure accurately. Table 4.1 gives
statistics for the patient of interest, a heart attack victim. The question is, given
information on PAP, LAP, and CO for the patient involved, is PVR at all likely to
be above the threshold? If so, one ought to monitor PVR.

The numbers are close enough so that the answer is not obvious from looking at
Table 4.1: For example, substituting the mean values into Equation 4.1 results in
PVR < 1.62, but increasing PAP’s value in the substitution by 3.38 (one standard
deviation) while maintaining LAP and CO’s values would result in PVR > 1.62.
However, the latter is not that likely to happen because LAP tends to increase when
PAP does (high positive correlation).

So, one has to look at the joint density of PAP, LAP, and CO. Like most statistics,
the ones in Table 4.1 are subject to sampling error, and in addition, the density shape
is not exactly known. To get around this difficulty, one can hypothesize plausible
bounds on the joint density and bound the probabilities of satisfying the criteria
given each density bound. Ideally, the set of density bounds used will cover all the
possible variations.

In this example, four particular density bounds are considered. They show the
kinds of bounds the methods can handle. One-dimensional (marginal) views of these
are in Figure 4.1, where the areas under the density bounds are marked by vertical
lines. The one on the right is an upper bound, the middle two are lower bounds,
and the one on the left can be either. The three left-most input bounds are given
to SAB, and the right-most two are given to HMC. As will be described later, the
two right-most bounds cover all Gaussian densities where CO’s mean is somewhere
within a bounded interval and all the other parameters are as given in Table 4.1. The
details how of these results are produced are given later.

The first “bound” is a regular joint Gaussian density? with the parameters listed in
Table 4.1 and a one-dimensional view of it is shown in the left diagram of Figure 4.1.
A 1000-sample Monte Carlo simulation with this bound (a normal probability density)
indicates that PVR > 1.62 about 20% of the time. One can use SAB to place analytic
bounds on this figure. SAB is an iterative routine. It produces loose bounds initially
and then tightens those bounds as it iterates (see the end of Section 5.2 for details).
In this case, SAB was stopped when it had bounded the figure to be between 4%
and 57%. This is consistent with the Monte Carlo simulation and with patient data,

given in the reference has three significant figures (but in different units). I am not sure whether all
three figures are really significant. I will need to ask surgeons about that.
?Being a density (has an area of 1), it is both a lower and an upper density bound.

44

Vi A

£ % * %
Gaussian Uniform Max Vary Mean, LB Vary Mean, UB

Figure 4.1: Four Density Bounds

where 4 of 17 (23.5%) data points had PVR > 1.62.3
The second density bound is a

1. joint Gaussian density with the parameters listed in Table 4.1

2. in which the maximum density value is limited to that of a jointly uniform
density with the same means and standard deviations.

In other words, the density bound looks like a Gaussian far from the variables’ means,
but has the low flat top of a uniform density near the means. A one-dimensional view
of it is shown in the middle-left diagram of Figure 4.1. Integrating the bound indicates
that it includes ~ 70% of the probability mass. SAB was run with this bound and
stopped when it analytically bounded Pr(PVR > 1.62) to be between 4% and 79%.
SAB found the 79% figure by finding a lower bound on Pr(PVR < 1.62) and then
subtracting it from 100%. These results are again consistent with the patient data.

The third density bound is the lower bound of a Gaussian density where CO’s
mean is allowed to be anywhere between 6.20 to 6.78.# This constraint might have
been determined by using information in some confidence interval for CO’s mean.
The middle-right diagram of Figure 4.1 shows a one-dimensional view of this bound:
CO’s mean can lie anywhere between the two *’s. The lower density bound is the
intersection of the areas under all the densities possible due to allowable variations
in CO’s mean. Because Gaussian densities are unimodal, the lower bound is the
intersection of the areas under the two Gaussian density curves® shown. Integrating
the bound indicates that it includes ~ 65% of the probability mass. SAB was run
with this bound and stopped when it analytically bounded Pr(PVR > 1.62) to be
between 1% and 76%. HMC was also run with this bound. Like SAB, HMC is an
iterative algorithm. Unlike SAB, HMC does not produce tighter bounds as it runs.
Instead, HMC produces bounds that are not so accurate at first, but become more
accurate (smaller standard deviation) as it iterates. When HMC was stopped in this
case, it had an estimate of 12% for a lower bound and 44% for an upper bound on
Pr(PVR > 1.62), and with an estimated standard deviation of < 2% on both figures.
Both the SAB and HMC results are also consistent with the patient data.

The fourth density bound is the upper bound version of the third density bound.
Instead of taking the intersection of the areas under the Gaussian density curves

3Here, the data could have been used by itself to answer the question of whether PVR > 1.62 is
at all likely. SAB and HMC are meant to be used when such data are not available.

4The variances, covariances, and other means could also be allowed to vary.

5They are the ones with the extreme CO mean values.

45

with CO means in [6.20,6.78], take the union. When HMC was stopped in this
case, it had an estimate of 33% (standard deviation of 1%) for the upper bound on
Pr(PVR > 1.62). As with all upper bounds, all of the probability mass is within the
bound.

The main purpose of this small example is to show the type of input SAB and
HMC take in, and the type of output they produce. The example does not show
the limits of their capabilities, nor is the example one of where they really make a
difference. The probability bounds found in this small example (especially the ones
found by SAB) are fairly loose. Despite this, some of the bounds do give one useful
information on the problem: the 4% and 12% lower bounds on Pr(PVR > 1.62)
indicate that the event PVR > 1.62 is not extremely rare. Also, all the runs were
stopped early. If one allowed the runs with SAB to continue on, SAB would have
produced tighter bounds.

4.2 Alternatives

Current alternatives to using probability density bounds and both SAB and HMC fit
into one of four categories. The first category of methods finds all the possible system
behaviors (sometimes including impossible ones), but does not tell the likelihood of
the behaviors. Such methods include systems either performing qualitative reasoning
[6, 54], or providing numeric bounds [36].

Category two methods estimate the distributions of possible outcomes without
giving some measure of each estimate’s error and will not improve the accuracy of
those estimates when given more computation time. One of these methods is to
use one of the moment approximation schemes mentioned in Section 1.5 to estimate
moments of parameters of interest and then use these estimated moments to specify
a density (from a family of densities) for the parameters of interest. [16] combines
truncated Taylor series expansions of the model equations to find various moments
with the Johnson or Pearson family of distributions. A possibility using lognormal
and Gaussian densities only is described in the chapter on GLO. As mentioned in
Section 1.5, these moment schemes

1. can be quite inaccurate, and

2. can produce too many equations for a simultaneous equation solver to handle
when the equations have to be solved simultaneously.

Bjorke [5] and Pearl [29, Sec. 7.2] describe similar methods that are more limited
in that they assume independent inputs and linearized equations. Another similar
method is given by Shachter and his associates [43, 42]. This method assumes lin-
earized equations and Gaussian densities, but does not assume independence between
variables. The method uses variable transformations to make the random variables
more Gaussian and the variables’ relationships more linear. How well this last method
works depends on a user’s ability to find variable transformations that convert the
random variables into a set that satisfies the assumptions.

46

A third category is the set of evidential reasoners [20, 48], which includes most
of the current work done on uncertainty in Al. These reasoners can only handle a
variable value in terms of the possibility of it belonging to one or more regions in a
preset discretization of the possible variable values. For example, blood pressure (BP)
may be only thought of in terms of being low, normal, or high. This limitation is a
problem because what is considered normal, desirable, etc. can change with each use
of a model. For example, when trying to lower a patient’s BP, an acceptable pressure
depends on the patient’s former normal blood pressure and the patient’s ability to
withstand therapy side-effects.

Monte Carlo techniques [16, 19, 22], which fall into two general classes, consti-
tute the fourth category. The first class simulates a system by generating samples
according to some probability distribution. Most methods in this class cannot handle
density bounds. The acceptance/rejection method can handle density bounds, but
it is too slow due to the large number of potential samples it rejects. The second
class of Monte Carlo techniques integrates the density or density bound involved.
These integration techniques include hit-or-miss and sample-mean Monte Carlo. Un-
fortunately, determining the interval(s) to be integrated over (the region(s) satisfying
the criteria) is very hard. The section on HMC gives more details on this problem.
Also, as with all Monte Carlo techniques, every answer is inexact and has a standard
deviation associated with it.

A variation on the first class of Monte Carlo techniques is described in [21]. In this
variation, one does not need to fully specify the joint distribution of the input vari-
ables. One just needs to supply the marginal distributions (probability distribution
of each variable by itself) and correlation matrix of the input variables. The method
then generates samples according to those marginal distributions and rearranges the
samples so that their correlations will be “similar” to the given correlation matrix.
One can then use these samples in a Monte-Carlo simulation. However, beyond the
marginals and the correlations, the nature of the joint distribution of the samples is
left to the whim of the method.

47

Chapter 5
SAB

This chapter describes SAB, one of the two methods presented which use bounds on a
probability density to bound the probability of satisfying some criteria. The chapter
leads off with a general description of how SAB works. The next section goes back
to the example in Section 4.1 to illustrate how SAB worked on that simple example.
Following this are sections on the details and limitations of SAB, respectively.

5.1 Overview

SAB successively narrows the probability bound of achieving or failing some criteria
by iteratively splitting regions comprising a partition of the possible input values
and then bounding both the possible behaviors within the smaller regions and the
probabilities of being in those smaller regions (using the input probability density
bound). SAB marks the regions whose possibilities always satisfy or fail the criteria.

Figure 5.1 shows two examples of splitting. In the one marked Behavior, the
criterion is a - b < 3, and the original region is a,b € [0,2]. In this region a- b € [0, 4],
so it sometimes passes and sometimes fails the criterion. Split! the region along
a =1 into the two sub-regions X and Y. In X, a € [0,1], so a- b € [0,2]. Because
the criterion is always satisfied, mark X. In contrast, a € [1,2] in Y, which means
a-be[0,4], so Y is not marked.

In the example marked Probability, a = (c € [0,1]) is the original region and
f(c) is a lower bound on probability density at c. SAB finds the lower bound on the
probability of being in a, Pr(a) > 0.5. This bound is the sum of areas ¢ and r, found
by multiplying 1, o’s length, by 0.5, the lowest value of f(c) in a.? Split the region
at ¢ = 0.5 into the two sub-regions Z and W. By a method similar to the one above,
SAB finds a lower bound on Pr(Z) of 0.5 (sum areas r and s), and a lower bound
on Pr(W) of 0.25 (area ¢). Sum the lower bounds of Pr(Z) and Pr(W) to get a new
lower bound of 0.75 on Pr(a).

As hinted by these two examples, as long as the bounding method used tends to
reduce the range of possibilities as a region of input values gets smaller, this continued

LAt present, SAB splits a region by bisecting it.
?Better methods of bounding probabilities are described later.

48

Behavior Probability

2 T, &)1 T
b xiyreb=8 T s TN
0 a 00 Z 9w i c

Figure 5.1: Examples of Splitting

splitting will mark more and more of the interval of all possible input values. And
as long as the bounding method tends to reduce the gap between a density bound’s
upper and lower bound® in a region as the region gets smaller, the bound on the
probability of being in a marked region will improve.

To find a lower bound on Pr(satisfy criteria) sum the lower probability bounds of
all the regions marked as satisfying the criteria. Similarly, one can find a lower bound
on Pr(fail criteria). One minus the latter is an upper bound on Pr(satisfy criteria).

5.2 PVR Example Revisited

This section re-examines the PVR example in Section 4.1 when using the Gaussian
density as a “bound” (first density bound) and SAB as the bounding method. To
bound Pr(PVR > 1.62), SAB looked at the interval of all possible inputs* (given to
SAB as one region):

PAP € [1.0,88.0], LAP € [1.0,88.0], CO € [1.0, 100].
A lower bound on PVR, written Ib(PVR), is
max(0, [Ib(PAP) — ub(LAP)]/ub(CO)) =0,
and an upper bound (ub(PVR)) is
[ub(PAP) — Ib(LAP)]/1b(CO) = 87.0.

PVR can be either greater or less than 1.62, so SAB split the region in two along the
CO dimension:

subspacel : PAP € [1.0,88.0], LAP € [1.0,88.0], CO € [1.0, 50.5]
subspace2: PAP € [1.0,88.0], LAP € [1.0,88.0], CO € [50.5,100.0]

3Yes, we are bounding a bound here.

“Note that the given range of possible values is wider than necessary. For example, one could
tighten them to CO < 30 and LAP < 45. These wider bounds will not affect the correctness of the
results. They will slow SAB down, but probably not by much: the inputs should have little (if things
are slightly inconsistent) or no chance of being in the extra area included by the wider bounds, and
SAB concentrates first on the regions of the possible input values that have the highest estimated
probability of occurring. So when in doubt about the bounds, err on the side of including something
that cannot occur.

49

SAB then checked and split as appropriate. Regions like
PAP € [20.75,25.47], LAP € [15.95,17.32], CO € [6.41,7.19], (PVR € [0.756, 1.484))

where PVR is either always >, or < 1.62, were marked. SAB found lower bounds on
the probabilities of being in these marked regions (the one above has a probability
> 0.002).

As SAB recursively splits and checks regions, it tightens the probability bound
for satisfying the criteria. When the bound is tight enough, or SAB runs out of time
or another resource, it can be stopped. In this example, when SAB was stopped,
it gave a lower bound of 0.042 on the probability of being in a passing region (one
where PVR > 1.62), and 0.438 for a failing region (PVR < 1.62). As mentioned
in Section 4.1, the probability bounds found in this small example are fairly loose.
Despite this, the bounds do give one useful information on the problem: the 4%
lower bound found for Pr(PVR > 1.62) indicates that the event PVR > 1.62 is not
extremely rare. If a tighter bound was desired, one could have restarted SAB with
the then current set of regions. Since this joint density bound includes all of the
probability mass, SAB can, barring round-off error in the floating point math, get
the bound to be arbitrarily tight if given enough computing time. In general, if a
joint density bound includes n x 100% of the probability mass, SAB can, barring
round-off error, get the bound to have a gap of 1.0 —n between the upper and lower
figure. So if a lower density bound includes 70% of the probability mass, the tightest
bound SAB could give on the chances of passing some criteria would have a gap of

0.3 between the lower and upper figures (such as a lower bound of 0.6 and an upper
bound of 0.9).

5.3 Detalils

Various details of SAB method are presented here. The first subsection gives the main
loop that SAB iterates. The rest of the subsections describe various parts of this loop.
The next subsection describes how SAB ranks regions of the input parameter value
space and estimates the probability of being in them. These two activities tell SAB
which region to examine next. Following this is a subsection on how SAB bounds
the probability of being in a region. The last two subsection are on how SAB splits
regions and finds numeric bounds on expressions, respectively.

5.3.1 Main Loop
Perform the following cycle until told to stop:

1. Select the region o with the highest rank (see below). SAB can start with either
one unijversal region (as in the example), or any number of predefined regions.

2. What type of region is it?

50

(a) Marked for being known to always satisfy or fail the given criteria. An
example is when a region’s PVR range is 0.0 to 1.2 and the criterion is
PVR < 1.62. Here, split the region into two, and using the given density
bound, estimate and bound the greatest lower probability bound of being
in each of the two sub-regions. Mark them for the same reason as the
original region.

(b) Unsure. The region can still either pass or fail the given criteria. An
example is when a region’s PVR range is 0.0 to 2.0 and the criterion is
PVR < 1.62.

i. If the possibilities of the region (PVR’s range in the PVR example)
have not been bounded yet, bound them (in the PVR example, use the
given formulas for an upper and lower bound on PVR). If the region
should be marked, do so and bound the probability of being in it.

ii. If the possibilities have been bounded, split the region in two. Bound
both sub-regions’ possibilities, and estimate the greatest lower prob-
ability bound of being in each sub-region. If a sub-region should be
marked, do so and bound that sub-region’s probability.

The probability estimations made are just used to suggest the next best step for
SAB by helping to rank the sub-regions. They are not used as part of any probability
bound.

The only overlap allowed between regions is shared borders. No overlap is per-
mitted if the probability density bound has impulse(s).®

5.3.2 Ranking Regions & Estimating Region Probabilities

A region’s rank estimates to what extent splitting it will increase the known lower
bound on the probability of either satisfying or failing the criteria. An “unsure”
(unmarked) region’s rank is the estimated greatest lower probability bound (using
the given density bound) of being in that region. Estimate as follows:

1. Observe how many input and parameter sample points (out of a thousand picked
using a “density” which resembles the given joint density bound) fall within
the region. If > 10 samples (1%) fall inside, the fraction falling inside is the
estimate.

2. If < 10 samples fall inside, estimate with a formula that quickly, but approx-
imately integrates the density bound in the region. The PVR example uses
formula C, :3-3 in [47, page 230]: Suppose one wants to integrate the n-
dimensional curve f(zy,...,z,) inside the rectangular region where

5An impulse occurs when part of the bound becomes infinitely high and leads to a non-zero
probability of the variables taking on a particular set of values. An example of such a set for the
variables PAP and LAP is (PAP = 45) A (LAP = 30).

51

Vi : [l; < z; < h;]. This formula makes the following approximation:

hn hi
/ f(1ye.oy2n) dzy-... do, =
In I
3—n

L = 0] B3 - flma, .o ma) +

=1

1 n
gz[f(ml, coos Moty liyMmig, oo ymy) + f(ma, .o misy, hiymigy, .. omy)],

i=1
where m; = (I; + k;)/2.
These two parts compensate for each other’s weaknesses:;

1. The first part is bad for low probabilities because any region a will have large
gaps between the sample points within it. So many sub-regions of a will have no
sample points even though they may have high values for the lower probability
density bound.

2. The second part is bad for high probabilities because the regions involved are
either large or probably contain a complicatedly shaped part of the density
bound.® The integration formulas only work well when a region’s section of the
density bound is easily approximated by a simple polynomial.

A marked region’s rank is the gap between the estimated greatest lower probability
bound of being in the region and the known lower bound on that probability. This
works better than the gap between the upper and lower bounds on the greatest
lower probability bound because SAB often finds very loose upper bounds, while the
estimates are usually accurate.

5.3.3 Bounding Region Probabilities

The basic way SAB finds a lower bound on the probability of being in a region is to
multiply the region’s volume” by its minimum probability density lower bound value
(found by the bounding mechanism described in Section 5.3.5). I derived the PVR
example’s first density bound expression (a Gaussian density) by taking the density
parameters (Table 4.1) and substituting them into the general form for a Gaussian
density. After some simplification, I got (numbers rounded-off):

0.01033 exp(—0.01323(13.70.P*—-26.09 P- L—10.36 P-C'+16.42L?+10.77 L-C+28.08C?))

where P = (PAP —23.94), L = (LAP —15.29), and C = (CO — 6.487).

$Most of the common probability densities only have complicated shapes where the density values
are high. I am assuming that this complication will be reflected in the corresponding part of the
bound.

"For a region a, let its variables z; (i = 1.. .n) range between I; and h;. Then a’s volume is
17—, (ki — &;). SAB only deals with n-dimensional rectangular regions.

52

Fh)}
|2y

L h
Figure 5.2: One Dimensional Convex Density and Lower Bound

To help tighten this bound, SAB tries to use any monotonicity and/or convexity
present in the region’s part of the density bound in the following manner (derivations
in Appendix A):

Let f(z1,...,%s) be the probability density and within a region « let z; range
between /; and h;. The probability of being in « is

hn hy
F = AR f(z1y...y20) - dzy - ... - dz,.
n 1

If 8f/0z, is always > 0 in «, then

. : . hy —1
F 2 [H(ht - IS)] : [(mlnf(llv T2y ,.'L‘,,,)) + (mlna_f'(zl’ v ,.'L‘,,)) i (_'1'2_1)]’
=1 * T
where the minimization of f is over the z, through z, values within a (min, means
that z; is NOT part of the minimization) and the minimization of f/dz; is over the
z; through z, values within a. This bound is tighter than the basic lower bound:

[TL(hs —)] - fmin fea, . 2)
=1
Similar expressions can be derived for the other variables and for when 8f/dz; < 0.
If 3°f/022 is always < 0 in a (convex down), then

F 2 [H(hc - lc)] : [(nynf(ll’ T2ye0ey zn)) + (n&m f(hly T2ye0ey .'L‘n))]/z,
=1
where the minimizations of f are over the z, through z, values within . This bound
is also tighter than the basic one. See Figure 5.2 for the one dimensional case: the
N curve is the density, the area under the diagonal line is F’s new lower bound, and
the area under the horizontal line is the original bound. Similar expressions can be
derived for the other variables.

Several methods exist to integrate a region’s probability density bound, including
Monte Carlo [19] and quadrature (numeric integration) methods [47]. These cannot
truly bound the integration error because they only take numeric samples at particular
points.

5.3.4 Splitting Regions

SAB may split a selected region o in either step 2a or step 2(b)ii. In either, SAB
picks a variable in « to split along and then bisects a. Select the variable as follows:
in step 2(b)ii, find the one with the largest difference between its upper and lower
bound within the region, normalized by its standard deviation. In step 2a, find the
one with the largest apparent variation in the density’s slope with respect to it.

53

5.3.5 Numeric Bounding in SAB

Many of SAB’s parts need expressions to be bounded. For expressions with algebraic,
logarithmic, and exponential functions (the type in the models to be used), perfect
bounding algorithms have not been built. The type of algorithm used here will find
bounds that indicate what is truly unachievable,® but those bounds may not be the
tightest possible. For example, the algorithm may find that z < 7 when in fact it
can be shown that z < 3. I have implemented an augmented version of bounds
propagation [36], which does the following interval arithmetic [33]:

e Bound an operation’s result using bounds on the operands. For example:
ub(a + b) < ub(a) + ub(d).

¢ Bound an operand using bounds on an operation’s result and the other operands.

For example: ub(a) < ub(a + b) — Ib(b).

The “bounder” examines expressions and updates bounds with these operations. It
iterates over the expressions until every one that might produce a change has been
examined at least once and all the recent bound changes are below a certain threshold.

5.4 Limitations

SAB has two limitations. First, as the number of inputs increases, the complexity of
the density bound often increases to beyond SAB’s capacity. In fact, SAB is not fast
for small problems either. The examples with SAB in Section 4.1 each took 30 to
60 minutes (1 to 10 thousand iterations) to run on a Symbolics 3640 (or 3650) Lisp
machine.?

SAB’s second limitation is that it can make little use of upper density bounds.
This is because SAB derives its bounds by summing the bounds of the sub-regions.
On a lower input density bound, SAB sums up lower probability bounds, and on an
upper density bound, SAB sums up upper probability bounds. If a few of the upper
sub-region probability bounds being summed are loose, say close to one, then the
entire sum will be close to one or more (since all the probability bounds are at least
zero), which will make for a loose bound. With lower bounds on the other hand, a
few loose lower sub-region probability bounds, say close to zero, will not affect the
sum very much. For example, let there be 5 sub-regions, each with a probability of
0.1 of containing the measured input values. Then the chances of event a, that the
measured values are in one of the sub-regions, is 5(0.1) = 0.5. If the upper bound on
the chances of each of four of these sub-regions is 0.1, and is 0.9 in the fifth sub-region,
then an upper bound on Pr(a) is 4(0.1)+0.9 > 1, a loose bound. On the other hand,
if the lower bound on the chances of each of four of these sub-regions is 0.1, and is

8In practice, the accuracy of this may be limited by round-off error.

9Part of the reason for the slowness was that the small examples were run with all the bounding
machinery needed for the larger problems. No attempt was made to optimize. LISP was used
because of its storage management, which was needed to easily handle the newly split regions.

54

0.0 in the fifth one, then a lower bound on Pr(«a) is 4(0.1) = 0.4, which is still close
to the actual chance of 0.5.

Unfortunately for SAB, if one gives an input density bound where a mean or some
other parameter can vary over a wide range, the upper bound becomes much more
important than the lower one. This is because as some parameter varies over a wider
range, the intersection of the densities with all the different allowable parameter
values gets small, so the lower bound covers little (is loose). For example, in the
“ary mean, LB” bound in Figure 4.1, if the mean is allowed to vary more, the two
extreme Gaussian curves depicted will move farther away from each other, and the
area in common to them (the lower bound) will shrink. When a lower bound covers
little, most of the probability mass will not be covered by the bound and can go
anywhere. At this point, one will not be able to infer much on the chances of any
input values occurring. An example of a lower bound covering little is one which
only has 0.05 (5%) of the probability mass under its curve. If one uses this bound to
bound the chances of some event a, one will get a lower bound on Pr(a) of z and a
lower bound on Pr(—a) of 0.05 — z, where z is a number between 0.0 and 0.05. An
upper bound on Pr(«) is one minus a lower bound on Pr(—a), so the upper bound is
1 —(0.05 —) = 0.95 + z. Then the lower bound on Pr(a) is at most 5% while the
upper bound is at least 95%, which does not tell one much about Pr(«).

While a loose lower density bound is useless, a loose upper density bound can still
yield useful probability upper bounds. This is because there may be large regions of
possible input values which are known to be very unlikely to occur.

55

Chapter 6
HMC

These problems with SAB led to trying to apply Monte Carlo (MC) techniques in
conjunction with density upper bounds. As mentioned in Section 4.2, the common
MC techniques are inadequate. This section describes HMC, a hit-or-miss version of
sample-mean Monte Carlo which applies to the problems of interest. The first section
describes the original sample-mean MC and why it is inadequate for the problems of
interest. The next section describes how to convert sample-mean MC into HMC. The
last two sections give examples of applying HMC to a larger problem.

6.1 Sample-Mean Monte Carlo

Sample-mean Monte Carlo (called crude Monte Carloin [19]) estimates the area under
a curve ¢ within some region (interval) as follows:

1. Randomly sample the curve in the region of interest using a uniform distribu-
tion: first take a random sample of sets of input values in that region, and then
for each set of values, z;, find ¢(z;), the value of the curve at z;.

2. Estimate the average value of the curve in the region by finding the average
value of the c(z;)’s: A. = T;¢(z;)/n, where n is the size of the sample. The
sample standard deviation of the ¢(z;)’s is

o= | [Dlela) - AP/ o - 1),

The standard deviation of A, is estimated by s4 = s/+/n.

3. Multiply A, by the size or volume $ of the region or interval: A, x S. This result
estimates the area under the curve within the region of interest. The standard
error of this estimate is s4 X S. Since S is constant and s, o 1/+/n, the
estimate becomes more accurate as the size of the sample increases. However,
since the proportionality is to 1/4/n and not to 1/n, each successive addition
to the sample has less effect on the accuracy.

56

Figure 6.1: Regions Delineated by the Criteria

As previously mentioned, sample-mean MC is an MC integration technique. Such
techniques have the disadvantage that one has to find all the regions of possible input
values that satisfy the criteria, and then integrate the curve in those regions. As an
illustration of these difficulties, consider an example that has two parameters z and
y and the following criteria:

0<z<58, 0<y, y<2-2/3+20, 20%<(z—40)%+ (y—30)2

To use sample-mean MC, one has to first find the region(s) that satisfy the criteria.
In this case, there are two such regions. One region borders the z and y axes and
is marked with o and black dots in Figure 6.1. The other region is a “triangular”
area marked with € and black dots in Figure 6.1. I do not know of ways of always
automatically finding such regions given non-linear criteria.

If there were such ways, non-linear programming (constrained optimization) meth-
ods would be able to at least decide when a feasible solution (a solution that satisfies
the criteria) exists and when one does not. At present, these methods cannot. For
example, consider the optimization of expressions containing algebraic (+ = - /,
and exponentiating a variable to a constant power) functions under constraints also
containing algebraic functions. A program implementing the algorithm given in [4,
Ch. 10] came out tied for first in two comparisons of existing programs for optimizing
such problems [4, Ch. 11 & 13]. Part of the algorithm (called “phase 1”) is to find
a point that satisfies the constraints. As the reference mentions, this part does not
always succeed even when such a point exists. So this algorithm cannot always decide
if a set of algebraic constraints is satisfiable. The reference did not give any pattern
for the failures.

Also, if there were ways of always automatically finding the regions satisfying
the criteria, non-linear equation solvers would always work (give a solution when one
exists or indicate that none exist): these solvers only search for one point that satisfies
the criteria specified by the equations. However, as mentioned in references on the
subject ([31, Ch. 9] and [11, Ch. 2] for example), a solver of a system of non-linear
equations that always works has not been developed and is quite unlikely to ever be
developed.

A theoretical limit on what types of regions can always be automatically found is
givenin [34]. As mentioned in the steam engine example for AIS (Section 3.3), this ref-
erence shows that determining the truth of 3z :[z is real and A(z) < 0] is undecidable,
when A(z) is an arbitrary expression that can be composed of addition, subtraction,
multiplication, and function composition of the following primitives: log 2, 7, exp(z),

57

sin(z), z and rational numbers. Section 3.3 also provides another limit of a theoretical
nature by demonstrating that deciding if a set of arithmetic constraints is satisfiable
is NP-hard.

Even if the satisfying regions can be found, integrating the curve in each of those
regions using the sample-mean Monte Carlo method is difficult. The method requires
that one knows the size of each region (S in the method description above). The
method also needs to sample points in each region according to some known proba-
bility distribution (often the uniform distribution). The odd shapes of these regions
make it difficult to meet either of these needs (see a and € in Figure 6.1). In fact, find-
ing the size of an odd-shaped region (integrating the volume inside the region) is one
of the standard uses for Monte-Carlo techniques. This would create two Monte-Carlo
problems where there used to be one. Not much work has been done for sampling
from odd-shaped regions. One method is a type of acceptance/rejection Monte Carlo:
For each region S,

1. Enclose § inside an n-dimensional rectangle. Make the rectangle as small as
possible.

2. Sample uniformly from the rectangle. Reject the sampled points that fall outside
of B. Accept the rest. The accepted points will give a uniform sampling of 3.

One way to meet both the knowledge about size and sampling requirements is
to try to cover the regions exactly with rectangles. Performing sample-mean Monte
Carlo in a rectangular region with a uniform distribution is fairly easy. However,
covering the satisfying regions exactly with rectangles is impossible.

As a last comment, these problems using sample-mean Monte Carlo all become
more difficult as the number dimensions in the input increases.

6.2 From Sample-Mean MC to HMC

Although it is hard to find all the regions of input values that satisfy the criteria, one
can easily tell if a given set of values do so. In the example above with Figure 6.1,
if one were given the input values of z = 54 and y = 50, one could substitute these
values into the criteria of that example to find that this set of values meets the criteria.
Another observation is the following. Suppose one defines a new curve c* (z):

¢(z) = c(z) if z satisfies the criteria
= 0 otherwise

where ¢(z) is the original curve and z can take on all possible input values. Then the
area under c¢* within the region of all possible input values is equivalent to the area
under ¢ within the regions of values that satisfy the criteria.

One can use these two ideas to modify sample-mean MC to obtain HMC by
substituting all occurrences of c(z;)s with ¢*(z;)s in the three-step algorithm described
in Section 6.1. To obtain ¢*(z;) for each sample member, z;, see if z; satisfies the

L2
criteria. If it does, find ¢(z;); otherwise use 0. When the z;s come from the interval

58

z 0 1 2 3 4 S 6 7 8 9 A: | sa
c(z) 01 012 014 0.16 0.18 0.20 0.18 0.16 0.14 0.12].15 |.01
c*(z)|0.0 00 00 016 00 00 0.18 0.16 0.14 0.12].076 | .026
g(r) (0.0 11.3 16.7 18.0 17.3 16.7 18.0 23.3 34.7 54.0

Table 6.1: HMC Example Sample
0.2
c(z)
0.1
sample of ¢*(z) values
102
Figure 6.2: HMC Example

OAAA A A

of all possible input values, the result A, x S in the last step estimates the area under
¢ which satisfies the criteria.! When c is a density upper bound, the result estimates
an upper bound on the probability of satisfying the criteria. Similarly, when c is a
density lower bound, the result estimates a lower probability bound.

An example of using this routine is as follows: let z range from 0 to 10 (so S = 10),
let the criterion be ¢(z) = 23/3 — 422 + 15z > 18, and let the density upper bound,
¢(z), be 0.02(10 — |z — 5|). The modified density bound is

¢ (z) = { c(z) if ¢(z) > 18

0 otherwise

Let the sample-mean routine pick a sample of 10 independent random values of z.2
Then the resulting sample is as shown in Table 6.1 and Figure 6.2.

An estimate of the area under the upper density bound is 1.5, which is derived by
multiplying the size S, by 0.15, the average of the sampled ¢ values. The estimated
standard deviation on this estimate is 0.1, which is derived by multiplying S, by
0.01, the sample standard deviation for the average of ¢. The actual area equals the
estimate of 1.5.

To get an estimate of the upper bound on Pr(g(z) > 18) and a guess of the
standard deviation on this estimate, multiply the corresponding summary figures for
¢* by S. The result is Pr(g(z) > 18) < 0.76 with a standard error of about 0.26. The
actual upper bound is 0.56, which is less than one standard error from the estimate.

6.3 A Larger Example

For a larger example, I ran HMC on a 58 parameter cardiovascular model (Ap-
pendix B) that includes Equation 4.1. Using data on mitral stenosis patients (see

'HMC, the resulting algorithm, is related to conditional Monte Carlo [19, Ch. 6] [18, p. 12). HMC
may be a type of the rejection technique described on page 12 of Halton [18], but the reference’s
description is unclear.

2To simplify the example, the “independent random” values “happen” to be the integers between
0 and 9.

59

Variable BP CcO HR LAP LVEDP PAP
Lower Bound on mean | 80.43 5.15 75.655 19.945 7.19 26.91
Upper Bound on mean | 94.91 6.25 90.145 26.055 10.81 37.09
Standard Deviation 14.48 1.104 14.49 6.110 3.621 10.18

Table 6.2: Input for Larger Example

Appendix B.4), an upper density bound for the six input variables was constructed.
The bound has the shape of a joint Gaussian density in which the means were allowed
to take on any possible value between the sample mean minus half a sample standard
deviation and the sample mean plus half a sample standard deviation (see Table 6.2).2
For example, in this bound, PA P’s standard deviation is 10.18 and its mean is allowed
to be anywhere between 32 — 10.18/2 = 26.91 and 37.09. The bound is formed by
using bounds propagation (interval arithmetic) [36, 33] to find the maximum possible
value for the density at each sampled point. An example of bounds propagation is
that an upper bound on a + b is ub(a) + ub(b).

