
A Decompositional Search Algorithm for

Efficient Diagnosis of Multiple Disorders

'homas Dee Wu

B.S., Stanford University (1983)

M.S.. Stanford University (1984)

Submitted to the department of

Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

Massachusetts Institute of Technology

June 1992

Signature of Author...... Signature redacted en

Electrical Engineering and Computer Science

| _ 7, J une 1992

Signature redacted 3

Ramesh S. Patil

Associate Professor, Computer Saence al Engineering
 CSIs SMporfisor

Signature redacted

Arthur C. Smith

Cunairman., Departmental Committee on Graduate Students

ARCHIVES
MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

JUL 10 1992

1IBRARIES

(© Thomas Dee Wu, 1992. All rights reserved.

The author hereby grants to the Massachusetts Institute of

Technology permission to reproduce and to distribute copies of

this thesis document in whole or in part.

A Decompositional Search Algorithm for Efficient

Diagnosis of Multiple Disorders

by
Thomas Dee Wu

Submitted to the Department of

Electrical Engineering and Computer Science

on June 1992, in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Abstract

This thesis develops a new approach to the diagnosis of multiple disorders

called decompositional search. Decompositional search finds plausible de-

compositions of a given problem into subproblems. Each subproblem is rep-

resented as a cluster of symptoms, which is explained by a set of disorders

called a differential diagnosis. Differential diagnoses are defined by common-

ality and disjointness constraints that arise from the symptom clusters in a

decomposition.
We design and implement an algorithm for decompositional search and

compare its efficiency with a non-decompositional diagnostic algorithm called

candidate generation. Experimental runs on a large medical knowledge base

demonstrate that decompositional search is more efficient than candidate

generation by several orders of magnitude. Further analysis reveals that

decompositional search gains much of its efficiency by exploiting decompo-

sitional structure inherent in the domain. We extend the decompositional

search approach to account for probabilistic relationships between symptoms

and disorders.

Decompositional search increases the efficiency of diagnostic problem

solving and thereby expands our ability to solve problems in complex do-

mains. Problem decompositions also facilitate one’s understanding of the

structure of a problem and thereby contribute towards more effective deci-

sion making.

Thesis Supervisor: Ramesh S. Pati.

Acknowledgements

[would like to thank my thesis committee for supervising and guiding this

research. Their advice and comments greatly influenced the content and

form of this thesis. Randy Davis focused on general, fundamental issues

and thereby helped clarify basic ideas in this thesis. Peter Szolovits sought

reasons underlying the success of the algorithm and thereby motivated the

analytical perspective of this thesis. And Ramesh Patil, my advisor, empha-

sized the practical aspects of algorithm design and testing and thereby gave

this thesis its strong experimental flavor.

The research reported here was supported by National Institutes of Health

grant RO1 LM04493 from the National Library of Medicine and by National

Research Service Award T32 GMO07753 from the Department of Health and

Human Services. Randolph Miller of the University of Pittsburgh School of

Medicine allowed use of the QMR knowledge base for testing purposes.

This work was performed in the Clinical Decision Making Group of the

MIT Laboratory for Computer Science. I thank my colleagues in the group

for making it such a stimulating and enjoyable place to work. I also thank

them for patiently sharing their Lisp machines and SparcStations for many

experimental runs.

Finally, this thesis would not have been possible without the support of

those outside the laboratory. My friends tolerated long stretches of silence

during my thesis research and writing, but still provided encouragement and

companionship when I needed it. Most of all, I am indebted to my parents

and my brothers, Robert and Perry, for their love throughout.

Contents

[Introduction

1.1 Overview. .

1.2 The Nature of Diagnosis . .

1.2.1 Abductive Reasoning

1.2.2 Multiple Disorders

Formalizing Diagnosis . . .

[1.3.1 Diagnostic Knowledge Bases

1.3.2 Candidate Generation

Near Decomposability :

1.4.1 Redundancy, Structure, and Complexity

1.4.2 The Structure of Complex Systems . .

1.4.3 Syndromic Structure in Knowledge Bases

Decompositional Search

1.5.1 Clusters and Differential Diagnoses

1.5.2 Decompositions as Constraints

Features of Decompositional Search . .

1.6.1 Cartesian Product Representation

1.6.2 Causal Equivalence
Guide to the Thesis .

Example
2.1 The Problem

2.2 Candidate Generation

2.3 Decompositional Search

2.4 Comparing the Algorithms

1

12

J

~

22
3

23

26

26

J

J

33

35

36

38

J

17

3 Contents

4 Problem Decomposition
3.1 Preliminaries

3.1.1 Diagnostic Problems . .

3.1.2 Causation and Explanation
Problem Decompositions

3.2.1 A Set of Symptom Clusters

3.2.2 Ambiguous and Instantiated Decompositions
Differential Diagnoses.

3.3.1 Commonality and Disjointness Constraints

3.3.2 Definition of Differential Diagnoses .

Differential Formulation

3.4.1 Exclusion Sets and Unifying Disorders

3.4.2 Algorithm for Differential Formulation

Decompositions and Candidates . . .

3.5.1 Candidate Sets Co

3.5.2 Justifications for Disorders and Differentials

3.5.3 Candidate Sets and Minimality

Decompositional Search
1.1 Search Trees

1.2 Symptom Assignment

1.3 Ambiguation

Disambiguation
Search Strategy

Incompleteness

Experimental Comparison
5.1 Case Selection . . .

5.2 Single-Target Cases J

5.3 Characterizing Decompositional Search
5.3.1 Accuracy

5.3.2 Robustness

Case Presentation and Ordering

5.4.1 Case Presentation

5.4.2 Case Ordering

Multiple-Target Cases

51

52

9

“5

6

50

"J

i)

"2

66

56

08

69

73

74

38

RQ

93

94

96

00

.00

103

105

108

108

[11

Contents

0 Analysis
6.1 Combinatorics of Partial Explanations

6.2 Theoretical Analysis

6.3 Domain and Problem Structure

6.4 Trimmed Subdomain

6.5 Redistributed Subdomain . .

5.6 Decomposition of a Subdomain

{ Probabilistic Decompositional Search

7.1 Probabilistic Knowledge Bases

7.1.1 Prior Probabilities

7.1.2 Link Probabilities .

Causation and Probability

7.2.1 Causal Probabilities

7.2.2 Non-Causation and Symptom Probabilities .

Case Probability

Candidate Sets .

Candidates . . .

Tasks..........

Single-Fault Assumption
Relation to Other Work .

7.8.1 Probabilistic Candidate Generation

7.8.2 Belief Networks .

Summary and Discussion

Conclusion

8.1 Summary

8.2 Features of Decompositional Search

8.2.1 Implicit and Explicit Representation
8.2.2 Convex Approximation . .

8.2.3 Causal Structure

3.2.4 Symptom-Based Diagnosis oo

8.2.5 Static and Dynamic Problem Decomposition

Relation to Other Work

8.3.1 Diagnosis from First Principles

8.3.2 Medical Diagnostic Systems

8.3.3 Conceptual Clustering

117

[18

120

125

~30

39

141

145

146

L4T

48

 ol
i51

153

154

L156

158

199

161

162

162

164

165

167

L168

171

171

172

174

175

L176

7

177

180

189

% Contents

x 4

8.3.4 Problem Reduction Techniques

Further Work

183

185

A Implementation of Decompositional Search Algorithm 189
A.l Sets 190

A.2 Primitive Classes 192

A.3 Tasks. 196

A.4 Sets of Tasks . 198

A.5 Decompositions . . . 199

A.6 Differential Formulation 200

A.7 Ambiguation and Disambiguation 201

A.8 Symptom Assignment 202

A.8.1 Covering. 202

A.8.2 Restricting 202

A.8.3 Adjoining 203

A.8.4 Admixing 203

A.9 Nodes 204

A.10 Search 206

B Implementation of Candidate Generation Algorithm

B.1 Class Definitions

B.2 Search Routines

B.3 Predicates .

C Supporting Routines

C.1 Link Probability Data Structures

C.2 Knowledge Base Input
C.3 Interface .

D Subdomain for Prerenal Azotemia

D.1 Symptoms
D.2 Disorders

D.3 Causal Links

Bibliography

209

210

210

211

213

214

214

218

221

222

222

 227

DC

Figures

An abductive inference with multiple disorders .

A diagnostic knowledge base

Example of candidate generation . . . |

Near decomposability in a diagnostic knowledge base

Structure of a problem decomposition .

The concept of differential formulation

Example of decompositional search . .

Output of a decompositional search system

2-1 Example knowledge base

2-2 Candidate generation search tree for example

2-3 Decompositional search tree for example . . . |

2-4 Correspondence between candidates and decompositions

3-1

3-2

3-3

3-4

3-3

3.6

The concept of ambiguity . .

Justification and exclusion sets

Algorithm for duplicate elements

Algorithm for differential formulation

Example of differential formulation

Geometric representation of differential formulation

1-1

1-2

4-3

1-4

1-5

1-6

1-7

Decompositional search space

Assignment operators for decompositional search
The need for admixing

Algorithm for symptom assignment

Algorithm for ambiguation .

Algorithm for disambiguation
Example of disambiguation .

16

3

+)

26

28

29

319

7

3

J

35

6U

62

53

59

7°

Is}
7

79

3

32

34

7

19 Figures

4-8 Example of a degenerate decomposition

1-9 Algorithm for breadth-first decompositional search

1-10 Example of incompleteness..

37

90

91

5-1 Complexity for single-target cases, random ordering 98

5-2 Distribution of soundness and redundancy 102

5-3 Example of nonminimality in decompositional search . . . 103

5-4 Example of redundancy in decompositional search. . . . 104

5-5 Non-robust cases for decompositional search . . . 105

5-6 Cases for prerenal azotemia subdomain 107

5-7 Distribution of solution sizes for prerenal azotemia cases . . . 109

5-8 Complexity for prerenal azotemia cases, random ordering . . . 110

5-9 Distribution of time complexity for prerenal azotemia cases . . 112

5-10 Complexity for single-target cases, specific-first ordering 114

5-11 Complexity for double-target cases, random ordering 116

6-1 Combinatorics of partial explanations 119

6-2 Theoretical analysis of worst-case complexity 123

6-3 Size distribution of causes and effects in QMR 127

6-4 Prerenal azotemia subdomain 128

6-5 Explanatory power for prerenal azotemia subdomain 129

6-6 Explanatory power for trimmed subdomain. 131

6-7 Complexity for prerenal azotemia cases, trimmed subdomain . 133

6-8 Effect of subdomain trimming on diagnostic complexity 134

6-9 Redistributed prerenal azotemia subdomain 137

6-10 Explanatory power for redistributed subdomain 138

6-11 Complexity for prerenal azotemia cases, redistributed subdo-

main Ce ee ee ee 139

6-12 Effect of subdomain redistribution on diagnostic complexity . 140

6-13 Coherent decompositions of the prerenal azotemia subdomain 142

nn

7-1

7-9

Example of a probabilistic knowledge base

Summary of probabilistic notation

150

154

8-1 Conflict recognition

8-2 Example of problem reduction

179

184

Chapter 1

Introduction

[2 Introduction

Divide each problem that you examine into as many parts as you

can and as you need to solve them more easily.

René Descartes, Discours de la Méthode (1637)

This rule of Descartes is of little use as long as the art of

dividing ... remains unexplained By dividing his problem

into unsuitable parts, the unexperienced problem-solver may

increase his difficulty.

Cottfried Leibniz, Philosophische Schriften (c. 1690)

1.1 Overview

As Descartes and Leibniz noted over 300 years ago, a problem can often

be simplified by decomposing it into smaller subproblems—when 1t is de-

composed correctly. Today, even with powerful computers, decompositional

methods are used extensively to solve complex problems. These methods ap-

pear in various forms as parallel programming, dynamic programming, and

divide-and-conquer algorithms [8]. However, decompositional techniques are

largely limited to problems that have an obvious recursive structure. This

prerequisite excludes many problems that are “ill structured”, where the task

of finding the correct decomposition poses a difficult task in itself [67]. This

task—“the art of dividing a problem” —is the subject of this thesis.

Specifically, we develop and analyze a method called decompositional

search that generates plausible decompositions for a given problem. Decom-

positional search extends the range of decompositional techniques to cover

a broad class of problems, those that form hypotheses to explain a set of

evidence. Such problems perform abductive reasoning, or inference to the

best explanation [25, 53]. Abductive problems arise in several guises; one

typical application is diagnosis in the presence of multiple disorders. In this

task, the goal is to explain a given set of evidence in terms of a set of mul-

tiple coexisting disorders. The task of multidisorder diagnosis constitutes

an important and practical example of abductive problem solving. Accord

ingly, multidisorder diagnosis serves as a testbed for our development of a

decompositional search algorithm.

Overview 13

Our work on decompositional search is motivated by two factors. First, an

appropriate problem decomposition can simplify a complex problem, thereby

allowing it to be solved more efficiently. Second, a problem decomposition

may be useful end product in itself, giving insight into a problem without

necessarily generating its solution. Of these two potential advantages, efh-

ciency and utility, the former 1s tested more easily. In this thesis, we test

efficiency by implementing the decompositional search algorithm in a com-

puter program called SYNOPSIS. With this implementation, we then compare

decompositional search with a non-decompositional algorithm called candi-

date generation. We select this algorithm because of its predominance in the

literature and because of its close relationship with decompositional search.

Our experimental results, using a large, real-world knowledge base, show that

decompositional search is more efficient than candidate generation by several

orders of magnitude. Consequently, decompositional search greatly expands

our capability to solve problems in complex diagnostic domains.

The second advantage, utility, is not so easily tested by experiment, and

so for this claim, we appeal primarily to rhetorical arguments. The utility of

decompositional search derives from its novel data structure, called a problem

decomposition. A problem decomposition structures the given evidence by

grouping 1t into subproblems. In the decompositional search paradigm, di-

agnosis therefore becomes a search for structure. The structure of a problem

can convey important information, especially when there is too little evidence

for a definitive hypothesis. Moreover, a problem decomposition represents

a set of hypotheses, thereby providing a useful level of abstraction. The

search for structure in decompositional search contrasts with the traditional

paradigm, where diagnosis is a search for individual hypotheses. This view

lacks any notion of structure or abstraction over sets of hypotheses.

To achieve both efficiency and utility, the decompositional search ap-

proach relies on structure inherent in the underlying domain. Therefore,

we not only develop a decompositional search algorithm but also investi-

gate decompositional structure in diagnostic domains. We describe such

domains as having a structure that is nearly decomposable, meaning that

it consists of several groups of evidence and hypotheses called syndromes.

Within syndromes, there are relatively many causal relationships between

evidence and hypotheses; between them, there are relatively few. In this

thesis, we characterize and quantify this type of domain structure and deter-

mine experimentally its role in diagnostic complexity. Our results indicate

14 Introduction |

that decompositional search does indeed exploit domain decomposability to

a significant extent.

[n this thesis, then, we investigate decomposable structure, both as an

algorithmic device and as a natural phenomenon. As an algorithmic device,

decompositional search increases the efficiency of multidisorder diagnosis and

enables diagnostic systems to discover and communicate the structure of

a problem. As a natural phenomenon, near decomposability improves our

understanding of not only the computational complexity of diagnosis but also

the nature of the diagnostic task itself.

1.2 The Nature of Diagnosis

To better understand the issues involved in decompositional search, it is

aseful to look at diagnostic reasoning from a broad perspective. In this

section, we examine diagnosis as both a form of abductive reasoning and a

type of combinatorial problem solving

1.2.1 Abductive Reasoning

Diagnosis is a process of reasoning “backwards” about causal events. Such

reasoning is backwards because it reverses the natural progression from cause

to effect, beginning with the effect and ending up with the most plausible

cause. Backwards reasoning can be modeled by abductive inference, which

takes the following form:

Tuberculosis can cause fever.

Fever 1s present.

= (Abduction) Tuberculosis may be present.

Abduction differs from other forms of inference, such as induction and deduc-

tion. Induction is the process of hypothesizing a general rule from particular

instances [29]. For example, if all patients with tuberculosis have fever, we

might infer inductively that tuberculosis causes fever. On the other hand,

deduction is the process of making logically correct inferences. In contrast

with abduction, deductive inference makes “forward” inferences:

I'he Nature of Diagnosis 15

If tuberculosis is present, then fever is present.

Tuberculosis is present.

= (Deduction) Fever is present.

Abduction is closely tied to causality, while deduction is not [5]. In con-

trast, deduction handles logical implication. For example, suppose that all

ratients at hospital M have fever. That is.

If patient is in hospital M, then fever is present.

Then if we know that Smith 1s in hospital M, we can conclude deductively

that he has fever. In contrast, abductive inferences do not make sense unless

the underlying domain is causal. If we knew that Smith had fever, the

backward inference that he is in hospital M would be a poor explanation for

fever. Abduction fails because the statement about hospitals and fever is not

a causal relationship.

Abduction also depends heavily on notions of plausibility or likelihood.

Although probabilistic logics exist, deductive systems in logic and theorem

proving generally do not require notions of probability. Thus, causal state-

ments in abduction usually are not deterministic, but indicate only possible

causes. For example, in a patient with fever, tuberculosis may not be the ac-

tual explanation or even the best one, because there may exist a more likely

cause, such as the flu.

Because it is causal and probabilistic, abduction is well suited to many

problem-solving tasks. Abduction provides a model not only for diagnosis

but also for weighing evidence and making hypotheses, particularly for events

that are causal. Because causality is an important organizing principle in our

thinking, many problem-solving tasks share features with diagnosis, including

applications in expert systems [6, 65], natural language understanding [4, 28],
machine learning [42], logic programming [9], and default reasoning [13, 64].

1.2.2 Multiple Disorders

Diagnosis is most challenging when more than one disorder may be present

simultaneously. In multidisorder diagnosis, multiple symptoms are allowed,

and multiple disorders may plausibly explain them. For example, figure 1-1

shows a case where the flu and common cold together, but not individually,

can explain the symptoms of fever and cough. This paradigm contrasts with

16 Introduction

Tuberculosis, the flu, and malaria can cause fever.

Tuberculosis, the common cold, and asthma can cause cough.

Fever and cough are present.

= (Abduction) One of the following statements holds:

Tuberculosis may be present.

The flu and the common cold may both be present.

The flu and asthma may both be present.

Malaria and the common cold may both be present.

Malaria and asthma may both be present.

Figure 1-1 An abductive inference with multiple disorders.

diagnosis under the single-fault assumption, where only a single disorder is

assumed to explain all the symptoms [11]. Explanations that hypothesize

one or more coexisting disorders are called candidates.

By allowing candidates to express multiple disorders, we expand the

power and scope of diagnostic methods beyond the single-fault assumption.

Medical diagnosis, for instance, is characterized by patients who often have

a combination of acute and chronic diseases. Multidisorder diagnosis also

provides a framework to address other issues in diagnosis. For example,

multidisorder diagnosis potentially provides a framework for handling false

evidence. In such cases, a symptom that is erroneously reported to be true

could be explained by a second “disorder” that represents measurement error.

The price for this expanded power and scope is increased computational

complexity. The number of possible candidates grows exponentially with the

number of disorders under consideration [3]. This computational behavior

places a premium on finding efficient algorithms for multidisorder diagnosis.

especially if diagnostic programs are to scale up to large, real-world knowl-

edge bases.

1.3 Formalizing Diagnosis

To study multidisorder diagnosis in depth, we move from our general discus-

sion to a formal model. In this section, we provide background information

about diagnostic knowledge bases and describe the particular problem that

f
Bf

ed Formalizing Diagnosis 17

decompositional search addresses. We also describe the candidate generation

algorithm that is currently used to solve this problem.

1.3.1 Diagnostic Knowledge Bases

A diagnostic knowledge base represents the domain knowledge needed for

diagnostic problem solving. It consists of symptoms and disorders, and the

causal relationships between them. A symptom is a piece of evidence about

the behavior of a system. Symptoms may express subjective findings as well

as objective signs and test results. Evidence is obtained when we assign a

truth value to a symptom: “positive” (or “present”), “negative” (or “ab-

sent”), or “unknown”. We allow “unknown” symptoms because evidence is

almost always incomplete: values of symptoms are frequently unavailable or

irrelevant to a given problem. The total sum of evidence constitutes a diag-

nostic problem, or case. A case contains a set of positive symptoms and a

set of negative symptoms. All other symptoms are assumed to be unknown.

Just as symptoms are components of evidence, disorders are components

of hypotheses. A disorder can assume a wide variety of forms. It can be a

faulty component, such as a loose connection or a burned-out light bulb, or it

can be a failure mode not connected to any particular component, such as an

accidental connection between two separate wires. A disorder might even be

an entirely global failure mode, such as an excessively high or low operating

temperature that affects the entire system. Finally, a disorder might explain

evidence without implicating the system at all, such as attributing it to

measurement error. Disorders can express any of these possibilities. All that

matters is that a disorder is accepted as a possible explanation by experts in

the domain of interest. Of course, what is acceptable depends on the available

domain knowledge and may be open to debate, thereby affecting the content

of the knowledge base. One might imagine, for instance, that a medical

knowledge base earlier in this century might have contained disorders such

as “dropsy” (now the symptom edema) and “consumption” (tuberculosis).

These symptoms and disorders are linked by causal relationships, which

are also represented in a diagnostic knowledge base. These relationships can

be represented as a bipartite graph, with disorders on one side and symp-

toms on the other. An example of a diagnostic knowledge base is shown

in figure 1-2. In this graph, a causal link between a disorder and symptom

means that the disorder is a possible cause for the symptom. Conversely, the

18 Introduction

Ny, Mal

1

Flu

Fever of

Tb

Cough
mp1

Cold

Asth

Figure 1-2 A diagnostic knowledge base. Symptoms are shown on the left;

disorders on the right. Causal links connect the two sets.

absence of a link indicates that the disorder is not a possible cause for the

symptom. Note that causal links specify possibility and not necessity. When

a disorder is present, all, some, or none of its possible effects may be positive.

This type of knowledge base is called a categorical knowledge base, be-

cause 1t specifies only the presence or absence of causal associations between

disorders and symptoms, and not their probabilistic strength [75]. We can,

however, generalize a categorical knowledge base to a probabilistic knowledge

base. In such a knowledge base, each disorder and link has an attached prob-

ability, indicating respectively the prior probability of the disorder and the

probability of the disorder causing the symptom. In this thesis, we concen-

trate on developing a theory of decompositional search for the categorical

case. However, our work serves as a first step towards a probabilistic theory

of decompositional search, and in fact, we will present preliminary results of

such a theory.

A diagnostic knowledge base encodes information for a particular domain,

the set of diagnostic problems for which it is valid. Diagnostic knowledge

bases of the appropriate form exist in several domains. For example, the

diagnostic program INTERNIST [39], now available as QMR [38], contains a

large medical knowledge base. This knowledge base contains information

on 600 diseases, or 80 percent of those seen commonly in general internal

medicine. The existence of such large knowledge bases enables us to test

the ability of diagnostic algorithms to scale up to real-world problems. They

4 Formalizing Diagnosis 19

also provide additional motivation to develop efficient algorithms that can

operate on such diagnostic knowledge bases.

1.3.2 Candidate Generation

A knowledge base constitutes only part of a diagnostic program. In addi-

tion, a diagnostic program requires a computational process, or diagnostic

algorithm, to make inferences based on the knowledge base. This part of

the program is also called an “inference engine” in the expert systems lit-

erature [2]. Since the knowledge base contains domain-specific information,

the diagnostic algorithm is domain-independent. Thus, work on diagnostic

algorithms can be applied to any domain knowledge base of the appropriate

form.

One predominant diagnostic algorithm is candidate generation [14, 23,

59]. In candidate generation, the goal is to explain a set of positive symptoms

with a conjunction of disorders, or a candidate. A set of disorders is a

candidate if it explains every positive symptom in a given case. In other

words, for every positive symptom in the case, a possible cause for it must

exist in the proposed candidate. We represent candidates in square brackets,

e.g., [F1lu,Cold|, meaning that the symptoms Flu and Cold are present.

Note that in defining a candidate we have ignored negative symptoms.

This is because causal links express possible causation, not necessary causa-

tion. Hence we cannot rule out any disorder based on a negative symptom.

However, negative symptoms may make a candidate less likely. Thus, in this

paradigm, negative symptoms exert their role by modifying the probability

of a candidate, once it 1s generated. We will consider the role of negative

symptoms in our chapter on probabilistic decompositional search.

Diagnostic algorithms such as candidate generation seek those explana-

tions that are most plausible. In domains where probabilistic information

is available, the most plausible explanation is that which has the highest

conditional probability, given a particular case. But in categorical domains,

diagnostic algorithms require plausibility criteria instead to select the best

explanations [54]. Most recent diagnostic algorithms use minimality as their

plausibility criterion. A candidate is minimal when none of its subsets ex-

plains all of the positive symptoms. If the symptoms Fever and Cough are

both positive, then the candidate [Flu,Cold] is minimal because neither [Flu]

nor [Cold] sufficiently explain both symptoms. Note that a candidate makes

20 Introduction / q

1

T+ [FL
A

[Mal]

[Tb] Fa;Fb1 [Flu, Cold] [Flu,Asth] iMalt-Fb} [Mal, Cold] [Mal, Asth]

Figure 1-3 Example of candidate generation. The first row shows the diagnosis

of Fever; the second row, of Fever and Cough. Nonminimal candidates are shown

crossed out.

no hypothesis about disorders not in the candidate. The status of these other

disorders is essentially “unknown”. Thus, a single symptom may have more

than one cause, including disorders within or outside of the candidate.

Other plausibility criteria besides minimality exist. One criterion that is

stronger than minimality is minimal cardinality. A candidate has minimal

cardinality when it explains the given symptoms using the fewest possible dis-

orders. For Fever and Cough, the single-disorder candidate [Tb] is of minimal

cardinality, meaning that all two-disorder candidates, such as [Flu,Cold], are

not. Although minimal cardinality greatly reduces the number of “plausi-

ble” candidates, most researchers consider this criterion too restrictive. For

example, a single rare disorder may exist that potentially explains the given

symptoms, but two or more common disorders may be more likely causes. So

a single-disorder candidate may indeed be less plausible than a multidisorder

candidate. For instance, tuberculosis may explain both a fever and cough,

but 1t is much less common than a coexisting flu and cold.

Plausibility criteria, like minimality, identify a set of plausible candidates.

The predominant algorithm for producing minimal candidates is candidate

generation. This technique forms the basis of both model-based diagnosis [12]

and set-covering diagnosis [58]. An example of candidate generation is shown

in figure 1-3. This example uses the knowledge base in figure 1-2 to solve

the case where symptoms Fever and Cough are both positive. The search

tree begins by explaining Fever, by creating the three candidates [Tb], [Flu],

/] Near Decomposability 21

and [Mal]. Each candidate corresponds to a possible cause for Fever. Each

minimal candidate is then tested for its ability to explain the next symp-

tom, Cough. Candidate [Tb] already explains Cough, so it is kept in the

search tree unaltered. Candidate [Flu], however, does not explain Cough, so

it must be expanded by the possible causes for Cough, namely, disorders Tb,

Cold, and Asth. This yields the two-disorder candidates [F1u,Tb], [F1u,Cold],

and [Flu,Asth]. However, candidate [Flu,Tb] is nonminimal and is pruned

because disorder Tb already explains both Fever and Cough. Similarly, can-

didate [Mal] does not explain Cough either, so it is expanded by the possible

causes for Cough to generate [Mal, Tb], [Mal,Cold], and [Mal,Asth|. Candi-

date [Mal,Tb] is pruned because it is nonminimal. The end result is the five

minimal candidates [Tb], [Flu,Cold], [Flu,Asth], [Mal,Cold], and [Mal,Asth].
Note that much of the reasoning in candidate generation is redundant.

Candidates [Flu] and [Mal] are expanded for the same reason: they explain

only Fever. In addition, both two-disorder candidates containing Tb are

pruned for the same reason: Tb explains both Fever and Cough. The two-

disorder candidates that are not pruned are those that contain one disorder

that explains Fever but not Cough (i.e., Flu or Mal) and one that explains

Cough but not Fever (i.e., Cold or Asth).

This redundancy suggests that a more efficient method may be possible.

The amount of redundant reasoning might be reduced if we could group

candidates based on the rationale by which they explain the symptoms. Then

decisions about whether to expand or prune could be applied to the entire

group of candidates, rather than having to be computed for each candidate

individuallv.

1.4 Near Decomposability

[n computer science, redundancy is a sign of structure. When a task is itera-

tive, it suggests an underlying list structure; when a task is recursive, it sug-

gests an underlying recursive structure. Likewise, the redundancy observed

in candidate generation suggests a type of structure that is decomposable.

[n this section, our attention turns to whether decomposable structure can

be exploited to reduce the complexity of diagnosis.

22 Introduction 1. bn

1.4.1 Redundancy, Structure, and Complexity

Searching for minimal candidates is inherently computationally complex.

Finding the set of minimal candidates belongs to a class of problems that is

called NP-hard [3, 19]. Essentially, this means that there exists a worst-case

series of problem instances for which all known algorithms behave poorly,

requiring time that is exponential in the size of the problem. Thus, it is un-

likely that we could design an algorithm for computing minimal candidates

that is efficient in the worst-case.

However, we are not particularly interested in worst-case analyses, espe-

cially in an empirically-based task like diagnosis, where the theoretical worst

case probably never arises. A diagnostic problem is not intended to push a

diagnostic system to its computational limits. Rather, a diagnostic problem

comes from a real-world domain knowledge base and a particular case, both

of which are shaped fundamentally by the particular system being diagnosed.

Computational complexity theory, which is typically concerned with the

worst case, offers little to say about such naturally occurring instances.

In such instances, the performance of two diagnostic algorithms may dif-

fer markedly, even though their performance in the asymptotic worst case

remains the same. Thus, we now ask whether a diagnostic algorithm can

exploit structural features of diagnostic domains and cases to increase effi-

ciency.

