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Abstract—Notions of signature and anomaly have formed

the basis of useful methods in cyber defense, but even in

combination provide only weak evidence for recognizing

many events of interest. One can recognize many impor-

tant events without requiring signatures of specific ways the

events can take place and without treating every anoma-

lous behavior as an event. We describe an approach to

event recognition that subsumes and extends signature and

anomaly methods by starting from a richer language for

characterizing events. This paper explains how recogni-

tion methods based on this richer event-characterization

language offer means for overcoming the limitations con-

straining signature and anomaly methods.

I. Signature and anomaly methods

NOTIONS of signature and anomaly form the backbone
of current methods for intrusion detection and cyber

defense.
Signature-based methods examine the operations per-

formed by processes or requests received by hosts to find a
sequence of operations or requests that match a specified
pattern. Matching patterns of operations that constitute
illegitimate access provides evidence for an attack having
taken place. Sometimes failing to match expected patterns
of legal operations may also signal an attack.
Anomaly-based methods compare usage statistics for

some current period against statistical norms developed
from previous periods or other considerations. Periods for
which the statistics vary too much from the norms consti-
tute anomalies. Anomalous behavior, in turn, constitutes
evidence, though possibly weak evidence, for an attack hav-
ing taken place.

A. Strengths and weaknesses

While both signature and anomaly methods provide ev-
idence to guide intrusion assessments, their most common
forms suffer limitations in the quality of the evidence they
can provide.
Signature methods are too special. Attackers can use

many different patterns of operations to achieve the same
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end. For example, an attack might involve conducting sev-
eral concurrent trains of operations. When the attacker
can vary freely the interleaving of the steps of these concur-
rent trains of operations, a defender depending on sequence
recognition must stand ready to recognize a large number
of possible sequences as instances of the attack. In other
cases, the attackers can expand the variety of alternative
methods indefinitely by introducing additional detours in
the main attack sequence, so going far beyond the mul-
tiplicity involved in mere interleaving. More importantly,
the defender always has interest in identifying the compro-
mise that has occurred, for responding to the compromise
in an effective way requires such knowledge. Apart from
law enforcement, however, the defender generally cares less
about correctly identifying the particular method used to
effect the compromise. Correct identification of the attack
method can prove helpful in warning other sites, but such
warnings might hinder defense when attackers vary their
methods from site to site.

Anomaly methods are too general. The most danger-
ous attackers generally know how to hide their activities in
the noise, working through scattered low-visibility events
that defenders cannot recognize apart from specific expec-
tations about what the attackers might do, expectations
that step outside the conception of anomaly as nonspecific
recognition of something outside the ordinary. Further, one
recognizes an anomaly only with respect to some baseline
periods of normality, making recognition difficult for events
that do not fall completely within a comparable interval.
This possibility increases in likelihood when attackers can
make reasonable guesses about the periods of comparison
and the nature of normal behavior. More fundamentally,
anomaly encompasses anything apart from the norm. It
does not distinguish intentional compromise from benign
changes in the external environment or inexplicable acci-
dent, and so increases the rate of false alarm.

Both signature and anomaly methods offer strengths and
weaknesses, but neither’s strength fully compensates for
the weakness of the other. For example, FTP traffic grow-
ing from normal levels to a saturation level and staying
there signals a familiar class of intrusion, but no conjunc-
tion of signature and anomaly methods characterize this
class. None of the FTP transactions constitutes an attack
in itself, and indeed, many may be ordinary and legitimate
transactions. The traffic levels certainly count as anoma-
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lous, but so do vast numbers of other patterns representing
mere accident or very different compromises.

B. Illustrating the weaknesses

To better understand the pragmatic weaknesses of signa-
ture and anomaly methods, consider the following fictitious
description of events that amalgamates aspects of several
actual attacks suffered by the MIT Artificial Intelligence
Laboratory and Laboratory for Computer Science in re-
cent years.