This density bound was used with HMC to bound the chances of both PVR < 0.3
and 24.5 < SVR occurring® in the population of mitral stenosis patients represented
by the reference for Appendix B.4. The variable SVR is the systemic vascular resis-
tance (general body resistance to blood flow). HMC found that the upper bound on
the probability of satisfying this criteria is less than 0.125 (with a sample standard
deviation of 0.020 on the figure). These results are consistent with the population
studied: none of the ten patients in the reference satisfied this PVR and SVR crite-
rion.

Unfortunately, getting these results took a sample of over 1,800,000 points (over
130 minutes on a Symbolics 3600 Lisp machine). Two major problems are that a
compiled version of the model equations and constraints takes about a hundredth of
a second to evaluate for each sample member, and that only 40 (") of these 1.8
million* points were both consistent with the model and satisfied the PVR and SVR
criteria.® Evidently, the region(s) of parameter values that are both consistent with
the model and satisfy the PVR and SVR criteria are quite small.

The following was done to get this example to run this quickly:

1. Afirst cut at the space of possible values from which to sample the BP, CO, HR,
LAP, LVEDP, and PAP parameters is the space formed by the lower and upper
bounds on their possible values (Appendix B.2). To save time, the sampled
points are limited to ones that are within plus or minus four sample standard
deviations from the possible mean values. Parameter values beyond this range

3Given that there are 10 patients or data points (9 degrees of freedom), half a sample standard
deviation of the parameter is over three halves a standard deviation of the parameter’s sample mean.
Assuming either a Gaussian or ¢ distribution for each sample mean, this range will include more
than the 80% confidence interval of that sample mean.

4See Section 4.1 for a comment about simple thresholds.

51t takes about half a second to find an upper bound on the density at a given point in the
sample, but this does not add too much time because HMC only needs the upper density bound of
the 40 points that are both consistent and satisfy the criteria.

60

were judged to have negligible density values and so will contribute little to
the probability of the criteria being satisfied.® As a result, CO was sampled for
values between 1.0 and 12.0 (instead of 30.0), BP was sampled between 50.0 and
170.0 (instead of 200.0), HR between 25.0 and 160.0 (instead of 250.0), LVEDP
between 2.0 and 30.0 (instead of 40.0), and PAP between 10.0 and 90.0 (instead
of 100.0). These additional limitations meant that one needed to sample from
less than 1/8 of the space possible input values.

2. About half of the sampled input points can be declared inconsistent just by
comparing the LVEDP, LAP, and PAP values given by the random number
generator to the constraint LVEDP < LAP < PAP. These input points can
be rejected without needing to take the one hundredth of a second to evaluate
the model equations and examining the rest of the constraints. In the future,
one should be able to handle such constraints by sampling so that only points
that meet that constraint are generated. However, one must be sure either that
the sampling is uniform within the region satisfying the constraint, or that any
non-uniformity is compensated for when averaging the sample.

Also in the future, one could further diminish the space of possible values that
needs to be sampled by taking advantage of the fact that satisfying the criteria requires
that the input parameters take on certain values. In this example, one can use the
present limits on the input parameters (Appendix B.2) and the numeric bounding
method described in Section 5.3.5 to find that in the sample space where criteria
PVR < 0.3 and 24.5 < SVR are met, CO € [1.2,8.2], LAP € [7.5,60], and PAP ¢
[10.0,62.5]. These bounds would further diminish the space of possible input values
that needs to be sampled from by another factor of 2.5.

Things could be worse. In this example, the model equations could be explicitly
solved, so they were solved and compiled automatically using a simple symbolic equa-
tion solver. If the solver were to be unable to explicitly solve the equations, a numeric
technique to solve simultaneous equations (like Newton-Raphson [31, Ch. 9.6]) would
be needed. On the type of problem given in this example, when treating all the
model equations as needing to be solved simultaneously, solving those equations with
my version of Newton-Raphson (in which the derivative formulas are symbolically
derived and then compiled) takes about 45 times as long to run as just evaluating
the explicitly solved and compiled equations. So it is best to explicitly solve as many
equations as possible. Unfortunately, using the model in this example to test the
effects of some proposed therapy will involve some simultaneous equation solving,.

On the more optimistic side, each member of the sample examined by HMC can
be generated and tested independently of the others, so parallel processing can be
used to speed up the computations considerably.

For a 10 data point (9 degree of freedom) ¢t distribution, the probability of a variable being
outside the mean plus or minus four standard deviations is less than 0.005. For a Gaussian density,
the probability is less than 10—4.

61

6.4 More Testing with the Larger Example

Overall, the amount of computation needed in this last example does not make HMC
look too promising for the size of the problem being considered. To further test
HMC’s promise, this example was rerun while varying three factors: the criteria’s
severity, the tightness of the upper density bound and a third factor that will be
described later. To vary the criteria’s severity, the SVR minimum threshold was set
at different values. To vary the density bound tightness, some input variable means
for the density bound were allowed to vary as described in Table 6.2, while other
means were restricted to taking just the sample mean value (as given in Table B.2).
As the number of means allowed to vary in value increases, the bound gets looser.

6.4.1 Description of Trials and Data Collected

The data from these runs (trials) are shown in Tables 6.3 through 6.7. Each table
shows the result of using a particular set of criteria with various density bounds. For
each set of criteria, all the density bounds are run with the same sample of sets of
input values. The density bounds are labeled from 0 to 6, with the label giving the
number of input variable means that are allowed to vary. With label ¢, the first ¢
input variable means (using alphabetic order of names) are allowed to vary.” For
example, with density bound 2, the first two input variable means (BP and CO) are
allowed to take on any value within the bounds given in Table 6.2, while the last four
input variable means (HR through PAP) are restricted to being point values equal to
the sample means given in Table B.2.

Each table is arranged in eight columns. The leftmost column is labeled “Size”.
The other columns are labeled with the type of density bound being considered. Each
row above the double line has a set of two figures for each column. For the “Size”
column, the number on the top in each row gives the size of the sample for that row®.
The number in parentheses on the bottom in each row gives the number of sets of
values in the sample that have a non-zero value for the modified curve c* (the number
of sets of values that satisfy the criteria). The other columns also have two figures in
each row. In each, the number® on top gives an estimate on an upper bound on the
probability of satisfying the criteria for the density bound of concern for the column.
The number in parentheses (and maybe in combination with square and/or curly
brackets) on the bottom estimates the standard deviation of the previous number.
As an example, in Table 6.3, when the sample size was about 2,100,000 points, 44
of them had non-zero values, and density bound 2 yielded an estimate of 0.01729 on
an upper bound of satisfying the criteria of “PVR < 0.3 and 24.5 < SVR” with an
estimated standard deviation of 0.00624 on that estimate of the upper bound. The

7 Actually, for the 0 case, where no means are allowed to vary, one does not need the slow bounding
mechanism to generate the density bound. But for the purposes of testing HMC, the mechanism
was used.

8The letter “K” means that the figure is in thousands. The letter “M” means that the figure is
in millions.

*The notation X.X Xe(Q stands for the value X.XX - 109,

62

three rows below the double line are explained later.

Each table shows one run with the criteria indicated. Data were recorded every
time the sample size doubled and also when the run was stopped. The tables show
every recording that had at least one non-zero valued point in the sample. Recordings
that have only zero valued points give an estimate of 0 for the upper bound with an
estimated standard deviation of 0, an obviously inaccurate result.

Given this data, a question to ask is how large did the sample need to have been
to produce a “result”. The answer of course depends on the result desired. For
this experiment, desired result is one of the following statements: “HMC is fairly
confident that the upper bound on the probability of satisfying the criteria is at most
X?” or the same statement with the phrase “at most” replaced with “close to”, or
the same statement with the phrase “at most” replaced with “more than”, where X
some threshold. The first two statements tell one that HMC is confident that the
probability of satisfying the criteria is at most about X. The last statement tells one
that with the given input density bound and criteria, HMC cannot say much about
the probability of satisfying the criteria. The value of the threshold X is the third
factor that is varied in the experiment.

To be more specific, the requirements used in this experiment to declare that a run
at sample size n is large enough to conclude a result is the following: At X = 0.1, there
are two sets of conditions that must be both satisfied. The first set is independent of
the threshold, and is:

1. There are at least several (3) non-zero values in the sample.

2. At sample size n, the estimate of the probability bound is within two standard
deviations'® of the estimate at size n/2.

3. There are more non-zero values at sample size n then at size n/2.

In all runs, the vast majority of the sample points are zero (did not satisfy the criteria
or were inconsistent with the model). The first requirement in this set just insures
that a few non-zero points are in the sample. As mentioned before, if all the points in
the sample have a zero value, HMC will produce an estimate of 0 for the upper bound
on the probability of satisfying the criteria with an estimated standard deviation of 0
on that bound, an obviously inaccurate result. The last two requirements in this set
are to try to prevent stopping when only a few non-zero points exist in the sample
and all of these non-zero points are orders of magnitude lower than the average for
non-zero points. If HMC were to stop at this time, not only would the estimate of the
probability upper bound be likely to be orders of magnitude too low, but so would
the estimate of the standard deviation of that upper bound estimate.!’ Such a low
standard deviation estimate would not warn users that the bound estimate may be

19Using the standard deviation figure from sample size n/2.

11The sample standard deviation on the upper bound estimate is determined by the standard
deviation between the points chosen for the sample. If all of these points are orders of magnitude
lower than the average, then the sample standard deviation will also be orders of magnitude lower
than the actual standard deviation.

63

very inaccurate. This result would be similar to if HMC just found zero points in the
sample so far. Examples of this bound estimate and standard deviation both being
orders of magnitude too low appear in columns 3 and 4 of the 1024 through 8196
rows in Table 6.6.

The second set of conditions at X = 0.1 that must be satisfied in order to declare
that a run at sample size n is large enough for a result is that one of the following
conditions is true at sample size n:

1. The upper bounds estimate plus two sample standard deviations is at most
equal to the threshold of 0.1. If this occurs, one can be fairly confident that the
upper bound on the probability of satisfying the criteria is at most 0.1.

2. The upper bounds estimate plus two sample standard deviations is < 0.13, and
the upper bounds estimate minus two sample standard deviations is > 0.07. If
this occurs, one can be fairly confident that an upper bound on the probability
of satisfying the criteria is about 0.1.

3. The upper bounds estimate minus two sample standard deviations is greater
than the threshold of 0.1. If this occurs, one can be fairly confident that with
this input density bound, HMC cannot answer the question “Is the probability
of satisfying the criteria < 0.1?” one way or another.

The use of a two sample standard deviation buffer between the estimate and the
threshold of interest is to increase the confidence that the actual bound has the
same relation to a threshold as the estimate. The Chebyshev inequality [10, p. 227]
indicates that independent of the estimate’s probability distribution, the chances of
the upper bound estimate being more than two standard deviations away (in either
direction) from the actual upper bound (given the input density bound used) is at
most 0.25. So assuming that the sample standard deviation is close to the actual
standard deviation, the above condition set produces statements with a 75% level of
confidence.

This level of confidence increases if one assumes that the estimate’s distribution is
approximately Gaussian: then the chances of the bound estimate being more than two
standard deviations away in a particular direction from the actual bound is less than
0.023 [10, p. 689]. Then, again assuming that the sample standard deviation is close
to the actual standard deviation, the above condition set produces statements with
a greater than 95% level of confidence. The rationale for the Gaussian assumption
is that in this experiment, the estimates are the average of a sample with thousands
to millions of independent, identically distributed points. Since an average is a sum,
the estimates in this experiment are large sums. From the Central Limit Theorem
[10, Ch. 5], large sums of independent, identically distributed random numbers tend
to approach having a Gaussian distribution.

For the threshold X = 0.2, I used the sets of conditions above with 0.2 substituting
for the old threshold of 0.1, 0.25 substituting for 0.13, and 0.15 substituting for 0.07.

The result of applying these requirements (to make a conclusion) on the recorded
data are shown in Tables 6.3 through 6.7. The entries with the bold face upper

64

Size Density Bound (Number of Varying Means)
0 1 2 3 4 5 6

262K | 9.69e-13 | 6.35e-11 | 7.49e-10 | 1.155e-6 | 3.224e-3 | .03861 |.04673
(2) | (9.6e-13) | (6.3e-11) | (7.3¢-10) | (9.76e-7) | (3.09¢-3) | (.0279) | (.033)
524K | 7.2e-4 1.724e-3 | .04818 .07512 0.1021 0.1478 | 0.1539
(14) | (4.9e-4) | (4.14e-3) | (.0225) | (.029) | (.0334) | (.0412) | (.0422)
1.0M | 5.143e-4 | 4.718e-3 | .03438 | .070 09671 | 0.1338 | 0.1475
(28) | [2.74e-4} | [2.13e-3} | [.0125} | (.0197} | (.023} (.0277} | (.0292)
2.1M | 2.579e-4 | 2.365e-3 | .01729 .04392 | .06006 | .08175 | 0.1158
(44) [(1.37e-4) | (1.06e-3) | (6.24e-3) | [.0111) | [.0129) | (.0153) | (.0182}
3.4M | 1.689e-4 | 1.604e-3 | .01203 .05016 .07269 .08992 | 0.1192
(72) | (8.57e-5) | (6.68e-4) | (3.94e-3) | (9.33e-3) | (.0113) | (.0127) | (.0146)
[0.1 Below 0.1 Threshold [?

0.2} Below 0.2 Threshold

X Relationship to Threshold X

Table 6.3: Criteria: PVR < 0.3 and 24.5 < SVR

bound estimates are the first entries (entries with the smallest sample size) in their
columns to meet the requirements for the X = 0.1 and/or X = 0.2 thresholds. If
the sample standard deviation of the entry has a “[” in place of a left parenthesis,
then the X = 0.1 requirements were first met at the entry. If the standard deviation
has “}” in place of a right parenthesis, then the X = 0.2 requirements were first met
at the entry. In each table, the two rows (plus header row) below the double line
indicate the conclusions made by applying these requirements. The row with X at
“[0.1” gives the conclusions of using the X = 0.1 threshold.!?> The row with X at
“0.2}” gives the conclusions of using the X = 0.2 threshold. The conclusion of “?”
means that the run did not have data meeting the requirements given for drawing a
conclusion.

For an example of applying these requirements, look at Table 6.7. For the density
bound where 2 input parameter means can vary in value, the X = 0.1 requirements
to make a conclusion are first met at the sample size of sixty six thousand points. The
conclusion made is that the upper bound on the probability of meeting the criteria
(PVR<0.3and 125 < SVR) that HMC can find is over 0.1. The run for this density
bound and criteria never progresses to a sample size where the X = 0.2 requirements
to draw a conclusion are met.

6.4.2 Analysis of Trials

What do the above trials (runs) tell about HMC? One thing is that since HMC is
a probabilistic algorithm, strange looking results will appear with enough runs. For
example, look at Table 6.7 in the column where 1 input parameter mean can vary in

12The symbol “[” in the label is to remind readers that this symbol is used to mark when the data
first meets the X = 0.1 requirements.

65

Size Density Bound (Number of Varying Means)
0 1 2 3 4 5 6
8192 | 2.28e-10 | 2.161e-8 |4.137e-7 | 4.103e-3 | 0.7477 | 0.7477 | 0.7477
(1) | (23e-10) | (2.16e-8) | (4.14e-7) | (4.1e-3) | (0.748) | (0.748) | (0.748)
16K | 1.14e-10 | 1.081e-8 | 2.069e-7 | 2.052e-3 [0.3739 | 0.3739 | 0.3739
(1) |(1.1e-10) | (1.08e-8) | (2.07e-7) | (2.05e-3) | (0.374) | (0.374) | (0.374)
33K [2.796e-5 | 5.706e-3 |0.1219 0.3749 0.5608 | 0.5608 | 0.5667
(4) | (2.08e-5) | (5.07e-3) | (0.11) | (0.264) | (0.324) | (0.324) | (0.324)
66K | 1.89le-4 | 6.986e-3 | .08731 0.3798 0.6807 | 0.7477 | 0.7507
(9) | (1.25e-4) | [3.99¢-3} | (.0584) | (0.187) |[0.249) | [0.264} |[0.264}
131K | 1.018e-4 | 3.624e-3 | .04424 | 0.2203 0.4194 | 0.5774 | 0.6704
(16) | [6.32e-5} [(2.0e-3) | (.0292} | (.0983) | (0.136) | (0.163) (0.175)
262K | 3.045e-4 | 3.272e-3 | .03577 [0.2621 | 0.4714 | 0.6661 | 0.7558
(35) | (2.13e-4) | (1.37e-3) | [0167) |[.0758) | (0.102} | (0.124) | (0.132)
524K | 2.245e-4 | 3.469e-3 | .04527 0.25 0.4139 [0.5951 | 0.7477
(73) | (1.12e-4) | (1.11e3) | (.016) | (-0523) | (.0682) | (.0825) | (.093)
1.0M | 7.769e-4 | .01524 .05449 0.2459 0.3899 | 0.5542 | 0.7722
(153) | (5.43e-4) | (7.57e-3) | (.0145) | (.0367) | (.0469) | (.0562) | (.0666)
2.1M | 1.076e-3 | .01666 .07493 0.2802 | 0.4449 | 0.5829 | 0.7647
(306) | (3.54e-4) | (5.09¢-3) [(.013) [(.0278} | (.0354) | (.0409) | (.047)
42M |[9.618¢-4 |.01744 07621 0.2828 0.4471 | 0.5713 | 0.7454
(590) | (2.18e-4) | (3.55¢-3) | (9.38¢-3) | (.0198) | (.0251) | (.0286) | (.0328)
8.4M | 1.019e-3 |.01471 .0687 0.2728 0.4453 | 0.5848 | 0.7515
(1180) | (1.66e-4) | (2.14e-3) | (6.28e-3) | (.0137) (.0177) | (.0205) | (.0233)
17TM | 8.476e-4 | .01255 .06142 0.2726 0.4503 | 0.5894 | 0.7505
(2369) | (1.02e-4) | (1.33e-3) | (4.14e-3) | (9.66e-3) | (.0126) | (.0145) | (.0165)
24M | 7.433e-4 | .0119 .05804 0.2568 0.4265 | 0.5668 | 0.7249
(3216) | (7.82e-5) | (1.1e-3) | (3.4e-3) | (7.91e-3) (.0104) | (.012) | (.0137)
[0.1 Below 0.1 Threshold Above 0.1 Threshold
0.2} Below 0.2 Threshold Above 0.2 Threshold
X Relationship to Threshold X

Table 6.4: Criteria: PVR < 0.3 and 22.5 < SVR

66

Size Density Bound (Number of Varying Means)

0 1 2 3 4) 6
4096 | 1.51e-13 | 2.58e-11 | 3.2e-10 1.518e-6 | 1.492e-4 | .03262 | 1.495
(1) | (1.5e-13) | (2.6e-11) | (3.2e-10) | (1.52¢-6) | (1.49e-4) | (.0326) | (1.5)
8192 | 1.15e-10 | 7.208e-9 | 1.219e-7 | 1.289e-3 [1.495 1.512 2.243
(3) | (8.3e-11) | (6.45e-9) [(1.02e-7) | (1.19¢-3) | (1.06) | (1.06) | (1.29)
16K | 2.622e-3 | .03667 0.3169 0.3749 1.442 1.504 1.869
(5) | (2.62e-3) | (.0367) | (0.317) |(0.374) | (0.722) | (0.748) | [0.836)
33K | 1.346e-3 | .01946 | 0.1817 0.3747 1.069 1.5 1.874
(11) | [1.31e-3} |[.0184} | (0.16) |(0.264) |[0.432} |[0.529} | (0.501}
66K [6.792e-4 | 9.82e-3 .09146 0.2793 1.001 1.647 2.062
(28) | (6.56e-4) | (9.18e-3) | (.0801) | (0.146) | (0.289) | (0.388) | (0.438)
131K | 3.825e-4 | 8.555e-3 | .08694 | 0.3202 0.7547 1.225 1.639
(45) | (3.29e-4) | (5.51e-3) | (.0538) | (0.115) | (0.179) | (0.236) | (0.276)
262K | 2.415e-3 | .03092 0.1078 0.4389 | 0.8006 1.174 1.499
(78) | (1.56e-3) | (.0186) | (.0449) |[.0951} | (0.133) | (0.164) | (0.187)
524K [1.814e-3 | .03007 0.1008 0.4578 0.7894 1.166 1.518
(153) | (8.88e-4) [(.015) (.0297) | (.0691) [(.0935) | (0.116) | (0.133)
1.0M | 2.43e-3 .0338 0.1111 0.4576 0.7472 1.094 1.439
(288) | (9.96e-4) | (.0108) | (.0218) | (.0498) | (.0647) | (.0791) | (.0912)
2.1M | 2.076e-3 | .02864 0.106 0.451 0.755 1.047 | 1.356
(542) | (6.56e-4) | (6.81e-3) | (.0152) | (.0352) | (.046) | (.0547) | (.0626)
[0.1 | Below 0.1 Threshold [7 Above 0.1 Threshold
0.2} Below 0.2 Threshold Above 0.2 Threshold
X Relationship to Threshold X

Table 6.5: Criteria: PVR < 0.3 and 20.5 < SVR

value. At a sample size of 2048, the bound estimate of .07109 is low enough to be
more than two sample standard deviations (2 x 0.0591) below the X = 0.2 threshold.
As the sample size increases eight-fold to about sixteen thousand, the bound estimate
increases to above the 0.2 threshold (but by less than one sample standard deviation).
But another four-fold increase to a sample size of about sixty six thousand brings the
bound estimate back down below the threshold (but also within one sample standard
deviation). The sample at a size of 2048 satisfied the requirements to draw the
conclusion that the particular density bound gave a less than 0.2 chance of satisfying
the criteria. But as the sample size increased, one wonders if that conclusion was
drawn prematurely and in fact if the correct conclusion was drawn. Probabilistic
algorithms always have a chance of making the wrong conclusions.

Besides this general warning, these trials also give an indication of when HMC
tends to take less time to draw a conclusion and when it tends to be able to draw
more useful conclusions (A conclusion that a high upper bound exists on a value is not
very useful.). The effects of varying the criteria’s strictness, the input upper density
bound’s tightness and the probability threshold are as follows:

Criteria Strictness

In the trials, the criteria become more stringent as the minimum acceptable value
for SVR increases. As the criteria get quite stringent (Table 6.3), few of the points
sampled both meet the criteria and are consistent with the model. These points are
the only ones given a non-zero value by HMC, so one will probably need a large
sample before one has enough non-zero valued points to draw a conclusion. When
only a few non-zero points exist in the sample, there is a good chance that all of these
points will be an order of magnitude or more less than the average non-zero point. As
previously mentioned, the requirements to stop (and draw a conclusion) are designed
to avoid stopping when this particular event occurs and instead go on to collect a
larger sample. This design helps prevent the bound estimate and sample standard
deviation from being grossly underestimated. The benefit of having stringent criteria
is that one tends to be able to draw the conclusion that the upper bound on the
probability of the criteria being satisfied is low. So as the criteria become more
stringent, one takes a longer time to make a conclusion, but is more likely to be able
to conclude that certain events are not likely to occur.

On the other hand, as the criteria become quite loose (Table 6.7), a much larger
percentage of the sampled points both meet the criteria and are consistent with the
model. But at the same time, the upper bound that HMC can find on the probability
of the criteria being satisfied will tend to increase. So as the criteria loosen, one takes
less time to reach a conclusion, but is more likely to conclude that HMC is not telling
very much.

Criteria in between the extremes tend to have a corresponding interpolation of the
properties above. An exception is when the upper probability bound found by HMC
is near the threshold. In this situation, HMC needs a large sample to decide which
side of the threshold the probability bound falls on (or that the bound is indeed close
to the threshold). An example of this exception occurs with X = 0.1 threshold and

68

Size Density Bound (Number of Varying Means)
0 1 2 3 4 5 6
1024 | 2.62e-11 | 1.175e-9 | 8.609e-9 | 6.38¢-6 | 3.115e-4 | .0658 | 5.982
(1)] (2.6e-11) | (1.17e-9) | (8.61e-9) | (6.38¢e-6) | (3.11e-4) | (.0658) | (5.98)
2048 | 1.31e-11 | 5.87e-10 | 4.304e-9 | 3.19e-6 | 1.557e-4 | .0329 | 2.991
(1) | (1.3e-11) | (5.9e-10) | (4.3e-9) | (3.19e-6) | (1.56e-4) | (.0329) | (2.99)
4096 | 6.54e-12 | 2.94e-10 | 2.152e-9 | 1.595e-6 | 7.787Te-5 | .01645 | 1.495
(1)] (6.5e-12) | (2.9e-10) | (2.15e-9) | (1.59e-6) | (7.79e-5) | (.0164) | (1.5)
8192 | 3.06e-10 | 1.019e-8 | 1.04e-7 | 2.244e-4 | 0.1463 0.8196 | 2.991
(7) | (3.0e-10) | (1.0e-8) | (1.03e-7) | (2.23e-4) | (0.146) | (0.749) | (1.5)
16K | 1.49¢-8 | 9.367e-6 | 3.763e-4 | 0.4692 1.195 1.732 | 3.366
(13) | (1.4e-8) | (9.06e-6) | (3.67e-4) | (0.384) | (0.652) | [0.774} | [1.12}
33K | 4.37e-3 | .07587 0.3811 0.9933 | 1.436 2.228 | 3.366
(25) | (4.22e-3) | (.0602) (0.264) | [0.42) [0.503} | (0.63) | (0.793)
66K | .01106 | .07826 0.3927 1.171 1.673 2.22 3.274
(47) | [5.18e-3} | (.0368} (0.173) | (0.325} | (0.388) | (0.445) | (0.553)
131K | 9.491e-3 | .06347 0.3025 1.065 1.98 2.564 | 3.428
(97) | (3.8¢-3) [(.0239) (0.108) [(0.213) | (0.298) | (0.342) | (0.399)
262K | 8.118e-3 | .05449 | 0.2049 1.033 1.977 2.669 | 3.609
(198) | (2.84e-3) | [.0205) (.0606) | (0.149) | (0.21) (0.246) | (0.289)
524K | 6.315e-3 | .04927 0.1796 0.9545 1.898 2.728 |3.734
(396) | (1.99¢-3) | (.0163) (-0397) | (0.101) [(0.145) | (0.176) | (0.208)
1.0M | 6.494e-3 | .06362 0.2444 | 1.046 1.893 2.682 | 3.662
(789) | (1.38e-3) | (.0129) [.0329) (.0754) | (0.103) | (0.123) | (0.145)
2.1M | 9.136e-3 | .07399 0.2683 | 1.126 1.977 2.736 | 3.703
(1574) | (1.42e-3) | (.0101) (.0241} | (.0553) | (.0745) | (.0883) | (0.103)
2.TM | 8.848e-3 | .0701 0.254 1.075 1.887 2.632 | 3.566
(1962) | (1.34e-3) | (8.72e-3) | (.0207) | (.0475) | (.064) (.0761) | (.0892)
[0.1 | Below 0.1 Threshold Above 0.1 Threshold
0.2} | Below 0.2 Threshold Above 0.2 Threshold
X Relationship to Threshold X

Table 6.6: Criteria: PVR < 0.3 and 16.5 < SVR

69

Size Density Bound (Number of Varying Means)
0 1 2 3 4 5 6

256 | 2.231e-3 | 0.1053 |[1.103 |23.93 |23.93 |23.93 |23.93
(1) |(2.23e-3) | (0.105) | (1.1) (23.9) | (23.9) | (23.9) |(23.9)
512 | 1.115e-3 |.05264 |[0.5513 |11.96 |11.96 [11.96 [11.96
(1) |(1.12e-3) | (.0526) | (0.551) | (12.) (12.) (12.) (12.)
1024 | .01762 0.1415 [0.7672 | 17.94 |17.94 |[17.94 |17.94
(4) | (.0171) (0.118) [(0.563) | (10.4) | (10.4) | (10.4) | (10.4)
2048 | 8.826e-3 | .07109 | 0.3875 | 11.15 14.95 | 14.95 | 14.95
(6) | [8.54e-3} | (.0591} [(0.281) | (5.54) | [6.68} | [6.68} |[6.68}
4096 | .01207 0.1343 [0.906 |7.881 |10.47 |10.47 |10.47
(9) [(8.32e-3) |(.0972) |(0.693) | [3.25} | (3.95) | (3.95) | (3.95)
8192 | 6.034e-3 | .06714 |0.453 [3.945 [6.003 [6.729 [7.511
(15) | (4.16e-3) | (.0486) |(0.347) | (1.63) | (2.11) | (2.24) | (2.36)
16K | .01886 0.2502 |0.9834 |[3.015 |4.442 |5.288 |[6.751
(26) | (.0155) (0.203) | (0.556) | (1.01) | (1.27) | (1.4) (1.59)
33K | .02515 0.18365 | 0.7043 | 2.267 |3.342 |3.954 [5.279
(40) | (.0167) (0.114)](0.317) | (0.629) | (0.782) | (0.857) | (0.989)
66K | .01588 0.1783 | 0.5809 | 2.539 |3.798 |5.002 | 7.358
(104) | (8.52¢-3) | (.0868) | [0.208) | (0.47) | (0.584) | (0.681) (0.823)
[0.1 | Below 0.1 ? Above 0.1 Threshold

0.2} | Below 0.2 Threshold | ? | Above 0.2 Threshold

X Relationship to Threshold X

Table 6.7: Criteria: PVR < 0.3 and 12.5 < SVR

70

the density bound where 2 means can vary in value. As the minimum acceptable SVR
value drops from 24.5 to 12.5, the sample size needed to make a decision drops from
about one million to sixty six thousand. But in-between, at a minimum acceptable
SVR value of 20.5 (Table 6.5), when the probability bound estimate is about 0.1,
even a sample size of over two million is not large enough to make a conclusion as to
whether the probability upper bound is over, under or quite close to 0.1.

When the criteria are quite stringent, the following two possible techniques exist
to speed up the decision-making process:

1. As mentioned above, the fraction of the sample that has non-zero values (call the
fraction fnz) is quite small. If the fraction is small enough, a simple estimate
of the upper bound on the probability of satisfying the criteria is S - ¢nas - fn2,
where S is the size of the input value space and ¢z is the maximum value that
the input density bound can have.

2. One may try running HMC with a loosened version of the criteria. One will
be able to make conclusions faster with the loosened version. If the loosened
version is unlikely to occur, then the original criteria will also be unlikely to
occur.

Input Upper Density Bound Tightness

The second factor varied is the tightness of the input upper density bound. In the
trials, the density bound gets tighter as more input parameter means are fixed at the
sample means given in Table B.2 and not allowed to vary within the bounds given in
Table 6.2. In Tables 6.3 through 6.7, this occurs as the numbers at the tops of the
columns decrease.

When the input density bound is very loose, HMC will find a high upper bound
on the probability of satisfying the criteria, so the conclusion that can be drawn
is that HMC is not of much use in this situation. To compensate somewhat, this
conclusion can be drawn quickly because probability upper bound estimates tend to
be considerably more than most thresholds that one would consider.

At the other end, when a input density bound is tight, HMC will find a quite low
upper bound on the probability of satisfying the criteria. This lets a user draw the
conclusion that the criteria are not likely to be met. Also, because the upper bound
is often much less than the acceptable threshold, this conclusion can often be quickly
quickly drawn. The main shortcoming in this situation is that finding a tight input
density bound that models the situation is not easy. Also, if the input bound is too
tight, the fraction of the sample that has non-zero values may get quite small. As
mentioned above, this would increase the sample size needed to draw a conclusion.

In between these extremes, the upper probability bound found by HMC decreases
as the input density bound is more tight. The amount of time needed to draw a
conclusion increases as the density bound tightness or looseness causes HMC to find
an upper probability bound that is closer to the chosen threshold. As mentioned
before, when the probability bound is close to the threshold, HMC needs a large

71

sample to decide which side of the threshold the probability bound falls on (or that
the bound is indeed close to the threshold).
All these effects of varying the density bound tightness occur in Table 6.5.

Threshold on Acceptable Upper Probability Bound

The third (and last) factor varied is the threshold X on what is an acceptably low
upper bound on the probability of satisfying the criteria. X is set at a value such
that when the probability upper bound is below X, a user is willing to say that the
criteria are not likely to be satisfied. In the trials, two values of X are used: 0.1 and
0.2.

When X is lower, one is more likely to reject a probability upper bound for being
too high and just conclude that HMC is not useful for the problem. Conversely, one
is less likely to accept a probability upper bound as being low enough to indicate that
the criteria are unlikely to be satisfied. However, with a lower X, one is more sure
that the actual probability of satisfying the criteria is indeed low when one accepts
the upper bound as being low enough. One will reach a conclusion faster as the
threshold X is farther away from HMC’s estimates of the probability upper bound.

All the opposite things occur when X is higher.

Speed-Up Suggestions

Some possible changes to speed up HMC have already been suggested at the end of
Section 6.3.

Another possible change deals with the problem of needing a large sample when
the upper bound on the probability is near the threshold X for what is an acceptably
low upper bound on the probability. This change involves having two thresholds (X
and X3) in place of the original threshold X, where X; < X < Xj.

1. When HMC'’s estimate on the probability upper bound is clearly above X; (=2
sample standard deviations above), stop and conclude that the upper bound
that HMC is finding will be too high to be useful.

2. When HMC’s estimate on the probability upper bound is clearly below Xh, stop
and conclude that the probability of satisfying the criteria is low (below X B)-

The farther apart X; and X, are, the more likely that when the upper probability
bound estimate is close to one threshold, the estimate will be far (in terms of sample
standard deviations) from the other threshold (the one that is likely to cause HMC to
stop). This change to two thresholds will make HMC stop faster, but the conclusions
drawn are not quite the same as when only one threshold exists.

