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Abstract

This paper discusses the issues involved in validating a large medical knowledge base for diagnostic

reasoning using a pseudo-Bayesian network of physiologic causal relations, based on our on-going

experience in validating the Heart Failure Program. Validation is addressed at two levels, 1)

methods for determining the extent, topology, and probabilities in the network and 2) methods

for assessing, comparing, and learning from the diagnoses produced by the program. The local

validation of the knowledge base requires the developer to face the issues of the boundaries of the

domain, both in coverage and detail, versus the purposes of the program. The validation of the

topology includes issues of imposing causal structure on everything from associations to feedback

relations and determining what level of granularity captures clinical relevance. The probabilities

require the use of clinical expertise checked against the literature and the available statistical data.

Validation at the level of the diagnoses produced by the program involves another set of issues.

Program diagnoses have a very di�erent character than expert diagnoses. Program diagnoses are

very detailed and contain a small number of completely speci�ed hypotheses. Expert diagnoses

include intentional ambiguity and only specify the primary aspects of the problem. To compare

such di�ering diagnoses, we have developed a program that assesses whether the program diagnosis

is consistent with the expert diagnosis. It is still necessary to validate the form of presentation

used by the program, since these are important justi�cations of the diagnosis that are not usually

conveyed by the expert diagnosis.

1. INTRODUCTION

This paper addresses some of the issues of validation of a large knowledge based medical system

operating in the context of complex medical cases using the same data as the physicians and

providing information intended to be integrated into the physician's decision making process. The

medical context is the diagnosis of patients with symptoms suggestive of heart failure. That is,

patients with shortness of breath, fatigue, edema of the extremities, peripheral vasoconstriction or

other �ndings that are consistent with hemodynamic dysfunction, or patients with known cardiac

disease who are at risk for low cardiac output and the sequelae of compensatory mechanisms

that produce the clinical presentation of heart failure. Since there are many diseases other than

those involving the heart itself which have these consequences, the medical domain of disorders is

quite broad. Since the underlying diseases that cause heart failure are usually chronic, many cases
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involve repeated hospitalizations with progression of the disease, complications, e�ects of therapies,

or additional unrelated diseases.

Over the past several years we have been developing the Heart Failure Program to assist physi-

cians in reasoning about such patients. The program takes the same kind of case description a

physician would record about the patient, including information about the history, symptoms,

physical examination, and test results. It uses that information to generate a di�erential diagnosis

consisting of hypotheses, each of which explains all of the �ndings, except those better explained

by something outside of the domain. The program can also suggest additional measurements to

re�ne the diagnosis and therapies to manage the problem. It can also predict the hemodynamic

e�ects of the therapies, but this paper will be restricted to the validation issues that arise in the

di�erential diagnosis process (see other papers about other aspects of the system[1, 2, 3]).

In the following sections we will outline the basic structure of the program, highlighting the

aspects that need validation; the issues and methods involved in validating the knowledge base;

and the issues and experience of assessing the correctness of the diagnoses.

2. DIAGNOSTIC REASONING MECHANISM

The Heart Failure Program (HFP) is a computer system which assists the physician by computing

di�erential diagnoses for cases from the �ndings, represented as detailed graphical physiologic causal

diagrams justifying each of the hypotheses. There are three major parts of the program involved in

generating di�erential diagnoses: 1) an input interface that takes the �ndings about the patient in

menu form, 2) a knowledge base in the form of a probability network of causal relationships between

pathophysiologic states and �ndings, and 3) a heuristic hypothesis generator designed to �nd likely

explanations for the �ndings in terms of causal pathways through the pathophysiologic states. The

result of di�erential diagnosis is an ordered list of complete explanations for the �ndings (called

hypotheses) with relative probabilities.

2.1. Input Interface

The input interface is a dynamically expanding menu with �elds for specifying symptoms, known

diseases, current therapies, detailed physical examination �ndings including vital signs, and the

pertinent results of laboratory tests, both usual and unusual. The intent is to capture the infor-

mation pertinent to the diagnosis and immediate management of cardiovascular disease without

requiring the system to do reasoning outside of the problem domain and to display the relevant

patient information in an e�ective manner. It is assumed that the data has been interpreted and

�ltered by the user. The nature of this interface means that decisions have to be made in the design

of the program about what information is potentially pertinent to the diagnosis and at what level

of detail. Obviously, anything the user cannot enter, the program cannot use in diagnosis. One

might argue that the input should be as extensive as possible in hopes that someday the program

could be expanded to use the information. However, that gives the users a false sense of security,

believing that the information entered is all used in generating diagnoses.