A lab ensemble of computers runs a visual surveillance
and monitoring (VSM) application. On January 12, 2002
several of the machines experience unusual traffic from out-
side the lab. Intrusion detection systems report observing
several password scans. Fortunately, after about 3 days
of varying levels of such activity, things seem to return to
normal, and remain apparently normal for another 3 weeks.

At that time, however, a machine named Harding that
serves crucial functions within the VSM application begins
to experience unusually high load averages. The applica-
tion components running on this machine begin to receive
less than the expected quality of service. The load aver-
age, degradation of service, the consumption of disk space
and the amount of traffic to and from unknown outside
machines continue to increase to annoying levels, but then
level off.

On March 2, a machine named Grant crashes. Fortu-
nately, the VSM application was designed to adapt to un-
usual circumstances. The application considers whether
it should migrate the computations which would normally
have run on Grant to run on Harding instead. It considers
these computations critical to the application, but decides
despite the odd circumstances noticed earlier on Harding
that the migration seems reasonable.

Why did the application consider the migration to Hard-
ing reasonable in spite of clearly anomalous behavior? It
did so because it recognized the events on Harding as a
case of someone guessing a user password and setting up
an unauthorized FTP site for transshipment of files, such as
illicit software or images. The load on the server increased
as word spread about this new transshipment site, and lev-
eled off as demand saturated the machine. The observed
events provided no evidence that the root account had been
compromised, so the application had little reason to worry
that critical computations migrated to Harding would ex-
perience any further compromise. The system needed to
run those computations somewhere. Even though Harding
was loaded more heavily than expected, it still represented
the best pool of available computational resources; other
machines were even more heavily loaded with other critical
computations of the application.

This scenario illustrates in greater detail the inadequacy
of signature and anomaly methods in guiding recognition of
and response to the intrusion. The intrusion detection sys-

tems certainly noticed worrying events in the early stages of
the scenario, and detected these events with signature and
anomaly methods. Such methods also would classify the
high levels of FTP traffic as anomalous, and possibly also
so classify some of the individual FTP transactions based
on user history. Mere classification as anomaly, however,
would not provide the VSM application with the specificity
needed to effect the transfer of critical processes to Hard-
ing, as the class of anomalous behavior also includes hostile
possession of root passwords and the like.

Now consider instead a somewhat different scenario in
which the VSM application serves in protecting a threat-
ened diplomatic mission during a period of international
tension. In this scenario, the intrusion detection systems,
as before, observe a variety of information attacks being
aimed at Harding, but now with at least some of these at-
tacks of a type known to occasionally provide root access to
a machine like Harding. A period of no anomalous behav-
ior other than a periodic low volume communication with
an unknown outside host follows these attacks on Hard-
ing. This time, when Grant crashes, the VSM application
decides against using Harding as the backup. The event
recognized admits significant probability that an intruder
gained root access to Harding. The setting of international
tensions suggests some probability of malicious political in-
tent behind the intrusion. The periodic communication
with the unknown outside host bears some probability of
representing attempts to contact an outside control source
for a “go signal” initiating serious spoofing of the appli-
cation. Under these circumstance, the VSM application
chooses to shift the computations to a different machine
in the ensemble even though it is considerably more over-
loaded than Harding.

C. Transcending signature and anomaly

These differing scenarios show how effective response to
intrusion requires transcending the capabilities offered by
straightforward signature and anomaly methods.

Recognition of the FTP-site hijacking pattern requires
melding the ideas of sequences and statistics in a very dif-
ferent way than one can obtain with parallel operation of
sequence and anomaly detectors. The hijacking implies a
correlation between the history of subevents that match
standard intrusion-detection signatures and a specific pat-
tern of anomalous behaviors, in which the magnitudes of
the anomalies fit an increasing and saturating curve (an
S-curve) to some degree of accuracy.