72

Chapter 7

GLO. A Moment Approximation
Method.

7.1 Introduction

This chapter describes a method named GLO for analyzing continuous systems which
can be described by a static model. Given a set of equations modeling a system’s
steady-state conditions, GLO will use input parameter moments (means, variances,
etc.) to approximate the output and intermediate parameter moments and distri-
butions; it will also find and graphically display the relative contributions of each
operation’s operands to that operation’s result by graphing the result’s and operands’
moments. One can use GLO to quickly approximate a model’s reactions to a given
set of inputs, to identify the major influences on these reactions, and to show where
one might simplify the model.

GLO works by manipulating moments (means, variances, etc.) of various param-
eters. Compared to other current techniques that also manipulate moments (means,
variances, etc.), GLO makes fewer approximations and does not require hard-to-get
higher order joint moments, like E[(z — E[z]) - (y — E[y])?].

GLO assumes that all variables are approximately Gaussian (normal) and/or LOg-
normal [3], which gives GLO its name. Products and exponentiations often result in
approximately lognormal densities; the same is true for linear combinations and Gaus-
sian densities. Both types of densities are bell-shaped with a peak near the mean,
so lognormals and Gaussians can resemble each other as well as many commonly
found distributions of values. Lognormals and Gaussians can be characterized by
giving just their means (“center” of the possible values), variances (“spread” of the
possible values), and covariances (how one variable’s value relates to another vari-
able’s value).! A simple set of equations relate the mean, variance, and covariances
of a linear combination with the corresponding information about the combination’s
operands; the same is true for products and exponentiations of lognormal operands.

1The covariances can be obtained from the corresponding variances and correlation coefficients.
Like covariances, correlations measure relationships between pairs of variables. However, correlations
are limited to values between -1 and 1, while covariances have no numeric limits. So correlations
may be easier for experts to estimate.

73

These two sets of equations show how the operands combine to produce the result of
a linear combination or product.

The next section of this chapter describes some current moment manipulation
methods. It is followed by section that gives an example of using GLO and gives a
discussion on graphing the effects of operands on an operation’s result. Afterwards
is a section is on GLO’s mathematical basis and assumptions, and then a section on
a test of those assumptions. The last section is a short summary.

7.2 Current Moment Manipulation Methods

Bjorke [5] and Pearl [29, Sec. 7.2] give methods that, like GLO, use formulas to find
moments such as means and standard deviations. The methods are more limited
in that they assume independent inputs and linearized equations. In addition, Pearl
assumes Gaussian densities. This assumption will be quite inappropriate for densities
that turn out to be skew (asymmetric). It would have given one positive variable a
15% chance of being negative in the empirical accuracy test of GLO to be described
in a later section. However, Bjorke has a way of using numeric bounds to determine
the output density shape that might make an interesting addition to GLO.

Shachter and his associates [43, 42] describe a similar method that assumes lin-
earized equations and Gaussian densities, but does not assume independence between
variables. The method uses variable transformations to make the random variables
more Gaussian and the variables’ relationships more linear. These transformations
increase the accuracy of the results, but may obscure the relationships among the
original variables.

Another similar method [16, Ch. 6,7] is more general than Bjorke’s and the others.
However, this particular method needs hard-to-get and unintuitive higher order joint
moments, like E[(z — E[z]) - (y — E[y])?], in order to accurately determine the density
shape. GLO only needs correlations. One could always assume a Gaussian density,
but as mentioned in the description on Pearl’s method, this assumption will be quite
inappropriate for densities that turn out to be skew. A partial use would be to use
the formulas in [16] to find just the operations’ means and variances. However, the
formulas for products and exponentiations are approximations, while the ones in GLO
are exact when given lognormal operands. The approximations are truncated Taylor
series expansions [49]. They ignore the higher order derivative terms and become
less accurate as these terms become more significant, such as when |z| approaches 0
for f(z) = ==, where |d*f(z)/dz*| = (k!|z|~*-1).2 These approximations resemble
GLO more as the normalized (by the means) variance and covariance magnitudes
decrease. It should be noted however, that as mentioned in Section 1.5, empirical
tests comparing this method and GLO have had mixed results.

2Mentioned to me by Alvin Drake.

74

Name | Mean | Std Dev | Correlations: co bp lap

co 5.69 1.104 1.0 -.1161 -.4100
bp 87.67 | 14.48 -.1161 1.0 .0653
lap 23.0 |6.110 -4100 .0653 1.0

Table 7.1: Input Statistics for the Blood Volume Problem

— + _uFE[bv]=5.26 L . V[bv]=0.0287
————— E[dv] (61%) —t s+ V([vo] (113%)
—= E[vv] (24%) ~—2 - Cpv,vv] (22%)

— E[pv] (15%) —V[pv] (9%)

Figure 7.1: Density Parameters for the Sum bv «— vv + pv + dv

7.3 Example & Graphing Discussion

Suppose that one has a simple model to find bv (blood volume) and svr (systemic
vascular resistance) from the inputs lap (left atrial pressure), bp (blood pressure), co
(cardiac output), and dv (dead volume). Dead volume is constant at 3.2, and the other
inputs have a joint Gaussian density with the parameters shown in Table 7.1. The
model equations are vv « (svr-0.025+0.9)-co/5.7, pv « [(lap—1.316)/59.8]1/4125,
bv «— vv + pv + dv, and svr « bp - co™ 1.

Given this input, GLO finds that bv is approximately Gaussian with a mean of
5.26 liters and a standard deviation (s.d., equals v/variance) of 0.166. GLO also finds
that svr is approximately lognormal with a mean of 16.0 mmHg/(l/min) and an s.d.
of 4.35. The svr result implies that ~ 7% of the subjects have a less than desirable
svr (the minimum desirable value is 10.4).

Besides finding the output values, it is also useful to show the relative strengths
of the contributions of the different operands to an operation’s result for the model
equations’ sums and products (the operations with more than one operand). Such a
display can show the most significant influences in a model, the insignificant influences
to eliminate if one simplifies the model, and the amount needed to alter an operand
to significantly affect a result. For sums, the display consists of two graphs. One
graph compares the components of the sum’s expected (mean or average) value (E)
with the sum’s E. Another graph does likewise with the sum’s variance (V). For
products, the description consists of similar graphs for the product’s mean (E) and
normalized variance (V,,, equals V/E?). Figures 7.1 & 7.2 give examples of graphing

—t—t—1 u Elsvr]=16.0 1wV, [svr]=0.071
v, Blbp] = 87.7 ——— -V, [co™!] (53%)

—— F[co™] = 1/5.49 ——V,.[bp] (38%)

E.[bp,co™!] = 1.0 —2 - Cp[bp, co™!] (10%)

Figure 7.2: Density Parameters for the Product svr « bp - co™!

75

a sum and product of random variables, respectively.

The graphs are based on formulas in the Basis section of the chapter. Every factor
or result is displayed with an arrow whose length is proportional to that factor/result’s
significance. The results are printed in boldface. The more significant factors are
displayed above the less significant ones. Also, right pointing arrows mark factors
that increased the result and vice-versa for left pointing ones. The combination of
several factors corresponds to the vector addition of those factors’ arrows.

Except in the graphs for the expected values of products (E[svr] in the example),
the arrow lengths are proportional to the corresponding values’ magnitudes and each
tick marks another 20% of the result. Each result is viewed as a sum of every operand’s
corresponding parameter. In the cases involving V or V,,, the sum also includes twice
the covariance (2 C) of each pair of statistically dependent operands® to compensate
for that pair’s interaction. For example, in Figure 7.1, V[bv] is a sum of V[vv] (113%
of the total), V[pv] (9% of the total), and 2 - C[pv,vv] (decreased V [bv] by 22% of the
total).

This description of graphing sums also applies to the normalized variance of a
product of random variables (V,[svr] in the example). So in Figure 7.2, V,[svr] =
Valeo™] + Vi [bp] + 2 - C,i[bp, co™?], even though svr = bp - co~1.

For graphs of the expected values of products (E[svr] in the example), the result
is viewed as a product, and the arrow lengths are proportional to the log of the corre-
sponding values’ magnitudes.* The product includes each operand’s mean and a term
for each pair of statistically dependent operands X and Y. Each term compensates
for its pair’s interaction and is the mean of the product of the pair normalized by the
product of their means (E,[X - Y] = E[X - Y]/(E[X]- E[Y])).5 For example, in Fig-
ure 7.2, sur’s mean is a product of bp’s mean (which increased the result by a factor
of 87.7), co~!’s mean (decreased the result by a factor of 5.49), and the normalized
mean of bp - co~! (“increased” E[svr] by a factor of 1).

An alternative graph format exists which explicitly displays the vector addition of
the factors’ arrows, but otherwise follows the conventions described for the original
graphs. This alternative both places more emphasis on how the operands combined
to produce a result, and is also possibly more confusing. The convention of displaying
more significant factors above less significant ones means that the upper factors give
an approximate estimate, while the lower factors adjust that estimate. For example,
Figure 7.3 shows the alternative graphs for E[svr] and V[bv]. In the V[bv] graph,
V[vv] gives the approximate V[bv] value. Adding 2-C[pv,vv] adjusts that approximate
value. Adding V/[pv] further adjusts the already adjusted value.

Based on these graphs, one can see from Figures 7.1 and 7.3 that bv is basically
dv + vv, with pv acting as a correction factor. One can also see from Figures 7.2
and 7.3 that the dependence between bp and co~! has little effect on svr over bp and
co~1’s effects independently.

3If a V,, graph, use twice the covariance normalized by the pairs’ means (2 - Cn[X,Y], equals
2-ClX,Y]/(E[X]- E[Y))).
The log is used so that the vector addition of the arrows corresponds to the multiplication of
the corresponding factors. Each tick marks a change of a factor of 2.
5The compensation terms are derived from the corresponding covariances and means.

76

I JEbp] =877 O 4Vu] (113%)
Elco™] =1/5.49f—— 2. Clpv, vv] (22%)
I:';[pv] (%)

E,[bp,co™ 1] =1.0
————E[svr]=16.0 ————V[bv]=0.0287

Figure 7.3: Alternative Graphs for E[svr] and V[bv]

In all the graphs, each factor to compensate for a pair interaction varies monoton-
ically from the factor’s identity element as the corresponding pair’s correlation varies
from zero.

7.4 Basis

The basis for GLO are rules that determine the distribution type, mean, variance
and covariances of a linear combination, product, or exponentiation when given the
corresponding information about the operation’s operands. This section gives those
rules. The derivations are in Appendix C.

For a linear combination of random variables, X = Y; a; - X;, where the a;’s
are constants and the X;’s are random variables, the following formulas hold for all
densities (mostly from [10, Ch. 4]): E[X] =Y;a; - E[X]],

V[X] = Za? . V[X,] + 222&; s Qg - C[X,',Xk] and C[X, Z] = Ea,- . C[X,‘, Z],
t 1 i<k 1
where C is the covariance between 2 variables.
In addition, when the X;’s are approximately Gaussian, then so is X:

1. For Xy = Y air - X;, the Xj’s are jointly Gaussian when the Xi’s are jointly
Gaussian [9, Ch. 14].

2. By the Central Limit Theorem, a linear combination of independent variables
tends to approach being Gaussian [10, Ch. 5]. So a linear combination of inde-
pendent and nearly jointly Gaussian variables will be more nearly Gaussian.

3. The above also holds, though more weakly, for nearly independent random vari-
ables because random variables can be broken-up into independent and depen-
dent components. For nearly independent random variables, the independent
components are the major ones.

Products and exponentiations, such as Y = [L; Y;*, where the a;’s are constants
and the Y’s are random variables, are dealt with by observing that if X =logY and
Xi = logY;, then Y = [, ¥;* corresponds to X = T, a; - X;. Also, jointly lognormal
Y:’s correspond to jointly Gaussian X;’s [3]. Combining these observations with the
equations [3, Ch. 2] (they also hold for ¥; and X;):

E[Y] = exp(E[X]+V[X]/2) and V[Y]= EYY].("®1 1)

,

(i

and the above description of X = J7;a; - X; gives the following results: Y is usually
approximately lognormal when the Y;’s are also. When the Y,"sEare onintly lognormal,
Q = T1Y; may be expressed as E[Q] = (IT; E[Yi]) - (IL: [Tick pofigey)s Where E[Y; -

viQl _ V(Y . ClY;, Y4 2
Cl@, 2] _ C[Y;, Z]
mer ozt = UGwrEg Y
For exponentiations of the form Y, the formulas are
E[Y®] = (E[Y])®- (;’2[[1;]] + 1)l ang g}?;l]] +1= (——;[[YY]] +1)%
C[z,Y?] _, ClZ,Y] a
¢ ey T e Em Y

For independent Y;’s, the E[Q] formula holds for all densities. Simplifications of the
complicated variance and covariance formulas for Q are

VAl VI, e CHRBl O Cl%Z]
7lQ "% T T R LTy e ™ TG B~ X BV 5

respectively. They hold true if all the result and summation term magnitudes are
< 1, which will usually be the case in the models to be used. These simplifications
were used to help graph V,[svr] in Figure 7.2. The exact variance and covariance
formulas were used as checks. These exact formulas can also be graphed, but the
meaning of the graphs are less comprehensible.

These formulas were derived with the help of [3], which also shows that like a
Gaussian density, a lognormal density is more or less bell-shaped with a peak near
the mean and median. Unlike Gaussian densities, lognormal ones are skewed (asym-
metric), with the mean larger than the median, which occurs in turn after the density
peak. Also, the density is defined only for positive random variable values, so use a
lognormal density to represent the magnitude of a negative random variable.

The product and exponentiation rules need approximately lognormal operands;
the same is true for the linear combination rules and Gaussian operands. When
finding a sum of products or vice-versa, GLO will need some lognormal and Gaussian
densities with the same mean and s.d. to resemble each other. To observe the degree

of resemblance, examine the ratio TI%.II_I' At zero, the two densities are the same.

As the ratio increases, the two densities will differ more in the following ways (first
two ways derived from [3, Ch. 2]):

1. The lognormal will be more skewed (Gaussians are symmetric).
m = E[Y — E[Y]]3/V®/2[Y] is the coefficient of skewness. For Gaussian den-
sities, 91 = 0, but for lognormal densities,

s.d. P43 s.d.

mean mean

7= | |-

78

2. The difference between the Gaussian and lognormal medians will increase. The
ratio of the Gaussian median to the corresponding lognormal median is

s.d.
mean

()2+ 1L

3. For positive means, a variable with a Gaussian density is more likely to have a
negative value (variables with lognormal densities only have positive values).®
With any density that is non-zero everywhere (like Gaussians), the chance that
a variable z takes on a value less than X is Pr(z < X) = f(X), a monotonically-
increasing function of X. If z is Gaussian with zero mean and unit standard
deviation (N(0,1)), one can look-up Pr(z < X) in any of the many books which
have a table of the cumulative distribution function for this Gaussian density.
If a variable z; is N(mean, s.d.) instead, and one wants to find Pr(z; < Xj),
one can convert z; into £ with £ = (2; — mean)/(s.d.) and X; into X with

X = (X1 — mean)/(s.d.). Then Pr(z < X) = Pr(z; < Xj).

Now one wants to find Pr(z; < 0), so X; = 0. This means that X = ___Igle‘?._n.
For a positive mean, |mean| = mean, so as s.d._ increases, so does =S:%:.
P ¢ ’ Mmean ’ mean-

: mean 3 3 mean o e
[=, n —
This decreases o which increases X S This increases f(X) =

Pr(z; < 0). So as]%3%[increases, so does Pr(z; < 0) for a Gaussian z;.

7.5 Empirical Accuracy Tests

GLO relies on several approximations. Empirical tests of these assumptions had
mixed results. As already mentioned in Section 1.5, some tests came out not so
well. One test that did come out well is the following: GLO was run on an earlier
version of the cardiovascular model described in Appendix B. GLO used summary
data (means, s.d.’s, correlations) on 6 parameters from 10 patients (summary data
given in Appendix B.4) to estimate the distributions of 13 of their other parameters.
The example section shows a subset of this run. These results were compared to the
values derived by finding the model’s reactions to each patient’s set of 6 parameters
and then summarizing those reactions over the 10 patients. The 13 parameters’ mean
estimates were off by < 3% of an s.d. All but one estimate were off by < 2% of the
actual mean (one was off by 7%). The s.d. estimates were off by < 11% of the actual
values. When the estimated 10th and 90th percentiles were examined to test the
density shapes, it was seen that all but one of the estimates were < 21% of one s.d.
from where they should be: for the 10%-tile estimate, between the lowest and second
lowest data points, and for the 90%-tile, between the ninth and tenth (highest) data
points. One percentile estimate was 41% off.

§For a variable y with a negative mean, one can give y a lognormal shape by letting —y have a
lognormal density.

79

7.6 Summary

GLO uses Gaussian and lognormal densities to try to improve on current methods
to help find and explain the likely steady-state reactions of complicated continuous
systems. For explanations, GLO finds and compares the significant influences on the
moments of sums and products. GLO has a theoretical advantage over the more
standard moment manipulation method which uses truncated Taylor series in that
GLO finds the exact moments for products and exponentiations of lognormal variables
while the truncated Taylor series method only approximates the moments of products
and exponentiations of any variables. However, as mentioned in Section 1.5, neither
method seems decisively “better” in empirical tests, and in fact, unfortunately, either
can produce large errors at times. Still, when the approximations hold, these methods
provide useful relationships between moments.

80

Chapter 8

Conclusions

This thesis has dealt with two problems that one can encounter in building and using a
static model of some system that is in a steady state. The first problem is constructing
a static model of an iterative dynamic sub-system which enters a steady-state not by
maintaining a single set of parameter values over time, but by steadily iterating a
sequence of actions to change parameters at a steady pace. The second problem is
using static models when one is uncertain about the distribution of parameter values.

To deal with the first problem, a program called AIS has been implemented and
tested. It takes in a description of a sequence of actions (parameter value transfor-
mations) and tries to find information associated with the symbolic average rate of
change for various parameters. The description is in a form that is easy to give and
compute from. The normal ventricle, mitral stenosis and steam engine examples pre-
sented all show some of AIS’s abilities, as well as some of the present limits of those
abilities.

Compared to some other work on automatically analyzing dynamic systems, AIS
is limited in that it only analyzes systems which have the invariant property of steadily
repeating a fixed sequence of parameter value changes. AIS takes advantage of this
invariant to make the necessary computations, and despite this limitation, AIS can
still analyze some non-trivial problems. In exchange for having this limitation, AIS
does not get lost trying to find the iterated sequence, nor is AIS limited to descriptions
in the form of a single set of differential equations. The work on AIS furthers the
ability to automatically analyze dynamic systems, a goal of much work in artificial
intelligence.

To answer the second problem, two methods have been introduced which use a
bound on the joint density of the inputs to bound the likelihood of some possible
behavior. The first is called SAB. It analytically bounds the likelihood, narrowing
the bound as more iterations are permitted. However, SAB can only use lower-bound
information on the joint density. This information is less useful than upper-bound
information. The second method is a hit-or-miss version of sample-mean Monte Carlo
technique called HMC. It only finds approximate likelihood bounds — but the accuracy
increases with the number of samples taken — and it gives a measure of the error
magnitude. Also, unlike SAB, HMC can handle both upper and lower density bounds,
and can handle larger problems than SAB can.

81

Despite uncertainty in input density shapes and parameter values, bounds on
input densities have not really been utilized to bound the chances of events. SAB
and HMC are two bounding methods which have the features of being able to handle
events beyond the ones in a pre-enumerated list, estimating the amount of error
in an answer, and giving better answers as more iterations or samples are allowed.
Unfortunately, SAB and HMC can also be quite slow and/or return ambiguous results.

Finding how parameter averages and variances are related to each other is an
aspect of the second problem not handled by SAB, HMC or the standard Monte Carlo
techniques. To deal with this aspect, a scheme called GLO to propose relationships
between parameter moments (means, variances, etc.) was developed. GLO is exact in
more situations than the more standard truncated Taylor Series scheme of estimating
moment relationships. However, in practice, neither scheme is clearly better. The
two seem to fail, often at different times, making them in some sense complements of
each other. They both can fail quite drastically, so one must be quite cautious when
trying to use either to predict moments, as opposed to proposing relationships which
are then independently checked.

The rest of this chapter is in four parts. The first two present possible future
directions for the work. The last two parts give some observations and final comments.

8.1 Future Directions for AIS

The normal ventricle and steam engine examples show that having methods that find
tighter bounds on mathematical expressions would help AIS make more conclusions.
However if a model has ambiguities to begin with, better bounding of mathematical
expressions will not help clear up those ambiguities. For instance, in the mitral
stenosis example, the model has cases in which a different value for some constant
would have both positive and negative influences on other parameters without saying
which influences are stronger.

Other limitations shown in the mitral stenosis example are the inability to infer
characteristics about a function from knowledge about its inverse, as well as an in-
ability to express knowledge about a function independent of the specific arguments
given to that function. Also, in the example, when a function « is used in an argu-
ment to another function 3, AIS cannot examine how o being different will affect the
rates of accumulation. All of these limitations are correctable with some difficulty.

A possible improvement not suggested by the examples but mentioned in Sec-
tion 2.3 would be to use QS [37, 39] in place of the present routines to determine
curve shapes. This would reduce the need for assumptions about mathematical ex-
pressions being smooth. Another possible improvement would be to let AIS use order
of magnitude reasoning [32] in its symbolic math manipulations.

At present, AIS handles behaviors where the change in parameter values in a phase
is invariant over time: each repetition of a phase changes the parameters by the same
constant amounts. A way to describe these behaviors is constant “velocity”: the
change in an accumulating parameter (like distance) is constant. A way to extend
AIS to handle other types of repetitive behavior is to look at the properties that

82

Figure 8.1: Strange “Periodic” Curve

are invariant over time in those other types of behavior while keeping in mind the
limitations imposed by the present abilities (or lack of) in automatically symbolically
solving possibly nonlinear and simultaneous equations.

Two examples of other repetitive behavior and their invariants have been briefly
mentioned in Section 2.1. That section discusses enabling AIS to handle behaviors
where either it is the change in the amount changed (or higher order of change) that
remains constant (instead of the amount changed) or the changes form a converging
series. The former addition would let AIS handle constant “acceleration” situations
(the change in the change is constant). An example of such a situation is when a
pendulum increases its motion’s amplitude by a constant amount with each back and
forth swing. The latter addition would let AIS handle situations where an iterating
system is moving from one equilibrium (steady-state) to another (after a perturbation,
the system converges to the new equilibrium). Handling these latter situations may
also need a detailed look at how an iterating system initially responds to a perturba-
tion. To get these details, one might combine AIS with a more detailed qualitative
simulation [6] of the processes involved. AIS can help to disambiguate what happens
next when the qualitative simulation is unsure as to what possible action occurs next,
and the simulation can show the possible actions just after a perturbation appears
(which temporarily violates AIS’ assumptions).

Suppose that AIS is generalized so that it can handle behaviors where each repeti-
tion of a phase may not change the parameters by the same constant amounts. Then
the definition of a periodic parameter needs revising. For example, in a pendulum
with a decaying swing, the position of the pendulum bob (mass) is not periodic in the
sense that the position does not repeat the exact same sequence of values with each
back and forth swing. This the sense used in the present design of AIS. However,
the position is periodic in the sense that it swings back and forth about the zero
position. So a possible revised definition for AIS is that a parameter is periodic when
there exists some constant value o that the parameter reaches during every iteration.
This definition will let some pretty strange curves be called periodic. For example,
a “sinusoidal” curve where each positive peak is twice the amplitude of the previous
positive peak and each negative peak is half the amplitude of the previous negative
peak would be considered periodic under this definition: each iteration passes through
the value zero (see Figure 8.1). Another possible revised definition is that a parame-
ter is periodic when there is some simple transform (function of time) that converts
the function of the parameter’s value over time into a cyclic function (like sin). This
cyclic function should be periodic in the original sense used for AIS: on each iteration,

83

the transformed parameter repeats the same exact sequence of values. With this re-
vised definition, a decaying oscillation of the form exp(—t) - cos(t) will be considered
periodic because when it is transformed by being multiplied by exp(t), it becomes
the cyclic function cos(t). Unfortunately, the reverse is also true: exp(t) will also be
considered periodic because it will be transformed into cos(t) by being multiplied by
the “simple” function exp(—t) - cos(t). A good definition of being periodic remains
elusive and may in fact be dependent on the purpose for having the label “periodic”.

A generalization of AIS would also need a revised definition for accumulating pa-
rameters to accommodate parameters whose average value is changing by potentially
different amounts on each iteration. An example of such a parameter is one which
has the above curve, where the value averaged over an iteration increases with each
iteration and the amount of the increase changes from one iteration to the next.

Often, modeling involves deciding whether or not to make certain simplifying
assumptions that make it possible/easier to draw certain conclusions when the as-
sumptions are true. To enable AIS to decide on which assumptions to make, one
might add to AIS some of the work done in [1, 28, 12].

At present, one cannot input to AIS such a situation where the phase equations
are conditional on certain parameter values. Enabling AIS to handle such situations
would mean that AIS will need to detect and deal with when different phase equations
are active on different iterations of an action sequence.

8.2 Future Directions for SAB and HMC

This section has two parts. The first presents some possible improvements for SAB
and the second presents some possible improvements for HMC. Unfortunately, none
of the proposed improvements for SAB would enable it to handle an upper bound on
an input parameter value density.

Possible future work on SAB itself includes testing how large a problem it can
handle and expanding it to more quickly bound a variable’s mean, variance, median,
90% confidence interval, etc. One can also explore splitting a region at the selected
variable’s median value (or some approximation) within the region. This can han-
dle infinite intervals (bisection cannot), which permits an initial region where each
variable is within the all-inclusive range of [—00, 00].

There are also two other possible alternatives for splitting regions in step 2(b)ii of
Section 5.3.1 (splitting unsure regions in SAB’s main loop). A description of these two
possibilities and why I do not plan to try them is as follows: In the first alternative,
instead of bisecting a region o along some variable z,

1. use the SAB bounding mechanism to find the minimum (/) and maximum (R)
possible values of z in « that can satisfy the criteria.

2. If no values of z in a are excluded (I and & are the extreme z values in a), use
another method to split a.

3. Otherwise, split « into three pieces along z: in first piece, z < [, in the second
piece, | < z < h, and in the third piece, b < z. By the way the split is done,

84

the first and third pieces definitely fail the criteria. The second (middle) piece
will remain unsure.

This alternative quickly marks off the regions that fail the criteria. It does not
help with dividing regions to produce better bounds on the probability of being in
some region. Unfortunately, as mentioned in the section on SAB’s problems, finding
regions’ probability bounds is SAB’s weak point, so this alternative will not help SAB
much.

The second alternative is to permit non-rectangular regions. This lets SAB split
a region along an edge formed by a part of the criteria, which will speed-up the
splitting of unsure regions into ones that either always pass or always fail the criteria.
One needs to be careful about the resulting regions’ shapes, or finding their volume
(needed to bound the probability of being in the region) will be difficult. For the same
reason as mentioned for the first alternative, this alternative will not help much, so I
do not plan to try it.

Sometimes, one might use SAB to test many sets of criteria on a particular model
and input. A way to eliminate much of the computation needed in this situation is
to reuse the regions made in response to one set of criteria to examine the other sets
of criteria.

Possible future work on HMC includes employing it to run the cardiovascular
model mentioned in Section 6.3 in order to examine the effects of heart disease ther-
apies. To speed up HMC, one might try variance reduction techniques for MC algo-
rithms (like stratified sampling), the method suggested in Section 6.3 on using the
criteria to cut down on the space of possible input values that needs to be sampled
from, and the method suggested in at the end of Section 6.4 on using two thresholds.
Probably the method with the most speed-up potential is the brute-force approach of
examining sample points in parallel. Parallel examination is easy to do because each
of the points can be examined independently from the other points.

On matters other than algorithms, work needs to be done on finding the types of
density bounds that are the most common, easiest to specify, and most useful. Can-
didates for easy-to-specify bounds are common densities with bounded parameters.
An example is a Gaussian density with a mean between 0 and 1. One can generate
such bounds by using information from parameter confidence intervals. Besides being
easy-to-specify, a density bound needs to be tight enough for HMC to find a useful
result: one that gives a low upper bound on the probability of some event occurring.

8.3 Observations

8.3.1 AIS

Work on AIS is an example of how the term “steady-state” is view dependent. A
system is at a steady-state when its parameters are not changing with time. How-
ever, if (as is usual) one is only concerned with some of the parameters, then for one’s
purposes, regardless of how the parameters are changing or not changing in value, the

85

system is at a steady-state when all the parameters of concern are maintaining con-
stant values. With AIS, an iterating system can be viewed as being at a steady-state
because for any non-constant system parameter, one is only interested in examining
variants or functions of that parameter that stay constant: For a periodic parame-
ter, the variants are the extreme values. For an accumulating parameter, the variant
is the averaged rate of change in value over an iteration. The last variant is a bit
strange in that what is claimed as constant is the particular function of time that is
followed by an accumulating parameter averaged over an iteration. In this case, the
function has the form a-t+ b, where a and b are constants, and ¢ is time. Still, it does
not seem too bizarre to say some system is at a steady-state because the rate(s) of
change is constant (a is constant). However, what if a parameter constantly follows
a particular function like ¢ - sin(t), for which there are no obvious characteristics (like
some derivative) that stay constant? Would one be comfortable describing such a
system as being at a steady-state? Probably not.

Still, even if such systems are not described as being in a steady-state, finding
the function of time that a parameter “constantly” follows is useful. That is what
differential equation solvers do. In fact, one way to look at AIS is that it is a sim-
ple method to solve a certain class of differential equations. Future work includes
expanding the class of equations that AIS can handle, and finding other classes of
equations that can be handled with other simple techniques.

AIS is also an example of a method to perform abstraction/aggregation. In this
case, the abstraction/aggregation is over time, as opposed to space, parts, organ
systems, etc.

8.3.2 Predicting with Varying Inputs

Much of this thesis deals with the task of predicting about how likely certain events
are to occur in a system as complicated as the human cardiovascular system when the
parameters can vary as much as in the human population (as opposed to the fluctua-
tions of an individual over time). For this task, methods to estimate the relationships
between parameter moments (means, variances, etc.) are sometimes useful at giving
these relationships. However, the estimates can be quite inaccurate and there are no
real guidelines for predicting when this will happen. So these methods to manipulate
moment relationships are not so useful for actually making the predictions.

Monte Carlo simulation sometimes seems to work well for this task. It will work
well when one can make a good characterization of the input parameter probabil-
ity distribution. Unfortunately, finding a good characterization can be tricky when
the “standard” multivariate probability densities (like jointly Gaussian or lognormal)
don’t seem to work. One way to use not so “standard” densities is given by Iman
and Conover in [21]. Unfortunately, as mentioned in Section 4.2, with this method,
one is not sure of how the input density is characterized beyond its marginals and
correlation structure. It would be helpful if one could make some general statement
about this method like the type made for the maximum entropy method: “It finds
the density which is consistent with the given information and which maximizes the
independence between the density’s variables.”

86

Having users place a bound on the input density is the alternative developed in
this thesis for when Monte Carlo simulation does not work well. One of the methods
in this thesis, SAB, produces analytic bounds on the probability of satisfying some
criteria, but cannot deal with models having the size of the cardiovascular model
used in this thesis. HMC, the other method in this thesis, is a type of Monte Carlo.
Given a model of this size, HMC can sometimes make useful statements about the
probability of certain events occurring being low. However, HMC may take a long
time to conclude such statements, and if the given input density bound is too loose,
may not be able to make very many, if any, useful conclusions. The latter is not too
surprising,.

So when trying to predict the likelihood of certain events in a system with the
complexity and parameter variability of the human cardiovascular system, try using
Monte Carlo simulation first. If this does not work well, try deriving an upper bound
on the input parameter probability density and using HMC. Iman and Conover’s work
([21]) has possibilities, but the work needs to be analyzed more.

8.3.3 All The Systems

This thesis present a number of different methods. Most of them: AIS, SAB and
HMC, can be viewed as examples of constraint manipulation methods. That is,
they all deal with information in not which everything needs to be known, but what
is known is thought to be consistent. The methods try to conclude as much as
possible with what is known, and the more that is known, the more they can conclude.
Actually, many methods that do not have to handle conflicting information (beyond
detecting it and stopping) can be viewed as types of constraint manipulation methods.

These presented methods also show how both symbolic and numeric techniques are
needed to reason about continuous systems. In addition, these methods are examples
of the two types of methods needed to reason about a continuous system: methods
to help construct a model of that system and methods to observe what that model
has to say about a particular situation.

Many potential model users are mainly interested/knowledgeable in some specific
domain and not so much in modeling formalisms. To make model construction more
accessible to such users, one needs methods that automatically construct /transform a
piece of a model from an easier-to-give description of the part being modeled. AIS is
an example of such a method: it builds a part of a steady-state model by transforming
a description of an iterative process. As can be seen from this example, such methods
need to perform symbol manipulation to create a model.

By itself, a model does not indicate how the modeled system might behave in a
particular situation or set of situations. To predict how the system behaves, one needs
methods to evaluate the model at the set of parameters values (or range of values
or distribution of values or some combination of these) that describes the situation.
This evaluation involves manipulating numbers. It also will probably involve some
symbol manipulation in order to get the model’s expressions in the form needed for
evaluation. Many of the so called numeric methods are methods to perform such
evaluations. Often, the symbol manipulation needed for these methods have been

87

hidden by having a user perform the needed manipulations (such as solving equations
and taking derivatives) before the problem is handed over to a computer. SAB, HMC,
and GLO are examples of these evaluation methods, as are Monte Carlo and interval
arithmetic methods.

8.4 Final Comments

The methods presented here help one reason about continuous systems, but much
work remains to be done: all the presented methods are limited in the types of prob-
lems they can handle, and they sometimes can take a long time to derive an answer.
More specifically, AIS combines a knowledge representation scheme for describing
iterative dynamic systems with knowledge about certain behavioral invariants over
time to analyze a small but useful subset of dynamic systems. HMC lets one ana-
lyze steady-state systems when only a bound on the probability density of the input
parameter values is known, but HMC may take a long time to find a result, and the
result may be quite ambiguous.

