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Abstract

This paper compares the performance of logistic regression to decision-tree induction in

classifying patients as having acute cardiac ischemia. This comparison was performed using

the database of 5,773 patients originally used to develop the logistic-regression tool and test

it prospectively. Both the ability to classify cases and ability to estimate the probability of

ischemia were compared on the default tree generated by the C4 version of ID3. They were also

compared on a tree optimized on the learning set by increased pruning of overspeci�ed branches,

and on a tree incorporating clinical considerations. Both the LR tool and the improved trees

performed at a level fairly close to that of the physicians, although the LR tool de�nitely

performed better than the decision tree. There were a number of di�erences in the performance

of the two methods, shedding light on their strengths and weaknesses.

1 Introduction

The use of data to develop decision procedures has a long history with di�erent approaches devel-

oped in di�erent research communities. In the statistics community, logistic regression (LR) has

assumed a major position as a method for predicting outcomes based on the speci�c features of an

individual case. In the machine-learning community, techniques for decision-tree induction have

been developed by a number of researchers. Interestingly, decision-tree induction techniques have

also been developed in the statistics community, but have been called \regression trees" there.

These two techniques, logistic regression and decision-tree induction have often been used for

very similar tasks. Pozen et al[1, 2], and Selker et al[3], use LR to develop predictive instruments

for determining the probability that an emergency-room patient with chest pain or other related

symptoms actually has acute cardiac ischemia. Goldman et al[4, 5], used the CART (Classi�ca-

tion and Regression Trees) methodology[6] to develop decision trees for deciding whether patients
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entering the emergency room with acute chest pain should be admitted to rule out myocardial

infarction.

Given that both approaches are being used for similar purposes, it is important to gain an

understanding of the relationship between statistical regression techniques and decision-tree tech-

niques, and their relative strengths and weaknesses. A few papers have started to look at this issue.

Mingers[7] compared the ID3 rule induction algorithm (using the G-statistic rather than Quinlan's

information measure) to multiple regression on a data base of football results using 164 games in

the learning set and 182 games in the test set. The results of this comparison favor ID3, but it

is hard to draw any general conclusions because of the rather arti�cial nature of the �ve variables

derived from past scores, only two of which were used by the multiple regression. Segal and Bloch[8]

compared proportional-hazard models to regression trees in two studies of 604 patients and 435 pa-

tients respectively. The variables selected by each method were similar but beyond that, they were

di�cult to compare. The conclusion was that they are complementary methodologies, since each

can provide insights not available with the other. They suggest using the selection of nodes in the

tree to suggest variables and interaction terms for the equation and also using the regression statis-

tical test (in this case Cox partial likelihood) as the splitting criterion for generating trees. Harrell

et al[9] compared CART trees to several other strategies. Stepwise regression did not perform as

well as CART on a training sample of 110, but better than CART on a training sample of 224.

Kinney and Murphy[10] compared ID3 to discriminant analysis in a learning set with 107 items

and a test set of 67 items in a medical domain (detecting aortic regurgitation by auscultation).

Their conclusion was that both methods performed equally poorly. A more recent study, Gilpin,

et al[11], compared regression trees, stepwise linear discriminant analysis, logistic regression, and

three cardiologists predicting the probability of one-year survival of patients who had myocardial

infarctions. This comparison used 781 patients in the learning set and 400 in the test set. The

various methods were compared as to their sensitivity, speci�city, accuracy, and area under the

ROC curve. No statistically signi�cant di�erences were noted between any of the methods. The

area under the ROC curve for the regression tree was less than for the two multivariate equations,

but the generated tree only had �ve leaves and therefore there were only �ve points on the ROC

curve. At the selected probability breakpoint, the accuracy of the tree was between that of the two

multivariate equations.

Since all of these tests were done on datasets of size in the hundreds, a possible reason for the

general lack of signi�cant di�erences between the methodologies is the small size. In the following

study we will use the data set collected by Pozen and colleagues[2] containing 5,773 patients. This

o�ers an opportunity to compare logistic regression and decision-tree induction on a large dataset

where the existing logistic regression equation was carefully prepared and thoroughly tested.

2 Methodology

2.1 Decision-Tree Generation

Techniques for generating decision trees, also called classi�cation or regression trees[6], have been

developed over the past twenty years. In the machine-learning community, a number of researchers

have been developing methods for inducing decision trees automatically from data sets. The best

known of these methods are AQ11[12] and ID3[13], each of which has spawned a family of programs

to �t the demands of real world domains. In the statistics community the CART program is the
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best known of the programs. Current versions of these programs are able to handle noisy data,

continuous variables, variables with multiple (more than two) values, missing data, and classes with

multiple values.

The nature of the task for a decision-tree program is as follows: The data set consists of a set

of objects, each of which belongs to a class. There is a set of attributes (also called variables) with

each object having values for the attributes. The task is to use the attributes to �nd a decision

tree that classi�es the data appropriately. Since there is a large number of such trees, the task is

re�ned to �nd a small tree that classi�es the data appropriately. If the set includes \noisy data"

(variables whose values may not always be correct) or if the attributes are not always su�cient to

classify the data correctly, the tree should only include branches that are justi�ed adequately.