2.2. Knowledge Base

The HFP knowledge base (KB) is a clinically de�ned physiologic model of the cardiovascular system.

From the perspective of diagnosis, the model consists of data structures representing qualitative

physiologic states, measurement categories (the categories of patient information), and probabilistic

causal generic links, constituting the general diagnostic knowledge about the domain and used as

a general template from which the more speci�c knowledge about a case is generated. Using the
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information from a case, the states, measurement categories, and generic links are instantiated as

nodes, �ndings, and speci�c links representing the relationships that potentially exist in the case

| essentially the superset of all possible diagnostic hypotheses for the patient. The states include

diseases, qualitative states of physiologic parameters, and therapies. The measurement categories

represent the observables entered in the input: the history items, symptoms, and laboratory results.

The links model the causality as probability relations, both between states and from states to the

values of measurement categories. When a case is entered, the states and measurement values are

instantiated as nodes and �ndings. The probability relations between them may be conditional on

input values or on the nodes in a hypothesis. These probability relations are partially evaluated to

provide the constraint implied by the input values. An important feature of the KB that in
uences

the validation is the lengthy causal chains in the model. While a few diagnostic systems like

MUNIN[4] have causal chains of four or �ve levels, those in the HFP can be a dozen or more nodes

long. An important disease such as myocardial infarction (heart attack) includes the etiology of

coronary artery disease, coronary obstruction, leading to the infarction, which causes ventricular

dysfunction, and a whole chain of consequences leading to signs of pulmonary congestion or other

e�ects of heart failure produced by the infarction.

There are two features of this knowledge representation that simplify the reasoning mechanisms

but also limit the expressive power of the KB. The �rst is the essentially binary nature of the

physiologic states. For example, the low cardiac output node is either true or false. There are no

degrees of severity�. However, a parameter is not restricted to two states, so there is also a high

cardiac output node with the constraint that high and low cannot be simultaneously true. The

probabilities between nodes can be adjusted for values in the input or even other nodes included

in a hypothesis, overcoming some of this restriction. For example, high heart rate can cause low

cardiac output, but only when the heart rate is very high, say above 120. This is captured by

making the probability on that link a function of the actual heart rate. Probabilities that are

functions of input values are resolved when the input is entered. Probabilities that are functions of

nodes must be handled by the process of hypothesis generation.

The second is lack of time relationships between nodes. For example, there is no way to represent

and reason about a �nding that was present yesterday but absent today. A hypothesis is a snapshot

in time. This restriction is partially alleviated by having explicit nodes for some chronic states with

di�erent characteristics than their acute counterparts. For example, there are nodes for both acute

mitral regurgitation and chronic mitral regurgitation to distinguish the di�erent presentations.

The KB covers the common and some not so common causes of heart failure or hemodynamic

disturbance including myocardial ischemia and infarction, congestive, restrictive, and hypertrophic

cardiomyopathy, valvular disease, atrial and ventricular septal defects, constrictive pericarditis and

tamponade. It also has non-cardiac diseases that cause the same symptoms or complicate the

hemodynamic situation such as pulmonary, renal, liver, or thyroid diseases, anemia and infection.

The probabilities on the links between nodes are combined using a \noisy-or" combination

rule[5] except for special links called worsening factors, which increase the probability of another

cause but are insu�cient to produce the e�ect alone, and correcting factors, which decrease the

probability. Thus, if the causes are P , the worsening factors W , the correcting factors C, and at

least one of the causes in P is true, the probability of a node is:

(1�
Y

i2P;W

(1� pi))
Y

i2C

(1� pi)

�Levels of severity and time intervals for states have been recently added, but await

further testing before they can be adequately discussed.