88

Appendix A

Some Region Probability Bounds
Derivations

This appendix shows derivations for some of the expressions that bound the proba-
bility of being in a region a. Let f(z,...,z,) be the probability density, and within
a let z; range between /; and h;. Then the probability of being in « is

hn hy
F = A /11 f(z1y...,z,)dzy ... de,.

A.1 Basic Bound

This section derives the following lower bound on F":

(T1(h: —)]femin f(z, ..., za)],

=1

which is the ‘volume’ of the region multiplied by the lowest density value within it.
The minimization of f is over the z; through z, values within a.

b b
F > '/z,. /11 [min f(z4,...,z,)]d2; ... d2,
hn hi
= [mln f(ml’ ’xn)] /I;. dmn /I; dml

> [min f(zy, .., 2a)] [[(hi — &)

1=1

A.2 Bound Using Monotonicity
This section shows that if 9f/dz; is always > 0 in «, then

F 2 ([T = DllGnin Sy, 20) + (min o (s ..,) (B,

89

where the minimization of f is over the z; through z, values within « (min, means
that z, is NOT part of the minimization), and the minimization of 8f/dz, is over
the z; through z, values within a.

F = /:"---/hlf(zl,...,:c,.)d:cl...da:
= /h [f(ll, Toy...yTy) + / (:1:1, .y ZTp)dzy]dzy ... d2
= /1" / (f(h,z2y. .. 20) +/ [E (xl, xn) da;

Since the z;’s are integrated independently of one another, dz;/dz; is 0 for i # 1 and
1 for : = 1. So, the sum collapses down to the 8f/8z; term:

]dzl]dxl

hn hy
F = ‘/In o /11 [f(ll) Ta,. 27",) + / (271, zn)dxl]dzl ...dz

> /I" /Ilhl[(nljn Flhy 22, 20)) + /I (rnina—a{l(:cl,...,:c,.))d:cl]d:cl...dz
> | /I " [(min f(I1, 22, ...,) + (min g—i(xl,) /I dz,dz,] x
" donee [e
b af n
2 [lmin f(h, 2., 20)) + (min g (o, o) (o1 = B)ldaa] T (B — 1)
b =2
> [[(min f(I1, 3, - 2a)) — tl(nﬁn—(zl,...,z,.m). do
+(min gfl (21, ., 2a)) / z1dzy)] 1‘[2(h — 1)
> [(min f(h,22,...,2)) (ks —)
i g (e, -~)+ L Tl
2 [(min f(h, 72, xn))(h1—11)+(rmn—(z1, ,n))("‘—z"— JTT(h:
> [(min f(b, 22,) + in g o, 2) BB Tl - 1)

A.3 Bound Using Convexity

This section shows that if 6?f/dz} is always < 0 in & (convex down), then

F> [H(h — I)][(min f(l, 22, ...,2,)) + (min f(h1, 22, ...,2.))]/2,

=1

90

where the minimization of f is over the z; through z, values within « (min, means
that z; is NOT part of the minimization). Within «, f is convex down with respect
to zy, so f(z1,...,2,) is > than the linear combination of

Q(zl)f(ll,m% seey zn) + (1 - Q(zl))f(hl, T2y..., zn),
where ¢(z,) = (21 — h)/(h1 = 1). So,
F > /I,,h“ .. ./:l lg(z1)f (i, 22y 20) + (1 = g(21)) f (R, 2o, , Zp)|dzy . .. de,

> /z,,h" - " la(ex)(min f(h, 22, 22)
+(1- q(z1))(min f(hq, 23, ... ,2,))lde; . .. dz,,

> [(min fnenee2) [ale)den
hy n 2
+(min f(hy, 23, . ., 2)) /I (1 = ¢(21))dz4] /I" dz, - fl " dz,
> [(min f(Iy, 72, ..., 2)) (AL =1 ph
* hi—14 ™
. $¥/2 —_ 11.'131 h i
+(min f(hy1,zg,... yTq))[zy — 22— Fr ,l‘] H(h,- -1
* hl - Il =2
> [(emn £ (0, e,) (5 0) + (min S by 2. 20)) () T — B
=2
> [(min f(l, 72, ,2a)) + (min f(hr, 22, 2] L(hs — 1)]/2

i=1

91

Appendix B

Cardiovascular Model

This appendix gives a description of a simplified version of the human cardiovascular
model [25, 26] that is used in the thesis. The model has 58 variables and constants.
They are listed in Section B.1. Inequality constraints on them are given in Section B.2.
Equations involving variables and constants are in Section B.3. Section B.4 gives the
input for the larger example for HMC shown in Section 6.3. The model in this
appendix differs from the one in the references in the following ways:

1. The piecewise linear formulas (in equations for LAP, LVE, LVO, RVE, HR) in
the original model were transformed into formulas using exponentiation with
constants. The latter formulas are easier to deal with when solving for an
arbitrary variable in the formula.

2. The system is assumed always to be in equilibrium: The condition RVO = CO
is added.

B.1 Variables and Constants

The model variables and constants are:

AR : A measure of how bad the Aortic Regurgitation (a disease) is. The higher the
value, the worse the effects.

ARF: The rate at which Aortic Regurgitation causes blood to Flow back into the
heart.

AS': A measure of how bad the Aortic Stenosis (a disease) is. The higher the value,
the worse the effects.

BB: A measure of the amount of Beta-Blocker (a type of drug) given. The measure
is monotonic in the amount given.

bhr: the Base Heart Rate
BP: Blood Pressure

92

bpb : the Blood Pressure Base

bsvr: Coefficient for the effect of Beta-blocker on SVR. A constant set to —0.4.
BV the total Blood Volume in the body

CO: Cardiac Output

DT : Diastolic Time

dth : Diastolic Time Base, a constant set to 42.7

dv: Dead Volume, a constant set to 3.2

E': A measure of the amount of Exercise. The higher the value, the harder a person
is exercising.

evv: Coeflicient for the effect of Exercise on Venous-Volume. A constant set to 0.11.

H: A measure of the amount of Hydralazine (a drug) given. The measure is mono-
tonic in the amount given.

hi: Coeflicient for the effect of Hydralazine on the Inotropic state. A constant set to
0.3.

HR : Heart Rate

I: Inotropic state

LAP: Left Atrial Pressure

LVC': Left Ventricular Compliance

LVE: How much the Left Ventricle Empties at the end of compressing it compared
to normal. 1.0 is normal, less means that less of the chamber is emptied.

LVEDP: Left Ventricular End Diastolic Pressure
LVO: Left Ventricular Output
lvok1 : a constant for finding LVO

LVSF: Left Ventricular Systolic Function, a measure of the left ventricle’s ‘strength’.
1.0 is normal, less means a weaker left ventricle.

lvsfb : Left Ventricular Systolic Function Base

MS: A measure of how bad the Mitral Stenosis (a disease) is. The higher the value,
the worse the effects.

N: A measure of the amount of Nitroglycerin (a drug) given. The measure is mono-
tonic in the amount given.

93

nks : Coeflicient for the effect of Nitroglycerin on SVR. A constant set to 0.

nkv: Coeflicient for the effect of Nitroglycerin on Venous constriction. A constant
set to 0.12.

PAP: Pulmonary Arterial Pressure

PV: Pulmonary Volume (volume of blood in the pulmonary area)
PVR : Pulmonary Vascular Resistance

purkl : a constant for finding PVR

pvrk2 : another constant for finding PVR, set to 0.17

RAP: Right Atrial Pressure

RVC': Right Ventricular Compliance

RVE': Like LVE, but for the right ventricle.

RVEDP: Right Ventricular End Diastolic Pressure

RVO: Right Ventricular Output

rvokl : a constant for finding the RVO

RVR : the Resistance of the Venous Return

RVSF: Like LVSF, but for the right ventricle.

rusfb : Right Ventricular Systolic Function Base, a constant set to 1.0
SP: Systolic Pressure

55 : Amount of Sympathetic Stimulation. 1.0 is at normal or rest state.

sse : Coeflicient for the effect on Sympathetic Stimulation of Exercise. A constant
set to 47.5.

ST : Systolic Time

stb : Systolic Time Base, a constant set to 60 — dtb

SVR : Systemic Vascular Resistance

svrb : Systemic Vascular Resistance Base

svre: Coefficient for the effect on SVR of Exercise. A constant set to —4.65.
svrr: SVR Response, a constant set to 5.0

ts: Time Slope, a constant set to 0.075

94

var Ib ub var Ib ub var b ub
AR 0.0 LvC 0.0 RVE 0.0 2.0
ARF| 0.0 LVE 0.0 2.0 RVEDP| —-2.0 | 20.0
AS 0.0 LVEDP| 2.0 40.0 || RVO 1.0 30.0
BB 0.0 LVO 1.0 30.0 rvok] —-20.0

bhr | 45.0 | 110.0 || lwok1 —-16.5 RVR 1.0 2.0
BP |50.0 (200.0 || LVSF 0.0 2.0 RVSF 0.0 2.0
bpdb | 50.0 | 150.0 || lvsfd 0.0 rvsfb 0.0

BV | 30| 8.0 MS 0.0 10.0 || SP 50.0 | 250.0
co 1.0 | 30.0 || N 0.0 SS 0.0 2.0
DT]20.0| 40.0 || PAP 10.0 | 100.0 || ST 20.0 | 40.0
E 0.0 | 5.0 Py 0.3 8.0 SVR 5.0 40.0
H 0.0 PVR 0.1 6.0 svrb 4.0 20.0
HR |25.0 | 250.0 || pvrk1 -5.1 VS 0.0 5.0
I 0.0 2.0 RAP -2.0 | 20.0 vC 0.0

LAP | 2.0 | 60.0 || RVC 0.0 |44 0.0 8.0

Table B.1: Lower and Upper Bounds for Cardiovascular Model Variables

VS : Amount of Vagal Stimulation. 1.0 is at normal or rest state.
VC': Venous Constriction

VV: Venous Volume (volume of blood in the veins)

B.2 Inequality Constraints
Inequality constraints between the variables are:
PV< BV, VV< BV, PV+VV<BYV, LVEDP< LAP < PAP.

Lower and upper bounds on the variables and constants (ones not preset to a par-
ticular value) are given in Table B.1. The “var” columns give the variables and con-
stants, the “Ib” columns give the corresponding lower bounds, and the “ub” columns
give the corresponding upper bounds. The bounds came from a combination of defi-
nitions, physiological limits, limits set by the patient being alive, and limits derived
from a combination of the equations in Section B.3 and the limits that already exist.

B.3 Equations
The model equations are:

CO = RVO
DT = dtb—ts- HR

95

ST =

LAP
LAP

LVSF
LVE
LVO
ARF

co

SVR

BP
SP
SS

VC =

BV

RVR =

PVR
RAP
RVEDP
RVSF
RVE
RVO
PAP
VS

HR =

stb+ ts- HR

59 - PV* +1.316

LVEDP+ 620 - MS- (CO/DT)?

SS-(1+hi- H)/(1+ BB)

I- lusfb

LVSF - (1.0 — 0.002 - (SP/70.0)°)

LVC-LVE-(17.5- (1 — (0.01 - LVEDP+ 1.011)"%) — 1 + lvokI)
0.00137. (BP—30.0)- DT- AR

LVO— ARF

svrb+ SS- svrr- (1 — nks- N) - (1 — bsvr- BB) + svre- E
14+064-H

CO-SVR

BP+228 - AS-(CO/ST)?
1.0 — 0.03 - (BP — bpb — sse- E)
1.0 — nkv- N

dv

VAt P B+ (0740359 VO
SVR-0.025+0.9

(pvrkl + RVO- pork2) - (1 + 0.5 - BB)/(1 + 0.625 - H)
5.7-VV—-RVR- CO

RAP

I- rusfb

RVSF- (1.0 — 0.001 - (PAP/15.5)%)

RVC- RVE-1.375 - (RVEDP + rvok1)

LAP+ PVR- RVO

(1.0 + 0.033 - (BP — bpb))/(1 + 7 - E)

bhr+37.5- SS/(1+ BB) — 68 - (1 — (0.092 - VS+1)~°)

B.4 Input for Some of the Larger Examples

This appendix section shows the input for Sections 6.3, 6.4 and 7.5. The input is based
on a control run of experiments done on ten patients with mitral stenosis (run A in
[14]). The patients are at rest, have no drugs in their systems, and have no diseases

other than mitral stenosis. Because of this, the following equations are entered:

E=0, BP= bpb, RAP= 0, AR = AS=0, LVC= RVC'= lvsfb = rusfb = 1,

The sample means, standard deviations and correlation coefficients of the six input
parameters that can vary in value are given in Table B.2. The statistics for HR,
LVEDP and PAP are based on the reference’s data on those parameters. Assuming

BB=H=N=0.

96

Correlation Coefficients

NAME | MEAN | S.D. | BP Cco HR LAP LVEDP PAP
BP 87.67 14.48 | 1.0 -0.116 0.523 0.065 -0.458 0.130
co 5.7 1.104 | -0.116 1.0 0.420 -0.410 -0.126 -0.387
HR 82.9 14.49 | 0.523 0.420 1.0 -0.182 -0.428 -0.379
LAP 23.0 6.110 | 0.065 -0.410 -0.182 1.0 0.080 0.565
LVEDP | 9.0 3.621 | -0.458 -0.126 -0.428 0.080 1.0 -0.329
PAP 32.0 10.18 1 0.130 -0.387 -0.379 0.565 -0.329 1.0

Table B.2: Mitral Stenosis Patient Statistics

that the wedge pressure (PWP) is a good approximation of LAP, the LAP statistics
are based on the reference’s PWP measurements. Assuming that the patients have a
body surface area of 1.74m? (the average for humans), data for CO was derived from
the cardiac index (CI) measurements by using the formula CO = 1.74 . CI. Finally,
assuming that the patients have a pulse pressure of about 50mmHy, data for BP was
derived from the left ventricular systolic pressure (LV.SP) measurements by using the
formula BP = LVSP/3 + 2 - (LVSP - 50)/3.

97

Appendix C
Derivations for GLO

This appendix derives various equations that the GLO method uses to relate mo-
ments (means, variances and covariances) in linear combinations, and products &
exponentiations of jointly lognormal random variables. The appendix also derives
some equations that show some of the differences between lognormal and Gaussian
densities with the same means and variances.

C.1 Linear Combinations

First for a linear combination of random variables, X = ¥;a; - X;, where the q;’s

are constants and the X;’s are random variables, the following formulas hold for all
densities [10, Ch. 4]:

E[X] = Za;-E[X,'] (Cl)

VIX] = Yat-VIX]+2- XY - a- ClX;, Xa]. (C.2)

i i<k
For a covariance, C[X, Z], use C[X, Z] = E[X - Z] — E[X]- E[Z] and (C.1) to get
ClX,Z] = Zai - E[X;- 2] - Zai - E[X;]- E[Z]

= Y a-(BIX;- 2] - E[X)]- E[2])

CIX,2] = Yu-C[X;, 2] (C.3)

C.2 Correspondeﬁce Between Y and X =InY

Next are products and exponentiations of jointly lognormal variables, such as Y =
IL; Y;*, where the a,’s are constants and the Y;’s are jointly lognormal random vari-
ables. Before the moment equations for the products and exponcntiations can be
derived, the correspondence between the moments of the Y;’s and the Y:’s logarithms
need to be derived. This section shows these derivations.

98

Let X =InY and X; = InY;, then Y = [[; Y;* corresponds to X = Y, q; - X;.
The following two equations give the relations between the means and variances of X

and Y (they also hold for Y; and X;) [3, Ch. 2J:

E[Y] = exp(E[X]+ V[X]/2) (C.4)
VY] = EY]-(e"¥1-1). (C.5)

Rearranging (C.5) yields
VIX] =In(V[Y]/E*[Y] +1). (C.6)

Substituting this equation into (C.4) and rearranging yields

E[X] = In(E*[Y]//V[Y] + E*[Y)). (C.7)

To get the covariance relationship between X’s and Y’s, rearrange VIXi+ Xi] =
V[Xi] +2- C[X;, Xi] + V[Xy], the two variable sum version of (C.2), and then expo-
nentiate into

exp(C’[X,-, Xk]) = exp(V[X,- + Xk]/2 — V[X,]/2 - V[Xk]/Q) (CS)
Also, use the correspondence between Y = Y;-Y; and X = Xi+ Xk, and (C.4) to get

EfY;-Yi] = exp(E[X:+ Xi] + V[X; + X]/2)
VIXi+ Xi]/2 = In(E[Y: Vi) - E[X; + X;). (C.9)

Substitute E[Y; - ;] = C[Y;, Y] + E[Y}] - E[Y:] and the two variable sum version of
(C.1) into (C.9) to get

VIXi + X3]/2 = In(CIY;, Yi] + E[Y] - E[YA]) — E[X.] — E[X,]. (C.10)
Then, substitute (C.10) into (C.8) and rearrange to get

exp(C[X;, Xi]) = exp(ln(C[Y;,Yi] + E[Y]] - E[Yi])
—E[Xi] — E[X}] - V[Xi]/2 - V[X}]/2)
= (CIY;, Y] + E[Y]] - E[V4]) - exp(—E[X;] — V[Xi]/2) -
exp(—E[X}] — V[Xk]/2)
ClY;, Yi] + E[Y}] - E[Y}]
exp(E[Xi] + V[Xi]/2) - exp(E[X] + V[X)]/2)’

Substitute in versions of (C.4) and rearrange to yield

Cl;, Y]

exp(C[X;, Xi]) = E]- E[Yi]

+1. (C.11)

99

C.3 Products

This section derives the moment equations for a product of the jointly lognormal
variables ¥;’s. Let Y =[[;Y;. X; = InY means that Y; = exp(X;), so Y = exp(3; X;)
and (].D Y = E" X,’).

For E[Y], substitute (InY = ¥; X;) into (C.4) and rearrange with versions of
(C.1) and (C.2) to get

ElY] = exp(E[lnY]+ V[nY]/2)
~ exp(E[L X + VI X/2)

= exp(; E[X;) + @ ViXi+2- Z % ClX:, Xi))/2)
= exp(Z'_:(E[X.-] +V[Xil/2)) - eXP(Z'_: % ClXi, Xx])
= l:[eXP(E[Xi] +VI[Xi]/2)- l:[geXP(C[Xi, Xi])-
tl:Iow :ubstitute in versions of (C.4), (C.11) and E[Y; - Y;] = C[Y;, Yi] + E[Y]] - E[V4]
o ge

BWY] = (50D I G+

= (e [IR P,
BY) = (LB T oy). (c12)

i i<k

For V[Y], exponentiate a version of (C.6), substitute in (InY = X;) and then
(C.2), rearrange, and then substitute in versions of (C.11) and exponentiated versions

of (C.6):

(grgn +1) = ew(VIaY)
= exp(V[Y X))
= exp(Q_V[Xi]+2->) CIX;, Xi])
I i i<k
= ([Te(VIxi)) - (] E(GW(C[Xi,Xk]))Z)
yix] - VY] , ClY;, Yi] 2
(E2[Y]+1) = (1:[(Ez[K]+1)) (IZIE,(E[K]- E[Yk]+1)). (C.13)

(146;)-(146x) = 14+6;+ 6k +6; - 6. For 6;s and 6;’s which have magnitudes much
less than 1, 6; - 6 becomes relatively insignificant, and the approximation (1+6)-(1+
&) =~ 1+ & + & holds. Generalizing this approximation to n terms is L1+ &) =~

100

1+ 3=; 6. This generalized approximation assumes both that Vi : (1 +6;) = 1 (in
other words Vi : |§;] << 1) and that the multiplications can be ordered so that all
intermediate terms are &~ 1. One way to check the latter ordering assumption is to
see if the product is =~ 1.

Assuming that l-;i,[’r;,ll-l and all the |El,%%|’s and | Eﬁ'n]'g[';'k I’s are much less than 1,
one can make the following approximation for (C.13):

U+ gy = L0+ gy O+ g)
ViY] ClY:, Y]
AR AP
Subtracting one from all sides yields
vir] VY] ClY;, Yi]
By~ > P Y YL B B (G149

For C[Y, Z], substitute (InY = ¥, X;) and then a version of (C.3) into a version
of (C.11). Rearrange and then substitute in versions of (C.11) to yield

ClY, Z]

(W +1) = exp(C[(lnY),(In Z)))

= exp(C[(Z X;), (ln 2)])
= exp(z: C[X;, (In 2)])

= Hexp(C[X.,(hl Z)))

ClY, Z] C[Y;, Z]
ET Bz Y = Uamrag

Assuming that |E§"]&EZ[]ZI and all the |E—ﬁ,%|’s are << 1, one can use the same
generalized small |6;| approximation used for E%']] to get the approximation (subtract

one from both sides)

+1). (C.15)

cly,z] ClY;, Z]
E[Y]-E[Z] ~ E E[Y]-E[Z)

(C.16)

C.4 Exponentiations

Now the moments of exponentiating a lognormal variable Y are derived. This section
uses the correspondence a - X = InY™® heavily.

For E[Y“], take a version of (C.4), substitute in versions of (C.1) and (C.2), and
then versions of (C.6) and (C.7). Rearrange to get

E[Y?] = exp(Ela-X]+ V]a-X]/2)

101

= exp(a- E[X]+ad®-V[X]/2)

= exp(a - In(E’[Y)/\/VIY]+ E*[Y]) + 5‘—2 -In(V[Y}/E*[Y] +1))
E°[Y] V[Y] (a2/2)
(/(VIY]/E?[Y]) + 1)°) gy +)

= e(n(E[Y]- (gazk+) (o
VY]

B[] + 1)(a(e-1)/2) (C.17)

= exp(In(

+ 1))

E[Y*] = E*[Y] (4

For V[Y*], take a version of (C.6) and exponentiate both sides. Substitute in a
version of (C.2) and then a version of (C.6) to yield

In(V[Y*®]/E*[Y?] + 1) = Vl]a-X]
(VIY/E*[Y*] +1) = exp(V]a- X])
exp(a® - V[X])
= exp(a®-In(V[Y]/E?[Y]+1))
= exp(In(V[Y]/E*[Y]+1)*")

+1) = (;’2[[’;]] +1)%. (C.18)

(ViYe]
E2[Y9]
For C[Y*, Z], take a version of (C.11), substitute in a version of (C.3) and then
the logarithm of a version of (C.11). Rearrange to get
Cly?, Z]
—_— = - X),(InZ
(E[Ya] . E[Z] + 1) exp(C[(a)7()])

= exp(a-C[X,(In2)])

= eXp(G'ln(%Y[]Y}EZ[]—Z]'*'l))
= explla(grl 1)
oy, cwz)
T EZ Y = EvEm Y (019

C.5 Differences Between Lognormals and Gaus-
sians

This section derives some of the equations that demonstrate the difference between
a lognormal and Gaussian density with the same mean and variance. As before, let
X =InY.

Since a Gaussian density is symmetric, a Gaussian random variable has a coeffi-
cient of skewness 4; = 0. From [3, Ch. 2], the coefficient of skewness for a lognormal

102

Y is 1 = n®+ 3.9, where n? = exp(0?) — 1 and o2 is V[X]. Make the appropriate
substitutions to obtain

1= (Vexp(V[X]) = 1> +3- \Jexp(V[X]) - 1.

Then substitute in (C.6) to get

1 = (Vexp(n(V[Y]/E2[Y]+1)) —1)* 4 3-/exp(In(V[Y]/E2[Y] + 1)) — 1
= (JVIYI/E2Y])? +3-\/V[Y]/E?[Y]
= (y/(s.d.)*/mean?)? + 3 - \/(s.d.)?/mean?

.d. .d.
L L] (C.20)

mean mean

’71=|

From [3, Ch. 2], if Y is lognormal, its mean is at exp(u + 02/2) and its median
is at exp(u), where p is E[X] and o? is V[X]. Making the appropriate substitutions,
the ratio of Y’s mean to its median would be exp(V[X]/2). If Y is Gaussian, ¥’s
mean and median would be equal. So, the ratio of Y’s median if it were Gaussian to
Y’s median if it were lognormal is also exp(V[X]/2). Substituting in (C.6) yields

Gauss_median)
lognormal median exp((ln(V[Y]/ E*[Y]+ 1))/ 2)
= exp(ln \/(s.d.)z/mea.n2 +1)
Gauss_median s.d.
= 2
lognormal median (mean) +1 (C.21)

So both the coefficients of skewness and the medians indicate that as [s.d./mean|
ratio increases, a Gaussian and lognormal density with the same mean and variance
will be more different.

103

Appendix D

Using the AIS Implementation

This appendix describes how to use the current implementation of AIS, the program
that analyzes iterative dynamic systems. AIS has been implemented on Symbolics?
workstations (Lisp machines) using the Genera 7 version of the Symbolics Common
Lisp programming language. The parts of this language used are essentially Com-
mon Lisp [46] with the following additions: the LOOP iteration macro, the flavors
object oriented programming system, some graphics commands, and some system
development commands.

The next section describes how to get access to the current implementation. Then
the following sections describe the format of input and the commands to get the
output respectively.

D.1 Access

The source code for the current implementation is stored as three files on the Zermatt
file server in the MIT Lab for Computer Science: Z:>ay>cycle .lisp,
Z:>ay>cycle-analyze.lisp, and z:>ay>cycle-util.lisp. The compiled version
of the code has the same file names but with .bin replacing .lisp. The examples
used for the thesis are stored in the file z:>ay>cycle-ex.lisp. The four .1i sp files
are also listed in Appendix E. The implementation is organized as a system with the
name Cycle in the package CYCLE.

To define the system, evaluate the following (loading the file
z:>ay>lispm-init.1lisp will do this):

;Cycle system
(defpackage cycle (:use symbolics-common-lisp))

(defsystem cycle (:default-pathname "z:>ay>"
:default-package cycle :package-override cycle)
(:serial "cycle-util" "cycle" "cycle-analyze"))

The Cycle system uses an inequality reasoning system by Elisha Sacks [36, 38]. So
before loading or compiling the Cycle system, load the inequality reasoning system

1Symbolics, Inc., 8 New England Executive Park, Burlington, MA 01803.

104

by loading the file z:>elisha>qm>system. Then load in my patches to this system
by loading the file z:>ay>qmfix (this file is also listed in Appendix E).
Now load the Cycle system with the command load system cycle.

D.2 Input

To analyze an iterative dynamic system at steady-state, one needs to create an object
of the type cycle that contains a description of system to be analyzed.

D.2.1 Simplified Example

An example of this creation is the following: Suppose one had the following simplified
description of a ventricle: The symbol HR gives the rate at which the ventricle beat
sequence repeats. The constants are Pi and Po. The periodic parameters are P
and V. The accumulating parameters are the amount of work done by the blood in
moving through the ventricle (W), and the amount of blood that has entered the
ventricle (Bi) and left the ventricle (Bo). The static conditions on the constants are:

Pi< Po, Pi'?> Po®, 0< Pi, 0< Po.

There are four phases in the sequence. Each phase has a name, condition(s), and
equation(s) for value changes. In order, the phases are (as before, 7, and =, stand for
the periodic parameter n’s value at the beginning and end of the phase respectively,
and o, stands for the accumulating parameter o’s change in value during the phase):

1. Isovolumetric Contraction: 0 <V, P, = Po.

2. Ejection: 0 <V, 0<V,, V.= Po*, W.=—P. Bo., Bo,=V, - V..

3. Isovolumetric Relaxation: 0 <V, P, = Pi.

4. Filling: 0<V;, 0<V,, V.,=P* W,=P.Bi, Bi.=V,-V,.

This description would be translated into the AIS implementation’s terms by the
Lisp code shown in Figure D.1 to create an instance of a cycle object (the call to
make-instance) and then set the variable c to point to that object. The quote marks
tell the Lisp interpreter/compiler not to evaluate the argument just behind the quote
mark, but to use the argument as is.

D.2.2 Explanation of Input

The code in Figure D.1 is an example of a call to the function make-instance with
’cycle as the first argument (for the type of object to be created) and the following
keyword arguments:

:name A Lisp object of any type to use as a label for the system description on the
output.

105

(setq ¢
(make-instance ’cycle

:name ’simplified-ventricle

:rate 'HR

:constants ’(Pi Po)

:periodic-vars *(P V)

raccum-vars ’(W Bi Bo)

:conditions ’((< Pi Po) (> (expt Pi 1/2) (expt Po 2.))

(<= 0 Pi) (<= 0 Po))

:phases

*((iso-volumetric-contraction nil ((<= 0 V) (:= P_e Po)))
(ejection nil ((<= 0 V_b) (<= 0 V_e) (:= V_e (expt Po 2.))

(:= W_c (* -1. P Bo_c)) (:= Bo_c (- V_b V_e))))
(iso-volumetric-relaxation nil ((<= 0 V) (:= P_e Pi)))
(£illing nil ((<= 0 V_b) (<= 0 V_e) (:= V_e (expt Pi 1/2))
(:=W_c (x P Bi_c)) (:=Bi_c (- V_e V_b))))

)

Figure D.1: Input for Simplified Example for AIS Implementation

:rate The constant parameter that gives the rate of sequence repetition.
:constants A list of all the other constant parameters.

:periodic-vars A list of all the periodic parameters.

raccum-vars A list of all the accumulating parameters.

:conditions A list of all the conditions on the constant parameters.

:phases A list of the phases in the sequence of parameter changes that is iterated.
The list is in the order in which the phases occur.

Such a call to make-instance will perform the preliminary processing described in
Section 2.2 on the call’s arguments and (if no errors or inconsistencies are found)
return an appropriate cycle object. Details on the keyword argument values are as
follows:

Constant parameters that are numbers are represented as numbers and those that
are symbols are represented as symbols. The notation and representation in Lisp for
constant parameters that are “arbitrary” functions are dealt with later in Subsec-
tion D.2.3. All periodic and accumulating parameters are represented as symbols.

Conditions on the constant parameters are given as if they were normal Lisp
expressions that when evaluated would return true or false. Each condition is a list
with three elements. The first is one of the following symbols: <, <=, >=, >, The
second and third elements are given as if they are normal Lisp expressions that when
evaluated would return a number. The allowed functions on these expressions are +, -,
*, /, exp, expt and log. - and / are allowed at most two arguments. Besides function

106

calls, numbers and constant parameters (and partial derivatives of such parameters
that are “arbitrary” functions) are also allowed in the expressions. For example, the
condition 0 < Pi+ Po® would turn into the Lisp expression

(< 0 (+ Pi (expt Po 2.))).

Each phase is a list of three elements. The first element is a Lisp object of any
type to use as a label for the phase on the output. The second object is the Lisp
symbol nil.2 The third element is a list of all the conditions and parameter value
changes for the phase.

Before describing the elements in this list, the parameter representations used to
describe the value changes in a phase needs to be discussed. Constant parameters do
not change in value, so they are just referred to normally. The same is true for periodic
parameters when they are referenced in a phase in which they do not change in value.
In phases where a periodic parameter p does change in value, one can either refer p’s
value at the beginning (ps) or end (p.) of the phase. To do this in the implementation,
one uses a Lisp symbol which has as its name the name of the parameter’s Lisp symbol
concatenated to _b or _e respectively. So if p is represented in the implementation
by p, then p, is represented by p_b and p. by p_e. An accumulating parameter a
can only have its change in value during a phase (a,) referred to. Like with changing
periodic parameters, this is done in the implementation by concatenation, but with
-c in place of _b or _e. So if a becomes a for the implementation, a, becomes a_c.

Now back to the discussion on the elements in the list of all the conditions and
parameter value changes for a phase. With two exceptions, the notation for the
conditions in a phase is the same as the notation for the conditions for constant
parameters described earlier. The first exception is that instead of just being able to
refer to constant parameters, one can refer to all parameters in the manner described
in the previous paragraph. The second exception is that partial derivatives of constant
parameters are excluded from these conditions.

Parameter value changes are given in the form (:= 7 £), which means the “vari-
able” 7 has the value given by the expression £. m can either refer to a periodic
parameter’s value at the end of a phase (like V. given in Subsection D.2.1), or to an
accumulating parameter’s change in value during a phase (like W, given in the same
example). The expression £ has the same form as the expressions in the conditions
for constant parameters mentioned earlier with again the following two exceptions:

1. Instead of just being able to refer to constant parameters, one can refer to all
parameters in the manner described two paragraphs ago.

2. Partial derivatives of constant parameters are excluded from these expressions.

2A value other than nil would activate an old style of input that is not documented in this
appendix. Unfortunately, due to a lack of time, the steam engine example in Chapter 3 is at present
only given in the old notation in the examples file. But one can decode it by looking at the normal
ventricle example, which is given in both the new and old notations. Also, some documentation is
given in Appendix E.1 in the code that starts with “(defun new-phase-type” (definition of the
function new-phase-type) and the code that starts with “(defflavor cycle” (definition of the
“flavor” or object type of cycle).

107

D.2.3 Arbitrary Functions

This subsection describes constant parameters that are “arbitrary” functions, and
also, partial derivatives of these functions. Their description has been put off until
now because the present implementation’s notation for these functions is quite clumsy
and complicated and so I wanted to avoid explaining them until after the rest of the
input notation has been explained. This is why the example in Section D.2.1 is
“simplified” by having the more specific forms of Pi'/? and Po? in place of the more
“arbitrary” functions Vd[Pi and Vs[Po, HR] actually used in the thesis examples in
Chapter 3.

A major reason for the clumsiness and complexity is that in order to get the in-
equality reasoning system to work on these functions without re-implementing it, I
represented these functions and their partial derivatives as Lisp symbols. Unfortu-
nately this meant limitations to the notation in order keep it within (what I think
are) the legal limits of a name for a symbol. No doubt this notation can be cleaned
up quite a bit.

On with the explanation: The basic notation for an arbitrary function of the form
flz1,...,zn] is to replace the commas with dollar signs, so for example, Vs[Po, HR]
gets represented in the implementation as Vs [Po$HR]. The function name f cannot be
a number or itself a function name. The arguments z1 through zn have to be either
numbers or constant parameters. This means that if one wants to use the result of a
“standard” function as an argument (for example, a + b + ¢ or log(¢)) then one has
to put them into “arbitrary” function notation (+[abc] and loglq]).

