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Abstract

Over the past dozen years, we have developed the diagnostic capabilities of the Heart Disease

Program (HDP). The program has progressed from a logic based model, to a Bayesian proba-

bility network (BPN), to a pseudo-Bayesian network with temporal and severity reasoning. The

explanations have evolved from graphic causal diagrams to summarized causal outlines of the

important diseases and mechanisms. The reasoning and explanation mechanisms evolved as we

have identi�ed signi�cant classes of diagnostic situations. Improvements have been made in the

input data, in reasoning strategies, and in the explanations. The driving force has been the

need to provide clinical distinctions for planning investigation and management strategies.

While the causal probabilistic nature of much of cardiovascular disease �ts well into a

Bayesian probabilistic framework, closer examination reveals a number of aspects that require

other kinds of reasoning. The wide range of times over which disease mechanisms progress

requires temporal reasoning that does not �t well in a BPN. The distinct patterns of manifesta-

tions, (often labeled as syndromes), associated with di�erent severities of disease runs counter

to the independence of e�ects assumed in a BPN. Similarly, some diseases have multiple distinct

types, which may have separate etiologies, with di�erent patterns of manifestations. The con-

straints and homeostatic mechanisms of hemodynamics can also produce e�ects poorly modeled

by a �xed causal network.

Beyond the generation of appropriate diagnostic hypotheses, there are challenges in gathering

data and presenting the results to the physician. For example, making appropriate assumptions

about negatives from the case data, summarizing hypotheses to emphasize important diseases

and mechanisms, and providing justi�cation and explanation for the physician.

This paper discusses these problems in providing appropriate diagnoses in the heart disease

1



2
domain, illustrated with clinical examples. It identi�es the requirements for an e�ective system,

and discusses the speci�c solutions developed for the Heart Disease Program.

Keywords: Bayesian probability networks, temporal reasoning, causality, physiologic causality,

constraint reasoning, diagnosis, heart disease

1 Introduction

The context of this discussion is the development of the Heart Disease Program (HDP)[1, 2, 3].

The HDP is a diagnostic reasoning tool for patients with symptoms suggestive of hemodynamic

dysfunction or diseases that could cause hemodynamic dysfunction. (The program also has a

component for reasoning about the expected e�ects of therapy by simulation[4], but this paper will

focus on the diagnostic reasoning.) The program allows direct case input from the physician using

a series of forms, then generates a di�erential diagnosis consisting of a small set of hypotheses, each

of which is an explanation for the �ndings entered.

The HDP is a diagnostic program that uses knowledge of the underlying mechanism to reason

about diseases | a process often termed \deep reasoning'. In contrast, most of the medical diagnosis

programs now working their way into practice, eg, QMR[5, 6] and DXplain[7], only use diseases

and �ndings with measures of association between them. Because they have no model of how

the �ndings interact, their di�erentials often contain clearly inappropriate diseases. In addition,

these di�erentials are lists of diseases without any indication of how they might account for the

patient data. A few programs use physiologic knowledge for diagnosis, e.g., the ABEL[8] program

for acid-base and electrolyte disorders operated at several levels of abstraction with varying detail

to capture the physiologic interactions. A number of challenging medical domains are similar to

the acid-base problem, with intermediate concepts and clinically relevant physiologic knowledge

needed to e�ectively generate and constrain diagnostic analysis. Two programs in cardiology that

use physiologic reasoning are the EINTHOVEN arrhythmia analysis system[9] and the DIAVAL

program for echocardiography interpretation, reported in this journal[10].

Cardiovascular disorders provide a challenging domain for diagnosis. Over such dimensions as

importance, time course, severity, and ease of observation, the diseases display a wide range of

characteristics. In addition, the patients often present with more than one interacting pathophysi-

ologic mechanism. The disorders range from acute to chronic. Often the chronic disorders are not

correctable, becoming the context in which other disorders manifest themselves. Hence, the patho-
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physiologic state may be simple in the patient �rst exhibiting cardiovascular disease to complex

when the disease has progressed and been complicated by additional diseases. The manifestations

may be mild and non-speci�c, such as fatigue or shortness of breath, or they may be the critical

signs of shock. Fortunately, the physiology is fairly well understood at the clinical level. That is, we

can make reasoned arguments about how the diseases will manifest themselves and how multiple

mechanisms will interact with one another. The e�ort to develop the HDP has given us a wide

range of experience in modeling and reasoning about diagnosis in a complex, model rich domain.

Other domains where clear pathophysiologic models are developing, such as respiratory disease,

neurology, or endocrinology should also bene�t from this approach.

The HDP is intended to be a clinical diagnostic tool for the practicing physician| an intellectual

sounding board for understanding �ndings in the challenging patient. As such, it takes the same

kind of information about the patient that one would see in the physician's note, including history,

symptoms, physical exam, and laboratory data. Indeed, the discharge summary or clinic letters

are often directly transcribable into the input forms. There is no required data, but the program

will use whatever is available. It then uses a modi�ed Bayesian probability network modeling the

causal pathophysiology of the cardiovascular system to reason about possible explanations for the

data. Because the probability network does not conform exactly to the requirements for a BPN, a

heuristic algorithm is used to generate diagnostic hypotheses. Each hypothesis provides a complete

explanation for the data, within the bounds of the physiologic model. The probabilities of these

hypotheses are computed and those above a threshold are ordered as a di�erential diagnosis. The

hypotheses of the di�erential are then summarized and presented to the user.