3



Similarly, each �nding has a probability of being produced by nodes. The model is similar to

those investigated by Pearl[5] as Bayesian probability networks. However, this model has forward

loops (excluded by Pearl), some probabilities that are conditional on other nodes in the hypothesis,

and nodes with multiple paths between them (handled only in exponential time by Pearl's meth-

ods). The forward loops imply that the product of the probabilities of the nodes computed locally

from the states of immediate predecessor nodes is not a consistent interpretation of probabilities.

That is, the probabilities of all combinations of node states computed in this manner, does not

necessarily sum to one. However, a consistent interpretation is possible by eliminating loops in

speci�c hypotheses. Because of these complications, heuristic methods are necessary for generating

hypotheses or estimating the probability of a node and the program is pseudo-Bayesian.

The di�erential diagnosis problem is to generate complete hypotheses (causal paths from pri-

mary causes) for the �ndings and present the user with a list of hypotheses and their relative total

probabilities for comparison. The algorithm is described elsewhere[2], but may be thought of as a

heuristic approximation to �nding the maximum likelihood explanation for a set of �ndings.

3. KNOWLEDGE BASE VALIDATION

There are a number of aspects to the problem of validating the knowledge base for a large medical

diagnostic system. These include de�ning the limits of the domain, specifying the allowed input

vocabulary, specifying the causal structure, and validating the probabilities and other constraints

on the linkages.

Medical domains are di�cult to de�ne cleanly. Since the human body is a highly integrated

functioning unit, it is hard to de�ne the limits of a particular class of diseases. Other diseases

may complicate or mimic the diseases of the desired domain. Since the patient presents with a set

of symptoms, the criteria for inclusion or exclusion must be decidable in terms of the presenting

symptoms, or by some simple test. Furthermore, the criteria (and the program) cannot exclude

the complexities of the di�cult cases if it is going to be of value to the target audience. Because of

these di�culties, the inclusion criteria for the HFP have remained loosely de�ned as: adults with

symptoms resembling heart failure, potential heart failure, or its complications. That de�nition is

not as circular as it sounds because the low output and congestive symptoms present a recognizable

cluster of �ndings. On the other hand, the looseness of the de�nition means that it is important

that the program handle sets of �ndings that could conceivably be mistaken for heart failure at

least by identifying the correct medical domain.

Besides identifying the range of the medical domain, it is important to de�ne the depth. For

the HFP the focus is the short-term diagnosis and management of hemodynamic compromise.

This implies that details of the target diseases beyond those that determine the hemodynamic

compromise may be irrelevant to the diagnostic problem. For example, the etiology may not be

important to the diagnostic problem once the presence of the disease has been determined. In the

heart failure domain, the problems are:

1. To what extent should etiologies be included in the KB?

2. What diseases complicate the heart failure and how much detail is relevant in representing

them?

3. What cardiac diseases should be excluded because they have negligible e�ect on the cardiac

hemodynamics?
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4. What cardiac diseases should be excluded because they are rarely encountered?

3.1. Disease Etiologies

The problem of deciding on the etiological detail to include in the HFP is an ongoing struggle.

The problem is that while etiology may not a�ect the management of the patient, it does a�ect

the likelihood of coexisting diseases and therefore the ability of the program to produce correct

diagnoses. For example, once one has aortic stenosis, the hemodynamic e�ects and therapy are

independent of the etiology. However, the probability that the patient also has mitral stenosis

would be high if the etiology were rheumatic but low if the etiology were a degenerative process.

One might include rheumatic heart disease in the model to account for this di�erence. However,

the same argument can be made in the case of cardiomyopathy if the cause is alcohol consumption,

because then the probability of liver disease is greatly increased which in turn can account for

some of the same �ndings as cardiac diseases. From our experience with cases, it is clear that

using etiology, when it is known, to adjust the probabilities of other diseases, is important. For the

physician it may represent the di�erence between requiring ample evidence for consideration of a

disease and including a disease as a strong possibility unless it is ruled out. On the other hand,

it is not reasonable to pursue an etiology if the only evidence is the cardiac lesion it causes. In

particular, if the program adds to aortic stenosis an etiology of rheumatic heart disease because,

given the age, that is the most likely etiology, cardiologists �nd it unjusti�able. The only exception

is mitral stenosis, for which almost all cases are due to rheumatic heart disease. For these reasons,

we have included etiologies in the KB as factors that change the probabilities if known, but are

not nodes themselves. For example, there is a node for valvular heart disease, which causes speci�c

valvular lesions. The probability that it causes particular lesions is adjusted by input �ndings of

history of rheumatic fever, Marfans, calci�cation, history of endocarditis, or drug abuse.