All of these programs work by recursively picking the attribute that provides the best classi�ca-

tion of the remaining subset. That is, the program uses the whole data set to �nd the attribute that

best classi�es the data. Then for each subset de�ned by the values of the selected attribute, the

process is repeated with the remaining attributes. Then the tree is pruned to eliminate branches

that are not justi�ed adequately. Thus, the two basic functions of a decision-tree program are 1)

selecting the best attribute to divide a set at each branch, and 2) deciding whether each branch is

justi�ed adequately. The di�erent decision-tree programs di�er in how these are accomplished.

In the ID3 programs the best attribute is determined by computing the information gain ratio,

derived from information theory. The information gain for an attribute A is (assuming p and n are

positive and negative instances of a dichotomous classi�cation variable):

G(A) = I(p; n)�
vX

i=1

pi + ni

p+ n
I(pi; ni)

where

I(p; n) = �

p

p+ n
log2

p

p+ n
�

n

p+ n
log2

n

p+ n

To handle continuous variables the program treats the variable as dichotomous by �nding the

cut point that maximizes the information gain. The de�nition is easily extended to variables

with more than two values, but the information gain of a variable with several values is always

greater than or equal to the information gain of the same variable with fewer values, even when

the additional values do not contribute anything. To overcome this statistical bias, a normalization

factor is introduced based on the information content of the value of the variable.

V (A) = �

vX

i=1

pi + ni

p+ n
log2

pi + ni

p+ n

An alternative approach to multiple valued variables would be to look for a division of the

values into two sets that maximizes the variable choice statistic. This is the approach taken by

CART and is available in current versions of ID3, but is not used here since there is no need to

lump the values together.

The information-gain-ratio statistic is not the only statistic that has been used to select at-

tributes. Mingers[14] compares the information-gain statistic with the chi-square contingency ta-

ble, the G statistic, probability calculations, the GINI index of diversity (the statistic used in the

CART program[6]), the information-gain ratio, and the information gain with the Marshall correc-

tion. Since that paper was written, Quinlan and Rivest[15] have added the minimum description



Logistic Regression Versus Decision-Tree Induction 4

length principle to the armamentarium. Mingers' conclusion is that the predictive accuracy of

the induced decision trees is not sensitive to the choice of statistic. This paper will use the C4

version of ID31 using the information-gain-ratio statistic, although this comparison could certainly

be extended to include other statistics.

There are also multiple strategies for pruning the tree once it is generated. Quinlan[16] discusses

�ve such strategies and �nds the di�erences over a range of di�erent kinds of data to be insigni�cant.

The strategy used in C4 is called by Quinlan, pessimistic pruning. Normally a branch is pruned

when the error introduced is within one standard error of the existing errors adjusted for the

continuity correction. However, this paper will consider the number of standard errors to be a

variable.

2.2 Logistic Regression

Logistic Regression is a non-linear regression technique that assumes that the expected probability

of a dichotomous outcome is:

P =
1

1 + e�(�+�1X1+�2X2+���)

where the Xi are variables with numeric values (if dichotomous, they are, for example, zero for false

and one for true) and the �s are the regression coe�cients which quantify their contribution to the

probability. Intuitively, the justi�cation for this formula is that the log of the odds, a number that

goes from �1 to +1, is a linear function. Given this model, stepwise selections of the variables

can be made and the corresponding coe�cients computed. In producing the LR equation, the

maximum-likelihood ratio is used to determine the statistical signi�cance of the variables. Logistic

Regression has proven to be very robust in a number of domains and proves an e�ective way of

estimating probabilities from dichotomous variables.

A particularly attractive attribute of the original LR tool developed by Pozen, et al[1, 2], and

the slightly modi�ed version generated later by the same group[3] is that they have been shown to

be useful clinically and are now being used in clinical settings to assist physician decision making.

3 Data for the Comparison

The data used for this comparison were collected for the multicenter development and clinical trial

of the predictive instrument for coronary care unit admission[2]. The data were collected at six

New England hospitals, ranging from urban teaching hospitals to rural non-teaching hospitals. The

patients included all consenting adults (over age 40 for females or over age 30 for males) presenting

in the emergency room with chief symptom of chest pain, jaw or left arm pain, shortness of breath,

or changed pattern of angina pectoris. Data collection was conducted in two consecutive one year

phases. The 2,801 patient descriptions available at the end of the �rst year were used to develop

the LR equation. (An additional 652 patient descriptions collected while the LR equation was

developed are included in the learning set for this paper, for a total of 3,453 patients.)

The LR equation was developed from 59 clinical features available in the emergency room, in-

cluding clinical presentation, history, physical �ndings, electrocardiogram, sociodemographic char-

acteristics, and coronary disease risk-factors. The �nal equation only uses seven of the variables.

The remaining clinical features were rejected for modeling reasons, and the interest of parsimony,

1Since the generic name ID3 is more widely known than the speci�c C4 version, the paper use the name ID3.
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since a model using less than ten variables was desired. The �nal LR equation provides an estimate

of the probability that the patient has acute cardiac ischemia. The test set of 2,320 was collected

in the same way in a second year at the same hospitals, as part of a controlled trial conducted to

assess the impact of providing physicians with the probability of acute ischemia determined by the

LR equation. The assignment of the �nal diagnosis was done by blinded expert-physician reviewers

and therefore was not a�ected by the intervention. All patients had the same follow-up as obtained

in the �rst year.