Our initial design of the HDP relied on constraints and logical relationships among diseases,

physiological states, and �ndings. These were used to rule out causes and focus the diagnostic

e�ort. It was hoped that such coarse grained diagnosis would be su�cient to direct reasoning

about patient management. However, it soon became apparent that uncertainty plays such a large

part in the diagnosis and management of cardiovascular disease that the program had to deal with

causal probabilities directly.

2 Bayesian probability networks

For diagnosis in domains with causal knowledge, the current dominant methodology is Bayesian

probability networks (BPN). Examples include MUNIN[11], for electromyographic interpretation,

to recent programs on breast cancer diagnosis[12]. A BPN program that has achieved some com-



4
mercial success is Intellipath, for pathology diagnosis[13, 14]. Several years of research on BPNs

has provided sound mathematical underpinnings and e�cient algorithms for answering the most

common diagnostic questions. The primary advantage of a BPN is the direct representation and

reasoning with uncertainties among the domain parameters. In addition, the network structure is a

reasonable representation of domain causality. Sometimes however, the dual goals of representing

the probability distributions and the understood causality con
ict.

The relationships among the concepts in the domain are represented as an acyclic directed graph

of probabilistic links. The probability of a node in the graph is a function of the states of the nodes

on incoming links to that node. The fundamental assumption of a BPN is that the probability of

an e�ect is only dependent on the state of the immediate causes. This independence assumption

is the source of power of the paradigm, making the computation of such things as the most likely

state of the network tractable even in fairly large networks.

A node can have a small number of states and the probability of the each state can be determined

by any function of the inputs that produces a valid probability distribution over the states. Most

commonly, the nodes are binary and the probability is computed using the \noisy-OR" assumption.

That is, if a node C has two causes A and B with p(CjA) = a and p(CjB) = b then p(CjA&B) =

1 � (1 � a)(1 � b) = a + b � ab. This generalizes to any number of inputs. This assumption is

essentially that the inputs make independent contributions to the node. It greatly reduces the

number of probabilities that must be determined.

The requirement for an acyclic network is a result of the mathematical formalism. Without

that, the probability calculations become inconsistent. For example, consider the simple example

in �gure 1. The probabilities in the right column are computed locally, just using the truth of the

incoming node and the \noisy-OR" assumption. Unfortunately, the sum of the probabilities of the

possible states is 1.0625, rather than one.

One source of computational complexity in a BPN is undirected loops. That is, places where the

network splits and rejoins (eg, the right diagram in �gure 2). Algorithms for BPNs are necessarily

exponential as a result of such occurrences [15]. However, the best algorithms are e�cient enough

to handle networks with a dozen or more such loops. A second source of complexity is nodes with

more than two values. Each such occurrence multiplies the amount of computation required.

The challenge in developing a BPN for diagnosis is to represent the knowledge of the domain

in a network and keep it computationally tractable.
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Figure 2: Representing Probability Distributions

3 Requirements for diagnostic reasoning

3.1 Modeling a probability distribution

The �rst challenge is to represent the domain knowledge in a probabilistic formalism. One clash

between the BPN formalism and practicality is the distribution of the e�ects of a node. When

developing an expert system for medical diagnosis, data on the frequency of �ndings and combina-

tions of �ndings with a disease state, are commonly available since that is the natural organization

of medicine. In contrast, while the combining function for the causes of a node can be arbitrary,

the BPN assumes that the probability of an e�ect is independent of the existence of other e�ects

from that node, unless there is an explicit link between the e�ects. If there are n possible e�ects

of a node, there are 2n possible combinations of those e�ects, for which the only constraint is that

their probabilities have to sum to one. For example in �gure 2, if A causes B and C, there are only

two probabilities to represent the three independent combinations of e�ects (eg, B&C, :B&C, and

B&:C, since :B&:C must be one minus the others). Thus, the only way to capture distributions

that do not meet the independence criteria is to represent a dependence between B and C, as shown

on the right. This adds a loop to the network and the added computational complexity. If it is

assumed that the two causes combine as the \noisy-OR" function then this representation is only
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Figure 3: Representing Probability Distributions

su�cient if the distribution is such that p(B&C)p(:B&:C) > p(:B&C)p(B&:C).

With more than two e�ects, it may be necessary to add all possible acyclic links between e�ects

to capture the probability distribution. Besides the additional computational burden imposed by

such a network, the additional links do not have the same meaning for the user as the intended

causal links. In most instances it is better to compromise and keep the model simple at the

cost of some deviation from observed probabilities. If the probability data is derived from the

literature, only a few probabilities of combinations of �ndings may be available. A large database

of cases may provide accurate probabilities, however the data should be a representative sample of

the patient population. Even when the probabilities of combinations of �ndings can be determined

within narrow variance, if they di�er from the probabilities implied by independence, the diagnostic

implications need to weighed against the additional computational burden.

Often the probability of �ndings is dependent on the severity of the disease. If the disease

is mild there is a low probability of �ndings, but if the disease is severe, �ndings are common.

If the node representing the disease is binary, the only way to provide appropriate probabilities

is to add dependencies among the �ndings. For example, consider the mild and severe forms of

disease A in �gure 3. Let A+ be 0.4 times as likely as A. This could be represented as a single

node as in the right part of �gure 3. (The representation must be asymmetric to avoid a cycle

between B and C.) The required probabilities to maintain the same distribution are shown on the

right and are computed as shown. The probability of 0.56 on the connecting link would indicate
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a stronger association between the �ndings than with the cause, even though this is an artifact of

the severity manifestation. The more natural representation is to give the disease node multiple

values representing the possible severities of the disease. Then the structure maintains the intended

causality and conveys information that may be useful in managing the patient.