In this recognition, mere observation that the increas-
ing load levels constitute anomalies in each time slice does
not support recognition of the hijacking event, because a
succession of anomalous intervals just add up to a longer
anomalous interval. Anomaly detection then might pro-
vide a report for the longer interval of the same form as
for the shorter intervals. Such reports might suffice to at-
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tract human attention, but do not suffice to distinguish the
hijacking event from other intrusions. At the same time,
recognition of the hijacking proceeds from observing that
the load levels increase to saturation, irrespective of any
observation that the load levels during this process consti-
tute anomalies.

One might seek to view detection of the increasing and
saturating load in terms of an abstract signature over in-
terval statistics. This moves in the right direction, going
significantly beyond simple combination of signature and
anomaly detection. Even so, to obtain the desired recogni-
tion one must expand the conception of signature beyond
the traditional notion of sequences or patterns expressed
in regular expressions or context-free languages. Recogni-
tion of the FTP hijacking might not depend much on the
shape of the increasing and saturating curve of load levels,
but recognition of other events can require distinguishing
linear, quadratic, or exponential curves, or even different
slopes of linear curves. For example, one might expect
linearly increasing growth of certain traffic flows in orga-
nizations that linearly grow in size each year, and wish to
distinguish such secular growth in traffic from exponential
increases characteristic of cascaded attacks or exploitations
in which each perpetrator triggers several more.

For these reasons, we believe that in order to guide ef-
fective response to intrusion and compromise, event recog-
nition must go beyond signature and anomaly to recog-
nize patterns more abstract than signatures but more spe-
cific to the particular events of interest than anomaly.
These intermediate levels in essence taxonomize different
degrees of sensitivity and specificity with respect to dif-
ferent types of events. In any particular diagnostic rea-
soner, it is well known that one must trade off the sen-
sitivity of recognizing true events against specificity (the
probability that only true events are recognized). That
trade-off is often shown in an ROC (Receiver Operator
Characteristics) curve, whose general form shows that for
any degree of increase in either sensitivity or specificity,
the other decreases. An improved diagnostic method is
one that reduces the magnitude of this reciprocity. Of-
ten an enriched representation, which makes it possible to
distinguish previously-unrecognizable situations, helps to
improve ROC performance. This is the intuition behind
our present work.

The following discusses methods by which one can recog-
nize many important events without requiring signatures of
specific ways the events can take place and without treating
every anomalous behavior as an event.

II. Characterizing events

We seek to characterize different types of events in lin-
guistic descriptions. We use such descriptions to tell the
recognition system which events interest us. The recogni-
tion system, in turn, uses the descriptions both in recogni-

tion processes that match descriptions to sensor informa-
tion and in explanation processes that communicate and
justify recognized instances.

To understand better what expressions the event descrip-
tion language should encompass, consider again the FTP
hijacking scenario presented above. One can describe the
pattern of activity resulting from the establishment of the
FTP transshipment site in terms of activities during several
temporal regions. First there was a period of attacks (par-
ticularly password scans). Then there was a “quiescent”
period. Then there was a period of increasing degradation
of service. Finally, there was a leveling off of the degrada-
tion but at the saturation level.

One can resolve this summary into finer details that give
more insight and perhaps improve the likelihood of recogni-
tion. To do this, we describe the trends of average resource
load levels and the average volume of traffic from external
sites. During the initial attack and quiescence periods, the
load levels stay roughly constant while the external site ac-
tivity goes up and down, because the attacks themselves do
not involve much effort. During the exploitation and sat-
uration phase, the load average climbs to saturation well
before the external site activity levels out, because a few
initial misusers suffice to swamp the host while word of the
site continues to spread to further misusers.

One can also describe the pattern of activity involved in
the embassy surveillance scenario in terms of activities dur-
ing several temporal regions, coupled with environmental
information. First there was a period of attacks seemingly
aimed at obtaining root access occurring during a period of
heightened international tension related to the application
being run. Then there was a “false peace” period of no
attacks (or merely normal attacks) coupled with periodic
low-volume foreign communications.