3.2. Complications from Other Diseases

There are several classes of diseases that have a signi�cant impact on heart failure, including

pulmonary, renal, and hepatic disease. Each of these is a domain in which a knowledge based

system the size of HFP could be developed. Since the purpose of the program is to diagnose heart

failure, we have restricted the knowledge about diseases of the other organ systems to those aspects

that in
uence the heart failure. For example, there is a single node representing the various kinds

of primary liver disease. The e�ect of this node in the model is to cause ascites, hepatomegaly,

pedal edema, hypoalbuminemia and elevated liver function tests (which are only considered in

total). This lumps very di�erent liver diseases together, but to �rst approximation it is su�cient

to account for the possibly di�erent presentation of a patient who has both liver disease and heart

failure. Similarly, renal disease is only di�erentiated into acute and chronic, although we found it

necessary to adjust probabilities when there is evidence of nephrotic syndrome because that disease

can account for pedal edema without the degree of elevation of BUN and creatinine associated with

other forms of renal insu�ciency severe enough to cause pedal edema. Without that di�erentiation

and the common occurrence of renal insu�ciency, the program would often use known mild renal

insu�ciency to account for pedal edema that was more likely the result of heart failure. Pulmonary

disease is closely tied to cardiac disease, but have only a few patterns of hemodynamic e�ect.

As a result, chronic bronchitis and chronic obstructive pulmonary disease are treated as a single

node (with an unwieldy name), while primary pulmonary hypertension and pulmonary embolism

are separate nodes because of their direct in
uence on cardiac hemodynamics. Thus, each of the

complicating groups of diseases has been represented by a small number of nodes su�cient to

represent their type of impact on the presentation of heart failure.

5



3.3. Hemodynamic Compromise of Cardiac Diseases

Not all cardiac diseases have signi�cant e�ects on the hemodynamics. In particular, there are a

number of di�erent kinds of arrhythmias de�ned by the type and level of electrical disturbance in

the heart. The degree of hemodynamic compromise is more dependent on severity than on type

of disturbance. As a result, we have a node representing high degree AV block intended to cover

complete block, Mobitz II block, and Wenckebach block greater than 2:1. Lesser degrees of block

are only used as evidence for the other diseases that often cause them.

Because there are a large number of very rare cardiovascular diseases that can cause heart

failure, it was clear from the outset that some would have to be left out of the model. Most

of these are similar to diseases already in the model from a hemodynamic perspective, except

for a few features. For example, left atrial myxoma, a tumor in the left atrium, has the same

hemodynamic e�ects as mitral stenosis except that it has much more rapid onset and can cause

intermittent symptoms. Another example is the combined pulmonic regurgitation and pulmonic

stenosis resulting from the correction of tetralogy of fallot in childhood. As isolated lesions, both

of these are unusual and together they are extremely rare. Because of the hemodynamic similarity

of the rare diseases to more common ones, we have chosen to leave them out of the model. Instead,

we have made sure that the KB includes at least one disease covering each type of hemodynamic

compromise with the intent that missing diseases will instead generate diagnoses of the similar

hemodynamic disturbance.

A related issue is what therapies to include in the KB. The purpose of including the therapies

is to enable the HFP to account both for missing disease �ndings from successful therapy and for

indications of toxicity. For example, furosemide (a diuretic) can cause hypokalemia and can account

for the lack of pedal edema in a patient with right sided heart failure. It is su�cient to include

one drug from each class to accomplish this, since to �rst approximation, the hemodynamic e�ects

of other drugs in the same class are the same. (For example, propranolol covers the hemodynamic

e�ects of all the beta adrenergic blocking agents.) The only exception we have encountered is the

calcium channel blockers, which had to be individually represented because of the large di�erences

in e�ects between individual agents.

