AUTOMATIC PROGRAMMING
Internal Memo 6

October 17, 1972

MAPL
A Language for Describing
Models of the World

by
William A. Martin

and
Rand Krumland

Introduction

Automatic Programming Internal Memo 4 introduced a relational model called
the World of Business. In Protosystem I the user describes his problem to the
system by what amounts to instantiation of selected relations in this World of
Business model. This model has been refined, modified, and elaborated. The
new version is described here. After some remarks as to purpose, we describe the
language in which the model is written. Next, we give the more universal parts
of the model itself. In a following memo we will give details of the model
pertaining to business systems and describe the A&T Supermarket case by instan-

tiating our model.

Three Cultures - Three Languages

Before giving the details of the language, it might be well to say a few
words about what it is intended to accomplish. More thoughts on this also appear
in Memo 2. A planned future memo will hopefully provide further elaboration.

Protosystem I encompasses the knowledge of three related, yet often separais
groups of individuals.

1) Practicing managers

2) Computer systems specialists

3) Management scientists.
Fach of these groups focuses on rather different aspects of a problem such as
sales forecasting. Their view-point, coupled with their diverse backgrounds,
rather sharply alters the terms in which each group would describe the sawme
situation. For example, in the A&T Supermarket case we find the following

management oriented description.



1) "Sales vary considerably by day, with peak sales occurring during @'

weekend specials.”
In the 0S/360 Inventory Control Program Description Manual we find:

MPUQD x PUNOPDYR
MPUPD

2) "Annual usage =
where:
MPUPD = Number of periods for which demand history exists:
MPUQD = Total demand quantity for number of periods (MPUF::
PUNOPDYR = Number of periods per year for parts usage fiold:,
PUNOPDYR -- parts usage number of periods per year -- is defined as &

constant in the ICSOPIN macro."

Finally, in Multiproduct Production Scheduling for Style Goods with T.iwmii=-
Capacity, Forecast Revisions and Terminal Delivery, a Sloan School of Managamer:
Working Paper, we find:

3) "Let Xj represent the forecast of total seasonal demand for a produc:.

with the forecast made at the beginning of period j , then the ratios

represent actus!

of successive forecasts are (Xj+1/Xj). Also let XN+1

total demand for the product. Define

(1 z, =&

5 j+1/XJ.), j=1,...,N (time periods).

Then it is assumed that the variable Zj has the following distributici :

2 2
-(log Z.-u.)*/2e,
(log ; uJ) ;

1
Z, ~ £ 2. /u.,, @) = o e j=1,... 1
3~ fy @3y Cy) = Tra T ] :
J 1
with Zj independent of Z, for j # k."
It is interesting to contrast these three fragments. A most importas

difference is that the management description is both less complete and le:n:
precise than the other two. In the A&T case we are not told how sales are
computed, or even what is being sold to whom. The implication is that 2.y

reasonable method of computing sales will yield a quantity with considerable

variation. We are also told that sales vary "considerably." Again, b
implication is that any precise method of computing variability will yield
which will cause us to employ the types of business practices useful when sales
vary ''considerably'. Next, note that we are assumed to be familiar with the
concept of a '"weekend special." In fact the A&T case description assumes *that

we understand on the order of 1,000 concepts and 2,000 facts about them,



It is probably reasonable to regard the language of practicing managevs -

suited to the description of heuristics which guide more precise procedures in

structuring highly complex situations and organizations. If Protosystem I is

going to automate the solution of the A&T case, it must be able to utilize th=
information in the A&T case description. We must then ask how this inforwmati::
is to be communic ated to the machine, and how it is to be represented there.
For several reasons many people believe that the mode of communication must he
English. Typed English can of course be read into the machine but the machine
cannot currently do anything with information represented in that way, Efforts
are under way to translate English into some representation which the machine
can understand. Since the languages of computer systems and applied mathematics
are already understood by computers to a useful degree, we must consider them.

The language of computer systems specialists is intended for more precise
description than that of practicing managers, but less precise than that of
mathematical management scientists. This is not to say that a precise statemant
cannot be made in a programming language, but rather that a very precise state-
ment such as that in the third fragment is made more naturally in the applied
mathematics language. Another difference is that the computer systems language
does not have very many concepts '"built in" as does the language of practicing
managers. Computer systems language is also intended for making complete state-
ments which tell computers exactly what to do.