To permit expression of such characterizations of the sce-
narios, we seek to enrich the event description language.
Our starting point in this enrichment follows Haimowitz
and Kohane [1], [2], [3], [4], [5], who developed a language
of “trend templates” we will call TTL for expressing tem-
poral patterns like those involved in the examples, along
with methods for recognizing instances of trend templates
in the stream. The key elements of TTL are as follows:

• Landmark times. Landmark times represent significant
points in the unfolding of the event over time, such as
boundaries between different phases of the event. These
can be concrete times (i.e., fully-specified points on the
calendar), but often represent abstract times characterized
only by uncertain relations to other time points. The orig-
inal TTL provided only for simple forms of temporal un-
certainty, representing relations of landmark times to other
times with time ranges expressing the minimal and maxi-
mal times between them.
• Temporal intervals. Intervals represent periods of the
process that characterize significant subevents. Intervals
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can bear specific or abstract durations constrained by rela-
tions to other intervals and to landmark times. Such con-
straints on temporal position take a form similar to tem-
poral relations among landmark times. Each interval has
beginning and ending times. Relational constraints declare
these times as satisfying either uncertain (min max) offsets
from other landmark points, or uncertain offsets from an-
other interval’s beginning or ending points.
• Temporal relations. These relations provide shorthand
means for expressing relations among intervals that one
could express at greater length using the (min max) rela-
tions. The provided interval relations include the Allen [6]
interval relations and others.
• State constraints. These specify characteristics of objects
during temporal intervals, such as constant values, increas-
ing or decreasing values, shapes of curves, etc.
• Regression functions. These model criteria for matching
templates against data, and so describe means for deciding
when events occur when uncertainty exists about starting
and ending times.

Our current work on the MAITA system [7] seeks to ex-
tend the original trend template language in several ways,
including augmenting range expressions for indicating tem-
poral relations with more general probability distributions
over the occurrence of landmark times. The current con-
straint language consists mainly of linear and quadratic
regression models for numeric data, absolute and relative
numerical constraints on functions of the data, and logical
combinations of such descriptions and propositions. We ex-
pect to augment the state constraint language with proba-
bility distributions and additional commonly useful shapes
of curves.

To illustrate the representation, Figure 1 presents por-
tions of a simplified trend template that describes the FTP
hijacking event. The trend template contains landmark
times (indicated by the :landmarks entry) corresponding
to initiation of probing, achievement of compromise, initi-
ation of transfers through the site, the point at which the
exploit saturates the capabilities of the site, and the cur-
rent time. We omit constraints characterizing the probing
and latency intervals, but characterize the loading period as
an interval constrained to exhibit saturating FTP volume
and host load averages. The constraint definitions indicate
the parameters being constrained (e.g., FTP-VOLUME) and
the qualitative shape formed by the values of the parameter
over the interval. The shape model (s-curve (d1 +)), for
example, indicates an S-shaped curve connecting two levels,
with a positive first derivative in the middle section of the
s-curve, that is, an S-curve starting from a low level of FTP
volume and leveling off at a higher level. (A simpler model
might use a simple linear model (linear (d1 +)) instead
of the s-curve.) Similarly, we characterize the subsequent
“continuing” period as an interval constrained to exhibit
continued exploitation at saturation levels. We character-

ize these intervals as consecutive sequential phases of the
overall event. The temporal relations express lower and
upper bounds on the duration of intervals between time
points given in the first two elements of each four-element
list. Bounds of “0 0” indicate co-occurrence of two points.
The relations in this trend template do not bound the dura-
tion of probing, and require only small lower bounds on the
duration of latency and loading periods, but require longer
periods of continuing exploitation to rule out happenstance
temporary periods of saturation.