To generate the decision trees all of the variables were used except three (related to the means

of transportation used to the emergency room) that were not generalizable. Some of the variables

used for the LR analysis (eg, chief complaint chest pain) were dichotomous versions of multivalued

variables (ie, primary symptom, which has 10 possible values). In such cases, only the multivalued

variable was used. All together, the decision trees were generated from the remaining 52 variables.

The variables have a variety of simple and complex relationships among them, providing a chal-

lenging and realistic domain for developing decision-aids. They include dichotomous variables (eg.,

presence of chest pain), multivalued variables (eg., primary symptom), and continuous variables

(eg., heart rate). Many variables are further characterizations of other variables, such as the loca-

tion, type, and degree of chest pain. Some of the variables are closely related, but not so clearly.

For example, there were two data collection forms �lled on each patient, one from the emergency-

room medical record and one through an interview conducted by a research assistant hired for that

purpose. Both of these worksheets contain information about chest pain. The emergency-room

worksheet asks if the patient presented with chest pain while the interviewer asked if the patient

had any feeling of discomfort, pressure, or pain in the chest. Logically, all for whom the �rst was

true should be included in the second, but the realities of multiple sources and fallible historians

means that there are a few exceptions. The �nal diagnosis of the patient is a categorical variable

with 25 ordered values. That is, the patient received the classi�cation of the �rst value in the diag-

nosis list that was true. The �rst eight of these values are four severities of myocardial infarction

(the Killip classes) and four severities of angina pectoris (New York Heart Association classes). The

rest of the values include other types of heart disease, other diseases, and other possible causes for

the presenting complaints. For purposes of this study and the development of the LR instrument,

the myocardial infarction and unstable angina values are considered to be acute ischemia and the

rest of the values are not.

4 Comparison of Methods

Since the yes/no classi�cation output provided by a decision tree is di�erent from the probability of

the class provided by an LR equation, the �rst problem is how to compare the two methodologies. It

is possible to transform either of the outputs into the other, but incurring some loss of information.

Since each transformation may favor one or the other methodology, both transformations must be

considered.

The LR equation can be transformed into a tree by considering some probability to be the

threshold for a classi�cation of acute ischemia. That is, any combination of values of the seven

variables with a computed probability less than the threshold is classi�ed as not having acute

ischemia and those greater are classi�ed as having acute ischemia. If the decision were simply

which alternative is most likely, the appropriate threshold would be approximately 0:5 (depending

on the prevalence and the probability distributions). However, more risk to the patient is incurred



Logistic Regression Versus Decision-Tree Induction 6

by missing the diagnosis than by making it falsely, so a threshold less than 0:5 is more appropriate.

Even adjusting the threshold, this transformation forfeits some of the power of the LR equation

because it lumps the patient with a 1% likelihood of acute ischemia and the patient with a nearly

50% likelihood as not having ischemia. Similarly, the patient with a 51% likelihood of ischemia

is classi�ed with the patient in whom it is virtually certain. One could argue that that is not a

problem, because some decision has to be made in each case, but the information from this decision

tool will not be used alone. It will be combined with physician judgement to decide among many

options, including various levels of care and further testing. Therefore, certainty of the diagnosis

does make a di�erence. Indeed, the LR equation was originally developed with the objective of

helping physicians improve their speci�city, rather than some other objective such as minimizing

the error rate.

The decision tree can be transformed to provide a probability instead of a classi�cation by

using the actual distribution of the patients in each leaf of the tree as the probability of ischemia,

rather than assigning the leaf entirely to the most frequently occurring category. If there are a

signi�cant number of patients at each leaf node, this will give a reasonable approximation of the

probability. The problem is that with a large number of leaf nodes, there will be some nodes

with a small number of patients and correspondingly less accuracy in the probability estimates.

Furthermore, the frequency count does not take into account any information there might be in the

statistical relationships with variables higher in the tree. That is, if the variable were independent

of the variables higher in the tree, a better estimate of the probability could be obtained from

the whole data set than from the subset at the current node. Since ID3 makes no independence

assumption, it throws away this potential source of information. This issue has been addressed in

the literature[17, 18] and we have adopted the solution suggested by Quinlan. That is, the estimated

probability is adjusted by the probability in the context of the leaf node, where the context is the

set of patients that di�er from the requirements of the leaf node by at most one variable value. If

there are n0 patients in the context, i0 of which have acute ischemia, n patients at the leaf, i of

which have acute ischemia, the probability of acute ischemia is estimated to be

i(n0

� i0) + i0

n(n0

� i0) + n0

4.1 Default Decision Tree

The �rst comparison is the tree generated by ID3 given the variables in the learning set using the

default parameter settings compared to the classi�cations implied by the LR equation probabilities.

The decision tree is quite large, having 312 leaf nodes. The top two levels of the decision tree are

shown in �gure 1 with the numbers of patients in the learning set with and without ischemia in

parentheses. In contrast the seven variables used in the LR equation with their beta exponents

(for true = 1 and false = 2) are shown in �gure 2. Both of these sets of variables include the ST

change and Chest pain in 24 hours. The other four variables in the LR equation appear further

down in the tree among the 43 variables used. Two of the four remaining variables appearing at

the second level of the tree are closely related to variables in the LR equation. Obviously, the tree

makes no attempt to minimize the number of variables used. For example, where chest pain in

the ER was used, chest pain in 24 hours was the second choice. Since the LR equation is using

dichotomous variables (although that is not required), the ST change variable can be used more

than once with di�erent divisions of the values. The two ST change variables in the LR equation
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Key: variable = value (I:32 NI:18) means 32 had acute ischemia and the remaining 18 did not.