If we attempt to state the information in the A&T case description in compute:

systems language, the following problems will arise.

a) The additional precision of computer systems language will require us
to make a more accurate statement than we can justify, or else consiv:-
a very elaborate structure to avoid making an accurate statement. Vo
example, how shall we state that sales vary '"considerably" using oni-
the information contained in that phrase, The important point is

that nothing is to be gained by making a more accurate or complex

statement! (Actually, quite a bit is lost!) For the fact that sa]
vary '"considerably" is precisely the summary type of information
needed when trying to decide what business practices to use, AT
information can't be used when more accuracy is really required, w«in
the additional accuracy is only apparent.)

b) Without the concept of '"weekend special' in the computer systems language,
it will be very difficult to express this concept without loss of infor-
mation which will leave the system vulnerable to error through overly
rigid interpretation. For example, what about '"three day weekends. '

To "explain' every concept in the input description will increase its



length to an unmanageable size, and seriously burden the user with
task he is not skilled in.

c) The problem of man/machine communication will be greatly simplified
if the machine has a representation of the problem which parallels th.:

of the man. A study of a book like Human Problem Solving (A. Newe;:

and H. Simon) doesn't lead one to feel that managers 'think like syst.um-
programs' and are then forced by English to make their statements as
they do. Thus any attempt to go directly from a manager to a systeu.
or management science language is going to be very difficult.
Although computer system's language is bad for our purposes, the language
of applied mathematics would be even worse.
It is our opinion that in fact an appropriate language can be found for
representing the A&T Supermarket case. A study of recent work, such as that
of T. Winograd for example, leads one to feel that, as long as a global purpose
is known, information can be represented in a form much more amenable to cowpu
tation than English, yet without the disadvantages listed above. What we
would like to show is that this can be done in a practical applications area
like distribution systems using only thousands of concepts and relations rather i
tens of thousands. Several points lead us to feel that this may be the case
a) We have designed our language so that the user may add concepts of
his own. Thus it is not necessary for the system to know "everything. "

but only enough so that the user won't mind telling it the rest and wii:’

be able to succeed in doing so.

b) "Applications Questionnaires' are now on the market which purport t«
construct a tailored small business information system with the ye:-
no answers to less than 2,000 questions.

c) The A&T Supermarket case is 3,000-4,000 words long. It seems to
typical length.

d) The specification of a data structure is generally smaller than ti-«
specification of the programs which manipulate it. We are not t
to write all business programs; just a data structure for them to us:.
Once we have this and a skeleton set of programs we are under wsv

It should be noted that a present day computer can handle thousands <7

and relations in main memory fully indexed (giving the associative retrieval effect:
with no problem. The CONNIVER programming language will help us do this.

We have represented the A&T Supermarket in our new language as a first step



In a following memo we will try to show how this representation is adequate to
guide routines solving the A&T case. Next, we must show how computers can con-
struct the representation given here through a dialogue with managers. (Once
this can be done in English, our true objective will be reached.) Finally,

we must hope that the size of our model will approach a limit as new cases

are added.

The Modeling Language

We now describe the language in which the World of Business (W-0-B) model
is written. (This amounts to a theory of "fill in the blanks.'") We call it
MAPL because it is about mappings and their properties. The data types in the
language are:

a) Objects,

b) Concepts,

c¢) Relations, and

d) Sequences.

The relationships which can be expressed in this language are:

a) Set inclusion,

b) Functional dependence, and

c) Naming.

Each of these is now described in turn. There is nothing unique or unusual

here, but we must say what constructs we choose to use and our notation for them.

Objects:

An object is a particular thing, such as a particular person, or a particular
apple.  An object can have a proper name such as %W-A-MARTIN or %GOOD-APPLE-1.
We will start the names of objects (which are not concepts) in the W-0-B with a
% so we can distinguish them from names not known to the W-0-B.

If %GOOD-APPLE-1 and %BAD-APPLE-2 are two objects, then the set of %GOOD-
APPLE-1 and %BAD-APPLE-2 is also an object. This set might be called %MIXED-
APPLE-SET. It is important to distinguish between an object which is a set,
and the objects in it. A typical member of a set will be referred to by the
set name with % replaced with §. SMIXED-APPLE-SET would be a typical element
of YMIXED-APPLE-SET.

Concepts:
A concept is a special kind of object. It is a predicate which is true or

false for any ordered tuple of objects. The name of a concept will be spealled



starting with a #. For example, we might have the concept #APPLE, which we
would define to yield true for every object which is an apple and false for all
other objects. #APPLE would yield true for %GOOD-APPLE-1 and %BAD-APPLE-2, but
false for %MIXED-APPLE-SET, since 7MIXED-APPLE-SET is a set of apples, not an
apple. We say that #APPLE specifies the set of objects, %APPLE, for which it
is true. We call this set %APPLE by convention, replacing the # with %.
%GO0OD-APPLE-1 and %BAD-APPLE-2 are two of the elements of the set 7%APPLE;
%MIXED-APPLE-SET is a subsget of the set %APPLE. We will use %APPLE to mean
the set of all apples, and $APPLE to mean a typical member of this set.