The distribution requirement for the \noisy-OR" function in this context translates into the

requirement that all of the probabilities have to increase or stay the same as the severity increases.

This is normally true, but there are a number of nodes in the HDP in which a few �nding proba-

bilities decrease. For example, in aortic stenosis there is almost always a murmur. However, when

the lesion is severe enough to lower cardiac output, the murmur often becomes inaudible and the

diagnosis may be missed. This is important because the AS is a correctable condition which left

untreated will in time be fatal. This is the kind of situation in which HDP is most needed.

In implementing HDP, we found that the most natural divisions of severities are the points at

which new manifestations are possible, that is, where the manifestations are qualitatively di�erent.

For example, the node for aortic stenosis has four severities. Mild AS only causes murmurs and

appears on the more sensitive tests (eg, echocardiography or catheterization). The second severity

causes left ventricular (LV) hypertrophy. The third severity causes limitations to cardiac output

(decreased exercise response), high �lling pressure, or angina. The most severe form causes a

weakened ventricle and all of the sequelae of dilated cardiomyopathy.

This is a very di�erent de�nition of severity from that traditionally used, which focuses on

measured valve areas, but it serves a di�erent purpose. That is, to provide a division of the

model that simpli�es the data and the reasoning. The division by manifestation enables identifying

the severity from clinical �ndings without requiring more extensive testing. This makes it easier

to classify cases for knowledge acquisition and also allows pruning of the problem space during

diagnostic reasoning. Thus, the HDP makes an initial pass through the input data and eliminating

many more severe states of diseases by the absence of the discriminating manifestations. This

signi�cantly speeds the reasoning. The qualitative severities are consistent with the observation that

the structure of the network is more important to accurate diagnosis than the actual probabilities,

although the probabilities do make a di�erence[16].

3.2 Modeling disease types

The heart disease domain has several diseases with more than one distinct type. For example, a

primary aortic regurgitation (AR) can have di�erent etiologies. To keep the model simple HDP
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includes �ve valvular disease etiologies covering the most distinct patterns, each with some unique

�ndings. For example, degenerative AR may have calci�cation or other evidence of the degenerative

process. Rheumatic AR may have a history of rheumatic fever. The most important aspect of the

di�erent etiologies of valvular disease is that they provide appropriate probabilities for multiple

valvular lesions, since multiple lesions are common and the combinations of lesions are characteristic

of the di�erent etiologies.

Besides the di�erent types representing the etiology of primary valvular disease, AR itself has

di�erent types, depending on whether the problem is at the root (dilatation of the aortic root) or

valve (lea
et damage), characterized by distinct �ndings. Some AR is caused by acute processes

and this is further distinguished. Acute AR is always secondary, either to a failed valve replacement,

endocarditis, or aortic dissection. Thus, if the AR was absent a month ago and is present now, the

diagnosis immediately focuses on endocarditis or aortic dissection.

The disease type provides a template to represent diagnostically important qualitative distinc-

tions as well. This provides one mechanism for representing disease patterns. Since physicians tend

to describe diagnosis and to learn in terms of disease patterns, it is useful to capture expertise

in the model presented in similar patterns. The diagnosis explanation can then follow a similar

process to present the results. Patterns do not �t well with the BPN methodology, since all of the

knowledge in the network is local to each node. The HDP makes use of the type information as

properties on the links in the model with probabilities dependent on them. In this way, the patterns

may be embedded in the model, coordinating probabilities as well as the pattern recognition in a

completed hypothesis.

3.3 Modeling temporal relations

The main source of problems with the BPN methodology is the need for reasoning about time in

the domain. There are a number of ways in which problems arise. First, if time is required to

produce an e�ect, the cause must have existed long enough. For example, an acute MI often causes

pulmonary congestion and pulmonary congestion occasionally causes pleural e�usion, however, it

takes days or weeks to produce the pleural e�usion. Therefore, an acute MI could not explain a

pleural e�usion discovered on the same day. The second problem is the wide range of time scales

over which the changes in heart disease take place. Thus, the �ndings provided by auscultation (the

heart sounds) re
ect the immediate. The �ndings of pulmonary congestion take a few hours; pedal

edema takes days; ventricular hypertrophy, months; and usually valvular stenosis takes years. The
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third problem is the need for multiple instances of some nodes to explain the �ndings. An example

is aortic regurgitation (AR) leading to a valve replacement and the replacement failing and causing

an acute type of aortic regurgitation. The earlier AR would be responsible for the evidence of LV

hypertrophy still on the electrocardiogram and the acute AR would be responsible for the murmur

and a number of other �ndings. (Our approach to temporal reasoning is discussed in detail in [3].)

The problem of e�ects requiring time means that physiologic states such as pulmonary conges-

tion cannot be represented by a single node in a traditional BPN because the truth of the state

is insu�cient information to determine the probability of e�ects. That is, pulmonary congestion

caused by an acute MI has di�erent e�ects from pulmonary congestion caused by dilated cardiomy-

opathy. In some form, it is necessary to know whether the state has been true long enough to

produce the e�ect. This breaks the fundamental assumption of the BPN that the truth of a node

only depends on the state of the immediate causes.