If the function f is the inverse of another function g, then f [z1,...,2n] can be
denoted by g~-1[x1$...$xn] instead of £[x1$...$xn]. Do not use more than one
level of inversion on a function.

To denote the partial derivative of a function, a series of %’s and !’s are added
in front the notation for that function. The number of %’s between two !’s indicate
which partial derivative (Oth, 1st, 2nd, etc.) of an argument is being taken, and the
position of these %’s relative to the !’s indicate with respect to which argument this
partial derivative is being taken. The matching process starts from the left and is
in a left to right order, so that the %’s to the left of all the !’s refer to the leftmost
argument, the %’s between the two leftmost !’s refer to the next argument, etc. Some
examples:

—

. Ofla,b,c,d,e]/0a translates into %f [a$bscsdse].
2. 0fla,b,c,d,e]/Od translates into ! ! '%f [abcsdse].

(5]

. 8fla,b,¢,d,€]/0a® translates into %%Y%£ [abcsdse].

1N

. 8 fla,b,c,d,e]/8c? translates into ! ! 4Y%f [abcpdse].

(<4

. 0°fla,b,c,d,e]/(8a® - Od?) translates into Y%%! ! 1%%£ [agbscdse].

[=2]

. 8fla,b,c,d,e]/(0a® - Bb- Be?) translates into YY1 %! 1 1YYE [a$bscsdase].

108

D.3 Output

Once a cycle object (call it cycle-obj) has been created, the following function calls
(implemented as methods for the cycle object type) tell AIS to analyze the iterative
dynamic system at steady-state described by cycle-obj:

e (give-phases cycle-0bj)
This function call essentially tells AIS to repeat back what was given as input,
but with the solved version of the equations.

o (give-periodic-min/max cycle-0bj)
This function call tells AIS to find the extreme values of the periodic parameters.

o (give-rates cycle-obj print-options)
This function call tells AIS to derive the average rate of accumulation for each
accumulating parameter, an upper and lower bound for each rate, each rate’s
derivatives with respect to each simple constant parameter (symbol), and how
altering constant parameters that are functions would affect the rates. The
print-options argument(s) is optional, and can have 0 or more of the following
possible options:

:eq print the equations of the derivatives

‘curve-shapes assuming smoothness, draw the possible general curve shapes
of each rate versus each simple constant parameter (symbol)

:phases determine the contributions of each phase to a value (making the
determinations for the effects of increasing functions has not been imple-
mented yet)

Some possible versions of this function call are

1. (give-rates cycle-0bj),
2. (give-rates cycle-obj :phases),
3. (give-rates cycle-obj :curve-shapes teq), and

4. (give-rates cycle-obj :eq :phases :curve-shapes).

o (give-ratios cycle-obj ratios-to-be-done)

This function call tells AIS to derive the ratio for the rate of accumulation be-
tween pairs of accumulating parameters, each ratio’s derivatives with respect to
each simple constant parameter (symbol), and how altering constant parame-
ters that are functions would affect the ratios. The ratios-to-be-done argument
is optional. If it is not given or is not a list, all the ratios are given. If it is a
list, it should be a list of accumulating parameters. The function will then give
the ratio of the 1st accumulating parameter to the 2nd, 3rd to the 4th, etc.

Shortcomings of the present output are mentioned in Chapter 3 (AIS examples).

109

Appendix E
AIS Source Code

This appendix contains the source files for the implementation of AIS, the program
that analyzes iterative dynamic systems. AIS has been implemented on Symbolics!
workstations (Lisp machines) using the Genera 7 version of the Symbolics Common
Lisp programming language. The parts of this language used are essentially Com-
mon Lisp [46] with the following additions: the LOOP iteration macro, the flavors
object oriented programming system, some graphics commands, and some system
development commands. Actually setting up the system and running it is described
in Appendix D.1.

The first three sections of this appendix list the main parts (files) of AIS. Following
this is a section with documentation on the inequality reasoning system used by AIS.
Afterwards is a short section with a listing of a file that provides some patches for that
inequality reasoning system. The last section lists the file with the examples run on
AIS including the examples described in this thesis. Except for some reformatting to
fit the margins and corrections to spelling errors in the comments, the listings in this
appendix are as they appear in the corresponding files mentioned in Appendix D.1.
Unless otherwise noted, the files are on the Zermatt file server at the MIT Laboratory
for Computer Science under the directory path of Z:>ay>.

E.1 File Cycle.lisp

This is the main file of the AIS implementation.

333 —*%- Mode: LISP; Package: CYCLE -*-

juses Elisha Sack’s inequality reasoning system (loaded by z:>elisha>qm>system.lisp
;into package QM, formly used system CMS in package QM in Z:>elisha>oqm directory).
;When using this system, use PROGV to temporarily dynamically bind whatever context
;is being used to QM::*CONTEXT* because operations like QM::+ and QM::* will make
;calls to PARITY that assume the context is QM::*CONTEXT#* regardless of which
;context you are actually using.

(print "LOAD Z:>AY>QMFIX TO FIX SOME INEQUALITY REASONER BUGS.")

1Symbolics, Inc., 8 New England Executive Park, Burlington, MA 01803.

110

iWould like to be able to use qm::simplify in places before expressions are
;converted to CMS form (in EVAL-IN-CMS)

;Can handle functions applied to other functionms.

;Notation: F[A]l = ‘F’ applied to ‘A’; Y%F[A] = dF/dA; %%F[A] = d~2F/dA-2;

; GIXY2Z] = ‘G’ applied to ‘X’,‘Y’,‘Z’; %%'%GIXYZ] = d~3G/(dX~2#dY);

; VUAGLXYZ]=dG/dZ; etc.

; Do not put in redundant !’s. Need at least 1 argument.

; A,X,Y,Z can be numbers or names of symbols.

;Can handle functions applied to other functions (but recursive levels may be

; unanalyzable by CYCLE-ANALYZE functions). Except at top level, functions can be

; ordinary ones (+, -, *, etc.).

;If not an ordinary function, can invert it: F~-1[A] = inverse of ‘F’ applied to
‘A’. Do not use more than 1 level of inversion on a function.

;Also: variable_X, where X is C - change, B - beginning, E - end

;The implementation of the ‘F[A]’ stuff is more or less just limited to what is
;needed to make the heart ventricle example work: Flconstants] in the constants
;1list, and bounds (conditions) on F[constants] and its (partial) derivatives.

;phase-type, CYCLE vs. constant, PERIODIC, accumulating

;In the expressions in the phase-type objects, constant periodic variables can be
;referred to by using their symbol, varying periodic variables can have their
;values at either the beginning or end of the phase refered to by using their
;symbol with a “_b" or "_e" respectively appended to the end, constant
jaccumulating variables canNOT be referred to, and varying accumulating variables
ican have the amount they changed by (during the phase) refered to by using their
;symbol with a "_c" appended to the end.
(defstruct phase-type
name
;all below are lists
condition ;list of 2 argument inequalities between phase parameter expressions
jthat have to be true for this phase-type (put equalities with ‘find’
;variables)
constant ;list of symbols that are constants
constant-periodic ;list of symbols that are periodic variables that stay
jconstant in value during the phase
varying-periodic-given ;list of symbols that are periodic variables which may
;change during the phase and whose end value in the phase
;is given explicitly by the cycle description as a
;constant
varying-periodic-find ;List of periodic variables which may change during the
;phase. List in the form of 2 element lists. Each 2 element
;list has in order 1) the symbol for the periodic variable
; and 2) an expression in terms the phase parameters that
igives the end value of the periodic variable in 1)
ithe 3 slots below are the accumulating variable versions of the periodic
;variable slots above
constant-accum
varying-accum-given
varying-accum-find ;the 2nd elements in the 2 element lists give the amount to
;added (during the phase) to the accumulating variable rather

111

;than the variable’s end value

)

;key is name, value is a phase-type object
(defvar *phase-type-ht* (make-hash-table))

;Does not make all the needed input checks. The input parameters are as described
;above for the phase-type object
(defun new-phase-type
(&key name condition constant constant-periodic varying-periodic-given
varying-periodic-find constant-accum varying-accum-given varying-accum-find
&aux
(phase~type-obj
(make-phase-type
‘name name :condition condition :constant constant
:constant~periodic constant-periodic
:varying-periodic-given varying-periodic-given
:varying-periodic-find varying-periodic-find
:constant-accum constant-accum :varying-accum-given varying-accum-given
:varying-accum-find varying-accum-find))
(solved-symbols (make-hash-~table)) ;key is symbol, value is 't
ikey is a symbol, value is a list of the unsolved symbols in the expression
;equal to the symbol in the key
(unsolved-symbols (make~hash-table))
)
;8ee what’s given and unsolved initially
(mapcar #’(lambda (parm) (setf (gethash parm solved-symbols) t)) constant)
(mapcar #’(lambda (parm) (setf (gethash parm solved-symbols) t))
constant-periodic)
(mapcar
#’(lambda (parm &aux (name (symbol-name parm)))
(setf (gethash (intern (concatenate ’string name ’'"_B")) solved-symbols) t)
(setf (gethash (intern (concatenate ’string name '"_E")) solved-symbols) t))
varying-periodic-~given)
(loop for (parm end-value-expr) in varying-periodic-find
for name = (symbol-name parm)
do (setf
(gethash (intern (concatenate ’string name ’"_B")) solved~symbols) t)
(setf
(gethash (intern (concatenate ’string name *“_E")) unsolved-symbols)
(depends end-~value-expr)))
(mapcar #’(lambda (parm)
(setf (gethash
(intern (concatenate ’string (symbol-name parm) **_C"))
solved-symbols) t))
varying-accum~given)
(loop for (parm phase-value-addition) in varying-accum-find
for name = (symbol-name parm)
do (setf (gethash (intern (concatenate ’string name '"_C")) unsolved-symbols)
(depends phase-value-addition)))

iSee if the unsolved can be solved: Do type 1 substitutions for the expressions

;giving the values of "find" parameters and type 2 substitutions whenever
;possible.

112

(loop for no-newly-solved-var? = t
do (maphash
#’(lambda (parm list)
(if (loop for still-unsolved-dependent-parm in list
' alwvays (gethash still-unsolved-dependent-parm
solved-symbols))
(progn (remhash parm unsolved-symbols)
(setf (gethash parm solved-symbols) t)
(setq no-newly-solved-var? nil))))
unsolved-symbols)
until no-newly-solved-var?)

(let ((unsolved-vars nil)) ;1ist of the symbols still yet to solved
(maphash #’(lambda (var list) (push var unsolved-vars)) unsolved-symbols)
(if (not (null unsolved-vars))

(error "New-phase-type: the phase type ~a has the following unsolvable ~
parameters: ~a"
name unsolved-vars)
(setf (gethash name *phase-type-ht*) phase-type-obj)))

;make sure that the conditions have correct form and only proper solved-for
;phase parameters
(mapcar #’(lambda (cond &aux (cond-vars (depends cond)))
(it (not (and (= (list-length cond) 3.)
(member (first cond) ’(< <= >= >))))
(error "New-phase-type: the phase type ~a condition ~a is -
of the wrong form." name cond))
(mapcar #’(lambda (var)
(if (not (gethash var solved-symbols))
(error "New-phase-type: the phase type ~“a ~
condition “a has the unknown or unsolved variable “a." name cond var)))
cond-vars))
condition))

;creating cycles

(defflavor
cycle (name
rate ;symbol or number for the number of cycles per time unit, assumed
;to be >0
constants ;list of symbols and numbers that are cycle’s constants
; (numbers do not have to be listed)
periodic-vars ;list of symbols that are the cycle’s periodic variables
accum-vars ;list of symbols that are the cycle’s accumulating variables
conditions ;for now, list of 2 argument inequalities between expressions
;with the constants and/or rate as arguments
phases ;list of the following (one for each phase in the cycle), in the
;order that the phases occur.

;When the phase-type is NOT nil:

;The parameters in capitals are used when the periodic or accum
;parameter involved is ‘given’.:

; (name phase-type

; ((pt-constant-parm cycle-constant-parm) ...

H (pt-periodic-parm cycle-periodic-parm CYCLE-CONSTANT-PARM)...

113

i (pt-accum-parm cycle-accum-parm CYCLE-CONSTANT-PARM)...))
;For each correspondence between a phase-type (pt) and cycle
jparameter there is a 2 or 3 element list to give the
;correspondence. The 3rd element exists when a parameter is
;"given". This 3rd element is a cycle constant which gives the
;needed value.

;When the phase-type is NIL, the phase conditions & change
jequations are given directly. For each condition & change
;equation there is 3 element list (use _b and _e notation for
;varying periodic parms, _c notation for accumulating parms):
; (name NIL
; ((:= parm expression) ... ;change equation for PARM
H ((< expri expr2) ...)) ;phase condition ("<" can also be
H : u>u, u<=u, u>=u)
;The slots below are not given by the user, the slots are intermal and
;initialized automatically at object creation time. Each slot is an array
;of objects, one object per phase, in the same order as the phases given
;by the PHASES slot above.
corresponding-parms ;list of association lists. Each element of the
;alists marks a correspondence between a phase-type
;parameter (car) and a cycle parameter (cdr) for the
;pPhase. For varying periodic variables _b and _e
;notation is used, as is _c notation for varying
;accumulating variables.
solved-parms ;list of association lists. Each element of the alists gives
;the value (cdr) of a cycle periodic or accumulation
;variable (car). The value is an expression of 1 or more
;cycle constants. _b _e _c notation used.
unsolved-parms ;list of hash tables containing cycle periodic or
;accumulation parameters whose value is unknown. In the
jtables: key is the parameter, value is information needed
;to find the actual value of that parameter (see method
;below that sets up tables and lists). _b -6 _c notation
s;used.

iNote that cycle constants are NOT in the ‘key’ positions of either
;solved-parms or unsolved-parms.

ibelow are internal variables (also automatically initialized at creation

;time) which correspond to the cycle as a whole

accum-per-cycle ;association list of accumulating variables (keys) and

ithe amount added to them per cycle
inequality-reasoner-storage ;8torage for a context object from Elisha
;Sack’s CMS inequality reasoner

found-inconsistency? ;true if Elisha Sack’s CMS found an inconsistency in
;the conditions (not all conditions may have been
;entered, the system stops after finding the first
;inconsistency). false if not (all conditions will
;be entered).

)
O

(:initable-instance~-variables

114

name rate constants periodic-vars accum-vars conditions phases)
(:init-keywords

:name :rate :constants :periodic-vars :accum-vars :conditions :phases)
(:required-init-keywords

‘name :rate :constants :periodic-vars :accum-vars :conditions :phases)

)

;Set-up tables & lists, invoked on creating an instance of a cycle.
;Two levels of substitutions are done:
; 1) the parameters in the phase-type objects are substituted with corresponding

H ones in the cycle description (correspondences in corresponding-parms), then
; 2) the parameters in the cycle description are substituted with expressions
; using constants of the cycle (solutions in solved-parm-alists).

;Unfortunately, some 2) substitutions are done before other 1) substitutions
(defmethod (make-instance cycle)
(2key name rate constants periodic-vars accum-vars conditions phases)

(create-tables&lists self)

(find-pt&cycle-parm-correspondences-&—solve-givens self)

(solve—rest—of-periodic&accum-parms self)

(warn-of-unsolved-parms self)

(find-accums-per-cycle self)

(check&install-conditions self))

;The rest of the file contains INITIALIZATION methods for CYCLE

(defmethod (create-tables&lists cycle) ()
(setq corresponding-parms (map ’array #’(lambda (phase) nil) phases))
(setq solved-parms (map ’array #’(lambda (phase) nil) phases))
(setq unsolved-parms (map ’array #’(lambda (phase) (make-hash-table)) phases))
(setq accum-per-cycle nil)
;in oQM, used (qm::new-context)
(setq inequality-reasoner-storage (qm::make-context))
(setq found-inconsistency? nil))

;Do some preliminary checks, get correspondences between phase-type parameters and
icycle parameters for type (1) substitutions, mark "given” parameters as solved
; (for type 2 substitutions) with their end (periodic) or phase (accumulating)
;values, and mark the other non-constant parameters as unsolved. These unsolved
iparameters are either marked with ‘preceding-end’ or a coms with
; ‘no-correspondences-yet’ in the cdr. ‘preceding-end’ means that a periodic
;variable takes the same value as the end value of the same periodic variable in
;the immediate preceding phase. ‘no-correspondences~yet’ means that the formula
ifor a periodic or accumulating variable’s value is still in terms of the
;phase-type parameters and not the cycle parameters.)
; For phase-type = NIL, no phase type is given, instead the "correspondence-listg"
icontain the conditions & change equations directly: the type (1) substitutions
;are already "done".
(defmethod (find-pt&cycle-parm-correspondences-&-solve-givens cycle) ()
(loop for i from 0 ;ith phase

for (phase-name phase-type correspondence~lists) in phases

for phase-type-obj = (if phase-type (gethash phase-type *phase~type-ht#))

for unsolved-parm-ht being the array-elements of unsolved-parms

do

115

(if (not phase-type)
(1et ;phase type not given, "correspondences" are the actual phase
;jconditions and change equations
;juntil given a change equation for a periodic parm,
;assume that it is unchanged
((unchanged-periodic-parms (copy-list periodic-vars)))
(loop for expression in correspondence-lists
for (operator left right) = expression do
(if (not (= (list-length expression) 3.))
(exrror "In cycle ~“a’s phase “a, the expression ~a is illegal®
name i expression))
;make sure symbols in EXPRESSION are parameters in the cycle
(loop for parm in (depends expression)
for parm-string = (symbol-name parm)
for string-length = (length parm-string) do
(it (and (> string-length 2.)
(eql (char parm-string (- string-length 2.)) *#_))
(let* ((base-string (subseq parm-string 0 (- string-length 2.)))
(base-parm-symbol (intern base-string))
(last-char (char parm-string (- string-length 1.))))
(case last-char
(#\C (if (not (member base-parm-symbol accum-vars))
. (error "In cycle “a’s phase “a, the symbol "a is *
not a cycle accumulating parameter" name i parm)))
((#\B #\E) (if (not (member base-parm-symbol periodic-vars))
(error "In cycle “a’s phase “a, the symbol -
“a is not a cycle periodic parameter" name i parm)))
(otherwise (if (not (or (eq parm rate)
(member parm constants)
(member parm periodic-vars)))
(exrror "In cycle “a’s phase “a, the ~
parameter “a is neither a cycle constant or periodic parameter" name i parm)))))
(if (not (or (eq parm rate) (member parm constants)
(member parm periodic-vars)))
(exror "In cycle “a’s phase ~a, the parameter “a is ~
neither a cycle constant or periodic parameter" name i parm))))

(it (eq operator ’:=) ;a change equation, process it
(let* ((parm-string (symbol-name left))
(string-length (length parm-string))
(base-string (subseq parm-string 0 (- string-length 2.)))
(base-parm-symbol (intern base-string))
(last-char (char parm-string (- string-length 1.))))
(cond
((or (not (eql (char parm-string (- string-length 2.)) ’*#_))
(not (member last-char ’(#\E #\C) :test #’eql)))
(error “In cycle “a’s phase "a, the parameter “a is illegal™
name i left))
((eql last-char ’#\C)
(if (not (member base-parm-symbol accum-vars))
(error "In cycle “a’s phase ~a, the symbol “a is not a ~
cycle accumulating parameter" name i left))
(setf (gethash left unsolved-parm-ht)
(cons right (depends right))))

116

(t ;last character is a #\E
(if (not (member base-parm-symbol periodic-vars))
(error "In cycle “a’s phase “a, the symbol “a is not a -
cycle periodic parameter” name i left))
(setq unchanged-periodic~parms ;changing periodic parameter
(delete base-parm-symbol unchanged-periodic-parms))
(setf (gethash left unsolved-parm-ht)
(cons right (depends right)))
(setf (gethash (intern
(concatenate ’string base-string ’*“_B"))

unsolved-parm-ht) ’preceding-end))))))
(mapcar #’(lambda (periodic-parm)

(setf (gethash periodic-parm unsolved-parm-ht)
*preceding-end))
unchanged-periodic-parms))

(progn ;phase type given
(if (not phase-type-obj)
(error “In cycle “a’s phase ~a, the phase-type “a does not exist."
name i phase-type))
(flet ((check (pt-parm appropriate-cycle-parms desired-cycle-parm-type
&aux

(correspond? (assoc pt-parm correspondence-lists))

(cycle-parm (second correspond?)))
(cond

((not correspond?)
(format t "~Warning: In cycle "a’s phase “a, the phase type~”
parameter “a has no corresponding cycle parameter." name i pt-parm))
((not (or (member cycle-parm appropriate-cycle-parms)
(and (or (numberp cycle-parm) (eq cycle-parm rate))
(eq desired-cycle-parm-type ’constant))))
(error "In cycle “a’s phase ~a, the symbol “a is not a ~
cycle-"a." name i cycle-parm desired-cycle-parm-type)))
correspond?))
(mapcar
#’(lambda (pt-parm &aux
(pt-cycle-pair (check pt-parm constants ’constant)))
(if pt-cycle-pair
(push (cons pt-parm (second pt-cycle-pair))

(aref corresponding-parms i))))
(phase-type-constant phase-type-obj))
(mapcar

#’(lambda (pt-parm &aux
(pt-cycle-pair
(check pt-parm periodic-vars ’periodic-var)))
(if pt-cycle-pair
(let ((cycle-parm (second pt-cycle-pair)))
(push (cons pt-parm cycle-parm)
(aref corresponding-parms i))

(setf (gethash cycle-parm unsolved-parm-ht)
preceding-end))))

(phase-type-constant-periodic phase-type-obj))
(mapcar

#°(lambda (pt-parm &aux

117

(pt-cycle~value-triple
(check pt-parm periodic-vars ’periodic-var)))
(if pt-cycle-value-triple
(let* ((cycle-parm (second pt-cycle-value-triple))
(value (third pt-cycle-value-triple))
(pt-parm-name (symbol-name pt—parm))
(cycle-parm-name (symbol-name cycle-parm))
(cycle-parm-b
(intern
(concatenate ’string cycle-parm-name ’"_B")))
(cycle-parm-e
(intern
(concatenate ’string cycle-parm-name ’"_E"))))
(it (and (not (numberp value)) (not (eq value rate))
(not (member value constants)))
(error "In cycle "a’s phase “a, the symbol ~a is not -
a cycle-constant."” name i value))
(pusk (cons (interm
(concatenate ’string pt-parm-name ’"_B"))
cycle-parm-b)
(aref corresponding-parms i))
(push (cons (intern
(concatenate ’string pt-parm-name ’"_E"))
cycle-parm-e)
(aref corresponding-parms i))
(setf (gethash cycle-parm-b unsolved-parm-ht)
’preceding-end)
(push (cons cycle-parm-e value) (aref solved-parms i)))))
(phase-type-varying-periodic-given phase-type-obj))
(mapcar
#’(lambda (pt-parm-expr-pair &aux (pt-parm (first pt-parm-expr-pair))
(end-value-expr (second pt-parm-expr-pair))
(pt-cycle-pair
(check pt-parm periodic-vars ’periodic-var)))
(if pt-cycle-pair
(let* ((cycle-parm (second pt-cycle-pair))
(pt-parm-name (symbol-name pt-parm))
(cycle-parm-name (symbol-name cycle-parm))
(cycle-parm-b
(intern
(concatenate ’string cycle-parm-name *“_B")))
(cycle-parm-e
(intern
(concatenate ’string cycle-parm-name ’'*_E"))))
(push (cons (intern
(concatenate ’string pt-parm-name ’"_B"))
cycle-parm-b)
(aref corresponding-parms i))
(push (cons (intern
(concatenate ’string pt-parm-name ’'"_E"))
cycle-parm-e)
(aref corresponding-parms i))
(setf (gethash cycle-parm-b unsolved-parm-ht)
‘preceding~-end)

118

(setf (gethash cycle-parm-e unsolved-parm-ht)
(cons end-value-expr ’no-correspondences-yet)))))
(phase-type-varying-periodic~find phase-type-obj))
;do not record correspondences because constant accumulating variables
;should not be in any formula
(mapcar #’(lambda (pt-parm) (check pt-parm accum-vars ’accum-var))
(phase-type-constant-accum phase-type-obj))
(mapcar
#’(lambda (pt-parm &aux (pt-cycle-value-triple
(check pt-parm accum-vars ’accum-var)))
(if pt-cycle-value-triple
(let* ((cycle-parm (second pt-cycle-value-triple))
(value (third pt-cycle-value-triple))
(cycle-parm-p
(intern (concatenate
’string
(symbol-name cycle-parm) *"_C"))))
(it (and (not (numberp value)) (not (eq value rate))
(not (member value constants)))
(error "In cycle “a’s phase "a, the symbol “a is not ~
a cycle-constant." name i value))
(push (cons (intern (concatenate
’string (symbol-name pt-parm) ’"_C"))
cycle-parm-p)
(aref corresponding-parms i))
(push (cons cycle-parm-p value) (aref solved-parms i)))))
(phase-type-varying-accum-given phase-type-obj))
(mapcar
#’(lambda (pt-parm-expr-pair &aux (pt-parm (first pt-parm-expr-pair))
(end-value-expr (second pt-parm-expr-pair))
(pt-cycle-pair (check pt-parm accum-vars ’accum-var)))
(if pt-cycle-pair
(let* ((cycle-parm (second pt-cycle-pair))
(cycle-parm-p
(intern (concatenate
’string (symbol-name cycle-parm) **_C"))))
(push (cons (intern (concatenate
’string (symbol-name pt-parm) ’"_C"))
cycle-parm-p)
(aref corresponding-parms i))
(setf (gethash cycle-parm—p unsolved-parm-ht)
(cons end-value-expr ’no-correspondences-yet)))))
(phase-type-varying-accum-find phase-type-obj)))))))

;See which unsolved periodic & accumulating cycle variables can be solved.
(defmethod (solve-rest-of-periodic&accum-parms cycle) ()
(loop for cycle-no-newly-solved-var? = t do
(loop for i from 0 ;ith phase
for correspondence-alist being the array-elements of corresponding-parms
for solved-parm-alist being the array-elements of solved-parms
for unsolved-parm-ht being the array-elements of unsolved-parms
do
(loop for phase-no-newly-solved-var? = t do

119

(maphash
#’(lambda (parm where-to-find-value)
(typecase where-to-find-value
;periodic variable, look in the phase given by the number to see
;if the end value is solved for
(number (let* ((parm-looking-for (end-periodic-parameter-of parm)))
(if (not (gethash
parm-looking-for
(aref unsolved-parms where-to-find-value)))
(let ((value (cdr (assoc
parm-looking-for
(aref solved-parms
where-to-find-value)))))
(remhash parm unsolved-parm-ht)
(push (cons parm value) (aref solved-parms i))
(setq phase-no-newly-solved-var? nil)
;update current pointer to alist
(setq solved-parm-alist (aref solved-parms i))))))
;periodic variable, WHERE-TO-FIND-VALUE should be PRECEDING-END.
;look for the most recent preceding phase where an end value for
;that variable is given
(symbol (let# ((parm-looking-for (end-periodic-parameter-of parm))
(num-phases (length phases)))
(loop for phase first (mod (- i 1.) num-phases)
then (mod (- phase 1.) num-phases)
repeat num-phases
do
(it (gethash parm-looking-for
(aref unsolved-parms phase))
;found the preceding phase
(progn (setf (gethash parm unsolved-parm-ht) phase)
(return t)))
(let* ((parm-value
(assoc parm-looking-for
(aref solved-parms phase)))
(value (cdr parm-value)))
(if parm-value
;jfound the preceding phase & its been solved for
(progn
(remhash parm unsolved-parm-ht)
(push (cons parm value) (aref solved-parms i))
(setq phase-no-newly-solved-var? nil)
;update current pointer to alist
(setq solved-parm-alist (aref solved-parms i))
(return t))))

finally ;did not find an end value for the
;periodic variable
(error "In cycle “a’s phase ~a, the periodic -
variable “a has no value set for it at any time." name i parm))))
;a periodic or accumulating variable where the value is an

;expression is in terms of other parameters in the phase
(cons

(cond

120

((eq (cdr where-to-find-value) ’no-correspondences-yet)
;have yet to find the correspondences between the phase-type
;and cycle parameters. Do so.
(let* ((expr-in-pt-parms (car where-to-find-value))
(needed-pt-parms (depends expr-in-pt-parms)))
(if (loop for pt-parm in needed-pt~parms
thereis
(not (assoc pt-parm correspondence-alist)))
;Missing an cycle parm to correspond to a needed
;phase-type parm. Mark as unsolvable.
(setf (cdr where-to-find-value)
’missing-correspondences)
;potentially solvable, set-up expression with cycle
;parms substituting for phase~-type parms (type 1
;substitution)
(let* ((expr-in-cycle-parms
(simplify (sublis correspondence-alist
expr-in-pt~parms)))
(needed-cycle~parms
(depends expr-in-cycle-parms)))
(setf (car where-to-find-value) expr-in-cycle-parms)
;1list of dependent variables
(setf (cdr where-to-find-value) needed-cycle-parms)
;Have not really solved anything, but set flag to make
;sure the expression will be examined again with cycle
;parameters in
(setq phase-no-newly-solved-var? nil)))))
((Qistp (cdr where-to-find-value)) ;list of dependent variables
(if (loop for cycle-parm in (cdr where-to-~find-value)
always (not (gethash cycle-parm unsolved-parm-ht)))
;solvable, so go solve
(let ((value (simplify
(sublis solved-parm-alist
(car where-to-find-value)))))
(remhash parm unsolved-parm-ht)
(if (not (loop for symbol in (depends value)
always (or (eq symbol rate)
(member symbol constants))))
(error "In cycle “a’s phase “a, the solution of “a ~
for a has some non-constant parameters." name i value parm))
(push (cons parm value) (aref solved-parms i))
(setq phase-no-newly-solved-var? nil)
;jupdate current pointer to alist
(setq solved-parm-alist (aref solved-parms i)))))))))
unsolved~parm~ht)
(if (not phase-no-newly-solved-var?) (setq cycle-no~newly~solved-var? nil))

until phase-no-newly-solved-var?))
until cycle-no-newly-solved-var?))

(defun end-periodic~parameter-of
(parm %aux (parm-name (symbol-name parm)) (name-length (length parm-name))
(name-looking-for
(if (and (> name-length 2.)

121

(eql (char parm-name (- name-length 2.)) °#_))
(let ((new-name (copy-seq parm-name)))
(setf (char new-name (-~ name-length 1.)) ’#\E) ;of the form xxxx_B
new-name)
(concatenate ’string parm-name ’"_E")))) ;of the form xxxx
(intern name-looking-for))

;check and warn for any unsolved cycle parameters
(defmethod (warn-of-unsolved-parms cycle) ()
(loop for i from O ;phase number
for unsolved-parm-ht being the array-elements of unsolved-parms do
(maphash #’(lambda (parameter other)
(format t "~%Warning: the parameter “a in cycle “a’s phase “a ~
is not solved for." parameter name i))
unsolved-parm-ht)))

;find out how much accumulating variables gain each cycle
(defmethod (find-accums-per-cycle cycle) ()
(mapcar
#’(lambda (var &aux
(var_c (intern (concatenate ’string (symbol-name var) *“_C")))
(no-unsolved-found-yet t))
;list of additions to the accumulating var from each phase
(let ((list-of-partial-sums
(loop for solved-parm-alist
being the array-elements of solved-parms
for unsolved-parm-ht
being the array-elements of unsolved-parms
for pair? = (assoc var_c solved-parm-alist)
when pair? collect (cdr pair?)
else when (gethash var_c unsolved-parm~ht)
do (setq no-unsolved-found-yet nil) (return nil))))
;only record the accum variable if its accumulation is solved for in
;each phase
(if no-unsolved-found-yet
(push
(cons
var
(cond ((null list-of-partial-sums) 0.) ;nmo partial sums,
;accumulate nothing
((null (rest list-of-partial-sums)) ;1 partial sum
(simplify (first list-of-partial-sums)))
;>1 partial sums
(t (simplify (cons ’+ list-of-partial-sums)))))
accum-per-cycle))))
accum-vars))

;check cycle conditions & install all conditions into inequality reasoning object
(detmethod (check&install-conditions cycle)
(#aux (gqm-assert-functions
‘((< . ,#'qm::assert<)(<= . ,#’qm::assert<=)
(>= . ,#'qm::assert>=)(> . ,#’qm::assert>))))

122

;make context object for cycle the current context object while performing
;assertions
(progv ’(qm::*context*) (list inequality-reasoner-storage)
(block found-inconsistency
(qm: :assert< O rate) ;install O<rate
;examine & place cycle constraints
(mapcar
#’(lambda (cond &aux (type (first cond)) (vars (depends cond)))
(if (not (and (= (list-length cond) 3.) (member type ’(< <= >= >))))
(error "Cycle "a’s condition “a has the wrong form." name cond))
(loop for var in vars
when (not (or (eq var rate) (member var constants)
;also okay if some derivative of applying a
;function to a constant (this application is also
;declared a constant
(it (applying-a-function? var)
(let ((fcnl[argl-wo-derivs
(string-left-trim ’(#\% #\!)
(symbol-name var))))
(member (intern fcn[argl-wo-derivs)
(cons rate constants))))))
do (error "Variable “a in cycle "a’s condition “a is not a -
known cycle constant or a derivative of applying a function to a constant."
var name cond))
(if (not (funcall
(cdr (assoc type gm-assert-functions))
(eval-in-cms (second cond))
(eval-in-cms (third cond))))
(progn (format t “~%Found a contradiction in conditions. *
Inequality reasoner storage:")
(describe inequality-reasoner-storage)
(cerror "Mark as inconsistent, ignore rest of conditions, *
& return cycle"
"Adding cycle “a’s condition “a revealed a ~
contradiction. The inequality reasoner storage so far is given above." name cond)
(setq found-inconsistency? t)
(return-from found-inconsistency nil))))

conditions)

;for each phase, install its constraints
(loop for i from O
for (p-name p-type rest) in phases
for conditions-w/pt-parameters
= (if p-type (phase-type-condition (gethash p-type *phase-type-ht#*)))
for correspondence-alist being the array-elements of corresponding-parms
for solved-parm-alist being the array-elements of solved-parms
for unsolved-parm-ht being the array-elements of unsolved-parms do
(if (not p-type)
(loop for cond-w/cycle-parms in rest ;no phase type, giving conditions &
;change equations directly
for operator = (first cond-w/cycle-parms)
unless (eq operator ’:=)
do (it (not (assoc operator gqm-assert-functions))

123

(error "In cycle "a’s phase ~a, the “a operator in ~a ~
is illegal” name i operator cond-w/cycle-parms))
(1et ((cycle-parms-needed (depends cond-w/cycle-parms)))
(if (loop for parm in cycle-parms-needed
never (gethash parm unsolved-parm-ht))
;all the needed cycle parameters are either constants or
;have been solved, substitute periodic & accumulating
;variables with their values (type 2 substitution) &
;install the resulting condition
(let ((cond-w/subs-done
(sublis solved-parm-alist cond-w/cycle-parms)))
(if (not (funcall
(cdr (assoc (first cond-w/subs-done)
gm-assert-functions))
(eval-in-cms (second cond-w/subs-done))
(eval-in-cms (third cond-w/subs-done))))
(progn (format t “~%Found a contradiction in *
conditions. Inequality reasoner storage:")
(describe inequality-reasoner-storage)
(cerror "Mark as inconsistent, ignore -
rest of conditions, & return cycle"

“In cycle “a’s phase “a, adding ~
condition “a (which became “a) revealed a contradiction. The inequality reasoner -
storage is given above." name i cond-w/cycle-parms cond-w/subs-done)

(setq found-inconsistency? t)
(return-from found-inconsistency nil)))))))

(mapcar
#'(lambda (cond-w/pt-parms &aux
(pt-parms-needed (depends cond-w/pt-parms)))
(if (loop for parm in pt-parms-needed
alvays (assoc parm correspondence-alist))
;all condition phase-type parameters have corresponding cycle
jparameters, substitute the former with the latter (type 1
;substitution))
(let* ((cond-w/cycle-parms
(sublis correspondence-alist cond-w/pt-parms))
(cycle-parms-needed (depends cond-w/cycle-parms)))
(if (loop for parm in cycle-parms-needed
never (gethash parm unsolved-parm-ht))
;all the needed cycle parameters are either constants or
;have been solved, substitute periodic & accumulating
jvariables with their values (type 2 substitution) &
;install the resulting condition
(let ((cond-w/subs-done
(sublis solved-parm-alist cond-w/cycle-parms)))
(if (not (funcall
(cdr (assoc (first cond-w/subs-done)
gm-assert-functions))
(eval-in-cms (second cond-w/subs-done))
(eval-in-cms (third cond-w/subs-done))))
(progn (format t ““%Found a contradiction in -
conditions. Inequality reasoner storage:")

(describe inequality-reasoner-storage)

124

(cerror "Mark as inconsistent, ignore rest -
of conditions, & return cycle"

"In cycle “a’s phase ~a, adding ~
condition “a (which became "a) revealed a contradiction. The inequality reasoner -
storage is given above." name i cond-w/pt-parms cond-w/subs-done)

(setq found-inconsistency? t)
(return-from found-inconsistency nil))))))))
conditions-w/pt-parameters))))))

E.2 File Cycle-Analyze.lisp

This file contains the functions to output analysis of an iterative dynamic system
whose description has been entered and processed.

