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Abstract

We have added temporal reasoning to the Heart Disease Program (HDP) to take

advantage of the temporal constraints inherent in cardiovascular reasoning. Some pro-
cesses take place over minutes while others take place over months or years and a strictly

probabilistic formalism can generate hypotheses that are impossible given the temporal
relationships involved. The HDP has temporal constraints on the causal relations spec-
i�ed in the knowledge base and temporal properties on the patient input provided by

the user. These are used in two ways. First, they are used to constrain the generation
of the pre-computed causal pathways through the model that speed the generation of

hypotheses. Second, they are used to generate time intervals for the instantiated nodes
in the hypotheses, which are matched and adjusted as nodes are added to each evolving
hypothesis.

This domain o�ers a number of challenges for temporal reasoning. Since the nature
of diagnostic reasoning is inferring a causal explanation from the evidence, many of the

temporal intervals have few constraints and the reasoning has to make maximum use of
those that exist. Thus, the HDP uses a temporal interval representation that includes

the earliest and latest beginning and ending speci�ed by the constraints. Some of the
disease states can be corrected but some of the manifestations may remain. For example,
a valve disease such as aortic stenosis produces hypertrophy that remains long after the

valve has been replaced. This requires multiple time intervals to account for the existing
�ndings.

This paper discusses the issues and solutions that have been developed for temporal
reasoning integrated with a pseudo-Bayesian probabilistic network in this challenging
domain for diagnosis.

Keywords: temporal reasoning, causality, Bayesian probability networks, physiologic causal-

ity, constraint reasoning, diagnosis, heart disease

1 Introduction

Temporal reasoning is a tool to enhance other types of reasoning. Many reasoning tasks such

as planning, understanding, or diagnosis, have an aspect of time. The temporal reasoning
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enhances the performance of the task by applying the particular characteristics of time to the

problem. The most prominent characteristic of time is the one-way 
ow with now occupying

a single point. Such tools as Allen's formalization of temporal reasoning[1] give a functional

understanding of such temporal properties as before and after. This paper will take a closer

look at temporal reasoning in the service of medical diagnosis. Others have also incorporated

temporal reasoning into medical programs to a varying degree. Kahn recently provided a

review of such e�orts[7].

1.1 Diagnosis

Diagnosis is determining the cause of a pathological state. Often medical diagnostic programs

simply generate a list of diseases that might account for the given �ndings[2, 5, 12]. Whether

this is an adequate diagnosis depends on the purpose of the diagnosis. Most diagnosis is done

in order to treat the patient. If the name of the disease is su�cient guidance for treatment,

the job is done. However, in many domains more detailed information is needed about the

mechanisms involved in producing the observed manifestations, the complications, severity,

and so forth.

In such complex domains with multiple interacting mechanisms leading to the observed

state, diagnosis can be better characterized as the reconstruction of the likely scenario that

produced the observed state. The essential features of the scenario are that it adequately and

consistently explain the observations in terms of the mechanisms involved at a level of detail

su�cient to guide the further management of the patient. Indeed, it is sometimes true that

only knowing the immediate mechanisms without the ultimate etiology is su�cient to guide

therapy and the diagnostic process need not determine the name of the disease. Determining

the scenario has the additional bene�t of providing justi�cation that the disease or diseases

postulated do indeed account for the �ndings. That is, the scenario is a detailed argument

for the consistency and completeness of the hypothesis and can be critiqued by the physician

user. This solves one of the problems of associational diagnostic reasoners in that they tend

to �nd diseases with some matching �ndings for which the overall combination of �ndings is

inconsistent with the disease[3].

In a domain with a signi�cant degree of uncertainty, diagnosis should be further char-

acterized as the process of determining a set of one or more possible scenarios covering the

range of likely explanations for the observed �ndings. In such a domain, diagnostic reasoning

is a step in an iterative process of further measurement and testing, terminating when there

is su�cient information on which to base treatment. This process of generating a set of

hypotheses, called the di�erential diagnosis, each element of which is a possible explanation

for a given set of �ndings is the task of the Heart Disease Program.

2 Heart Disease Program

The Heart Disease Program (HDP)1 is a computer program to assist the physician in the

management of patients with complex cardiovascular disorders. The diagnostic aspect of the

management process is the most developed part of the program and the only part of concern

1In earlier papers the program has been referred to as the Heart Failure Program, but the domain is much

broader than heart failure, so Heart Disease Program is a more appropriate name.
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in this paper. The program's diagnostic reasoning task is to take the �ndings reported by the

physician and put together a di�erential consisting of the most likely hypotheses accounting

for the �ndings. Each hypothesis consists of a complete causal explanation detailing how the

diseases and mechanisms in the hypothesis provide a consistent accounting for the �ndings.

The program has gone through two evaluations, one when the reasoning was based entirely on

a probability network[10] and a more recent evaluation after temporal and severity constraints

were incorporated into the reasoning[11].

2.1 Problem Domain

The domain of the HDP is particularly challenging because it involves multiple interacting

mechanisms operating over a variety of time periods. Furthermore, the available observations

are limited, requiring signi�cant reasoning to ferret out what is taking place. The domain

consists of those disorders that cause or complicate hemodynamic dysfunction in the patient.

When for some reason the heart is not able to pump as much blood as the body requires, a

set of compensatory mechanisms are set in motion which tend to maintain the blood pressure

and increase the blood volume. To accomplish this the body constricts blood vessels, selec-

tively maintaining blood pressure to the heart and brain and decreasing blood supply to the

kidneys and less critical organs. While these mechanisms are very e�ective in the patient with

a normal heart who has lost blood, they can be counterproductive when the heart muscle has

been weakened by disease. For example, the blood pressure �lling the ventricles (the heart's

primary pumping chambers) from the atria increases to help the ventricles maintain cardiac

output. However, the increased left atrial pressure causes an increase of back pressure in

the lungs and ultimately 
uid in the lungs called pulmonary congestion. The lung conges-

tion, 
uid accumulation throughout the system, and increased stress on the heart presents a

characteristic pattern called congestive heart failure.