In several domains, the problem of temporal reasoning has been handled by replicating the causal

network for a number of time slices and using the BPN to reason about the transitions as well as

the causality[17]. This approach means that the size of the network is multiplied by the number of

time slices. With a large network of diseases, states, and �ndings, the computational costs rapidly

get out of hand. An improvement in this approach is to only replicate the model for those time

periods that matter[18]. By extending this approach, one could imagine replicating those parts of

the model having di�erent time scales with time slices of appropriate sizes. Even assuming that

such an approach would work, the number of di�erent time scales that matter in the cardiovascular

domain would imply many replications of most parts of the model, making the approach just not

feasible. The approach in the HDP is to carry the temporal information as properties on the

instantiation of the network used in reasoning. The deduced time intervals propagate through the

network constraining all e�ects below the node. Thus, the time constraints on the MI apply not

only to the pulmonary congestion it causes but also to the e�ects of the pulmonary congestion.

Since this temporal constraint is quite di�erent from the probability constraints imposed by the

BPN, it is a powerful tool in directing the hypothesis generation.

The problem of multiple instances of a node only happens in a few situations in the heart disease

domain, but they led to a signi�cant number of incorrect diagnoses before temporal reasoning was

added to the program[20]. Most of the cardiovascular diseases either cause permanent dysfunction,

so once they are present, they remain (eg, dilated cardiomyopathy), or have a speci�c time course

and afterward are irrelevant to future diagnoses. Diseases that are chronic but completely cor-
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Figure 4: Representing Recurrence of a Disease

rectable are also irrelevant after they have been corrected. The problem for reasoning arises when

there are diseases whose �ndings remain after the disease has ended and the disease may recur with

new �ndings. The prime examples are valvular disease, but diseases like endocarditis also exhibit

the same challenge for reasoning. Myocardial infarction also recurs with both acute and chronic

�ndings, but the disease pro�les in the acute, subacute, and chronic phases are so di�erent that in

the HDP they are modeled as three di�erent diseases.

A situation like the recurrence of AR is handled in the HDP by generating two instances of the

AR node in the hypothesis as shown in �gure 4. The valvular heart disease (VHD) over many years

causes the initial AR (AR-1), which causes LV hypertrophy (LVH). The aortic valve replacement

(AVR) corrects the AR with a probability of 1.0 at the time it was done. Thus, AR-1 ends at that

time and there is an instance of AR being false that begins at that time. Meanwhile, the LVH

continues for an inde�nite period of time. With some time delay, the AVR causes acute AR (AR-3),

which ends the period of AR being false and causes the murmur. The explicit representation of

these relationships in the network allows the HDP to make appropriate attribution of the �ndings

and ensure the temporal consistency of the hypotheses it generates.

3.4 Causality in feedback systems

Modeling causal relations with a BPN, one assumes that each cause{e�ect relationship is directly

and e�ectively represented by a probability. Many of the parameters of the cardiovascular system

are part of a large feedback system that is continuously seeking a stable state. Perturbations to the

system cause changes in the stable state that are re
ected as changes in one or more parameters.
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For example, if there is a reduction in the pumping strength of the left ventricle, it is only a few

beats before the balance of blood volumes between left and right sides is changed to re
ect the new

situation. As a result, the cardiac output would decrease and the left atrial pressure (the �lling

pressure for the left ventricle) would increase. To include such changes in a BPN, the most useful

way to model the relationships in such a system is to use the network to represent the qualitative

aggregate results of this behavior. Thus, one would have a link from low pumping strength to

the �nal low cardiac output and to high left atrial pressure (LAP), since that is the result of the

feedback process, even though every part of the hemodynamic system is involved.

Such an approach has problems. Consider the relationships among parameters illustrated on

the left in �gure 5. A decrease in cardiac output (CO) directly causes a decrease in blood pressure

(BP), which causes a strong increase in the sympathetic stimulation (SS), causing an increase in

the vascular resistance (VR). The increased vascular resistance counteracts the decrease in cardiac

output to bring the blood pressure back up | a typical negative feedback system. For illustration,

the numbers on the links are gains. That is, a decrease of 1 (normalized unit) in the BP would

directly cause an increase of 9 units in the SS. Thus, if the cardiac output were decreased by 10

(normalized units), the �nal stable state would be the changes in the table on the right in the

�gure. Since the gains sum, the decrease of 10 in the CO plus the increase of 9 in VR results in a

decrease of only 1 in the BP and the changes are consistent.

The blood pressure only decreases by one because the increase in VR adjusts for the rest of the

decrease in cardiac output. Because of the high gain in this negative feedback, the change in blood

pressure is probably undetectable. The natural way to represent the aggregate causality among the

qualitative states is shown in the top of �gure 6. This summarization of the causality is adequate

unless there is some other process involved that prevents the VR from changing, a vasodilator

therapy, for example. In that case, the feedback mechanism is blocked and the blood pressure does

fall signi�cantly. Then the causality is that in the bottom of the �gure. Unfortunately, this is a
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change in the structure of the network and not just an addition to it.

In general, this is a situation for which a �xed acyclic network does not adequately represent

all of the possible causal relationships. That is, it is possible to show feedback circuits that would

require several di�erent networks in di�erent situations to cover the possible dynamics. In a prac-

tical network, however, it is usually possible to determine an architecture that accounts for the

situations that arise in practice. There are also ways of working around the problems. In the

example, one might model two severities of low BP, the lesser one undetectable and include the

low BP in the causal chain. This approach is taken in the HDP to account for the e�ect of low

CO over a period of days on blood volume and manifestations such as pedal edema, since when the

pedal edema is observed, there may not be any measurable decrease in the CO. Still, determining

an architecture that accounts for the many distinct abnormalities of physiology in the determinants

and interactions of the CO on the left and right sides of the heart has been a signi�cant challenge

in the development of the HDP.