ST change on ECG = normal (I:395 NI:1646)

Nitroglycerin stops pain = yes (I:194 NI:234)

Nitroglycerin stops pain = no (I:201 NI:1412)

ST change on ECG = down 2mm (I:117 NI:49)

Dizzy in the ER = yes (I:12 NI:16)

Dizzy in the ER = no (I:104 NI:33)

ST change on ECG = down 1mm (I:150 NI:148)

Chest pain in 24 hours = yes (I:136 NI:93)

Chest pain in 24 hours = no (I:14 NI:55)

ST change on ECG = down 0.5mm (I:80 NI:120)

Nitroglycerin stops pain = yes (I:38 NI:12)

Nitroglycerin stops pain = no (I:42 NI:106)

ST change on ECG = 
at (I:63 NI:95)

Nitroglycerin stops pain = yes (I:33 NI:11)

Nitroglycerin stops pain = no (I:30 NI:84)

ST change on ECG = up 1mm (I:209 NI:108)

Age < 87.5 (I:208 NI:101)

Age > 87.5 (I:1 NI:7)

ST change on ECG = up 2mm (I:238 NI:35)

Chest pain in the ER = yes (I:205 NI:16)

Chest pain in the ER = no (I:32 NI:18)

Figure 1: Top Levels of Default Decision Tree

LR variable value � coe�cient

T waves on ECG normal or 
at 1.1278

Chest pain in 24 hours true 0.9988

ST change on ECG normal 0.8321

ST change on ECG normal or 
at 0.7682

Primary symptom chest pain 0.7145

History of nitroglycerin use true 0.5091

History of myocardial infarction true 0.4187

Figure 2: LR Regression Coe�cients
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actual class

learning set test set

ischemia no ischemia ischemia no ischemia

ID3 class ischemia 1,092 111 455 304

no ischemia 160 2,090 258 1,305

error rate 0.0776 0.2470

LR class ischemia 773 295 518 183

no ischemia 479 1,906 193 1,421

error rate 0.2242 0.1624

Figure 3: Comparison of the Error Rates Between LR and ID3

have the greatest in
uence on the probability, as would be expected from the decision tree. Thus,

the choice of variables between the two methods is closely related but not identical.

The comparison of the correct and incorrect classi�cations for the two strategies (using a thresh-

old of 0:5) is shown in �gure 3. Note that in the test set, only 2,315 of the 2,320 cases are classi�ed

by LR. The remaining �ve do not have electrocardiograms. LR has no mechanism for classify-

ing a patient when there is missing data, while ID3 picks the most likely classi�cation given the

proportions of cases with the di�erent possible values of the missing data.

The classi�cation threshold of 0.5 does not optimize patient bene�t since missing acute ischemia

is much worse than falsely assigning acute ischemia. Thus, it is important to consider the e�ect of

changing the cuto� for classi�cation. Figure 4 is a plot of the cuto� probability versus the error

rate. Included in the �gure is the performance of both the decision tree and the LR equation on

both the learning set and the test set. If the decision tree were unpruned and there were no cases

with identical variable values and di�erent diagnoses, the ID3 curve for the learning set would have

an error rate of zero. With a pruned tree, the curve gives an approximate limit on how well a

tree of that size can classify the cases (at least when variables are chosen one at a time). That

the performance of ID3 on the learning set is considerably di�erent from the performance on the

test set indicates the tree is overspeci�ed. That is, some of the branches in the tree are tracking

the statistical random variation in the learning set, rather than the underlying properties of the

population. The error rate curves for ID3 are essentially 
at from a threshold of 0.25 to 0.8. This

too is an indication that the tree is overspeci�ed. Using a large number of nodes, ID3 has found

small partitions of the learning set in which the elements are nearly all ischemic or nearly all not

ischemic. Indeed, in the learning set there are only 359 of the 3,453 patients whose estimated

probability of ischemia is between 0.25 and 0.8. In the test set 278 of the 2,320 cases fall in this

range.

Comparing the error rate of the LR classi�cations to the decision tree classi�cations, it is clear

that the LR equation performs better on the test set over the threshold range from 0.28 to 0.77.

Over the range from 0.37 to 0.67 the improvement in error rate is about 25%. It is curious that the

LR equation actually works better on the test set than the learning set. Since these two data sets

were collected in consecutive years, it is possible that the patient population changed somewhat,

but there is no way to tell for sure. The incidence of acute ischemia did drop from 36% to 31%, but

that is a rather small change. Even comparing the LR equation on the learning set to the decision

tree on the test set, the LR equation did better with thresholds between 0.4 and 0.55, although

only slightly better.
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Probability threshold for declaring acute ischemia

Error rate

Solid: ID3 on test set
Dotted: LR on test set
Long dash: ID3 on learning set
Short dash: LR on learning set

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
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Figure 4: Error Rate with Varying Cuto� Probability for Default Tree
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1� Speci�city

Sensitivity

Solid: ID3 on test set
Dotted: LR on test set
Short Dash: LR on learning set

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5: Receiver Operating Curve for Default Tree

Another way to look at these data, that is less dependent on the frequency of ischemia in the

population, is to consider the sensitivity and speci�city of the tree at various probability levels.