The diseases that cause such hemodynamic dysfunction include diseases of the heart mus-

cle such as myocardial infarction (heart attack) and several kinds of cardiomyopathy, valvular

dysfunction, and restriction of the heart by the pericardium. There are also a number of dis-

eases that decrease the e�ectiveness of a healthy heart, including hypertension, pulmonary

hypertension, anemia, pulmonary disease, and renal disease. Finally, some diseases simulate

the e�ects of hemodynamic compromise, such as liver disease. Each of the diseases has par-

ticular characteristics and �ndings that di�erentiate it from the others even when most of the

�ndings are similar. These diseases and the mechanisms by which they produce hemodynamic

compromise are the domain of the HDP.

Most of the cardiovascular disorders of concern in this program are chronic, progressive,

and many can not be corrected short of a cardiac transplant. As a result, patients typically

arrive with existing diseases and existing therapies. The problem is to determine what new

diseases or complications are now present and their relationship to the known diseases. Thus,

the therapies with both their bene�cial e�ects and side e�ects are an important part of the

domain.

2.2 Diagnosing Heart Disease

Having characterized the diagnostic problem as generating causal physiologic explanations

for the given �ndings, the computational mechanism with the best �t to generate those
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explanations is a Bayesian probability network. To �rst approximation, the best hypothesis

or explanation is the subset of the network that is true in the maximum likelihood state of

the network. This computational characterization of the problem assumes that the links in

the network, which represent the conditional probabilities in the domain, can also represent

the causal relations needed to characterize a scenario accounting for the �ndings.

In the heart disease domain, this �t has some problems. First, there are situations in

which the appropriate causal characterization is that A can cause B and (perhaps with

intervening links) B can cause A. Keeping the Bayesian network faithful to the sense of

causality results in forward loops in the network, which are inconsistent with the mathematics

of a Bayesian network. Because of this, the HDP uses a pseudo-Bayesian probability network.

The knowledge base has forward loops in it, although any particular hypothesis does not. To

reason with such a network, heuristic methods are necessary[9].

A probability network assumes that nodes are completely characterized by their truth

(the conditional independence assumption that gives the network its power). That is, if the

node is true (or has one of a small �xed set of values), it isolates its causes from its e�ects

unless there are other paths between them. Thus, a node only needs to know about its

immediate causes. Unfortunately, this assumption is false if links are intended to represent

causality. For example, if low cardiac output has only been true for a few hours, its e�ects,

whether immediate or reached through a number of causal steps, can only have been true

for a few hours. In other causal relationships, it takes time for e�ects to develop and the

duration of the cause may rule out e�ects further down the causal chain. This problem could

be solved by having multiple low cardiac output nodes representing di�erent periods of time.

However, in the heart disease domain this proliferation of nodes would have to happen over

the whole model, increasing the size and complexity of the model enormously.

The strategy of duplicating nodes to represent di�erent times has been successfully applied

in the domain of diabetes therapy. In that domain the combination of diagnostic and temporal

reasoning has been handled by having a copy of the Bayesian network for each hour over a

24 hour period[6]. In the heart disease domain, there are no well-de�ned convenient time

periods to divide up the past, since minutes, hours, days, and years are often pertinent to

the reasoning. Even if 20 or 30 suitable time periods could be devised, a model with a

couple hundred nodes for each time period would make the reasoning intractable at current

computational speeds.

For this reason we have added temporal relationships as constraints on the probabilistic

network. For example, if the cause for low cardiac output is an acute MI that took place over

the past four hours, the temporal constraints also determine what e�ects low cardiac output

and anything further down the causal chain can have. Since we are already using heuristic

methods to reason with the probability network, the addition of temporal reasoning does not

compromise the mathematical integrity of formal methods.

3 Example Problem

The kind of situation that calls for temporal reasoning is illustrated by the following example,

which will be used as a running example for the rest of the paper. In an actual (and quite

typical) case diagrammed in �gure 1, a patient was admitted to the Emergency Department

with chest pain of an hour duration beginning two hours prior and was given nitroglycerin.
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Figure 1: Scenario of Patient Presenting with Chest Pain

Four hours later, when the data was entered into the computer, the patient had a Swan-line

in place providing cardiac pressure information. At that time, the patient had rales in the

chest examination (
uid in the lungs) and a pulmonary capillary wedge pressure (PCWP) of

12, indicating a normal left atrial pressure.

In this patient, there is adequate evidence from the chest pain (and other �ndings which we

will ignore for simplicity) indicating a myocardial infarction (MI). It can also be concluded

from the rales that the patient has pulmonary congestion. An MI can cause pulmonary

congestion (�gure 2) by poor left ventricular function (LVF), which elevates the left atrial

pressure (LAP), causing 
uid to accumulate in the lungs. Prior to temporal reasoning, the

HDP had di�culty accounting for the rales because the PCWP of 12 indicated that the LAP

was normal, breaking the causal pathway from MI to pulmonary congestion. As a result, the

program proposed pneumonia as an explanation for the rales.

Because pneumonia can also cause pulmonary congestion, this is a reasonable hypothesis,

but it is not the best hypothesis. The nitroglycerin decreases the LAP as well as improving

blood 
ow in the myocardium. Since the rales can take many hours to go away after the LAP

has returned to normal, a better explanation is that the rales were caused by the MI, but the

nitroglycerin has now decreased the LAP and the rales have not had time to clear. A third

explanation is that the MI only transiently decreased the LVF. While the rales have not had

time to clear, the causal mechanism is no longer present. Thus, there are three reasonable

mechanisms to account for the �ndings, each with di�erent implications for treatment, but

unless the reasoning considers the time relationships only one explanation can be generated.

4 Desiderata for a Temporal Representation

To handle such problems, we have developed a mechanism for temporal reasoning. The

essential functions of the temporal reasoning are to deduce and maintain the causal temporal

constraints in hypotheses and to support the possibility of nodes having di�erent values over

di�erent time intervals. In the example, the temporal reasoning must allow the LAP to have a

value of high for some period after the MI but also be normal by the time of the examination.