1.4.2 The Structure of Complex Systems

Since structure in diagnostic knowledge bases derives from the systems being

diagnosed, structure must be present in the systems themselves. Although

we must be careful not to overgeneralize, complex systems typically share a

number of features. The feature that we identify and exploit in this thesis

is the fact that complex systems are often nearly decomposable. The notion

of near decomposability derives from Herbert Simon, who describes it as

follows [68, p. 209-210]:

In hierarchic systems we can distinguish between the interactions

among subsystems, on the one hand, and the interactions within

subsystems—that is, among the parts of those subsystems—on

the other. The interactions at the different levels may be, and

Near Decomposability 23

often will be, of different orders of magnitude. In a formal orga-

aization there will generally be more interaction, on the average,

between two employees who are members of the same department

than between two employees from different departments. In or-

ganic substances intermolecular forces will generally be weaker

than molecular forces, and molecular forces weaker than nuclear

forces.

In a rare gas the intermolecular forces will be negligible com-

pared to those binding the molecules—we can treat the individual

particles for many purposes as if they were independent of each

other. We can describe such a system as decomposable into the

subsystems comprised of the individual particles.... As a second

approximation we may move to a theory of nearly decomposable

systems, in which the interactions among the subsystems are weak

but not negligible.

In other words, near decomposability means that complex systems can of-

ten be subdivided into subsystems, where the behaviors of subsystems are

independent or only weakly dependent on one another.

There are various explanations for why near decomposability should exist.

Simon proposes that nearly decomposable systems are more stable and hence

more likely to develop by evolution or by design [68]. But regardless of the

reason, it appears that many diagnostic domains are indeed nearly decompos-

able. Automobiles are composed of subsystems for ignition, steering, power

transmission, braking, and so on. In medical diagnosis, the human body is

divided into organ systems, such as those for the cardiovascular (heart), pul-

monary (lung), and renal (kidney) systems. Note that these subdivisions are

not completely decomposable, only nearly so. For example, many pulmonary

diseases cause shortness of breath, but so do many cardiovascular diseases.

Some diseases, such as systemic infections, affect multiple organ systems.

Nevertheless, near decomposability remains an important and widespread

organizing principle for complex svstems.

1.4.3 Syndromic Structure in Knowledge Bases

To see how near decomposability in a system might manifest in a diagnostic

knowledge base, let us examine figure 1-4. The overall appearance of the

24 Introduction

Db) Sq

SH

r

roo

«tiJ S.

So

C

Sg

-

CA
Le

. d-

(c)

>
se d,

Se dj

_ +e dy

mg dc

|

Ry

o

 0]

d,
d-

a,

- L
. dc

L

Figure 1-4 Near decomposability in a diagnostic knowledge base. (a) Original

knowledge base. (b) An equivalent representation with two syndromes. (c) An

alternate decomposition with one syndrome.

Near Decomposability 25

knowledge base, shown in figure 1-4(a), exhibits little structure. But the

structure becomes apparent if the knowledge base is represented as in fig:

are 1-4(b). This representation is equivalent, containing all of the links that

are present in the original knowledge base. However, the links are organized

into syndromes, where a syndrome is composed of a conjunction of symptoms

and a disjunction of disorders. In a syndrome, any one of the disorders could

potentially explain all of the symptoms. The knowledge base can therefore

be represented as two syndromes instead of 17 causal links.

The two syndromes in this example are not completely decomposable.

They overlap in both symptoms and disorders, namely, at symptom s4 and

disorder ds. But they are nearly decomposable to the extent that causal

links within each syndrome are relatively dense and between each syndrome

are relatively sparse. Thus, the syndromes interact relatively weakly, and

indicate that the knowledge base does indeed possess nearly decompositional

structure.

Since causal relationships are complex, there may be several ways to de-

compose a knowledge base. Figure 1-4(c) shows an alternative representation

that contains only a single syndrome, instead of two. This syndrome is pos-

sible because there exists a single disorder, namely d3, that can explain all

of the symptoms. This syndrome is not equivalent to the entire knowledge

base, since not all of the links are represented. However, it does express an

important organizing idea, namely, that all five symptoms share a common

possible cause.

The existence of several possible decompositions might be expected in a

real-world knowledge base. This is because complex systems are often con-

structed hierarchically, with subsystems at various levels of abstraction. A

low-level failure might cause only a few specific symptoms. On the other

hand, a high-level failure might cause several nonspecific symptoms. Levels

of abstraction are reflected in the knowledge base, which contains symptoms,

disorders, and causal links of varying specificity. A medical knowledge base

might have general, high-level disorders, such as “infection”, as well as spe-

cific, low-level disorders, such as “abscess”. Likewise, symptoms may range

from the general, such as “malaise”, to the specific, such as “elevated white

cell count”. Another reason for multiple decompositions is that domains

are often structured according to multiple criteria. For instance, medical

diseases are defined not only on the basis of organ system, but also on the

type of pathophysiologic process, such as infections, neoplasms, metabolic

26 Introduction

Clusters:

Differentials:

(sy, 83, 5g) (1,59) (54,55)

»

dg
d-

imam,

pu|
wv

lr

ds c4
litt?

Cs dg
I

-

Figure 1-5 Structure of a problem decomposition. A problem decomposition is

a set of clusters, each with a differential diagnosis.

defects, and so on. Consequently, there may be several ways to decompose a

diagnostic knowledge base, any one of which might be useful in a particular

case.

1.5 Decompositional Search

1.5.1 Clusters and Differential Diagnoses

We have seen that near decomposability is apparently characteristic of diag

nostic domains and their associated knowledge bases. By extension, we hy-

pothesize that diagnostic cases should be decomposable to the same extent.

The decompositional structure in a case can may help reduce the complexity

of search. If diagnostic cases exhibit nearly decomposable structure, then

the evidence should should yield one or more plausible decompositions. The

idea of case-specific problem decomposition is the basis of the decomposi-

tional search approach.

A case-specific decomposition is called a problem decomposition. A prob-

lem decomposition assigns the positive symptoms in a case to separate clus-

ters. The structure of a decomposition appears in figure 1-5. We repre

sent a decomposition using parentheses, each pair of parentheses enclos

ing a cluster. The decomposition shown in the figure can be written as

(828356) (S152) (8485). (When the notation is clear, we will eliminate commas

within clusters.) A symptom may be in more than one cluster, so clusters

may overlap; however, by definition, each cluster must have at least one

 py Decompositional Search 27

symptom not in any other cluster. Associated with each cluster is a differen-

tial diagnosis (or differential, for short), a disjunctive set of disorders that can

axplain all symptoms in that cluster. We represent differential diagnoses by

braces. In figure 1-5, {d;, d2} is the differential diagnosis for cluster (s28356).

This means that either d; or d; is a possible explanation for symptoms s3,

s3, and Sg.

The cluster and differential diagnosis together comprise a task. Thus, a

task contains both a subproblem and a set of solutions to that subproblem.

A task is similar to a syndrome, except that a syndrome is a decomposable

subunit of a knowledge base, while a task is a decomposable subunit of a

diagnostic case. We refer to the differential corresponding to a cluster as

its associated differential, and to differentials that explain other clusters as

adjacent differentials.

1.5.2 Decompositions as Constraints

The clusters of a problem decomposition represent a set of assumptions, or

constraints, about the way the evidence can be explained. Symptoms in the

same cluster are assumed to be caused by the same disorder, while symp-

toms in different clusters are assumed to be caused by different disorders.

Thus, the structure of a problem decomposition represents a set of common-

ality and disjointness constraints. The commonality constraint states that

all symptoms in a cluster must be explainable by a single disorder. The

disjointness constraint states essentially that each cluster must be explain-

able by a “unique” disorder that does not explain another cluster. If these

constraints can be satisfied, the decomposition is coherent; otherwise, it is

incoherent.

The commonality and disjointness constraints define the differential diag-

noses for the decomposition. The process of computing differential diagnoses

is called differential formulation; the basic process is illustrated in figure 1-6.

Here we have a Venn diagram of possible causes for symptoms. The possible

causes for Fever are Tb, Flu, and Mal; the possible causes for Cough are Tb,

Cold, and Asth. With two symptoms, only two problem decompositions are

possible: (Fever,Cough) and (Fever) (Cough). For (Fever,Cough), the com-

monality constraint means that the differential diagnosis contains only Tb,

the only explanation common to both symptoms. This situation is shown

in figure 1-6(a). On the other hand, for (Fever) (Cough), the commonality

28 Introduction

(Fever, Cough) !

(a)

(Fever) (Cough)

fein 1 Nogsia

(b)

—

1

Figure 1-6 The concept of differential formulation. Differential diagnoses are

shown as shaded areas. (a) Differential diagnosis resulting from the decomposi-

tion (Fever,Cough). (b) Differential diagnoses resulting from the decomposition

(Fever) (Cough).

constraint allows Tb, Flu, and Mal for the first cluster, and Tb, Cold, and

Asth for the second cluster. This situation is shown in figure 1-6(b). The

disjointness constraint removes Tb from both differentials because it can ex-

plain both clusters. Tb is removed from this decomposition because it is a

unifying explanation for both clusters, which argues against the existence of

two separate clusters.

Symptoms in a cluster therefore perform two functions: (1) they help de-

fine their associated differential via a commonality constraint, and (2) they

help define adjacent differentials via disjointness constraints. The commonal-

ity constraint is satisfied by taking the intersection of the possible causes for

each symptom in the cluster. Only those disorders can be in the differential

diagnosis.
The disjointness constraint is slightly more complicated. It is satisfied by

defining a justifying set for each cluster, a subset of symptoms in the cluster

that disorders in adjacent differentials are constrained not to explain. We

define a symptom as justifying its cluster if, for every adjacent differential,

it cannot be explained by all disorders in that differential. The intuition

behind this definition is that in order for a separate cluster to be warranted,

it must contain some symptom that cannot be explained by other clusters.

With this definition, we can now explain the disjointness constraint fully.

The disjointness constraint states that disorders in a differential cannot ex-

plain the justifying set in any adjacent cluster. Note that the definition of

differential is recursive. A differential is defined by the justifying symptoms

J Decompositional Search ~~ 29

(Fever)

{Tb, Flu, Mal}

 —

(Fever, Cough)

{Tb}

(Fever) ope
(Flu, Mal} {Cold, Asth}

Figure 1-7 Example of decompositional search. The first row shows the diagnosis

of Fever: the second row, of Fever and Cough.

in adjacent clusters, and the justifying symptoms in a cluster are defined by

the differentials in adjacent differentials. Nevertheless, as we shall see in this

thesis, this recursive description is well defined and can be computed.

The commonality and disjointness constraints result in a set of differ-

ential diagnoses. For disorders not in a differential diagnosis, a problem

decomposition makes no hypothesis about their presence or absence. It only

hypothesizes the minimum disorders necessary to explain the symptoms, and

other disorders may in fact be present. A problem decomposition also makes

no hypothesis about causal relationships other than between a differential di-

agnosis and its associated cluster, so that a disorder that explains one cluster

may also explain some symptoms in another cluster.

Problem decompositions are synthesized by a search process. An exam-

ple of decompositional search for the previous example of fever and cough

is shown in figure 1-7. In this example, the first symptom, Fever, can only

be decomposed in one way. This yields the differential {Tb, Flu, Mal}. The

next symptom, Cough, can either be placed in the same cluster as Fever or

be assigned to its own cluster. If Fever and Cough are in the same cluster,

the differential is {Tb}. If Fever and Cough are in different clusters, the

differentials for them are {F1lu, Mal} and {Cold, Asth}, respectively. In this

search tree, both decompositions are coherent. But some decompositions

might not be coherent, because they posit a set of commonality and disjoint-

aess constraints that cannot be satisfied. Incoherency is signaled by one or

more differential diagnoses that are empty, meaning that no disorders could

30 Introduction 1.5

meet the constraints. Such decompositions are pruned from the search tree.

1.6 Features of Decompositional Search

Since decompositional search is a new approach to diagnosis, it introduces

some new concepts to problem solving and representation. We now present

some of the major features of decompositional approach. Other features are

discussed in the final chapter.

1.6.1 Cartesian Product Representation

A problem decomposition represents a set of candidates in a compact Carte-

stan product representation. A problem decomposition hypothesizes the pres:
ence of at least one disorder in each differential. The set of disorders so chosen

explain the positive symptoms and is therefore a candidate. The total set

of candidates that can be chosen is equivalent to the Cartesian product of

the differentials. However, we interpret the answers as unordered sets rather

than ordered sets. For example, the decomposition in figure 1-5 represents

the following set of candidates:

(dv, dy} x {ds, ds, ds} x {ds, d7, ds}

dy, ds, ds: [dy,d-, dr). [di,ds,ds]

(dv, ds, ds), 'dyi,ds en. [dy dy,ds]
di, ds, ds], d1,ds,ar, [d1, ds, ds’
[d2, ds, dg), [d2,d: a» [da,ds3,ds
dz, ds, dg] dy, d,, 7 ds, ds, ds
(da, ds, ds d--ds,ur |[d3,ds,d-

We refer to the left side of the equation as the implicit or Cartesian prod-

act representation and to the right side as an explicit representation. The

explicit representation lists each candidate individually, while the implicit

one represents a set of candidates in a Cartesian product representation. Of

the two representations, the implicit one is more compact, requiring only

space proportional to the sum of the differential sizes. In this case, the space

required is 2 + 3 + 3 = 8 disorders. The explicit representation, on the other

hand, requires space proportional to the product of the differential sizes. The

space required is 2x 3 x 3 = 18 candidates, each of which contains 3 disorders.

4
i Features of Decompositional Search 31

By generating and transforming sets of candidates in implicit representa-

tion, decompositional search performs diagnosis at a more abstract level than

candidate generation. In candidate generation, each node in the search tree

represents an individual candidate. On the other hand, in decompositional

search, each node defines a set of candidates, defined by the commonality

and disjointness constraints of the problem decomposition. Thus, diagno-

sis in decompositional search is a process of manipulating constraints. The

constraints are posted and tested without having to compute the candidates

explicitly. The abstract strategy of manipulating constraints on candidates,

rather than the candidates themselves, enables decompositional search to

have a smaller search space and greater efficiency.

1.6.2 Causal Equivalence

A problem decomposition groups disorders into differential diagnoses. These

groupings essentially categorize disorders according to their ability to explain

the symptoms. For example, consider the decompositions in figure 1-5. Tb

is in one differential because it is the only disorder that can explain both

Fever and Cough. Flu and Mal are in the same differential because they can

explain Fever but not Cough. And Mal and Asth are in the same differential

because they can explain Cough but not Fever. We say that disorders that

explain the same subset of symptoms are causally equivalent.

Grouping by causal equivalence makes the search process less redundant.

We have seen redundant reasoning previously in our example of candidate

generation (figure 1-3). There, candidate generation could not detect that

the disorders Flu and Mal are causally equivalent. Thus, it duplicates the

same expansion and pruning sequence for each disorder. Likewise, candidate

generation cannot determine that [Flu,Cold], [Flu,Asth], [Mal,Cold], and

[Mal,Asth] all have the same causal structure, explaining Fever and Cough

using the same configuration of causal links. In contrast, decompositional

search groups all of these candidates together. By grouping disorders that

are causally equivalent, decompositional search is able to make decisions for

a whole set of candidates at once and thereby avoids redundancy in its search

process.

[he notion of causal equivalence may not only facilitate efficiency, but

may also provide a potentially useful mode of problem solving. A problem

decomposition represents a possible structuring of the evidence and solutions.

32 Introduction

"Problem Decomposition #1

Symptom Cluster 1

Hematocrit less than 35

Proteinuria gtr than 3 g/dl

Headache severe

Urea nitrogen 60-100

Creatinine 3-10 mg/dl

Urine spec. grav. 1.008-1.014

Differential Diagnosis

Glomerulonephritis Acute 0.33

Art. Nephrosclerosis 0.31

IgA Nephropathy 0.24

Goodpasture Syndrome 0.04

Renal Vasculitis 0.04

Prog. Systemic Sclerosis 0.04

p=0.61

Symptom Cluster 2

IMonocytes gtr than 800

Abdominal pain

Chills

Anorexia

Fever

Differential Diagnosis

Malaria 0.56
Granulocytopenia 0.20

‘Renal Tuberculosis 0.12

Hepatosplenic Lymphoma 0.06

Histoplasmosis 0.05

Hodgkins Disease 0.01

Figure 1-8 Output of a decompositional search system. This figure illustrates

a possible interface.

Such a structuring may help a user understand the structure of a problem.

The output of a decompositional system might look something like figure 1-8.

This example contains two clusters, each of which has a separate differential

diagnosis. The first cluster contains symptoms and disorders related to a

renal disease, while the second contains symptoms and disorders related to

a separate infectious process. This structuring of the problem may facilitate

the user’s understanding of a diagnostic situation, more so than a listing of

plausible candidates. Thus, grouping by causal equivalence may be just as

important to our comprehension of a problem as it 1s to the computation of

an algorithm.

Guide to the Thesis 33

1.7 Guide to the Thesis

This thesis develops the decompositional search approach through theory,

sxperiment, and analysis. Chapter 2 presents an extended example of de-

compositional search. Chapters 3 and 4 develop the theory behind decompo-

sitional search: first the “static” theory of problem decompositions, then the

“dynamic” theory of generating decompositions by a search process. These

chapters present a revised and expanded version of the ideas presented orig-

inally in [80, 81]. Given this theoretical background, we test the efficiency of

decompositional search empirically in chapter 5. These experimental results

are an expanded version of the results presented in [81, 84]. These results

are then analyzed in chapter 6, with particular attention to the role that

domain structure plays in diagnostic complexity. The analytical results in

this chapter extend the results of [82]. Chapter 7 extends decompositional

search to the probabilistic case. This chapter is an improved presentation

of the results in [83]. In the concluding chapter, we summarize our major

findings and place this work in perspective.

34

Chapter 2

Example

15

0
30) Example 2 J

Most physicians attempt consciously or unconsciously to fit a

given problem into one of a series of syndromes. The syndrome

is a group of symptoms and signs of disordered function, related

to one another by means of some anatomic, physiologic, or

biochemical peculiarity The diagnosis is greatly simplified if

a clinical problem conforms neatly to a well-defined syndrome,

because only a few diseases need be considered in the differential

diagnosis.

— Harrison’s Principles of Internal Medicine, 12th ed. (1991)

Decompositional strategies are often used in the real world. As Harrison’s

textbook of medicine [78, p. 3] observes, physicians often formulate plausible

symptom clusters and match them to known syndromes. In this chapter, we

consider a simple example, which also happens to be from clinical medicine.

This example uses a portion of the QMR knowledge base that has been sim-

plified to help contrast candidate generation and decompositional search.

2.1 The Problem

The knowledge base for this example, shown in figure 2-1, is taken from the

area of renal medicine, dealing with diseases of the kidney. It contains 4

symptoms, 16 disorders, and 32 causal links. The causal links are shown in

a table, which is representationally equivalent to a bipartite graph.

The symptom Cr indicates that the patient’s bloodstream has a high level

of creatinine, which is normally excreted by the kidneys. The symptom Bun

corroborates this finding, showing that the patient’s bloodstream has a high

level of urea, which should also be excreted by the kidneys. The symptom

Dehyd states that the patient is dehydrated, perhaps because the kidneys are

losing too much water or because the patient is not drinking enough. Finally,

the symptom Uo indicates that the patient’s urine output is abnormally low,

again suggesting some kidney dysfunction. In the table of causal links, an

‘X’ for a disease-symptom pair means that the disease is a possible cause for

the symptom. There are two diseases, Atn and Pra, that can each explain all

the symptoms, while the remaining 14 diseases can each explain only some

of the symptoms.

7)

Symptoms:

Disorders:

Links:

Cr

Bun

Dehyd
Uo

Atn

Pra

Lit

Rcc

Pn

Ano

Dm

Mal

Pan

Vol

Prt

Anl

Agn
Sln

Tb

Rta

The Problem 37

Serum creatinine 3 to 10 mg/dl

Blood urea nitrogen 30 to 59

Dehydration
Urine output less than 400 ml/day

Acute tubular necrosis

Prerenal azotemia

Nephrolithiasis
Renal cell carcinoma

Acute pyelonephritis
Anorexia nervosa

Diabetes mellitus

Malaria

Pancreatitis

Hypovolemic shock

Portal hypertension

Analgesic nephropathy
Acute glomerulonephritis

Salt-losing nephritis
Renal tuberculosis

Renal tubular acidosis

Ate pw Ta’ Rcc Pr | Ano | Dm ! Mal

oe

Bun

Dehyd
Uo

Pan | Vol | Prt | An1 | Aen I Sin! Tb | Rta

Cr

Bun

Dehyd |

ak

Tn
 YX X

Figure 2-1 Example knowledge base. Symptoms and disorders are listed in both

abbreviated and full forms. Causal links are represented in tabular form.

38 Example
4

2.2 Candidate Generation

The four symptoms can be solved by the candidate generation method, as

shown in figure 2-2. The end result of this method is the 33 minimal candi-

dates shown on the bottom row of the figure. Intermediate results, shown on

each preceding row, derive from considering each symptom sequentially. Each

intermediate node contains a minimal candidate that explains the symptoms

considered so far. If a candidate already explains the new symptom, the

candidate is kept as 1s. Otherwise, the candidate is expanded by creating a

new set of candidates, one for each possible cause of the new symptom. Each

of these newly expanded candidates is then tested for minimality and pruned

if nonminimal.

For example, after symptoms Cr and Bun are processed, there are 5 min-

imal candidates: [Atn], [Pra], [Anl], [Agn], and [Tb]. The set of minimal

candidates does not change between the first and second symptoms. This is

because Cr is a more specific symptom than Bun. Only a few diseases can

give a high creatinine level, whereas many additional diseases can cause a

high urea nitrogen level. Thus, we say that Bun is more general than Cr, or

conversely, Cr is more specific than Bun.

The third symptom, Dehyd, illustrates redundancy in candidate genera-

tion. The candidates [Atn], [Pra], and [Anl] are not expanded, but kept as

one-disorder candidates. This is because the disorders Atn, Pra, and Anl are

each able to explain all three symptoms. However, the candidates [Agn] and

[Tb] are expanded, because they explain Cr and Bun but not Dehyd. They are

each expanded by the 10 possible causes for Dehyd, of which 3 are pruned.

The remaining candidates derived from [Agn] and those derived from [Tb] are

minimal. Thus, there are only two patterns of candidates at this point: (1)

single-disorder candidates, and (2) two-disorder candidates containing either

Agn or Tb, plus one of the disorders explaining Dehyd alone.

On the fourth symptom, Uo, candidate generation also exhibits redun-

dancy. The candidates [Atn] and [Pra] explain all four symptoms, so they

are kept unchanged. The candidate [An1], however, does not explain Uo, so

it is expanded by the 7 possible causes for Uo. The next 8 candidates all

explain Uo, so they remain unchanged. Finally, the next 6 candidates all fail

to explain Uo, so they are expanded by the 7 possible causes for Uo. For

each of these candidates, only those containing Lit, Rcc, or Pn are minimal.

Those containing Atn, Pra, Agn, or S1n are pruned.

[Atn] [Pra] [Anl] [Agn] [Tb]

[Atn] [Pra] [Anl] [Agn] [Tb]

[Attn]

[Pral}

[Anl’

Liagarasa:
Ltagarpra
—[Agn, Ano] —

-[Agn, Dm] —

-[Agn,Mal]—

-[Agn, Pan]—~

-[Agn, Vol].

-[Agn, Prt].

~RAgarAnl]

~[Agn, S1lnl-

£125,260:
 [EbrBra
-{Tb,Ano’

~[Tb, Dm]

-[Tb,Mal

-[Tb, Pan]

-[Tb,Vol]

-[Tb,Prt]}

Er] iteiden}

Tb, S1nI-

[Atn]~

[Prale-

~LAnlrAta]

~tAnlrPral

-[Anl, Lit]

~[Anl,Rcc]

~[Anl,Pn]

~[Anl, Agn]
—-[Anl, Slnl

«Agn, Ano]

~[Agn, Dm]
«[Agn,Mal]

«[Agn, Pan]

- [Agn, Vol]

« [Agn, Prt]
_. [Agn, Sln]

[Tb, S1ln] ~

rep ihTre

 A hr ErSyl

-{Tb,Ano,Lit

-=[Tb, Ano, Rcc

-={Tb, Ano, Pn]

RG LsobAGA XY

frp)

py

~[Tb, Dm, Lit?

=[Tb,Dm,Rcc

-[Tb, Dm, Pn]

ply

{PDS

 felpforefibr,

-{Pa-MalyrPra

-~[Tb,Mal, Lit

-[Tb,Mal, Rcc

=[Tb,Mal, Pn]

= {BpbhiPe

 Tbh Mal,r-S81lR

 flat ampi bm

-{f--PanrPera

= [Tb,Pan,Lit

= [Tb, Pan, Rcc

= [Tb, Pan, Pn]

~{ThrPanr-bgn

+IPRan.-871n

AY

 fpieprom,

mesolimbic

=[Tb,Vol, Lit

-[Tb,Vol,Rcc

= [Tb, Vol,Pn]

 tTVoirhgn

YhYael -Sln

\

—~ HerPrerAtn]

HrPrerbre]

~[Tb, Prt, Lit]

-~[Tb, Prt, Rec]

-{Tb, Prt, Pn]

~HEbrReérAgn]

—~[EbyrRetysln]

Figure 2-2 Candidate generation search tree for example. Dashed lines separate each frontier of intermediate

candidates. Arrows indicate the expansion of intermediate candidate. Nonminimal candidates are shown crossed out.

3
)

10 Example J 9

2.3 Decompositional Search

In decompositional search, the symptoms in our example can be explained

by five coherent decompositions, ranging from one to three clusters:

One cluster Two clusters Three clusters

(Cr.Bun,Dehyd,Uo) {(Cr,Bun,Dehyd) (Uo) (Cr,Bun) (Dehyd) (Uo)
(Cr,Bun,Uo) (Dehyd)
(Cr,Bun) (Bun,Dehyd,Uo)

The search process that generates these decompositions is shown in figure 2-3

We now trace the steps in this search process.

Symptom 1: High Serum Creatinine

The first symptom, Cr, can be decomposed in only one way, leading to the

following problem decomposition:

Decomposition la:

Cluster Common Causes Differential

|(Cr) | Atn, Pra, Anl, Agn, Tb | Atn, Pra, Anl, Agn, Tb |

This decomposition contains one cluster and its corresponding differential

diagnosis. The set of common causes consists of diseases that satisfy the

commonality constraint, explaining all symptoms in a cluster. In this case,

the common causes consist of the five diseases that explain Cr. Since there

is only a single task, no disjointness constraints apply. Thus, the differential

is equivalent to the common cause set.

Symptom 2: High Blood Urea Nitrogen

The second symptom, Bun, can either be assigned to the existing cluster or

be placed in a new cluster. If we place it in the existing cluster, we obtain

the following decomposition:

Decomposition 2a:

Cluster Common Causes Differential

(Cr,Bun) | Atn, Pra, Anl, Agn, Tb | Atn, Pra, Anl, Agn, Tb |

(Cr)

{Atn,Pra,Anl,Agn, Tb}

_— —T

(Cr,Bun)

{Atm.Pra,Anl,Agn,Tb}

“Adm.

(Cr, Bun, Dehyd)

(Atn, Pra, Anl}
(Cr, Bun) (Dehyd) sbi be hiahy

{Agn, Tb} x (Ano, Dm,Mal,Pan,Vol,Prt,Sln} {Pn,Vol,Prt,Agn,S1ln,Tb,Rta} x (}

Adm Adm

‘Bun, Dehvd) (Cr, U0} adi (Bun) (Dehyd) (Cr,Uo)

J (Cr.Bun) EN

(Bun) (Dehyd) (Cr,Uo, Bun)
\

(Bun, Dehyd) (Cr,Uo, Bun) -

y “1

(Cr, Bun, Dehyd,Uo)
 “"Atn. Pra}

(Dehyd) (Cr,Uo, Bun) (Cr,Bun) (Dehyd) (Uo)
{Ano,Dm,Mal,Pan,Vol,Prt,Anl,Sln} \ {Tb} x {Ano,Dm,Mal,Pan,Vol,Prt} “Na

x {Agn} x {Lit,Rcec,Pn}

(Cr, Bun, Dehyd) (Uo) (Cr, Bun) (Bun, Dehyd, Uo) mg HEE atop

(Anl} x {Lit,Rcc,Pn,Agn,Sln} {Anl,Agn,Tb}x{Sln}

Figure 2-3 Decompositional search tree for example. Dashed lines separate each frontier of intermediate decom-

positions. Arrows indicate expansion of decompositions. Arrows are labeled according to the operator applied: C =

covering, R = restricting, Adj = adjoining, Adm = admixing, F = forward ambiguation, B = backward ambiguation

(not shown), and D = disambiguation. Incoherent decompositions are shown crossed out.

12 ~~ Example 2.3

This decomposition contains one task, consisting of the cluster (Cr,Bun) and

the differential that explains it. The common causes are the five diseases

that explain both Cr and Bun. These diseases can be found by taking the

intersection of the causes for each symptom. As we noted before, Bun is more

general than Cr, because the possible causes for Bun are a superset of those

for Cr. Thus, the common causes remain unchanged. Since the possible

causes for Bun subsume (or cover) the common causes for (Cr), this process

is called covering. As before, since there is only a single task, the differential

equals the set of common causes.

The alternative assignment that might have been tried places Bun in a

new cluster. This process is called adjoining, and it gives rise to the following

decomposition:

Decomposition 2b (incoherent):
Cluster Common Causes Differential

 (Cr) | Atm, Pra, Anl, Agn, Tb
(Bun) A¢n, Pra, Pn, Vol, Prt.

Ant, Agr, Sln, Tb, Rta

Pn. Vol. Prt. S1n. Rta

This decomposition has two tasks. The first task explains Cr, while the

second task explains Bun. The common cause sets for the two tasks are simply

the possible causes for Cr and Bun, respectively. However, the differentials

are now different from the common cause sets. The disjointness constraint

excludes some disorders from each differential, shown crossed out in each

common causes set. The disjointness constraint removes disorders that are

unifying, essentially those that explain two or more clusters. In this case,

all of the explanations for (Cr) also explain (Bun). Thus, all of the potential

explanations for (Cr) are removed, leaving no disorders in the differential

for (Cr). The empty differential for (Cr) means that the decomposition is

incoherent and can be pruned. Incoherency means that a decomposition

nosits commonality and disjointness constraints that cannot be satisfied.