A practical goal for the BPN representing a feedback circuit is that the architecture is consistent

with the causal intuitions of physicians. Even though all of the nodes change together, we usually

think of them as a single chain of causality. This chain must support the possible pathophysiologic

variants. The usual heuristic is that the causality is represented in the direction of the blood 
ow.

There are exceptions, such as the usual view that low CO causes high LAP.

In situations like a BPN representing a feedback circuit, the meaning and determination of the

probabilities is a problem. If the feedback circuit is an accurate model of physical reality, then all

the changes actually take place | there is no uncertainty. Therefore, the probability represents

the frequency that a change within a qualitative range (e.g., low CO) produces a change that

falls within the qualitative range of the e�ect parameter. This probability depends on the joint

distributions of all of the parameters involved in the feedback. For example, the probability that
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low CO causes high LAP depends not only on the distribution of COs considered low, but also on

the distribution of the other parameters in the feedback circuit when the CO is low. Thus, having

an equation that relates the parameters is insu�cient information to determine the probabilities.

Still, the equations do provide additional information that may aid the diagnostic reasoning. In

the HDP, such quantitative constraints are used whenever there is enough information in the input

to force the value of an additional parameter. For example, the CO, BP, and right atrial pressure

would be used to infer the vascular resistance, which would then be used as evidence for causes of

the corresponding qualitative state of the vascular resistance. In a domain as physiologically rich

as heart disease, these constraints frequently provide additional leverage for the diagnosis.

3.5 Forward cycles in the network

The �nal issue of representation is the existence of cycles in the domain. That is, situations where

the natural causal representation leads to forward cycles like that shown in �gure 1. This was the

�rst problem that drove the HDP to a pseudo-BPN. There are three kinds of situations that lead

to cycles in the network. The �rst is events whose consequences increase the probability of those

events recurring in the future. For example, a pulmonary embolism can increase the resistance

through the lungs, which may decrease cardiac output. Low cardiac output is one of the primary

causes of a pulmonary embolism. Thus, the patient is at greater risk of pulmonary embolism in

the future (not to mention the other predisposing factors for pulmonary embolism). The pattern

that emerges in the individual is an increased probability of the disease once the patient has a

past incidence of the event. It is particularly important to reason appropriately about pulmonary

embolism because it is a common, often underdiagnosed, treatable cause of hospitalization.

The second kind of cycle is the true positive feedback. Cardiogenic shock is an example. Once

the patient starts experiencing a drop in cardiac output such that oxygen delivery is compromised,

the function of the ventricle is reduced, causing a further decrease in the cardiac output. Thus,

the patient is in a downward spiral which requires immediate aggressive intervention to stop. The

third kind of cycle is one with more than one starting point but the e�ects do not further aggravate

the causes (at least noticeably). A typical example is hypertension and renal insu�ciency. Either

can cause the other.

In the HDP the approach we have taken is to represent the cycles in the model, but not to allow

cycles in the hypotheses the program generates. This alleviates problems such as trying to separate

the causality between hypertension and renal insu�ciency. The program picks the causality that is
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consistent with the available evidence and maximizes the probability of the hypothesis. The problem

of recurrences of pulmonary embolism require multiple instances of the pulmonary embolism node,

with sequential time intervals. This is handled by instantiating the node as needed (in the same

way that AR corrected then recurring is handled). The positive feedback cycles are handled by

representing the current state of the cycle. That is, the initial cause for the poor ventricular

function is the only cause in the hypothesis. The poor ventricular function accounts for the low

cardiac output and low oxygen delivery. For the positive feedback cycles in the heart disease domain,

this is adequate because these are situations too acute for the HDP to be of much practical bene�t.

What is being sacri�ced is the ability to have an explicit representation of the dynamic behavior.

That is, to represent the fact that the cardiac output or blood pressure is dropping as evidence of the

positive feedback cycle. It is still possible to analyze the hypothesis and identify the potential for

positive feedback by identifying those places in the hypothesis with a causal link in the knowledge

base that would create a cycle. This is an important ability because it means that the program

can alert the physician to the dangerous possibility of rapid disease progression in situations that

might lead to 
ash pulmonary edema, cardiogenic shock, or other catastrophic events.

4 Requirements for input

The goal for the HDP in gathering the case data is to enable the user to unambiguously specify

anything that would make a di�erence in the diagnosis.

The input is more complex than for most expert systems primarily because the HDP needs to do

temporal reasoning. The temporal information may be simple, such as the time of a test or event |

a single time point. However symptoms, such as chest pain, dyspnea, or fatigue have time intervals

during which they have occurred, as well as properties such as length of individual occurrences,

frequency, changes, and associations with other symptoms or events. The most challenging �ndings

are murmurs. There can be multiple murmurs, each with a primary and secondary locations,

loudness, frequency, and occasionally changes with particular maneuvers. Every property of a

�nding may provide an important clue in a particular situation but none is always important or

even available. So many possible features means a �xed input menu list would be overwhelming.

Another problem is the large number of tests that are occasionally available and pertinent. Costly

tests such as an echocardiogram or catheterization have many possible �ndings that can clarify

the diagnosis. Even an old test may provide important evidence for ruling in or out chronic

pathophysiologic states. Thus, it is necessary to guide the input process and only ask for details
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as needed. This is a challenge for a Web interface because HTML forms are �xed. Java applets

improve the situation, but not without e�ort.

The large number of possible inputs is not as problematic for the physician as it might seem,

since only a fraction of the data will be available for a patient. Furthermore, users only enter the

information they think might be relevant. As a result, physicians rarely enter negative �ndings.