In addition, it must enforce the restriction that the time interval of pulmonary congestion is

after the MI if it is to be explained by the MI. Thus, the temporal reasoning must support

the logical constraints of the causal theory allowing some situations that would be ruled out

in a purely probabilistic network and disallowing some situations that would satisfy such a
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Figure 2: Causal Structure for Example
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network.

Besides the logical constraints provided by the temporal model, the temporal charac-

teristics provide an opportunity to adjust the probabilities when there are di�erent causal

situations with di�erent probabilities. For example, if the depression of LV function is some-

times transient but often continues for days, it is appropriate to use a di�erent probability

for a causal link involving LV dysfunction a day after an MI than for a link involving LV

dysfunction during an MI.

4.1 Causality in the Heart Domain

There are a small number of patterns of causation that the program needs to capture. These

can be characterized as follows:

Immediate This takes place immediately if it happens at all. For example, most valvular

lesions cause a murmur and if so, it is there when the lesion is present.

Event-like This happens as a result of pathophysiological states that predispose the patient

to the entity. For example, a patient with coronary artery disease can have an MI

any time with no particular time relationship. Perhaps some additional stress actually

triggers the MI, but in practical terms the immediate cause is rarely known and not

important.

Delayed This is like immediate causation except that there is some de�nable time interval

between cause and e�ect. For example, a patient with an MI may develop pericarditis

within the �rst two weeks after the MI, usually more than two days after the event.

Progressive This is causation that, once it takes place, continues. Progressive states per-

sist chronically and just get worse unless radical correction takes place. For example,

rheumatic heart disease often causes mitral stenosis (restriction). The mitral stenosis

will gradually get worse until valve repair or replacement is done.

Accumulative This requires the cause to exist over a period of time. For example, the 
uid

accumulation that produces pedal edema (swelling of the feet) is caused (indirectly) by

low cardiac output. The cardiac output does not have to be consistently low, but if it

is low on average for long enough there will be enough water retention to produce the

pedal edema.

Intermittent When a cause is present some e�ects and �ndings occur intermittently. For

example, paroxysmal atrial �brillation is a rhythm disturbance that may persist for

seconds to days and may happen again at random intervals. Often it gradually increases

in frequency and eventually becomes chronic atrial �brillation.

Corrective Some states return other states to normal. These are usually therapies, but in

some cases they are other pathophysiologic states that have in
uences in opposition to

the e�ect, such as dehydration `correcting' high blood volume.

Besides these characteristics of causation, there are some characteristics of the states that

have implications for temporal reasoning. States produced by accumulative causation and
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sometimes by delayed causation tend to remain after the cause has ended since the same

mechanism tends to delay the return to a normal state. The progressive and accumulative

descriptions could also be viewed characteristics of the state, since once they start, their

continuation is independent of considerations of what caused them. Some states have a

maximum time period. For example, stress of many kinds including an MI cause an increased

sympathetic nervous state with sweating, rapid heart rate, and so forth, but this only lasts

for a few days at most, even though the cause may continue. Other states only last for a

period of time, not because they are self-limiting but because they are either corrected or

the patient does not survive. These characteristics constrain the time bounds of causes and

e�ects and what conclusions can be drawn from �ndings.

It should be noted that these characterizations are not mutually exclusive. Delayed states

can be progressive or intermittent and so forth. Probably the most complicated causal pattern

in the domain is that of an MI. An MI is usually caused by coronary artery disease but the

time is random, without any triggering event in the majority of cases, and having an acute

onset. Thus, it is the archetype for event-like causation. Over the �rst few hours, the MI

causes chest pain, signs of acute ventricular dysfunction, and signs of sympathetic nervous

response. Over the �rst two days, the enzyme changes are evident. Over the �rst two weeks

the electrocardiographic patterns change into ones characterized as evolving and the patient

may experience pericarditis. Often the damage to the heart is permanent, producing chronic

ventricular dysfunction and the electrocardiographic pattern of an old MI.

This temporal characterization of the heart domain may not be adequate for other medical

domains, but it will probably be nearly so. One obvious temporal pattern that has been left

out is cyclic phenomena. Those do happen in this domain. For example, Cheyne-Stokes

respiration is an oscillation between slow and rapid breathing that sometimes happens with

older patients in heart failure. However, all such phenomena in this domain are recognized as

entities in themselves and are treated in the same way as other �ndings. That is, the cyclic

nature of the phenomena is not something the program needs to reason about.

5 Representation of the Temporal Relationships

To represent these causal patterns, we need a number of additional properties on node and

link descriptions in the knowledge base. Three of these are time ranges: onset, delay, and

persistence. Persistence is the range of time the state might remain true after the cause ceases.

Thus, progressive states can be represented as having in�nite persistence. Accumulative

states have a persist property that gives the range of time needed for the state to resolve.

For example, pedal edema can remain for days to weeks after the cause has been removed,

dilatation of the heart takes weeks to many months to return to normal. Immediate causes

have a persistence of zero.

Onset and delay refer to the initiation of a state. Accumulative states require time to

start. This is captured by the onset property. The value is either zero for immediate states,

or the range of time it takes for the state to become apparent. One might argue that even

though it takes a day before one could observe pedal edema, the swelling was actually there

earlier. However, the concern is on the relationship between states and observed �ndings, so

requiring a time for onset makes sense even in such a case. Because the onset of the state is

often a time in which the e�ects of the state may start to develop as well, the onset period
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is treated as part of the time of the state for reasoning about e�ects. The delay is the onset

plus any additional time between the beginning of the cause and the beginning of the e�ect.

Thus, if an e�ect has both a delay property and an onset property, the time between the

cause and the e�ect is the delay. When the e�ect is observed it is considered to have been in

existence for the onset time.

The most common type of delay is re
ected in event-like causation. The delay of events is

zero to in�nity relative to their cause. Some of these also have an onset. For example, anemia

can be caused by renal insu�ciency. The delay is arbitrary but the onset is su�ciently gradual

that it should be reasoned with as if it had been there for a week when it is observed. Other

than events, it is unusual for a causation to have a delay in addition to an onset that makes

any di�erence for diagnostic reasoning. The clearest instance is constrictive pericarditis.

