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Abstract

The progress of medical informatics has been characterized by the development of a wide range
of reasoning methods. These reasoning methods are based on organizing principles that make use of
the various relations existing in medical domains: associations, probabilities, causality, functional
relationships, temporal relations, locality, similarity, and clinical practice. Some, such as those
based on associations and probabilities have been developed to the point where there are off-the-
shelf tools available for the researcher to develop new decision support tools. Others such as
temporal relations require more effort to use effectively. Even so, we have learned the importance of
a separate explicit representation of the domain knowledge and have considerable experience and
an impressive armamentarium with which to face the new milieu provided by the Internet.
© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The ubiquitous availability of the Internet has given medical informatics a new direction.
The ability to put computer-based systems in the hands of providers, patients, institutions,
and researchers and connect them together has completely changed the role of such
systems in medicine. Decision support systems can now be thought of as tools fitting into
appropriate niches in the practice of medicine and available when it is appropriate to use
them. They will be connected in ways that will allow the data to flow where it is needed —
the data that has hindered progress in the past. This new milieu brings to the forefront many
issues such as interfacing the systems, providing security, and integrating the systems into
the practice of medicine. However, before we are too far past this juncture and its necessary
change of focus, it is useful to consider what capital the previous era contributes to this new
environment.
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There are many ways that the research over the past thirty or more years might be
characterized, but the one that seems to underpin the rest, indeed to define the influence of
medical informatics on domains beyond medicine, is the development of methods for
reasoning about the various problems confronted in medicine. Many of the reasoning
methods now accepted as the basic tools for computer-based problem solving, including
production rules, case based reasoning, neural networks, and Bayesian probability net-
works, were first developed in a medical context, inspired by medical problems, or greatly
influenced in their development by the challenges of medicine. Without attempting to
assign credit for the various methods, this paper will take a look at the array of tools the
community has amassed to handle the reasoning problems in medicine, the capabilities
they provide and their limitations. There are still gaps in this tool set; indeed the most
glaring hole is the lack of effective ways of integrating multiple methods to multiply the
advantages of each.

1.1. Generic tasks

Medical reasoning can be broken down into three generic tasks based on the time period
involved. Diagnostic reasoning is the process of reconstructing the past from available
evidence. Planning is reasoning about the effects of actions in the future. Patient manage-
ment is organizing and dealing with the present. Similarly, medical computing tasks can be
generally categorized into one or more of these generic tasks. While the practice of
medicine requires all three kinds of reasoning to go on simultaneously, medical computing
has not yet advanced to the stage where programs are very successful at addressing more
than one of these aspects of reasoning at a time. The primary problem at which much of the
early effort was addressed is diagnosis. Much research has also addressed therapy planning
and management, but we can look at the particular problems of medical diagnosis as the
impetus for much of the development of reasoning methods.

1.2. Requirements for reasoning

The basic problem of diagnosis is to take a set of effects and determine the cause.
Actually, the problem is better characterized as looking for an ordered list of possible
causes, since some degree of uncertainty is a nearly constant feature of medicine. Because
the human body is extremely complex, only partially understood, and not a manufactured
artifact that we can easily instrument or modify for ease of maintenance, we need all the
leverage possible to solve the clinical problems. Indeed, since there is often no way to be
certain of a diagnosis short of autopsy, the result as well as the process of diagnosis involves
uncertainty. Thus, a diagnostic program must have a number of characteristics to make it
useful, i.e. for users to be willing to use it. Firstly, the program must perform well.
Addressing this issue in depth would take us into the issue of evaluation and standards of
performance, which is not the primary focus of this paper. Suffice it to say that we have
learned that evaluation of decision support systems is difficult and the standards for doing
so are only slowly coming together.

Beyond showing that the program performs well on a population of patients, it is
necessary to show the user that the program is performing well on the particular case of
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concern to the user. To do this, the program must be convincing, either because the results
are justified appropriately, explanations are provided, or the reasoning is readily under-
standable to the user. Likewise, the knowledge of the program needs to be understandable
to both the user and the developers, whether they are medical experts or informaticists.
These requirements drove the developers of medical reasoning systems away from the
traditional programming approach with the algorithms incorporating and implementing the
domain knowledge to an approach with a separate knowledge base and inference engine.
The separate knowledge base makes several things possible. The tasks of developing the
inference engine and knowledge base can be separated and given to experts with different
skills. The knowledge base can be examined separately by anyone who understands the
paradigm or organizing principles under which it was developed. For the domain expert
this is much simpler than attempting to understand a computer program. For example, the
domain expert might only need to understand the findings associated with different
diseases. The knowledge base can also be used to explain or justify results as well as
produce them.