We express the fact that a concept is true for a specific tuple of objects
by adding the concept to the left of the tuple. For example, we might express

the fact that a specific apple, %GOOD-APPLE-1 is tasty with the tuple

(#TASTY 7%GOOD-APPLE-1).

How would we express the fact that all apples are tasty? We don't want
to write a tuple for each apple. We do this by writing the typical element,
$APPLE, of the set %APPLE, in the ordered tuple, then the ordered tuple is
understood to hold when each object which the typical element stands for is

substituted for it. All we need, then, to say that all apples are tasty is,

(#TASTY SAPPLE).

This expraession can be modified by indexing, as will be explained later.

Relations:

A relation is a set of ordered-tuples for which a specific concept is true
Given sets 81,82,...,8rl (not necessarily distinct), R is & relation on these n
sets if it is a set of n-tuples each of which has its first element from Sl’ it
second element from 82, and so on. We shall refer to Sj as the j-th domain

of R. A relation is an object. This means that relations can participate

in tuples. In the W-0-B relations have a number of properties to be describe.l

later, These properties are given by using the relations in tuples.

Sequences:

A sequence is a set whose elements are ordered.

Set inclusion:

There are three concepts used for expressing set inclusion which occur
constantly in the W-0-B. These are "is" (#IS), "a kind of'" (#A-K-0) and a
"a set of kinds of'" (#A-5-0-K-0). These are shown diagrammatically in Figure
We express the fact that an object is in the set specified by a concept hy using

#IS. For example, we could write,



-6A-

WX (o o v v v o)

N 500
N

B C . (.. )

ak-0)

K. .0

#IS

—

%X .

C. . .) denotes a set.
#IS = 9X is an element of %B.
#A-K-0 = %X is a subset of %B.

#A-S-0-K-0 = %X is a set of subsets of %B.

Figure 1.



(#IS 7%GOOD-APPLE-1 #APPLE),
which says that 7%GOOD-APPLE-1 is an element of %APPLE.

The use of "a set of kinds of'" is slightly more complex. This is used :u
indicate that one concept specifies sets whose elements are selected from the st
of objects specified by a second concept. For example, to indicate that a gaggle

is a set of geese we would write

(#A-S-0-K-0 #GAGGLE #GOOSE),
which says that every element of %GAGGLE is a subset of %GOOSE.
The final concept, #A-K-0, is used to indicate that the objects specified
by one concept are a subset of those specified by another. For example, to

indicate that all apples are fruit we could write

(#A-K-0 #APPLE #FRUIT),
which says that 7APPLE is a subset of %FRUIT.

Figure 2 shows a hierarchy of concepts suggested by Raphael which is similar
to structures that can be formed using our set inclusion relationships. Raphael

contends that a complete model of this type '"is a representation for the class of

all possible events. ...it represents the computer's knowledge of the world."
[1, p.51] However, Raphael rejects this organization with the following state-
ment :

"Unfortunately the model described has several drawbacks
which prevent its use in a general semantic information retrieval system.
It is extremely difficult to construct a useful model, of the form
described, for a significant amount of information; writing a pro-
gram which automatically would add information to the model is out of
the question. The '€ " and "« '" relations are not sufficient to
describe many useful groupings of nouns, but the introduction of a few
additional relations would confuse the structural organization of the
model and force the crosslink statements to be much more complicated.
The verb groupings, in order to be useful, must be carefully selected
according to. the ill~defined restriction that the resulting configuration
allow simple and useful crosslink statements, This may not always be
possible and certainly becomes more difficult as the number of relatious
considered increases." [1, p. 53]




-7A-

a: FCUN TREE

|
something

|
rar'.n :Ly Q’\ vehiicle L o __rw_‘-@

} (human)
TN l
boat see-saw ball doll train animal
Betsy-Lee man child (woman)

airplane (helicopter)

Father Mr. Carl boy girl .

| [ I

« kitten pony rabbit dolg‘ q\ - (farm animal) ,Alic,e

j Jerry Jack Ma-Ma,Mother
l N l P |

PUpPpy Mac cow (chicken) goat pig

rooster hen

P8 LLBLIrELLIITLOIILILIEIINLIIIEBIOIETIYOIAIIOROBOEOEPOIISBOELIRIISRES

b: VERB TREE
|
do

|

T ‘ T
,,v(m'oye) Q\ (H‘VZ))/@ ,
T T 1 1

run jump hop fly mew
: - bl

eat see laugh talk,say

oo-o-oo-co.-’--oooooo--oo.--ooo,--ooa-ooo----o-o;

Figure 2 A Word Association Modet



It seems to us that as a representation of knowledge this structure is
not fundamentally wrong, and, if properly extended, would prove to be very useful
in certain situations. The problems Raphael noted stemmed from the particular
application he had for the structure and the particular form of it that he used.
There are several reasons why we will have more success with it than he believed
possible.