;33 —%*- Mode: LISP; Package: CYCLE -#*-
;Methods to analyze a cycle

iCan only analyze 1 level of applying functions to constants. For example, can
; analyze fcn[argl, but not fenil[fen2[argll, etc.

;The function eps is reserved for internal use.

;I1f fcn[arg] satisfies a condition, then does fcn[argl+eps[arg]? At the moment
; this is not forced to be necessarily true.

(defmethod (give-phases cycle) ()
(if found-inconsistency?
(print "Inconsistency found in conditions, not all listed conditions have
actually been entered."))
(format t "~YCONDITIONS of the cycle ~a:-%(< 0 "a)-{, “a"}" name rate conditions)
(format t "-%-%The PHASES:")
(loop for (phase-name phase-type var-correspondences) in phases
for conditions-w/pt-parameters
= (if phase-type
(phase-type-condition (gethash phase-type *phase-type-ht#)))
for correspondence-alist being the array-elements of corresponding-parms
for solved-parms-for-phase being the array-elements of solved-parms
for unsolved-parm-ht being the array-elements of unsolved-parms
for index from 0
for changed-periodic-alist = nil
for changed-accum-alist = nil do

;pull out & sort changed periodic & accumulating variables for the phase
(loop for (var . value) in solved-parms-for-phase
for var-name = (symbol-name var) for var-name-length = (length var-name)
vhen (and (>= var-name-length 3.)
(eql (char var-name (- var-name-length 2.)) ’'#_))
do (cond ((eql (char var-name (- var-name-length 1.)) *#\E)
(push (cons (subseq var-name 0. (- var-name-length 2.))
value)
changed-periodic-alist))
((eql (char var-name (- var-name-length 1.)) ’#\C)
(push (cons (subseq var-name 0. (- var-name-length 2.))
value)

125

changed-accum-alist))))
(setq changed-periodic-alist
(sort changed-periodic-alist #’string< :key #’car))
(setq changed-accum-alist (sort changed-accum-alist #’string< :key #’car))

;print out phase

(format t "~%-%Phase ~“a: "a"@[, a type of “a-].-% Added conditions:"
index phase-name phase-type)

;print out added conditions

(it (not phase-type)

ino phase-type, VAR-CORRESPONDENCES are actually expressions
(Loop for expression in var-correspondences
for operator = (first expression) do
(if (not (eq operator ’:=)) ;not a change equation, so is a condition
(let ((cycle-parms-needed (depends expression)))
(if (loop for parm in cycle-parms-needed
never (gethash parm unsolved-parm-ht))
;all the needed cycle parameters are either constants or have
;been solved, substitute periodic & accumulating variables
;with their values (type 2 substitution) & print the
;resulting condition
(format t " "a" (sublis solved-parms-for-phase expression))))))
;phase-type exists
(mapcar
#’(lambda (cond-w/pt-parms &aux
(pt-parms-needed (depends cond-w/pt-parms)))
(if (loop for parm in pt-parms-needed
always (assoc parm correspondence-alist))
;all condition phase-type parameters have corresponding cycle
;parameters, substitute the former with the latter (type 1
;substitution)
(let* ((cond-w/cycle-parms
(sublis correspondence-alist cond-w/pt-parms))
(cycle-parms-needed (depends cond-w/cycle-parms)))
(if (loop for parm in cycle-parms-needed
never (gethash parm unsolved-parm-ht))
;all the needed cycle parameters are either constants or
;have been solved, substitute periodic & accumulating
jvariables with their values (type 2 substitution) & print
;the resulting condition
(format t " ~a" (sublis solved-parms-for-phase
cond-w/cycle-parms))))))
conditions~w/pt-parameters))

(loop for (name . value) in changed-periodic-alist

for s1 = (format nil " ~a changed to" name)

for s2 = (format nil " “a." value)

when (<= (+ (length s1) (length s2)) 105.) do (format t "-%-a-a" si s2)
;indent properly on output for value

else do (format t "~Y%~a"% “a." 81 value))

(loop for (name . value) in changed-accum-alist

for s1 = (format nil " ~a increased by" name)

for 82 = (format nil " ~a." value)

when (<= (+ (length 81) (length s2)) 106.) do (format t “-%-a-a" si s2)
;indent properly on output for value

126

else do (format t "~%~a~% “a." si value))

))

;find the minimum & maximum values of the periodic parameters
(defmethod (give-periodic-min/max cycle) ()
(if found-inconsistency?
(format ¢ “~%An inconsistency was found in the cycle, the results below may -
be erronous."))
(format t “~2%For the cycle “a:" name)
(mapcar
#’(lambda (periodic-parm &aux
(symbol-for-end
(intern (concatenate ’string (symbol-name periodic-parm) *“_E")))
;1ists for solved values
(s-phase-num nil) (s-phase-name nil) (s-phase-end-value nil)
;lists of flags for solved values (<= >= are for things not found
;to be <, >, or =). For >it? nth element is T if some other value
;is found by Elisha Sacks’ CMS to be > than the nth value, nil ow.
;Similarly for the other lists.
>it? =it? <it? >=it? <=it?
;1lists for unsolved values
(u-phase-num nil) (u-phase-name nil))
;gather periodic-parm values from all the phases
(loop for phase-num from 0
for (phase-name . rest) in phases
for phase-solved-parms being the array-elements of solved-parms
for phase-unsolved-parms being the array-elements of unsolved-parms
do
(if (gethash symbol-for-end phase-unsolved-parms)
(progn (push phase-num u-phase-num) (push phase-name u-phase-name))
(let ((pair? (assoc symbol-for-end phase-solved-parms)))
(if pair?
(progn (push phase-num s-phase-num)
(push phase-name s-phase-name)
(push (cdr pair?) s-phase-end-value)))))
finally ;Create flag lists
(let ((num-solved (length s-phase-num)))
(setq >it? (make-list num-solved :initial-element nil))
(setq =it? (make-1list num-solved :initial-element nil))
(setq <it? (make-list num-solved :initial-element nil))
(setq >=it? (make-1list num-solved :initial-element nil))
(setq <=it? (make-list num-solved :initial-element nil))))

;Figure out who is greater than who & record in flag lists.
iTwo values may not have any known relationship between them.
(progv ’(qm::*context*) (list inequality-reasoner-storage)
(loop for values on s-phase-end-value
for vi = (eval-in-cms (first values))
for >11 on >it? for =11 on =it? for <1l on <it?
for <=11 on <=it? for >=11 on >=it? do
(loop for v2-prelim in (rest values)
for v2 = (eval-in-cms v2-prelim)
for >21 on (rest >11) for =21 on (rest =11)
for <21 on (rest <1l)

127

for <=21 on (rest <=11) for >=21 on (rest >=11) do
(cond ((gm::> v2 vi) (setf (first >11) t) (setf (first <21) t))
((gm::< v2 v1) (setf (first <11) t) (setf (first >21) %))
(t (Qet ((v2>=v1? (qm::>= v2 v1)) (v2<=v1? (qm::<= v2 v1)))
(cond ((and v2>=v1? v2<=v1?) (setf (first =11) t)
(setf (first =21) t))
(v2>=v1? (setf (first >=11) t)
(setf (first <=21) t))
(v2<=vi? (setf (first <=11) t)
(sett (first >=21) ¢)))))))))
;Print out
(format t "~2)For the periodic parameter “a:" periodic-parm)
(Loop with maybe-highest = nil and may-equal-highest = nil and
maybe-lowest = nil and may-equal-lowest = nil
for phase-num in s-phase-num for phase-name in s-phase-name
for end-value in s-phase-end-value
for any-larger-values? in >it?
for any-potentially-larger-values? in >=it?
for any-smaller-values? in <it?
for any-potentially-smaller-values? in <=it? do
(if (not any-larger-values?)
(if any-potentially-larger-values?
(setq may-equal-highest
(1ist* end-value phase-name phase-num may-equal-highest))
(setq maybe-highest
(1ist* end-value phase-name phase-num maybe-highest))))
(it (not any-smaller-values?)
(if any-potentially-smaller-values?
(setq may-equal-lowest
(list* end-value phase-name phase-num may-equal-lowest))
(setq maybe-lowest
(1ist* end-value phase-name phase-num maybe-lowest))))
finally
(cond
((null maybe-highest)
(format t "~2) Error, no possible maximum value found."))
((= 3. (List-length maybe-highest))
(format t ““2% The maximum value is “a, which first occurred -
in phase "a (“a)." (car maybe-highest) (cadr maybe-highest) (caddr maybe-highest)))
(t ;more than 1 value is possibly the maximum
(format t "~2), The maximum value is one of the following: -
“{ “a in phase “a (“a)"",“}." maybe-highest)))
(cond ((null may-equal-highest)) ;none, do nothing
((= 3. (1ist~length may-equal-highest))
(format t "~% The value ~a, which first occurred in ~
phase “a (“a), may equal the maximum.®
(car may-equal-highest) (cadr may-equal-highest)
(caddr may-equal-highest)))
(t ;more than 1 value may equal the maximum
(format t "“% The the following values may equal the °
maximum: “{ “a in phase "a (“a)~~,“}." may-equal-highest)))
(format ¢t "~%")
(cond
((null maybe-lowest)

128

(format t ") Error, no possible minimum value found."))
((= 3. (list-length maybe-lowest))
(format t *~% The minimum value is ~a, which first occurred
in phase "a ("a)." (car maybe-lowest) (cadr maybe-lowest) (caddr maybe-lowest)))
(t ;more than 1 value is possibly the minimum
(format t "~% The minimum value is one of the following: ~
“{ “a in phase "a (~a)~",~}." maybe-lowest)))
(cond ((null may-equal-lowest)) ;none, do nothing
((= 3. (list-length may-equal-lowest))
(format t *~% The value “a, which first occurred in -
phase “a (“a), may equal the minimum."
(car may-equal-lowest) (cadr may-equal-lowest)
(caddr may-equal-lowest)))
(t ;more than 1 value may equal the minimum
(format t "% The the following values may equal the -~
minimum: “{ "a in phase ~"a (~a)~","}." may-equal-lowest))))
(if (not (null u-phase-num))
(progn (format t "~2% The following phases have unknown values:")
(loop for name in u-phase-name for num in u-phase-num
for items-left on u-phase-name do
(if (rest items-left) ;not last item
(format t " ~a (~a)," name num)
(format t " and "a ("a)." name num))))))

periodic-vars))

;Look at the rate of accumulation for each accumulating variable, its derivatives

iw.r.t. each simple constant, and how altering functions affect the rate.
;Possible options include

; teq -print the equation of the derivative
; ‘curve-shapes —draw the possible curve shapes of the rate vs. each constant
‘phases -try to figure out the contributions of each phase to a value

; (not yet implemented for effects of increasing functions)
(defmethod

(give-rates cycle)
(&rest print-options &aux

;Hashtable of function applications in the expression of interest.
;Key is name of function (string).

;Value is a list of the names of arguments (strings) for this function.
(fcn-ht (make-hash-table :test #’equal))

(simple-constants ;constants that are NOT function applications or numbers
(loop with simple-comstants = nil

for constant in (cons rate constants) do ;treat rate as a constant
(if (not (numberp constant))
(multiple-value-bind

(fcn-name arg-string) (applying-a-function? constant)
(if fcn-name

(push arg-string (gethash fcn-name fcn-ht));function application
(push constant simple-constants))))

finally (return simple-constants)))
(phase-names (loop for (phase-name . rest) in phases collect phase-name)))

(progv ’(qm::*context*) (list inequality-reasoner-storage)

129

(format t "~)RATES of ACCUMULATION for the cycle ~a:" name)
(if found-inconsistency?
(print "Inconsistency found in conditions, ignore the bounds."))
(loop for (accum-var . accum-expr) in accum-per-cycle
for phase-contribution-symbol =
(intern (concatenate ’string (symbol-name accum-var) ’*_C"))
for phase-contributions =
(loop for phase-solved-parms being the array-elements of solved-parms
for phase-unsolved-parms
being the array-elements of unsolved-parms
collect
(if (gethash phase-contribution-symbol phase-unsolved-parms)
nil
(let ((pair? (assoc phase-contribution-symbol
phase-solved-parms)))
(if pair? (make-product rate (cdr pair?)) 0.))))
for rate-of-accum = (make-product rate accum-expr) do
(analyze-expr rate-of-accum (format nil "Rate of accumulating “a" accum-var)
’"Rate" simple-constants fcn-ht print-options
phase-contributions phase-names))))

iLook at the ratio for the rate of accumulation between pairs of accumulating
; variables, its derivatives w.r.t. each simple constant, and how altering
; functions affect the ratio.
;For the optional argument RATIOS-TO-~BE-DONE, if it is not a list, all ratios are
; given. If it is a list, the list should be that of accumulating variables.
; GIVE-RATIOS will give the the ratio of the 1st variable to the 2nd, 3rd to the
; 4th, etc.
(defmethod
(give-ratios cycle)
(#Zoptional (ratios-to-be-done :all) &aux

;Hashtable of function applications in the expression of interest.

iKey is name of function (string),

;Value is a list of the names of arguments (strings) for this function.

(fcn-ht (make-hash-table :test #’equal))

(simple-constants ;constants that are NOT function applications or numbers

(loop with simple-constants = nil
for constant in (cons rate constants) do ;treat rate as a constant
(if (not (numberp constant))
(multiple-value-bind
(fcn-name arg-string) (applying-a-function? constant)
(if fcn-name
(push arg-string (gethash fcn-name fcn-ht));function application
(push constant simple-constants))))

finally (return simple-constants))))

(progv ’(qm::*context#) (list inequality-reasoner-storage)
(format t "~%RATIOS of RATES for the cycle “a:" name)
(if found-inconsistency?
(print "Inconsistency found in conditions, ignore the bounds."))
(if (listp ratios-to-be-domne)
;look at given pairs
(loop for pairs on ratios-to-be-done by #’cddr

130

for accum-varl = (first pairs) for accum-var2 = (second pairs)
for accum-per-cyclel = (cdr (assoc accum-varl accum—-per-cycle))
for accum-per-cycle2 = (cdr (assoc accum-var2 accum-per-cycle)) do
(analyze-expr (simplify (list '/ accum-per-cyclel accum-per-cycle2))
(format nil "Ratio of accumulating “a to ~a"
accum-varl accum-var2)
'"Ratio” simple-constants fcn~ht ’(:eq :curve-shapes)))
;look at all pairs
(loop for accum-pairs on accum-per-cycle
for (accum-vari . accum-per-cyclei) = (first accum-pairs) do
(loop for (accum-var2 . accum—per-cycle2) in (rest accum-pairs) do
(analyze-expr (simplify (1list ’/ accum-per-cyclei accum-per-cycle2))
(format nil "Ratio of accumulating “a to “a"
accum-varl accum-var2)
’“Ratio" simple-constants fcn-ht
'(:eq :curve-shapes)))))))

;Auxillary function for the analysis methods above.
;For EXPR, look at it, its derivatives w.r.t. to each simple constant, and how
; altering functions affect it.
;The inequality context is assumed to be qm::*context#.
iThe optional arguments are lists of phase properties. They are only needed if the
; ‘phases option is being used.
;Print-options is a list of of the desired options. The options are:
; teq ~print the equation of the derivative
; icurve-shapes '~draw the possible curve shapes of the rate vs. each constant
:phases -try to figure out the contributions of each phase to a value
; (not yet implemented for effects of increasing functions)
(defun analyze-expr (expr long-name short-name simple-constants fcn-ht
print-options &optional
(phase-subexprs nil) (phase-names nil)
&aux (ex (eval-in-cms expr)))
(multiple-value-bind (1b 1b-ex?) (qm::1b ex)
(multiple-value-bind (ub ub-ex?) (qm::ub ex)
(let ((stringl (format nil "~a<~:[=";~] -a <~:[=";"]"a. Eq. is"
1b 1lb-ex? long-name ub-ex? ub))
(string2 (format nil " “a." expr)))
(if (<= (+ (length stringl) (length string2)) 105.)
(format t "~%~%~a"a" stringl string2)
;indent properly on output for expr
(format t “~%~%-a"% “a." stringl expr)))
(if (member :phases print-options)
(examine-phase-exprs 1b lb-ex? ub ub-ex? phase-subexprs phase-names 4))))

ifor each simple constant, find derivatives of EXPR w.r.t it
(mapcar
#(lambda (constant)
(let* ((derivi (deriv expr comstant)) (di (eval-in-cms derivi))
(deriv2 (deriv derivi comstant)) (d2 (eval-in-cms deriv2))
(phase-subexprsi (mapcar #’(lambda (subexpr)
(if subexpr (deriv subexpr constant)))
phase-subexprs)))
(multiple-value-bind (11b 11b-ex?) (qm::1b d1)

131

(multiple-value-bind (iub 1ub-ex?) (gm::ub di)
(multiple-value-bind (21b 21b-ex?) (gm::1b d2)
(multiple-value-bind (2ub 2ub-ex?) (gm::ub d2)
(if (and (numberp derivi) (zerop derivi))
(progn
(format t "~%~% ~a independent of ~a."
short-name constant)
(if (member :phases print-options)
(examine-phase-exprs
11b 11b-ex? i1ub i1ub-ex?
phase-subexprsi phase-names 6)))
(let ((str1 (format nil " ~a<~:[=";-] d~a/d(~a) -
<~:[=";"]"a. Eq. is" 11b 1lb-ex? short-name constant iub-ex? 1ub))
(str2 (format nil " ~a." derivi)))
(if (member ’:eq print-options)
(progn
(if (<= (+ (length stri) (length str2)) 105.)
(format t "~%~% a"a" strl str2)
;indent properly on output for derivi
(format t "~%~%~a"% “a." strl derivi))
(if (member :phases print-options)
(examine-phase-exprs
11b 11b-ex? 1ub 1lub-ex?
phase~subexprsi phase-names 6))
(if (and (numberp deriv2) (zerop deriv2))
(format t "~% ~a is a linear fcn. of ~a."
short-name constant)
(let ((s1 (format nil " <~a<~:[=";"] ~
d~2"a/d("a)"2 <":[=";"]"a. Eq. is" 21b 21b-ex? short-name constant 2ub-ex? 2ub))
(s2 (format nil " ~a." deriv2)))
(it (<= (+ (length s1) (length s2)) 105.)
(format t "~%"a"a" si s2)
;indent properly on output for deriv2
(format t "~¥%~a"% “a." s1 deriv2))))
(if (member :phases print-options)
(examine-phase-exprs
21b 21b-ex? 2ub 2ub-ex?
(mapcar #’(lambda (subexpr)
(if subexpr
(deriv subexpr constant)))
phase-subexprsi)
phase-names 6)))
(progn
(format t "~%~% ~a<~:[=";~] d~a/d("a) <":[=";"]"a."
11b 11b-ex? short-name
constant iub-ex? iub)
(if (member :phases print-options)
(examine-phase-exprs
11b 1lb-ex? 1iub ilub-ex?
phase-subexprsi phase-names 6))
(if (and (numberp deriv2) (zerop deriv2))
(format t "~% ~a is a linear fcn. of ~a."
short-name constant)
(format

132

t "% “a<”:[=";"] d~27a/d("a)-2 <~:[=";"]"a."
21b 21b-ex? short-name constant 2ub-ex? 2ub))
(if (member :phases print-options)
(examine-phase-exprs
21b 21b-ex? 2ub 2ub-ex?
(mapcar #’(lambda (subexpr)
(if subexpr
(deriv subexpr constant)))
phase-subexprsi)
phase-names 6))))
(if (member ’:curve-shapes print-options)
(show-curve-shape 11b 1lb-ex? iub 1ub-ex?
21b 21b-ex? 2ub 2ub-ex?
(symbol-name constant) short-name
gtandard-output 5))))))))))
simple-constants)

;for each function, observe the effects of increasing it on the EXPR (if can be

;easily done)

(maphash

#’ (lambda
(fcn-name arg-string-list)
(it
(multiple-value-bind
(bage-name take-inverse?) (function-inverse? fcn-name)
(loop for symbol in (depends expr)
thereis
(multiple-value-bind
(fcn-name2? arg-string-list2?) (applying-a-function? symbol)
(if fcn-name2?
(or
;Test to see if there is a top level function
;application in the expression that uses the same
;function as FCN-NAME but is the inverted version when
;FCN-NAME is not or vice-versa.
(multiple-value-bind
(base-name2 take-inverse2?)
(function-inverse? fcn-name2?)
(and (not (eq take-inverse? take-inverse2?))
(equal base-name base-name2)))

;Test to see if there is a lower level function
;application in the expression that uses the same
;function name as FCN-NAME
(loop with list-of-arg-string-lists
= (list arg-string-1ist27?)
while (not (null list-of-arg-string-lists))
for arg-string = (pop list-of-arg-string-lists)
thereis
(loop with args = (split-args arg-string)
while (not (null args))
for arg = (pop args)
thereis
(cond

133

((symbolp arg)
(multiple-value-bind
(fcn-name3? arg-string-list37)
(applying-a-function? arg)
(if fcn-name3?
(if
(equal
base-name
(function-inverse?
fcn-name37?))
t ;function a lower level
;fcn. application of the
;same (modulo inverting)
;as FCN-NAME, return
s true
;not the same function,
;append to arg-string
;list to look further,
;but, return nil for now
(progn
(push
arg-string-1ist3?
list-of-arg-string-lists
)
nil)))))
;ARG a complex expression, insert
;the symbols in ARG into ARGS (to
;examine later) & return nil
; (FCR-NAME not found yet)
((listp arg)
(setq args
(append (depends arg) args))
nil)))))))))

(format t "-%") Cannot analyze the effects of -a being different in ~a -
at this time." fcn-name short-name) ;too weird to analyze easily

(let* ;can analyze

;iList of (fcnlarg]l . (+ fcnlarg) eps[argl)) for each arg-string (as

;arg) mentioned with each fcn. Also assert that each eps[arg] is >0,
((substitute-pairs

(mapcar
#’(lambda (arg-string &aux
(fcn[arg]
(intern (concatenate ’string fcn-name

wnn arg-string wYny))
(eps [arg]

(intern (concatenate
’string ’“eps[" arg-string ’"]"))))
(if (not (qm::assert< 0 epsfargl)) ;contradiction found

(progn (format t "~%Found a contradiction. Inequality -
Teasoner storage:")

(describe qm::*context#)
(error "Adding condition 0<~a revealed a ~

134

contradiction. The inequality reasoner storage is given above." epsl[argl)))
(cons fcnlarg] (1list '+ fcnlargl epslargl)))
arg-string-list))
(expr2 (sublis substitute-pairs expr)))
(if (equal expr2 expr)
(format t "~%"% ~a independent of the function ~"a."
short-name fcn-name)
(let ((dif (eval-in-cms (list ’~ expr2 expr))))
(multiple-value-bind (1b 1b-ex?) (qm::1b dif)
(multiple-value-bind (ub ub-ex?) (qm::ub dif)
(if (member ’:eq print-options)
(let ((stringl (format nil * ~a<~:[=";~]1 ~-a change ~
due to inc. in the ~a fcn. <":[=";"]~a. Eq. is"
1b 1b-ex? short-name
fcn~-name ub-ex? ub))
(string2 (format nil " -a." expr2)))
(if (<= (+ (length stringl) (length string2)) 105.)
(format t "~2%~a"a" stringl string2)
;indent properly on output for expr2
(format t "~2%~a"% “a." stringl expr2)))
. (format t "~2% ~a<~:[=";*] ~a change due to inc. in *
the “a fcn. <”:[=";"]"a." 1b 1b-ex? short-name fcn-name ub-ex? ub)))))))))
fcn-ht))

iFor the expression whose LB LB-outside? UB UB-outside? is given in the arguments,
;examine the subexpressions of that expression from each phase.
;The phase subexpressions and names are given in P-subexprs and P-names
;jrespectively.
;A P-subexprs entry is nil if the subexpression in that phase is unsolved.
;Assume qm::*context# is the context for the inequality reasoning
(defun examine-phase-exprs
(1b 1b-outside? ub ub-outside? p-subexprs p-names num-spaces-to-indent &aux
(spaces (make-sequence ’string num-spaces-to-indent :initial-element #\))
;lists of the phases with a subexpression with the indicated property
(1ist-increased nil) (list-may-have-increased nil)
(1ist-may-have-decreased nil) (list-decreased nil) (list-no-effect nil)
(list-unknown-effect nil) (list-unsolved))
;Categorize the phase subexpressions
(loop for phase-name in p-names for subexpr in p-subexprs
for se = (eval-in-cms subexpr) for phase-num from 0 do
(if subexpr
(multiple-value-bind (1b 1b-ex?) (qm::1b se)
(multiple-value-bind (ub ub-ex?) (qm::ub se)
(cond ((more-than-0? 1b 1b-ex?)
(setq list-increased
(1ist* phase-num phase-name list-increased)))
((equal-0? 1b 1b-ex? ub ub-ex?)
(setq list-no-effect
(1ist* phase-num phase-name list-no-effect)))
((less~than-0? ub ub-ex?)
(setq list-decreased
(1list* phase-num phase-name list-decreased)))
((at-least-07 1b)
(setq list-may-have-increased

135

(list* phase-num phase-name list-may-have-increased)))
((at-most-07 ub)
(setq list-may-have-decreased
(list* phase-num phase-name list-may-have-decreased)))
(t (setq list-unknown-effect
(1ist#* phase-num phase-name list-unknown-effect))))))
(setq list-unsolved (list* phase-num phase-name list-unsolved))))
;Print out categories (they are in reverse order.)
(let ((expr-cat (cond ((equal-0? 1b lb-outside? ub ub-outside?) ’0-or-unknown)
((at-least-0? 1b) *>=0)
((at-most-0? ub) ’<=0)
(t ’0-or-unknown))))
(case expr-cat
(0-or-unknown
(if (not (null list-increased))
(format t "~%~aThe following phase(s) increased the value:~
“{ "a ("a)~~,"}." spaces (reverse list-increased)))
(if (not (null list-may-have-increased))
(format t "~%~aThe following phase(s) may have increased the value:~
“{ "a ("a)~",~}." spaces (reverse list-may-have-~increased)))
(if (not (null list-may-have-decreased))
(format t "~%~aThe following phase(s) may have decreased the value:~
“{ "a (“a)"~,~}." spaces (reverse list-may-have-decreased)))
(if (not (null list-decreased))
(format t "~%~aThe following phase(s) decreased the value:-"
“{ “a ("a)~","}." spaces (reverse list-decreased))))
(>=0
(if (not (null list-increased))
(format t "~%~aThe following phase(s) helped make the value as large -
as it is:"{ "a ("a)"","}." spaces (reverse list-increased)))
(if (not (null list-may-have-increased))
(format t “~%~aThe following phase(s) may have helped make the value ~
as large as it is:"{ “a (“a)"~,"}." spaces (reverse list-may-have-increased)))
(it (not (null list-may-have-decreased))
(format t "~%-aThe following phase(s) may have decreased the value:~
“{ "a (a)~=,"}." spaces (reverse list-may-have-decreased)))
(if (not (null list-decreased))
(format t “~%~aThe following phase(s) decreased the value:"
“{ "a ("a)"~,"}." spaces (reverse list-decreased))))
(<=0
(if (not (null list-decreased))
(format t "~%~aThe following phase(s) helped make the value as ~
negative as it is:“{ “a ("a)"","}." spaces (reverse list-decreased)))
(if (not (null list-may-have-decreased))
(format t "~%~aThe following phase(s) may have helped make the value as ~
negative as it is:"{ "a ("a)~~,~}." spaces (reverse list-may~have-decreased)))
(if (not (null list-may-have-increased))
(format t "~%-aThe following phase(s) may have made the value less -
negative:~{ “a (“a)"~,"}." spaces (reverse list-may-have-increased)))
(if (not (null list-increased))
(format t "~%~aThe following phase(s) made the value less negative:~
“{ "a (a)"~,"}." spaces (reverse list-increased))))))
(if (not (null list-no-effect))
(format t "-%-aThe following phase(s) had no effect:~{ ~a (ca)==,"}.»