The separation of the knowledge base and inference engine imply that there needs to be a
clear semantics of the knowledge base that the inference engine can reliably use to do the
reasoning. That is, the inference engine must do reasoning consistent with the intended
meaning of the represented knowledge. The knowledge base must represent well-under-
stood relationships among the clinical concepts that can be consistently manipulated by the
domain experts separate from the inference engine and can be faithfully reasoned with by
the inference engine. There are a number of relationships available in the medical domain
that make this possible. These include associations, probabilities, causality, functional
relationships, temporal constraints, locality, similarity, and clinical practice. These rela-
tionships provide organizing principles around which a mechanism can combine knowl-
edge to do the necessary reasoning to solve the clinical problem. The organizing principle
in turn enables a view of the problem that recommends ways of solving it.

There is also a tension in designing an organizing principle for a system. To make the
knowledge base easy to understand and the inference engine reliable and relatively
transparent, it would be best to pick a single relationship and use it to develop a simple
uniform mechanism. However, medicine is more complex than that and such approaches
will be limited. For example, a diagnosis program based on associations may present
diagnoses that are clearly wrong when temporal relations are considered. Still, the first
generation of reasoning methods relied on uniform mechanisms based on single relation-
ships and we will consider the strengths and weaknesses of some of the more influential
methods. The development of methods presents somewhat of a logical progression, although
it is more of a tree than a line. The following paragraphs will explore the progression.

2. Organizing principles

2.1. Associations

The association between diseases and findings was one of the first organizing principles
used to tackle the problem of medical diagnosis. The key observation is that the same
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disease in different patients tends to have similar findings. There are often differences
depending on severity, complications, chronicity, and other factors, but there is usually
enough overlap in the findings to be recognized as being caused by the same disease. That
is, for each disease there is a list of findings that might be present when the disease is
present. An instance of the disease may not manifest all of the findings, but there are
usually enough to distinguish the disease from other diseases. This view of the medical
knowledge suggests a simple approach to diagnosis — simply invert the association to get
all of the diseases associated with each observed finding and search this list to find the
disease or diseases that account for the largest number of findings. The use of simple
associations goes back to schemes to use punch cards with diseases on one axis and
findings on the other to “‘shake out” the diseases associated with the findings. This simple
notion is still the basis for Weed’s Knowledge Couplers [48], which attempt to provide a
comprehensive list of findings for each disease in order to assist the physician in
considering as complete as possible a list of diseases that could account for the findings.

Associations by themselves convey only a small part of the knowledge we have about
how diseases relate to findings. The next step was to improve upon associations by
observing that there are strengths of association. When a disease is present, some findings
are always present, some rarely, and others with intermediate frequency. On the other hand,
some findings, even some that rarely occur are only caused by one or two diseases, and thus
are very useful for diagnosis. These “‘enhanced associations” are the organizing principles
for such programs as QMR [15,36] and Dxplain [5], which provide diagnostic coverage for
large parts of medicine. QMR, for example, uses three properties besides the associations
themselves for diagnostic reasoning: the frequency of the finding with the disease, the
frequency of the disease with the finding, and the importance of the finding. This last
measure helps the diagnostic algorithm ensure that its solutions cover the important findings
and if any findings are left unaccounted, they can be reasonably ignored. It would seem that
the evoking strengths should be derivable from the frequencies if the prior probabilities of
the diseases are known. However, the implicit independence assumption for diseases and
findings inherent in this view of the problem is rarely true and providing explicit evoking
strengths is one way to compensate for this. The frequencies do implicitly constrain the
evoking strengths, so care must be taken to ensure consistency among the numbers.

The advantages of associations stem from their simplicity. Very little information is
needed and it is easily understood. Thus, it is easy for someone with medical knowledge but
little computational expertise to add knowledge to such a system. The semantics of the
representation is also very simple, allowing sophisticated kinds of analysis and multiple
uses of the data. For example, it is easy to use the knowledge base of associations to
determine all of the common or uncommon findings caused by a disease, the diseases that
might cause a finding, or the findings that might distinguish between a couple of diseases.
Considerable theoretical work has been done using this model of diagnosis [44] and
powerful algorithms have emerged.