Pericardial calci�cation takes place over many months and does not have any e�ect until it

starts to restrict the heart's �lling capacity. At that point there are many e�ects that are

observable.

The remaining properties are the max-exist (maximum existence time) and two binary

properties, intermittent and self-limiting. The maximum existence is the maximum length of

time a patient would stay in that state, even though the cause continued. The self-limiting

property says that the state will return to normal even if no correcting state is present.

For example, high sympathetic states only last a short time and return to normal (normal

with respect to clinically important manifestations) without any therapy being directed at

the state. The max-exist property is also needed for states that are not self-limiting when

the continuation of the state is not compatible with life. For example, there are no e�ects

that would be caused by months of septic shock because no patient would survive that long.

Either the shock is successfully treated or the patient dies within a few days. The property

intermittent implies that the state or �nding does not always have to be observable. For

example, many arrhythmias are intermittent and not observing them during a particular

examination does not rule them out or mean that they can not have any e�ects.

In summary, the representation of causality in the knowledge base requires the following

properties:

Onset The range of time that can be assumed for the e�ect when it is observed.

Delay The range of time the cause must be true before the e�ect can start. This includes

the onset time.

Persist The range of time that the e�ect will remain if the cause ceases to be true.

Max-exist The maximum time the e�ect will remain, even though the cause continues.

Self-limiting Whether the state will cease by max-exist without a corrective node being

true.

Intermittent Whether the state can be absent over subintervals of the interval in which it

is true.

The relationships among these times are diagrammed in �gure 3. The rules for applying

these properties are as follows:
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Figure 3: Relationship of Causality Times

1. When a node is observed, it is assumed to already be producing e�ects for onset time.

2. E�ects are observable at a time after the cause given by the delay, if it exists, otherwise

by the onset.

3. E�ects are observable after the cause is observable and overlap the cause.

4. E�ects continue until the cause ceases, unless the max-exist is exceeded or the e�ect is

intermittent.

5. E�ects continue after the cause ceases, in accordance with the persist.

These rules follow from the discussion above except for the third rule. This additional

rule encompasses two practical considerations. First, causes have manifestations before (or

contemporaneous with) their e�ects. From the representation it would be possible for a cause

to have a longer onset than its e�ect making the e�ect observable before the cause. However,

what it means for a state to be observable is that it has manifestations, so such a situation

would not make sense. As a practical consideration, if a cause develops slowly, the e�ect will

also develop slowly. Computationally, this is a useful constraint because it provides tighter

constraints on what causes can produce a particular e�ect. Secondly, the cause and e�ect

must overlap. In other words there are no remote causes. Computationally, this is also a

useful constraint because it means that the e�ect must start before the cause ends regardless

of how long a delay could otherwise exist. Physiologically, it is a matter of perspective. In

situations where there appear to be remote causes, there is some underlying mechanism that

covers the time period, although it may have fewer observable �ndings. For example, when an

MI causes pericarditis a week later, there is an underlying process of myocardial modi�cation

going on that may continue for several weeks.

Besides causal links to states, there are also correcting links to many of the states. These

are primarily the therapies that can counter the states, The model used in this program for

the e�ects of correcting in
uences is the same as that for causes. That is, a therapy may

take a period of time (onset) before it produces the desired e�ect. We have not come across

su�cient reason to use persistence or other aspects of the representation to model the e�ects

of the correcting in
uences. This also is a matter of perspective. One could model the e�ect

of a surgical procedure, such as a valve replacement, as a therapy taking a short time with an
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in�nite persistence, but it is just as easy to handle it as a therapy that always remains true.

Most drugs have some persistence (the pharmacokinetic half-life), but that can be considered

part of the treatment time.

With this information it is possible to compute the time limits either for a cause when

the e�ect is known or an e�ect when the cause is known. When a node is instantiated

for a case, it is given a temporal interval, representing the observable time of the node.

These temporal intervals have earliest and latest beginning and ending times, similar to the

representation used in the CHECK system[4]. These intervals are used in a number of ways.

The �ndings attributed to the node and the causes contributing to it are used to re�ne the

limits of the interval as a hypothesis is built. To determine the causal pathways to be added

to the hypothesis, the intervals are used to determine consistency. To speed this process, the

overall temporal constraints on causal pathways are pre-computed in the model. This alone

eliminates as inconsistent about 20% of the pathways that were computed in the purely

probabilistic model. In the context of a speci�c node or �nding, the probability along a

pathway from a known node or primary node is recomputed using the more speci�c temporal

information from the case. Thus, all of the nodes added to a hypothesis are consistent

with the temporal constraints of causation. This time mechanism combines the ideas about

reasoning with time outlined in our earlier paper[8] with the probabilistic reasoning described

more recently[9].

5.1 Representing the Example

The following is a knowledge base fragment su�cient to cover the example MI and nitro-

glycerin problem. Not all of the temporal parameters are needed in this example, but it will

give the 
avor of the temporal reasoning. The de�nitions have been simpli�ed to keep the

example understandable:

(defnode MI

full-name myocardial-infarction

caused-by (primary prob 0.001)

persist (time 0 1hr 0.5 1day)

measure (chest-pain prob 0.9))

For purposes of this example, there is no cause for an MI. It just has a probability of 0.001

of being true in a patient. The persistence time is the time from the end of a cause being

true to the end of the node being true. Since in this case the cause is random chance, the

persistence is the same as the length of time the condition is true. The time clause indicates

that the MI is never over in less than an hour (probability 0) and always over if more than a

day has gone by. If the time is between, there is a 0.5 probability that the MI is over. This

is clearly an approximation since the length of an MI is actually a smooth curve, but this is

su�cient. For simplicity, this ignores everything but the most acute e�ects of an MI. The

measure clause has the possible �ndings for the node. In this case an MI has a 0.9 probability

of producing chest pain. There are a number of other possible �ndings, but this is su�cient

for the example.