First, Raphael implies that such a structure should be used as an absolute
test for allowable noun-verb, or more generally object-action, relationships. It
should instead serve as more of an index to possible relationships or sets of
relationships. Once candidate relationships are obtained, procedures can then
be applied to rule out uninteresting cases or to somehow order the relationships on
a scale of degree of interest, desirability, or applicability. (In CONNIVER we
can implement mechanisms for accessing relation candidates as special fetch functions.
Thus, '"DT-FETCH" might operate on relation patterns containing objects, concepts,
typical elements, and unknown -- ?X -- variables. The typical elements will
match any object which #IS in the set containing the typical element or any typical
element of a set which is #A-K-O the set containing the typical element to be
matched.)

Second, in Raphael's structure a node is restricted to be #A-K-0 one other
node. Instead of this strict tree structure, we will allow a node to be #A-K-0
many nodes, This creates a lattice under set inclusion and will allow us to make
any useful grouping of objects. It is not clear whether any particular grouping

will correspond to a noun or a verb, but the grouping should make sense in the

discipline (or "world") for which it is formed. Thus, in an area like management ,
it is very common to form concepts from concatenated nouns -- e.g., product grou;
or responsibility center -- and these need to be easily described and related in

our structure.

Third, by regulating our model to a domain that is in some ways limitable
we will be able to construct a useful model for that domain that incorporates a
significant amount of information that is not unduly complicated. It appears
that the W-0-B lattice will be quite flat, so that the number of nodes under anvy
concept won't be very large. Based on this expectation, we will in fact introdusc
a new node to represent additional information whenever we know more aboutf a set of
objects than

a) properties of a typical element;

b) properties of the entire set of objects.



For example, suppose we have the concepts #ENTERPRISE, #SELLS, and #FRUIT., and

we find out further that

(#1S %A&T #ENTERPRISE)
Then if we want to indicate that %A&T sells fruit, but not necessarily all i+’
of fruit, the set %FRUIT must be subseted to that sold by %A&T. We declare
(#A-K-0 #A&T-FRUIT #FRUIT)
(#SELLS %A&T #A&T-FRUIT)

The advantage of this scheme is that it makes every set mentioned by the use

directly fetchable from the global data base and provides a place to put additi«

properties learned about the set. A look at the A&T case description indicates

that not all that many sets will be formed.

Functional dependence:

The concept "a characteristic of'", #A-C-0, is used to declare the existo:
of a relation for which the left-most element of an ordered tuple is a charac-
teristic of the remaining ones. For example, to declare that any object which
is a #FRUIT can have the characteristic #COLOR, we would write,

(#A-C-0 #COLOR S$FRUIT),
which we define to mean that there exists a mapping from each object specified
by #FRUIT to the set of objects specified by #COLOR. Another way to say this
is that given any fruit, this mapping exists and may assign the fruit one or

more colors. That is, (#A-C-0 #COLOR SFRUIT) declares that for each fruit

there may be one or more tuples containing it and a color. The tuples are cnufa’ .

in the above mapping. By convention, such a tuple will be written

(W-OF X Y)
where Y is the fruit, X is its color, and W is the concept, #COLOR, which

specifies the set into which the mapping is done. For example, given

(#A-C-0 #COLOR SFRUIT)
(#IS #RED #COLOR)
(#1S  %GOOD-APPLE-1 #APPLE)
¢ (#A-K-0 #APPLE #FRUIT)
we could state that %GOOD-APPLE-1 is red with the tuple
(#COLOR-OF #RED %GOOD-APPLE-1)
or that all apples are red with the tuple
(#COLOR-OF #RED S$SAPPLE).

Note that this last tuple declares a relation which is a subrelation of (#i-(.¢

#COLOR $FRUIT)j the subrelation is then #A-K-O the initial relation.