2.2. Criteria tables

One of the disadvantages of these simple associations is the difficulty of distinguishing
between diseases with similar findings. This is partly because there are intermediate states
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between the diseases and findings that increase the co-occurrence of findings of the same
intermediate states. That is, treating all of the findings as providing independent evidence
leads to unreliable differentiation of diseases with similar findings. A heuristic method for
making decisions about such diseases led to the use of criteria tables. Criteria tables
associate diseases with clusters of findings. That is, they utilize the lack of independence
between findings for a disease. Criteria tables were first developed for glaucoma diagnosis
in CASNET [29] and then used in the context of rtheumatology, where the concept of
developing lists of major and minor criteria for recognizing a disease was already part of
medical training. Because criteria tables are part of the medical context, systems such as
Al-Rheum [31,24] are easy for the physician to understand and it is easy for the medical
expert to contribute to the knowledge base. A weakness of criteria tables is that, since the
important differentials are encapsulated in the criteria for diagnosis of the different
diseases the implications of new knowledge are not easy to see. For example, if such a
program were used in a context with different priors for the diseases, the criteria tables
would need to change to reflect the appropriate sensitivity and specificity to the diseases.

2.3. Bayesian networks

The reliance on heuristic methods to deal with intermediate physiologic states and
syndromes as well as the heuristic algorithms for combining evidence led a number of
researchers to look for a sounder mathematical footing for the diagnostic programs.
Fortunately, Kim and Pearl published a model for sound and efficient probabilistic
reasoning in the form of Bayesian networks [23,40] and Lauritzen and Spiegelhalter
[30] published an effective method for handling networks with rejoining branches. With
this machinery, it was possible to develop probabilistic networks representing diseases,
their mechanisms, intermediate and ultimate effects. The basic assumption of a Bayesian
network is that the probability of a node is completely determined by the nodes linked as
immediate inputs to it. If one of those nodes is true (or has a certain value), the state of its
ancestors and the state of its other effects is irrelevant. This assumption provides the
separation between nodes that enables efficient computation of the probabilities in the
network, and hence, provides the power of this method. The basic weakness of Bayesian
networks is the assumption that everything important about the relationship between two
linked nodes (e.g. a disease and physiologic state) is captured by a probability. No
distinction is made among the various ways that a cause can produce an effect. The
strength, of course, is the solid foundation in probability theory. Indeed, some researchers
view Bayesian networks as the standard against which any other method should be
measured.

One of the first programs to use these mechanisms was MUNIN [37], a program for
diagnosis of neurologic disorders. There are too many other medical programs based on
Bayesian networks to mention here. However, once in a while there are problems that are
made to order for a particular methodology. Genetic counseling, that is, determining the
probability of genetic disease as determined from the pedigree of the family fits perfectly
the reasoning view of Bayesian networks. Geninfer is a program that uses the family tree as
a Bayesian network to provide genetic counseling [47]. Bayesian networks have proven
useful enough that several shells have appeared for building and using them. The first of
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these was HUGIN [3], which came out of the work on MUNIN. More recent Bayesian
network shells have found their way from beginnings in medical applications all the way to
the Microsoft Answer Wizard [20].

2.4. Causality

Another relationship that has been used as an organizing principle in a number of
diagnostic systems is causality. One of the first to explicitly use causality was CASNET,
although its notion of causality is more of historical ordering or phases of the diseases.
Exactly what constitutes causal reasoning varies from system to system. Most systems
purporting to do diagnostic reasoning based on causality have a fairly complex knowledge
representation system that includes relations between concepts describing the aspects of
causality deemed important in that domain. On top of this is an inference engine for
reasoning with the knowledge structure by using a number of properties of causality to
infer the necessary diagnostic conclusions. Perhaps because the particular choices have
been strongly influenced by the domain of the program or because the complexities of
representation and reasoning have not resulted in a compelling view, none of these systems
has been successfully generalized to other domains.

Since it is easy to think of causality in probabilistic terms, a number of efforts have used
Bayesian networks to represent the causal structure of medical domains [13]. However, it
should be noted that the direction of links in a Bayesian network do not necessarily
correspond to any notion of causality since a probability on a link only means that the
second node occurs with that probability when the first one is true. Causality is a difficult
concept to capture satisfactorily. While there are certainly rules that causal relations obey,
the assignment of causal structure in systems characterized by feedback can become an
arbitrary linearization of a process better characterized as mutual constraints. Still,
causality is important because users tend to think in terms of causality and the closer a
system’s reasoning corresponds to that of the user, the easier it is for the user to understand
and accept the conclusions reached. An indication of the difficulty of using causality as an
organizing principle is that no one has developed an effective tool for reasoning with causal
relations. That may be changing with considerable theoretical work being published on
causality [17,41].