136

spaces (reverse list-no-effect)))
(it (not (null list-unknown-effect))
(format t "-%~aThe following phase(s) had an unknown effect:~
“{ "a (~a)~",~}." spaces (reverse list-unknown-effect)))
(if (not (null list-unsolved))
(format t "~ ~aThe following phase(s) had an unsolved for effect:~
“{ a ("a)~","}." spaces (reverse list-unsolved))))

;drawing CURVES from 1st & 2nd derivatives

;For arguments:
; 1b & ub stand for lower & upper bound respectively
; 1 stands for 1st derivative, 2 for 2nd derivative
; LBO is true if the corresponding LB is just outside the actual region and is nil
; if LB is at the inside edge of the region. Similarly for UBO. So 1b=2 lbo=t ub=4
; ubo=nil means (2,4]. This follows the convention’s of Elisha Sacks’ bounding
; system.
; the axis-names are strings
(defun
show-curve-shape
(1b1 1boi ubl ubol 1b2 1bo2 ub2 ubo2 X-axis-name Y-axis-name stream
num-spaces-to-indent &aux
(spaces (make-sequence ’string num-spaces-to-indent :initial-element #\))
(possible-shape-list ;Assume a smooth curve.
;empty list means no shape possible,
;the symbol ’? means the shape is unknown
(cond ((or (qm::number<+ ubi uboi 1bi lbol) (gm::number<+ ub2 ubo2 1b2 1bo2))
nil)
((more-than-0? 1b2 1bo2)
(cond ((equal-0? 1bi 1lboi ubl ubol) nil)
((at~most-0? ubl) °’(backward-J))
((at~least-07 1b1) °(J))
(t ?(backward-J U J))))
((equal-0? 1b2 1bo2 ub2 ubo2)
(cond ((less-than-0? ubl ubol) ’(ramp-down))
((equal-0? 1b1 lboi ubil ubol) ’(flat))
((more-than-0? 1b1 1bo1) ’(ramp-up))
((at-most-07 ubl) ’(ramp-down flat))
((at-least-0? 1b1) *(flat ramp-up))
(t ’(ramp-down flat ramp-up))))
((less~than-0?7 ub2 ubo2)
(cond ((equal-0? 1bi 1lboi ubi uboi) nil)
((at-most-0? ub1) ’(upsidedown-J))
((at-least-07 1b1) ’(rotate-180-7J))
(t *(rotate-180-J upsidedown-U upsidedown-7))))
((at-least-0? 1b2)
(cond ((less-than-0? ubl ubo1) ’(backward-J ramp-down))
((equal-0? 1b1 1bol ubi ubol) ’(flat))
((more-than-0? 1b1 1bol) *(ramp-up J))
((at-most-0? ubl) ’(backward-J ramp-down flat))
((at-least-07 1b1) ’(flat ramp-up J))
(t ’(backward-J ramp-down flat ramp-up J U))))

137

((at-most-0? ub2)
(cond ((less-than-0? ubi uboi) ’(upsidedown-J ramp-down))
((equal-07 1b1 1lbol ubi uboi) ’(flat))
((more-than-07 1bi 1boi) ’(ramp-up rotate-180-1))
((at-most-0? ubi) ’(upsidedown-J ramp-down flat))
((at-least-07? 1bi) ’(flat ramp-up rotate-180-J))
(t ’(upsidedown-J ramp-down flat ramp-up
rotate-180-J upsidedown-U))))
(t °?))))
(cond
((not possible-shape-list)
(format stream "No possible smooth shape for the curve of “a vs. ~a."
Y-axis-name X-axis-—name))
((eq possible-shape-list ’?)) ;don’t say anything about the shape
(t ;show list of possible shapes, use Dutch char. style because it seems
;the thinnest
(if (rest possible-shape-list) ;more than 1 possible shape
(format stream "~%~aThe possible shapes of the curve for ~a vs. “a
are”2), " spaces Y-axis-name X-axis-name)
(format stream "-~%~aThe shape of the curve for "a vs. ~a is"2% "
spaces Y-axis-name X-axis—name))
(graphics:with-room-for-graphics (stream)
(multiple-value-bind (width height cmx cmy left top)
;simulate partial print-out to find x offset
(dw:continuation-output-size
#’ (lambda (stream)
(graphics:draw-string
(concatenate ’string Y-axis-name spaces) 0. 0.
rattachment-x :right :stream stream
:character-style ’(:dutch nil nil)))
stream)
;move 80 graph’s left side is on the screen
(graphics:with-graphics-translation (stream (max 0. (- left)) 0.)
(loop with x-distance-between-graph-left-sides = 65.
with mxro = 40. ;maximum curve x value relative to x offset
with lyc = 30. ;lowest-y-for-curves
with hyc = 50. ;highest-y-for-curves
for shape in possible-shape-list
for shapes-left on possible-shape-list
for x-offset = 15.
then (+ x-offset x-distance-between-graph-left-sides)
initially
(graphics:draw-string
Y-axis-name 0. hyc :stream stream :attachment-x :right
:attachment-y :top :character-style ’(:dutch nil nil))
do
(if (and (rest possible-shape-list) (mot (rest shapes-left)))
;at last shape of a list of more than 1 shapes, print or
(progn (graphics:draw-string "or" x-offset (/ (+ lyc hyc) 2.)
:stream stream :attachment-y :center
:character-style ’(:dutch nil nil))
(inct x-offset 40.)))
(case shape

(ramp-down (graphics:draw-line x-offset hyc (+ x-offset mxro) lyc

138

:stream stream :thickness 2))
(flat (graphics:draw-line
x-offset (/ (+ lyc hyc) 2.) (+ x-offset mxro)
(/ (+ 1yc hyc) 2.) :stream stream :thickness 2))
(ramp-up (graphics:draw-line x-offset lyc (+ x-offset mxro) hyc
:stream stream :thickness 2))
(U (graphics:draw-cubic-spline
(list x-offset hyc (+ x-offset (floor (* mxro .15)))
(how-far-up-from-low lyc hyc .3)
(+ x-offset (floor mxro 2.)) lyc
(+ x-offset (floor (* mxro .85)))
(how-far-up-from-low lyc hyc .3) (+ x-offset mxro) hyc)
:stream stream :thickness 2))
(upsidedown-U
(graphics:draw-cubic-spline
(1ist x-offset 1lyc (+ x-offset (floor (* mxro .15)))
(how-far-up~from-low lyc hyc .7)
(+ x-offset (floor mxro 2.)) hyc
(+ x~offset (floor (* mxro .85)))
(how-far-up-from-low 1lyc hyc .7) (+ x-offset mxro) lyc)
:stream stream :thickness 2))
(backward-J
(graphics:draw-cubic-spline
(1ist x-offset hyc (+ x-offset (floor (* mxro .3)))
(how-tar-up-from-low lyc hyc .3) (+ x-offset mxro) lyc)
:stream stream :thickness 2))
(J (graphics:draw-cubic-spline
(1ist x-offset lyc (+ x-offset (floor (# mxro .7)))
(how-far-up-from-low lyc hyc .3) (+ x-offset mxro) hyc)
:stream stream :thickness 2))
(upsidedown~J
(graphics:draw-cubic-spline
(list x-offset hyc (+ x-offset (floor (* mxro .7)))
(how-far-up-from-low lyc hyc .7) (+ x-offset mxro) lyc)
:stream stream :thickness 2))
(rotate-180-J
(graphics:draw-cubic-spline
(1ist x-offset lyc (+ x-offset (floor (* mxro .3)))
(how-far-up-from-low lyc hyc .7) (+ x-offset mxro) hyc)
:stream stream :thickness 2))
(otherwise (error "The ~a shape is unknown." shape)))
(if (rest (rest shapes-left)) ;not last or second to last shape
(graphics:draw-string
"," (+ x-offset mxro 10.) lyc :stream stream
:character-style ’(:dutch nil nil)))

finally
(graphics:draw-string
'w.» (+ x-offset mxro 10.) lyc :stream stream
:character-style ’(:dutch nil nil))
(graphics:draw-string
X-axis-name (+ (ceiling x-offset 2.) 3.) 0. :stream stream
:character-style ’(:dutch nil nil)))))))))

139

(defun how-far-up-from-low (low high frac) (round (+ low (* frac (- high low)))))

;need QM versions to handle :infinity, :-infinity
(defun more-than-0? (1b 1bo) (or (qm::plusp 1b) (and lbo (qm::zerop 1b))))
(defun equal-0? (1b 1bo ub ubo)

(and (not 1bo) (mot ubo) (qm::zerop 1b) (gm::zerop ub)))
(defun less-than-0? (ub ubo) (or (qm::minusp ub) (and ubo (qm::zerop ub))))
(defun at-least-0? (1b) (not (qm::minusp 1b)))
(defun at-most-0? (ub) (not (qm::plusp ub)))

E.3 File Cycle-Util.lisp

This file contains some low level utility functions for the implementation:

33; —*%*= Mode: LISP; Package: CYCLE -#-

;basic utilities for cycle

(print “LOAD THE INEQUALITY REASONING SYSTEM BY LOADING FILE
Z:>ELISHA>QM>SYSTEM BEFORE COMPILING OR LOADING THE CYCLE SYSTEM.")

;evaluate expressions using functions in the QM package & simplify
(defun eval-in-cms (expression)
(if (atom expression) expression ;do not evaluate numbers & symbols
;a list, ‘apply’ function to evaluated arguments
(let ((evaled-args (mapcar #’eval-in-cms (rest expression))))
(qm: :simplify (apply (intern (symbol-name (first expressionm))
(tind-package ’qm))
evaled-args)))))

;basically from Z:>WJL>V7>HF (HF:HF;) KBASE.LISP

(defvar *1lsgt*)
(defvar *integrate*)
(defun depends (expr &aux *1lst* *integrates)
(dependsi expr)
(values *1st* *integrate#))
;version of depends that treats statistics functions like symbols
(defun depends-stat (expr &aux *lst* *integrates)
(dependsis expr)
(values *1st* *integrate*))

(defun dependsi (expr)
(typecase expr (number expr)
(list (if (eq (car expr) ’integrate)(setq *integrates ’integrate))
(if (eq (car expr) ’control) ; hack to get values control state

;should have more general mechanism (list of operators maybe)
(setq *1st* (adjoin expr #*1lst*))
(loop for x in (cdr expr) do (dependsi x))))

(symbol (setq *lst* (adjoin expr *1st+)))

(t (cerror "continue" “"strange expression ~A" expr))))

(defun dependsis (expr)
(typecase expr (number expr)
(list (if (eq (car expr) ’integrate)(setq *integrate* ’integrate))

140

(if (eq (car expr) ’control) ; hack to get values control state
;should have more general mechanism (list of operators maybe)
(setq *1st* (adjoin expr *1st*))))
(symbol (setq *1st* (adjoin expr *lst#)))
(t (cerror "continue" “strange expression “A" expr))))

;does NOT put variables in alphabetal order, NOR does it put operands which are
; products, sums, etc. into any canonical order
(defvar *canoned* nil)
(defun canonic (expr)
(cond ((numberp expr) expr)
((symbolp expr) expr)
((null expr) expr) ;addition
((case (car expr)
((+ *) (cons (car expr)(canonici (cdr expr))))
((- / div)
(1ist* (car expr)(canonic (cadr expr))(camonici (cddr expr))))
(expt ‘(expt ,(canonic (cadr expr)) ,(caddr expr)))
((exp log) ‘(,(car expr) ,(canonic (cadr expr))))
;(if (1ist (car expr)(cadr expr)(camonic (caddr expr))
; (canonic (cadddr expr))))
; ((< >)(list (car expr)(canonic (cadr expr))(canonic (caddr expr))))
(t (cerror “continue" "don’t know how to camonic ~"A" expr))))
(¢ (cerror “"continue" “don’t know how to canonic "A" expr))))

(defun canonici (1lst)
(if (loop for x on 1st with order = 0 and type do
(setq type (typecase (car x) (number 0)(symbol 1)(cons 2)
(t (cerror “continue" "strange list ~A in canonic"
1st))))
(if (< type order)(setq *canoned* t)(setq order type))
(if (= type 2)(setf (car x)(canonic (car x))))
finally (return *canoned#))
(nconc (loop for x in 1st when (numberp x) collect x)
(loop for x in 1st when (symbolp x) collect x)
(loop for x in 1lst when (consp x) collect x))
1st))

;Does NOT simplify expressions of the form (# some (&) (# rest) rest), where # is

; tor ¥, and & is an operator other than #. The matcher does not work properly in
; these cases.

(defun simplify (eqn)
(loop for y = nil then x
for x = (canonic eqn) then (simp x)
when (equal x y) do (return x)))

;altered
(defun simp (expr)
(cond ((numberp expr) expr)
((symbolp expr) expr)
((match expr ’(+ x))(cadr expr))
((match expr ’(+ O rest)) ‘(+ ,0(cddr expr)))
((match expr ’(+ n n rest))
‘(+ ,(+ (cadr expr)(caddr expr)) ,@(cdddr expr)))

141

((match expr ’(+ some (+ rest) rest))
‘(+ ,0(loop for x in (cdr expr)
when (and (comsp x)(eq (car x) ’+))
append (cdr x)

else collect x)))
((match éxpr ’(div 0 rest)) 0)
((match expr ’(/ 0 rest)) 0)
((match expr ’(/ n))(/ (cadr expr)))
((match expr ’(div n))(/ (cadr expr)))
((and (match expr ’(if x x x))(equal (caddr expr)(cadddr expr)))

(caddr expr))

((match expr ’(- 0 x)) ‘(- ,(caddr expr)))

((match expr ’(- x 0)) (cadr expr))

((match expr ’(- n n)) (- (cadr expr)(caddr expr)))
((match expr (- n n x rest))

‘(- ,(- (cadr expr)(caddr expr)) ,@(cdddr expr)))
((match expr ’(- n))(- (cadr expr)))

((match expr ’(- (* rest)))‘(# -1.0 ,0(cdadr expr)))
((match expr ’(* x))(cadr expr))
((match expr ’(* O rest)) 0)
((match expr ’(* some (* rest) rest))
‘(* ,0(loop for x in (cdr expr)
when (and (consp x)(eq (car x) ’#))
append (cdr x)
else collect x)))
((match expr ’(* 1 rest)) ‘(* ,0(cddr expr)))
((match expr ’(* n n rest))
‘(* ,(* (cadr expr)(caddr expr)) ,@(cdddr expr)))
;added partial distribution of * over +, and expt stuff
;want to limit use of distributions to where form of equations won’t be
;disrupted too much
((match expr ’(* (+ some (* some n rest) rest) n))
(cons ’+ (loop with multiplier = (third expr)
for sum-element in (rest (second expr))
collect ‘(* ,sum-element ,multiplier))))
((match expr ’(* n (+ some (* some n rest) rest)))
(cons *+ (loop with multiplier = (second expr)
for sum-element in (rest (third expr))
collect ‘(* ,multiplier ,sum-element))))
((match expr ’(expt x 0)) 1.)
((match expr ’(expt x 1)) (cadr expr))
((match expr ’(expt n n)) (expt (second expr) (third expr)))
imay mess up exponentiations of negative values.
sex.: ((-2)"2)~.5 = - (-2)-1
((match expr ’(expt (expt rest) n))

‘(expt ,(cadadr expr) ,(* (third (second expr)) (third expr))))
;only distribute expt over * when taking to an integer power, otherwise
;will mess-up on cases like (expt xy 1/2) when x, y < 0
((match expr ’(expt (* rest) int))

(cons ’* (loop with exponent = (third expr)

for product-element in (rest (second expr))
collect ‘(expt ,product-element ,exponent))))
(¢
(loop with *canoned* = nil

142

for nexpr = (canonic (cons (car expr)
(loop for x in (cdr expr)
collect (simp x))))
then (canonic (coms (car expr)
(Lloop for x in (cdr nexpr)
collect (simp x))))
do (if *canoned* (setq *canoned* nil)(return nexpr))))))

;altered to match to integers
;cannot match things like ’(+ a b) to patterns like ’(+ some x) because ’a matches
;to ’x leaving ’b matching to nothing
(defun match (expr pat) \
(loop for (ex . rex) on expr with (p skip)
do (or pat (return (null ex)))
(case (car pat)(rest (return t))
(some (setq skip t)(setq pat (cdr pat))))
(setq p (car pat))
(if (consp p)
(if (and (consp ex) (match ex p)) (setq skip nil pat (cdr pat))
(or skip (return nil)))
(case p (x (if ex (setq skip nil pat (cdr pat))(return nil)))
(int (if (integerp ex)(setq skip nil pat (cdr pat))
(or skip (returm nil))))
(n (if (numberp ex)(setq skip nil pat (cdr pat))
(or skip (return nil))))
(t (if (numeql ex p)(setq skip nil pat (cdr pat))
(or skip (return nil))))))
finally (return (or (null pat)(eq (car pat) ’rest)))))

(defun numeql (ex p)
(or (eql ex p) (and (numberp ex)(numberp p)(= ex p))))

;dealing with DERIVATIVES
;based in part on p.106-8 of Abelson & Sussman’s 6.001 text

;symbol notation: F[A] = ‘F’ applied to ‘A’; YF[A] = dF/dA; %%F[A] = d~2F/dA-2;

; GIXYZ]l = ‘G’ applied to ‘X’,‘Y?,‘Z?; YU1%GIXYZ] = d~3G/(dX~2#dY);

; 11%G[XY2]1=dG/dZ; etc. Do not put in redundant !’s. Need at least 1 argument.

;Can handle functions applied to other functions. Except at top level, functions

; can be ordinary ones (+, -, *, etc.).

;If not an ordinary function, can invert it: F~-1[A] = inverse of ‘F’ applied to
‘A’. Do not use more than 1 level of inversion on a function.

;table of symbols considered constants. The value can be anything but nil.
(defvar *constant-ht* (make-hash-table :test #’equal))

(defun deriv (exp var)
(cond ((constant? exp) 0.)
((symbolp exp)
(multiple~value-bind (fcn-name arg-string) (applying-a-function? exp)
(if fcn-name

;applying a function
(deriv-of-fcn-wrt-var exp (split-args arg-string) var)
(if (same-variable? exp var) 1. 0.)))) ;8imple variable

143

((sum? exp) (make-sum (deriv (addend exp) var) (deriv (augend exp) var)))
;Use of addend & augend not really correct for differences. Because of
;Elisha Sacks’ CMS, only really need to handle differences with up to 2
;arguments
((and (difference? exp) (= (list-length exp) 2.)) ;1 arg.
(make-product -1. (deriv (arg exp) var)))
((difference? exp)
(make-sum (deriv (addend exp) var)
(make-product ~1. (deriv (augend exp) var))))
((product? exp)
(make-sum (make-product (multiplier exp) (deriv (multiplicand exp) var))
(make-product (multiplicand exp) (deriv (multiplier exp) var))))
;Use of multiplier & multiplcand not really correct for differences.
;Because of Elisha Sacks’ CMS, only really need to handle differences with
;up to 2 arguments
((and (quotient? exp) (= (list-length exp) 2.)) ;1 arg.
(make-product (make-product ~-1. (make-exponential (arg exp) -2.))
(deriv (arg exp) var)))
((quotient? exp)
(deriv (make-product (multiplier exp)
(make-exponential (multiplicand exp) -1.)) var))
((exponential? exp)
(make-sum
(make-product
(make-product (exponent exp)
(make~exponential
' (base exp) (make-sum (exponent exp) -1.)))
(deriv (base exp) var))
(make-product exp
(make-product (make-log (base exp))
(deriv (exponent exp) var)))))
((logarithm? exp) (make-product (make-exponential (arg exp) ~1.)
(deriv (arg exp) var)))
((to-the-e? exp) (make-product exp (deriv (arg exp) var)))
(t (error "Deriv: can’t handle ~A" exp))

)
(defun constant? (x) (or (numberp x) (and (symbolp x) (gethash x *constant-ht*))))
(defun same-variable? (vi v2) (equal vi v2)) ;assume both vi & v2 are variables

(defun applying-a-function?
(symbol &aux (letters (symbol-name symbol)) (last (- (length letters) 1.))
([-&-]-exist? (if (eql '#\] (elt letters last)) (position *#\[letters))))
(if (and [-g-]-exist? (< 0. [-&-]-exist? last))
;Applying a function to an argument. Return strings of the function name and
; arguments (all the arguments are left concatenated together, use
3 SPLIT-ARGS to split them apart), respectively.
iThe function SUBSEQ acts funny, the arguments seem to be 1) the sequence,
;2) index of the 1st char to be included, 3) index of the ist char to be
s EXCLUDED
(values (subseq letters 0. [~&-J-exist?)
(subseq letters (+ [-&-]-exist? 1.) last))
;8imple variable or constant

144

(values nil nil)))

;fcn-name is a string
(defun function-inverse? (fcn-name &aux (position-of---for-inverse
' (- (length fcn-name) 3.)))
(if (and (not (minusp position-of-~-for-inverse))
(equal (subseq fcn-name position-of-"-for-inverse) '"~-1"))
;fcn-name is an inverse, return the name of the fcn being inverted and T
(values (subseq fcn-name 0. position-of---for-inverse) t)
(values fcn-name nil)));not an inverse, return the original fcn-name and NIL

jtake a string of arguments (given by APPLYING-A-FUNCTION? and EXPAND-1) and
;ireturn a list of the argument objects (take each argument & feed it to the reader)
(defun split-args (arg-string &aux (level-of-args 0.)
(index-of-ist-char-in-next-arg 0.) (reversed-arg-objects nil))
(loop for i from 0 to (- (length arg-string) 1.)
for char = (char arg-string i) do
(cond ((eql char *#\[) (incf level-of-args));increase level of argument nesting
((eql char '#\]1) (decf level-of-args)) ;decrease level
((and (eql char *#\$) (zerop level-of-args))
inew argument coming up, save out current arg. and update pointer to
;next arg
(push (expand-i (subseq arg-string index-of-1st-char-in-next-arg i))
reversed-arg-objects)
(setq index-of-ist-char-in-next-arg (+ i 1)))))
;add last argument & reverse the reversed argument order
(reverse (cons (expand-1 (subseq arg-string index-of-ist-char-in-next-arg))
reversed-arg-objects)))

;If EXPR is a symbol that is a function application in which the function is a

; standard (+, -, *, etc.) one, expand (convert) EXPR into a standard

i s-expression for such a function as much as possible (recurse into the

;i arguments). Otherwise, return the expression.

(defun expand (expr) (if (not (symbolp expr)) expr (expand-i (symbol-name expr))))

;Like EXPAND, but STRING is assumed to represent what applying READ-FROM-STRING to
;it would return.
(defun expand-1 (string &aux (last (- (length string) 1.))
([-&-]-exist? (if (eql '#\] (elt string last)) (position *#\[string))))
(if (and [-&-]-exist? (< 0. [-&-]-exist? last))
;Applying a function to an argument.
:The function SUBSEQ acts funny, the arguments seem to be 1) the sequence,
;2) index of the ist char to be included, 3) index of the ist char to be
;s EXCLUDED
(let* ((fcn (subseq string 0. [-&-]-exist?))
(args (subseq string (+ [-&-]-exist? 1.) last))
(recognized-fcn?
(if fen (member fen :(u+u o gn u/u “EXPT" "1,0G" uExpu)
:test #’equal))))
(if (not recognized-fcn?)
;applying an unrecognized (ordinary) function to an argument
(read-from-string string)
;applying a special (recognized) function to an argument
(cons (intern (first recognized-fcn?)) (split-args args))))

145

;simple variable or constant
(read-from-string string)))

;SUBSEQ needs the position of the 1st element to include (start) & the leftmost
;element to EXCLUDE (end)
(defun deriv-of-fcn-wrt-var. (exp args var)
(loop with current-exp-name = (symbol-name exp)
for arg in args
for position-for-J
first 0
then (loop for i from position-for-Y%
to (- (length current-exp-name) 1.)
for char = (char current-exp-name i) do
(cond ((eql char ’#\%))
((eql char *#\!) (return (+ i 1)))
(t ;gotten to end of all derivative markers w/o emough *!"
;separaters
(setq current-exp-name
(concatenate ’string (subseq current-exp-name 0 i)
»niv (gubseq current-exp-name i)))
(return (+ i 1)))))
for deriv-of-fcn-wrt-arg-string =
(concatenate ’string (subseq current-exp-name O position-for-%) ’"%»
(subseq current-exp-name position-for-Y))
for partial = (make-product (intern deriv-of-fcn-wrt-arg-string)
(deriv arg var))
for result first partial then (make-sum result partial)
finally (return result)))

;suppress unneeded 0’s, 1’s, additional constants, nested +’s #*’s
;Place numeric constants out in front
;Later, add suppression of multiple occurrences of non-constants
(defun make-sum (a1 a2)
(cond ((and (numberp ai) (numberp a2)) (+ al a2))
((numberp ai1) (cond ((zerop a1) a2)
((sum? a2) (if (numberp (addend a2))
(let ((num (+ a1l (addend a2)))
(rest (cddr a2)))
(if (zerop num)
(if (= (list-length rest) 1.)
(tirst rest) (cons ’+ rest))
(list* ’+ num rest)))
(list* *+ a1 (cdr a2))))
(t (List '+ al a2))))
((numberp a2) (cond ((zerop a2) ai)
((sum? a1) (if (numberp (addend a1))
(let ((num (+ a2 (addend al)))
(rest (cddr al)))
(if (zerop num)
(if (= (list-length rest) 1.)
(tirst rest) (cons ’+ rest))
(list* ’+ num rest)))
(list* ’+ a2 (edr al))))

146

(t (list ’+ a2 a1))))
((and (sum? ai) (sum? a2))
(cond ((and (numberp (addend a1)) (numberp (addend a2)))
(list* ’+ (+ (addend al) (addend a2))
(append (cddr a1) (cddr a2))))
((numberp (addend a2)) (list* ’+ (addend a2)
(append (cdr al) (cddr a2))))
(t (append ’(+) (cdr a1) (cdr a2)))))
((sum? a1) (append ’(+) (cdr al) (list a2)))
((sum? a2) (append ’(+) (cdr a2) (list al)))
(t (1ist ’+ al a2)
))
(defun make-product (m1 m2)
(cond ((and (numberp m1) (numberp m2)) (* mi m2))
((numberp mi)
(cond ((zerop m1) 0.)
((=mi1 1.) m2)
((product? m2) (if (numberp (multiplier m2))
(let ((num (* m1 (multiplier m2)))
(rest (cddr m2)))
(if (= num 1.)
(if (= (list-length rest) 1.)
(first rest) (cons ’* rest))
(list* '* num rest)))
(list* ’* m1 (cdr m2))))
(t (list ’#* m1 m2))))
((numberp m2)
(cond ((zerop m2) 0.)
((=m2 1.) m1)
((product? m1) (if (numberp (multiplier mi1))
(let ((num (* m2 (multiplier mi1)))
(rest (cddr m1)))
(if (= num 1.)
(it (= (list-length rest) 1.)
(first rest) (cons ’* rest))
(list* '* num rest)))
(list* '* m2 (cdr m1))))
(t (List ’#% m2 m1))))
((and (product? mi) (product? m2))
(cond ((and (numberp (multiplier mi1)) (numberp (multiplier m2)))
(1ist* ’* (* (multiplier m1) (multiplier m2))
(append (cddr m1) (cddr m2))))
((numberp (multiplier m2)) (list* ’* (multiplier m2)
(append (cdr m1) (cddr m2))))
(t (append ’(*) (cdr m1) (cdr m2)))))
((product? m1) (append ’(*) (cdr m1) (list m2)))
((product? m2) (append ’(*) (cdr m2) (list mi)))
(t (Qist ’# mi m2))))
;can use
; ((exponential? b) (make-exponential (base b) (make-product (exponent b) e)))
;to suppress redundant expt’s, but this may mess-up on negative bases on
;expressions like (n*2)-0.3
(defun make-exponential (b e)
(cond ((and (numberp e) (zerop e)) 1.)

147

((and (numberp e¢) (= e 1.)) b)
((and (numberp b) (numberp e)) (expt b e))
(t (Qist ’expt b e))))
scould use ((exponential? arg) (make-product (exponent arg) (make-log (base arg))))
;to convert log(b~e) into e*log(b), but if b<O and e is even, will mess up (like in
;log(~1-2)).
(defun make-log (arg)
(cond ((numberp arg) (log arg))
((to-the-e? arg) (arg arg))
(t (list ’log arg))))

(defun sum? (x) (and (1listp x) (eq (car x) ’+)))

(defun difference? (x) (and (listp x) (eq (car x) ’-)))

(defun addend (8) (cadr s))

;handles arbitrary args

(defun augend (s) (if (null (cdddr s)) (caddr s) (append ’(+) (cddr s))))

(defun product? (x) (and (listp x) (eq (car x) ’#)))

(defun quotient? (x) (and (1listp x) (eq (car x) */)))

(defun multiplier (p) (cadr p))

;handles arbitrary args

(defun multiplicand (p) (if (null (cdddr p)) (caddr pP) (append ’(*) (cddr p))))

(defun exponential? (x) (and (listp x) (eq (car x) ’expt) (= (list-length x) 3.)))
(defun base (exp) (cadr exp))
(defun exponent (exp) (caddr exp))

(defun arg (exp) (cadr exp)) ;for 1 argument functions
(defun logarithm? (x) (and (listp x) (eq (car x) ’log) (= (1ist-length x) 2.)))

(defun to-the-e? (x) (and (listp x) (eq (car x) ‘exp) (= (list-length x) 2.)))

E.4 Bounder System

The AIS implementation uses an inequality reasoning system by Elisha Sacks. Load-
ing the file z:>elisha>qm>system.lisp loads this system, and this should be done
before loading or compiling AIS implementation (see Appendix D.1). The ideas be-
hind this system are described in [36, 38]. Documentation on the inequality reasoning
system implementation (which comes from the aforementioned file) is as follows:

Comments to Elisha Sacks, eps@princeton. edu.

This file loads an algebraic simplifier and an inequality reasoner into package QM.
The interface to the simplifier consists of the following functions: +, -, *, /, expt,
exp, log, sin, cos, tan, asin, acos, atan, abs, min, and max. The functions +,
*, min, and max take 0 or more arguments, - and / take 1 or 2, expt takes 2, and
all other functions take 1. All arguments are expressions: defined as 1) symbols
other than T or NIL, 2) lisp numbers and 3) applications of the above functions to
expressions. The symbols :-infinity, :infinity, pi, and J%e have the standard
meaning and are self-evaluating. All other symbols are uninterpreted. The function

148

(make-subsitution new old target) substitutes into expressions.

The inequality reasoner maintains a set of contexts in which it records assertions
and evaluates inequalities. The interface follows. The arguments a and b are ex-
pressions. The context argument is optional and defaults to the predefined context
context.

1. (clear context) remove all assertions.

2. (assert+ a strict? context) assert ¢ > 0. Return T if this is consis-
tent with the previous contents of context; return NIL otherwise. Similarly,
assert-, assert0, (assert< a b context), assert>, assert<=,assertd>=,
and assert=,

3. (< a b context) returns T if a < b is provable by simple methods, interval
arithmetic and substitution. Similarly ><= = (see "Hierarchical Inequality
proving” in AAAI-87 for details.)

4. (sup exp var-list context) returns an upper bound for exp in terms of the
variables in var-list. Analogously, inf returns a lower bound.

5. (test-sign exp context) Returns 1,0,-1, or NIL for unknown. Uses simple
methods.

6. (<+ a b context) returns T is a < b is provable by slower methods, derivative
inspection and iterative approximation. Similarly, >+, <=+, and >=+,
test-sign+.

The following symbols are shadowed (in the QM package, they override the normal
definitions): pi + - * / exp expt log sin cos tan asin acos atan sinh cosh tanh abs
signum min max < <= > >= numberp plusp minusp zerop floor ceiling rationalize

E.5 File Qmfix.lisp

From the viewpoint of the AIS implementation, the inequality reasoning system im-
plementation has some undesirable behavior when presented with an expression like
0- 0o or 0o — co that has an ill-defined value: the inequality system returns an upper
and lower bound of nil on such expressions, instead of returning the loosest bound of
—oo for a lower bound and oo for an upper bound. The file below fixes that and should
be loaded after the inequality system is loaded, but before the AIS implementation
is loaded (see Appendix D.1).

3i; —*= Package: QM; Mode: LISP -%-
;fix Bounder bugs

ito fix bugs like (ub (* 0 :infinity)) -> nil, (1b (+ i=infinity :infinity)) -> nil
; (ub (expt :infinity 0)) -> nil

(defun sup (exp var-set context &aux qform)

149

(cond ((null exp) (values :infinity t)) ;line added
((subsetp (vars-of exp) var-set)
(values exp nil))
((variablep exp)
(var-sup exp var-set context))
((and (setq qform (quadraticp exp))
(not (member (car gform) var-set)))
(quadratic-sup gform var~set context))
(t
(let ((op (exp-op exp))
(args (exp-args exp)))
(case op
(+ (+exp-sup args var-set context))
(* (*exp-sup args var-set context))
(expt (expt-sup (car args) (cadr args) var-set context))
((emin emax) (minmax-sup op args var-set context))
(t (fun-sup op (car args) var-set context)))))))

(defun inf (exp var-set context &aux qform)
(cond ((null exp) (values :-infinity t)) ;line added
((subsetp (vars-of exp) var-set)
(values exp nil))
((variablep exp)
(var-inf exp var-set context))
((and (setq qform (quadraticp exp))
(not (member (car gform) var-set)))
(quadratic-inf gform var~set context))
(t
(let ((op (exp-op exp))
(args (exp-args exp)))
(case op
(+ (+exp-inf args var-set context))
(* (*exp-inf args var-set context))
(expt (expt-inf (car args) (cadr args) var-set context))
((emin emax) (minmax-inf op args var-set context))
(t (fun-inf op (car args) var-set context)))))))

E.6 File: Cycle-ex.lisp

The file listed in this section contains examples run on the AIS implementation. The
examples described in Sections 3.1, 3.2 and 3.3 were run by using the code to setq
the variables c2, c9 and d, respectively. Some of the parameter names in the thesis
text have been shortened from the names they had in the actual code. For example,
in the code for the ventricle examples, Pi was shortened from Pin in the actual input,
Po from Pout, Bi from Bin, and Bo from Bout. In the code to setq the variable
c9, the expression , (deriv ’Vd2[...] ’Pin) takes the total derivative of Vd2[...]
with respect to Pin.