-10-

This example gives us an opportunity to review the notions of concept and objec:.
Note that #RED is an object for which the predicate #COLOR is true. #RED is 1o
a concept (concepts are a kind of object) which is true for all red objects. T
we state (#A-K-O #MAGENTA #RED) we are stating that the concept #MAGENTA ic
true for a subset of the objects for which #RED is true.  #MAGENTA #IS a
#COLOR as well.

As a second example, suppose we want to state that a distance is a charac-

teristic of any two cities. We could state

(#A-C~-0 #DISTANCE #CITY #CITY)

Now suppose we want to express the fact that an arm can be in relation

"part" to a body. This can be done most conveniently by declaring a relation

with "a predicate on'" (#A-P-0) rather than #A-C-0. (#A-P-0 X A1 e An)
states that a concept with values true and false and name X exists on the n-tuple

(A1 R An)' For example, to express that an arm can be a part of a body we

would state

(#A-P-0 #PART-OF $ARM S$BODY).
The fact that a predicate is true for a particular n-tuple of objects is stated
with (X O1 e On) where X is the name of the predicate. For example, to
state that the predicate #PART-OF exists on an arm and a body we state

(#A-P-0 #PART-OF $ARM $BODY).
To state that this predicate is true for both my arms I state

(#PART-OF $BILL-ARMS %BILL-BODY).
To state that it is true for my left arm I state

(#PART-OF %BILL-LEFT-ARM %BILL-BODY).

Note that the #A-P-0 and #A-C-0 concepts are used to declare relatiouns.

Using the naming conventions of the next section we can name the declaration
statement; the name is then the name of the relation, and can be used in tuple-

to give properties to the relation.
For example, we might state (#A-C-O #SUPPLIER $A&T-ITEM) and name this
relation %A. If each item is obtained from only one supplier we could stute

that %A is a one-to-many mapping. If some suppliers supply only one item,

we can state (#A-K-O #B #A) and then state that %B is a one-to-one mapping.

The reader should now review the difference between #A-C-0 and #A-P-0. It should
be clear that

(#A-C-0  #COLOR $FRUIT)
Is just shorthand for
(#A-P-0 #COLOR-OF $COLOR $FRUIT)

and in fact, the first will be represented in the machine as the second.



-11-

Naming:
It was already mentioned that any object can have a name. We assign names
with the concept #A-N-0. For example, to name the relation (#A-C-0 #COLOR

$FRUIT), %R1, we would state
(#A-N-0 %R1 (#A-C-0 #COLOR S$FRUIT)).
This .will both state (#A-C-0 #COLOR S$FRUIT) and name it %RL.

Instantiation

The user describes his problem to the system by stating tuples to it. The
system will not accept a tuple unless

a) the tuple declares a relation, %B, which is #A-K-0 a relation %A which

is already known to the system;

b) the tuple is a member of a relation %A which is already known to the sysl
If neither a) nor b) holds the system rejects the new tuple as one which it can:
"understcand." If a) or b) does hold, the system may still complain about the
tuple if it conflicts with facts the system already knows, but the system will
be said to feel it understands what was said and not want to accept it.

Remember that relations are themselves objects. Thus in cases a) and
b) above, relation A can be thought of as a set specified by a concept which passes
only objects which are tuples of a specified form. We will use relations, A,
in this way and name them.

For example, if we state

(#A-N-0 %A (#A-C-0 #COLOR S$FRUIT))
then if we state (#A-N-0O %B (#COLOR-OF #RED $APPLE)), the system will take it
and imply (#A-K-0 #B #A). If we state (#A-N-O %B (#COLOR-OF #RED 7GOUD-AL "1
the system will take it and imply (#IS %B #A), since %B is fully instantiated.

{The element replaces the one element subrelation.)

Properties of Relations

We indicated in the last section that relations themselves have charactieor:

One of the most important characteristics of a relation is its mode (indicais.
the concept #MODE). A relation can have any one of the following modes:

a)  %CAN-HOLD,

b)  %MUST-HOLD,

¢)  %MUST-NOT-HOLD,

d) 7%DOES -HOLD, and

e) 7%DOES ~-NOT-HOLD.
(Thus, (#A-'-0 #MODE SRELATION), (#IS 7%CAN-HOLD #MODE), etc.) TF oho onodn

of a relatio: is not given it is assumed by default to be %ZDOES-HOLD.