The decompositional search algorithm actually did not generate decom-

position 2b, because it could foresee that it would be incoherent. When the

algorithm created decomposition 2a, it realized that the possible causes for

Bun subsume the common causes for (Cr). Thus, placing Bun in its own clus-

ter would have created a common causes set that subsumed another common

causes set, resulting in an empty differential. In general, then, when covering

is possible, no other assignment for a symptom need be considered.

} 3 Decompositional Search ~~ 43

Symptom 3: Dehydration

The third symptom, Dehyd, gives us the same option as before: assignment

either to the existing cluster or to a new cluster. There are 10 possible causes

for Dehyd. This time, covering is not possible because the possible causes

for Dehyd do not subsume the common causes for (Cr,Bun). Instead, when

we place Dehyd in the cluster (Cr,Bun), the set of common causes for that

cluster becomes smaller. This process is called restricting, as opposed to cov-

ering. The resulting decomposition contains three disorders in its differential,

instead of five:

Decomposition 3a:

Cluster Common Causes Differential

_(Cr,Bun,Dehyd) | Atn, Pra, Anl | Atn, Pra, Anl |

Because covering was not possible, other assignment operators are per-

formed. A second decomposition is created by adjoining the new symptom

This gives the decomposition (Cr,Bun) (Dehyd), containing two tasks:

Decomposition 3b:

Cluster Common Causes

(Cr,Bun) | Atn, Pra, Ant, Agn, Tb
(Dehyd) ! Atm, Pra, Ano, Dm, Mal,

Pan. Vol. Prt. Ant. S1n

Again, differentials are formulated by removing unifying explanations for

both common cause sets. The two differentials are non-null, so this de-

composition is coherent. This decomposition hypothesizes the presence of a

disorder from each differential diagnosis: either Agn or Tb, plus one of the

disorders explaining Dehyd alone.

In addition to covering, restricting, and adjoining, there is a fourth way

to create a decomposition, called admixing. This operator places the new

symptom in its own cluster along with one symptom that has been previously

assigned. The preconditions for a previously assigned symptom to admix

with a new symptom is that the previously assigned symptom must restrict its

cluster. In this case, the symptom Cr restricts the cluster (Cr,Bun), because

removing it yields cluster (Bun), which has more common causes. Admixing

Dehyd with Cr therefore gives the decomposition (Bun) (Cr,Dehyd).

14 ~~ Example

Decomposition 3c (incoherent):

Cluster Common Causes

(Bun) | Ata, Pra, Pn, Vol, Prt,

Ant, Agn, Sln, Tb, Rta

(Cr,Dehyd)|Atm,Pra, 4nl

Differential

Pn, Vol, Prt, Agn, Sln, Tb, Rta

J

This decomposition yields a null differential for the cluster (Cr,Dehyd), so

this decomposition is incoherent and can be pruned.

Symptom 4: Low Urine Output

At this point, we have two coherent decompositions, (Cr,Bun,Dehyd) and

(Cr,Bun) (Dehyd), with which to incorporate the fourth symptom, Uo. We

consider each decomposition separately. For the first decomposition, cover

ing is not possible because the causes for Uo do not subsume the common

causes for (Cr,Bun,Dehyd). Thus, decompositions are created by restricting,

adjoining, and admixing operators. Restriction gives the following decompo-

sition:

Decomposition 4a:

Cluster Common Causes Differential

(Cr,Bun,Dehyd.Uo) | Atn, Pra | Atn, Pra

I'he differential contains the two diseases that explain all of the symptoms.

A second decomposition, (Cr,Bun,Dehyd) (Uo), is created by the adjoining

operator:

Decomposition 4b:

Cluster Common Causes

“(Cr,Bun,Dehyd) | Ata, Pra, Anl

(Uo) Ata, Pra, Lit, Rec,

Pn, Agn, Sln

Differential

Anl

Lit, Rcc, Pn, Agn, Sln

Third, we can admix Uo with Cr, which restricts its cluster, to initially

create the following decomposition:

Decomposition 4c:

Cluster Common Causes

(Bun,Dehyd) | Atn, Pra, Vol, Prt, Anl, Sln

'(Cr,Uo) | Atm, Pra, Agn

J) 9 Decompositional Search 45

However, a second step, called ambiguation can now be performed. Note that

Bun covers the adjacent cluster, (Cr,Uo). This means that all of the common

causes for that cluster also explain Bun. Hence, Bun could be explained at

least as well by the new cluster. If we copy Bun to the new cluster we obtain

the following decomposition:

Decomposition 4c’:

Cluster Common Causes Differential

(Bun,Dehyd) | Atn, Pra, Vol, Prt, Anl, Sln Vol, Prt, Anl, Sln
(Cr,Bun,Uo) | An, Pra, Agn Agn

Note that the common causes and differential have not changed. The symp-

tom Bun has been tentatively ambiguated and now appears in two clusters.

The meaning of an ambiguous symptom is that it has become general enough

to cover more than one cluster.

At this point, we have copied Bun to a new cluster, but have not de-

termined whether it should remain in its previous cluster. So a third step,

called disambiguation, determines whether any previous assignments of am-

biguous symptoms are still warranted. An ambiguous symptom should cover

multiple clusters, but Bun restricts its previous cluster, (Bun,Dehyd), so that

it should not remain in two clusters. We prefer to remove Bun from the

cluster it restricts, so that additional common causes from that cluster are

freed. The disambiguation step therefore changes the decomposition from

(Bun.Dehyd) (Cr.Bun.Uo) to (Dehyd) (Cr.Bun.Uo):

Decomposition 4c”:

Cluster Common Causes

(Dehyd) | Ata, Pra, Ano, Dm, Mal,
Pan, Vol, Prt, Anl, Sln

(Cr.Bun.Uo) “ats. Pra. Agn

Differential

Ano, Dm, Mal, Pan,

Vol, Prt, Anl, Sln

Aon

Overall, the common causes and differential for (Dehyd), which was previ-

ously (Bun,Dehyd), have been increased, while the common causes and differ-

ential for (Cr,Bun,Uo), previously (Cr,Uo), are unchanged. The total effect of

ambiguation and disambiguation has been to free the unnecessary constraint

of Bun on the first cluster. An unnecessary constraint occurs when a symp-

tom restricts its current cluster but could be assigned to another cluster that

it covers. In this case, assigning Bun to the first cluster posts an unnecessary

16 Example
—~

bts

constraint because Bun restricted that cluster but covered the second clus-

ter. Ambiguation and disambiguation remove that constraint by effectively

moving Bun from the first cluster to the second.

So far, we have fully expanded the decomposition (Cr,Bun,Dehyd). The

remaining decomposition, (Cr,Bun) (Dehyd), can also be expanded by Uo to

produce decompositions. Uo can restrict (Cr,Bun) to give the decomposition

(Cr,Bun,Uo) (Dehyd). However, this decomposition was already generated by

the admixing operator, followed by ambiguation and disambiguation, namely,

decomposition 4c”. We need not compute the differentials for this decompo-

sition again. This example indicates that a decomposition can be generated

by more than one path.

Uo can also restrict the second cluster, (Dehyd), to give the decomposition

(Cr,Bun) (Dehyd,Uo). This decomposition qualifies for ambiguation because

Bun covers the new cluster. However, it does not qualify for disambiguation

because Bun does not restrict its current cluster (Cr,Bun). The restricting

and ambiguation steps yield the following decomposition:

Decomposition 4d:

Cluster Common Causes Differential

(Cr,Bun) Ata, Pra, Anl, Agn, Tb | Anl, Agn, Tb
. (Bun,Dehyd,Uo)|Atn,Pra, Sln Sln

Without ambiguation, we would obtain two coherent decompositions,

(Cr,Bun) (Dehyd,Uo) and (Cr) (Bun,Dehyd,Uo), with the same common cause

sets and differentials. Ambiguation avoids the arbitrary placement of Bun by

assigning it to both clusters. The decompositional search algorithm checks

for two types of ambiguation. Forward ambiguation occurs whenever a previ-

ously assigned symptom covers the newly modified or created cluster. Back-

ward ambiguation occurs whenever the new symptom covers more than one

existing cluster. In this case, the assignment of Bun to the new cluster was

an instance of forward ambiguation.

In addition to restriction, the new symptom can be adjoined to give the

decomposition (Cr,Bun) (Dehyd) (Uo):

7 4

Decomposition 4e:

Cluster Common Causes

(Cr,Bun) "Atm, Pra, Anl, Agn, Tb

(Dehyd) 4tn, Pra, Ano, Dm, Mal,

Pan, Vol, Prt, Ari, Sin

Atm, Pra, Lit, Rec,

Pn, Aga, Sin

Comparing the Algorithms 47

Differential

oo
Ano. Dm. Mal. Pan. Vol. Prt

Lit. Rec. Pn

This is an example of a three-task decomposition. Differentials are computed

by removing unifying explanations, those disorders that are shared by two

or more common cause sets. The resulting decomposition explains the four

symptoms by positing one disorder from each of the three differentials

Finally, Uo can be admixed with Cr, which restricts its cluster, (Cr,Bun).

This would give the decomposition (Bun) (Dehyd) (Cr,Uo). But Bun covers

the cluster (Cr,Uo), so ambiguation would give the decomposition

(Bun) (Dehyd) (Cr,Bun,Uo).

However, Bun restricts its previous cluster, (Bun), because the common causes

for an empty cluster is defined to be the universe of all disorders. The

disambiguation step therefore removes Bun from that cluster, yielding the

decomposition

() (Dehyd) (Cr,Bun,Uo).

Since null clusters are disallowed, this decomposition is syntactically invalid.

Thus. this decomposition is incoherent and can be pruned.

2.4 Comparing the Algorithms

Despite their differences, candidate generation and decompositional search

are closely related. In fact, decompositional search can be seen as a way of

generating minimal candidates. A problem decomposition posits the presence
of at least one disorder from each differential. The set of all such combinations

can be obtained by taking the Cartesian product of the differentials. The

result 1s called the candidate set for the given decomposition.

18 Example 2.4

Yor instance, we can compute the candidate set for decomposition 4e as

GG Ww

Tb} X {Ano, Dm, Mal, Pan, Vol, Prt} x {Lit, Rcc, Pn} =

‘Tb,Ano,Lit], 'Tb,Ano,Rcc],
Tb,Dm,Lit], Tb,Dm,Rec],
‘Tb,Mal,Lit], Tb,Mal,Rcc].
Tb,Pan,Lit], Tb,Pan,Rcc].
[Tb,Vol,Lit]l, Tb,VolRcc).
[Tb,Prt,Lit], -Tb,Prt,Rcc].

The same expansion for the other decompositions is shown in figure 2-4.

This figure shows the close relationship between candidate generation and

decompositional search. In this case, decompositional search produces the

same set of minimal candidates as candidate generation.

The figure shows that problem decompositions represent a set of candi-

dates in a compact form, grouping candidates that behave identically in the

candidate generation search tree. Therefore, decompositional search avoids

much of the redundant reasoning performed in candidate generation. De-

compositional search avoids redundancy because it groups disorders that are

causally equivalent with respect to the given symptoms. Consequently, it

avoids much of the combinatorial inefficiency of candidate generation.

(Cr, Bun, Dehyd,Uo)
{Atn, Pra}

(Dehyd) (Cr,Uo, Bun)

{Ano,Dm,Mal,Pan,Vol,Prt,Anl, Sin}

’ x {Agn}

[Atn]

[Pra]
+AnirAtR] Foss
dtp | [Agn, Dm]

(tani,Lael [Agn,Mal]
[Anl, Rcc] [Agn, Pan]

|[Anl, Pn] j [Agn, Vol]
 {1 [Anl,Agn]l [Agn, Prt]
EE

[Agn,Sln)

FbrAnerAth] {EorMalrAtn] {Fe Penyien] {FerVelyhtn] [HbrPreshtn]

Fer-AnerREa] {ErMal Pra] {FerPenyPra] {ferVeiyPra] [(FerPresPrel

{ [Tb,Ano,Lit] [Tb,Dm,Lit] (Tb,Mal,Lit] [Tb, Pan,Lit] [Tb,Vol,Lit] ([Tb,Prt,Lit])

[Tb, Ano,Rcc] [Tb,Dm,Rcc] [Tb,Mal,Rcc] [Tb,Pan,Rcc] ([Tb,Vol,Rcc] I[Tb,Prt,Rcc]

. [Tb, Ano, Pn] [Tb, Dm, Pn] [Tb,Mal, Pn] [Tb, Pan, Pn] (Tb,Vol, Pn] [Tb,Prt,Pn]

To dno,hgh] [FoDRrhenl (Th MalAga (Th Ban Aga] (TbVelrAgal[FhrPrirhgn]

ForAnerSin] {(Fhrbm-Sinl {FhrMal,ySin]Rss {ThrVeolr£in] HbrPrtr5in]

/

\

 {(Cr,Bun, Dehyd) (Uo)
‘Anl) x (Lit,Rcc,Pn,Agn,Sln}

'

[Cr, Bun) (Bun, Dehyd, Uo
{Anl,Agn,Tb} x {(Sln)

\

(Cr, Bun) (Dehyd) (Uo)

{Tb} x {Ano,Dm,Mal,Pan,Vol,Prt]

x {Lit,Rcc, Pn}

Figure 2-4 Correspondence between candidate generation and decompositional search. This figure shows the minimal

candidates produced by candidate generation. Groups of minimal candidates entailed by a problem decomposition are

circled, with an arrow pointing from the corresponding problem decomposition.

{

30)

Chapter 3

Problem Decomposition

3 |

32 Problem Decomposition 7.

Philosophers of science have repeatedly demonstrated that more

than one theoretical construction can always be placed upon a

given collection of data.

Thomas Kuhn, The Structure of Scientific Revolutions (1970)

The basic construct of decompositional search is a problem decomposition.

To paraphrase Kuhn [34, p. 76], problem decompositions are alternatives to

candidates as constructions that can be placed on a given set of evidence. In

this chapter, we provide a theoretical grounding for using problem decompo-

sitions as a framework for diagnostic problem solving.

3.1 Preliminaries

3.1.1 Diagnostic Problems

We begin by defining diagnostic knowledge bases and diagnostic cases. A

diagnostic knowledge base KB is a triple, (Up, Us, L), containing a universal

set Up of disorders, a universal set Us of symptoms, and a set L of causal

links. A causal link is a pair, (d,s), containing a disorder d € Up and

a symptom s € Us. A disorder d explains symptom s if there exists a

causal link (d,s) € L between them. Notationally, we denote the fact that

d explains s, or equivalently that (d,s) € L, by “d — s”. We denote the

opposite situation, when d does not explain s ((d,s) € L), by “d — s”.

A causal link signifies that a disorder is a possible cause (or equivalently, a

possible explanation) for a symptom.

Diagnostic knowledge bases provide the domain knowledge to diagnose a

particular case. A diagnostic case is a pair, (P,N), where P C Us is a set of

positive symptoms, and N C Ug is a set of negative symptoms. The positive

symptoms are symptoms that we wish to explain, while the negative symp-

toms provide information to help support or disprove proposed explanations.

The positive symptoms P and negative symptoms N are exclusive but not

exhaustive subsets of Us. In other words.

PAN = 0

PUN C Us

{ Preliminaries 53

This means that a symptom in Us is either positive, negative, or neither, in

which case we consider that the value of the symptom is unknown. The input

to a diagnostic problem solver consists of a diagnostic knowledge base, rep-

resenting domain knowledge, and a diagnostic case, representing a particular

behavior that we wish to explain.

3.1.2 Causation and Explanation

In diagnosis, we are not concerned with individual causal links as much as

the set of disorders that can cause a given symptom. This is called the set

of possible causes for a symptom:

Causes(s) = {d€Up | d — s} (3.1)

The goal of decompositional search is to explain not individual symptoms,

but sets of symptoms. We say that a disorder d explains a set S of symptoms

if d explains every symptom in S. Notationally, we express this as “d — 5”.

The set of disorders that explains a set of symptoms is called the set of

common causes for a set of svmptoms:

Causes(S) = {deUp | Vse€ S. d — s} (3.2)

Despite the similar mathematical notation, we use the term “possible cause”

for a singleton symptom, but for a set of symptoms, we use the term “common

causes”. We can compute the common causes for a set of symptoms by taking

the intersection of the possible causes for each symptom in the set:

Causes(S) = [) Causes(s)se S (3:3)

In decompositional search, we deal not only with sets of symptoms but

also sets of disorders. We say that a set D of disorders disjunctively explains

a symptom s if each disorder in D explains s. Likewise, we say that a set D

of disorders disjunctively explains a set S of symptoms if each disorder in

D explains every symptom in S. We express these events by the notation

“D — 5” and “D —5 §”, respectively. We use the term “disjunctive” to

contrast this notion from that in candidate generation where a candidate H

hypothesizes that all disorders in H are present. We say that H conjunctively

explains S, represented as H —~ S. The distinction between disjunctive

54 ~~ Problem Decomposition 3. /
-

and conjunctive explanation holds only for disorders. When we speak about

explaining a set of symptoms, we always mean that every element in that

symptom is explained.

A simple test to determine whether a set of disorders disjunctively ex-

plains a symptom or set of symptoms is provided by the following theorem.

Theorem 1 A set D of disorders disjunctively explains a symptom s if and

only ifDCCauses(s). Likewise, a set D of disorders disjunctively explains

a set S of symptoms if and only if D C Causes(S).

Proof The quantity Causes(s) contains all disorders that can explain s. If

D is a subset of Causes(s), then all disorders in D can explain s; otherwise,

some disorder in ID cannot explain s. This argument also holds when S is

substituted for s. HN

This theorem tells us that a symptom is disjunctively explained by a set D of

disorders if its set of possible causes subsumes D. Likewise, a set of symptoms

1s disjunctively explained by D if its set of common causes subsumes D.

3.2 Problem Decompositions

3.2.1 A Set of Symptom Clusters

Having considered sets of symptoms, we now define the main construct of

decompositional search: the problem decomposition, which is essentially a

collection of sets of symptoms.

Definition 1 A problem decomposition C for a set P of positive symptoms

1s a collection of subsets ofP(called clusters) such that

1. Every positive symptom s € P appears in some cluster C € C, and

2. Each cluster in C must have a symptom s not in any other cluster.

The intuition for the above definition is that a decomposition represents a

structure in which every cluster has a separate disjunctive explanation. The

first condition ensures that every positive symptom is explained. The second

condition helps ensure that each cluster is necessary. If a cluster does not

have a unique symptom s, then all symptoms in that cluster would already

be explained by virtue of their presence in other clusters.

{ /

Causes CA fs

Problem Decompositions 55

NG
(S9) or ($983;

po

~
)

Figure 3-1 The concept of ambiguity. This figure shows the decomposition

(51) (82). Symptom s3 could be assigned to either cluster equally well.

Example Consider a case with four positive symptoms: sj, sz, $3, and

sq. Then (s15283) (8154) is a decomposition, because it contains all positive

symptoms and each cluster has a unique symptom. However, (s1s2) (153)

is not a decomposition, because it does not contain symptom s4. Moreover,

(518283) (S154) (S284) is not a decomposition, because the third cluster lacks

a symptom that does not appear in the first or second cluster. i

3.2.2 Ambiguous and Instantiated Decompositions

A problem decomposition is similar to a partition of symptoms, except that

in a partition every symptom in a cluster must be unique to that cluster.

[n contrast, a problem decomposition allows symptoms to appear in more

than one cluster, as long as at least one symptom in each cluster is unique.

We allow non-unique assignments of symptoms because a symptom may be

explained equally well by more than one cluster. When this occurs, we say

that the symptom is ambiguous with respect to the decomposition. For

instance, consider the example shown in figure 3-1. Here we show a Venn

diagram representation of three symptoms, where symptoms s; and s; are

placed in separate clusters. There is no clear preference for placing s3 in

sither of these clusters. A representation based on partitions would force

us to place s3 in each cluster, resulting in two partitions: (sis3) (sz) and

($1) (8253). But a representation based on decompositions places s3 in both

clusters to signify its ambiguous assignment: (513) (S283).

A symptom can be assigned ambiguously if it subsumes the common cause

set of more than one cluster. A decomposition that contains an ambiguous

56 ~~ Problem Decomposition
2
JetU

assignment is called an ambiguous decomposition. Otherwise, if it contains

no ambiguous assignments, it is an instantiated decomposition. An ambigu-

ous decomposition represents a set of instantiated decompositions. These

instantiations can be computed by trying every possible assignment of the

ambiguous symptoms.

Example Consider the ambiguous decomposition (s152) (815354) (S153).
Then s; is ambiguous, having assignments in all three clusters. Symptom sj

is also ambiguous, having assignments in the second and third clusters. By

choosing all possible combinations of these assignments, we can compute the

instantiations of C:

(s182)(s384)(85), (s2)(s18384)(85), (82)(8384)(8185),
(s182)(84)(8385), (s2)(s154)(s385), (S2)(54)(518355) i

Since by definition each cluster has at least one symptom not in any other

cluster, each cluster has at least one unambiguous symptom. Therefore, the

instantiation procedure is guaranteed not to produce any null clusters.

When a symptom is in several clusters, this does not mean that it is actu:

ally caused by every associated differential, but by at least one of them. From

the standpoint of explaining the symptoms, these differentials are equivalent,

and the exact causal relationship is not a critical decision.

3.3 Differential Diagnoses

3.3.1 Commonality and Disjointness Constraints

A problem decomposition assigns the given positive symptoms into clusters

and explains each cluster separately. Each cluster of symptoms is assumed

to be caused by a separate disorder. As we have mentioned previously, the

list of such disorders is called the differential diagnosis for that cluster, or

differential for short. We denote the differential for cluster C' as Diff(C).

Informally, when we speak about cluster C, we shall refer to Diff(C) as its

“associated” differential, and other differentials Diff(C’), where C’ # C, as

“adjacent” differentials. Conversely, when we are speaking about differential

Diff(C'), we shall refer to C has its “associated” cluster, and to C’ # C as

“adjacent” clusters.

1.3 Differential Diagnoses 57

While the cluster and differential diagnosis make up the structure of a

decomposition, the contents are determined by two types of constraints. A

commonality constraint ensures that each cluster must be explainable by a

single disorder. A disjointness constraint ensures that each cluster is justified

because it cannot be explained fully by an adjacent differential.

The commonality constraint is easy to test. The set of disorders that can

explain a cluster is simply the set of common causes for that cluster.

Definition 2 A disorder d satisfies the commonality constraint for cluster

C ifd€ Causes(C).

The disjointness constraint is a bit more complicated. This constraint

is satisfied when a disorder cannot explain the “justifying” set of symptoms

in any adjacent cluster. In turn, a justifying symptom, or justification, is a

symptom that cannot be explained by an adjacent differential. If a cluster has

such a symptom, then its existence is “justified” because no other differential

can explain the cluster. We refer to the justifications of a cluster as Just(C).

Definition 3 A disorder d satisfies the disjointness constraint for cluster

C' if for every other cluster C' # C, d does not explain the justifications

Just(C’) for that cluster.

Definition 4 A symptom s in cluster C is a justification for that cluster if

for every other cluster C' # C, s is not explained by the differential Diff(C")

for that cluster.

I'he two definitions are similar in that they state that a causal relationship

does not hold. However, the first definition states that an individual disorder

cannot explain a set of justifying symptoms, while the second definition states

that a set of disorders cannot explain an individual justifying symptom. In-

tuitively, the justification set of a cluster is its “core”, the part that cannot

be explained bv anv other differential. either collectively or individually.

3.3.2 Definition of Differential Diagnoses

The commonality and disjointness constraints are useful not only to deter-

mine whether a decomposition is plausible, but also define solutions to that

decomposition. These solutions are in the form of a differential diagnosis,

58 Problem Decomposition
“3

etd

a set of disorders that satisfy the commonality and disjointness constraints

for a cluster. The definition of differential diagnoses is slightly complicated

by the fact that it is recursive: differentials are used to define justifications,

which in turn, are used to define differentials. We can see the recursion

explicitly if we combine definitions 2, 3, and 4:

VC eC — {C}.

ds’ € C'.

(d —~ "A
VC" eC —{C'}.

(Diff(C") —b s)

In other words, we define a differential as those disorders that explain their

own cluster but cannot explain, either individually or disjunctively, the jus-

tifying symptoms in any other cluster. Recursive definitions can often fail

to make sense. However, the next theorem indicates that differentials are

indeed well-defined.

Theorem 2 Given a decomposition C, for each cluster C' € C there exists

a unique set of disorders that satisfy the commonality and disjointness con-

straints for C.

Proof Suppose that there exists a set of differentials Diff 4(C), for C €

C, that satisfies the constraints and there exists another set of differentials

Diffg(C), for C € C that also satisfies the constraints. For the each set of

differentials, there is a corresponding set of justification sets, Just 4(C') and

Just g(C), respectively, for C € C. We will argue by reductio ad absurdum

that for all C' € C, Diff 4(C) = Diffg(C).

Suppose this statement is false. Then a cluster C exists such that either

Diff4(C')hassomedisorderd not in Diffg(C) or vice versa. Without loss of

generality, let us assume that Diffg(C') has some disorder d; not in Diff4(C).

Then an infinitely long argument follows:

|. As stated previously, a cluster C exists such that Diffg(C') has a disor-

der d; not in Diff4(C).

2. Then a cluster C' exists such that d; does not explain Justg(C’), but

dy does explain Just4(C'). Hence, there is a symptom sy in Justg(C")

(which d; does not explain) that is not in Just 4(C"’).

{4 Differential Formulation 59

3. Then a cluster C" exists such that Diffg(C"”) does not explain s;, but

Diff4(C") does explain s;. Hence, there is a disorder d; in Diffg(C")

‘which does not explain s;) that is not in Diff4(C").

Then a cluster C"” exists such that d, does not explain Justg(C"'), but

d; does explain Just 4(C"). Hence, there is a symptom s; in Just g(C")

{which d; does not explain) that is not in Just 4(C").

5. [and so onl]

[f our supposition were true, this argument must continue infinitely. At

each step, either a justification set Justp(C) or a differential Diffg(C) for

the second set of differentials grows. But eventually this process must stop

because the justification set for a cluster C cannot be larger than C and

because the differential for C' cannot be larger than Causes(C'). Hence at

some point, the line of reasoning must fail and so the initial supposition

must be false. 1

Thus, differential diagnoses are well defined by the commonality and dis-

jointness constraints. But a well defined set of constraints does not mean that

they are satisfiable. In applying the constraints, one or more differentials may

be empty. When this occurs, the common and disjointness constraints can-

not be satisfied, and we say that the decomposition is incoherent. Otherwise,

if all differential diagnoses are nonempty, the decomposition is coherent

Definition 5 A decomposition C is coherent if, for every cluster C in C,

there exists a nonempty differential for C. Otherwise, it is incoherent

Coherency provides a criterion for plausibility of a given decomposition. If a

decomposition imposes a satisfiable set of constraints, it is plausible; other-

wise, it is implausible. Coherency can be used as a plausibility criterion to

prune decompositions from a search tree, in the same way that minimality

is used to prune candidates in candidate generation.

3.4 Differential Formulation

The definitions above cannot be used in an algorithm until they are converted

from their declarative form into a procedural form. We now present an

procedure for formulating differential diagnoses.

50 Problem Decomposition

Cedar

. Common Causes

Exclusion Set

SN ~——

Figure 3-2 Justification and exclusion sets. This figure shows the relationship

between the cluster, justification set, exclusion set, and common causes set. The

justification set is a subset of its cluster, so the exclusion set is a superset of the

common causes set for the cluster.

3.4.1 Exclusion Sets and Unifying Disorders

To assist us, we first develop two computational constructs to be used as

intermediate quantities in the differential formulation algorithm. The first

computational construct is the exclusion set. By Definition 3, a justification

set cannot be explained by any disorder in an adjacent differential diagnosis.

We define the disorders that can explain a justification set for a cluster as its

exclusion set. The exclusion set for cluster C' is simply the set of common

causes for the justification set of C':

Excl(C) = (| Causes(s)
seJust(C)

(3.4

Note that since the justification set is a subset of its cluster, the exclusion

set will be a superset of the common causes for the cluster. This relation is

shown in figure 3-2. The exclusion set specifies those disorders that cannot

be in an adjacent differential. The use of this construct is expressed in the

following theorem.

Theorem 3 A disorder d satisfies the disjointness constraint for cluster C

in decomposition C if and only if d is in the exclusion set for no more than

one cluster in C.

 4 Differential Formulation 61

Proof (=) If d satisfies the disjointness constraint for cluster C, then d

cannot explain the justification set for any adjacent cluster C' # C. Hence,

d cannot be in the exclusion set for C’'. However, d must be in the exclusion

set for C because Just(C') is a subset of C. Thus, d is in the exclusion set

for exactly one cluster in C.

(«) If d is not in the exclusion set for cluster C’, then d does not explain

the justification set Just(C') for that cluster. If this holds for all clusters

C’ except for possibly one cluster C, then d satisfies the definition for the

disjointness constraint. HN

This theorem shows that we can use exclusion sets to remove disorders

from adjacent differentials. We could therefore remove disorders by subtract-

ing each exclusion set from each differential. This would require O(|C|?) time,

where |C| is the number of clusters in decomposition C.

But Theorem 3 also suggests a way to reduce this process to O(|C|) time.

[t suggests that we remove disorders contained in two or more exclusion sets.

Since these disorders explain the justification sets of more than one cluster,

we call these disorders the unifying disorders for a decomposition: this is our

second computational construct.

The unifying disorders can be computed with the aid of a function to

compute duplicate elements from a collection of sets. Let A be a collection

of sets A, and let a represent an element of A. Then the duplicates function

ls

DUPLICATES(A) = {a | 3A, A'ce A. (A#A)AN(a€ A)A(a€ A')}

One implementation of this function is given in figure 3-3.

With this function, the set of unifying disorders is simply the duplicate

disorders in the exclusion sets of the decomposition. Let the set of exclusion

sets be denoted by

ExclSets(C) = {Excl(C) | C €C]

[hen the set of unifying disorders is simplv

Unifying(C) = DUPLICATES(ExclSets(C))

This process essentially finds the duplicate elements among a set of exclusion

sets. Once the unifying disorders are computed, we can enforce the disjoint-

ness constraints by removing the unifying disorders from each differential.