(defnode (low LVF)
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full-name (low left-ventricular-systolic-function)

caused-by (MI prob 0.6)

persist (time 0.3 6hr 0.8 inf))

An MI causes low left ventricular systolic function with a probability of 0.6. 30% of the time

the low LVF returns to normal immediately or within six hours after the end of the MI. After

six hours 80% of the cases of low LVF have returned to normal and the rest are permanently

impaired. There is no direct measure of LVF for the example.

(defnode nitroglycerin

caused-by (therapy))

Nitroglycerin is a therapy. Since therapies are under the control of the physician there is an

implicit measure in the therapy history.

(defnode (high LAP)

full-name (high left-atrial-pressure)

caused-by ((low LVF) prob 0.8)

corrected-by (nitroglycerin prob 0.8)

measure (PCWP prob (range 0 15 .1 18 .9)))

High LAP is caused by low LVF with a probability of 0.8. It can be corrected by nitroglycerin

and the probability that a LAP that is high will be brought down to normal by nitroglycerin

is 0.8. The measure for LAP is the PCWP. Since that is a continuous variable, the range

statement breaks it into ranges in which the probability can be speci�ed. A PCWP less than

15 never indicates a high LAP. 10% of high LAPs will produce a PCWP between 15 and 18

and the rest will produce a PCWP above 18.

(defnode pneumonia

caused-by (primary prob 0.01)

persist (time 0 2day 0.5 2week))

Pneumonia is another primary node, with a probability of 0.01, that takes 2 days to 2 weeks

to return to normal.

(defnode PC

full-name pulmonary-congestion

caused-by ((high LAP) prob (onset now 0.2 1hr 0.5 6hr 0.8))

(pneumonia prob (onset 2day 0.5))

persist (time 0 6hr 0.5 1day)

measure (rales prob 0.9))

Pulmonary congestion can be caused by either high LAP or pneumonia. The high LAP may

take up to 6 hours to produce the congestion if it is going to produce it at all. In 20% of cases

the congestion occurs in less than an hour. Pneumonia takes 2 days before half the cases

produce pulmonary congestion. Persistence on the other hand is always between 6 hours and

a day.

There must also be knowledge about the �ndings including how often they might be

falsely positive, but we will assume for now that they are perfect.
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5.2 Findings

The source of temporal information about a case is the user input. From the viewpoint

of temporal properties, �ndings can be grouped into four classes: observations, symptoms,

history, and tests. The observations include the results of the physical exam. These only

provide information about what is true at the time of the exam and say nothing about

how long the �ndings might have been true. The symptoms are typically reported by the

patient and include time information. For example, the patient may say that the chest pain

started two hours ago and lasted for an hour. In practice descriptions can be much more

complex, such as complaining of shortness of breath that only occurs at night. However, these

more complex descriptions can either be handled as associations of �ndings or as specialized

�ndings with names of their own. Important associations include descriptions such as having

palpitations with shortness of breath. The shortness of breath at night is called paroxysmal

nocturnal dyspnea or PND. History information has essentially the same temporal properties

as symptoms. Patients could have coronary artery disease for �ve years or have had an

episode of endocarditis a year ago. Tests occur at a speci�c time. They are essentially

observations except that often they were done at a time in the past and, unlike physical

exam observations, will not be repeated unless there is some speci�c need. For example,

an echocardiogram done �ve years ago may provide useful information about the patient's

present condition. Observations of the past are either summarized as patient history or are

considered irrelevant to the current situation.

Thus, the user can provide the system with the appropriate temporal information with a

small number of additional capabilities in the input interface. Observations are assumed to

refer to the current time. Symptoms and history need to have durations, event times, and

pertinent associations. Tests need to have event times. With these attributes it is possible in

the heart disease domain for the user to provide the pertinent temporal details for diagnosis.

In the example, the user provides the following input:

chest pain: anginal at rest 6hr ago for 1hr, therapy: nitroglycerin for 4hrs, chest:

rales, PCWP: 12 now

Given this input, the case provides the following facts: (In the following discussion we

will use the convention that times such as 6hr will mean 6 hours in the past and now refers

to the current time.)

� chest pain @[6hr; 5hr] (chest pain 6 hours ago, lasting an hour)

� nitroglycerin @[4hr; now] (nitroglycerin from 4 hours ago until now)

� PCWP = 12 @now (PCWP is currently 12)

� rales @now (patient currently has rales)

The causal relations and the initial facts are shown graphically in �gure 4. The nodes are

shown with initial probabilities at the top and the persistence time at the bottom. The links

have the causal probabilities.
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6 Time Intervals

To represent this input information and the diagnostic conclusions we need a representation

for the temporal properties of the instantiated nodes. This is accomplished by representing

the truth of a �nding or node over a temporal interval. For example, the chest pain is true

over [6hr; 5hr]. Unfortunately, with varying delays, onsets, and persistences the diagnostic

conclusions from the �ndings are not as de�nite and require inde�nite time bounds to specify

the ends of the intervals. For example, if pneumonia is responsible for the pulmonary conges-

tion, the pneumonia could be true now or could have ended in the last day, since it may take

up to a day for the rales to clear. Furthermore, the pneumonia must have started within the

last two weeks, otherwise it would be over by now. It must have started a couple of days ago

for the e�ects to be present now. Deductions such as these can be captured by time intervals

that have four time parameters: earliest beginning, latest beginning, earliest ending, and

latest ending. For the pneumonia this can be represented as: [2wk : 2day; 1day : future].

This representation of time is not completely su�cient for reasoning because it loses some

information. In general, it is not possible to determine the minimum and maximum extent

of the node from the interval. In the case of pneumonia, it lasts two days to two weeks. This

information is needed to rule out certain �ndings as e�ects, or in the case of other nodes to

rule out possible causes. Since the interval refers to a node or �nding and that information

is already in the knowledge base, including it in the temporal interval structure is a matter

of computational convenience rather than necessity. Another such piece of information is the

causal relationship between nodes. If the interval only places the node in the last week and

another node has similar bounds, it is not possible to tell whether one can be the cause of

the other. Such questions must be answered by deduction from the causal networks of the

two nodes. Thus, the four parameter time interval representation provides the information

needed to carry out the temporal reasoning.