-12-

Properties of Mappings

We have explained how an #A-C-0 declaration sets up a mapping. A mapping
is also set up by the true values of a predicate on 2-tuples declared with
#A-P-0. Sometimes it is useful to know the type of the mapping. Therefore
we introduce the concept #MAPPING-TYPE which specifies objects

a) %ONE-TO-ONE

b)  %MANY-TO-ONE

c) %ONE-T0-MANY
d)  %MANY-TO-MANY

As an example, consider specifying whether a store can belong to more than
one division. Given (#A-N-O %Rl (#A-P-O #PART-OF $STORE S$DIVISION)), if a store

must belong to only oune divisior. we state

(#A-N-0 7%R2 (#MAPPING-TYPE-OF %MANY-TO-ONE %R1))
(#MODE-CF  %MUST-HOLD %R2)

A second characteristic of a mapping is its scope, that is, the extent to
which it applies to the members of the sets indicated by the elemenis of the
2-tuples. It will be indicated by the concept #MAPPING-SCOPE which specifies
the objects

a)  7%ONTO-ONTO,

b) %INTO-ONTO,

c) %ONTO-INTO, and

d) %INTO-INTO.
ONTO indicates that the entire set -- that is, all elements of the set,-- partici-
pates in the mapping, while INTO indicates that only a subset of elements partici-
pate.

A third characteristic is the set of constraints that apply to the domains

of a mapping, %R1l, with respect to a superior relation which %Rl is #A-K-O.

This characteristic will be indicated by the concept #CONSTRAINED which specifiocs
the following objects:

a) 7%CONSTRAINED-CONSTRAINED,

b) %UNCONS TRAINED~CONSTRAINED,

c) 7%CONSTRAINED-UNCONSTRAINED, and

d) %UNCONSTRAINED-UNCONSTRAINED,



-13-

If the j-th domain of %R is %CONSTRAINED, then the relation superior to
7Rl contains no tuple with its j-th element in the j-th domain of %Rl and for
some k, the k-th element of that tuple not in the k-th domain of %RI. For exampi
we might declare (#A-P-0 #PERFORMS $JOB-TITLE S$ACTIVITY). Later we might
refine this by stating (#A-P-0 #PERFORMS $BUYER S$BUYING). If a buyer can
only perform buying and no other activity we can state this by constraining the
domain 7%BUYER.

It is somewhat inconvenient to have to use the naming mechanism in order
to specify the mapping properties of relations. Therefore we give a shorthand

which can be used on input. We will use the abbreviations

%ONE-TO-ONE 11
%MANY-TO~ONE M1
%0ONE-TO-MANY 1M
7%MANY-TO~MANY MM
7%0NTO-ONTO 00
%INTO-ONTO I0
%ONTO-INTO OI
%INTO-INTO 11
7%CONSTRAINED-CONSTRAINED CC
%UNCONSTRAINED~CONSTRATINED uc
7%CONSTRAINED-UNCONSTRAINED CU
%UNCONSTRAINED -UNCONSTRAINED uu

and include these abbreviations in the names #A-C-0 and #A-P-0. For example,
to state that every #FRUIT has a #COLOR, we state (#A-I0-C-O #COLOR S$FRUJT)
To state that every fruit has one and only one color we state (#A-1M-I0-C-0
#COLOR $FRUIT). Inside the machine this will be expanded to

(#A-N-0 %Gl (#A-P-O #COLOR-OF $COLOR $FRUIT))

(#MAPPING—TYPE-OF %ONE-TO-MANY %Gl)

(#MAPPING-SCOPE-OF %INTO-ONTO %Gl).
#A-10-C~0 and #A-1M-I0-C-0 are fairly common and so we give them the alternaie.
more pneumonic names, #A-R-C-0, "a required characteristic of'", and #A-U-K-i.-0.
"a uniquely valued required characteristic of", respectively.
Note that if some mapping assigns every objects in a set %B to exactly one object
in set %A, then, under this mapping, %A can serve as an index to the objects in
%B . Fach object in %A specifies a set of objects in %B. Each object in %B
specifies an object in %A. As a special case we say that %B can serve 4s an

index to itself.



-1b4-

Suppose we declére
(#SELLS $A&T-STORE $A&T~STORE-SKU) .
This says that all A&T stores sell all A&T store stock-keeping-units. What we
would like to say is that each A&T store sells only the S-K-U's associated with
it. We can do this by establishing a mapping between S-K-U's and AT stores
and then stating

(#A-N-0 %R1 (#SELLS $A&T-STORE $A&T-STORE-SKU))
(#INDEX~OF %A&T-STORE %R1)