In the Heart Disease Program [32,33] we chose to use a causal network representation
with probabilities on the links, but forgo the formal semantics of a Bayesian network in
order to preserve the sense of causality. In particular, in the pathophysiologic model of the
cardiovascular and related systems (about 200 nodes) there are a number of forward loops
in the network, which make it impossible to assign a consistent set of probabilities to the
nodes. A simple example is that renal insufficiency can cause hypertension and hyperten-
sion can cause renal insufficiency. Both definitely occur in life. In a particular case, the
program chooses one or the other depending on any other relevant findings to maximize the
overall probability. Thus, in a particular hypothesis (that is, a subset of the pathophysio-
logic model instantiated for the patient) there are no forward loops and there is a consistent
interpretation of the overall probability. This representation of the domain knowledge as a
probability network has proven very useful. It is easy to think about the relationships and
get an expert to assign nodes, links and probabilities to the links. Care must be taken to
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include all intermediate nodes that are measurable or represent common pathways to
findings to preserve the power of the reasoning because there is a natural tendency to
eliminate the intermediate nodes from our descriptions to one another. There are, however,
limitations to the representation. Firstly, as diseases or pathological states get more severe,
they have more effects and the effects are more certain to happen. The result is that the
probabilities on the links are dependent on the severity of the node at their causal end, not
just its presence or absence. We have dealt with this by allowing many of the nodes in the
network to have multiple states representing different severities. This complicates the
reasoning considerably but by judicious use of such states we are able to represent the
severity differences that are clinically important. A second limitation is that the timing of
diseases and findings interacts with the semantics of a probability network, but that will be
discussed in a few paragraphs.

2.5. Functional relationships

Functional relationships, while not as common as associations or probabilities, are very
effective for reasoning when they are available. The ABEL program for acid—base and
electrolyte diagnosis [39] is an example of a program that makes use of a known functional
relationship for diagnosis. In this case, the Henderson—Hasselbalch equation accurately
reflects relationships so that the blood gases and electrolytes can be used to filter the causes
down to one or two conditions or combinations. Since this diagnosis is at the level of acute
or chronic metabolic or respiratory acidosis or alkalosis, it is still necessary to determine
the cause of the condition. At that level there are no easily measurable parameters and other
kinds of reasoning must take over.

One use of functional relationships that waxes and wanes is simulation of physiologic
systems. Guyton et al. [18] have developed some impressive simulations of the cardio-
vascular system, including one with hundreds of parameters. These have been used in
teaching [12] but not for problems involving individual patients. The difficulty in applying
such models to patients is that many of the relationships have significant variation from
person to person so individual reaction will vary from the average reaction determined by
physiologic studies. Furthermore, to customize the model to an individual it would be
necessary to measure many parameters, including some whose measurement is not
compatible with the health of the patient. Because of the nature of simulation, the model
must be completely specified in order to reason with it. Thus, quantitative simulation has
not proven to be an effective tool for the clinical setting although it is a powerful teaching
tool.

One program that has successfully combined a constrained but effective functional
model with a Bayesian network is VentPlan, a program for managing a ventilator [45]. It
uses discrete data about the patient to set what is known in the Bayesian network. Some of
the nodes in the network represent parameters in a mathematical respitatory model. The
probabilities on these nodes are interpreted as probability distributions of the parameters of
the mathematical model. Then using these and other measured data an empirical Bayes
estimator estimates the model parameters for simulation. This is a very effective and
appropriate combination of methodologies, but unfortunately has not spawned any similar
efforts.
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2.6. Qualitative simulation

Qualitative simulation was invented to deal with some of the problems of quantitative
simulation [28]. Qualitative simulation simplifies the functional relationships to ones of
direction of influence. This removes problems of parameter values and the need to know
exact relationships while retaining the ability to determine some aspects of the nature of
responses to changes. However, with the complex feedback systems in the human body and
the need to know more than just directions of response, qualitative simulation has not been
very useful for clinical problems.

2.7. Temporal relationships

Temporal relationships are obviously of great importance in medicine and many
programs have attempted to make use of them in one form or another. However, temporal
relationships are generally not sufficient by themselves for diagnosis. Therefore, they have
usually been added to some other relationship and have been implemented within a system
using some other organizing principle. An interesting example of this is a program for
managing diabetes by modeling the day-by-day progression of the disease and symptoms
as repeating parts of a Bayesian network [38]. The nodes from the previous day determine
the prior probabilities for each day. This approach has the advantage that the semantics and
reasoning machinery are well understood. It has the drawback that only a limited number of
days can be modeled before the number of nodes in the network makes it computationally
expensive. This approach works for a domain like diabetes where the time period of
concern is hours and longer or shorter periods can be ignored, at least for daily manage-
ment. Actually, temporal extensions to Bayesian networks has been somewhat of a growth
industry in the last few years [2], but no particular consensus or set of rules has developed
about how best to integrate Bayesian networks and temporal reasoning. The challenge for
any approach to temporal reasoning, particularly for diagnosis, is to avoid a computational
explosion when there is little data to constrain the temporal relationships among the entities
of concern. Any approach that attempts to represent all of the possibilities is likely to fail in
a domain of any complexity.