However, the negatives are very important to focus the diagnostic search. Thus, the program needs

a good model for inferring negatives from the positive �ndings. The basic strategy is to assume

complete information within what reasonably could have been observed in any category in which

the user has speci�ed something. For example, if the user gives information about auscultation (eg,

a loud S1), it is assumed that other auscultation information was negative (ie, no murmurs).

There are many situations where this assumption of complete information is unreasonable. In

particular, one �nding might cover or obscure another. To handle such situations, HDP has rules

for deciding which �ndings are unknown rather than false. For example, if the patient has postural

syncope, syncope at rest is false, but if there is syncope at rest, postural syncope and syncope on

exertion are considered unknown. In addition, the program assumes that a few important �ndings,

such as chest pain, would be mentioned if they were present.

This mechanism for reasoning about unspeci�ed �ndings usually provides a reasonable set of

negative �ndings for the program. The most common failing is when the user tries to probe

the HDP with \what if" questions or if recorded data includes partial information about a test

result. For example, if the user enters a number of �ndings consistent with mitral stenosis and

includes a normal ejection fraction on echocardiogram, the program is likely not to hypothesize

mitral stenosis because the expectation that the mitral stenosis would have been present on the

echocardiogram is so high that it overwhelms most positive physical examination evidence. Our

human ability to make deductions from partial information is so natural that we often do not

realize we are doing it. This problem is part of a larger issue of how to handle data in con
ict.

If the con
ict is de�nite, the HDP identi�es the con
ict as an error, makes an assumption about

what to believe (generally believing an abnormal �nding over a normal one) and continues with

the analysis. If the con
ict is only partial (eg, the common explanations for a �nding are ruled out

by other evidence), the program continues with the analysis. This occasionally leads to obscure

hypotheses, such as diagnosing coronary spasm instead of coronary artery disease to account for

unstable angina because in entering catheterization results the user did not enter �ndings about

the coronary arteries, which the HDP then assumed were clear. (We now allow di�erent kinds of
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catheterization to be entered.) Another strategy might be to use any instance in which the common

explanations of �ndings have been ruled out as an indication that the absence of those common

explanations needs to be indicated to the user and explained.

While developing the HDP we have considered a number of mechanisms for entering uncertain

data. One could include a measure of belief with any data item that was uncertain. However,

physicians are not used to doing that explicitly and there are few studies of the consistency or

meaning of such information. Thus, we assume the physician will follow the old advice to be

sure of your data and state what you are sure of. On the other hand, it may be appropriate to

provide information on the circumstances of some �ndings. For example, auscultation in a noisy

environment, such as the emergency room, might mean that many of the items not reported are

unknown rather than false. This is information that is clearly used by physicians but is di�cult to

quantify. One instance in which we have a category for poor data is the echocardiogram. Because

poor quality results may convey some useful data and not be repeated, we allow the user to indicate

that it is a suboptimal study.

Another aspect of the data that is di�cult to quantify is the e�ect of expertise on the accuracy

and thoroughness of the data. From our discussions with physicians it is clear that most general

internists would not recognize an M-shaped jugular pulse, while most cardiologists would. Simi-

larly, on auscultation the ability to discriminate between an S3 and an opening snap varies with

experience. This is an important distinction because an S3 almost rules out mitral stenosis while

an opening snap is a fairly speci�c �nding for mitral stenosis.

When physicians consider data, they also factor in the source. Positive physical �ndings by a

cardiologist may overrule a poor quality echocardiogram or a good echocardiogram may overrule

auscultation �ndings reported by an intern. Since the HDP does not have access to the additional

information necessary to make these determinations, it is all the more important for the program

to explain the basis for the conclusions it draws.

5 Requirements for explanation

Given the patient data and ability to reason, the program needs to provide the user with a diagnostic

analysis of the case useful in managing the patient. The analysis should be supported in ways that

convince the physician of its correctness.

The �rst question is, what should be in the diagnosis? An appropriate diagnosis includes not

only the most likely hypothesis, but also a di�erential of other hypotheses with signi�cant likelihood.
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Since there are few certainties in medicine, the patient may not have the \most likely" disease.

Furthermore, the diagnosis is just the �rst step in managing the patient. Indeed, an important

function of the diagnosis is to guide further investigation in the re�nement of the diagnosis. Thus,

the physician needs to know what possible diagnoses, especially treatable ones, should be considered.

Since the purpose is to alert the physician to important possible diseases, the di�erential need only

include those alternate hypotheses that di�er from the best hypothesis in clinically signi�cant ways.

The HDP accomplishes this by only including hypotheses that di�er in a disease state of diagnostic

signi�cance. It is possible to imagine situations in which �ner grain alternatives would be useful,

such as possible complicating mechanisms that might have therapeutic implications.

The second task is to present the di�erential to the user. There are a number of possible

strategies one might pursue. The approach for BPNs suggested by Suermondt[21] and more recently

modi�ed by Haddawy et.al.[22], assumes that there is a single disease node that is the focus of

the diagnosis. Their approach is to identify the �ndings that have the greatest in
uence on the

probability of that node, either by sensitivity analysis in the fully speci�ed network or by comparing

the contribution of each �nding in the absence of other �ndings. The causal pathways from the

node to the most in
uential �ndings are then used as the explanation of the diagnosis. This

approach is inappropriate for the HDP because the hypothesis is not just one node, rather it is

an instantiation of a subset of the network representing a complete explanation of the �ndings.