(deftt FTP-TAKEOVER

:landmarks ’(initiation compromise

exploitation saturation now)

:intervals

((definterval PROBING

<omitted>)

(definterval LATENCY

<omitted> )

(definterval LOADING

:constraints

((defconstraint SATURATING-FTP

:parameters (FTP-VOLUME)

:model (s-curve (d1 +)))

(defconstraint SATURATING-LOAD

:parameters (LOAD-AVERAGE)

:model (s-curve (d1 +))) ))

(definterval CONTINUING

:constraints

((defconstraint SATURATED-FTP

:parameters (FTP-VOLUME)

:model (linear (d1 0)))

(defconstraint SATURATED-LOAD

:parameters (LOAD-AVERAGE)

:model (linear-curve (d1 0)))

)))

:relations

’((consecutive-phase probing

latency loading continuing)

(initiation (begin probing) 0 0)

(compromise (end probing) 0 0)

(exploitation (begin loading) 0 0)

(saturation (end loading) 0 0)

(now (end continuing) 0 0)

(compromise exploitation

(minutes 1) (days 1))

(exploitation saturation

(minutes 2) (days 1))

(saturation now

(minutes 10) (days 1)) ))

Fig. 1. Excerpts from a simplified trend template describing behavior
characteristic of compromise and exploitation of a FTP site.

TrenD
x
provides recognition algorithms that employ a
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partial-match strategy operating over a set of trend tem-
plates, each of which consists primarily of temporal con-
straints characterizing some temporal event. In matching
a trend template to data, TrenD

x
carries out two tasks si-

multaneously. First, it refines the bounds on time intervals
mentioned in the TT so that the data best fits the TT. For
example, in matching a TT that looks for a linear rise in
a numeric parameter followed by its holding steady while
another parameter decays exponentially, the matcher must
find the (approximate) time boundary between these two
conditions. Its best estimate will minimize deviations from
the constraints. Second, the matcher computes an overall
measure of the quality of fit from the deviations.
The trend matching algorithms rely on the Temporal

Utility Package (TUP) [8], [9] that propagates temporal
bound inferences among related points and intervals.

III. Some comparisons

The preceding examples illustrate some of the limitations
that current attack recognition languages appear to suffer,
but different extant languages exhibit different limitations.
In this section, we examine the apparent limitations of sev-
eral representative systems.

A. STATL

STATL [10] constitutes one of the most clearly defined
languages designed for use in attack recognition. STATL
is an extensible language, and the comments that follow
refer to the unextended language. Some proper extensions
might not have the limitations we attribute to it here.
STATL’s strength lies in using familiar programming-

language constructs to describe sequential, conditional, and
iterative events. These constructs directly address the
structure of many automated attacks, since the attacks re-
sult from execution of similarly-structured programs.
These strengths do not extend to representing uncer-

tain times and durations, as STATL makes no provision
for abstract times or temporal intervals except implicitly
in iterative expressions. It instead appears to provide only
for concrete times and durations, and does not provide any
easy or obvious way of expressing or relating abstract inter-
vals or for expressing or grading uncertainties about when
events start and end. STATL seems to tie down all events
with specific times and durations, and equates all low-level
events with changes in system states. Its only means to
represent ambiguity appears to be a transition that may
or may not have taken place, whereafter a recognized fu-
ture event can reset the recognizer to the state before the
ambiguous transition.
STATL’s expressive limitations regarding times and in-

tervals pose problems in describing the scenarios. Recog-
nizing the FTP and embassy attacks involves character-
izations of patterns that refer to abstract times and du-
rations and to relations between abstract temporal inter-

vals. Representing events as transitions through a single
chain of states precludes recognizing the achievement of a
set of attack preconditions that have no innate required
time order. Moreover, the examples highlight the substan-
tial uncertainties involved in exactly when the component
events occur. The initial period of increased attack lev-
els in the FTP hijacking, for instance, represents a rise
of attack volume above a fluctuating background level of
“normal” attacks. One might come to some fairly definite
identifications of this event in a forensic analysis well after
the events have played out, but attempts to recognize the
attack in progress will likely suffer significant doubt about
just where the rise in attacks starts and ends.