Often the first step in reasoning about temporal data is to determine intervals in which
the data behaves in recognized ways (constant, increasing, in a range, etc.). These intervals
may be determined strictly from the data but usually any events that affect the data have an
impact on the appropriate bounds for the intervals. A number of systems have taken this
approach, providing a mechanism to generate the intervals from which other reasoning
could take place. A mechanism that takes a more model-based or expectation driven
approach to temporal relationships is trend templates [19]. These were inspired by the
clinical approach to growth disorders in children and have proven useful in providing
computerized diagnosis of these diseases. They have also been applied in the interpretation
of the much more frequent data acquired in the intensive care unit. The basic approach is to
provide templates of expected behavior with time intervals over which changes normally
take place. These are compared to the actual data and deviations from the expectations
become the evidence for the conditions of interest. The strength of this approach is that it
nicely encapsulates the temporal information about the domain in a form that can be used
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for analyzing temporal data and translating it into a succinct conclusion that can then be
used as a finding for other diagnostic reasoning. Thus, it is a good way of integrating
temporal reasoning into another methodology.

We took a different approach to temporal reasoning in the current version of the Heart
Disease Program [35]. It was necessary to include temporal reasoning in the program
because the assumption of causal separation that gives power to the probability network
representation ignores important temporal information. For example, a myocardial infarc-
tion (heart attack) can cause pulmonary edema and pulmonary edema can cause pleural
effusion, among other things. However, pleural effusion requires weeks of pulmonary
edema and so is not accounted for by a myocardial infarction a few hours ago. The
assumption that the probability of pulmonary edema causing pleural effusion is indepen-
dent of the causes of the pulmonary edema is violated. To handle such reasoning, we added
temporal constraints to the nodes and links and their instantiation for the particular case and
propagate the constraints through the network as necessary. If there is more than one
temporal extent consistent with the findings in the case (e.g. acute and chronic pulmonary
edema) the instantiated node is duplicated to allow the alternatives and combinations to be
explored. The multiplication of nodes is tightly controlled to prevent the network from
growing too large. This approach to temporal reasoning has proven very effective for
representing and reasoning with the kinds of cases encountered in the cardiovascular
domain. The approach of replicating the whole probability network as was done for
diabetes would not work because there are many different time frames pertinent to
cardiovascular problems: arrhythmias can change in minutes, a myocardial infarction
in hours, peripheral edema in days, cardiac dilatation in weeks, and ventricular hyper-
trophy in months or years.

2.8. Location and similarity

Still other relations are available in the medical domain and are useful for some
diagnostic problems. Location is useful in at least a couple of contexts: trauma and tumor
diagnosis. For trauma diagnosis it is necessary to know what organs might be affected by
trauma in a known location as well as inferring the location of trauma from findings.
These principles have been used in the development of TraumAID [16] for reasoning
about various kinds of wounds. The same kinds of anatomical information have been
used by Banks et al. for the diagnosis of neurologic disorders in Caduceus [4] and more
recently for analyzing CT and MRI images using a neuroanatomic knowledge base [11].
To accomplish this they developed an Octree representation for the data that allows the
accessing of the neurological information by location and refinement to the appropriate
structures to account for the findings. Such tools provide a way of using locality to
produce findings that can be used with other findings for reasoning with another
methodology. In our own work, we have noticed that a more general notion of
“closeness” is often needed for reasoning. In the cardiovascular domain, there are a
number of findings that can be confused, particularly by less experienced users. Using a
similarity measure, which could be dependent on factors such as background noise level
for auscultation, is very useful to account for findings that could otherwise lead a
diagnosis program astray.
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2.9. Case-based reasoning