The usual method for doing this is to plot the sensitivity versus 1� speci�city as an ROC (receiver

operating characteristic) curve. This is done in �gure 5. The performance of LR on both the

test set and the learning set is graphed, showing the improvement in performance on the test set.

The area under the ROC curve for LR on the test set is 0.89 while that under the ID3 curve is

0.82. The di�erence between these two areas is signi�cant well beyond the .0001 level using the

Hanley-McNeil method with correlations computed using the Kendall tau[19].

Since the other point of comparison is the performance of the physicians in the emergency room,

their performance is indicated by the markers on the graph. The squares are the performance on

the learning set and the diamonds are the performance on the test set. It is clear that the physicians

also performed better on test set than on the learning set. Thus, the di�erence between sets at

least involves either di�erences in the population or di�erences in physician behavior. One of the

categories of diagnosis used by the physicians is ischemic heart disease, without indicating whether

it is acute. The open markers include this diagnosis as acute ischemia while the closed markers

exclude it. Comparing the open and closed markers gives an indication of what an \ROC curve"

for the physicians might look like.
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tree data ischemia non ischemia di�erence

default ID3 test 0.61 0.22 0.39

LR test 0.62 0.24 0.38

default ID3 learn 0.77 0.13 0.64

LR learn 0.57 0.25 0.32

Figure 6: Average Probabilities Assigned to Cases

On the curves the points corresponding to thresholds of 0.25, 0.5, and 0.75 are indicated with

circles. Comparing the LR curves to the ID3 curve, the categorical nature of the decision tree is

evident from the angularity of the curve and how close the threshold points are. It is clear that

when both sensitivity and speci�city are considered, the LR equation performs better.

The ideal for a tree is to classify all of the test cases correctly. When that is not possible, the

objective is to provide as much separation as possible between the two classi�cations of cases. One

way to test this is to compare the average probability of ischemia given to actual ischemic cases

to that given to the non-ischemic cases. Figure 6 shows the average probabilities given to cases

that were ischemic or non-ischemic in the test set and in the learning set by the two methods. By

this measure, the decision tree does better, but only very slightly. The primary di�erence is that

the \overcon�dence" of the decision tree compensates for the higher error rate. That is, it is right

often enough that the extreme probabilities assigned by leaves with small numbers of cases actually

achieves a greater separation of average probabilities. The performance of ID3 on the learning

set again demonstrates the amount of separation of ischemic from non-ischemic cases that can be

achieved with foreknowledge using a tree of a given size. The performance of the LR equation on

the learning set shows that the equation actually did better on the test set than on the data from

which it was derived.

4.2 Improving the Decision Tree

Since it is clear from this analysis that the decision tree is overspeci�ed, we reconsidered the options

available with the ID3 algorithm at the risk of \learning from the test set". In the following, we set

the test set aside and proceeded just using the learning set to motivate and evaluate adjustments

to the ID3 parameters and improvements to the selection of variables.

One strategy developed to generate trees that are better justi�ed is windowing. Windowing

generates the initial tree from a subset of the data and uses the rest of the data to modify the tree

as necessary to account for any statistical di�erences between that data and the initial subset. If

several such trees are created using di�erent initial subsets and the best �nal tree is chosen, the

claim is that the tree will better represent the true statistical properties of the data. We tried

this strategy by generating �ve trees using 2/3 of the total learning set as the learning set for the

experiment and the remaining 1/3 as the test set. Each tree was started with windows containing

10% of the data. The error rates for the �ve trees are given in �gure 7. These error rates are no

better than the error rate with the tree generated without windowing. These conclusions concur

with those of Wirth and Catlett[20]. Thus, we have chosen not to use windowing for generating

trees.

If one examines the default tree, it is clear that there are many places where branches divide the

cases into a very small set versus the rest. For example, at the third level in the tree, the following
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tree 1 2 3 4 5

learning errors 0.0750 0.0770 0.0773 0.0785 0.0773

test errors 0.2453 0.2513 0.2379 0.2332 0.2534

Figure 7: Error Rates Using Windowing

happens:

ST change on ECG = normal

Nitroglycerin stops pain = yes

age < 36.5 : ischemia (3 of 3)

age > 36.5 (the remaining 425)

� � �

While it may well be that a person under 37 complaining of chest pain in the emergency room

for whom nitroglycerin stops the pain is a strong candidate for acute ischemia, three is too small

a sample to produce a node. To overcome this problem, we modi�ed the tree generation to only

consider nodes with six or more cases in two or more branches.

Furthermore, the tree generated is very large, having a maximum depth of 25. The method used

for pruning the tree is to compare the number of errors introduced by eliminating the branch, to

the estimated error rate in the subtree using the continuity correction for the binomial distribution

plus the standard error of the estimate. It is possible to make the pruning more optimistic or

pessimistic by adjusting the number of standard errors added into this calculation. To estimate an

appropriate number for this parameter, we compared the e�ects of di�erent amounts of pruning on

various trees generated from di�erent partitions of the original learning set into 2/3 as the learning

set and the remaining 1/3 as the test set.

Figure 8 graphs three of these tests using pruning ranging from none to eight times the standard

error. When pruning levels reach about �ve, the trees have about ten variables in them and about

30 leaves, although it varied considerably. The vertical axis is the number of errors classifying the

test set. The trends show that the error rates initially decrease with increased pruning but then

start to 
uctuate. Since the error rate is consistently fairly low when the pruning parameter is set

to 2.0 standard errors and the tree size is comparable to the tree implied by the LR equation, we

chose that value for generating the tree from the entire learning set.