62 Problem Decomposition

Algorithm 1 (Duplicates)

Procedure DUPLICATES (Collection A of sets)

Initialize the elements seen: Seen « {)

Initialize the duplicate elements: Duplicates « {)

For each set A in A do

For each element a in A do

If the element was seen before [a € Seen] then

The element is duplicate: Duplicates « Duplicates U {a}

The element has been seen: Seen « Seen U {a}

Return the duplicate elements: Duplicatesot

2 4

Figure 3-3 Algorithm for duplicate elements. This algorithm finds the duplicate

elements in a collection of sets.

Ironically, one would think that diagnosis should be a process of finding

unifying explanations, rather than discarding them. However, decomposi-

tional search does retain unifying explanations, but only when the symptoms

they explain are in the same cluster. When the symptoms are divided into

different clusters, a unifying disorder argues against having separate causes

for them. In that context, the unifying disorder is removed.

3.4.2 Algorithm for Differential Formulation

With the exclusion set and unifying disorder set defined, we now present the

algorithm for differential formulation in figure 3-4. This algorithm begins by

initializing the justification set, exclusion set, and differential for each cluster.

Then, it computes the unifying disorders as defined above and subtracts them

from each differential. It computes a new justification set for each cluster. If

the new justification set is different from the old one, its exclusion set is re-

computed and a flag is set, indicating that a justification set has been altered.

Finally, if no justification sets were altered, the algorithm halts and returns

the coherent decomposition, along with its differential diagnoses. Otherwise,

if a justification was altered, the algorithm performs another iteration of the

above steps, beginning with the unifying disorders. Along the way, if any

differentials or justification sets are found to be empty, the decomposition is

incoherent, and the algorithm terminates.

$ 4 Differential Formulation 63

Algorithm 2 (Differential Formulation)

Procedure FORMULATE-DIFFERENTIALS (Decomposition C)

Initialize the unifying disorders: Unifying(C) « 0

For each cluster C in decomposition C do

Initialize its justifications: Just(C) « C

Initialize its exclusion set: Excl(C) « Causes(C)

Initialize its differential: Diff(C) « Causes(C)

Return FORMULATE-DIFFERENTIALS-AUX(C)

Procedure FORMULATE-DIFFERENTIALS-AUX (Decomposition C)

 Find the unifying disorders: Unifying(C) «+ DUPLICATES(ExclSets(C))

3 For each cluster C in decomposition C do

) Remove the unifying disorders: Diff(C) « Diff(C') — Unifying(C)

10 If the differential, Diff(C), is empty then

11 Return “incoherent”

12 Initialize a flag for altered justification sets: Altered? « nil

13 For each cluster C in decomposition C

14 Remove justifications that are explained by adjacent differentials:

NewJust « {s € Just(C) | VC' € C — {C}. Diff(C') —f s}

i) If the new justification set, NewJust, is empty then

6 Return “incoherent”

” Else if the new justification set is altered [NewJust # Just(C')] then

13 Store the new justification set: Just(C') «— NewJust

9 Revise the exclusion set: Excl(C) « N,egust(c)Causes(s)

20 Set the altered justification flag: Altered? « t

21 If the altered justification flag, Altered?, is nil then

22 Return the decomposition C

23 Else if the altered justification flag, Altered?, is t then

24 Return FORMULATE-DIFFERENTIALS-AUX(C)

Figure 3-4 Algorithm for differential formulation. This algorithm contains a

main procedure that initializes variables and a recursive procedure that performs

the actual computation.

64 Problem Decomposition
-

<
Lrg4

The correctness of this algorithm is expressed by the following theorem.

Theorem 4 Algorithm 2 terminates. Moreover, it returns C if and only if C

is coherent. Finally, the differentials satisfy the commonality and disjointness

constraints of C.

Proof The algorithm terminates because the justification sets and differ-

ents both are monotonically nonincreasing in size. Hence, they must either

reach a fixed point, at which point the algorithm terminates, or one of these

sets becomes empty, at which point the algorithm also terminates. For cor-

rectness, note that a decomposition is incoherent only if one of its differ-

entials is empty. The algorithm returns “incoherent” under this condition.

The algorithm also returns “incoherent” if a cluster lacks a justifying symp:

tom. A decomposition would be incoherent under this condition because

the exclusion set for a empty justification set is the universe of disorders, so

all other differentials would be empty. Note that each differential satisfies

the commonality constraints, because it is a subset of the common causes

for the cluster. Finally, note that each differential satisfies the disjointness

constraints, because any disorder that is in more than one exclusion set 1s

removed when the unifying disorders are computed. HN

Example Consider the decomposition (s1s283) (S455) (Ss), shown in fig-

ure 3-5. The figure shows how the differential formulation algorithm works.

For reference, let Cy, C5, and C3 denote the first, second, and third clusters,

respectively. Then, the first step removes disorder F from the differentials for

clusters Cy and C3, because it is unifying. In the second step, symptom s,

is found to be non-justifying, because it is explained by the differential for

cluster C;. Symptom s3 is also found to be non-justifying because now it

is explained by the differential for C3. The third step reveals disorder G to

be a unifying disorder, because it explains not only cluster C's but also the

only justifying symptom in cluster C;, namely, s;. The process terminates

after the third step, when the justification sets and differentials reach a fixed

point. Removal of the unifying explanations F and G gives us the final set

of differentials. The resulting differentials are {A, B}, {C}, and {D, E}. 1

15 Differential Formulation 65

Symptom Possible Causes

51 A\ [B G

C4 S$ A C

5 53 Bl DE G

5 Cc; 4 ° . 0
St E \&

"Ca se DEE) C Excl(Ca): D, E, F, G

| Unifying: F

Symptom Possible Causes

31 B\ GC Non-justifying:
c, so, QALEBIOD s2 (explained by Diff(C2)),

¢ sof GALDEG), s3 (explained by Diff(C3))
5 — — 5

5 Cp] Cl

S 5 E Vi

Cy sq D)(E) #1(G)

Symptom Possible Causes

5 OE

C1 Excl(Cq): A, B, G
—

»
NJ

B :,

Cy S4 i

OE +6 Excl(C): D, E, F, G

{ Unifving: G

Figure 3-5 Example of differential formulation. This figure computes the dif-

ferential diagnoses for the decomposition (s15,83) (5485) (86). These clusters are

separated by horizontal lines, and the possible causes for each symptom are shown.

The first step removes the unifying disorder F; the second step makes symptoms

s, and s3 non-justifying: the third step removes the unifying disorder G.

56 ~~ Problem Decomposition 3 ‘

3.5 Decompositions and Candidates

Candidate generation and decompositional search can be compared at the

level of their common denominator, namely, candidates. Problem decom-

positions represent a set of candidates because one disorder can be selected

from each differential, giving rise to a conjunction of disorders that explains

the given problem. However, the match between the two algorithms is not

perfect. Candidate generation is intended to produce only candidates that

are minimal. For decompositional search, though, generation of candidates

is an incidental feature and adherence to the minimality criterion is not

guaranteed. In this section, we explore the relationship between problem

decompositions and minimality.

3.5.1 Candidate Sets

Each cluster in a decomposition is associated with two sets of disorders: its

common cause set and its differential diagnosis. A Cartesian product can be

performed on either of these sets, giving rise to an initial candidate set and

a final candidate set. The initial candidate set is defined as follows:

Definition 6 A candidate H is in the initial candidate set for decomposition

C if there exists a one-to-one correspondence between each disorder d in H

and each cluster C in C such that d explains C.

This definition tells us whether a candidate is in the initial candidate set. The

inverse process is to generate all candidates that satisfy the definition. We can

compute the initial candidate set for a decomposition by taking the Cartesian

product of the common cause sets for the clusters in the decomposition and

accepting the syntactically valid candidates that result. Some of the resulting

tuples may be syntactically invalid because they contain duplicate disorders;

these disorders can be eliminated.

Example Consider the decomposition (s1s253) ($455) (s¢) shown previously
in figure 3-5. The common causes for these clusters are {A, B}, {C, F, H},

and {D, E, F, G}. The initial candidate set can be computed by taking the

Cartesian product of these sets:

tA, B} x {C, F, H} x {D, E, tr, G}

3 5

A,C,D].
AFD],
AH,DJ.

B,C,D],
B,F,D],
'B.H.D]J.

‘A,C,E],
ARE],
AHE],
B,C,E],
B,F,E,
'B.H.E].

Decompositions and Candidates 67

ACF.

"AH,F],
B,C,F],

'B.H,F],

[A,C,G],
'AF.G],
[AH,G],
B,C,G],
[B,F,G],
[B.H.G]

Except for [A, F, F| and [B, F, F], which are syntactically invalid candidates,
‘he result comprises the initial candidate set for the decomposition. HN

Analogously, we can define the final candidate set for a problem decom-

position by using differential diagnoses instead of common cause sets:

Definition 7 A candidate H is in the final candidate set for decomposition

C if there exists a one-to-one correspondence between each disorder d in H

and each cluster C in C such that d is in the differential diagnosis for C

When the context is clear, we shall refer to this set simply as the “candidate

set” for a decomposition, or Cands(C). Since the differentials are subsets of

the common cause sets, the final candidate set is a subset of the initial can-

didate set. We can compute the final candidate set by taking the Cartesian

product of the differentials of a decomposition. Because no two differentials

contain the same disorder, all of the resulting candidates will be syntactically

valid. The formula for computing the candidate set is:

iff(CCands(C) = XDiff()

Example The decomposition of the previous example has differential di-

agnoses of {A, B}, {C,}, and {D, E}. Their Cartesian product is:

(A,B} x {C} x {D.E} = [ACD] [AGE]

B.C.D]. [B.C.El

The result comprises the final candidate set for the decomposition. RK

As we have seen, a Cartesian product represents a set of candidates com-

pactly. On the other hand, explicit representations of candidates require

space proportional to the product of the differential sizes.

68 Problem Decomposition 1

3.5.2 Justifications for Disorders and Differentials

Previous chapters have demonstrated a close relationship between the can-

didate set of a problem decomposition and the minimal candidates produced

by candidate generation. In the example presented in chapter 2, for example,

decompositional search produced the same set of minimal candidates as can-

didate generation. The reason for the close relationship stems from the use

of justifications to define differential diagnoses. The concept of justification

is closely related to a similar concept that could be used to define minimality.

Let us call this concept “disorder-based justification” as defined below.

Definition 8 Suppose H is a candidate for a set P of positive symptoms.

Then symptom s is a disorder-based justification for disorder d in H if d

explains s and for all other disorders d' in H, where d' # d, d’ cannot explain

3

The concept of disorder-based justification is similar to our notionof justi-

fication, which might be considered “differential-based”. Just as differential

based justification defines coherency, disorder-based justification can define

minimality. The minimality of a candidate was previously defined by seeing

whether any subset of the candidate could explain the positive symptoms.

With disorder-based justification, we can create an alternate, but equivalent,

definition of minimality: each disorder must have a disorder-based justifica-

tion. The equivalence of this alternate definition is provided by the following

theorem.

Theorem 5 A candidate H is minimal for a set P of positive symptoms if

and only if, for each disorder d in H, there exists a symptom s in P that is

a disorder-based justification for d.

Proof (=) Suppose candidate H is minimal for P, but contrary to the

hypothesis, some disorder d in H lacks a disorder-based justification. Then

there is no symptom explained by d that some other disorder d' in H does

not also explain. Then H — {d} is a candidate for P, contradicting the

supposition that H 1s minimal.

(<) Suppose every disorder in H has a disorder-based justification, but

contrary to the hypothesis, H is not minimal. Then some subset Hc of H is

also a candidate for P. Suppose d is in H — H; since Hc is a candidate for

P, H — {d} is also a candidate for P. Consider the set of symptoms Pr in

{15 Decompositions and Candidates 69

P that d explains. Either (1) Pc is empty, in which case d lacks a disorder-

based justification, or (2) since H — {d} is a candidate for P, each symptom

s in Pc is associated with another disorder d' in H that explains s. Thus d

lacks a disorder-based justification, contradicting the supposition. i

The above notion of disorder-based justification holds for a single dis-

order, in contrast with the concept of justification used in decompositional

search, which holds for a set of disorders. Nevertheless, the general idea

of justification is similar. In determining minimality of a candidate, one

finds a disorder-based justification for each disorder in the candidate. In

determining the coherency of a decomposition, one finds a differential-based

justification for each cluster and its associated differential in the decomposi-

tion. The similarity is apparent when disorder-based and differential-based

justification are written in predicate logic:

d-Just(s,d, H) = (d — s) A Vd e€ H— {d}. (d — s)

Just(s,C,C) = (Diff(C) —5s) A VC'eC—{C}. (Diff(C") bs)

The analogous structure of these equations indicates that differential formu-

lation and minimal candidates may be closely related. We now explore this

relationship in more detail.

3.5.3 Candidate Sets and Minimality

We have seen that problem decompositions entail a set of candidates, and

that the nature of justifications suggests that they should be similar to min-

imal candidates. We now consider the relationship between candidate sets

and minimality in more detail. Let us consider a problem decomposition as

a generator of minimal candidates. The decomposition begins with a set of

initial candidates and, after differential formulation, ends with a set of final

candidates. We can ask, then, whether differential formulation discards any

minimal candidates, which is essentially a question about completeness. We

can also ask whether differential formulation retains any nonminimal candi-

dates, which is essentially a question about soundness

The answer to the first question, as expressed in the following theorem,

is that differential formulation is indeed complete.

70 Problem Decomposition
[nd

3

Theorem 6 Let C be a problem decomposition for a set P of positive symp-

toms. IfHis in the initial candidate set for C, and H is minimal, then H

is in the final candidate set for C.

Proof Let H be a minimal candidate in the initial candidate set for C, but

contrary to the hypothesis, H is not in the final candidate set for C. Then

there must be some disorder d in H that is in the exclusion set for both C

and some adjacent cluster C’' # C. The differential for that cluster C’ must

also have some disorder in H; call it d'. We now show that H is nonminimal

because H — {d'} is still a candidate.

Since d is in the exclusion set for C' and C’, every symptom s’ in C' is

explained either by d or by the differential for some other cluster C" # C".

If C" = C, then d explains every symptom s’ in C’. Hence d explains not

only C but also C’, meaning that d’ is not necessary for H to be a candidate.

Otherwise, if C" # C', then H contains some disorder d” from the differential

of C" such that every symptom s’ in C' is explained by either d or d”. Hence

d and d" explain not only C and C"” but also C’, meaning that, again, d’ is

not necessary for H to be a candidate. In either case, H—{d'}is a candidate

because all symptoms in P are still explained. Thus, we have contradicted

the supposition that H is minimal, proving that H must be in the final

candidate set for C. HB

However, the answer to the question about soundness is false, as expressed

in the following theorem.

Theorem 7 There exists a set P of positive symptoms and a problem de-

composition C for P, such that not all candidates in the final candidate set

for C are minimal.

Proof Proof by example. Consider the example shown previously in fig

ure 3-5. The final candidate set is [A,C,D], [A,C,E], [B,C,D], and [B,C,E].

The first three candidates are minimal, but [B,C,E] is nonminimal, because

'B,E] explains the positive symptoms. |

It should not surprise us that both completeness and soundness cannot

be achieved simultaneously. If order to maintain soundness in the exam-

ple above, we would have to eliminate solution [B,C,E]. We could do this

by removing either disorder B from the first differential or disorder E from

15 Decompositions and Candidates 7

0

and

~ ong
W

Removable

nonminimal

candidates

-r:

~ —
J ~~

wal O
ul =

4 =
< oO
J

v

ab

LY

 RR SERRE REA

ens ne

maTaTaTeTaTaeattenimaPERatAe

Diff(C)
~ Causes(Cq)

rt”

J
Non-removable

nonminimal

candidates

Figure 3-6 Geometric representation of differential formulation. Each axis rep-

resents a different task, each with a common causes set and differential. The

Cartesian product of the common causes set contains the initial candidate set for

the decomposition. Differential formulation removes disorders from the common

causes set to compute the differentials. The Cartesian product of the differentials

contains the final candidate set for the decomposition. Some nonminimal candi-

dates cannot be removed by differential formulation because their elements also

define minimal candidates.

the second differential. But removing a disorder from a differential would

eliminate either minimal candidate [B,C,D] or [A,C,E] from the final candi-

date set, thereby violating completeness. On the other hand, to maintain

completeness and express the three minimal candidates in a single Cartesian

product form, we must include the nonminimal candidate [B,C,E], thereby

violating soundness.

This conflict can be seen from a geometric perspective. If we view each

of the n differentials of a decomposition along a different dimension, we get

an n-dimensional candidate space, as shown in figure 3-6. Each point in this

space represents a candidate. Initially, the common cause sets define the set

of initial candidates. But differential formulation removes disorders from the

differential diagnoses, which is analogous to slicing off subregions of the can-

didate space. Eventually, the differentials define the set of final candidates.

All minimal candidates within the space remain, but some nonminimal can-

didates may also remain. These nonminimal candidates occupy subregions

72 Problem Decomposition reid

within the minimal candidate space, so they cannot be removed without also

eliminating minimal candidates.

Our definition of differential diagnoses favors completeness at the expense

of soundness. One might expect that soundness should be a more important

criterion, but we should keep in mind the goal of abductive reasoning. In a

deductive system, the worry is that we will derive an erroneous statement, an

error of commission. Hence, soundness is usually preferred over completeness

in such systems. But in an abductive system, the worry is that we will miss

a diagnosis, an error of omission. Hence, in diagnosis, we should prefer com-

pleteness over soundness. Furthermore, there is nothing particularly special

about minimality that warrants a sound algorithm. Minimality is only one

of several conceivable plausibility criteria. Coherency is another plausibility

criterion that happens to be closely related to minimality but can be consid-

ered a standard in its own right, especially when performing decompositional

search.

Chapter 4

Decompositional Search

743

[4 Decompositional Search
A

 IT

After having decomposed the problem, we try to recombine its

elements in some new manner There are, of course,

unlimited possibilities of recombination. Difficult problems

demand hidden, exceptional original combinations, and the

ingenuity of the problem-solver shows itself in the originality of
the combination.

George Polya, How to Solve It (1945)

Creative problem solving is often seen as a divine or inspirational process.

As Polya [56, p. 73] remarks, one criterion for creative problem solving is

finding original combinations of subproblems. Although we do not claim that

a routine algorithm will meet Polya’s standard for originality, our method

of diagnostic reasoning matches the decompositional style he advocates. In

the previous chapter, we discussed how to formulate differentials, once a

problem decomposition has been generated. In this chapter, we present a

search process to generate plausible problem decompositions.

4.1 Search Trees

The search tree for decompositional search is similar to the recursive method

for generating partitions. In this method, suppose we have a partition con-

taining |C| clusters. Then, a new positive symptom can added to one of

the existing |C| clusters, or added as a singleton cluster to create a partition

containing |C| + 1 clusters. This means that there are two ways to expand

an existing partition with a new symptom: either assign it to an existing

cluster or adjoin a new cluster with the symptom by itself. Together, these

two expansion operators are sufficient to generate all possible partitions.

However, for reasons explained in the previous chapter, we are interested

not in partitions but in decompositions, which allow symptoms to appear

in more than one cluster. Problem decompositions create a potential search

space, shown in figure 4-1, and complicates the search process somewhat.

The search process involves three major steps: assignment, ambiguation, and

disambiguation. These three steps are repeated for each positive symptom

in the diagnostic case. We will discuss each of these steps in the following

sections.

S17)

Symptom
Assignment

(S149 (Sq)(s5)

Ambiguation anc

Disambiguation

(S159)

CIR - Ax 'm

(s1)(s9)

Symptom
Assignment

>

S48q¢ (s4 Sn)(c

S 15953) (s 1S2)(s 3)| (s1¢)2s 1S3) (s 18

-'n

De
“N—

(vq18-.

- W(s~83) (51)(s9)(s3)
Np

i

N

~~ AN v

angh (510983) (5953)(s9s3) (S1)(s9)(s3)
 ow

—b
+

——

n-

Ambiguation

Disambiguation

Figure 4-1 Decompositional search space. This figure shows the complete decompositional search space for up

to three symptoms. Arrows are labeled according to the operator applied: C/R = covering or restricting, Adj =

adjoining, Adm = admixing, FF = forward ambiguation, B = backward ambiguation, N = no ambiguation, and D

= disambiguation. The arrows show only possible transformations. Not all combinations of transformations are

possible in the same problem. For example, backward ambiguation is applicable only after the covering operator, and

disambiguation is not applied afterwards.

oN

76 ~~ Decompositional Search
’

J A

4.2 Symptom Assignment

The first step in decompositional search is symptom assignment. There are

four ways to assign a symptom to an existing decomposition: covering, re-

stricting, adjoining, and admixing. The first two operators assign a symptom

to an existing cluster, while the other two operators use the new symptom

to create a new cluster. This contrasts with the method for generating parti-

tions, which requires only two operators. The operators for decompositional

search are summarized graphically in figure 4-2.

The covering and restricting operators have the same effect, assigning a

new positive symptom s to an existing cluster C. They differ only depend-

ing on whether the possible causes for s subsume the common causes for

C. When the possible causes for s subsume the common causes for C, the

symptom covers the cluster; otherwise, it restricts the cluster. The difference

is illustrated in the top two rows of figure 4-2. When a symptom s covers

a cluster C, the common causes for the cluster remain unchanged when s

is added to C. On the other hand, when s restricts C', the common causes

become smaller.

The distinction between covering and restricting will recur in our presen-

tation of decompositional search. We define the two notions as follows:

Definition 9 A symptom s covers a cluster C if

Causes(C — {s}) = Causes(CU {s})

Otherwise, a symptom s restricts a cluster C if

Causes(C — {s}) C Causes(C U {s})

These definitions essentially constitute a perturbation test. If the symptom

already belongs to a cluster, remove the symptom and see whether the set

of possible causes for that cluster enlarges. Or, if the symptom does not

belong to the cluster, add the symptom to the cluster and see whether the

set of possible causes for the cluster shrinks. Any change indicates that the

symptom restricts the cluster.

The adjoining operator creates a new singleton cluster containing only the

new symptom. For example, given decomposition (s;) and a new symptom

$2, adjoining would add a new cluster (s;) to give the decomposition (sy) (s2).

This operation is shown in the third row of figure 4-2.

{ +) Symptom Assignment Ti

RT.

Covering

Restricting

S1

S 4

A.

Sp

~ 7s.

|
|

_

S

(s159)

*

Adjoining

Admixing

3 1

S1

(5159)
(s1543-

—~r

 iin

N

51

$7

“(s9)

Figure 4-2 Assignment operators for decompositional search. Each row illus-

trates a different operator: covering, restricting, adjoining, and admixing.

718 Decompositional Search 4.2

The admixing operator also creates a new cluster, but one containing

both the new symptom and one previously assigned. For example, given

decomposition (s1s2) and new symptom s3, the admixing operator could ad-

mix sz with either symptom s; or s;. If s; were admixed with s3, the new

cluster would be (s1s3) and the resulting decomposition would be (5153) (s2),

as shown in the last row of figure 4-2. The symptoms that are eligible for

admixing are those that restrict their cluster and also restrict the new symp-

tom:

ADMIXABLE(s,C) = {s € C | Restricts(s,C) A Restricts(s, (s'))}

where s’ is the new symptom.

Admixing provides alternate pathways for generating coherent decompo-

sitions. These alternate pathways are useful because an incoherent decompo-

sition may have descendants that are coherent. Hence, admixing allows the

coherent descendants to be generated by a different pathway. An example

of the need for admixing is shown in figure 4-3. In this figure, the coherent

decomposition (s1) (sz) (s3s4) cannot be generated by covering, restricting,
or adjoining. Of these three operators, the only one potentially applicable,

restricting, cannot be performed because the required parent, (s;) (s2) (s3),
is incoherent and would have been pruned by the decompositional search al-

gorithm. However, admixing provides an alternate pathway from the parent

(s153) (s2), which is coherent.

The problem arises in part because symptom s3 is presented before sy.

Because s3 covers those disorders that cause s; and not sz, the cluster (sq)

cannot exist as long as (sz) also exists. But s4 restricts the possible causes for

83, so that it no longer covers the unique causes of s;. This allows (s;) to exist.

Thus, if s4 were presented before s3, the decomposition (s;) (sq) (s4) would

be coherent, and s3 could simply restrict cluster (s4) to create the desired

decomposition. Admixing, then, is a way to remedy anomalies resulting from

symptom ordering. By combining the new symptom with previously assigned

ones, admixing can pair symptoms that might not otherwise pair.

Given these four operators, the algorithm for assigning a new symptom to

an existing decomposition is shown in figure 4-4. This algorithm first checks

to see if the new symptom s’ covers any clusters in the decomposition. If so, it

adds s’ to all clusters that it does cover and returns the single decomposition

When covering is possible, the other assignment operators are unnecessary.

{ /

(sq) «OO~

Cannot restrict

(51)s5)(s3) So
because it

is incoherent

Pa|
a

Symptom Assignment 79

' unadudee

As
Sq

| 20) 53

Can admix s4

to give

(s4 Ns9)s354)

 7 AR

) (s1 J

<.

Figure 4-3 The need for admixing. This example shows how admixing can

generate a decomposition, (s1) (82) (s3s4) that cannot be generated by any other

symptom assignment operator. Restriction of the decomposition (s1) (s2) (s3) will

aot work because that decomposition is incoherent and thereby pruned by the

decompositional search algorithm.

30 Decompositional Search

Algorithm 3 (Symptom Assignment)

Procedure ASSIGN (New symptom s’, Decomposition C)

If symptom s’ covers some cluster C € C then

Create a new decomposition: C' — C

For every cluster C' € C that s’ covers do

Cover C: C' — CU {s'}; C' « SuBsTITUTE(C',C,(’)

Return a singleton set containing the new decomposition: {C'}

Else do

Initialize the set of new decompositions: F' « {

For every cluster C' € C do

If Causes(s) N Causes(C') # @ then

Restrict C: C' — CU {s'}; C' « SuBsTITUTE(C',C,C)

Ambiguate, disambiguate, and add the restricted cluster:

F «— FU {DISAMBIGUATE(AMBIGUATE(C',(’))}

Adjoin s": C' « (§'); C' «—CU{C"}

Ambiguate, disambiguate, and add the adjoined cluster:

F «— FU {DIiSAMBIGUATE(AMBIGUATE(C",(’))}

For every cluster C € C do

For every admixable symptom s € ADMIXABLE(s', C') do

Remove s from its previous cluster:

C' « SuBSTITUTE(C — {s},C,C)

Admix s and s': C' « (ss'); C' « C'U{C'}

Ambiguate, disambiguate, and add the admixed cluster:

F — FU {DISAMBIGUATE(AMBIGUATE(C',C"))}

19 Return the set of new decompositions: F'

Procedure SUBSTITUTE (New cluster C’, Old cluster C, Decomposition C,

20 Initialize a new decomposition: C’ « {)

21 For each cluster C" € C do

0 If the cluster is the old one [C" = C] then

"3 Add the new cluster: C' «+ C'U {C"}

24 Compute its common causes: Causes(C') «— UsecrCauses(s)

25 Else do

26 Copy the cluster unmodified: C' « C' U {C"}

27 Return the new decomposition C’

Figure 4-4 Algorithm for symptom assignment. This algorithm contains ex-

acutes the covering, restricting, adjoining, and admixing operators and applies

ambiguation and disambiguation steps when appropriate.

TR Ambiguation 81

Otherwise, the algorithm performs restricting, adjoining, and admixing.

First, the restricting operator examines every cluster C in the decomposition.

If the possible causes for the new symptom s’ have a nonempty intersection

with the common causes for cluster C, then a new decomposition is cre-

ated with s’ added to C. The new decompositions are then ambiguated

and disambiguated, using procedures that are discussed later in this chap-

ter. Second, the adjoining operator creates a new cluster (s’) and creates

a new decomposition with (s’) adjoined to the old decomposition. As with

restricting, this decomposition is ambiguated and disambiguated. Finally,

admixing finds every previously assigned symptom s that can be admixed

with the new symptom. Admixing is possible when s restricts its current

cluster and also restricts the singleton cluster (s’). When admixing is pos-

sible, a new decomposition is created, ambiguated, and disambiguated. The

assignment procedure then returns the entire set of new decompositions ob-

tained by restricting, adjoining, and admixing. This set of decompositions

can be incorporated into the new frontier of decompositions in the search

ree.

4.3 Ambiguation

A problem decomposition can assign a symptom to more than one cluster.

This signifies that the assignment of the symptom is arbitrary and does not

affect any commonality or disjointness constraints. We say that a symptom s

is ambiguous with respect to a decomposition C if there exists more than one

cluster C' € C such that s covers C. Note that ambiguity is defined using the

common cause set and not the differential diagnosis. We use common cause

sets because at this point the assignments of potentially ambiguous symptoms

are still tentative, so differential diagnoses have not yet been formulated.

As we discussed in section 3.2.2, a decomposition with an ambiguous

symptom is said to be ambiguous; otherwise, it is instantiated. Conceptually,

an ambiguous decomposition represents a set of instantiated decompositions

with the same commonality and disjointness constraints. An ambiguous de

composition thereby expresses symptom assignments at a higher level of ab

straction, focusing on those symptoms that affect the differential diagnoses.

Ambiguous symptoms do not affect the differentials or even the common

cause sets because they have become too general compared to the existing

82 Decompositional Search

Algorithm 4 (Ambiguation)

Procedure AMBIGUATE (Modified cluster C’, Decomposition C)

For all unmodified clusters C # C' do

For all symptoms s in C' do

If s covers the modified cluster C' then

Copy the symptom to the modified cluster: C' « C' U {s}

Figure 4-5 Algorithm for ambiguation. This algorithm checks all symptoms in

the unmodified clusters and copies them to the modified cluster whenever they

cover it.

clusters. The goal, then, is to ambiguate as much as possible, a notion that

is called maximal ambiguity:

Definition 10 A decomposition C is maximally ambiguous for a set P of

positive symptomsif for every positive symptom s in P the following condi-

tions hold:

1. Ifsrestricts its cluster, it belongs only to that cluster.

2. Otherwise, ifscovers its cluster, it belongs to all clusters that it covers.

Maximal ambiguity can be thought of as a canonical representation for sets

of similar problem decompositions. Maximal ambiguity is like a “least-

commitment” strategy [61, 62] that makes only critical symptom assignments

and avoids arbitrary ones.