It has been observed that physicians often relate the present cases to those seen in the
past. From this observation in medicine and other fields grew the paradigm of case-based
reasoning. The essential idea is that if a suitable measure of similarity exists, the new case
can be related to one or more similar past cases in an appropriately indexed database. From
that case or cases the appropriate diagnosis or other question can be answered by analogy
or simply by copying the answer if the match is close enough. This approach was first tried
by Kolodner in psychiatry [25] and a number of other domains. In our laboratory we
compared case-based reasoning to model-based reasoning for the diagnosis of cardiovas-
cular disease, using the Heart Disease Program as a model. Having the physiologic model
made it possible to identify similarities in findings by looking for common immediate
causes. The initial experiments were very promising [26,27], but the cases were restricted
to a very similar set of diseases and combinations. Once we extended the case set to the mix
of cardiovascular cases encountered in a tertiary case hospital, the performance fell
dramatically [1]. The basic problem is determining what cases and what aspects of the
cases are similar. To the physicians who reviewed the 240 cases, many cases appeared
essentially the same because the important aspects of the cases were similar. However,
to the program each case appeared different because each had findings not shared with
other cases, even using the physiologic model for matching. Often the differences were
among chronic stable previously existing diseases, but without more knowledge the
program was unable to discount such differences. We have since looked at ways of
dividing known cases and combining parts of them to produce pseudo-cases from which
the case-based program could apply its reasoning [22]. Still, the weakness of case-based
reasoning for medical diagnosis remains the difficulty of producing an appropriate metric
for deciding that two cases are similar enough in the aspects that matter for solving the
problem at hand. One way of overcoming this problem is to narrow the domain while
keeping the database as large as possible so there are always similar if not identical cases
to use for reasoning. Thus, all of the case-based programs in the literature are in restricted
domains.

2.10. Flowcharts

Probably the first abstraction from programs was the use of flowcharts. Indeed,
flowcharts have been used as a tool of programmers for designing code, since the early
days of assembly language coding. Flowcharts have been used in a clinical setting to
capture various procedures, such as the appropriate care of diseases. They also have been
used to capture the diagnostic process and whole books of diagnosis flowcharts have been
published. Flowcharts are available on the Web for patients to use for symptom triage.
However, when attempts were made to use computers to do diagnosis by following the
flowcharts it became clear that diagnosis is rarely an ordered process while flowcharts
require an inflexible order. Unless all of the data is immediately available (such as when
asking patients for their symptoms), it is necessary to duplicate parts of the flowchart to
handle data being available in the wrong order. A more difficult problem is handling
missing data when data can be costly or unavailable. Even so, a few successful programs
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were developed in this way, such as Bliech’s acid-base diagnosis program [8], which is still
in use.

2.11. Production rules

Because of the need for flexibility in determining what data was available and in what
order, production rules were developed. The primary exemplar of production rules is the
Mycin system for diagnosis of bacteremia [10]. The organizing principle of a production
rule system is that knowledge can be stated as an unordered set of rules with a set of
antecedents and a set (usually just one) of consequents. That is, if all of the antecedents are
true, the consequent is true, no matter when the rule is applied. One of the innovations of
the Mycin system was to include uncertainty in the rules. Each consequent has a certainty
factor between O and 1 representing the confidence in the deduction with a scheme for
combining certainty factors if multiple rules have consequents relating to a concept. A
production system does diagnosis by backward chaining. That is, trying to establish rules to
meet a goal — initially, ““what’s wrong with the patient?”” To do that it uses each unknown
antecedent as a goal until it gets to antecedents that can be answered by asking the user. The
advantage of a production rule system besides the flexibility of application is the fine-
grained modularity of the representation. That is, each rule is complete unto itself. In
addition, production systems have extremely wide applicability, not depending on anything
unique to medicine. They can also be used for inference using forward chaining. That is,
any time the antecedents of a rule are true, its consequents can be asserted. This method of
reasoning has been used to great effect for planning systems. There are also drawbacks to
production rules, basically the inverse of the advantages. The wide applicability means that
rules can encode medical knowledge or control knowledge and no distinction is made.
Thus, different kinds of knowledge are mixed and the clean separation between medical
knowledge and process is lost. The flexible ordering means that each rule must explicitly
state all of its assumptions or it may be applied in an unanticipated context with unforeseen
consequences. Still, production rule systems have a compelling simplicity and generality
that has almost made them synonymous with expert systems.

3. Acquiring the knowledge

A constant issue with all expert systems is where to get the knowledge. Relying on expert
judgment has drawbacks. It is extremely costly, very time consuming, and experts do not
always agree. These issues have led to efforts to learn the knowledge from data. Such
efforts in machine learning have taken several forms. For example, considerable work has
been done in automatically learning Bayesian networks from data. Systems have been
developed that learn the probabilities in a network of known topology [6] and others that
learn the structure of the network as well [14,21]. Learning the structure is very difficult for
several reasons: firstly, there is noise in medical data and that along with the randomness of
case selection can easily lead to spurious dependencies and independences, and hence, to
extra or missing connections. Secondly, in most medical problems there are nodes that
make sense physiologically for which there is no direct measurement available. Finally, the



82 W.J. Long/Artificial Intelligence in Medicine 23 (2001) 71-87

best arrangement of probabilistic dependencies as inferred from the data does not always
correspond to the medical understanding of causality, making such networks less under-
standable to the user even if they have adequate performance.