4.3 The Improved Decision Tree From ID3

With a pruning parameter of 2.0 and minimum leaf size of six in at least two branches of a variable,

the tree for the following comparisons was generated. It has 128 nodes, 88 of which are leaf nodes

and 70 of these have items corresponding to them in the learning set. The maximum depth of

the tree is 11, and it uses 19 di�erent variables. This compares to the tree generated by the 128

possible value combinations of the seven LR variables with 85 leaves having corresponding items.

The correct and incorrect classi�cations for these two trees are shown in �gure 9.

This decision tree can be compared to the default tree and to the LR equation by considering

what would happen if the threshold for classi�cation were changed. Figure 10 is a plot of the

threshold probability versus the error rate. This time the performance of ID3 on the test set is
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Pruning in units of standard error

Number of errors
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260
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Figure 8: Error Rates with Di�erent Amounts of Pruning

actual class

learning set test set

ischemia no ischemia ischemia no ischemia

ID3 class ischemia 913 251 471 219

no ischemia 339 1,950 242 1,388

error rate 0.1710 0.1987

LR class ischemia 773 295 518 183

no ischemia 479 1,906 193 1,421

error rate 0.2242 0.1624

Figure 9: Error Rates Between LR and ID3 with More Pruning
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Probability threshold for declaring acute ischemia

Error rate

Solid: Improved ID3 on test set
Dotted: LR on test set
Long dash: Improved ID3 on learning set
Short dash: Default ID3 on test set
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Figure 10: Error Rate with Varying Cuto� Probability in Improved Tree

much closer to its performance on the learning set, although it still performs better on the learning

set. The performance of ID3 on the test set is improved over the default tree and the 
at portion

of the curve is narrower, from 0.33 to 0.69. There are now 272 cases in the learning set with

probabilities in this range and 197 in the test set, but in the same range the LR equation has

977 and 640 cases, respectively. When the cuto� is between 0.35 and 0.65, the LR equation still

performs better on the test data than the improved decision tree does. Outside of that range, the

error curves overlap considerably.

Again, the ROC curves can be plotted for the improved tree, along with the previous curves.

This is done in �gure 11. The ROC curve for the improved decision tree lies almost completely

outside of the ROC curve for the default decision tree and still completely inside the ROC curve for

the LR equation. Thus, no matter which operating point on the curve is chosen, the LR equation

has better sensitivity and speci�city. The LR curve has an area of 0.89 while the improved ID3 curve

has an area of 0.86 and the di�erence in area is still signi�cant at the .0001 level. The improvement

in the area under the ID3 curve is signi�cant at the .005 level. The points corresponding to

thresholds of 0.25, 0.5, and 0.75 are also plotted on this graph. With the improved decision tree,

these thresholds correspond to sensitivities and speci�cities that are considerably di�erent.

If we consider the degree to which the improved decision tree separates the ischemic from non-
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1� Speci�city

Sensitivity

Solid: Improved ID3 on test set
Dotted: LR on test set
Short Dash: Default ID3 on test set
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Figure 11: Receiver Operating Curve for Improved Tree

tree data ischemia non ischemia di�erence

improved ID3 test 0.60 0.22 0.38

default ID3 test 0.61 0.22 0.39

LR test 0.62 0.24 0.38

improved ID3 learn 0.63 0.21 0.42

Figure 12: Average Probabilities Assigned to Cases by Improved Decision Tree
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ischemic cases (in �gure 12), there is virtually no change from the default tree and it is essentially

the same as the LR equation. The only di�erence is that the performance of the improved tree on

the learning set is more in line with the performance on the test set.

4.4 Decision Tree with Clinical Considerations

The improved decision tree generated in the previous section reduced the problem of overspeci-

�cation and as a result, improved the performance of the tree. However, it was still developed

using all of the variables that were ever considered for the LR equation without consideration for

clinical relevance. When the LR equation was developed, the clinical relevance and reproducibility

of the variables was a primary consideration and many of the variables were eliminated on that

basis alone[2]. Since no such considerations were made in producing the decision tree, it contains

a number of closely related variables such as the report of chest pain in the emergency room and

the indication of chest pain recorded in a later interview. It also contains variables such as \upset"

that would be di�cult to reproduce.

To make a tree that is more relevant clinically, a limited set of variables was chosen from which to

generate it. We started with the variables that were actually used in the previous decision tree plus

any that had signi�cant information gain ratios across the whole learning set. Thus, all variables

with power to discriminate over the whole set were considered and additional variables that had

emerged at lower levels were also considered. This list was then modi�ed by using only variables

collected in the emergency room versus corresponding variables collected later and selecting one

of the two nitroglycerin variables. From this list upset, dizzy, and palpitations were eliminated

because of the subjective nature of the �nding, race was eliminated because of the small fraction

of non-whites, and history of bronchitis was eliminated on grounds of clinical relevancy. This left a

list of 15 variables from which the tree was generated using the same procedure as in the previous

section.

The resulting tree has 103 nodes, 72 of which are leaf nodes and 62 of these have items corre-

sponding to them in the learning set. The maximum depth of the tree is nine, and it uses 11 of

the 15 variables available to it. Of the 11 variables used, two were not used in the previous tree

(a�ecting 7% of the classi�cations in the learning set) and two others did not have signi�cance at

the top level (a�ecting 11% of the classi�cations).