By definition of #INDEX-OF, this restricts the mapping %Rl to contain only
tuples (#SELLS X Y) where X and Y both have the same A&T-STORE as index.
Suppose a relation, A, is declared to be indexed by a set, B, but the set has
yet to be established as an index of some set,C, which is a domain of relation A.
For example, suppose that %A&T-STORE had not been established as an index of
%A&T-STORE~SKU when
(#A-N-0 %R1 (#SELLS $A&T-STORE $A&T-STORE-SKU))
(#INDEX-OF %A&T-STORE %R1)
is stated. In this case, indexing the relation implies that an indexing of
SA&T-STORE-SKU by $A&T-STORE exists. In order to accept this statement, the
system must establish that such an indexing is permitted by existing relations.
We will need the notions of an evaluated tuple of objects and an array of
such evaluated tuples. If one object names another, then the second is a value
of the first. We will make the restriction that an object can have at most one
value, but perhaps several names. Suppose we want to describe A&T store sales,
we might declare,
(#A-U-R-C-0 #SALES $STORE)
(#A-K-0 #A&T-STORE-SALES #SALES)
(#A-K-0 #A&T-STORE #STORE)
(#A-N-O 7%R1 (#SALES-OF S$A&T-STORE-SALES $A&T-STORE))
(#INDEX-OF %A&T-STORE 7%R1)
(#A-N-0 $A&T-STORE-SALES $DOLLAR-VALUE)
(#A-N-0 S$SA&T-STORE S$SINTEGER)

R1 is then a relation between each A&T store and its sales, An evaluated tupls

is a tuple with the predicate name at the left removed and each of the remaining

objects replaced with its value. We could give the sales of A&T stores by

giving the evaluated tuples of %R1. To do this we allow statements of the form
(#ARRAY relation-name list-of-evaluated-tuples-which-are-elements-

of-the~relation).



-15-

For instance, if A&T has 3 stores with sales of $1,000, $1500, and $2,000
respectively, then one evaluated tuple of %Rl would be ($1500 2), and we can

give the sales for all the stores by

(#ARRAY %R1 (($1000 1) ($1500 2) (82000 3))).

Ceneral Features of the W-0-B

A complete list of all the relations in the W-0-B will be given in the next
memo . However, this memo will make more sense if we introduce the central
ideas here.

One interesting thing about the W-0-B is that every concept except #OBJRCT
is #A-K-0 at least one other concept.

Thus the concepts form a lattice under set inclusion. As the W-0~B grows
it will be interesting to watch the shape of this lattice. Also every object
#1S some concept.

At the top of the lattice we find the concepts which have a broader
meaning. In this section we will be discussing those which are not particular
to business activities.

As a first example, it is instructive to see how we handle distance.
Figure 2 shows this part of the W-0O-B net. If the user declares that the distance-
in-miles-from-Boston-to-New-York is a distance-in-miles, then the system will
know that this distance can have a numerical value which is a real number and
that the units of this value are miles. If the user declares that the distance
from-Boston-to-New-York is a distance then the system will still know that iho

distance can have a numerical value which is a real number, but it won't lnow
the units. Note that we are forcing the user to name the distance, not lus!
give its value.

As a second example, it is important to understand how we handle an acti:

and a data item (activities are explained in Memo 4y, This is shown in ¥Fipuse



%0BJECT

-15A-

ﬂ>
a-x-0 #A-K-0
MEASURE J.UNIT | OF -MEASURE
~
#A-K-0 #18
o IMILE
r VS
/#
DISTANCE- S P
"ROM-BOSTON-
70-NEW- YORK

<:’:::::::D%DISTANCE—IN-MILES

T\

I #1IS
|

l 7%DISTANCE - IN-MILES -
FROM-BOSTON-TO-NEW-YORK

(#A-N-0 SMEASURE $REAL-NUMBER)

(#A-C-0

#UNIT-OF -MEASURE
(#UNIT-OF-MEASURE-OF %MILE
(#A-U-R-C-0 #DISTANCE S$CITY S$CITY)

Figure 2.

7%PREDICATE

>

$MEASURE)
%DISTANCE-IN-MILES)

%REAL~-NUMBER

i

#A-K-0

%VALUE



-16-

ECT
#A-K-0 #A-K-0
%ACTIVIT %DATA-ITEM
#A-K-0 #A-K-0

%SELLING %SALES

A

' #A-K-0 T 4a-k-0

| '
%A&T-STORE-SELLING 7A&T-STORE-SALES

A~ ‘ e

| #IS | #IS

}

l :
% A&T-STORE-32-SELLING 7A&T-STORE-32-SALES

(#A-P-0 #HAS-CONTEXT $SELLING S$RESPONSIBILITY-CENTER

SRESPONSIBILITY-CENTER-SET $COMMODITY-SET)
(#A-U-R-P-0 #GENERATOR S$ACTIVITY $DATA-ITEM)
(#A-U-R-P-0 #GENERATOR-OF $SELLING $SALES)

Figure 3,

An activity is the W-0-B name for what is known in Memo 4 as a procedure
family. ' An activity needs to be placed in context. This 1is
done by using any instance of an activity in a #HAS-CCNTEXT tuple
which links the activity and the parameters which place it in
context. For example, given the relations in Figure 3, one could declare
#A&T-STORE-SELLING to be the concept for selling done by each A&T-STORE with

the relations.