The patterns illustrated in the scenarios also refer to
changes in statistical trends over the intervals in question,
such as increasing, decreasing, or constant values. It is
not clear that these trends find easy expression in STATL,
though perhaps the language-extension mechanism pro-
vides the means to include derivatives and other mathe-
matical operations on signals. Similarly, STATL lacks a
way of talking about periodic signals, unless perhaps by
talking about signals with a concrete period, or by means
of a further extension.

Finally, the scenario patterns also refer to causal re-
lationships between events, or more generally, to non-
statistical relationships between events such as intention-
ality. STATL makes no provision for such relationships
between subevents that combine to make a larger event.

B. CISL

CISL [11] represents an important effort to provide a re-
porting language usable by a variety of intrusion detection
systems. CISL’s design as a reporting language did not
intend to support recognition. However, one can expect
languages for describing events in reports to have at least
some commonality with languages for describing events to
recognition systems. We therefore briefly comment on the
utility of the constructs provided by CISL for use in recog-
nition. See [12] for comments on the utility of CISL for
event reporting.

CISL shares with STATL a focus on representing con-
crete times and intervals. It appears to go beyond STATL
in providing a somewhat wider range of logical combina-
tions of subevents, perhaps not surprisingly since CISL
bears no burden of executing the combinations in the pro-
cess of recognition. The most prominent extensions re-
lated to recognition come in CISL’s provision of skeletal
constructs for reporting causation and intent. These con-
structs lack defined meaning, and do not seem adequate
even to some purposes of reporting (see [12], [13]). The
constructs nevertheless move in the right direction, because
recognition methods based on inferring large-scale plans
from many piecemeal intentional actions require inclusion
of such relations in an attack language.
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C. P-BEST

The Emerald [14] intrusion detection architecture goes
further than some in seeking to move beyond simple sig-
nature and anomaly, by providing for a network of sen-
sors and correlation processes. Emerald employs the P-
BEST language [15] for recognition and correlation, but
this language really consists of a formalism for expressing
probabilistic and linguistic rules, and lacks any concepts
specific to event recognition. Probabilistic relationships
among concepts certainly play a role in recognition, but the
general rule-based framework of P-BEST provides merely
a different scheme for general-purpose computation.

For each trend template, one might construct a set of P-
BEST rules that derive all possible matchings against data,
but this rule set would lack the control needed to identify a
single best matching template. The rule set would also pro-
vides a poor representation of the event, which has struc-
ture independent of any particular recognition mechanism.

D. CYCL

CYCL, the language employed in the CYC system for
knowledge representation and reasoning [16], constitutes
the most general and expressive language considered here
by a wide margin. It provides rather powerful constructs
for expressing abstract and concrete concepts across many
domains, including logical descriptions, nonmonotonic de-
scriptions, modalities, epistemic and intentional constructs,
and, in the MELD extension, probabilistic constructs. The
standard ontology provided with CYC contains concepts
of time points and intervals, processes, and the like. We
expect one can express any of the relationships we seek to
capture in a trend template language in CYCL.

That said, CYCL itself was not designed with event
recognition as a specific aim, and might prove more gen-
eral than necessary, with this very generality lessening the
specific guidance it provides the designer of event recog-
nition systems. For example, one can use CYCL to de-
scribe events in terms of number-theoretic patterns, but
this would provide no effective algorithm for recognizing
such an event. One hopes the constructs of a recognition
language all carry obvious roles in performing event recog-
nition tasks.

IV. Expressivity examples

We now examine some examples of trend descriptions,
mostly motivated by hypothetical command and control
scenarios, that exercise or exceed the expressive powers of
STATL and, in some of the later cases, the original TT
language.