The leaf nodes without items corresponding to them in the learning set represent values for the

three multivalued variables. Since there are other values for these variables that have only a few

cases, we further trimmed the tree by comparing all nodes corresponding to values of multivalued

variables to the nodes immediately above them. If by the chi-square test, the di�erence in frequency

of ischemia was not signi�cant, the probability implied by the parent node was used. In this way,

another 19 leaves were eliminated.

This clinical decision tree can be compared to the improved decision tree and to the LR equation

by considering the error rates across the range of thresholds for classi�cation in �gure 13. Even

though the selection of variables was restricted, the performance of this tree is slightly better than

the previous tree across the range 0.35 to 0.68. The performance on the test set is essentially the

same as the performance on the learning set, indicating that there is no problem of overspeci�cation.

The LR equation still maintains an edge on the error rate between 0.37 and 0.6.

The ROC curve for the clinical decision tree overlaps considerably the ROC curve for the

improved decision tree and still completely inside the ROC curve for the LR equation, as can be
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Probability threshold for declaring acute ischemia

Error rate

Solid: Clinical ID3 on test set
Dotted: LR on test set
Long dash: Clinical ID3 on learning set
Short dash: Improved ID3 on test set
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Figure 13: Error Rate with Varying Cuto� Probability in Clinically Based Tree
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1� Speci�city

Sensitivity

Solid: Clinical ID3 on test set
Dotted: LR on test set
Short Dash: Improved ID3 on test set
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Figure 14: Receiver Operating Curve for Clinically Based Tree
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seen in �gure 14. Thus, no matter which operating point on the curve is chosen, the LR equation

has better sensitivity and speci�city. The LR curve has an area of 0.89 while the clinical decision

curve has an area of 0.86, the same as that for the improved tree. The di�erence in areas with

respect to the LR curve remains signi�cant at the .0001 level, while there is no signi�cant di�erence

in areas between the two ID3 curves.

5 Discussion

The comparison of tools developed using logistic regression and using decision-tree induction

presents an interesting contrast of statistical assumptions. For LR, it is assumed that the in-


uence of a variable on the outcome is uniform across all patients unless speci�c interactions with

other variables are included. For ID3 and decision-tree formalisms in general, for each subset of

the patients as de�ned by the particular values of the variables higher in the tree it is assumed

that the e�ect of a variable in the subset is unrelated to the e�ect of the variable in other subsets

of patients. Since these are polar assumptions and the truth probably is somewhere in between, it

makes sense to ask which is closer to the truth. The answer from this examination of a data base

of over 5,000 patients is that both methodologies are capable of performance fairly close to that of

the physicians who treated the patients, although the LR equation de�nitely performed better.

The default decision tree was much larger than was justi�ed by the data. This can be attributed

to a pruning strategy that does not capture the statistical nature of the data appropriately. Other

classi�cation tree programs use other strategies for pruning which may be more appropriate and

should be investigated. As was clear from the comparison made in section 4.3, optimizing the

parameters of the pruning algorithm on the learning set improved the performance of the decision

tree and eliminated any obvious overspeci�cation. Indeed, the overspeci�cation of the default tree

is responsible for about 56% of the di�erence in error rate between LR and ID3. The underlying

premise of the information theory approach to favor the variables that achieve the most extreme

concentrations of the dependent variable values is still evident in the relatively small number of

cases that are in the middle of the probability range.

The �nal decision tree, generated with clinical considerations in mind, demonstrates that there

is very little di�erence between the performance of a tree generated with all of the variables available

and one using a greatly restricted set. One could argue either that restricting the set would force

suboptimal choices or that using using clinical knowledge to restrict the set would avoid spurious

correlations and improve the choices. The overall e�ect seems to be negligible. Even the �nal tree

(reproduced in the appendix) still has what are likely to be spurious correlations. For example at

the end of the tree four levels down, Q waves in the anterior leads would indicate no ischemia while

no Q waves and a heart rate of less than 69 would indicate ischemia, which is counter intuitive.

Such questionable leaves involve only small numbers of cases, indicating that there is still room for

improvement in deciding what relationships are legitimate.

Since there is considerable overlap between the variables used in the LR equation and the

decision tree, it might be suspected that the two procedures are picking the same cases. However,

in comparing the probabilities generated for the cases, 23% of the learning cases and 20% of the

test cases have probabilities that di�er by more than 0.2. Also, the Kendall tau correlation of the

assigned probabilities is only 0.50. Both of these measures indicate that there may be features of

the domain that each method is missing and therefore potential for �nding a method that would

improve on both.
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Another di�erence between the methodologies is the way in which the probabilities are cal-

culated. The LR equation is derived from the entire learning set, while the ID3 probability is

estimated from the leaf subset. With a su�ciently large number of cases in each leaf subset, the

fraction of ischemia cases in the subset is the correct probability. However, with a limited data base,

the probabilities are approximate, although the correction for small subsets using the immediate

context improves the estimates considerably. We can evaluate the LR estimate of the probability

by comparing the estimated probabilities. The number of cases where the LR estimate is closer

to the fraction in the test set is 958, while the number in which the fraction in the learning set is

closer to the fraction in the test set is 1,352. However, if these numbers are weighted by the size

of the di�erences, the sum of the di�erences in which the LR estimate is closer is 74 while the sum

in which the learning set fraction is closer is 65. Thus, the ID3 style probability is closer more

often, but the size of its misses more than makes up for that. The probabilities might be improved

either by including combinations of values as variables in the LR equation or by including more

context in the ID3 probability estimations. The challenge is to develop criteria for determining the

appropriate compromises between the strategies.