In diagnosis the most common reasoning step is to infer a cause from an e�ect. Given

the time intervals and the node representations, the determination of the time interval of the

cause proceeds as follows:

bec = bee + ddee � doce

blc = ble + bdec � bocc

eec = eee + dpee

elc = ele + bpec

Where be is the earliest begin time, bl the latest begin time, ee the earliest end time, el

the latest end time, d the delay (which includes the onset time), o the onset, and p the

persist time. The subscripts are c for the cause and e for the e�ect. Since delay, onset,

and persist are ranges, the maximum and minimum delays are used as appropriate. The

reason the maximum and minimum onsets of the causes are used, instead of the opposite, is

the observation that slow causes produce slow e�ects. The times are all temporal distances

before the current time, so 1day + 1day is two days prior to the reference time.

These time interval values must be modi�ed to account for the max-exist of the cause, if

there is one. This is a further constraint that can make the earliest begin time later (shorter

time) or the latest end time earlier. If x is the max-exist, then be� ee � x and bl � el � x.

Therefore, bec � eec + xc and elc � blc � xc. The additional constraint that observation of
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cause precedes observation of e�ect implies that ddee � doce and bdec � bocc. That they are

overlapping implies eec � bee and elc � ble. Once the parameters of the time interval have

been adjusted for these constraints, it is as exactly speci�ed as is possible.

7 Drawing Conclusions in the Example

The �rst step in the diagnostic process is to draw any de�nite conclusions from the input. In

the example, these are:

� chest pain @[6hr; 5hr] )MI @[6hr; 5hr]

� PCWP = 12 @now )(high LAP)=false @[past : now; now : future]

� rales @now )PC @[past : now; now : future]

� nitroglycerin @[4hr; now : future]

Since the chest pain is a symptom with immediate e�ect and no persistence, the time of the

chest pain determines the time of the MI. Not all MI's have chest pain, so this is only true

when the MI causes chest pain. The rales are an observation on physical exam, so it does

not determine the time extent of the PC. All we know from the rales is that the PC started

before now and will end after now. The PCWP is a test which happened now, and thus is

just like an observation.

7.1 Generating A Hypothesis

Once the de�nite conclusions have been drawn, the HDP looks for �ndings and nodes that

need explanations and considers causal pathways that might explain them. In the example,

there are four nodes with known states. The MI node is true over a time interval, but

it is primary (in this limited knowledge base) and needs no explanation. Similarly, the

nitroglycerin is a therapy and needs no explanation. The high LAP node is known to be false

now, which is its normal state, so no explanation is necessary. The only node that needs an

explanation is the pulmonary congestion (PC) node.

The HDP uses the unexplained nodes to generate a list of possible hypotheses. In this

case the two primary nodes that could cause PC are MI and pneumonia. The pneumonia

causes PC directly and the MI causes it through the causal chain of low LVF and high LAP.

The HDP tries to generate each of these hypotheses in turn.

Pneumonia Hypothesis The pneumonia hypothesis requires a time interval for causing

PC, determined from the properties on PC and pneumonia. The PC onset is 2day from the

causal statement. PC maximum persist is 1day from the persist clause. Since the max-exist

for a primary node is the same as the persist, the max-exist for pneumonia is 2wk. Using

these facts and the rules speci�ed above determines the time interval for pneumonia:

� PC @[past : now; now : future] )

� be = past+ 2day = past
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� bl = now + 2day = 2day

� ee = now + 1day = 1day

� el = future+ 1day = future

� max-exist: be � 1day + 2wk )be = 2wk (within the time resolution)

� )pneumonia @[2wk : 2day; 1day : future]

Since pneumonia is primary there are no further causes. This corresponds to the explanation

that is generated without a time representation. The additional provision that the pneumonia

could actually have ended within the last day was not captured before.

MI Causing PC Hypothesis For the MI to cause the PC would have been ruled out

by the normal LAP without the time relations. Temporal reasoning makes this hypothesis

possible. Since the onset for high LAP is zero and the max-exist is unspeci�ed, the only

causal constraint is the persistence of PC. Applying the rules as above:

� PC @[past : now; now : future] )

� high LAP [past : now; 1day : future]

However, this time interval is constrained by the existing time interval in which high LAP

is false. Multiple time intervals for a node have to have a strict time ordering. By default

they are assumed to be abutting unless there is some reason to infer an additional change in

between. These time intervals are reconciled by adjusting the early begin and late end times:

� high LAP [past : now; 1day : future] then normal LAP [past : now; now : future] )

� high LAP [past : now; 1day : now] then normal LAP [1day : now; now : future]

The result captures the fact that the LAP is now normal but was high within the last day.

The high LAP needs further explanation, since it is not a primary node. There are two

possible explanations: either the low LVF ended before now, or the high LAP was corrected

by the nitroglycerin.

Low LVF Ended Hypothesis Since the high LAP is an immediate e�ect and low LVF

has no max-exist clause, the time interval of low LVF is the same as that of the high LAP.

� low LVF @[past : now; 1day : now] (low LVF starting before now and ending before

now but not more than 24 hours before now)

This in turn is caused by the MI, which already is known to be true over the time interval

[6hr; 5hr]. Since e�ects can not precede causes, this further constrains the low LVF and high

LAP.

� MI [6hr; 5hr] )

� low LVF @[6hr; 5hr : now] )
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6hr 5hr 4hr 3hr 2hr 1hr now time

?? present pulm cong

high ?? normal high LAP

present nitroglycerin

low ?? normal LVF

present MI

Figure 5: Hypothesis with low LVF ending

� high LAP @[6hr; 5hr : now] )

� PC @[past : now; now : future]

Low LVF has a de�nite begin time from the MI and the onset time of zero for low LVF.

It de�nitely continues until 5hr because it is not intermittent nor is its maximum existence

exceeded. In applying the new time interval for high LAP to PC, there is another consider-

ation. Since there is another possible cause for PC (pneumonia) which is still unknown, the

beginning could still be prior to 6 hours ago. The latest begin time can not be constrained

further either since the onset can be up to 6 hours. Thus, the time interval for PC remains

as it was before. The resulting hypothesis is shown in �gure 5.