Determining a complete explanation is important in cardiology as well as other domains in which

there are chronic diseases because the primary disease may not be the clinically important part of

the hypothesis. Often the primary disease is already known and uncorrectable and the important

question is what new treatable complications are causing the patient to be decompensated.

Thus, the approach taken by the HDP is to consider the di�erential as a set of possible complete

and consistent explanations. As mentioned in the earlier section we have added a number of

properties to the nodes, so in fact, the internal representation of the hypothesis contains considerable

detail. Each of the instances of nodes in a hypothesis includes the temporal intervals, severity, and

disease type properties. In many cases there are multiple instances representing the progression

of the disease over time. For example, there might have been echocardiographic evidence of mild

AS two years ago and �ndings indicative of more severe AS now. This would be represented by

an instance of mild AS covering the time two years ago and extending into the past and sometime

prior to now. The second instance of more severe AS would follow the mild AS and extend into

the future. In this way, the program is able to maintain the temporal consistency and consistency
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of �ndings of the disease at di�erent severities.

Given the amount of detail in hypotheses, we have chosen to explain the di�erential in two steps.

First, to explain the best hypothesis and then to give an outline of the rest of the hypotheses. In

this way the user is given the program's best estimate of how the �ndings �t together and an

overview of the possibilities that should be considered or ruled out. Another possible strategy

would be to abstract from the set of hypotheses in the di�erential one or more general hypotheses

that are noncommittal in areas where the hypotheses give alternative causes. For example, if

all of the di�erential hypotheses have dilated cardiomyopathy but they explain it variously as of

hypertensive, ischemic, or idiopathic (primary) origin, the general hypothesis would just refer to it

as dilated cardiomyopathy of unknown origin.

Since the best hypothesis is a large causal network supported by positive and negative �ndings,

the challenge is to explain it succinctly. In a typical hypothesis a causal chain from disease to

�nding may include as many as ten intermediate nodes representing the mechanisms leading to the

�nding. While a detailed explanation is useful for understanding the basis of the conclusions, the

complexity and prevalence of concepts relating mechanism tends to obscure the more important

messages of the hypothesis.

5.1 Summarization

To handle the problem of explaining a hypothesis, we have developed a technique for summarization

that eliminates the nodes relating mechanism, combines nodes into recognized syndromes, and

eliminates much of the detail of time and type.

The nodes representing mechanism are eliminated by merging them into the most closely asso-

ciated important node and using only the links needed to establish the structure of the diagnosis.

Mechanisms are recognized by labels supplied in the knowledge base. For example, low blood vol-

ume is labeled as the mechanism through which dehydration causes its e�ects. If a hypothesis had

the causal link from dehydration to low blood volume, the summary would only have dehydration

with causal links to any e�ects of either dehydration or low blood volume. Sometimes the e�ect

node needs to replace the mechanism node. For example, acute myocardial ischemia is labeled as

the mechanism for its e�ects: acute MI and unstable angina. If the hypothesis has acute MI, sum-

marization eliminates the acute myocardial ischemia and only the acute MI node remains. Other

e�ects of acute myocardial ischemia are attributed to the cause of the ischemia (eg, coronary artery

disease), since they are not e�ects of the MI.



19
�

�

�



VHD






�

J
J
Ĵ�
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Figure 7: Summarization by Incorporating Mechanism

Unfortunately, when a number of nodes are collapsed into one, the appropriate action varies

with the circumstances. Eliminating the valvular heart disease (VHD) node as the mechanism for

valvular disease in cases from our previous evaluation[2] illustrates the range of possibilities for

handling e�ects. VHD is a covering node that is instantiated as the appropriate type of primary

valvular disease (rheumatic, degenerative, etc.) when there is adequate evidence.

In one case where the VHD included left bundle branch block (LBBB) and aortic stenosis (AS),

the summary absorbed the mechanism, VHD, into the AS, and left LBBB as a separate entity. In

another case, the VHD was manifest as both mitral annular calci�cation and mitral regurgitation

(MR) with the summary separating them. The more appropriate summarizations are in �gure 7.

The di�erence in these two situations is that the LBBB does not in
uence the AS and to a large

extent the AS causes the LBBB. Thus, the AS can substitute for the VHD in causing the LBBB. In

the second situation, the mitral calci�cation is seen as at least worsening the MR and can substitute

for the degenerative process that is the VHD. Thus, this additional causal information needs to be

in the knowledge base to make the appropriate summarization decision.

In a third case, the VHD was manifest as both MR and mitral stenosis (MS). The summarization

left these as separate entities, but the reviewers preferred maintaining the VHD, which in this case

was of rheumatic origin. The summary lost the important information that the MR and MS

had a common source. The valvular heart disease could be replaced by more speci�c labels of

rheumatic heart disease or mitral valve disease to provide the connection, but the node is needed.

In contrast, in one case there is a causal link from renal insu�ciency to hypertension. This causal

explanation was the highest probability explanation generated by the program. However, there was

no speci�c support for this relationship among the �ndings. Since hypertension can also cause renal

insu�ciency and the high prior probability both are primary, the reviewers would have preferred

having no causal connection between them, indicating no commitment. That was also true in a

case in which the patient had anemia. While a few of the causes of anemia are in the model, most
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are outside the domain of the program and unless there is speci�c evidence for a causal relation, the

summary should not indicate a possible cause. Since the program concentrates on cardiovascular

disease, the diseases that are peripheral have only partial lists of causes in the model and the

program should be noncommittal about causes.

If there are multiple possible causes for the node, physicians want them included in the summary.