The opportunity for ambiguation occurs whenever a cluster receives a

new symptom or when a new cluster is created. In either case, we refer to

cluster with the new symptom as the modified cluster. There are two ways

that ambiguation can occur: (1) The new symptom may cover more than one

existing cluster; we call this backward ambiguation. (2) Previously assigned

symptoms may cover the modified cluster; we call this forward ambiguation.

Since backward ambiguation applies only when the covering operator is

executed, this step is performed in the symptom assignment procedure (lines

3-4 of Algorithm 3). The algorithm for forward ambiguation (called simply

“ambiguation” when the context is clear), however, requires a separate pro-

cedure, which is presented in figure 4-5. This procedure takes two arguments:

i Disambiguation 83

the modified cluster and the decomposition to be ambiguated. The proce-

dure examines all symptoms in the unmodified clusters. Any symptom that

covers the new cluster C' is copied to it, thereby ambiguating the symptom.

4.4 Disambiguation

After ambiguation, a decomposition may not meet the definition for max-

imal ambiguity. Therefore, we require a final step, called disambiguation,

to correct such situations. Disambiguation “undoes” some assignments of

ambiguous symptoms. The need for disambiguation arises from the forward

ambiguation step. In that step, symptoms that cover the modified cluster

are copied to that cluster. If these symptoms restrict their previous clus-

ter, they need to be removed from that cluster in order to satisfy maximal

ambiguity. Furthermore, if these symptoms are removed from their clusters,

a secondary need for disambiguation may arise. This need arises because

removing restricting symptoms from a cluster enlarges the common causes

for that cluster. Hence, an ambiguous symptom that previously covered that

cluster may now no longer cover it. The disambiguation step, presented in

figure 4-6, takes care of both of these circumstances.

This procedure finds the ambiguous symptoms in a decomposition, mak-

ing use of the DUPLICATES procedure, defined previously in Algorithm 1. It

then removes these symptoms and recomputes the common causes for each

cluster when necessary. Finally, for each previously ambiguous symptom, the

procedure finds the set of clusters that it now covers and restores it to those

clusters.

An example of disambiguation is shown in figure 4-7. The initial decom-

position is (Fever,Cough), which has a differential of {Tb}. When symptom

Wheeze is adjoined, a new decomposition (Fever,Cough) (Wheeze) is gener-

ated. The new cluster provides an opportunity for Cough to cover it, so the

ambiguation procedure copies Cough to the new cluster. However, Cough

still restricts its old cluster Disambiguation detects this situation and re-

moves Cough from its old cluster. The resulting decomposition is therefore

(Fever) (Wheeze, Cough).
Note that disambiguation enlarges common cause sets and differentials.

[n the example above, Cough restricted its old cluster, yielding only Tb in its

differential. After disambiguation, though, the old cluster had more disorders

84 Decompositional Search £

Algorithm 5 (Disambiguation)

Procedure DISAMBIGUATE (Decomposition C)

Find all ambiguous symptoms: Ambiguous(C) « DUPLICATES(C)

For all clusters C € C do

If C contains ambiguous symptoms [C N Ambiguous(C) # 0] do

Remove the ambiguous symptoms: C' «— C — Ambiguous(C)

Recompute its possible causes: Causes(C') « NyecCauses(s)

For all ambiguous symptoms s € Ambiguous(C) do

Initialize its set of reassignments: Reassign « 0)

For all clusters C € C do

If s covers C then

Add the cluster to the set of reassignments:

Reassign « Reassign U {C'}

1 If no reassignments are possible [Reassign = (}] then

12 Return “degenerate”

13 Else do

! For all reassigned clusters C' € Reassign do

15 Reassign the symptom to the cluster: C' «+ CU {s}

16 Return the decomposition C

Figure 4-6 Algorithm for disambiguation. This procedure removes all ambigu-

ous symptoms, recomputes common cause sets as necessary, and reassigns the

symptoms to clusters they cover

 7

(Fever, Cough)

en
oe.

(Fever)

Disambiguation 85

(Fever, Cough)

Adjoin 0 SN N
wheeze (FRU [Cold

Ambiguate Cough
| (Wheeze)

(Fever, Cough)

(0aLNDisambiguate4D

(Wheeze, Cough)

Figure 4-7 Example of disambiguation. The symptom Cough is ambiguated to

:he new cluster (Wheeze), but it restricts its previously assigned cluster. Disam-

biguation removes Cough from its previous cluster, thereby freeing constraints on

ts common causes and differential.

86 Decompositional Search 4.

in its differential, namely, Tb, Flu, and Mal. Effectively, the symptom Cough
was moved from a cluster that it restricted to a cluster that it covered. This

process of moving symptoms between clusters can be interpreted as freeing

unnecessary constraints. The combination of ambiguation and disambigua-

tion frees constraints placed by unnecessarily restricting symptoms. As new

symptoms are processed, new opportunities for freeing constraints may arise.

Disambiguation does not always work this well. Note that disambiguation

reassigns each ambiguous symptom to fewer clusters than before. In the

extreme, or degenerate, case, an ambiguous symptom may not assignable to

any cluster. Degenerate cases can occur when an ambiguous symptom s exists

and the disambiguation step removes a symptom from every cluster that s

originally covered. Then, those clusters will have an enlarged set of common

causes, and it is possible that s will no longer cover any of them. When

a previously ambiguous symptom cannot be reassigned, the decomposition

is said to be degenerate. Degeneracy indicates that the ambiguation step

[reed too many constraints. An ambiguous symptom must then be assigned

arbitrarily to place another constraint. In such cases, our procedure simply

discards the decomposition as degenerate, since other symptom assignments

will yield the desired decompositions.

An example of a degenerate decomposition is shown in figure 4-8. The

original decomposition is (s;838s5) (s28485). Symptom se is then adjoined

as a new cluster, (sg). Since symptoms s; and s; cover the new cluster, the

ambiguation procedure copies them to the new cluster. The decomposition at

this point is ($1835) (S186S2) (825485). The disambiguation step then removes

the ambiguous symptoms, si, so, and ss; recomputes the common cause sets;

and reassigns the symptoms. Symptoms s; and s; are found to restrict their

old clusters, so they are removed from those clusters. But symptom ss is

found to restrict both of its old clusters, so it cannot be assigned to any

cluster. Hence, the decomposition is degenerate.

Together, the symptom assignment, ambiguation, and disambiguation

procedures produce a set of maximally ambiguous decompositions. This

proposition is presented in the following theorem.

Theorem 8 Algorithms 8, 4, and 5 terminate. Moreover, given a maximally

ambiguous decomposition and a symptom, every decomposition produced by

the algorithms is maximally ambiguous.

[1 Disambiguation 87

(sg)

Pa / NN ~

WY 55 I

(515355) (595455)

SQ.

(1 5652)

T (s4'

Desanerate

— To TTT Sy

— \ 5g d

GEE a v pa

(S1 S355) (525455)
Ambiguate sq, So |

Adjoin sg

=

¥

(515659)

Disambiguate

$1, $9, S5

!

J 5
(515355) (595455)

5

 _—

3) J

Figure 4-8 Example of a degenerate decomposition. In the original decomposi-

tion, symptom s; covers two clusters. Decomposition ($5385) (Sg) (825485) is then

created by adjoining, and symptoms s; and s, are ambiguated to the new cluster.

Disambiguation removes s; and s, from the previous clusters, but s; no longer

covers any cluster. The resulting decomposition is degenerate.

88 Decompositional Search 4.

Proof The algorithms loop over only finite sets; hence they terminate. For

the rest of the theorem, we assume that all previously assigned symptoms s

in decomposition C satisfy the definition for maximal ambiguity and consider

a new symptom s’, which results in a new decomposition C’. If s’ covers some

cluster, then lines 3 and 4 of Algorithm 3 ensures that s’ is maximally am-

biguated. Since no common cause sets are changed, the maximal ambiguity

of all symptoms s is preserved. Otherwise, s’ restricts every cluster, so it

is assigned to only one cluster by the restricting, adjoining, and admixing

operators, thereby also satisfying maximal ambiguity.

As for the previously assigned symptoms s, the only new opportunity for

covering is the cluster C’ containing s’. The other clusters C' # C’ can only

lose elements by Algorithm 5, so their common cause sets enlarge, creating

no new opportunities for covering. Algorithm 4 ensures that if s covers the

new or modified cluster it is placed in that cluster. Algorithm 5 ensures

that all ambiguous symptoms satisfy the definition of maximal ambiguity.

All symptoms not examined by Algorithm 5 covered no other clusters orig-

inally and continue to cover no other clusters, because the common causes

of clusters C' will have enlarged or remained the same; they do not cover C’,

otherwise Algorithm 4 would assign them to more than one cluster and they

would have been examined by Algorithm 5. Hence the maximal ambiguity

of all previously assigned symptoms is preserved. HB

4.5 Search Strategy

The symptom assignment, ambiguation, and disambiguation procedures can

explore the space of coherent decompositions when orchestrated by a suitable

search strategy. There are several ways that search could be performed [52].

A breadth-first search process would explore the entire search space of plau-

sible decompositions. Of course, depending on the particular application, we

may not want to to do this. In such cases, we could use other strategies, such

as depth-first search or beam search.

However, in this thesis, we are interested in comparing the efliciency

of two algorithms. The breadth-first paradigm allows us to examine and

compare the relative sizes of the two different search spaces. Hence, our

implemented system, SYNOPSIS, is designed to use a breadth-first search

[0 Incompleteness 89

strategy. For actual diagnostic problem solving, the system may be extended

to use other search strategies.

In figure 4-9, we present a breadth-first search algorithm for computing

all coherent decompositions for a set of positive symptoms. This algorithm

generates problem decompositions using the symptom assignment procedure.

That procedure, in turn, executes the covering, restricting, adjoining, and ad-

mixing operators, and calls the ambiguation and disambiguation procedures

as necessary. At this point, duplicate decompositions may have been gener-

ated and are therefore pruned. The disambiguation step may also discover

degenerate decompositions, which are also pruned. The remaining decompo-

sitions are then submitted for formulation of their differentials. The process

of differential formulation was presented in chapter 3. The incoherent de-

compositions are then pruned and the remaining, coherent decompositions

are kept. This process repeats, yielding a frontier of coherent decompositions

for each positive symptom in the given set.

The search algorithm uses the function REMOVE-DUPLICATES to remove

duplicate elements from a set of sets. The actual implementation of this

function depends how sets are represented in the diagnostic system. An

efficient implementation of REMOVE-DUPLICATES for sets represented as bit

vectors 1s presented in appendix A.

4.6 Incompleteness

The breadth-first search algorithm attempts to compute a complete set of

coherent decompositions, and in practice, it generally succeeds. However,

theoretically, the decompositional search algorithm is incomplete. That is,

it may fail to generate a decomposition that is nevertheless coherent. An

example of incompleteness is provided in the following example.

Example Consider the situation shown in figure 4-10. The desired decom-

position is (s3) (84) (s18285), which is coherent. However, this decomposition

cannot be generated by the algorithm when the symptoms are processed in

the order: s;, s2, ss, s4, S5. The only possible parent decomposition that

could generate the desired decomposition is (s3) (s4) (s182), by using the

restricting operator. However, this parent is not coherent, so it would have

00 Decompositional Search i§

Algorithm 6 (Breadth-first Search)

Procedure DIAGNOSE (Positive symptoms P)

Initialize the frontier: F « {)

For every positive symptom s € P do

Expand the frontier by the symptom: F « EXPAND(s, F)

Return the frontier F

Procedure EXPAND (Positive symptom s, Frontier F)

5 Initialize a temporary frontier: F' « {)

6 For every decomposition C in frontier F do

7 Collect new decompositions: F' «+ F'U ASSIGN(s,C)

Remove duplicate decompositions: F' « REMOVE-DUPLICATES(F")

Initialize the new frontier: F" « {)

For every new decomposition C € F' do

1 If C is not “degenerate” then

2 Formulate its differentials: C «+ FORMULATE-DIFFERENTIALS(C|

13 If C is not “incoherent” then

14 Collect it: F" — F"U {C}

15 Return the new frontier F’

Figure 4-9 Algorithm for breadth-first decompositional search. The top-level

procedure processes each symptom sequentially, resulting in a new frontier. The

EXPAND procedure expands each decomposition in the old frontier, removes du-

plicate decompositions, and formulates the differentials of the remaining ones.

[Incoherent decompositions are pruned from the search tree.

i bh Incompleteness 9]

(54

.

Restrict (5159) 51(3
with Sc

(c

54]
(sq)

 Vv

\

).N
ne

)\

A

A

IN

(s159s5)

Desired decomposition Potential parent (incoherent)

(sq) «
(5159) 3

vo

Figure 4-10 Example of incompleteness. Decomposition (s15285) (3) (84), which

is coherent, cannot be generated by the decompositional search algorithm when

symptoms are processed in the order: s;, ss, 3, 84, $5. The only potential par-

ent decomposition, (183) (s3) (s4) is incoherent because cluster (s3) has a null

differential.

been pruned by the algorithm. Hence the desired decomposition cannot be

generated. |

Interestingly, the desired clustering in this example can be generated if

the symptoms are processed in another order. Incompleteness arises in part

from a greedy solution of the first four symptoms. Then the algorithm cannot

recover from this greediness when processing the fifth symptom. Normally.

admixing helps the abductive decomposition algorithm recover from greed-

iness, but even admixing is not sufficient in this case. Admixing combines

the new symptom with only one previously assigned symptom. In this case,

a more powerful admixing operator, one in which two previously assigned

symptoms are combined with the new symptom, could generate the desired

decomposition. However, such an operator would probably be computation-

ally expensive, because there are combinatorially many ways to select pairs

or larger subsets of previously assigned symptoms.

Thus, the abductive decomposition is theoretically incomplete, although

we have found that it almost always gives complete sets in practice. The

92 Decompositional Search 24 5

algorithm could therefore be classified as a greedy or heuristic algorithm.

But the algorithm is not terribly greedy, and the alternative pathways help

make the algorithm robust. In any case, incompleteness should perhaps

expected with algorithms that solve computationally intractable problems

such as multidisorder diagnosis, since a complete algorithm for multidisorder

diagnosis would be computationally expensive. Nevertheless, the conditions

required for incompleteness are quite rare in practice, and as we shall see in

the next chapter, decompositional search is fairly robust.

Chapter 5

Experimental Comparison

44

94 Experimental Comparison

Nullins in verba (Don’t take anyone’s word for it).

Motto of the Royal Society of London (1660)

[n this chapter, we compare the decompositional search and candidate gen-

eration algorithms empirically. Although much of our motivation for decom-

positional search is based on intuitive ideas about implicit representation

and causal equivalence, it is difficult to predict the actual computational

behavior of an algorithm. Moreover, most theoretical analysis deals with

worst-case performance and offers little to say about the average case. We

therefore investigate the computational behavior of decompositional search

through a series of four experiments. The first experiment compares the de-

compositional search and candidate generation algorithms on a wide variety

of problems. The second experiment explores characteristics of the decom-

positional search algorithm. The third experiment studies issues of symptom

presentation and ordering. The final experiment compares the algorithms on

more complex problems.

5.1 Case Selection

Our experiments draw upon the QMR medical knowledge base [38]. We chose

the medical domain because of its preponderance of complex, multidisorder

problems. Multiple disorder problems occur often in medicine. According

to a 1987 study by the National Center for Health Statistics [22], hospital

patients have an average of 3.1 diagnoses at discharge. The complexity of the

medical domain is reflected in the size of the QMR knowledge base, containing

approximately 4000 symptoms and 600 diseases. QMR therefore covers 80

percent of the diseases encountered in general internal medicine. The QMR

knowledge base constitutes a natural test of how well diagnostic algorithms

can scale up to real-world domains.

We modified the QMR knowledge base by excluding symptoms that pro-

vide contextual evidence:

Age 16 to 25

Age 26 to 55

Age Greater than 55

yf Case Selection 95

Contextual evidence does not represent effects of disease but rather causal

predispositions to disease. Thus, we removed these anomalous symptoms

from the QMR knowledge base. Another important reason for removing con-

textual evidence was that each one is used in QMR as a placeholder for storing

epidemiologic or probabilistic information about each disease, when relevant.

Consequently, contextual symptoms were linked to almost the entire universe

of 600 diseases in the QMR knowledge base as a possible “cause”. Although

decompositional search handles such large sets well, they would have hand:

capped the candidate generation algorithm severely.

The general strategy underlying our experiments is to generate cases at

random and then diagnose them with both algorithms, comparing the time

and space required to solve the problems. We generated cases using a stochas-

tic model. In this model, we first selected one or more disorders called targets,

which were assumed to be present, although of course this assumption was

not known to the diagnostic algorithm. These target disorders were then

used to generate a set of symptoms. Symptoms were selected based on their

conditional likelihood of being caused by the target disorder, using the fre-

quency values in the QMR knowledge base. These frequency values, which

range from 1 to 5, have been shown to correspond most closely with link

probabilities, with the following mapping [26]:

Frequency Link probability

20

30

30

37

A link probability specifies the probability that a symptom will be caused by

a disorder, given that the disorder is present. For a symptom to be selected,

its link probability had to exceed a random variable distributed uniformly

between 0 and 1.

The decompositional search and candidate generation algorithms were

implemented in ANSI Common Lisp [70] and compiled using Lucid Lisp.

Compilation was optimized for execution speed. We executed the algorithms

on a Sun SparcStation 2 with 48 megabytes of random access memory and

100 megabytes of virtual memory available to the Lisp process. For each

run, we measured the number of nodes expanded, the number of nodes kept,

96 Experimental Comparison 5.2

and running time. Since the algorithms process symptoms sequentially, the

order of the symptoms in a case was an important variable. So far, we have

discussed cases as unordered sets of positive and negative symptoms. When

we consider the set of symptoms to be an ordered sequence, we call the

sequence of symptoms a case ordering.

5.2 Single-Target Cases

For the first experiment, we generated a series of case orderings, each based on

a single target disorder. For each ordering, we selected a disorder at random

from the QMR knowledge base. Each disorder generated 7 symptoms in the

following manner. A symptom s was tentatively selected at random from the

possible effects of the disorder d. A random number uniformly distributed

between 0 and 1 was also generated. If the link probability for d and s

exceeded the random number, then symptom s was selected. Otherwise,

another symptom and number were selected at random. This process was

repeated until a set of 7 symptoms were selected. To prevent the search trees

from expanding too rapidly, only symptoms with fewer than 100 possible
causes were chosen.

A total of 100 single-target case orderings were generated in this fashion.

The order of the symptoms in each ordering was random. These case order-

ings were diagnosed by the decompositional search and candidate generation

algorithms. However, 14 of the 100 cases could not be solved by the candi-

date generation algorithm because they exceeded the memory allocated to

the Lisp process (100 megabytes). For these cases, we therefore truncated the

symptom lists at the point where the machine ran out of memory, resulting

in the following case sizes:

Symptoms

Truncated after: | 3 | 4 | 5 | 6 | 7Number of cases: | 1 [82 |3 | 86

Even though the cases were generated by only a single target disease,

they constituted a test of multidisorder diagnosis. The single target disor-

der gave each case at least one single-disorder minimal candidate. But the

majority of minimal candidates contained multiple disorders. By the stan-

dard of minimality, these multidisorder candidates were as plausible as the

single-disorder candidates.

). J Single-Target Cases 97

The algorithms were then compared on the set of 100 truncated and com-

plete case orderings. The total running time, number of nodes expanded, and

number of nodes kept were recorded. In addition to these totals, the inter-

mediate results were also recorded. After each symptom was processed, the

number of intermediate nodes expanded and kept were recorded. Essentially,

these numbers measure the width of the search tree for the two algorithms.

The intermediate results for a typical ordering are shown below:

Algorithm
Cand.

Symptoms in Case Ordering

S1 S9 S3 S4 Ss Sg S7

337 1618 1306 1708 1848 2673 95

106 430 732 1012 405 27 13

Decomp. | 2 3 7 12 12 4 6

2 3 6 11 8 3 5

Total nodes
9625 expanded

2825 kept

47 expanded

39 kept

As each symptom in the case ordering is processed, the algorithms create

a frontier of intermediate nodes, each node representing a candidate or de-

composition. The last column shows the total amount of work performed by

the two algorithms. This particular search tree shows that decompositional

search generates and keeps far fewer nodes at each frontier than candidate

generation.
The results above are for only one case ordering. To summarize this run,

we can compare the total number of nodes in the search tree, either expanded

or kept, and the total amount of time required. These measures correspond

to the space and time complexity of the two algorithms. Note that there

are two ways to measure space complexity. We will use the number of nodes

kept as our measure because it is more implementation-independent than the

number of nodes expanded. A clever implementation of an algorithm might

be able to predict which nodes not to expand, but any correct implementation

of an algorithm cannot alter the number of nodes kept.

Because of the wide variation in magnitude for the different cases, the

time and space complexity for the 100 case orderings are represented best

on a log-log scatterplot. Scatterplots of the total nodes kept and the total

running time are shown in figure 5-1.

The log-log scatterplots show a fairly high correlation between the two

algorithms. The correlation coefficients for the space and time complexity

graphs are 0.77 and 0.76, respectively. The high correlation indicates that

98 Experimental Comparison

000

rd

~
~~

fa)
eV}
 nN

100

J

10

Nodes Kept
 TTT TTT OT TTY

Slope: 0.26

Corr: 0.77

oT T Pr Ta wT 1 =

0 0

O00 @ Oo
«0 8@ ©

_ 000 © 0

- Oo

Ct oO 0
To ®p¢

: o 0 @

v J VO Og
¢ Oo 0

.. oo o 0°

 oO 00o0

-
|®

A

a 100 1000 10000 100000 1000000

Candidate Generation

100.00

Run Time (seconds,

Slope: 0.32

Corr: 0.76

Co
“

a

u
4)

pr

10.00

1 00

0.10

“ 0d oc &(J On -

>
Tn 0 ©

rr Joo”

"Vo wg ®

0 % J
co oR o © |

Tov
-
-

J.01

0.01

oo oaaaaat ovesaand 0asaaanl 4 4gael

0.10 1.00 10.00 100.00 1000.00 10000.00

Candidate Generation

Figure 5-1 Space and time complexity for single-target cases, random ordering.

The top graph plots the total nodes kept for the decompositional search and can-

didate generation algorithms. The bottom graph plots the run time in seconds for

the two algorithms.

I Single-Target Cases 99

computational complexity depends in large part upon the particular case.

What is hard for one algorithm is also hard for the other one. The correla-

tion also indicates the close relationship between candidate generation and

decompositional search. The scatterplots also fit the data to a linear form.

These linear fits have the following slope-intercept form:

In(kp) = 1.174 0.261n(k¢)

In(tp) = —1.20+0.32In(tc)

where tp and kp are the running time and nodes kept for decompositional

search, and tc and kg are the same quantities for candidate generation.

These equations can be converted to a polynomial form:

kp = 3.22(kg)028

tn = 0.30(t~)032

Therefore, the y-intercept of the lines changes complexity by only a multi-

plicative factor. However, the slope changes complexity by an exponential

power. The log-log slope, then, best indicates the relationship between the

two algorithms, and this slope is reported on each scatterplot. Another way

to look at the data is to consider it from the standpoint of candidate gener-

ation. The inverse formulas for the above equations are:

kc = 0.0111(kp)3®

tc = 43.2(tp)31!

Thus, the inverse slope is another measurement of the comparative efficiency

of the decompositional search algorithm. Although we did not show the

scatterplot for the total nodes expanded, it shows roughly the same rela-

tionship, with a log-log correlation coefficient of 0.81 and a log-log slope of

0.33 =~ 1/3.0. To save space, we will report the slope for the scatterplot of

total nodes expanded without illustrating the graph. To summarize, then,

the complexity results are:

Single-target cases, random ordering

Slope Inverse slope

Nodes kept 0.26 3.8

Nodes expanded 0.33 3.0

Running time 0.32 3.1

100 Experimental Comparison
~

a

Lr

hi:
7

nt?

The results above imply that, for the given cases, the space complexity for de-

compositional search is approximately the cube root or fourth root of that of

candidate generation, depending on the criterion used. The time complexity

for decompositional search is approximately the cube-root of that of candi-

date generation. These relationships represent only polynomial reductions in

complexity, so exponential complexity will still dominate in the worst case.

But in the given problems the savings are nevertheless substantial, allowing

real-world diagnostic problems to be solved in a reasonable amount of time.

The savings are evident if we consider that decompositional search solved

all of the problems in 10 seconds or less, while candidate generation often

required up to 30 minutes.

5.3 Characterizing Decompositional Search

5.3.1 Accuracy

Decompositional search produces nonminimal candidates as well as minimal

one in order to achieve a more compact representation. Hence, decomposi-

tional search can be considered an approximation of candidate generation,

weakening the notion of minimality in return for a gain in efficiency. In or-

der to assess this tradeoff, we now measure the degree of approximation that

decompositional search achieves. For this test, we use candidate generation

as the standard. There is no reason why decompositional search could not

constitute its own standard. But in order to compare the efficiency of al-

gorithms, we should determine that they compute approximately the same

answer. The common denominator between the two algorithms is the candi-

date, since problem decompositions can be converted to candidates, but not

vice versa.

To measure the accuracy of decompositional search, we computed the

problem decompositions for each of the 100 cases generated above. We then

expanded each problem decomposition C into its candidate set Cands(C) by

computing the Cartesian product of its differentials. The candidate sets for

all problem decompositions were then compared with the set MinCands of

minimal candidates produced by the candidate generation algorithm. Accu-

racy was then measured by the following quantities:

Completeness: What proportion of minimal candidates are produced

3.3 Characterizing Decompositional Search ~~ 10]

by decompositional search?

]

Completeness =
|UcCands(C) N MinCands|

IMinCands|

Soundness: What proportion of candidates produced by decomposi-
tional search are minimal?

| Uc Cands(C) N MinCands|
Soundness = ——MM884 ~~

| Uc Cands(C)|

Redundancy: How many problem decompositions, on the average, con-

tain a given candidate?

Redundancy = 2c|Cands(C))
| Ue Cands(C)|

For all 100 cases, the decompositional search algorithm was complete

from the standpoint of generating minimal candidates. In other words, for

all cases, every minimal candidate was generated by at least one problem

decomposition. Thus, in practice at least, decompositional search exhibits

completeness in this respect.

However, the soundness and redundancy gave more variable results. As

expected, decompositional search sometimes produced candidates that were

nonminimal, and sometimes produced minimal candidates more than once.

The histograms of soundness and redundancy are shown in figure 5-2. The

histogram on the left shows that, for the vast majority of cases, decompo-

sitional search was sound. In other words, almost every candidate in the

Cartesian product of the differential was also minimal. But in rare cases,

up to 52 percent of these candidates were nonminimal. The worst case oc-

curred in a case of Lymphomatoid Granulomatosis. Decompositional search

produced 133 coherent decompositions, which entailed 24172 unique candi-

dates. Candidate generation produced 11527 minimal candidates, meaning

that only 48 percent of the candidates produced by decompositional search

were minimal. This result reflects the fact that decompositional search only

approximates candidate generation, and that it includes nonminimal candi-

dates when necessary to represent the minimal candidates compactly.

_

[02 Experimental Comparison

RI

¥
eo 00

008 9000 OO
Seed iben MEN HEM

iT

i ' i . ‘ v | 1 ‘ 2 |

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.9 2.0 3.0 4.0 5.0

Soundness Redundancy

Figure 5-2 Distribution of soundness and redundancy. These results describe

the results of the single-target cases with random ordering. The left graph shows

the histogram for soundness; the right graph, for redundancy.

This case indicates that certain situations yield decompositions with sev-

eral nonminimal disorders. One situation occurs when a combination of

mutually restricting symptoms also overlap other clusters. This example is

shown in figure 5-3. In this figure, the decomposition (s1) (s253) (54) contains

a restricted cluster (s;s3) as well as two peripheral clusters. The restricting

symptoms s; and s3 cover the peripheral clusters, (s3) and (s4), to a great

extent. Consequently, many of the candidates entailed by the decomposition

are nonminimal. Each of these nonminimal candidates contains a candidate

entailed by the decomposition (152) ($384), which is also shown in the figure.

These candidates are all minimal, meaning that many of the candidates en-

tailed by the former decomposition are nonminimal. Note however that the

decomposition (s1) (8283) (s4) still meets the definition of coherency, apart

from the minimality standard of the candidate generation approach.

The histogram on the right of figure 5-2 illustrates the amount of redun-

dancy for decompositional search. This figure plots the average number of

decompositions that entails each candidate. For most cases, the measure of

redundancy is approximately 1.0, meaning that each candidate is contained

34 Characterizing Decompositional Search 103

N S

~~

FE)

oF
Q

 aT

51) (5953) (54) 1 (sq 59) (s354)

Figure 5-3 Example of nonminimality in decompositional search. The decom-

position on the left entails nonminimal candidates. These are nonminimal because

they contain the minimal candidates entailed by the decomposition on the right.

in the candidate set of only one decomposition. However, two cases exhib-

ited high levels of redundancy. The most redundancy came from a case of

Chronic Thrombocytopenic Purpura that had 65 coherent decompositions in

its final answer, entailing a total of 17770 candidates, of which only 4330 were

unique. Of the 4330 unique candidates, 3999 were minimal. The redundancy

for this case was therefore 17770/4330 ~ 4.1. The second most redundancy

came from the same highly unsound case of Lymphomatoid Granulomatosis

discussed above that had 133 coherent decompositions, entailing a total of

78930 candidates, of which only 24172 were unique. Of the 24172 unique

candidates, 11527 were minimal. The redundancy for this case was therefore

78930/24172 =~ 3.3.

These cases indicate that certain conditions yield decompositions with a

high degree of overlap in their candidate sets. Such cases apparently have a

symptom that almost, but not quite, covers two or more different clusters,

so this symptom cannot be ambiguated, even though it constrains those

clusters very weakly. A model for high levels of redundancy is illustrated in

figure 5-4. In this figure, assignment of symptom ss to either cluster results

in two decompositions that are very similar, with entailed candidate sets that

have a high degree of overlap.