The �nal question is whether either of these methods have extracted all of the clinical rela-

tionships that are supported by the data. Given the experience of many researchers attempting

to detect acute ischemia or myocardial infarction from information in the emergency room, there

seems to be a limit to the reliability of the results and given how similarly these two methods

perform, we may be near that limit. However, there are always new strategies to consider. Two

that may hold promise are neural networks[21] and multivariate adaptive regression splines[22].

Both of these methods have the potential to represent more complex relationships, but with more


exibility in the model there is more potential for overspeci�cation.
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A Clinically Motivated Decision Tree Used for Comparison

The following is the �nal decision tree generated from variables selected on clinical grounds.

STCHANGE = " 2 (I: 238 NI: 35)

STCHANGE = NORMAL (I: 395 NI: 1646)

NCPNITRO = YES (I: 194 NI: 234)

CHPAINER = NO (I: 7 NI: 22)

CHPAINER = YES (I: 187 NI: 212)

SYMPTOM1 = pain in arms, neck, or shoulders (I: 11 NI: 4)

SYMPTOM1 = shortness of breath (I: 9 NI: 33)

SYMPTOM1 = pain in stomach (I: 7 NI: 10)

SEX = MALE (I: 1 NI: 8)

SEX = FEMALE (I: 6 NI: 2)

SYMPTOM1 = pressure, pain, discomfort in chest (I: 147 NI: 152)

SEX = FEMALE (I: 45 NI: 81)

SEX = MALE (I: 102 NI: 71)

AGE > 81.5 (I: 1 NI: 6)

AGE < 81.5 (I: 101 NI: 65)

AGE < 45.5 (I: 6 NI: 9)

AGE > 45.5 (I: 95 NI: 56)

NCPNITRO = NO (I: 201 NI: 1412)

CHPAINER = NO (I: 25 NI: 604)

CHPAINER = YES (I: 176 NI: 807)

TWAVES = NORMAL (I: 76 NI: 462)

TWAVES = # 1 (I: 63 NI: 62)

SEX = FEMALE (I: 20 NI: 38)

SEX = MALE (I: 43 NI: 24)

AGE < 73.5 (I: 39 NI: 14)

AGE > 73.5 (I: 4 NI: 10)

STCHANGE = # 2 (I: 117 NI: 49)

NCPNITRO = YES (I: 57 NI: 11)

NCPNITRO = NO (I: 60 NI: 38)

SYSBP > 202.0 (I: 8 NI: 0)

SYSBP < 202.0 (I: 51 NI: 37)

QWAVES = ASMI (I: 4 NI: 0)

QWAVES = NORMAL (I: 37 NI: 28)

SYSBP > 178.0 (I: 9 NI: 2)

SYSBP < 178.0 (I: 28 NI: 26)

AGE > 83.5 (I: 5 NI: 1)

AGE < 83.5 (I: 23 NI: 25)

PR < 77.0 (I: 2 NI: 7)
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PR > 77.0 (I: 21 NI: 18)

PR < 89.0 (I: 8 NI: 0)

PR > 89.0 (I: 13 NI: 18)

STCHANGE = # 1 (I: 150 NI: 148)

SYMPTOM1 = pain in stomach (I: 1 NI: 11)

SYMPTOM1 = rapid or skipping heartbeats (I: 0 NI: 10)

SYMPTOM1 = pain in arms, neck, or shoulders (I: 10 NI: 0)

SYMPTOM1 = shortness of breath (I: 18 NI: 56)

SYMPTOM1 = fainted, dizziness, or lightheadedness (I: 8 NI: 14)

AGE > 74.0 (I: 0 NI: 6)

AGE < 74.0 (I: 8 NI: 8)

HXMI = YES (I: 6 NI: 1)

HXMI = NO (I: 2 NI: 7)

SYMPTOM1 = pressure, pain, discomfort in chest (I: 108 NI: 53)

PR > 131.0 (I: 0 NI: 6)

PR < 131.0 (I: 105 NI: 45)

SYSBP > 197.0 (I: 19 NI: 1)

SYSBP < 197.0 (I: 86 NI: 43)

PR < 111.0 (I: 81 NI: 34)

PR > 111.0 (I: 5 NI: 9)

STCHANGE = # .5 (I: 80 NI: 120)

NCPNITRO = YES (I: 38 NI: 14)

NCPNITRO = NO (I: 42 NI: 106)

STCHANGE = FLAT (I: 63 NI: 95)

NCPNITRO = YES (I: 33 NI: 11)

NCPNITRO = NO (I: 30 NI: 84)

STCHANGE = " 1 (I: 209 NI: 108)

AGE > 87.5 (I: 1 NI: 7)

AGE < 87.5 (I: 208 NI: 101)

CHPAINER = YES (I: 177 NI: 64)

CHPAINER = NO (I: 31 NI: 36)

QWAVES = AMI (I: 0 NI: 4)

QWAVES = NORMAL (I: 13 NI: 21)

PR < 69.0 (I: 5 NI: 1)

PR > 69.0 (I: 8 NI: 19)