For example, ventricular ectopy should be attributed to all of the possible causes in the hypothesis,

such as coronary artery disease, hypokalemia, hypoxemia, and cardiac dilatation, rather than just

the one or two of these with highest probability. This is useful for creating a management plan for

the patient.

Thus, the appropriate summarization preserves the sense of causality, which may require ad-

ditional information and reasoning. The summarization also needs to keep the causal connections

between diseases supported by evidence and discard those only supported by a higher probability.

If there are multiple possible causes within the hypothesis, all should be included in the summary.

In addition to removing the mechanisms from the hypotheses, the summarization process in-

cludes the recognition of syndromes. The syndromes are combinations of nodes considered as an

entity by physicians. For example, congestive failure is the combination of left and right heart fail-

ure. In turn, left heart failure consists of high left atrial pressure and pulmonary congestion caused

by low cardiac output. Situations that do not match this de�nition, such as forward failure in

which the e�ects of the low cardiac output are fatigue, peripheral cyanosis, etc., are summarized by

the low cardiac output with its e�ects. Syndromes in the HDP include cor pulmonale, cardiogenic

shock, and coronary heart disease.

Another important kind of information to include in the summary is pertinent negatives. There

are a couple of kinds of pertinent negatives. First, there are the �ndings that decrease the likelihood

of the generated hypothesis. For example, the hypothesis may include MS on the basis of a number

of �ndings. However, if the auscultation did not �nd an opening snap, it is worth noting the fact

because an opening snap is present in the majority of MS cases. Such negative information gives

the physician a more balanced impression of the hypothesis. Some of the negative �ndings may

have been overlooked by the physician. In other cases, the presence of signi�cant negative �ndings

may point to underlying con
icts in the data. In either case the information helps the physician

assess the validity of the hypothesis.

Secondly, situations where a common cause for a �nding or group of �ndings is ruled out indicate

another kind of pertinent negative. (This is the partial data con
ict problem mentioned earlier.)
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To determine these pertinent negatives, it is necessary to �rst determine the common causes of each

abnormal �nding in the absence of other �ndings. Of those causes that have strong support from

individual �ndings and do not appear in the di�erential, determine the negative �ndings that rule

out or signi�cantly decrease their probability. This strategy ignores the possibility that a ruled-out

cause may be supported by a pattern of �ndings and not any single �nding, but we have not seen

any such examples. It is valuable to point out to the physician such pertinent negatives both to

assess the hypotheses and to assess his/her own data.

6 Discussion

It is clear that the challenge of diagnostic reasoning in heart disease, as well as many other knowl-

edge rich domains, is multifaceted. While BPNs are a good �rst pass at capturing the pertinent

relationships, they only scratch the surface. To improve the diagnostic capabilities of a program,

more of these relationships will have to be used. The HDP has extended the BPN paradigm to

incorporate knowledge about temporal characteristics, severities, the patterns of distinct disease

types, implications of data entered by the physician, constraints on data relationships, and physician

requirements for an appropriate diagnosis.

While not all domains will bene�t from all of these additional kinds of knowledge, there are sev-

eral in which physicians may reason about the underlying physiology in a similar manner, including

respiratory disease, neurology, endocrinology, and acid-base and electrolyte disorders. Some do-

mains will require additional kinds of reasoning. Indeed, the requirements of the acid-base domain

for quantitative analysis go well beyond that of cardiology. As physiological research produces fruit

there will be more domains that require multifaceted reasoning to achieve the necessary leverage

to solve the diagnostic problems.

From the perspective of the HDP, there are a number of directions for research in improving

the methodology. The development of a knowledge base for a domain as complex as cardiovascular

disease is a lengthy and di�cult process, prone to error. A number of techniques have been

developed recently for generating BPNs from data. A major constraint when the reasoning includes

causality and temporal relations is to preserve the causal structure in the model. More recent work

is heading in that direction[23]. At present, the most reliable approach is simply to start with a

causal structure and use the data to re�ne the probabilities.

One of the challenges is making sure that the model captures what is known about patterns

of disease. Physicians often remember diseases in terms of their typical manifestations, so this
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information is relatively easy to elicit from experts or medical texts. Since no current patient data

base is large enough to accurately re
ect all such patterns, it is necessary to provide additional

guidance to make the network incorporate this knowledge. We have used the idea of types of a

disease enforced with properties on nodes that adjust the probabilities. This partially addresses

the problem, although in a way that is counter to the basic assumptions of a BPN. There are

undoubtedly other approaches that would combine the basic insights of frames (a natural way of

capturing patterns) and a BPN.

The di�erence between a physician's reasoning and a probabilistic approach to diagnosis also

comes out in the explanation. Physicians tend to think in terms of evidence rather than prob-

abilities. Therefore, they tend to be satis�ed with causes that can be \ruled in" or \triggered"

by �ndings and less satis�ed with causes based on probabilities. Thus, giving a speci�c cause

for dilated cardiomyopathy just on the basis of the prevalence of ischemic or hypertensive disease

is considered inappropriate, but is �ne if the patient has some history of angina or high blood

pressure. However, there are speci�c situations in which one should include unsupported causes.

These are the treatable diseases that might otherwise go unnoticed, such as pulmonary embolism

or endocarditis. Probabilistic approaches have much to o�er in such situations, because these are

the problems may be overlooked by the physician's approach, particularly with inadequate data.

The HDP is currently undergoing an evaluation that will give us a better understanding of

the strengths and limitations of the knowledge base and the mechanisms we have developed for

reasoning. To conduct this evaluation, we have developed a Web based interface that will allow

physicians with a Web browser[26] and Internet access the ability to run the program[24, 25].
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