5.3.2 Robustness

in chapter 4, we showed that decompositional search was theoretically incom-

plete. That is, it might not generate all coherent decompositions of a given

104 Experimental Comparison

- i
\ $3)

(s1

a)(5354

oO)

Sa

/
onSL S

(535455)

O°)s\.

a

Figure 5-4 Example of redundancy in decompositional search. The two decom

positions differ in their assignment of s; and overlap in their candidate sets.

set of positive symptoms. Problems with incoherency arise when symptoms

are presented in different orderings. Given the enormous potential search

space for decompositions, this is perhaps not surprising. However, in prac-

tice, we have found that decompositional search usually gives the same sets

of decompositions, regardless of case ordering. Thus, the algorithm is fairly

robust in practice.

Of course, the best test for robustness would compare decompositional

search against a gold standard of all coherent decompositions for a given

problem. Unfortunately, we lack such a gold standard, short of the computa-

tionally intractable method of generating every possible decomposition and

testing it for coherency. Alternatively, we can test decompositional search to

see if it gives the same answers for different permutations of the same set of

symptoms.
We performed this test on the same single-target cases used in the first

experiment. For each of the 100 cases, we created 10 random orderings and

ran decompositional search on each ordering. We then determined whether

the algorithm produced the same decompositions for every ordering.

The results showed that 94 of the 100 cases each gave the same set of

coherent decompositions for all 10 case orderings. The remaining 6 cases,

however, gave different results for different orderings. On these cases, co-

herent decompositions were missed on some case orderings. The non-robust

cases are summarized in figure 5-5. This figure shows that up to 3 coherent

4

Total

decompositions
in solution

Case Presentation and Ordering 105

Missing

decompositions
nn 1 2 3

i

“J

19

51

89

BE

-

| 4

Figure 5-5 Non-robust cases for decompositional search. Each line represents

a case that was not robust with respect to symptom ordering. Each case lists the

;otal number of coherent decompositions that should have been generated. It also

lists the number of case orderings for which the algorithm missed a given number

of decompositions.

decompositions sometimes failed to be generated.

Nevertheless, non-robust cases were in the minority. For the other 94

cases, decompositional search proved to be robust, showing that incomplete-

ness occurs only occasionally in practice. Of course, one way to overcome

incompleteness would be to try different symptom orderings and use the

maximal set of coherent decompositions. The increased efficiency of decom-

positional search makes this computationally feasible. But the decomposi-

tions that decompositional search fails to generate have multiple interacting

clusters and mayv not be worth generating anyway.

5.4 Case Presentation and Ordering

The first experiment showed that space and time complexity can vary widely

between different cases. We therefore decided to remove the variable of target

disorder selection and focus on a particular target disorder. In this exper-

iment, we compare decompositional search and candidate generation on a

single target disorder, but with different presentations of that disorder and

different orderings of each presentation.

By case presentation, we mean that a given disorder may reveal only a

subset of its possible effects. A particular presentation occurs in part because

106 Experimental Comparison 5.4

causality in medicine is largely probabilistic: a disease may cause a certain

symptom only some of the time, and the observed effects of a disease vary

because of measurement error. Also, the information available to a clinician

is limited. Not all test results are available at the outset and the presence

of certain symptoms may be unknown to the patient or physician. The

exact set of symptoms that occur for a given target disorder is called a case

presentation. A case presentation is essentially the same as a case, but we

use the term to emphasize that the cases are generated by the same target

disorder.

By case ordering, we mean that evidence in a case may become available

in a certain sequence. The first evidence in a case may be specific, suggest-

ing only a few possible disorders, or it may be general, suggesting numerous

possibilities. Intuitively, we would expect that specific evidence makes cases

easier to solve, while general evidence makes them harder. Diagnosis is dif-

ficult when the first signs of disease are general, as is usually the case. A

patient may have only vague complaints of fatigue, suggesting numerous pos-

sible causes. Only later in a diagnostic workup does specific test information

asually become available.

These two variables, case presentation and case ordering, are the sub-

ject of our third experiment. We selected a single target disorder, prere-

nal azotemia, as our experimental model. We chose prerenal azotemia be-

cause it had relatively few possible effects, thereby generating relatively small

cases. The QMR knowledge base lists only 19 possible symptoms for prere-

nal azotemia, of which 5 are contextual symptoms dealing with age and sex.

Removing these 5 contextual symptoms, as discussed above, left us with

14 symptoms for prerenal azotemia. This compares with an average of 80

oossible causes per disorder in the entire QMR knowledge base.

We generated 10 cases by stochastically picking symptoms from this pool

of 14 symptoms. In contrast with the first experiment, we did not set a limit

on the number of symptoms that could be selected. Rather, each symptom

for prerenal azotemia was considered sequentially, and if the link probabil-

ity for that symptom exceeded a randomly generated number from 0 to 1,

the symptom was selected. By not limiting the number of symptoms, we

simulated the causation of symptoms more naturally. This selection process

was performed a total of 10 times, giving 10 different sets of symptoms. The

results of this generation process are shown in figure 5-6. This figure lists the

10 cases in order of increasing complexity, so that solution of case A yields

3 4 Case Presentation and Ordering 107

Symptom
s1 Azotemia of 2 wks or less duration

so Creatinine clearance decreased

s3 Creatinine serum 3 to 10 mg/dl

sq Creatinine serum 2.0 to 2.9 mg/dl

ss Dehydration

se Mouth mucosa dry (Xerostomia)

s7 Oliguria

ss pH urine less than 6

sg Sodium urine less than 20 mEq/day

s10 Urea nitrogen serum 30 to 59

s11 Urea nitrogen serum 60 to 100

s12 Urine osmolality gtr than 320

s13 Urine output less than 400 ml/day

s14 Urine sp. gravity gtr than 1.020

Total Symptoms:

Cases

CausessABCDEFGHTI J

 2 XA AXXXXX

40 XX XXXXX XXX

62 X X X

38 XX XXX I...

76 X X LoL

28 X
8 X XX.

7 XX XX

7 XAXXXXXX

2 XXX X X

38 X :

7 XXXXXXXXX

29 XX XXXX XXX
a XXXXXXX X

38109 8 71211 8 10

\

i

Figure 5-6 Cases for prerenal azotemia subdomain. The columns list the symp-

toms contained in each stochastically generated case. One column also lists the

total number of possible causes for each symptom.

108 Experimental Comparison =r
J

the fewest minimal candidates, while solution of case J yields the most.

The figure shows that the stochastic selection process sometimes resulted

in inconsistent combinations of symptoms. For instance, two cases had a

serum urea nitrogen level of both 30-59 and 60-100, while four cases had a

serum creatinine level of both 0-2.9 and 3-10 mg/dl. These are somewhat

inconsistent, since we would expect only one range of values to hold for

each test result. Unfortunately, this highlights one of the deficiencies of the

diagnostic knowledge base: it does not record dependencies or relationships

among symptoms. Nevertheless, we kept the cases with these dual values.

Such cases might be interpreted as having values resulting from multiple

tests. Thus, a plausible hypothesis would presumably need to explain the

varving values.

5.4.1 Case Presentation

Each case represents a different presentation of prerenal azotemia. We solved

the 10 case presentations using the decompositional search and candidate

generation algorithms. In the process, we discovered that some cases gave

the same answers, even though they contained different sets of symptoms.

This occurred because the symptoms that varied from one case from an-

other may not have been specific or different enough to give a different set

of answers. Thus, more than one case belonged to a given solution class.

Altogether, the 10 cases yielded 6 solution classes. These solution classes

and the distributions of the solutions for both algorithms are shown in fig-

ure 5-7. This figure shows that the particular case presentation, even for the

same target disorder, greatly affects the set of answers. Cases A, B, C, and

D resulted in a relatively few minimal candidates, while case J resulted in

a solution that was several orders of magnitude larger. As figure 5-6 shows,

cases C and J differ by only a single symptom: case C contains s;, while

case J contains s13 instead. The results show that the complexity of diagno-

sis depends critically on the particular evidence available, even for the same

target disorder. One symptom can make a surprisingly large difference in

the overall complexity.

}.4

Solution

Class

[8

Case

A.B.CD

E

F

G.H

J

Algorithm
Cand. Gen.

Decomp. Search

Cand. Gen.

Decomp. Search

Cand. Gen.

Decomp. Search

Cand. Gen.

Decomp. Search

Cand. Gen.

Decomp. Search

Cand. Gen.

Decomp. Search

Case Presentation and Ordering 109

Distribution by Size
2 2 4 5 Total

271 25

1

0 39 33

no 3 1

 9 11 100

 0 2 1

1 uv 6 165 165

roo 1 3 1

1 11 85 435 15

 2 2 1 1

 Ll 21 769 8985 29325

 1 3 4 1

7°

112

4

337
6

547
7

39101

10

Figure 5-7 Distribution of solution sizes for prerenal azotemia cases. Different

cases, such as G and H may have the same solutions, allowing them to be grouped

into solution classes.

5.4.2 Case Ordering

For each of the 10 case presentations, we generated 10 case orderings by ran-

domly permuting the symptoms. For each case, we also created a “specific-

first” ordering, where the symptoms were ordered in ascending order accord-

ing to the number of their possible causes. In other words, the first symptom

was the most specific, having the fewest possible causes, while the last symp-

tom was the most general, having the most possible causes. We also created

a “general-first” case, where the symptoms were ordered in descending or-

der, from most general to most specific. Altogether, then, each problem class

generated 12 cases, for a total of 120 cases.

We solved all case orderings using the decompositional search and can-

didate generation algorithms. As before, time and space complexity can be

compared between the two algorithms. The results are shown in figure 5-8.

Again, we see a linear correlation between the complexity of the two algo-

rithms. Linear fits of the data give rise to the following results:

(10 Experimental Comparison

000

Nodes Kept

Slope: 0.26

Corr: 0.80

H
U
7a

100

to
O

5

oq @©88
0 89

ot ° 0 “0
00 o

SC REH7 ® 0 ©%0 8

Q ©. L

3 0m"

J ml -F

JO

Lapp FE I EEN

1000 10000 100000 1000000

Candidate Generation

Run Time (seconds)

J0.0 ™ —

Slope: 0.39

Corr: 0.80

By

)

<2
10.0

1.0

Je.

0

J _

 0, :

0% oo
~r 70% 0 C

10.0 100.0 1000.0 10000.0

Candidate Generation

Figure 5-8 Space and time complexity for prerenal azotemia cases, random

ordering. The top graph plots the total nodes kept for the decompositional search

and candidate generation algorithms. The bottom graph plots the run time in

seconds for the two algorithms.

3.5 Multiple-Target Cases 111

Prerenal azotemia cases, random ordering

Slope Inverse slope

Nodes kept 0.26 3.9

Nodes expanded 0.38 2.6

Running time 0.39 2.6

These formulas again show that the space required for symptom cluster-

ing algorithm is roughly the cube-root or fourth-root of that for candidate

generation, depending on the measure used, while the time required for de-

compositional search is approximately the cube-root of that for candidate

generation.
We can analyze the effects of case presentation and ordering separately,

as shown in figure 5-9. The top graph in this figure shows the distribution

of total run time for each case ordering, categorized by case presentation,

asing candidate generation, while the bottom graph shows the same data for

decompositional search. The top point on each distribution shows the time

required for general-first ordering, while the bottom point shows the time

required for specific-first ordering. The remaining random orderings are as

shown, with the median, 25th, and 75th percentiles marked. Although we do

not show them, a similar graph would have resulted from the distributions

of the nodes expanded or nodes kept for each algorithm.

This figure shows that symptom ordering has a large influence on the

time required to solve a given problem. The difference between the best and

worst orderings can be two to three orders of magnitude. Therefore, given

a set of symptoms, a diagnostic problem solver should order them so that

the most specific symptoms are considered first. Of course, this strategy is

only heuristic. Another ordering may in fact be faster than the specific-first

ordering, perhaps because of certain structural interrelationships among the

given symptoms. However, the heuristic strategy of ordering symptoms by

specificity is easy to perform and probably near-optimal, as it was in the 10

cases shown here. This strategy makes intuitive sense, since the most specific

symptoms give us the fewest possible choices at the outset.

5.5 Multiple-Target Cases

So far, our experimental cases have been generated by only one target dis-

order. As we have pointed out before, these cases still test multidisorder

12 Experimental Comparison
-—

of
id

Candidate Generation
0000.0

1000.0

100.0

+

E
—

We

Ta

x

10.0

1.0 1 "
 Re

E or

 le

. 3

oni
km

N 1

Cas Fam

Decompositional Search
100.0

2]

°%

10.0
J
9)
Ya

2D

E

 Cc
3
5

1.0

Fon Ea
cri

FEY Fon

hs

= Lo

NV

=,

|
]

}

Case

Figure 5-9 Distribution of time complexity for prerenal azotemia cases. The top

graph shows the run time for candidate generation. Each dot represents a separate

case ordering. The bottom graph shows the same analysis for decompositional

search. The boxes mark the 25th, median, and 75th percentiles.

3.5 Multiple-Target Cases 113

diagnosis, because most of the minimal candidates contain multiple disor-

ders. Nevertheless, we can increase the complexity of diagnosis by consider-

ing cases generated by multiple target disorders. Such cases would provide

a further test of the ability of the two algorithms to scale up to complex,

real-world cases.

In this experiment, we generated a case by picking two target disorders

at random from the QMR knowledge base. For the first disorder, we picked

7 symptoms stochastically as in the first experiment. The second disorder

also generated 7 symptoms, with the proviso that each of these symptoms

was distinct from those already generated for the first disorder. Thus, the

two disorders gave rise to 14 different symptoms. Given our results from the

previous experiment on symptom ordering, we ordered these symptoms in a

specific-first order, to allow the algorithms to solve the cases as quickly as

possible. A total of 100 double-target cases were generated in this fashion.

For comparison, we required a set of single-target cases. The cases gener

ated in the first experiment were used for this purpose. As discussed above,

14 of those cases were truncated because they would otherwise have exceeded

the available memory allocation. The remaining 86 cases contained 7 symp-

toms each. The only difference is that in the first experiment, cases were

ordered randomly; in this experiment, they were arranged in specific-first

order.

The results for the single-target cases are shown in figure 5-10. The log-

0g linear relationships gave the following results:

Single-target cases, specific-first ordering

Slope Inverse slope

Nodes kept 0.19 5.2

Nodes expanded 0.25 4.0

Running time 0.21 4.7

In other words, the space required for decompositional search is approxi-

mately the fourth-root or fifth-root of that required for candidate generation.

The time required for decompositional search is approximately the fifth-root

of that required for candidate generation. Note that the efficiency savings for

decompositional search are even greater than in the first experiment, where

the efficiency gain for nodes kept was a fourth-root savings, and for run-

ning time, a cube-root savings. This result suggests that decompositional

114 Experimental Comparison

Nodes Kept
000 T 7 or-~r rr TTT . 15 r —

Slope: 0.19

Corr: 0.77

<
a

le]
0]

ND)

ot

100

 0

od

ag

QC
LY

J 3 3

. oo— 0- Oy o© 50 9 ©o &
oo © ©

>
|v

-’

Aan eedoyopenedforoi

100 1000 10000 100000 1000000

Candidate Generation

Run Time (seconds)
 uv 0

Slope: 0.21

Corr: 0.67

et
—

las!
lo}
 NN

1.0

\

J

J.1

C01

) C dD
J

od ©

o

oo °

a oo

I= ~

2 A o

O

aaaalayasad

0.10 1.00 10.00 100.00 1000.00

Candidate Generation

Figure 5-10 Space and time complexity for single-target cases, specific-first

ordering. The top graph plots the total nodes kept for the decompositional search

and candidate generation algorithms. The bottom graph plots the run time in

seconds for the two algorithms.

3.5 Multiple-Target Cases 115

search benefits proportionately more from a specific-first ordering strategy

than candidate generation does.

We executed the decompositional search and candidate generation algo-

rithms on the double-target cases. In the process, we found that 39 of the 100

cases could not be completed by the candidate generation algorithm because

they exceeded the available memory space. As before, these cases were trun-

cated at the point where they terminated and executed again. The resulting

cases had the following characteristics:

Symptoms
Truncated after: | 5 | 6 (7 (81910111213 | 14

Numberof cases: |1 | 6 [4 [854 | 5 | 4 | 2161

[he results for the double-target cases are shown in figure 5-11.

log-log linear relationships gave the following results:

The

Double-target cases, specific-first ordering

Slope Inverse slope

Nodes kept 0.18 5.4

Nodes expanded 0.24 4.1

Running time 0.20 5.0

In other words, the space required for decompositional search was approxi-

mately the fourth-root or fifth-root of that required for candidate generation.

I'he time required for decompositional search was approximately the fifth-

root. of that required for candidate generation.

The savings for the double-target cases are approximately the same as

for the single-target cases. This result indicates that the efficiency gains for

decompositional search are relatively independent of the number of actual

disorders present. In other words, the computational complexity increases

multiplicatively with each additional target disorder, regardless of the algo-

rithm used. This result follws because the solutions for each target disorder

must be combined, even in decompositional search. Nevertheless, since de-

compositional search explains each target disorder more compactly, it has

fewer decompositions to combine for each target disorder.

[16 Experimental Comparison

Nodes Kept
Tryvon Tr rrr Trrr T

Slope: 0.18
Corr: 0.68

JOC oh

 Oo GC

w

.

~~

-
hy

——

100

| {

100.0

a 4 Y
ES

C oJ
_ 9%

o -

—""_~~

A

oe)

ce ©
C 0 &

Lo 2 et
~ nm

(,

0
anal 1 aul 1 Laarinl 1.1 pind 1 pared 11 180

100 1000 10000 100000 1000000 10000000

Candidate Generation

Run Time (seconds)
v

Slope: 0.20

Corr: 0.61

°
1)

5

__

10.0

1.0

0
~

Oo

fo} 0 Sey ol

eroe

3, vm ra

10.0

2

SD
00 Oo o

§ O% °°
Hooo

Oo ® o°0 ©
og” 3 o

 °C oo

oO

80

~ aol —_

100.0 1000.0 10000.0

Candidate Generation

Figure 5-11 Space and time complexity for double-target cases, random order

ing. The top graph plots the total nodes kept for the decompositional search and

candidate generation algorithms. The bottom graph plots the run time in seconds

for the two algorithms.

Chapter 6

Analysis

an

(18 Analysis
o
Jed

The fact ...that many complex systems have a nearly

decomposable, hierarchic structure is a major facilitating factor

enabling us to understand, describe, and even “see” such

systems and their parts.

Herbert A. Simon, The Sciences of the Artificial (1969)

The experimental results in the previous chapter indicate that decomposi-

tional search is more efficient than candidate generation. In this chapter, we

determine the reasons why. We explore this topic in several ways. First, we

identify the major source of computational complexity, namely, the combi-

natorics of partial explanations. Then, we develop a theoretical model for

the diagnostic process and compare the two algorithms using this model. Fi-

nally, we study the role of structure in problem solving through a series of

experiments. Our analysis reveals that domain structure plays a large role

in the efficiency of multidisorder diagnosis and that decompositional search

exploits domain structure significantly.

6.1 Combinatorics of Partial Explanations

If we examine the solutions to the cases in the previous chapter, we discover

that most of the complexity of candidate generation occurs in the largest

solutions. For instance, consider the most difficult set of cases in the prerenal

azotemia experiment, those arising from problem class J. The solutions to

those cases have the following size distribution:

Distribution by Size

2 3 4 5

. <1 769 8985 29325

i 3 4 1

Algorithm
Cand. Gen.

Decomp. Search L

As the table shows, candidate generation behaves most poorly on the largest

solutions. Conversely, decompositional search represents the largest solu

tions most compactly. For solutions of size 5, one problem decomposition

represents over 29,000 candidates. Thus, the efficiency of decompositional

search derives mainly from the compact representation of large candidates.

Ironically, the largest candidates are also usually the least likely because each

on Combinatorics of Partial Explanations 119

216 105 20

disorders \ dis. /disorders

Fever Cough

Figure 6-1 Combinatorics of partial explanations. This Venn diagram shows

the number of possible causes for fever alone, cough alone, and both diseases,

taken from the QMR knowledge base. The partial explanations are contained in

the non-overlapping regions of diagram.

disorder requires consideration of an additional prior probability. Therefore,

the allocation of effort by the candidate generation algorithm is counterpro-

ductive, spending most of its time on the least likely candidates.

The reason for the explosion of large minimal candidates is a matter

of combinatorics. Consider the simple example of fever and cough from

chapter 1. In that example, fever and cough each had three possible causes,

with one cause explaining both symptoms. But consider a more realistic

version of that example. In the QMR knowledge base, fever has 321 possible

causes and cough has 125 possible causes, with 105 causes explaining both

symptoms. The Venn diagram for this situation is shown in figure 6-1.

The 105 causes for both fever and cough are complete explanations, be-

cause each can explain all of the given symptoms. But the 216 and 20 causes

in the non-overlapping regions of the Venn diagram are partial explanations,

explaining only some of the given symptoms. If only single-disorder candi-

dates are allowed, then only complete explanations need be considered. But

if we allow multiple disorders, we must construct candidates from combina-

tions of partial explanations.

Partial explanations fall into categories of causal equivalence, based on

their ability to explain the symptoms in a given case. As the knowledge

hase scales up in size, the phenomenon of causal equivalence becomes in-

creasingly important. In our example, the 216 causes for fever alone are

causally equivalent, as are the 20 causes for cough alone and the 105 causes

for both fever and cough. The phenomenon of causal equivalence explains

why minimal candidates factor into Cartesian product representations. To

form a two-disorder minimal candidate, we need to select one disorder from

120 Analysis - Ld

the 216 causes for fever alone and one disorder from the 20 causes for cough

alone. Thus, combinations of partial explanations grow multiplicatively. In

our example, the number of such combinations equals the product of the

partial explanations for each symptom: (216)(20) = 4425.

Thus, the compact representation of combinations of partial explanations

accounts for much of the power of decompositional search. Rather than repre-

senting such combinations explicitly, decompositional search groups together

disorders that are causally equivalent. Problem decompositions represent

structures by which partial explanations combine. In our example, the 4425

two-disorder minimal candidates for fever and cough are represented by a

single decomposition. The space required to represent these candidates is

additive rather than multiplicative. The space required to represent a prob-

lem decomposition is 216 + 20 = 236 disorders. This compact representation

enables decompositional search to spend less space and time on generating

and evaluating large candidates.

6.2 Theoretical Analysis

In this section, we analyze the computational complexity of diagnosis by

developing a mathematical model. This model supplements the experimen-

tal results by yielding more insight into the properties of a domain that

should influence computational complexity. However, our analysis is limited

because, like most complexity analyses, it deals only with worst-case com-

plexity. Moreover, since complex models are difficult to analyze, our model

necessarily incorporates some strong simplifications.

The important parameters in our model are the number of possible causes

for each symptom and their degree of correlation. Let ¢ be the number of

possible causes per symptom, and p be the correlation between the sets of

possible causes, or simply the symptom correlation. We define the symptom

correlation for two symptoms s; and s, to be

|Causes(s1) N Causes(sy)] (6.1)
p(s1,82) = min(|Causes(s;)|, |Causes(sz)|)

Symptom correlation measures the degree of overlap between symptoms s;

and s,. It has a value between 0 and 1, with 0 signifying no overlap between

possible causes, and 1 signifying complete overlap between possible causes.

5 2) Theoretical Analysis 121

Our model assumes that ¢ and p are constant for any symptom or pair of

symptoms. By making these parameters constant, we are assuming that

possible causes for symptoms are distributed randomly. In other words, our

simplified domain lacks any notion of structure between symptoms, except

for a constant correlation between each pair.

Our model has some interesting properties. For instance, it allows an

arbitrarily large number of symptoms in a case, but only a finite number

of disorders to be triggered. Our model has this property because the total

number of disorders grows asymptotically. The nth symptom adds a non-

overlapping area of size (1 — p)"~'¢, which represents new disorders not in

any other symptom so far. Thus the total number of disorders triggered by

n symptoms 1s

c+(1—plc+(1—=p)c+... = c/p

using the formula for geometric sums. Thus, each new symptom triggers a

diminishing number of new possible causes. This is because the quantity

(1 — p)"'c decreases as more symptoms are added. This model simulates

the generation of symptoms based on a single target disorder.

We assume, as the example of prerenal azotemia illustrates, that the com-

plexity of candidate generation stems primarily from the largest candidates.

These candidates derive from combining disorders that each explain only

one of the given symptoms. Our analysis therefore will concentrate on the

growth in the number of these large candidates. These candidates come from

the non-overlapping regions of the symptom space, the parts of the possible

cause sets that explain only a single symptom.

The nth symptom removes a fraction of p from each non-overlapping re-

gion, meaning that (1— p) of each region is retained after each new symptom.

Thus, for n symptoms, there are n non-overlapping regions, each containing

(1 — p)"c disorders. Thus, the total number of candidates obtained by

combining these partial explanations equals

|Candidates|] = ((1 =p)" 1)" = (1 = p)*(r=Den

The number of large minimal candidates will therefore begin with a rapid

growth, controlled by the ¢* factor. Then, as more symptoms are added, the

number of large minimal candidates should decrease, as the (1—p)™"~%) factor

takes over. Since the total search complexity depends on the widest part of

122 Analysis 6.

the search tree, we want to know when |Candidates| reaches a maximum.

This is found by setting its derivative equal to zero:

0
d

= —(1-— n(n—1) .n

(1-7)
(1 — pp)" Ve [(2n — 1) In(1 — p) + Inc]

I'his implies tha

—lnec
m-1 = —

“In(1/(— 9)

n= 14S op)

Thus, the number of large minimal candidates is bounded by O(c'°%¢). This

function is plotted in the top graph of figure 6-2 for various values of ¢ and

p. The complexity is essentially exponential in the number of possible causes

per symptom (c), with the point of takeoff depending on symptom corre-

lation (p). As symptoms become less correlated, the complexity increases.

This makes sense, because smaller symptom correlations mean proportion-

ately larger non-overlapping regions, thereby increasing the number of partial
explanations that can be combined.

For decompositional search, the analysis is a bit more difficult. Recall that

a problem decomposition is a collection of subsets of P such that each cluster

contains at least one unique symptom. However, not all decompositions

can be generated by decompositional search simultaneously. This is because

some decompositions are more ambiguous than others, and decompositional

search generates only maximally ambiguous decompositions. Therefore, the

maximum number of maximally ambiguous decompositions is bounded above

by the number of partitions of P. If P contains n symptoms, this quantity

equals the nth Bell number, b, [1]. The first few Bell numbers are:

n [12345 | 6 7 8 9 10

b, | 11215 |15|52]|203 | 877 | 4140 | 21147 | 115975

As these terms show, the number of possible decompositions grows very

rapidly. The Bell sequence is bounded below by 2", so it grows at least

exponentially. It is bounded above by the factorial sequence, so b, < n!

for n > 2. However, our experimental evidence does not show such a rapid

3.7 Theoretical Analysis 123

Cpndi02 Gene’ A000==
=. sr

-

-

2 2 40000
a XxX

¢ 2 30000

2g 20000
= § 10000

0.0

0..
5

«" 0.2
6, ES

Ur, 05 0
A

 WU

-
-_

00s couse pel yo"

one ged cn

2 £40000
oo xX
Q © 30000

> Q

= E 20000

= § 10000

0.0

bs 5 2

Po, 0.3
G, 04 A

“es, 0.5 0

J

oss Cause pel yo?"

 3)

Symptom Correlation = 0.4

40000

2 2 30000
© XxX

QQ
7
£ £ 20000

Q
2 5

1 0000

Candidate |
Generation

Decompositional
Search

15

Possible Causes Per Symptom

Figure 6-2 Theoretical analysis of worst-case complexity. (Top) Graphs of

worst-case complexity for candidate generation, for various parameters of symp-

tom correlation. (Middle) Graphs of worst-case complexity for decompositional

search. (Bottom) Comparison of the worst-case complexity for the two algorithms

for symptom correlation of 0.4.

124 Analysis 6.

rate of increase. This is partly due to the plausibility criteria that sharply

limit the number of decompositions. Thus, rather than the total number of

maximally ambiguous decompositions, we want to estimate the number of

coherent decompositions. Unfortunately, this is a difficult question and our

analysis is somewhat speculative.

We conjecture that the number of decompositions grows until the expla-

nation set for each cluster becomes small enough that it either becomes empty

or coverable by a new symptom. This certainly occurs when most regions in

the symptom space contain only a single disorder. Then the next symptom

will either contain the disorder—thereby covering it—or not contain it-

resulting in a empty common causes set and an incoherent decomposition.

In our model, a region that explains £ symptoms out of n contains

r—1 __ \n~Z _ (1—p)r P T

pipe = Golly

disorders. When the largest region contains only a single disorder, the growth

of problem decompositions should certainly halt. Thus, we want to know the

value of x that gives the largest region. If we assume that p < 0.5, the

term p/(1 — p) is less than 1, so the largest region is achieved when z is

minimized, or £ = 1. These regions are again the non-overlapping regions

that we considered in the analysis of candidate generation. The number of

disorders in this region is

d= _r == (1 _ pr!
0 1—0p

=n

where r is again defined to be 1/(1 — p).

The largest region contains less than one disorder whenever

rl7"e <

(1-n) < —log,.c

n > 1+4log,c

So the number of decompositions should cease growing when n exceeds log, c.

Thus, we expect the number of clusterings to be bounded as follows:

[Decompositions] = O(n!)

5 3 Domain and Problem Structure 125

< O(n")

O((log, c)**®r°)
O(°8r log, °)

[n the last step, we used the fact that a'°8® = b'°8®. The worst-case com-

plexity of decompositional search is plotted in the middle graph of figure 6-2.

Again, as with candidate generation, the complexity grows exponentially

with the number of possible causes per symptom. The symptom correlation

parameter also controls the point at which the exponential function takes

off, with higher correlations resulting in slower growth functions. However,

for the same symptom correlation, the complexity of decompositional search

takes off at a higher value of c¢ than with candidate generation and also grows

at a slower rate. A direct comparison of candidate generation and decom-

positional search is shown in the bottom graph of figure 6-2 for a particular

value of p. namely 0.4.

6.3 Domain and Problem Structure

The theoretical analysis presented above is limited by the fact that it is a

worst-case analysis. It computes only upper bounds on the possible num-

ber of coherent decompositions or minimal candidates. However, in most

cases, this theoretical maximal limit is not reached. Moreover, the theo-

retical model made the simplifying assumptions that symptoms have equal

numbers of possible causes and that their pairwise correlations are equal.

These assumptions, of course, do not hold in natural domains. Finally, the

model does not incorporate any elements of domain structure.