One of the problems with such machine learning approaches is that a large amount of
data is required to learn even a small network. In the Heart Disease Program, we have only
used data to substantiate probabilities in very focused situations, such as the changes in the
probabilities of various cardiovascular conditions with diabetes, and only then when there
was independent literature to support the probabilities because of the potential biases of our
own data.

3.1. Classification

Because of the difficulty in developing large models from data most machine learning in
the medical context has focused on tightly constrained diagnostic problems, more properly
called ““classification problems”. For example, a problem that has received considerable
attention is whether or not a patient in the emergency room experiencing chest pain or
shortness of breath is having a myocardial infarction (heart attack). Three approaches have
emerged to deal with such problems: classification trees, logistic regression, and neural
networks. They all take the same view of the problem: there is a set of cases, each
consisting of a set of values to a fixed set of parameters and each having an appropriate
classification. Usually the classification is binary, although only logistic regression requires
this. The three approaches take different views of the statistical properties of the data and
produce different kinds of solutions.

3.2. Classification trees

Classification trees [43,9] recursively pick a parameter on which to partition the data set
into high and low concentrations of the desired classification. As it recurses, each
subproblem only considers the data that made it to that branch. Thus, there is a tendency
for the branches near the leaves to be less generalizable than the top branches since they are
based entirely on small subsets of the data. Classification trees have the advantage that the
criteria they use to make decisions is explicit — it is a series of questions answered with yes
or no. A number of efforts have improved the performance of classification trees by such
means as generating a number of trees and using a voting scheme to do classification.
While improving the performance of the trees, this also makes them much more difficult to
understand.

3.3. Logistic regression

Logistic regression [42] is a method from the statistical community used to solve the
classification problem. This method takes the view that some subset of the parameters
makes independent contributions in different degrees to the classification. These become
the parameters of the logistic equation computing the probability of the classification. The
advantage of this approach is that the minimal set of parameters contributes to the
classification and their relative contributions are explicit. For example, in the classification
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of myocardial ischemia [21], each case had 59 parameters but only seven made it into the
final equation. Thus, it is easy to understand what goes into making the decision. The
disadvantage is that no benefit is derived from the rest of the parameters. This might be
important for a case in which one or more of the desired parameters are unknown and some
excluded parameter or combination would provide that information. The only way to deal
with missing parameters is to generate multiple logistic regression equations using
different subsets of the available parameters.

3.4. Neural networks

The neural network approach [7] takes all of the parameters as nodes, optimizes the
weights of those as inputs to a layer or two of hidden nodes and the weights of those nodes
combine to determine the classification. The result is a non-linear combination of the inputs
contributing to the classification, optimized for the available data. The non-linear relation-
ship that is produced makes it possible to represent complex parameter interactions that
could only be handled with logistic regression by adding explicit functions of multiple
variables (products, etc.). The disadvantage of neural networks is the difficulty in under-
standing what they do. That is, they essentially put all of the inputs through a black box that
produces a classification (actually a number that can be interpreted as a probability). Many
people have made some progress toward glimpses inside the black box, such as average
measures of the contributions of each input, but nothing has proven satisfactory yet for
convincing the user that the data was appropriately considered.

As for the relative performance of these methods, our own studies on a large data set
for classifying myocardial ischemia in the emergency room have shown neural networks
to be the most accurate, logistic regression second, and classification trees (generating a
single tree) the least [34,46]. However, the ROC curves for all three methods were close
enough that it would be hard to show a significant difference in a prospective study. All
three are viable methods for doing classification and the appropriate selection of a method
needs to consider how the user will understand the result as well as the performance of
the method.

4. Representation of knowledge

One of the lessons learned in developing reasoning methods for medical problems is the
importance of an explicit representation for knowledge in a program. The development of a
medical decision support system is the melding of two different disciplines and ways of
thinking. Providing a clean separation between the medical knowledge and the reasoning
method allows each to be considered in its own appropriate context by the appropriate
experts. Exactly where this separation should take place is dependent on the medical
problem. For example, process knowledge, decisions about what to do next and what data
to gather may be considered part of the medicine or part of the reasoning. In some contexts,
the program needs to make use of whatever data is available, identifying the uncertainty as
appropriate and the gathering of the data is an external issue. In other contexts, the process
of gathering the data is part of the medical knowledge that needs to be in the knowledge
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base — the kinds of medical situations where a protocol captures the current best medical
practice.