Nitroglycerin Correcting High LAP Hypothesis In the �nal hypothesis the nitro-

glycerin corrects the high LAP for the time the nitroglycerin is present. This implies the

following time intervals:

� nitroglycerin @[4hr; now] )

� normal LAP @[past : 4hr; now] (normal over the 4 hours) )

� high LAP @[past : 4hr; 1day : 4hr] (as constrained by PC) )

� normal LAP @[1day : 4hr; now] (as constrained by high LAP)

Now the high LAP is accounted for by low LVF, except that the end of the high LAP does not

determine the end of the high LVF, because the nitroglycerin removes the causal relationship

once it has begun.

� high LAP @[past : 4hr; 1day : 4hr] )

� low LVF @[past : 4hr; 1day : future]
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6hr 5hr 4hr 3hr 2hr 1hr now time

?? present pulm cong

high ?? normal high LAP

present nitroglycerin

low ?? LVF

present MI

Figure 6: Hypothesis with Nitroglycerin Correcting LAP

Again, this is caused by the MI, which already is known to be true over the time interval

[6hr; 5hr]. Since e�ects can not precede causes, this constrains the low LVF, high LAP, and

PC.

� MI [6hr; 5hr] )

� low LVF @[6hr; 5hr : future] )

� high LAP @[6hr; 5hr : 4hr] )

� PC @[past : 4hr; now : future]

The PC must have started before the high LAP was corrected to overlap with its cause,

but the earliest beginning is undetermined because there is another possible cause. This

hypothesis is shown in �gure 6.

8 Probability of Hypotheses

The reasoning described thus far is su�cient to determine hypotheses that are temporally

consistent. The next step is to compute the probabilities of the hypotheses. This is com-

plicated because the hypotheses are actually constrained patterns of possible scenarios. The

di�erent scenarios within each pattern will have di�erent probabilities. The issue is how

precisely a hypothesis needs to be de�ned. For example, the pneumonia hypothesis does not

specify whether the LVF was ever low and neither high LAP hypothesis speci�es whether

the PC came on immediately or after an hour or two. The �rst of these situations results

in di�erent nodes in the hypothesis. The second has di�erent time intervals on the nodes.

There is enough knowledge in the model to distinguish between either of these situations,

but there is no reason to distinguish beyond what is clinically relevant. In the following we

will require the nodes to be fully speci�ed, but not the time intervals. Thus the problem is to

compute the maximum probability represented by a path through the nodes of a hypothesis.

19



In all of the hypotheses, MI and nitroglycerin are true and not dependent on any other

nodes. Their probabilities will be ignored in the following analysis since the probabilities are

only used to rank order the hypotheses. We will �rst consider the two hypotheses with high

LAP.

LVF Normalized Hypothesis Probability In this hypothesis, pneumonia was unspeci-

�ed. Specifying that pneumonia is false further determines the time of PC.

� high LAP @[6hr; 5hr : now] & pneumonia false )

� PC @[6hr : now; now : future]

The probability of pneumonia being false is 0.99, but since this and the probability of all

other primary nodes being false is so close to 1.0, they can be ignored. The heuristic strategy

for computing the probability of the best path through a hypothesis is to use the segment of

the causal range of each relation with the highest probability. Thus, the computation of the

probability is as follows:

MI !low LVF = 0.6

low LVF end < 6hr = 0.3

low LVF !high LAP = 0.8

high LAP < 6hr !PC = 0.5

PC persist > zero = 1.0

)total probability = 0.072

The probability of the MI producing low LVF is 0.6. Since the low LVF ended before

now, it normalized in less than 6 hours, for which the probability is 0.3. The probability of

low LVF producing high LAP is 0.8. There are two regions in which to consider the high

LAP. Either it ended before the nitroglycerin started or it continued for some time after the

nitroglycerin started but ended before now. This decision does not determine which nodes

are in the hypothesis, so it is left undetermined. Finally, the probability of high LAP causing

PC depends on how long the high LAP has been present. We know it happened in less than

6 hours, but not whether it happened in less than one hour. Again, the decision also does not

determine which nodes are in the hypothesis, so the time interval is left unchanged and the

higher probability is picked. The probability that the PC normalized in less than 6 hours is

zero, so no further adjustment is necessary and the total estimated probability is the product

of the probabilities.

High LAP Corrected Hypothesis Probability The computation of the probability for

this hypothesis is similar. Again, pneumonia is assumed false with a probability of one. The

probability of the MI producing low LVF is still 0.6, but now there is no need to decide

when the low LVF ends. The probability of high LAP is still 0.8. The high LAP explicitly

ends with the addition of the nitroglycerin, for which the probability is 0.8. Since the high

LAP therefore lasts for 2 hours, the probability of PC is 0.5. The PC must persist for the 4

hours until the exam time, but PC always lasts at least 6 hours. The estimated probability

is summarized as follows:
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MI !low LVF = 0.6

low LVF !high LAP = 0.8

nitroglycerin !normal LAP = 0.8

high LAP < 2hr !PC = 0.5

PC persist > 4hr = 1.0

)total probability = 0.192

Pneumonia Hypothesis Probability The third hypothesis has the intermediate nodes

for low LVF and high LAP false. The probability of this is also calculated by following the

causal pathways. The probability of the pneumonia is 0.01 and the probability that it causes

PC is 0.5. The probability that the MI did not produce low LVF is 0.4.

pneumonia = 0.01

pneumonia !PC = 0.5

MI 6!low LVF = 0.4

)total probability = 0.002

There is also opportunity for local optimization of this hypothesis by adding nodes. Since

the probability of low LVF is higher than the probability of it being false, the program explores

whether this leads to a better hypothesis. The highest probability scenario corresponds to

the time intervals in the hypothesis with high LAP corrected by nitroglycerin. The primary

di�erence is that there are now two causes for PC and the probability of PC is 0:5 + 0:5 �

0:5 � 0:5 = 0:75, using the default combination rule. Thus, if those two nodes are added to

the pneumonia hypothesis, the probability becomes 0.0029.

pneumonia = 0.01

MI !low LVF = 0.6

low LVF !high LAP = 0.8

nitroglycerin !normal LAP = 0.8

high LAP < 2hr & pneumonia !PC = 0.75

)total probability = 0.0029

Thus, the HDP is able to rank order the hypotheses and say that the most likely hypothesis

is that the nitroglycerin corrected the high LAP. About a third as likely is the hypothesis

that the low LVF normalized. About 1.5% as likely is that pneumonia was at least partially

the cause for the pulmonary congestion.