In the remainder of this chapter, we examine empirically the role of do-

main structure in diagnostic complexity. It is clear that domain structure

greatly affects the computational behavior of algorithms. But it is less clear

how one should describe or quantify domain structure. We propose to mea-

sure structure by the distribution of a quantity called explanatory power. By

manipulating this quantity, we can alter domain structure and observe the

resulting effect on diagnostic complexity.

The domain knowledge, which is embodied in a bipartite knowledge base,

can be characterized by two quantities: the distribution of possible causes for

its symptoms and the distribution of possible effects for its disorders. For the

126 ~~ Analysis 6..;

QMR knowledge base, these distributions are presented in figure 6-3. These

distributions reveal an asymmetry in the bipartite knowledge base: the pos-

sible effects are normally distributed in size, while the possible causes are

exponentially distributed. We conjecture that these distributions are charac-

teristic of most natural domains. The reason for this is that symptoms vary

considerably in their generality and specificity. Indeed, symptoms are often

designed to vary in terms of generality or specificity. General symptoms, such

as fatigue, are useful for determining whether a problem exists; they gener-

ally are sensitive indicators of a diagnostic problem. Specific symptoms, such

as a urinary pH level, are useful for confirming or ruling out disorders. Spe-

cific tests have been developed for most disorders, so that most symptoms

in the knowledge base are specific for a small set of disorders. This explains

why possible causes for symptoms are distributed exponentially. On the other

hand, each disorder has a relatively large number of both specific and general

symptoms. This explains why possible effects for disorders are distributed

normally.
But the size distributions for the entire domain are of secondary impor-

tance compared to the particular subdomain faced by the diagnostic system.

T'he subdomain is defined by the symptoms in a case, which are generated by

a set of target disorders, either by experimental stochastic simulation or by

causal relationships in real life. A subdomain contains the set of symptoms

present, along with the disorders that explain each symptom. These disor-

ders are competitors of the initial target disorders. Of course, the number

of target disorders and their identity is not known to the diagnostic problem

solver.

An example of a subdomain is shown in figure 6-4. This is the subdomain

for prerenal azotemia, where we assume that all possible effects of prerenal

azotemia are in fact present. However, a different subdomain for prerenal

azotemia might be defined using a subset of its possible effects. The sub-

domain also contains disorders linked to the symptoms. In figure 6-4, these

disorders are arranged according to the number of symptoms in the subdo-

main that they explain. The disorders that explain the most symptoms are

placed closest to the middle. The disorder that explains all of the symptoms.

prerenal azotemia, is located in the center.

Thus, disorders can be ranked in terms of the fraction of positive symp-

toms in the case that they explain. We call this the explanatory power of a

disorder. We define the explanatory power of disorder d for positive symp-

7.3 Domain and Problem Structure 127

~— 3500

).8

oo

3.7

D6 -

Le

<
i 0.5 -—

Y.

Ad

3000

- 2500

2000

—

04 —

3
5

03

1500

1000

J.2

500

Jak

TR
—

Ad.

I

80 120 60 200

Possible Causes of Symptom
xX

<
0

Y
A!

0.15

0.10

0.05

80 +:

L AV
60 =~

— 50) ©

. x!

7:
A

1 29] | 91 160 200

Possible Effects of Disorder

Figure 6-3 Size distribution of causes and effects in QMR. (Top) Histogram of

number of possible causes of symptoms in QMR. (Bottom) Histogram of number

of possible effects of disorders in QMR.

128 Analysis

3

510

TS
- SE——— _

XE 5Eo ress e
SRS

3, SeeSSF

Sn Ne
Faso SeerkIITSESSS Ss :

Fra 8FEE = EeEy So % 77] oo
3 8 he Sw SSE Se ~

383 EERE RN Tae a =F
] } Ep FEI RII tar wy a ~

 iRINISE NA RAN) J TXT >B £3 RE RR ThE TE 2 o
XR 3 2: $ Eh 3 [is ER SER Si TR ce) z
FA Ey 3 EEE E353 RI RRERTS Re 2ssR

] ESN 3 B) lean ERE x EEeRSe 3
2 3 Ie EIR Sen Saat,EE

3 X33 k Ne F PR A Sr OR I, ar 2

aa TR Iie EY RR any 3 EER3 SER SE
 XX RIN J ERR BIR TT 928 SS OAR 5Nh SL8 3FEN RAR RIC Cg Ea NIRS Xe Se

ye EEE DER IRsSeg NRE 5
5 hy BAR TR ~~ ea

DRS 2% N :

~ + inboo . 3 =,

—

 TB

I, S
. £8I 3

& SERN x,

2 copiiig Ss In ERR 3% x h

PEED) SHE 4I SER po? Sa SAR 2 SEA Bast MN:

3 CI =SE 2 on WRES 4 = a on Pa RE Sy
. PN 23 Ee pr) 2A B52EE RNg Ra = g4 ae vs ON 3 = oadSg 3 0-2 3 Lo or RE 2 2 = E32 Ss EAE <3] te 0 2 gy

SR Ca Sa REET ie So eh TS 5e S 3
oo RE a 22 IRE Enh + iE20 RE Ie wo - 38 aE orsz RIN z Sed Sg a3 fu 4 > tg “oL Ee ® Bt

+H alia Ite
x a EL= Re #

317 SEH 39 = NAN oY Sard 334 SE $s =H 3& p 23 SR Roiz oa a = SEASEZ SF, hr. Social EE oo wr XS 1
. 3 ae EE 2 EP A BIER) RE -TEE SIE ANBIB > o3e ps ERE In

? =. FS](¥ 3 EL4 iii aR on)z = LE % TE & ge a b
- = ¥: IE3% $155 fas iE,= oF ZIT x jis aE Boot) a
wg fn bees EEE Sade Sr

phd C2 ya <2 Xs ISL EE aCH Xo ERs 2A an ST

. -

6.3

1143

3,

51}

g1%

ST.

314 4148

Figure 6-4 Prerenal azotemia subdomain. Symptom and disorder labels corre-

spond to those listed in appendix D.

 Hh 9 Domain and Problem Structure 129

’0

oveent.t

50

50 —

»

=

 -~
40 —

30 —

5
Sr

20

Shan rrr

=

Explanatory Power (Not Normalized)

Figure 6-5 Distribution of explanatory power for prerenal azotemia subdomain.

Explanatory power is not normalized, indicating number of symptoms in the sub-

domain that a disorder can explain.

toms P as

|P N Effects(d)]
Power(d) = ip (6.2)

where Effects(d) is the set of possible effects for d. The denominator serves to

normalize the value of Power(d) so that it lies between 0 and 1. This concept

generalizes our earlier distinction between complete and partial explanations.

A complete explanation is one whose explanatory power equals 1. A partial

explanation has explanatory power less than 1. However, rather than having

only a dichotomy between complete and partial explanations, we now have

gradations of explanatory power.

The graph of the prerenal azotemia subdomain shown in figure 6-4 shows

how gradations of explanatory power are distributed, with a few disorders

in the middle having much explanatory power, but most disorders in the

periphery having little explanatory power. This distribution is shown more

explicitly in figure 6-5. The explanatory power for this subdomain shows a

distribution skewed towards the left, but with several disorders having an

130 Analysis 6.-

intermediate level of explanatory power. The single disorder having max-

imal explanatory power is the target disorder, prerenal azotemia, the only

complete explanation. We describe this distribution as bimodal because it

separates those disorders having essentially no explanatory power from those

with intermediate explanatory power.

This bimodal distribution differs greatly from a normal distribution. Bi:

modality derives from the presence of decompositional structure in a do-

main. If a domain has decompositional structure, the target disorder will

belong to a group of similar disorders. Groups of disorders induce a rank-

ing among competing disorders. Some disorders will have similar possible

effects compared to the target disorder, and thereby have high explanatory

power. Other disorders will have largely different possible effects, resulting

in relatively low explanatory power. The separation of similar and dissimilar

disorders depends on how complete the decompositional domain structure

is. The distribution of explanatory power in figure 6-5 is evidence for near

decomposability in the QMR knowledge base, at least in the neighborhood of

prerenal azotemia.

With this notion of explanatory power, we can modify our original hy-

pothesis about the combinatorics of partial explanations. We can now ascribe

diagnostic complexity to the combinatorics of disorders with low explanatory

power. We now conduct two experimental analyses to further assess the role

explanatory power in diagnostic complexity.

6.4 Trimmed Subdomain

The first analysis tests the role played by disorders with low explanatory

power. This experiment modifies the prerenal azotemia subdomain by re-

moving disorders with low explanatory power and observing the effect on

the two algorithms. Specifically, we remove those disorders in the prerenal

azotemia subdomain that explain only a single symptom. The resulting sub-

domain is called a “trimmed” subdomain, since the least powerful disorders

are trimmed. This modification removes the left-most side of the explanatory

power distribution, as shown in figure 6-6. We then run the same experimen-

tal case orderings for the prerenal azotemia subdomain as before. Since we

have presumably removed the disorders that account for most of the comba-

natorial explosion, we expect a decrease in the space and time required for

y. 4 Trimmed Subdomain 131

0

50

50~-
.

a

-

f—
=

40 -

30—
 sy

20

0

—)

Be

9 . -

Explanatory Power (Not Normalized)

Figure 6-6 Distribution of explanatory power for trimmed subdomain. Explana-

tory power is not normalized, indicating number of symptoms in the subdomain

that a disorder can explain. Disorders with explanatory power of 1 have been

removed.

132 Analysis 3.

the same cases.

We compare decompositional search and candidate generation as before,

but on the trimmed subdomain. The results are shown in figure 6-7 and

summarized below:

Prerenal azotemia cases, trimmed subdomain

Slope Inverse slope
Nodes kept 0.30 3.3

Nodes expanded 0.40 2.5

Running time 0.43 2.3

The results show that decompositional search is more efficient than candi-

date candidate, even on a simplified subdomain. However, the amount of

efficiency gain is slightly smaller than for the original subdomain. Originally,

as shown previously in figure 5-8, decompositional search had space and time

advantages that were powers of 3.9 and 2.6, respectively. With the trimmed

subdomain, these advantages lessened to powers of 3.3 and 2.3.

In addition, instead of comparing algorithms with each other, we can

analyze each of them separately on the two subdomains. We can see how

each algorithm responded to trimming of the subdomain. These comparisons

for time complexity are shown in figure 6-8. The full results are summarized

below:

Trimmed subdomain, candidate generation

Slope Inverse slope
Nodes kept 0.68 1.59

Nodes expanded 0.71 1.41

Running time 0.63 1.57

That 1s, adding the disorders with least explanatory power to the trimmed

subdomain would have increased the time complexity by a power of approx-

imately 1.5. Thus, the least powerful disorders accounted for a significant

portion of the diagnostic complexity.

For decompositional search, the results were similar:

Trimmed subdomain, decompositional search

Slope Inverse slope
Nodes kept 0.77 1.30

Nodes expanded 0.76 1.32

Running time 0.74 1.37

4 Trimmed Subdomain 133

Nodes Kept
"000

Slope: 0.30

Corr: 0.83

3
D

<
100

A

ct.y —

o @© 0 - po0 [eo] Q “Se o

oO © S 00
Oo - A

oO 8) oo

02 Pes § oQ 25 O 0

) 8 0, 50
“©

—

Cu 000 0000 100000

Candidate Generation

Run Time (seconds)

00.0

Slope: 0.43

Corr: 0.78

x
-

 8

10.0

i 0

0.

J

5 4

No
9 ~O, uJ

00°%o0 Je 08 oO .
0 o 8° Oy © c

208 © OF BD © ©

 3J 10.0 100.0

Candidate Generation

Figure 6-7 Space and time complexity for prerenal azotemia cases, trimmed

subdomain. The top graph plots the total nodes kept for the decompositional

search and candidate generation algorithms. The bottom graph plots the run time

in seconds for the two algorithms.

134 Analysis

"00.0

Candidate Generation

=Tri TUrrr TT TIrr -T

Slope: 0.63

Corr: 0.96

« TTT

©
0 r

7

10.0
©

~

*y

=
sens

i.0

0.1

0 1

i PJ1ia.

& ©

arC
2

~
x

Sag 0
7

2 09, y

wow vv rind vind nae

1.0 10.0 100.0 1000.0 10000.0

Original Subdomain

Decompositional Search
100.0

Slope: 0.74

Corr: 0.96

10.0

OO

1.0

o ®
© B= 0 ©

Fh ©
3 Ca
2

7.1
oo ~,

3 100.0

Original Subdomain

Figure 6-8 Effect of subdomain trimming on diagnostic complexity. The top

graph plots the run time of the candidate generation algorithm for the trimmed

subdomain versus the original prerenal azotemia subdomain. The bottom graph

plots the same results for the decompositional search algorithm.

3 5 Redistributed Subdomain 135

The space and time complexity for the trimmed subdomain were powers of

1.30 and 1.37, respectively, compared to the original subdomain. Note that

the effect of trimming on decompositional search was slightly less than that

for candidate generation. That is, the least powerful disorders would have

increased the complexity of the trimmed subdomain by a power of 1.5 for

candidate generation but only 1.3 for decompositional search. This indicates

that decompositional search handles the combinatorics of the least powerful

disorders relatively better than candidate generation.

6.5 Redistributed Subdomain

Our second experimental analysis explores the role of domain structure in di-

agnostic complexity. We have argued that in a domain with decompositional

domain structure, the explanatory power for diagnostic subdomains should

have a non-normal, bimodal distribution. In such a distribution, disorders

are separated to some extent into those with relatively low explanatory power

and those with relatively high explanatory power. A bimodal distribution

is evidence of decompositional structure. Decompositional structure occurs

because the causal links in a knowledge base are not distributed randomly.

Rather, there are clusters of symptoms and corresponding clusters of disor-

ders, with relatively dense links within clusters and relatively sparse links

between them. Competing disorders therefore have varying degrees of sim-

ilarity to a given target disorder. depending on whether they belong to the

same cluster.

We hypothesize that such decompositional structure is exploited by de-

compositional search and accounts for much of its efficiency. We test this

hypothesis by experimentally removing structure from the prerenal azotemia

subdomain and observing the result. Specifically, we remove structure by

randomizing the possible causes for each symptom in the subdomain. Each

symptom keeps the same number of possible causes as before, but the actual

disorders that can cause each symptom are redistributed among the entire

set of disorders in the subdomain. The only restriction is that each symptom

continues to contain the target disorder as a possible cause. This is done to

maintain the semantics of the subdomain. so that all symptoms derive from

the target disorder.

If we apply this procedure to the original prerenal azotemia subdomain,

136 Analysis 6. J]

we get the redistributed subdomain shown in figure 6-9. As with the orig-

inal subdomain, the disorders are arranged so that those with the greatest

explanatory power are in the middle. In this figure, the disorders exhibit

differences in explanatory power, resulting from the random redistribution

process. Comparing the figure with the original subdomain, shown previously

in figure 6-4, we may be able to discern that the distribution of explanatory

power has become more uniform. To show this change more clearly, we graph

the distribution of explanatory power in figure 6-10. This shows that the dis-

tribution of explanatory power has been changed from a bimodal distribution

to a normal one.

We use this redistributed subdomain to run the same cases for prere-

nal azotemia as before, using the candidate generation and decompositional

search algorithms. The two algorithms are compared in figure 6-11. The

linear fits are shown below:

Prerenal azotemia cases, redistributed subdomain

Slope Inverse slope
Nodes kept 0.65 1.54)

Nodes expanded 0.78 1.28

Running time 0.77 1.30

These compare to the original, structured subdomain, which had efficiency

gains of 3.9, 2.6, and 2.6 for nodes kept, nodes expanded, and running time,

respectively. Thus, domain structure apparently plays a large role in making

decompositional search more efficient than candidate generation. When this

structure is removed, the efficiency gain of decompositional search lessens

substantially.
As with the trimmed subdomain experiment, we can analyze the effects

of redistribution on each algorithm individually. The graphs are shown in

figure 6-12. In these graphs, the time complexity for the redistributed sub-

domain is plotted on the abscissa, while the complexity for the structured

subdomain is plotted on the ordinate. This allows us to analyze the effects of

structure on reducing complexity. Again, only running time is plotted; the

full results for candidate generation are shown below:

. R

5 |

Redistributed Subdomain 137

Be
~

re

3

+C,

—pe

rd
EonNm =, -_

SEE a aA —————. gy a Sam yy Pore’— = Sd

Shim ESSE =F :
x Se a Fr

hea RT Sr5
RIN SSS BET .
RRR CE a SSP ES_ EE Fad PS SSE Si IPE 2 ”a I ES RES Sell Mr C4 a. wi:

Soa Pt FoR on Be Sag ZL A

A EE aa Es DE AESS SR seeSrSEL og
Sea Te, dy EIS Sn = 2 red

 NES RENE TR FS PA =,
Sg ARS SANUS RETR Re es? a

S55 RT EER NNR a NN SA, BE,_, rR ee aREE AS = 22)
Sa RN Po TORY MN a RE re éA+$Se ag WE ESS SN Rs RSCTA TSF w
 HERE EIR SRNR EET SES Sag n, TSa RECEE a TE ESR SRR EEixdgaaaes H XE Na Sr ey -

TY 3 TON Hox) ~~, Ep2x = SR Se NR) a —

FEES lw TET ERS IR LX Eas praiseZo Te firR ERE SOL RC 2g SN aa ZION IN PR hE F

pire Te NR PRSIIE
 al) FE 3a EySe Hananfe Heep fonhE AG SEER SRR Ss Cr 2s SEs = a AI eR 8 o- pS 2 ESE RE Sh SL SRT

SESE hy RNG REILnat NBR A RS PR ERE ENA “3 PRREIRE 2 ST
ER NEpe ES SR 5p ene 2gl+E Tr, aa

RS Sessa Soll=ERE 0 IER &, Ny Ry a I CD EG
ISRENhi ROITSNE PEON DD RI) i2 ONS Ee CORE FOTN NR 2 RE ER Aes Ga> A MIR oie $ 2 Ra CS 2 Re

>) RR LAE RAS FEA £3 RLS NOR ~a

3 SEendnaA=n TelPY RR IRIAN Ey EL SEAS pha RLRs Ete

w! ARTE asoa ST nH A. ANI - a oR ~~ LSC ER Oo

RRS Tole rtaaaesI HS RE AY oc RSs WN ECSER ra ORIEL pd

LR hyd s. J TANS 2g Se Veen: 2X
SEA aed iy a AE SR ES Ry SO LAN RS SW OS Soni i

aEat bh syidoy ra XE Le ot Sor 818) 5
Ae RRSTo Sy? GEIS 0 a BAXE RE Oo, Tey: $38ok

, ee RB OX 0% TN Pu LIK Ci 2 na

 EOE Rone PEPE BIA Nt Te Seof I SSITE
RS ERS mosRI Ha” i SR ee Md ey RCD

eS ON PS FENg SS SES <
By SIR 2 J <> UE Se.
TST IR ORES
= S50 :

Re

ip.

+10

511

21D

 i |

314 y-

Figure 6-9 Redistributed prerenal azotemia subdomain. Symptom and disorder

labels correspond to those listed in appendix D.

138 Analysis

va
Sm

-

40 -

“——

30 —

20

10

J In 3 12 1

4 n

Explanatory Power (Not Normalized)

Figure 6-10 Distribution of explanatory power for redistributed subdomain.

Explanatory power is not normalized, indicating number of symptoms in the sub-

domain that a disorder can explain. The distribution is roughly normal, compared

with the bimodal distribution of the original subdomain.

Structured subdomain, candidate generation

Slope Inverse slope

Nodes kept 0.63 1.59

Nodes expanded 0.59 1.70

Running time 0.52 1.52

These results show that the absence of domain structure increases the space

and time required for candidate generation by powers of 1.59 and 1.92, re-

spectively. Therefore, candidate generation also exploits domain structure.

However, as we have shown, decompositional search exploits structure

relatively more. The effect of structure on the space and time efficiency of

decompositional search is given below:

Structured subdomain, decompositional search

Slope Inverse slope

Nodes kept 0.25

Nodes expanded 0.32

Running time 0.32

These values are substantially greater than those for candidate generation,

indicating the relative extent to which decompositional search exploits do-

main structure.

5 6

0000

Nodes Kept

Redistributed Subdomain 139

Slope: 0.65

Corr: 0.78

Cc

o
5 1000
 nN

JR J
oP

Q

bd

 Oo
Bh

100

10

000

p= = fom

10000

N
—

~

v 297
-~ JG

*. 0
pe 0

Vr3

orlyopal

100000 1000000 10000000

Candidate Generation

Run Time (seconds)

1000.0

Slope: 0.77

Corr: 0.82

100.0

3
V
~

a9

10 0

de

J
W

 MN

1.0

)

X

[eo]
° Vv

1000

Candidate Generation

10000

Figure 6-11 Space and time complexity for prerenal azotemia cases, redis-

tributed subdomain. The top graph plots the total nodes kept for the decom-

positional search and candidate generation algorithms. The bottom graph plots

the run time in seconds for the two algorithms.

140 Analysis

1000.0

Candidate Generation

o

Slope: 0.52

Corr: 0.51

100.0

« JV

100

+

-

ke
)

1.0

)
oii if

bh

N

0,
RD -

iv]

v

88.0 Coo o
~

lpia —_——l LL!

100 1000 10000

Redistributed Subdomain

‘00.0

Decompositional Search

Slope: 0.32

Corr: 0.66

10.0

>

i.

4

«©

of
=

O

1.0

0

o Ov
2 5

00 2% * 0

3 Oo] 5 © o 0 008 Oo
oO od ©

oh 00 oo 0° ©
0 Oq © 8

00o o o

- 5 > o

 oO oO

10.0 100.0 1000.0

Redistributed Subdomain

Figure 6-12 Effect of subdomain redistribution on diagnostic complexity. The

top graph plots the run time of the candidate generation algorithm for the original

prerenal azotemia subdomain versus the redistributed subdomain. The bottom

graph plots the same results for the decompositional search algorithm.

> 6h Decomposition ofaSubdomain 141

6.6 Decomposition of a Subdomain

It is interesting that domain structure appears in such a specific example.

We would expect structure at a high levels of structure, such as organ sys-

tems. But although the symptoms related to prerenal azotemia are in the

same organ system, they still exhibit structure. To elicit this structure fur-

ther, we now decompose the entire prerenal azotemia subdomain. This task

contrasts with the experimental runs performed so far, where only subsets of

the possible effects of prerenal azotemia have been decomposed.

Decomposition of all 14 possible effects of prerenal azotemia yields 6 co-

herent decompositions, listed in figure 6-13. These decompositions give some

insight into the structure of the prerenal azotemia subdomain. The best

decomposition places all symptoms into one cluster, with a differential con-

taining only “Prerenal Azotemia”. There are no coherent decompositions

with two clusters, suggesting that the one-cluster decomposition is much

more plausible than the others.

Nevertheless, the structure of the other decompositions is informative.

For example, the cluster (s;s;s38586511) recurs in all decompositions other

than the first one. The symptoms in this cluster are:

S1

59

.

53

35

Se

S11

Azotemia of two weeks duration or less

Creatinine clearance decreased

Creatinine serum 3 to 10 mg/dl

Dehydration
Mouth mucosa dry (Xerostomia)

Urea nitrogen serum 60 to 100

and its differential is { “Acute Renal Failure”}. This cluster indicates that

acute renal failure constitutes a distinct syndrome for the symptoms associ-

ated with prerenal azotemia. In fact, prerenal azotemia and acute renal fail-

ure are causally related diseases, as Harrison’s Principles of Internal Medicine

attests [78, p. 1145]: “Prerenal azotemia causes 40 to 80 percent of cases of

acute renal failure.”

Another interesting syndrome appears in decomposition Cs as the cluster

(8789514), which consists of the symptoms

Oliguria hx

Sodium urine less than 20 meq per day

Jrine specific gravity gtr than 1.020

142 Analysis |,

Ci = (518253545556575859510511512513514)

Differentials (1): {“Prerenal Azotemia”}

Cy = (89) (5152538556511) (5253545758510511512513514)
Differentials (6 x 1 x 1): {“Aldosteronism Primary” “Aldosteronism Secondary” “Car-

diac Failure Left Chronic Congestive” “Cardiac Failure Right Congestive” “Constrictive

Pericarditis” “Renal Failure Secondary To Liver Disease”} x {“Renal Failure Acute”} x

{ “Glomerulonephritis Acute”}

Cs = (s7) (ss) (5152535556511) (52535459510511512513514)
Differentials (16 x 5 x 1 x 1): {“Arteriolar Nephrosclerosis Malignant” “Cardiac Fail-

ure Left Chronic Congestive” “Cardiac Failure Right Congestive” “Glomerulonephritis

Advanced Chronic” “Glomerulonephritis Rapidly Progressive” “Goodpasture Syndrome”

“Heat Exhaustion” “Iga Nephropathy” “Lupus Nephritis” “Progressive Systemic Sclerosis

[nvolving Kidneys” “Renal Artery Stenosis” “Renal Leptospirosis” “Renal Thrombotic

Thrombocytopenic Purpura” “Renal Vasculitis” “Staphylococcal Scarlet Fever” “Tubu-

lar Necrosis Acute”}x { “Analgesic Nephropathy” “Diabetic Ketoacidosis” “Hypokalemic

Nephropathy” “Renal Failure Chronic” “Renal Tubular Acidosis Proximal”} x {“Renal

Failure Acute”} x { “Renal Failure Secondary To Liver Disease”}

Cy = (ss) (s9) (5152535556511) ($2535457510511512513514)
Differentials (5 x 6 x 1 x 3): {“Analgesic Nephropathy” “Diabetic Ketoacidosis” “Hy-

pokalemic Nephropathy” “Renal Failure Chronic” “Renal Tubular Acidosis Proximal”}

x {“Aldosteronism Primary” “Aldosteronism Secondary” “Cardiac Failure Left Chronic

Congestive” “Cardiac Failure Right Congestive” “Constrictive Pericarditis” “Renal Failure

Secondary To Liver Disease”} x {“Renal Failure Acute”} x {“Arteriolar Nephrosclerosis

Malignant” “Iga Nephropathy” “Renal Vasculitis”}

Cs = (ss) (5152835556511) ($759514) (5254510512513514)
Differentials (5 x 1 x 2 x 5): {“Analgesic Nephropathy” “Diabetic Ketoacidosis” “Hy-

pokalemic Nephropathy” “Renal Failure Chronic” “Renal Tubular Acidosis Proximal”} x

{“Renal Failure Acute”} x {“Cardiac Failure Left Chronic Congestive” “Cardiac Failure

Right Congestive”} x {“Arteriolar Nephrosclerosis Malignant” “Iga Nephropathy” “Renal
Failure Secondary To Liver Disease” “Renal Vasculitis” “Toxemia Of Pregnancy”}

Ce = (s7) (ss) (so) (8152835556511) ($254510512513514)
Differentials (11 x 5 x 3 x 1 x 1): {“Glomerulonephritis Advanced Chronic” “Glomeru-

lonephritis Rapidly Progressive” “Goodpasture Syndrome” “Heat Exhaustion” “Lupus

Nephritis” “Progressive Systemic Sclerosis Involving Kidneys” “Renal Artery Stenosis”

“Renal Leptospirosis” “Renal Thrombotic Thrombocytopenic Purpura” “Staphylococcal

Scarlet Fever” “Tubular Necrosis Acute”} x {“Analgesic Nephropathy” “Diabetic Ke-

toacidosis” “Hypokalemic Nephropathy” “Renal Failure Chronic” “Renal Tubular Aci

dosis Proximal”} x {“Aldosteronism Primary” “Aldosteronism Secondary” “Constrictive

Pericarditis”} x {“Renal Failure Acute”} x {“Toxemia Of Pregnancy”}

Figure 6-13 Coherent decompositions of the prerenal azotemia subdomain. The

symptom labels correspond to those listed in appendix C. Differential diagnoses

and their sizes are listed in sequence, matching that of the symptom clusters.

A Decomposition of a Subdomain ~~ 143

This cluster has the differential diagnosis {“Cardiac Failure Left Chronic

Congestive”, “Cardiac Failure Right Chronic Congestive”},indicatingthat
these two types of heart failure are similar. In heart failure, a complex se-

quence of hemodynamic and hormonal adjustments cause the kidneys to re-

tain sodium and water, resulting in poor urinary output, low urinary sodium.

and concentrated urine.

Finally, several differential diagnoses group together the disorders “Ar-

teriolar Nephrosclerosis Malignant”, “IgA Nephropathy”, and “Renal Vas-

culitis”. These diseases are similar in that they are vascular diseases of the

kidney, causing renal damage by high blood pressures in the arteries supply

ing the kidney.

Thus, this experiment provides additional evidence for the presence of

decompositional structure in diagnostic domains, even within a subdomain

created by a single target disorder. The resulting “micro-syndromes” corre-

spond to natural groupings also found in medical textbooks. Decompositional

search found these symptom clusters and disease groupings solely from the

individual patterns of causal links in the knowledge base. It did not rely on

abstractions that were explicitly encoded in the knowledge base. This type

of abstraction, called dynamic abstraction, allows decompositional search to

use abstractions inherent in a knowledge base, even when such abstractions

are not known beforehand. Dynamic abstraction also suggests that decompo-

sitional search might be applied to other domains or subdomains to discover

anderlying domain structure.

| 4

Chapter 7

Probabilistic Decompositional

Search

45

146 ~~ Probabilistic Decompositional Search {.

 when you have eliminated the impossible, whatever remains,

however improbable, must be the truth.

Arthur Conan Doyle, The Sign of Four (1890)

The decompositional search algorithm presented so far is categorical; it does

not consider any information about the likelihood of disorders or symptoms.

This chapter extends decompositional search to allow such probabilistic in-

formation. This is especially important in fields such as medicine where the

probabilities of diseases and causal relationships range over several orders of

magnitude.
This chapter derives a set of formulas for the probability of a candidate

set, a candidate, and a task, conditioned on a set of positive and negative

symptoms. We also compute the probability that the single-fault assump-

tion 1s true. To derive these results, we first establish a precise semantics

for these quantities. In particular, we clarify the probabilistic concepts of

events, instances, link probabilities, causal probabilities, and non-causation

probabilities.