4. VALIDATION OF PROBABILITIES

Since the KB consists of causal relations connecting pathophysiologic states by probabilities and

conditions of causation, one problem is how to �nd the probabilities. Medical literature does not

usually address questions such as how often a particular state causes a particular �nding, beyond

occasional qualitative statements such as common or rare. On the other hand, experienced cardi-

ologists have little trouble giving approximate frequencies for these �ndings. From our experience

with the program it is most important that these lists of �ndings be complete. If a �nding does

not have links to all of its possible causes, the program may have to add an unjusti�ed disease to

a hypothesis or even be directed in the wrong direction. For example, because pericarditis did not

include high white blood count as a �nding, the program added pneumonia to its diagnosis in a

pericarditis case. In most cases there are a few �ndings that point strongly at the correct causes, so

the exact probabilities are less important. That is, the association of diseases and �ndings presents

such stark diagnostic alternatives that Occam's razor would be a su�cient guide. However, there

are still a signi�cant number of cases in which the same �ndings can be accounted for by di�erent

causes, with no certain way of distinguishing. Even in cases where the main part of the diagnosis is

clear, some part of the mechanism or attribution of �ndings to multiple causes may be ambiguous.
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For these cases, the probabilities do make a di�erence and need to be validated. The problem is

determining how the probabilities elicited from experts might be biased. They may re
ect mem-

orable cases, recent cases, or may be a mixture of importance along with the actual frequency of

the events. To assess and re�ne the probabilities in the KB, we have used several approaches:

1. Computation and assessment of evidential probabilities

2. Assessment of disease-to-�nding probabilities

3. Comparison of frequencies with disease data bases

4. Analysis of cases in which diagnoses were faulty

4.1. Assessing Probabilities of Disease Given Evidence

The �rst method was to compute the distribution of causes for each e�ect. The information

provided to the KB is the probability of an e�ect given a cause and the prior probabilities of the

primary causes. This information along with Bayes' formula is su�cient, in principle, to compute

the inverse probabilities. That is, for �nding f and cause c, the relative frequency of c as a cause

for f is:

p(cjf) =
p(f jc)p(c)
P

i
p(f jci)p(ci)

where the ci are all of the possible causes for f . The complexity of the actual KB structure means

that these calculations are also estimations. Since the KB has multiple links in the causal chains

from primary cause to ultimate �ndings, this inverse computation can be done for the immediate

causes of the �ndings, the primary causes, or some important intermediate node in the network. For

example, it is possible to compute the expected frequency of hypertrophy versus dilatation as the

cause for an enlarged cardiac silhouette on X-ray or to compare congestive cardiomyopathy, chronic

mitral regurgitation, chronic hypertension, aortic regurgitation, and aortic stenosis as potential

disease causes of the �nding. In the �rst case, since cardiac hypertrophy is an intermediate node,

its prior probability is estimated by combining the probabilities along the pathways from its possible

causes and the probability of an enlarged cardiac silhouette given hypertrophy is taken from the

link. In the second case, the priors for the diseases are part of the KB and the probability of an

enlarged cardiac silhouette given aortic regurgitation (for example) is computed from the causal

pathways that connect them. By reviewing these lists it was possible to identify probabilities that

were out of line. For example, if most of the �ndings of a disease seemed to have too high a fraction

of their causes indicated as that disease, the probability of the disease was too high. If only one

or two �ndings of the disease seemed out of line, the problem was in the link probability. This

approach provides a di�erent perspective on the probabilities, but one with which physicians are

quite comfortable.

4.2. Assessing Spanning Probabilities

The second method was to examine the expected ultimate �ndings of diseases. Because there are

many intermediate physiologic states, the path from a disease to some of the �ndings can be lengthy.

By determining all expected e�ects of a disease with signi�cant probability, the combinations of

probabilities through the causal mechanisms were validated. The probabilities were estimated as:

max
r

cY

i=f

p(nijni+1)
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where the r are the possible paths from cause c to �nding f . The maximum was used to simplify

the calculations, simplify the explanations to the reviewers, and because particular hypotheses will

normally have only one mechanism in e�ect.

4.3. Comparison of Probabilities to Data

If the probabilities in the KB are to re
ect the actual frequencies of the corresponding events in

patients, the logical way to validate the probabilities is with statistical data. We have used two

sources of patient data to conduct this kind of testing. The easiest comparison is against the case

base we have built over the years in the development of this program. At present we have about 400

cases that have been entered, run, and analyzed. The collection process has emphasized di�cult

cases and has tried to achieve as broad a coverage as possible. Thus, this is not a good source

for estimating prior probabilities of disease or the frequency of various complications. However, it

is an appropriate source for estimating the probabilities on links for frequently occurring nodes.