9 Pre-Computing Temporal Constraints

With the HDP knowledge base there are thousands of paths that lead to a node such as

pulmonary congestion. Most of these paths are never used, but without further information

they must be investigated. In the version of the HDP without temporal reasoning, we pre-

computed all of the paths to provide a fast way of picking the most likely candidates for

hypotheses and picking the best causal paths. Temporal reasoning provides a way to extent

this mechanism. Even though the times of nodes are not known before a case is entered, the

minimum and maximum extent are known from the temporal properties in the knowledge

base. These can be transferred down the causal chain by applying each new constraint to the

one above it. When there is an inconsistency, that causal path can be eliminated.
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Therefore, we added properties min-exist and max-exist to each node in the computed

causal path. The node constraint min-exist is determined by the onset and the max-exist is

determined by the max-exist and persist properties. In the causal path, if the max-exist of

the cause is less than the delay or onset or if the min-exist of the cause is greater than the

max-exist of the e�ect, the causal path is stopped. In this way we were able to eliminate

about 20% of the causal pathways that were generated in the older version of the HDP.

This also allows the computation of time bounds on nodes before all of the causality

has been determined. In the example case, it is possible to determine that the earliest

possible begin time for PC is two weeks, because that is the earliest time for any causal path

(in the very limited model) that causes PC. This in turn assures that any hypothesis that

would require PC longer than two weeks would be eliminated without further computation.

Thus, pre-computing the implications of the temporal constraints allows the program to make

optimal use of them.

10 Discussion

Our approach to temporal reasoning for the HDP raises several issues: Why temporal con-

straints? What does a hypothesis represent? What hypotheses belong in a di�erential? What

do the probabilities represent?

One possible alternative to temporal constraints is to use probability density functions

(PDFs). Probability statements such as that for high LAP causing PC with di�erent proba-

bilities for times less than an hour, one to six hours, and greater than six hours are essentially

approximations of PDFs. There are two problems with using PDFs. The obvious one is the

increased computational burden imposed on an already computation intensive task. The sec-

ond problem is how to break up a structure consisting of PDFs into hypotheses. The explicit

time bounds provide a natural way to generate and compare di�erent hypotheses. Finally,

it is di�cult to estimate the time bounds and probabilities for this model and the task of

estimating PDFs for each causal relation in a 200 node model would be nearly impossible.

Given a hypothesis consisting of a network of causally linked nodes with temporal in-

tervals, what does it represent? If one thinks in terms of possible scenarios producing the

observed �ndings, the hypothesis is a �nite region in the space of possible scenarios. That

is, it is all scenarios meeting the constraints on the hypothesis nodes. The bounds of the

region are de�ned by the clinically signi�cant distinctions that determine the time bounds in

the model. Thus, each region de�ned by a hypothesis network should di�er from every other

region in some detail of potential clinical signi�cance. The question then is what di�erences

might have clinical signi�cance. The most extreme position would be to use each region

de�ned by a distinction in the model as an indication of clinical signi�cance. In the analysis

of the example, we took a less restrictive position and once the temporal constraints of the

data was accounted for no other distinctions were enforced unless they involved nodes being

included in the hypothesis. A third possible position would be to only enforce the temporal

distinctions of the data and leave nodes for which there is no evidence other than a possible

cause as unknown. The appropriate strategy depends on the purpose of the diagnosis, since

diagnosis is a tool for patient management and not an end in itself.

What hypotheses belong in the di�erential again depends to some extent on the purpose

of the di�erential. If the user is interested in the overall diagnosis of the patient, only
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hypotheses that di�er in nodes of diagnostic signi�cance should be included. In the example,

the distinction of with and without pneumonia is signi�cant but the distinction of continuing

or ended low LV function may be too small a detail. However, if the user is considering what

changes to make in the therapy for the patient, the fact that the low LV function may have

ended and therefore the nitroglycerin may no longer be necessary is a useful consideration.

So far, the principle use of the HDP has been to explain the overall diagnosis, so the program

only presents hypotheses with diagnostic distinctions.

If the hypothesis represents all possible combinations of times of causation and persistence

that are consistent with the pattern of nodes in the hypothesis within the time constraints on

the nodes, then the probability should be the sum of the probabilities of all of the mutually

exclusive allowable combinations of times through the hypothesis | essentially a multiple

integration of the possible probabilities over time. Because of the computational di�culties

associated with this strategy, we have chosen a heuristic for estimating the probability. The

probability for each time interval is determined locally from the constraints on the causes.

Thus, in the `corrected high LAP' hypothesis, there was no need to decide how long the low

LVF continued and no reason to decide how long the high LAP continued in the `normalized

LVF' hypothesis. It would be possible to make a model in which there were situations where

unlikely hypotheses would be attributed signi�cant probabilities, but in practice the relative

probabilities for the hypotheses produced are consistent with our expectations.

11 Conclusion

The temporal reasoning of the HDP was implemented a couple of years ago and has gone

through one evaluation and soon will go through another. The addition of temporal reasoning

has eliminated a major class of the errors that were being made before, such as �ndings with

chronicity longer than the proposed cause or ignoring possible causes because some part of

the causal chain was no longer true. Examination of the hypotheses produced by the HDP

make sense to cardiologists and do not reveal any shortcomings in the temporal reasoning

process.

The domain of heart disease provides a good test bed for developing temporal reasoning

in a diagnostic context. There are a wide variety of temporal situations that require explicit

reasoning to handle properly. Thus, our expectation is that the lessons learned in this domain

will be transferable to a number of other domains.
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