Unfortunately, many of the examples use an old style of input that is not described
in Appendix D. Some documentation is given in Appendix E.1 in the code that starts
with “(defun new-phase-type” (definition of the function new-phase-type) and the

150

code that starts with “(defflavor cycle” (definition of the “flavor” or object type
of cycle).
The file:

333 —%- Mode: LISP; Package: CYCLE -#-
;EXAMPLES for cycle

(new~phase-type
‘name ’produce-seed-stage
:condition ’((<= 0 feed-per-adult) (<= 1 seed-per-adult) (<= 0 seed_b)
(<= 0 seed_e) (<= 0 adults_b) (<= 0 adults_e) (<= 0 feed_c))
iconstant ’(seed-per-adult feed-per-adult)
:constant-periodic ’()
:varying-periodic-given ’(seed)
:varying-periodic~find ’((adults 0))
:constant-accum ()
:varying-accum~given ’()
:varying-accum-find ’((feed (* feed-per-adult adults_b))
(harvest (- (* seed-per-adult adults_b) seed_e)))
)

(new~phase-type
‘name ’produce-adult-stage
:condition ’((<= 0 fraction-survived) (<= fraction-survived 1)
(<= 0 seed_b) (<= 0 seed_e) (<= 0 adults_b) (<= 0 adults_e))
:constant ’(fraction-survived)
:constant~periodic ’()
ivarying-periodic-given ’()
:varying-periodic~find ’((adults (* fraction-survived seed_b))
(seed 0))
:constant~accum ’(feed harvest)
:varying-accum-given ’()
:varying-accum-find ’()

(setq a (make-instance
‘cycle
:name ’chickenfegg :rate ’cycles/time
:constants ’(desired-egg-stock-level eggs/chicken food/chicken
fraction-maturing)
:periodic~vars ’(chickens eggs) :accum-vars ’(chicken-feed eggs-sold)
iconditions ’((< 0 desired-egg-stock-level) (<= 1 eggs/chicken)
(< 0 food/chicken) (< 0 fraction-maturing)
(< fraction-maturing 1))
:phases
’((lay&harvest—eggs produce-seed-stage
((adults chickens) (seed eggs desired-egg-stock-level)
(harvest eggs-sold) (feed chicken-feed)
(seed-per-adult eggs/chicken) (feed-per-adult food/chicken)))
(hatch-eggs produce-adult-stage
((adults chickens) (seed eggs) (harvest eggs-sold)
(feed chicken-feed) (fraction-survived fraction-maturing)))

))

151

(setq b (make-instance
lcycle
‘name ’maize :rate ’once-per-year?
:constants ’(desired-seed-corn-level grain/plant fertilizer/plant
fraction-maturing)
:periodic-vars ’(grain plants) :accum-vars ’(fertilizer grain-sold)
:conditions ’((< 0 desired-seed-corn-level) (<= 1 grain/plant)
(< 0 fertilizer/plant) (< 0 fraction-maturing)
(< fraction-maturing 1))
:phases
’((harvest-corn produce-seed-stage
((adults plants) (seed grain desired-seed-corn-level)
(harvest grain-sold)(feed fertilizer)
(seed-per-adult grain/plant)(feed-per-adult fertilizer/plant)))
(plant-corn produce-adult-stage
((adults plants) (seed grain) (harvest grain-sold) (feed fertilizer)
(fraction-survived fraction-maturing)))

)))

(new-phase-type
‘name ’pump-incompressible-stuff-at-constant-p
:condition ’((<= 0 V.b) (<= 0 V_e))
:constant ’()
:constant-periodic ’(P)
ivarying-periodic~given ?(V)
:varying-periodic-find ’()
:constant-accum °()
:varying-accum-given ’()
:varying-accum-find ’((Work-by-stuff (* P Amount-in_c))

(Amount-in (- V_e V_b)))

)

(new-phase-type
‘name ’pump-incompressible-stutt-at-constant-p2
tcondition ’((<= 0 V_b) (<= 0 V_e))
:constant ’()
tconstant-periodic ’(P)
:varying-periodic-given (V)
:varying-periodic-find ’()
:constant-accum ’()
:varying-accum-given ’()
:varying-accum-find ’((Work-by-stuff (* -1. P Amount-out_c))
(Amount-out (- V_b V_e)))
)

(new~-phase-type
‘name ’'alter-pressure-of-incompressible-stuff-at-constant-v
:condition *((<= 0 V))
tconstant ’()
:constant-periodic (V)
:varying-periodic-given ’(P)
:varying-periodic-find ’()
:constant-accum ’(Work-by-stuff Amount-in)
:varying-accum-given ’()

152

:varying-accum~find ’()

;assume that the heart beat is slow enough to get a full contraction & relaxation
; (period > 0.4 sec, HR < 2.5hz = 180 beats/min)

(setq c (make-instance ’cycle
:name ’heart-ventricle
:rate ’HR
:constants ’(Pin Pout Vd[Pin] Vs[Pout])
:periodic-vars ’(P-ventricle V-ventricle)
;accum-vars ’(Work-by-blood amount-of-blood-in amount-of-blood-out)
sconditions
’((< Pin Pout) (> Vd[Pin] Vs[Poutl) (<= 0 Vd[Pin]) (< 0 %Vd[Pin])

(> 0 %%vd[Pinl) (<= 0 Vs[Pout]) (< 0 %Vs[Pout]) (< 0 %%vs[Poutl))
:phases

’((iso-volumetric~contraction
alter-pressure-of-incompressible-stuff-at-constant-v

((V V-ventricle) (P P-ventricle Pout) (Work-by-stuff Work-by-blood)
(Amount-in amount-of-blood-out)))

(ejection pump-incompressible-stuff—at-constant-p2

((P P-ventricle) (V V-ventricle Vs[Pout])

(Work-by-stuff Work-by-blood) (Amount-out amount-of-blood-out)))
(iso-volumetric-relaxation

alter-pressure-of-incompressible-stuff-at-constant-v

((V V-ventricle) (P P-ventricle Pin) (Work-by-stuff Work-by-blood)
(Amount-in amount-of-blood-in)))

(£illing pump-incompressible-stuff—at-constant—p
((P P-ventricle) (V V-ventricle Vd[Pin])

(Work-by-stuff Work-by-blood) (Amount-in amount-of-blood-in)))
))

(setq c1 (make-instance ;include positive inotropic effect of increasing HR
’cycle
‘name ’heart—ventricle—with-ﬂk-affecting-Vs
:rate ’'HR :constants ’(Pin Pout Vd[Pin] Vs[Pout$HR])
iperiodic-vars ’(P-ventricle V-ventricle)

‘accum-vars ’(Work-by-blood amount-of-blood-in amount-of-blood-out)
:conditions

*((< Pin Pout) (> Vd[Pin] Vs[Pout$HR]) (<= 0 Vd[Pin])

(< 0 %vda[Pinl) (> 0 %Y%Vd[Pin]) (<= 0 Vs [Pout$HR]) (< 0 %Vs[Pout$HR])
(< 0 %%vs[Pout$HR]) (> 0 !%Vs[Pout$HR]))
:phases

’((iso-volumetric-contraction
alter-pressure-of-incompressible-stuff-at-constant—v

((V V-ventricle) (P P-ventricle Pout) (Work-by-stuff Work-by-blood)
(Amount-in amount-of-blood-out)))

(ejection pump-incompressible-stuif—at—constant—p2
((P P-ventricle) (V V-ventricle Vs[Pout$HR])

(Vork-by-stuff Work-by-blood) (Amount-out amount-of-blood-out)))
(iso-volumetric-relaxation

alter-pressure-of-incompressible-stuff-at-constant—v

((V V-ventricle) (P P-ventricle Pin) (Work-by-stuff Work-by-blood)
(Amount-in amount-of-blood-in)))

153

(£illing pump-incompressible-stuff-at-constant-p
((P P-ventricle) (V V-ventricle Vd[Pin])
(Work-by-stuff Work-by-blood) (Amount-in amount-of-blood-in)))

)

(setq c2 (make-instance ;version without phase types
’cycle
‘name ’heart-ventricle-with-HR-affecting-Vs
:rate ’HR :comstants ’(Pin Pout Vd[Pin] Vs[Pout$HR])
:periodic~vars ’(P V)
taccum~vars ’(W Bin Bout)
:conditions
*((< Pin Pout) (> Vd[Pin] Vs[Pout$HR]) (<= 0 Vd[Pinl) (< 0 %Vd[Pin])
(> 0 %%va[Pin]) (<= 0 Vs[Pout$HR]) (< O %Vs[Pout$ER])
(< 0 %%vs[Pout$HR]) (> 0 '%Vs[Pout$HR]))
" :phases
’((iso-volumetric~contraction nil ((<= 0 V) (:= P_e Pout)))
(ejection nil ((<= 0 V_b) (<= 0 V_e) (:= V_e Vs[Pout$HR])
(:= W_c (* -1. P Bout_c)) (:= Bout_c (- V.b V_e))))
(iso-volumetric-relaxation nil ((<= 0 V) (:= P_e Pin)))
(£illing nil ((<= 0 V_b) (<= 0 V_e) (:= V_e Vd[Pin])
(:=¥W_c (* P Bin_c)) (:= Bin_c (- V_e V_b))))
»)

;time stuff messed-up
(setq c4
(make-instance ;CT is for contraction time

’cycle

‘name ’left-heart-ventricle-with-mitral-stenosis

srate ’HR

:constants

*(Pin Pout Vd[Pin] Vs[Pout$HR] CT TO[Pin$Pout] T2[Pin$Pout]
Vd~-1[Vs[Pout$HR]]
Vd2[Vs[Pout$HR]$Vd[PinJ$-[/[HR]$+[CT$T2[Pin$Pout]]]$Pin]
Vd"-1[Vd2[Vs [Pout$HR]$VA [Pin]$- [/ [RR]$+ [CT$T2[Pin$Pout]]11$Pin]])

:periodic~vars (P V)

saccum-vars ’(Bin Bout T)

tconditions

*((< Pin Pout) (> Vd[Pin] Vs[Pout$HR]) (<= 0 Vd[Pin]) (< 0 %Vd[Pin])
(> 0 %%Vd[Pin]) (<= 0 Vs[Pout$HR]) (< 0 %Vs[Pout$HR])
(< 0 %%vs[Pout$HR]) (> 0 !%Vs[Pout$HR])
(<= 0 TO[Pin$Poutl) (< %TO[Pin$Pout] 0) (< 0 1ATO[Ping$Pout])
(<= 0 T2[Pin$Pout]) (< %T2[Pin$Pout] 0) (< 0 1%T2[Pin$Pout])
(<= 0 %Vd2[Vs[Pout$HR]$Vd [Pin]$- [/ [HR]$+[CT$T2[Pin$Pout]1]$Pin])
(<= 0 1%Vvd2[Vs [Pout$HR]$VA [Pin] $- [/ [ER]$+[CT$T2[Pin$Pout]11$Pin])
(<=0 !!%de[Vs[Pout$HR]$Vd[Pin]$-[/[HR]$+ECT$T2[Pin$Pout]]]$Pin])
(<=0 !!!%Vd2[Vs[Pout$KR]$Vd[Pin]$-[/[HR]$+[CT$T2[Pin$Pout]]]$Pin])
(< Va~-1[Vs[Pout$HR]] Pin)
(< 0 %vd~-1[Vs[Pout$HRI]) (< O %%Vd~-1[Vs[Pout$HR]])
(<o %Vd‘-i[Vd2[Vs[Pout$HR]$Vd[PinJ$-[/[KR]$+[CT$T2[Pin$Pout]]]$Pin]])
(<o %%Vd‘-i[Vd2[Vs[Pout$HR]$Vd[Pin]$-[/[HR]$+[CT$T2[Pin$Pout]]]$Pin]])
)

:phases

*((iso-volumetric~contraction nil ((<= 0 V) (:= P_e Pout)

154

(<= 0 T_¢) (:= T_c TO[Pin$Poutl)))
(ejection nil
((k= 0 V_b) (<= 0 V_e) (:= V_e Vs[Pout$HR]) (:= Bout_c (- V.b V_e))
(<= 0 T_¢) (:= T_c (- CT TO[Pin$Pout]))))
(iso-volumetric-relaxation nil ((<= 0 V) (:= P_e Pin)
(<= 0 T_¢) (:= T_c T2[Pin$Poutl)))
;P may not monotonically dec/increase while filling
; (probably down then back-up)
(£illing nil
((<= 0 V_b) (<= 0V_e) (:= Bin_c (- V_e V_b))
(<= 0 T_c) (:= T_¢ (- (/ HR) (+ CT T2[Pin$Pout])))
(<= V_b V_e) (<= V_e Vd[Pinl)
(:= V_e Vd2[Vs[PoutHRIVd [Pin]$~[/[HR]$+[CT$T2[Pin$Pout]]]1$Pin])
(<= va~-1[Vs[Pout$HR]] P_e) (<= P_e Pin)
(:= P_e Vd~-1[vd2[Vs [PoutHRIVA [Pin] $~[/[ER] $+ [CT$T2[Pin$Pout]]I $Pin]])
NN

iDerivatives of Tf now unknown (which is true). 1st TOTAL derivative of Vd2 wrt to
;Pi is >0
(Setq c9
(make-instance
;TF is time in filling phase, TR is time to go from fully contracted to
;fully relaxed (HR may be either too fast for ventricle to fully relax, or
;80 slow that full relaxtion is reached before the end of the beat cycle),
;TC is time to go from full relaxation to full contraction (HR may be too
;fast for full contraction to occur)
‘cycle
:name ’l-heart—ventricle-w/mitral—stenosis-&-asymptotic-filling-&-new-time
irate ’HR
:constants
*(Pin Pout Vd[Pin] Vs[Pout$HR]
Va--1[Vs[Pout$ER]] TR[HER] TC[HR] TF[Pin$Pout$HR$TC [ARI$TRLER]]
Vd2[Vs[PoutHRJVd[PinJ$TF[Pin$PoutHRTC[HR]$TR[HRJ]$TR[HR]$Pin]
Vd‘-i[Vd2[Vs[Pout$HR]$Vd[Pin]$TF[Pin$PoutHRTC[HR]$TR[HR]]$TR[HR]$Pin]])
:periodic-vars *(P V)
saccum-vars ’(Bin Bout)
:conditions
‘((< Pin Pout) (> Vd[Pinl Vs[Pout$HR]) (<= 0 Vd[Pin]) (< 0 %vd[Pin])
(> 0 %%va[Pin]) (<= 0 Vs[Pout$HR]) (< 0 %Vs[Pout$HR])
(< 0 %%Vs[Pout$HR]) (> 0 1%Vs[Pout$HR])
(<= 0 TRLER]) (> 0 %TRIHR]) (<= 0 TC[ER]) (> 0 %TC[HR])
(<= 0 TF[Pin$Pout$HER$TC [HRI$TR [HR]])
(<= TF[Pin$Pout$HR$TC[HRI$TR[HR]] (/ HR))
;all derivatives of TF are unknown
i (< 0 %TF[Pin$Pout$HR$TC[HR]$TR[ER]])
i (> 0 VTF[Pin$Pout$HR$TC [(HR]$TRIER]])
;i (>0 !!%TF[Pin$Pout$HR$TC[HRJ$TR[HR]])
; (>0 !!!%TF[Pin$Pout$HR$TC[HR]$TR[HR]])
(> 0 11 1VUTF [Pin$Pout$HRS$TC [ER]$TR [ER]])
(<o %Vd2[Vs[Pout$HR]$Vd[Pin]$TF[Pin$PoutHRTC[HR]$TR[HR]]$TR[HR]$Pin])
(<o !%Vd2[Vs[Pout$nn]$Vd[PinJ$TF[Pin$poutHRTc[HR]$TR[HR]J$TR[HR]$PinJ)
(<o !!%Vd2[Vs[Pout$HR]$Vd[Pin]$TF[Pin$PoutHRTC[HR]$TR[HR]]$TR[HR]$Pin])
>o
!!!%Vd2[Vs[Pout$HR]$Vd[Pin]$TF[Pin$PoutHRTC[HR]$TR[HR]]$TR[HR]$Pin])

155

(<o
!!!!%Vd2[Vs[Pout$HR]$Vd[PinJ$TF[Pin$PoutHRTC[HR]$TR[HRJ]$TR[HR]$Pin])
(< 0 ,(deriv
’Vd2[Vs[Pout$HR]SVdEPin]$TF[Pin$Pout$HR$TC[HR]$TR[HRJ]$TR[HR]$Pin]
'Pin))
(< va*-1[vs[Pout$HR]] Pin)
(< 0 %va~-1[Vs[Pout$HR]]) (< O %%Vd~-1[Vs[Pout$HR]])

(<
0
%Vd‘-i[Vd2[Vs[Pout$HR]$Vd[Pin]$TF[Pin$PoutHRTC[HR]$TREHR]]$TR[HR]$PinJ])
(<
0
%%Vd‘-iEVd2[Vs[PoutHRJVd[PinJ$TF[Pin$PoutHRTC[HR]$TR[HR]]$TR[HR]$Pin]])
)
:phases

’((iso-volumetric-contraction nil ((<= 0 V) (:= P_e Pout)))
(ejection nil
((<= 0 V_b) (<= 0 V_e) (:= V_e Vs[Pout$HR]) (:= Bout_c (-~ V_b V_e))))
(iso-volumetric-relaxation nil ((<= 0 V) (:= P_e Pin)))
;P may not monotonically dec/increase while filling
; (probably down then back-up)
(£illing nil
((<= 0 V_b) (<= 0 V_e) (:= Bin_c (- V_e V_b))
(< V.b V_e) (< V_e Vd[Pin])
(:=V_e
Vd2[Vs[Pout$HR]$Vd[PinJ$TF[Pin$PoutHRTCEHR]$TR[HRJ]$TR[HRJ$PinJ)
(< va~-1[vs[Pout$HR]] P_e) (< P_e Pin)
(:= P_e
Vd‘-i[Vd2[Vs[Pout$HR]$Vd[Pin]$TF[Pin$PoutHRTC[HR]$TR[HR]]$TR[HR]$Pin]]
NN

(new-phase-type
‘name ’pump-in-ideal-gas-at-constant-v
:condition *((<= P_b P_e) (<= 3/2 k) (< 0 R) (< 0 Tin) (<= 0 P_b) (<= 0 P_e)
(¢=0V) (<=0mn_b) (<=0n_e) (<0 Tb) (<0 Te) (<= 0 Ein_c)
(<= 0 Ain_c))
:constant ’(k R Tin)
:constant-periodic (V)
:varying-periodic-given ’(P)
:varying-periodic-find *((n (+ n_b Ain_c))
(T (/ (+ (* n_b T_b) (* Ain_c Tin)) n_e)))
:constant-accum ’(W-on-device)
:varying-accum-given ’()
:varying-accum-find ’((Ein (* k (- P_e P_b) V))
(8in (/ (* (- P_e P_b) V) (* R Tin))))
)

(new-phase-type
‘name ’'pump-out-ideal-gas-at-constant-v
:condition '((>= P_b P_e) (<= 3/2 k) (< O R) (<0 T) (<= 0 P_b) (<= 0 P_e)
(<=0V) (<=0n_b) (<=0n_e) (<OT) (<= 0 Eout_c)
(<= 0 Aout_c))
:constant ’(k R)
:constant-periodic *(V T)

156

:varying-periodic-given ’(P)

:varying-periodic~find *((n (/ (* P_e V) (* R T))))

:constant-accum ’(W-on-device)

:varying-accum-given °’()

:varying-accum-find ’((Eout (* k (- P_b P_e) V))
(fcut (- n_b n_e)))

)

(new-phase-type
iname ’pump-in-ideal-gas-at-constant-p
:condition *((<= V_b V_e) (<= 3/2 k) (< 0 R) (< 0 Tin) (<= 0 P) (<= 0 V_b)
(<= 0V_e) (<=0nb) (<=0n_e) (<0TDb) (<0 Te)
(<= 0 W-on-device_c) (<= 0 Ein_c) (<= 0 Ain_c))
:constant ’(k R Tin)
:constant-periodic ’(P)
:varying-periodic-given ’(V)
:varying-periodic-find *((n (+ n_b Ain_c))
(T (/ (+ (* n_b T_b) (* Ain_c Tin)) n_e)))
:constant~accum ’()
ivarying-accum-given ’()
:varying-accum-find ’((W-on-device (*+ P (- V_e V_b)))
(Ein (* (+ 1. k) W-on-device_c))
(Ain (/ W-on-device_c (* R Tin))))

)

(new-phase-type
‘name ’pump-out—ideal-gas—at—constant-p
:condition *((>= V_b V_e) (<= 3/2 k) (< 0 R) (<= 0 P) (<= 0 V_b) (<= 0 V_e)
(<=0n_b) (<=0n_e) (<0T) (>= 0 W-on-device_c) (<= 0 Eout_c)
(<= 0 Aout_c))
:constant ’(k R)
:constant-periodic (P T)
:varying-periodic~given ’(V)
‘varying-periodic-find *((n (/ (* P V_e) (* R T))))
:constant-accum °’ ()
ivarying-accum-given ()
:varying-accum-find ’((W-on-device (* P (- V_e V_b)))
(Eout (* (+ 1. k) P (- V_b V_e)))
(fout (- n_b n_e)))
)

(new-phase-type
‘name ’adiabatic-expand-ideal-gas
:condition *((<= 3/2 k) (< O R) (<= 0 n) (<= 0 V_b) (<= 0 V_e) (< 0 T_b)
(0 T_e) (<= 0 P_b) (<= 0 P_e))
:constant ’(k R)
:constant-periodic ’(n)
:varying-periodic-given (V)
:varying-periodic~find ’((T (* T_b (expt (/ V_b V_e) (/ k))))
(P (* PLb (expt (/ V_b V_e) (+ 1. (/ Kk))))))
:constant-accum ’(Ein Eout Ain Aout)
:varying-accum-given ’()
‘varying-accum~find
’((W-on-device (* k P_b V_b (- 1. (expt (/ V_b V_e) (/ k))))))

157

)

;because they have no reference to an external constant, T, N, & amount-out stay
;unsolved
(setq
d
(make-instance
‘cycle
:name ’single-acting-steam-piston :rate ’RPM
:congtants ’(Pin Pout V1 Vex Vcomp Vh Tin R k-steam)
:periodic-vars ’(P-chamber V-chamber n-chamber T-chamber)
taccum-vars ’(W-on-piston E-of-steam-in E-of-steam-out amount-of-steam-in
amount-of-steam-out)
:conditions
*((< 0 Pout) (> Pin Pout) (< 0 V1) (< V1 Vex) (< Vex Vh) (< V1 Vcomp)
(< Vcomp Vh) (< 0 Tin) (< 0 R) (<= 3/2 k-steam)) ;many others
:phases
*((open-admission pump-in-ideal-gas-at-constant-v
((k k-steam) (R R) (Tin Tin) (P P-chamber Pin) (V V-chamber) (n n-chamber)
(T T-chamber) (W-on-device W-on-piston) (Ein E-of-steam-in)
(Ain amount-of-steam-in)))
(steam~admisgion pump-in-ideal-gas-at-constant-p
((k k-steam) (R R) (Tin Tin) (P P-chamber) (V V-chamber Vex) (n n-chamber)
(T T-chamber) (W-on-device W-on-piston) (Ein E-of-steam-in)
(Ain amount-of-steam-in)))
(steam~expansion adiabatic-expand-ideal-gas
((k k-steam) (R R) (P P-chamber) (V V-chamber Vh) (n n-chamber)
(T T-chamber) (W-on-device W-on-piston) (Ein E-of-steam-in)
(Eout E-of-steam-out) (Ain amount-of-steam-in) (Aout amount-of-steam-out)))
(open-exhaust pump-out-ideal-gas-at-constant-v
((k k-steam) (R R) (P P-chamber Pout) (V V-chamber) (n n-chamber)
(T T-chamber) (W-on-device W-on-piston) (Eout E-of-steam-out)
(Aout amount-of-steam-out)))
(exhaust pump-out-ideal-gas-at-constant-p
((k kx-steam) (R R) (P P-chamber) (V V-chamber Vcomp) (n n-chamber)
(T T-chamber) (W-on-device W-on-piston) (Eout E-of-steam-out)
(Aout amount-of-steam-out)))
(steam-compression adiabatic-expand-ideal-gas
((k k-steam) (R R) (P P-chamber) (V V-chamber V1) (a n-chamber)
(T T-chamber) (W-on-device W-on-piston) (Ein E-of-steam-in)
(Eout E-of-steam-out) (Ain amount-of-steam-in) (Aout amount-of-steam-out)))

))

;add (< 0 Pout) ?
(setq e
(make-instance
’cycle
‘name ’single-acting-steam-piston—no-expand/compress
:rate ’RPM :constants ’(Pin Pout V1 Vh Tin R k-steam)
:periodic-vars ’(P-chamber V-chamber n-chamber T-chamber)
taccum-vars ’(W-on-piston E-of-steam-in E-of-steam-out amount-of-steam-in
_ amount-of-steam-out)
:conditions ;many others
>((> Pin Pout) (< 0 V1) (< V1 Vh) (< 0 Tin) (< 0 R) (<= 3/2 k-steam))

158

:phases
’((open~admission pump~in-ideal~gas~at-constant~v
((k k-steam) (R R) (Tin Tin) (P P-chamber Pin) (V V-chamber) (n n-chamber)
(T T-chamber) (W-on-device W-on-piston) (Ein E-of-steam~in)
(Ain amount-of-steam-in)))
(steam-admission pump-in-ideal-gas~at~constant-p
((k k-steam) (R R) (Tin Tin) (P P-chamber) (V V-chamber Vh) (n n-chamber)
(T T-chamber) (W-on-device W~-on~piston) (Ein E-of-steam-in)
(Ain amount-of-steam~in)))
(open-exhaust pump-out-ideal-gas-at-constant-v
((k k-steam) (R R) (P P-chamber Pout) (V V-chamber) (n n-chamber)

(T T-chamber) (W-on-device W-on-piston) (Eout E-of-steam-out)
(Aout amount-of-steam-out)))

(exhaust pump-out-ideal-gas-at-constant-p

((k k-steam) (R R) (P P-chamber) (V V-chamber V1) (n n-chamber)
(T T-chamber) (W-on-device W-on-piston) (Eout E-of-steam-out)
(Aout amount-of-steam-out)))

)))

Bibliography

(1] Sanjaya Addanki, Roberto Cremonini, and J. Scott Penberthy. Reasoning about
assumptions in graphs of models. In Proceedings of the FEleventh International
Joint Conference on Artificial Intelligence, pages 1432-1438, August 1989.

[2] Alfred V. Aho, John E. Hopcroft, and Jeffery D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley Publishing Company, 1974.

[3] J. Aitchison and J. Brown. The Lognormal Distribution. Cambridge at the
University Press, Great Britain, 1957.

[4] M. Avriel, editor. Advances in Geometric Programming. Plenum Press, New
York, 1980.

[5] Oyvind Bj6rke. Computer-Aided Tolerancing. Tapir Publishers, Norwegian In-
stitute of Technology, N-7034, Trondheim, Norway, 1978.

[6] Daniel G. Bobrow, editor. Qualitative Reasoning about Physical Systems. MIT
Press, 1985. Reprinted from Artificial Intelligence, vol. 24, 1984.

[7] Eugene Braunwald, editor. Heart Disease. W. B. Saunders Co., Philadelphia,
third edition, 1988.

[8] Terrell Croft, editor. Steam-Engine Principles and Practice. McGraw-Hill Book
Co., Inc., New York, 2nd edition, 1939. Revised by E. J. Tangerman.

[9] Wilbur Davenport, Jr. Probability and Random Processes. McGraw-Hill Book
Co., 1970.

[10] Morris H. DeGroot. Probability and Statistics, 2nd ed. Addison-Wesley Publish-
ing Company, 1986.

[11] J. E. Dennis, Jr. and Robert B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Prentice-Hall, Inc., 1983.

(12] Brian Falkenhainer and Kenneth Forbus. Setting up large-scale qualitative mod-
els. In Proceedings of the Seventh National Conference on Artificial Intelligence,
pages 301-306, August 1988.

[13] Kenneth D. Forbus. Intelligent computer-aided engineering. Al Magazine,
9(3):23-36, 1988.

160

[14] G. Giuffrida, G. Bonzani, S. Betocchi, F. Piscione, P. Giudice, D. Miceli,
F. Mazza, and M. Condorelli. Hemodynamic response to exercise after pro-
pranolol in patients with mitral stenosis. The American Journal of Cardiology,
44:1076-1082, November 1979.

[15] C. V. Greenway. Mechanisms and quantitative assessment of drug effects on
cardiac output with a new model of the circulation. Pharmacological Reviews,
33(4), 1982.

[16] G. Hahn and S. Shapiro. Statistical Models in Engineering. John Wiley & Sons,
Inc., 1967.

[17] David Halliday and Robert Resnick. Physics. John Wiley and Sons, Inc., New
York, 1960.

[18] John H. Halton. A retrospective and prospective survey of the monte carlo
method. SIAM Review, 12(1):1-63, 1970.

[19] J. M. Hammersley and D. C. Handscomb. Monte Carlo Methods. Barnes and
Noble, Inc., 1965.

(20] Eric J. Horvitz, David E. Heckerman, and Curtis P. Langlotz. A framework
for comparing alternative formalisms for plausible reasoning. In Proceedings
of the National Conference on Artificial Intelligence, pages 210-214. American
Association for Artificial Intelligence, 1986.

[21] Ronald L. Iman and W. J. Conover. A distribution-free approach to inducing
rank correlation among input variables. Commun. Statist.-Simula. Computa.,
11(3):311-334, 1982.

[22] Mark Johnson. Multivariate Statistical Simulation. John Wiley and Sons, New
York, 1987.

[23] Jan Koch-Weser. Effect of rate changes on strength and time course of con-
traction of papillary muscle. American Journal of Physiology, 204(3):451-457,
1962.

[24] Veng-Kin Lau and Kiichi Sagawa. Model analysis of the contribution of atrial
contraction to ventricular filling. Annals of Biomedical Engineering, 7:167-201,
1979.

[25] W. J. Long, S. Naimi, M. G. Criscitiello, and R. Jayes. Using a physiological
model for prediction of therapy effects in heart disease. In Proc. o f the Computers
in Cardiology Conf. IEEE, October 1986.

[26] William J. Long, Shapur Naimi, M. G. Criscitiello, and Robert Jayes. The devel-
opment and use of a causal model for reasoning about heart failure. In Symposium
on Computer Applications in Medical Care, pages 30-36. IEEE, November 1987.

161

[27] Dean T. Mason. Congestive Heart Failure, Mechanisms, Evaluation, and Treat-
ment. Dun-Donnelley, New York, 1976.

[28] Seshashayee Murthy and Sanjaya Addanki. Prompt: An innovative design tool.
In Proceedings of the Sizth National Conference on Artificial Intelligence, pages
637-642, 1987.

[29] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Morgan Kaufmann, San Mateo, CA, 1988.

[30] Charles S. Peskin and Cheng Tu. Hemodynamics in congenital heart disease.
Comput. Biol. Med., 16(5):331-359, 1986.

[31] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vet-
terling. Numerical Recipes. Cambridge University Press, Cambridge, England,
1987.

[32] Olivier Raiman. Order of magnitude reasoning. In Proceedings of the National
Conference on Artificial Intelligence, pages 100~104. American Association for
Artificial Intelligence, 1986.

[33] H. Ratschek and J. Rokne. Computer Methods for the Range of Functions.
Halsted Press: a division of John Wiley and Sons, New York, 1984.

[34] D. Richardson. Some unsolvable problems involving elementary functions of a
real variable. Journal of Symbolic Logic, 33:511-520, 1968.

[35] John Ross. Cardiovascular system (sec. 2). In Best and Taylor’s Physiological
Basis of Medical Practice. Williams and Wilkins, Baltimore, eleventh edition,
1985.

[36] Elisha P. Sacks. Hierarchical reasoning about inequalities. In Proceedings of the
National Conference on Artificial Intelligence, pages 649-654. American Associ-
ation for Artificial Intelligence, 1987.

[37] Elisha P. Sacks. Qualitative sketching of parameterized functions. In D. Sri-
ram and R. A. Adey, editors, K nowledge Based Expert Systems for Engineering:
Classification, Education and Control, pages 1-13. Computational Mechanics
Publications, Boston, 1987.

[38] Elisha P. Sacks. Automatic qualitative analysis of ordinary differential equations
using piecewise linear approximations. TR, 416, Massachusetts Institute of Tech-
nology, Laboratory for Computer Science, 545 Technology Square, Cambridge,
MA, 02139, March 1988. Also appears as AI-TR-1031.

[39] Elisha P. Sacks. Automatic qualitative analysis of ordinary differential equations
using piecewise linear approximations. Artificial Intelligence, 41(3):313-364, Jan-
uary 1990.

162

[40] Kiichi Sagawa. Analysis of the ventricular pumping capacity as a function of
input and output pressure loads. In E. Reeve and A. Guyton, editors, Physical
Bases of Circulatory Transport: Regulation and Ezchange, chapter 9. W. B.
Sanders Co., Philadephia, 1967.

[41] T. Sato, A. Takeuchi, J. Yamagami, H. Yamamoto, S. Akiyama, K. Endou,
M. Shirataka, N. Ikeda, and H. Tsuruta. Computer assisted instruction for ther-
apy of heart failure based on simulation of cardiovascular system. In R. Salamon,
B. Blum, and M. Jgrgensen, editors, MEDINFO 86: Proceedings of the Fifth
Conference on Medical Informatics, pages 761-765, Washington, October 1986.
North-Holland.

[42] Ross D. Shachter. A linear approximation method for probabilistic inference. In
R. Shachter, T.S. Levitt, L.N. Kanal, and J. Lemmer, editors, Uncertainty in
Artificial Intelligence 4, pages 93-103. Elsevier Science Publishers B.V. (North-
Holland), 1990. Revised version of the paper in The Fourth Workshop on Un-
certainty in Artificial Intelligence (1988).

[43] Ross D. Shachter, David M. Eddy, Vic Hasselblad, and Robert Wolpert. A
heuristic bayesian approach to knowledge acquisition: Application to analysis of
tissue-type plasminogen activator. In Third Workshop on Uncertainty in Artifi-
cial Intelligence, pages 229-236, July 1987.

[44] William C. Shoemaker. Physiology, monitoring and therapy of critically ill gen-
eral surgical patients. In William C. Shoemaker and Edward Abraham, editors,
Diagnostic Methods in Critical Care, chapter 4, pages 47-86. Marcel Dekker,
Inc., New York, 1987.

[45] Robert Spence and Randeep Singh Soin. Tolerance Design of Electronic Circuits.
Addison-Wesley Publishing Co., Reading, MA, 1988.

[46] Guy L. Steele Jr. Common LISP. Digital Press, 1984.

[47] A. H. Stroud. Approzimate Calculation of Multiple Integrals. Prentice-Hall, Inc.,
1971.

[48] Peter Szolovits and Stephen G. Pauker. Categorical and probabilistic reasoning
in medical diagnosis. Artificial Intelligence, 11:115-144, 1978.

[49] G. Thomas, Jr. Calculus and Analytic Geometry, 4th edition. Addison-Wesley
Publishing Co., 1968.

(50] Daniel S. Weld. The use of aggregation in causal simulation. Artificial Intell;-
gence, 30(1):1-34, October 1986.

[51] Daniel S. Weld. Comparative analysis. In Proceedings of the Tenth International
Joint Conference on Artificial Intelligence, pages 959-965, 1987.

163

[52] Daniel S. Weld. Exaggeration. In Proceedings of the National Conference on
Artificial Intelligence. American Association for Artificial Intelligence, 1988.

[53] Daniel S. Weld. Theories of comparative analysis. AI-TR 1035, Massachusetts In-
stitute of Technology, Artificial Intelligence Laboratory, 545 Technology Square,
Cambridge, MA, 02139, May 1988.

[54] Brian C. Williams. MINIMA: A symbolic approach to qualitative algebraic rea-
soning. In Proceedings of the National Conference on Artificial Intelligence, pages
264-269. American Association for Artificial Intelligence, August 1988.

[55] Patrick Henry Winston. Artificial Intelligence. Addison-Wesley, Reading, MA,
second edition, 1984.