For example, since all patients with aortic stenosis were included it will provide estimates of the

frequencies of the e�ects of aortic stenosis.

We also have access to a data base of 5773 cases of patients with suspected acute cardiac

ischemia[6]. These include all patients admitted in the emergency rooms of six hospitals over a two

year period with chest pain or new onset of shortness of breath. About a hundred parameters were

collected on these patients with an emphasis on the characteristics of the chest pain and shortness

of breath. This has been a source for some information about the frequencies of di�erent events,

but it is somewhat limited. One of the problems with a data base like this is that the variables

of concern in heart failure are not the most important to consider in the acute presentation of

possible ischemia. As a result, there are a large number of missing values which may represent

either absence of the �nding or that the �nding was not checked. A second problem with this

or any data base collected in an environment di�erent from that in which it is being used is the

correspondence between the variables collected and the �ndings in the KB. When the variables are

somewhat di�erent, the applicability of the data is strained. For example, the HFP has an input

�nding of syncope or near syncope while patients in the acute cardiac ischemia study were asked

about dizziness. These are closely related �ndings but not exactly the same.

4.4. Analysis of Failed Diagnoses

The most e�ective way of validating the probabilities is by analyzing faulty hypotheses produced

by the HFP and determining the reason for the errors. This can be accomplished by constructing

an appropriate hypothesis and comparing it to the generated hypothesis by computing the overall

probability of each. If the computed probability of the correct hypothesis is greater than that of the

generated hypothesis, the probabilities appropriately distinguish the hypotheses and the problem is

that the heuristics used to generate the di�erential did not �nd the highest probability hypothesis. If

the correct hypothesis had a lower computed probability than the generated hypothesis, something

is wrong with the probabilities on the causal links that contributed to the computed probabilities.

A problem with the probabilities can be analyzed by looking at the di�erence set between the two

hypotheses. Even though the di�erences between the correct and faulty hypotheses are usually

small, there are usually several probabilities that could correct the problem. The lists of possible

corrections are collected from several faulty hypotheses and the multiple occurrence of the same

possible corrections are used to guide the changes to the probabilities. When there are no other

errors that help to disambiguate the possible corrections, questions can be formulated for the

experts that will guide the changes, such as considering hypothetical patients distinguished by the

�ndings of concern.
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5. FORMATIVE EVALUATION

Over the past year we have conducted a formative evaluation of the program (reported in[7]). This

process exposed a number of di�cult issues not often discussed in the evaluation literature. The

two aspects of the evaluation in which issues had to be resolved were 1) the collection of patient

data and 2) the comparison of di�erentials.

5.1. Collection of Patient Data

The case material used in an evaluation is selected from the available patient population, some time

point is selected for analysis, and the data is summarized for the program and for the reviewers.

Each of these parts of the process can introduce biases in the evaluation that must be carefully

considered in the design of the study.

For any diagnostic system covering a signi�cant number of diseases, it will be di�cult to �nd

examples of all of the diseases to include in the evaluation because of the relative infrequent oc-

currence of many diseases. This problem is compounded in a domain, such as heart failure, where

many of the diseases are chronic and already known when the patient is admitted. Thus, for a

disease like aortic stenosis, there are several distinct diagnostic situations:

1. The disease is not known and needs to be diagnosed.

2. The disease is known and has become worse.

3. The disease is known but the patient is now su�ering from a complication or independent

disease.

4. The disease has been corrected but residual e�ects remain.

5. Although the disease has been corrected, it has recurred.

Each of these presents a distinct diagnostic challenge and greatly multiplies the size of the domain.

For example, any of these situations can exist in the course of the natural history of aortic stenosis.

Initially, the problem is to diagnose the valve disorder. Later, the patient may return with overt

signs of failure from the increasing stenosis. The patient may also be admitted with pneumonia in

the context of some degree of aortic stenosis. If the valve is replaced, the patient will still residual

left ventricular hypertrophy (LVH). Finally, a prosthetic valve itself may become restricted, again

producing symptoms of aortic stenosis.