Certainly there is a whole body of research on knowledge representation, but most of the
issues are orthogonal to the issues of the kinds of reasoning we are discussing. The essential
features of a suitable knowledge representation are that it has clear semantics, is easy for
the domain expert to understand and manipulate, and that it provides efficient indexing of
the kinds needed by the reasoning engine.

4.1. Explanation

Some of the advantages of an explicit representation became clear in the development of
explanation systems for programs [10]. Unless the explanation is generated from the same
knowledge that the program was using to do the reasoning, there is no way to guarantee that
the explanation reflects what the program knows or is doing. It might be argued that it is
faster and easier just to write an explanation facility once the program is complete (being
very careful that it is accurate!). However, programs, especially ones based on complex
evolving knowledge, are never complete. In practice, the problem is to keep the explana-
tions consistent with the changing knowledge base and the only way to do this is for both to
operate from the same knowledge base. Furthermore, it was discovered that an explanation
facility is useful to the developers in determining whether the knowledge base is consistent
and whether the program is correctly using the knowledge. The single representation is also
useful in generating suitable interfaces for the program. For example, the Heart Disease
Program uses the knowledge base to generate the input forms used to enter a case. There is
a module that goes through the findings used in the knowledge base, combines these with
formatting information and generates the file that drives an HTML form generator. This
may sound complicated, but it has saved considerable work that would have been required
to update the forms as the knowledge base evolved.

The irony of explanations is that users rarely use them in the interactive way that was first
expected. Even so, explanation facilities have proven to be of great benefit by providing
justification for the results and by making the functioning of the program accessible to the
developers.

5. Discussion

This is a necessarily partial and very sketchy overview of the progress in reasoning
mechanisms. There are many other systems that could be mentioned, some of which
probably had more influence than some that are listed. Thus, apologies if your favorite
system was not mentioned. However, the intent was to review the degree of coverage
we have achieved relative to the relationships in medicine suitable for automated
reasoning.

It is clear that we have acquired a significant armamentarium to face the challenges of
medicine. The set of tools is far from perfect. In some areas, such as production rules or
Bayesian networks, there are off-the-shelf tools for implementing a system. In other areas,
such as temporal reasoning, even though much research has been done, there are no tools
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that one would feel comfortable recommending to someone new to the field. More research
must be done before the right set of tools emerges. In other areas, such as reasoning with
location information, there are good ideas and the theoretical basis for good tools, but few
compelling domains to push the development forward.

5.1. Picking a method

So how does one pick a method when facing the need for a decision support system in a
particular domain? The typical answer is to pick the method with which you have most
experience. A better answer can be determined from the answers to three questions: (1)
What kind of result is needed? (2) What is the nature of the medical knowledge? (3) Where
will the knowledge come from? The result may range from a simple yes or no or probability
to a complete explanation of how a set of findings is accounted for by diseases, physiologic
mechanisms, and complications. The medical knowledge may range from associations to
exact functional relations to rules for determining similarity. The knowledge may come
from experts or need to be learned from data. Usually, the knowledge will be of several
kinds and since there are a few tools that effectively handle more than one kind of relation,
the challenge is to pick the primary organizing principle through which the problem will be
viewed and then invent ways of handling knowledge that does not fit the paradigm. When
considering the knowledge, one must always be asking the question: ‘‘How will this make a
difference clinically?”” That is, what aspects of the knowledge need to be accessible to the
reasoning engine to produce the conclusions that are important to the user. Keeping this in
mind allows the designer to make the tradeoffs in organizing the system that will allow the
system to capture the essence of the medicine and still run effectively. Given the
incomplete state of reasoning methods, it may be necessary to invent a new methodology
to serve the requirements of the domain. However, there are now enough tools using
enough of the relationships available in medicine that it is generally advisable to first
implement a prototype using the tools most closely matching the characteristics of the
domain and then assess its shortcomings in the situations that really arise rather than ones
that are theoretically possible.

We have an assortment of reasoning methods and a good deal of experience building
systems that do reasoning from diagnosis to therapy planning to patient management tasks
in a variety of medical domains. What now? The Internet has provided us with connect-
edness; speech understanding technology is easing the input burden; ubiquitous inexpen-
sive computers provide the platforms. It only remains for us to infuse decision support into
the normal practice of medicine. That is, answer the questions the various care providers
need answered in a way that requires no effort on their part beyond that necessary to carry
out the normal functions of medicine.
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