(#A-K-0 #A&T-STORE-SELLING #SELLING)
(#A-N-0 7R1 (#HAS-CONTEXT $A&T-STORE-SELLING $A&T-STORE %A&T-CUSTOMER
SA&T-STORE-ITEM-SET )
(#INDEX-OF %A&T-STORE %R1)

Note that the user has declared that all stores serve the same customers, but
he has left open the possibility of different item sets for each store. If

the user wants to define selling at A&T-STORE-32 he could add to the above,

(#1S 7%A&T-STORE-32-SELLING #A&T-STORE-SELLING)



-17-

(#HAS ~CONTEXT %A&T-STORE-32-SELLING %A&T-STORE-32 %A&T-CUSTOMERS
%A&T-STORE-32-ITEM-SET)

A relation which does not hold for all time is called an event. Events are

of two types, simple events and recurrent events. A simple event happens only

once; it has a start, a duration, and an end. A recurrent event happens repeatedly;

and each occurrence is essentially a simple event. Note that occurrences can't
overlap one another in time. Obviously, a recurrent event is a concept which
specifies a set of occurrences. As usual, we can give properties of the entire
event, or of a typical occurrence. (Of course we can always subset the occur-
rences tu ,ive more detail.) The occurrences of a recurrent event form .a
sequence ordered on the time each occurrence starts. It will be common to
establish a one-to-one mapping between the occurrences of an event and some
other sequence already ordered by time. Objects in this second sequence can
then be used to index the first one.

It is quite common for one event to be a generator of another, or in some
other way responsible for its occurrence. If A is generated by B, then the
set of objects used to index the occurrences of B can also be used to index Al

since we assume that A can occur only if B occurs (A need not occur).

An activity is a common type of recurring event. An activity can generate
unique data items which are therefore also recurring events. In fact we require
that every data item be generated by some activity. The context and time index

of the data item can then be determined from its generating activity.

An enterprise is made up of a heirarchy of responsibility centers.

Every activity is the responsibility of some responsibility center. We may want

to mention a data item without giving its associated activity. If so, we can
associate it with a responsibility center which has responsibility for its
activity. It is a data item of that responsibility center and all of those above
it.

Every recurrent event must be either random or scheduled. If it is scheduled
then its schedule must be given. A schedule is a sequence of objects which are
moments in time or a rule for generating such a sequence, The typical member of
this sequence can be used when referring to a scheduled occurrence. A random
event must either have its occurrences numbered, or its occurrences must be

indexed by those of an event it depends on. If a relation, X, is numbered, the



-18-

numbers form the objects of the set 7%X~EVENT-NUMBER.
Clearly the values of any data item form a sequence in time. Thus i

understood that when the values are mmerical time series analysis can be

on them,



BIBLIOGRAPHY

1) M. Minsky, ed., Semantic Information Processing, MIT Press (1968).

2) D.V. McDermott and G.J. Sussman, The CONNIVER Reference Manual, MIT
A/I Lab., Memo 259 (May, 1972).

3) P. Winston, Learning Structural Descriptions From Examples, MIT Project
MAC TR~76, (Sept., 1970).

4) T. Winograd, Procedures as a Representation for Data in a Computer Pro-
gram for Understanding Natural Language, MIT A/I Lab TR-17, (Feb.,
1971).

5) J. Earley, Relational Level Data Structures for Programming Languages,
Computer Science Department, University of California, Berkeley,
(March, 1972),

6) W. Hausman and R. Peterson, Multiproduct Production Scheduling for
Style Goods with Limited Capacity, Forecast Revisions and Terminal

Delivery, MIT Sloan School Working Paper 522-71, (April, 1971).

7) 0/S 360 Inventory Control Program Description Manual, 1IBM document SH20-
0776-0, (May, 1970).

8) A. Newell and H. Simon, Human Problem Solving, Prentice Hall (1972).

9) R. Balzer, Automatic Programming, Institute Technical Memorandum, Univ.
of Southern California, Information Sciences Institute (Sept. 1972).