In the HFP evaluation, we collected 242 cases from discharge summaries, taking all available

cases with DRGs (disease classi�cations) that would indicate complicated disease. Even so, we

were only able to collect examples of 21 of the 30 primary diseases in the KB in which the disease

was not already known at the time of diagnosis and examples of 19 of the 30 in which the disease

was already known but the patient had further complications or additional diseases. Eight of the

primary diseases are not represented in the study, although we have since found examples of most

to use for testing the program.

Since diagnosis is an evolving process, the time point or points selected for diagnosis in
uence

the kind of diagnosis that is possible or appropriate. In the emergency room, one can focus on the

presenting complaint, physical �ndings, and an electrocardiogram to decide questions such as the

likelihood of acute ischemia. For the HFP, the appropriate time for diagnosis is after the initial

laboratory �ndings are available. Thus, the program can make use of chest X-ray �ndings and

blood test results. The program could be used later as well, but the information provided by the
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program would be less useful when the diagnostic task is almost complete, although it would be

useful in identifying �ndings that might not be consistent with the current diagnostic hypothesis.

The �nal issue is what information the program and reviewers receive about the case. The

program is restricted to the particular vocabulary of its input routines, which is never exactly the

same as would appear on a chart or physician summary of the case. Thus, there is translation or

summarization that must take place to enter the data into the program. The issue of variability

in this summarization task has been addressed in other domains[8], but not the correspondence

between that data and the information available to the reviewers. There are three levels of informa-

tion one could give the reviewer, depending on the objectives of the evaluation. 1) The reviewers

could be given the same information as the computer. This was our approach with the HFP. In

fact, the reviewers (the cardiologists on the project) used the textual summary generated by the

program from its input. In this way it is possible to evaluate whether the program is drawing the

appropriate conclusions from the information it is given without the confounding possibility that

the information may have been inappropriately abstracted. 2) The reviewers could be given a short,

hand generated description of the case. This would be appropriate for comparing the program to

the performance of an independent consultant not present to examine the patient. 3) In a study

comparing the performance of the program to a physician, the physician needs to see the patient.

The reviewer could see the patient, but a more practical approach is just to use the diagnosis of the

primary care provider for the comparison. The problem with this approach is that there is no way

to tell whether the di�erences between the program and the physician are the result of the program,

�ndings that could have been entered but were not, �ndings for which the input vocabulary was

inadequate, or impressions of the patient not easily verbalized. We considered using the diagnoses

from the discharge summaries in the HFP study, but those diagnoses had the additional problems

that they did not re
ect the same time point as the information given to the program, were given

in widely varying degrees of detail, and often were not adequately supported by the data available

in the summary.

5.2. Comparison of Di�erentials

Once the patient data has been given to the program and reviewers and each has produced a

di�erential diagnosis, the problem is to compare the di�erentials. The solution most often adopted

is to require the reviewers to use the same diagnosis vocabulary as the program. Then the problem

is only to assess the degree of match between a pair of ordered lists. This approach is �ne if the

diagnoses are adequately expressed by a choice from a �xed list. When the diagnosis is stated as a

complex structure, the problem is more di�cult. In the HFP the individual diagnostic hypotheses

that make up the di�erential are causal graphs of pathophysiologic states and �ndings. It would

be unreasonable for us to expect the reviewers to construct anything comparable. Therefore, we

asked the reviewers to give their diagnoses in the terms that seemed natural. As a result, we had

to confront a more general set of issues including the meaning of the terms used by the reviewers,

how to match the diagnoses to the causal graphs, the interpretation of a di�erential, and the nature

of the reviewers' diagnoses as a standard.

A typical expert diagnosis consists of terms of varying degrees of speci�city, with alternatives,

and some indications of priority or uncertainty. An example from the formative evaluation is:

Either an acute myocardial infarction or unstable angina with previous evidence of

coronary artery disease in the form of an old myocardial infarction; atrial 
utter; mild

left heart failure; and possible aortic stenosis.