Trend templates characterize events that cannot be sim-
ilarly characterized in languages that provide for descrip-
tions only in terms of specific times and interval durations.
Specifically, it appears that one cannot use only concrete

times and durations to express descriptions like the follow-
ing:

A. An X event occurs during a Y event.
B. An X event follows a Y event, and the switch-over time
occurred some time between 5 and 7 PM.
C. An X event overlaps and follows a Y event, with the
overlap lasting at least 5 minutes.

Correlation of simultaneous event histories also high-
lights potential difficulties. STATL appears to focus on de-
composition of histories into concatenated intervals during
which states are constant. There may be a way to describe
the multiple overlapping time-varying state constraints ex-
pressible in the TT language in these attack languages, but
even if that is possible, it is not likely to be convenient given
the sequential focus of the languages. Descriptions like the
following provide targets for expression here:

D. The resource load activity stayed constant while the ex-
ternal site activity rose and fell, and then the resource load
activity rose swiftly to saturation levels while the external
site activity rose more gradually and saturated later.
E. The traffic volume through X has been increasing while
the traffic volume through Y has been steady.

TTL does not necessarily cover all the concepts desirable
in a robust attack language. In particular, it has no facility
for expressing probabilistic information. One can easily
think of event recognition methods needing to refer to such
information. Consider, for example, the following requests
a commander might make of a threat-detection system.

F. Warn me if the probability of a class X attack in sector
Y goes over 25%.
G. Warn me if the probability of a class X attack in sector
Y increases by more than 25% per hour over a period of
three hours or more.
H. Discount any threat recognizer that reports attack
probabilities that vary too much and too quickly over sev-
eral five-minute periods.

Similarly, TTL made no explicit provision for express-
ing negative information (information about absence of
events), nor for expressing information about the value of
events. Examples here include:

I. No attacks are hitting target X or targets of class Y.
J. The attacks are increasingly on more important targets.

The original TTL also did not include a very rich lan-
guage for describing waveforms or periodicity. Examples
here include:

K. The external requests are oscillating at 1 Hz, with os-
cillation between larger and smaller volumes of requests
taking the shape of a square wave (or sawtooth wave, etc.).
L. The frequency of attacks for which success possibly
compromises the secrecy of our plan database is increas-
ing.
M. The frequency of congestion (oscillation) has been in-
creasing for the past day.

Neither STATL nor TTL provide any way of keying
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recognition methods to the systemic properties of recog-
nition subsystems. Examples of such expressions include:

O. The attacks on command resources are increasing.
P. The success rate of attacks has been decreasing.
Q. It is becoming harder to detect attacks; we are detecting
fewer, even though traffic is up without any change in our
own behavior.
R. Sensor X is operating at selectivity Y and sensitivity Z
on its ROC curve.
S. The effectiveness of our defenses is decreasing; the frac-
tion of attack attempts that cause compromises is increas-
ing.

More generally, as noted earlier, attack recognition lan-
guages require means to key methods to intentions and
other psychological properties of adversaries. Examples
here include:

T. The intent of attack X is Y.
U. The attack hits some machine in every enclave, but
appears to prefer Windows NT hosts when they exist.

V. Conclusion

We maintain that some limitations experienced with sig-
nature and statistical methods stem not from the methods
themselves but from reliance on inadequately expressive
languages for describing significant patterns. A richer lan-
guage, particularly one based on multilevel abstractions
and mechanisms for expressing uncertainty in characteriz-
ing events, permits one to express more of the central and
essential regularities and worrying abnormalities needed to
analyze behavior properly. Such a language can increase
the difficulty of evading signature or anomaly detection by
restructuring the spaces of events in ways that lessen the
likelihood that evasive attempts succeed.
We believe that the principal value of an event recog-

nition language inheres in the set of descriptive and ana-
lytical concepts it provides right from the start. Such was
the advantage of Fortran over early assembler languages for
mathematical programming, and such should be the aim of
event recognition languages. Thus even when the language
provides an extension mechanism, the core language should
exhibit richness sufficient to express the structure of many
of the events described in the preceding.
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