Some of these terms have a direct correspondence with the names of states in the HFP hypothesis,
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such as aortic stenosis. Others do not correspond to a single node but cover a set of nodes. Indeed,

even those with a direct correspondence actually cover the typically occurring consequences of that

node. For example, the aortic stenosis diagnosis does not include LVH because that would be

expected. Each of the terms in the diagnosis has a set of nodes it could acceptably cover. Some of

the modi�ers make this more explicit. For example, compensated heart failure (which appears in

a number of diagnoses) includes the nodes normally associated with heart failure except for those

that indicate signi�cant pulmonary or systemic congestion. To accommodate this use of terms, we

wrote a program for matching terms to the appropriate causal structure.

Since the diagnoses of the reviewers and the causal structures in the program's hypotheses

each have several items in them, the next question is how close the match needs to be. The HFP

designates 40 nodes as diagnostic, implying that they make important distinctions in the hypothesis.

These also correspond to many of the terms used by the reviewers in stating the diagnoses. They

were used as the essential characteristics of the diagnosis. To match, a hypothesis had to have all of

the diagnostic nodes implied by the reviewer's diagnosis and no more. There were two exceptions

to this rule. 1) If a node was directly implied by the input (e.g., a known diagnosis), the reviewer

did not have to state it. 2) If the reviewer did not state the etiology of heart failure or said it

was unknown, we allowed the program to pick a common etiology to accommodate the hypothesis

generation mechanism, which always generates a complete hypothesis.

The uncertainty in the reviewers' diagnoses represented their di�erential nature. That is, by

stating that the diagnosis was myocardial infarction or unstable angina, the physician is including

both in the di�erential. Stating that a disease is possible includes hypotheses with and without

the disease. This is a very economical way of giving a di�erential because it focuses directly on the

uncertainty without actually stating each complete possibility. To compare the diagnoses to the

hypotheses in the computer generated di�erential, we expanded the implied complete diagnoses.

The number of possibilities varied, but was four or less in 88% of the cases. Sometimes the reviewers

rank ordered the alternatives, but only infrequently, so we treated the di�erentials as unordered.

The reviewers could answer questions about which alternatives were most likely, but that was not

an important objective of diagnosis since the di�erential was su�cient to direct further investigation

by which the questions could be answered de�nitively.

Given the di�erential implied by the reviewers' diagnosis, the next question is to determine how

many the program should match. This is a question the HFP was not ready to address. Since

di�erences in hypotheses were de�ned by the di�erent terms used in the diagnoses, many of the

hypotheses included in the computer di�erential would not be considered di�erent. Furthermore,

the program used local optimization techniques to improve its hypotheses, which also had the e�ect

of eliminating alternatives and hence some of the other hypotheses that should have been in the

di�erential. Still, the question of what should be in a di�erential is important. From the use of the

terms by the physicians, a working de�nition is: any diagnosis description that requires di�erent

terms to describe, has relatively high probability, has positive evidence, and is not ruled out. The

terms determine what is di�erent. While some of the terms are more speci�c than others, the

more speci�c terms are only used when there is evidence to support a more speci�c diagnosis, not

just a higher prior probability for one variant of the general diagnosis than others. The fact that

diagnoses are ruled out by evidence and not just probabilities (within limits) is something that

systems based on probability networks will have to address. (Similar observations have been made

in other domains[9].)

For the HFP, experienced cardiologists are the best available standard for comparison of the

diagnoses. However, with complicated di�erentials there is clearly room for adjustment of the
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diagnoses. Our procedure for evaluating the computer diagnoses was to review as many as possible

of the leading hypotheses that did not match any of the diagnostic possibilities in the reviewers'

diagnoses. In the process, 61 of the diagnoses were changed in some way, usually relatively minor.

Most of these changes were to add a disease that was overlooked before. For example, adding

possible chronic obstructive pulmonary disease (COPD) for which there was some evidence. From

a medical standpoint, the changes were not signi�cant, mainly because they involved chronic stable

diseases that were not part of the acute problem. Acuteness and impact on management are clearly

important parts of focusing the diagnosis and should be taken into account both in generating

di�erentials and in evaluating the results.

6. CONCLUSION

The task of validation is fundamental to the development of diagnostic decision aids, but it is far

from straightforward. In this paper we have addressed a number of issues which arose in the context

of the Heart Failure Program, but are of concern in many similar systems.
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