7.1 Probabilistic Knowledge Bases

A probability is a function p that assigns a number between 0 and 1 to an

event. An event is the outcome or state information for a set of objects in

some universe. For instance, let a universe consist of a jar of n balls, labeled

bi, ...,b,. Each ball can be red or white; these represent their possible states.

An event might be the condition that ball b; is red.

Intuitively, a probability measures the chance or likelihood of an event.

However, probability theory depends only on the following axioms, where)

is the certain event, one that is always true:

l. The probability of an event A is positive:

p(A) > 0

2. i'he probability of the certain event equals 1

p(! /

| Probabilistic Knowledge Bases 147

3. If events A and B are mutually exclusive, that is, they cannot both

occur simultaneously, then the probability that either event will occur

is the sum of their individual probabilities:

p(A+ B) = p(A)+ p(B)

[hese axioms provide sufficient basis for computing probabilities.

7.1.1 Prior Probabilities

To bring probability theory into the realm of diagnosis, consider the universe

Up of all disorders d in the knowledge base. We assume that our knowledge

base contains all possible disorders; if it is incomplete, we add a disorder

called “Other” that stands for all disorders not in the knowledge base. Then

the state of each disorder d is either positive or negative. We denote these

avents respectively as dt and d=. The state of a disorder may also be left

unspecified, which we denote by the disjunction “d* Vv d=”.

An event can specify the outcomes for a set D of disorders. The event

that every disorder in D is positive is represented as D%, and that every

disorder in D is negative as D~. The event that one or more disorder in D

is present is represented simply as D. Note that the event D is the opposite

of the event D~. Like sets, events can be combined. Suppose A and B

are events; then “A + B” means the disjunctive event AV B, and “AB” or

“A, B” means the conjunctive event A A B. For instance, the event where d;

is present and dj is absent is denoted as dfdj.

A probabilistic knowledge base requires two types of quantities: prior

probabilities and link probabilities. The prior probability p(d*) for each

disorder d is the probability that d is present, given no other information.

We denote this quantity by p(dt). The probability that a disorder is absent

is p(d7) =1— p(dt). We will also use the following simplified notations for

these quantities:

(7.1)

(7.2)

We can combine prior probabilities to obtain the probabilities of sets of

disorders:

o(DT) II 23
deD

(7.

148 Probabilistic Decompositional Search

p(D™) = [I pr:
deD

p(D) = 1-1]pr:
del

7.4

(7.4)

(7.5)

In these equations, we assume that disorders occur independently. In other

words, we assume that for any pair of disorders d; and ds,

p(didf) = p(df)p(df) (7.6

This is called the disorder independence assumption.

While most events specify only the state of some disorders in the universe,

leaving the rest unspecified, other events specify the state of all disorders in

the universe; we call such an event a disorder instance. For example, consider

the disorder instance that all disorders in a given set D are present, while

all other disorders in Up are absent. We denote this disorder instance as

DY (Up — D)~. The probability of this disorder instance is

p(D*(Up-D)") = [[pd II pr:
deD deUn-D

In addition to a universe Up of disorders, a diagnostic knowledge base

also contains a universe Ug of symptoms. A symptom can be either positive

(present) or negative (absent). We denote the set of positive symptoms by P

and the negative symptoms by N. Using the same notation as for disorders,

we therefore denote a case by the event PY N~. Note that a case is not a

symptom instance; it does not specify whether symptoms in Us — (P U N)

are positive or negative.

7.1.2 Link Probabilities

In addition to having a prior probability attached to each disorder, a prob-

abilistic knowledge base has a link probability attached to each link between

a disorder and symptom. The meaning of a link probability is based on the

concept of conditioning. Conditioning changes the probability of an event

based on background information. Suppose we know that event A has oc-

curred. This information changes the probability of B from p(B) to p(B | A),

or the conditional probability of B given A. The conditional probability is

; Probabilistic Knowledge Bases 149

defined as

p(B 4) = HAD)
n(A)

(7.7)

A link probability results from conditioning on the presence of exactly one

disorder. Suppose that some symptom s is positive and that some disorder

d is present. We assume that s can only be caused by a disorder that is

present; that is, it cannot be positive without cause. Then the probability

that d causes s 1s

p(s | &H(Up — {d})")

the link probability of s* given that only d is present. The conditioning

event “dt (Up —{d})~” effectively excludes all disorders other than d, thereby

focusing on the contribution of d alone towards causing s. Link probabilities

are given as primitive values by the domain expert, and to simplify the

notation. we will use special symbols for them:

cas = p(st | dT (Up —{d})7)

as = p(s” | dT (Up —{d})7)

= 1 — ey,

(7.8)

(7.9)

In a probabilistic knowledge base, each link is labeled with the value cg. If

a link is not present between d and s, then cg = 0.

Since causal links are not directly observable in most domains, conditional

probabilities typically assess whether symptoms are present, not whether

they are caused by a particular disorder. Consequently, most conditional

probabilities are different from link probabilities. To see this difference, con-

sider the following example.

Example Consider the situation in figure 7-1, where a ship s becomes a

target for destroyers dy and d,. We are concerned about whether the ship

sinks (represented by st) or stays afloat (s7). In this problem, the destroyers

may or may not be present in the vicinity of the ship; suppose they have

probabilities p(d}) = 0.1 and p(d]) = 0.2 of being present, respectively. The

destroyers also differ in their firing accuracy. When present, destroyer 1 has

a 0.5 probability of sinking the ship, while destroyer 2 has a 0.4 probability

of sinking the ship. These are the link probabilities p(s | dfd;) and p(s* |

dF dy) of the ship sinking.

30 Probabilistic Decompositional Search

J

Link probabilities

14 0.’

d, 0.2

Prior probabilities

Figure 7-1 Example of a probabilistic knowledge base. This example corre-

sponds semantically to two destroyers, d; and d,, firing upon a ship s. Prior

probabilities correspond to the probability of the destroyer being in the vicinity of

the ship. Link probabilities correspond to the destroyers’ firing accuracy.

The ship sinks whenever a destroyer is present and that destroyer suc-

cessfully torpedoes the ship. If both destroyers are present, the ship has the

following chance of sinking:

p(sT |didl) = 1-(1-0.5)(1-0.4)=0.7

This value was computed by finding the probability that both destroyers

missed and subtracting that from 1. Now, by summing the cases where

the other destroyer is present or absent, we can determine the conditional

probabilities that the ship sinks:

p(sT df) = p(s | dfd])p(d]) + p(s* | df dy)p(dy)

= (0.7)(0.2) + (0.5)(0.8) = 0.54

p(s" ds) = p(s*|d3di)p(df) + p(s™ | djdy)p(dy)

= (0.7)(0.1) + (0.4)(0.9) = 0.43

Compare these with the link probabilities:

p(s™ |dfdy) = 08

p(st |dfdy) = 04

Note that the conditional probability of the ship sinking is higher than the

link probability. This relationship holds because the conditional probability

includes those events where the other destroyer sinks the ship. Also, note

that the conditional probabilities are harder to compute. This is because link

probabilities are given as primitives, while conditional probabilities have to

computed over combinations of disorder instances.

J Causation and Probability 151

7.2 Causation and Probability

Given the prior and link probabilities in a diagnostic knowledge base, we

now consider the use of probabilities in reasoning about particular diagnostic

cases. In a particular case, we usually cannot condition on the presence

or absence of a disorder, since the point of diagnosis is to determine that

information. On the other hand, we can condition on the presence and

absence of symptoms, and in fact, the main use of symptomatic information

is to change the likelihood of disorders in the universe.

Although we do not condition on disorders, we hypothesize about their

presence and absence. Furthermore, in decompositional search, we hypothe-

size about how disorders cause symptoms. In this section, we consider how

to compute the probability of hypothesized events of causation and non:

causation.

7.2.1 Causal Probabilities

A causal probability is the probability that a given disorder or set of disorders

causes a given symptom or set of symptoms. It measures the event that a

particular link or set of links in the associative knowledge base “fire”. Thus, a

causal event means not only that a symptom is positive but that a particular

disorder caused it to be positive. This event is denoted by d — s. (We do

not need “4” superscripts, because the event already implies that both s and

d are present.) For this causal event to occur, a disorder must both be present

and successfully cause the symptom. Thus, we define causal probability as:

Hd —s) = pls” | 4 (Up — {d}) pd")

= Pics (7.10)

We multiply by p(d*) instead of p(dt (Up — {d})”) because we include the

possibility that other disorders may be present, although we still assume that

d causes s. In other words, we make no assumptions about the state of other

disorders or links. Note that causal probabilities differ from link probabilities,

because link probabilities are conditioned on a disorder instance. while causal

probabilities are not conditioned.

Example Consider again our example of the ship and two destroyers. We

wish to know that probability that a destroyer sinks a ship, without knowing

152 Probabilistic Decompositional Search 7.2

whether the destroyer is present or not. This event requires both that the

destroyer be present and that its torpedo sinks the ship. In our example, we

can compute the probabilities that the ship is sunk by each destroyer.

p(dy—s)=(0.1)(0.5) = 0.05

p(dy—s)=(0.2)(0.4) = 0.08 I

In addition, we will find the converse of a causal event useful. This event

is expressed by d — s, which means that d does not cause s. A disorder d

can fail to cause s if it is absent or if 1t is present and its link does not fire:

pds) = 1—p(d—s)

= pg + Pi ds (7.11)

Causal probabilities are especially useful in the decompositional search

approach, because a problem decomposition essentially assigns a causal struc-

ture between differential diagnoses and symptom clusters. Causal probabil-

ities help determine how feasible this structure is. In order to use causal

probabilities for problem decompositions, we need to generalize them to sets

of symptoms. This generalization requires an additional assumption, namely,

that that each disorder causes each symptom independently. In our example.

this is analogous to saying that each torpedo is independent of the others:

p(sis3 |didy) = p(sf |dfdy)p(s3 | dfdy) (7.12)

This 1s the causal independence assumption. These assumptions plus the

disorder independence assumption in 7.6 are made in most other probabilistic

work. In particular, they are used by the belief networks community, where

they are called the noisy-or assumptions [51].

With these assumptions, we can now compute the probability that a set

of disorders disjunctively causes a set of symptoms. We denote this event by

D — S. which is defined formally to mean:

D-YsS = 3deD. Vse8. d—

[he probability of this event is:

o(D —5 S) = 1-1] (1-7 TL ce |
deD sES

(7.13)

 2) Causation and Probability 153

This probability holds because the causal event is false when every disorder

fails to cause all symptoms. A disorder causes all symptoms when it is present

and all causal links fire.

Causal probabilities can be conditioned on events. Conditioning intro-

duces our background knowledge into the computation of a causal probabil-

ities. For instance, we may want to compute the probability that d causes s,

given that s is positive. This conditional causal probability can be computed

as follows:

p(d — s, st)

p(s*)
pd — 3)

p(s*)
+

 ee (7.14)
1 = Tlaev, (pz + Pd Gas)

The second line follows because d — s implies s*. This combination of con-

ditioning and causation foreshadows the results derived later in this chapter.

These results generalize this calculation to sets of disorders and symptoms

and conditions also on negative symptoms.

7.2.2 Non-Causation and Symptom Probabilities

[n addition to computing the probability of causal events, we can compute

the probability of non-causation, or a failure to cause a set of symptoms.

This event D —f> S means that no element in D causes any element in S.

[n logical terms:

DS = Vde D. Vse$S. ds

Note that this is different from the event D —/ S which means that now

every element in D causes all elements in S:

DLS = VdeD. 3s€S. d—>s

 he probability of the non-cansation event is given below:

o(D 4S) = J] (vi +p5 11 a)
deD SES

(7.15

154 Probabilistic Decompositional Search

Quantity
Prior probability

Link probability

Causal probability

Non-causation probability

Notation
Pi, Pa
Cds, qds

p(d — s), p(D , S)

p(D —p A)

d

Figure 7-2 Summary of probabilistic notation.

This probability holds because each disorder can be considered indepen-

dently. A disorder fails to cause a set of symptoms when it is absent or

when it is present and each causal link fails.

The probability of non-causation is useful because it gives the probability

that a set of symptoms is absent. A set of symptoms is absent whenever they

are not caused by any disorder. We can therefore consider the non-causation

of the entire knowledge base:

p(S™) = p(Up 45)

II (ri +p II 0)
deUp SES

(7.16)

By subtracting this result from 1, we get the probability that at least one

symptom from a set is present, given no other information:

pS) = 1-1] (si +93 Taz) (7.17)
deUn SES

So far, we have introduced several different types of events and computed

their associated probabilities. These probabilistic quantities are summarized

in figure 7-2. We will use these quantities in the sections that follow.

7.3 Case Probability

In diagnosis, we generate hypotheses to explain a set of evidence. Thus,

probabilities in diagnosis are usually of the form p(H | F), where H is a

hypothesis and F is evidence. In diagnosis the evidence comes from a case

7 4 Case Probability 155

that includes positive symptoms P and negative symptoms /N. In computing

:he probability of a hypothesis, we often use Bayes’s rule:

P*N~ | H)p(H)H|Pt*N™) = p(PTN"|H)piH) 7.18

The denominator is the probability that a particular case will occur. Un-

fortunately, it is notoriously difficult to compute. The problem stems from

the positive symptoms, since there are many ways that a set of symptoms

can be caused. Previously, we computed p(S~) and p(S), but computing

p(St) is more difficult. Indeed, a symptom can be caused by any subset of

its possible causes. Since the number of subsets grows exponentially with

the number of elements, computing the denominator can be intractable.

Nevertheless, there is a clever technique that can make the computation of

the denominator more efficient [27]. This works by trading the combinatorics

of disorders for the combinatorics of symptoms. Specifically, the technique

uses an inclusion-exclusion principle that turns a set of positive symptoms

into alternating subsets of absent symptoms. This gives the case probability

as:

o(1
s

VT) = 3 (-1)Pelp(PE NT)
| P-e2F

> (el IT +dPg +
P-e2F deUp ’ he AL de (7.19)

[n this equation, Up contains all disorders in the universe (or knowledge

base), and 2F denotes the power set of P, so Pc represents each subset of

positive symptoms P. The term PZ /N~ means the event that all symptoms

in (P- UN) are absent. Essentially, we begin by making no assumptions on

P, so that P- = 0, giving rise to the probability p(N~). Then, we consider

all ways that each symptom in P could be absent, in addition to N, and

subtract the corresponding probabilities. But this subtracts too much, since

it subtracts the probability for each pair of positive symptoms twice. Thus,

we add the probabilities that each pair of positive symptoms is absent, along

with the negative symptoms N. Again, this overcompensates, so we then

subtract the probabilities that each triplet of positive symptoms is absent,
and so on.

156 ~~ Probabilistic Decompositional Search 7

Computing this denominator requires time on the order of

O27 (P + Nidp)

where P is the number of positive symptoms, A is the number of negative

symptoms, and Up is the number of disorders in the knowledge base. This

1s computationally expensive, because it is an exponential function of the

number of positive symptoms. However, the number of positive symptoms

is often relatively small for a particular case, so this complexity may be

acceptable for some domains.

Nevertheless, in many situations, we only care about finding the best

hypotheses, and not assessing their actual probabilities. In this these appli-

cations, the relative probability of a hypothesis is sufficient. The denomina-

tor is the same for all hypotheses, so we can simply ignore it in computing

relative probabilities.

7.4 Candidate Sets

Previously, we have seen that a problem decomposition entails an initial

and final candidate set. The final candidate set is entailed by a problem

decomposition after the differential diagnoses are formulated. One way to

extend probabilities to decompositional search is to compute the probability

of these candidate sets. Recall that the candidate set is given by Cartesian

product of differentials:

Cands(C) = XDiff(C)

The conditioning event is the set of positive symptoms P and negative symp-

toms N. The probability of a candidate set can be computed using the

definition of conditional probability:

PT N~Cands(C))ds(C) | PtN™) = p(PTN"Cands(C)) 7.20
p(Cands(C) | P*N™) Sp (7.20)

The denominator is the case probability discussed previously, so we need

solve only the numerator. To compute the numerator, we use an inclusion-

exclusion strategy, similar to that used in solving the case probability:

p(P*N~Cands(C)) = > (=1)Pel p(PZ N~Cands(C)) (7.21)
P-c2F

i or Candidate Sets 157

To compute the probability p(PZ N~Cands(C)), we consider separately

those disorders in a differential and those not in any differential. Consider a

differential Diff(C'). If symptoms in (P- U N) are absent, then they cannot

be caused by any disorder in Diff(C). Yet, since Cands(C) is true, at least

one disorder in each differential must be present. The probability that at

least one disorder in Diff(C') is present but does not cause any symptoms in

P- or N is

p(Diff(C) 4b P-UN, Diff(C)) =

II € IT q+ 7) - II pr: (7.22,
deDiff(c) s€PcUN deDiff(C)

The next step is to consider symptoms not in any differential. If symp-

toms in (Pc U N) are absent, then they cannot be caused by any disorder

not in a differential. Let these other disorders be defined as

Up = Up— |J Diff(C)
Cel

(7.23"

where Up is the universe of disorders in the knowledge base. The probability

that these disorders do not cause symptoms in P- or NV is

o(Up,=P-UN)=I](17+28II 0s) (7.24)
deU* sEP~UN

Finally, we can put the parts together. The probability of a candidate

set 1s

p(Cands(C) | PYN™) =

> peear(—NPel To p(DIff(C) ~fp» PUN, Diff(C)) p(U% fp» PcUN)
p(P+N-)

(7.25,

where terms are substituted from equations 7.22 and 7.24

Computational Complexity The computational complexity of the above
set of formulas is:

158 Probabilistic Decompositional Search {
r

ds

Numerator (equation 7.21): O(2P NUp)
Denominator (equation 7.19): O(27(P + N)Up)

The denominator term dominates, so the overall computational complexity is

O(2% (P + N)Up), which is exponential in the number of positive symptoms

but linear in the number of negative symptoms and size of the knowledge

base. The numerator has roughly the same complexity as the denomina-

tor, so there is little advantage in computing relative probabilities between

decompositions as opposed to absolute probabilities.

7.5 Candidates

The probability given in the previous section evaluates a collection of candi-

dates, namely the Cartesian product of the differential diagnoses in a prob-

lem decomposition. In this section, we specialize this formula to obtain the

probability of a single candidate D. We merely assume that the differen-

tial diagnoses Diff(C') in some decomposition C are all singletons. Then, the

candidate D is the only element in the Cartesian product:

// Diff(C) = {D}
Cec

The result for this limiting case of singleton differentials is:

p(D* pt N7) =

i —

(P+N-) > (—1)Fel II [IT) II [» + py II)
p Pce2P deD s€EPcUN deUp-D s€EPcUN

(7.26)

The formula for the denominator, as before, can be found in equation 7.19.

In the absence of any evidence, where P = N = (), this expression reduces

to the expected result for the prior probability of a candidate:

p(D*) =]] rd
deD

76 Tasks 159

7.6 Tasks

Recall that a task contains a symptom cluster C' and its associated differential

diagnosis Diff(C'). The meaning of a task is that each disorder in Diff(C) is

capable of explaining all symptoms in C. Thus, a task expresses a causal

event: Diff(C) — C. In computing the probability of a task, we assume

that no other tasks are present. The case of multiple tasks complicates

things considerably. To see why, let us try to compute the probability of a

decomposition. Unfortunately, there is no guarantee that the tasks will be

independent:

p (A (Diff(C) 5 ©)| peN-) + [I p(Diff(C) => C | C*N™)
Cec CeC

In fact, knowledge about a symptom in P or N induces dependence on all of

its possible causes, so that tasks may not be independent. Nevertheless, task

independence may be a useful approximation. This is especially true since

a problem decomposition attempts to separate symptoms into independent

clusters. We can use a task independence assumption along with the results

of this section to approximate the probability of a decomposition.

With this in mind, we proceed to compute the probability of a task, in-

dependent of other tasks. We apply the definition of conditional probability:

: Diff(C) — C, C*N~)
(DIf(C) 5 C1 CTN™) = pli)— 0, BIN)

p(Diff(C) = C, N™)

p(C*tN-)

_ DIC) = CINT)(NT) 7 ory

p(C*N~)

The second line is justified because Diff(C) —, C implies C*. The denom-

inator is the usual case probability, discussed previously. We now consider

the two factors in the numerator separately.

The second factor in the numerator of equation 7.27 is relatively simple.

[t 1s given by:

pN7) = I G +p7 I])
deUp seN

(7.28

160 Probabilistic Decompositional Search 7

To compute the first factor in the numerator, we rely on the formula for

the causal event p(Diff(C) —~, C), given in equation 7.13. However, the

probability of each disorder is modified by the negative symptoms:

p(Diff(C) VC INT) = 1-— II (1 —p(d¥|N7) IIca) (7.29)
de Diff(c) seC

[his equation requires the probability of a disorder conditioned on the

.egative symptoms, that is, p(dt|N~):

| N-y = PUTT)

p(N-)

2 [Tsen ds [aevp—(ay (rz + py [Lien Ga;)

[aevp (rz + pg [sen Gas)

_Pillengss
Pa + py [len qds

The final step results from canceling all terms in numerator and denominator

except for the remaining case of d.

Putting the parts from equations 7.27, 7.28, 7.29, and 7.30 together yields

the probability of a task:

p(Diff(C) = C | C*N™) =
+

Pa[leccasIl ep as -1 — [LieDiff(c)(1 Set I Ide :)] [Licv, (pz + Pi [Len Gis)

p(C+N-)

-l *

(7.31)

where the denominator is the case probability in equation 7.19, applied to

the cluster C

Computational Complexity The computational complexity of the above

equations is:

Numerator term 1 (equation 7.29): O(PNUp)

Numerator term 2 (equation 7.28): O(NUp)

Numerator: O(PNUp)
Denominator: 02% (P + N)Up)

) Single-Fault Assumption 161

Although computing the denominator requires time exponential with the

number of present symptoms, the numerator requires only polynomial time.

Thus, the relative likelihood of a task can be computed quickly.

7.7 Single-Fault Assumption

The single-fault assumption was made in early work in diagnosis [11]. This

assumption simplified diagnosis by eliminating the combinatorial problems of
multiple disorders. This assumption is reasonable in domains where faults are

unlikely, since each fault usually lowers the overall probability of a candidate

by an additional prior probability. It is also a good assumption when a single

fault can be spotted immediately, either because the device is constantly

monitored or because the device fails completely or catastrophically when a

fault does occur. When faults cannot accumulate, a single-fault assumption

is more likely.

[nterestingly, the likelihood of the single-fault assumption can be com-

puted using the probability of a task derived in the previous section. The

single-fault assumption postulates a single cause for all positive symptoms.

[n other words, the assumption hypothesizes a single-task decomposition

with a cluster containing the positive symptoms and a differential containing

the universe of disorders. Therefore, we can substitute P for C and Up for

Diff(C') in equation 7.31:

p(Up — P| P*N™) =
+ Cds s —

[1 - [licv, (1 — Elle sens)] [licv, (pz + py [sen Gas)

p(P+*N-)

(7.32)

[his gives the probability that one disorder in the knowledge base explains

all of the given positive symptoms. Note that if there is no disorder in the

knowledge base that can possibly explain all the symptoms, then for each d

 mn Up there exists some s in P such that ¢;; = 0. This would then reduce

the value of the numerator to zero, and hence yield a zero probability for the

single-fault assumption, as expected.

162 Probabilistic Decompositional Search »

7.8 Relation to Other Work

7.8.1 Probabilistic Candidate Generation

Previous work on candidate generation also considers the probability of a can-

didate. But these results for the probability of a candidate are different from

the formula derived here. Previous work suffers from various assumptions

about the nature of candidates. For example, some researchers evaluate can

didates not with conditional probabilities, but with prior probabilities. This

is the approach taken by Hamscher in his XDE system [24]. He computes

the prior probability of a candidate; moreover, he interprets a candidate as

a disorder instance rather than an event:

p(DY(Up-D)") = [rd II pz
deD deUp-D

This probabilistic assessment is poor because it does not account for the role

of symptomatic evidence in changing the probability of disorders.

Another analysis is made by deKleer and Williams in their GDE sys-

tem [14]. They use the following formula for a conditional probability of a

candidate:

0 if Dt predicts s # st

p(D* | s') = p(D*)/p(s') if D* predicts s = s

p(D1)/mp(s') if DF predicts nothing for s

where a symptom can take states sy,...,s,. Unfortunately, this equation

does not apply well to diagnostic knowledge bases. In a diagnostic knowledge

base, m = 2 and the states are st and s~. The noisy-or assumptions preclude

the first case in the above equation, since we cannot predict the absence of a

symptom s~. That is, only the presence of a symptom can be predicted by a

candidate; other disorders not in the candidate may still be present, so that

the absence of symptom cannot be predicted categorically. Furthermore, the

third case is inappropriate. It assumes that when no prediction can be made,

every possible value of a measurement is equally likely, or

p(s | DY) =p(s~ | Dt) =0.5

This seems to be a rather poor assumption. Most symptoms are unlikely,

so we should not predict that on average half of the symptoms are positive.

7 R Relation to Other Work 163

When D contains irrelevant knowledge, it should not affect our probability

for s. so a better assumption is

p(st|DY)=p(st)

[n other words, if symptom s is improbable to begin with, then it should

still be improbable even after we know the irrelevant information in D7.

Conversely, if symptom s is very likely to begin with, then it should be still

be likely after we know the irrelevant information in D*. Thus, the correct

equation for GDE, applied to our domain, should be

+1 + _ | p(DY)/p(st) if DF predicts s*
AP" | 57) = fo) otherwise

Unfortunately, even when corrected, this equation has limited usefulness.

[n GDE’s domain of circuit analysis, predictions are categorical. In our

domain, though, predictions are probabilistic. It is never clear when a can-

didate predicts the presence of a symptom, so the above equation cannot

be applied. On the other hand, the formulas developed in this chapter are

applicable when predictions are both categorical and probabilistic. The cate-

gorical case is achieved simply by having link probabilities cy, that are either

0 or 1. Moreover, the deKleer and Williams’s formula only handles a sin-

gle positive symptom. As we have seen, the probability of several positive

symptoms is difficult to compute and requires exponential time.

Peng and Reggia [55] have considered the case where disorders cause

symptoms with arbitrary causal strengths cy;. However, their result simpli-

fies the computation by introducing two assumptions. First, they construe

candidates to be disorder instances. Second, they condition on the event

that only the given positive symptoms are actually present. Their result is

reproduced here:

o(DY (Up — D)” | PY (Us — P)™) =
I(-Mw) I (Iw)

1] pa
deUn-D

The assumptions made by Peng and Reggia may not be valid in some do-

mains. For example, in medicine, people often have minor illnesses, such as

164 Probabilistic Decompositional Search 7.

the common cold. But the first assumption requires that the patient not

have any diseases, however minor, except those that are included in the can-

didate. The second assumption is even less reasonable. It requires that we

know the presence or absence of every symptom in the knowledge base. This

is an infrequent situation in most domains. For example, this assumption

forces us to decide, even before a chest X-ray has been performed, whether

the result is going to be positive or negative. In most domains that deal with

uncertainty, the status of most evidence is unknown.

In our equation for the probability of a candidate (7.26), on the other

hand, both of these assumptions are relaxed. To relax the first assumption,

we have defined a candidate to be present whenever all of its component

disorders are present, regardless of whether other disorders are present or

absent; the status of these other disorders is simply unknown. To relax the

second assumption, we allow two sets of symptoms, positive and negative,

to be specified. Symptoms in the knowledge base not in either category

are assumed to be unknown. This differs from Peng and Reggia’s approach

where only one set of symptoms, the positive ones, are specified, while all

other symptoms are assumed to be negative.

7.8.2 Belief Networks

In addition to candidate generation, another approach to multidisorder diag-

nosis is based on belief networks [51]. A belief network is a network of nodes,

where each node represents some proposition, such as a disorder, symptom,

or intermediate state. Each proposition has an attached probability, which

is updated locally and propagated to neighboring nodes as new evidence is

received.

Belief networks perform a computation that is different from candidate

generation. Whereas candidate generation deals with combinations of disor-

ders, belief networks deal mainly with individual disorders. In applications to

diagnosis, a belief network can assign a posterior probability to each disorder,

given a case with positive and negative symptoms. But these probabilities

are for individual disorders; they do not indicate what combinations of dis-

orders (called interpretations in their terminology) are likely. Unfortunately,

probabilities of individual disorders do not necessarily translate to plausible

candidates in a straightforward way. For instance, if we merely assign “pres-

ence” to each disorder with a probability greater than 0.5 and “absence”

-g Summary and Discussion 165

to each disorder with a probability less than 0.5, the resulting interpreta-

tion may be highly unlikely. Or if we take the two or three most probable

disorders, the result may also be highly unlikely.

Pearl has recognized this limitation of belief networks, and he has de-

veloped a method called belief revision to compute disorder combinations.

However, belief revision is limited to finding only the best and second-best

interpretations. In order to obtain a more complete list of disorder combi-

nations, a search process such as candidate generation or decompositional

search presently offers the only alternative.

7.9 Summary and Discussion

T'his chapter has derived equations for various probabilistic quantities. In

summary, the equations and the computational complexity for their relative

probabilities are:

Quantity Equations Complexity
Candidate Set 7.25, 7.22, 7.24 O(2PNUp)

Candidate 7.26 O(2° NUp)
Task 7.31 O(PNUp)
Single-Fault Assumption 7.32 O(PNUp)

One of the major problems with set covering approaches is that they

are essentially categorical. Perhaps, though, the results derived here may be

used to change the set covering approach to a probabilistic one. For instance,

evaluation of decomposition probabilities might be used to guide search. Un-

fortunately, the probability of a problem decomposition with more than one

cluster is difficult to quantify, since the assumption of task independence is

not valid.

However, the task independence assumption might closely approximate
the probability of a problem decomposition. For many purposes, such as

guiding search. approximate values would be sufficient. The result would be

p(\ (Diff(C) = CY P*N™) =~ [[p(Diff(C) 5 C | C*N™)
rel’ Cel

This would then provide a polynomial time method of assessing the probabil-

ity of a problem decomposition. This assumption may be reasonable to make

166 Probabilistic Decompositional Search 7.

since the coherency criterion helps partition symptoms into separate causal

groups. These operations help reduce the causal and probabilistic interac-

tions between tasks, thereby supporting a task independence assumption.

In particular, combining probabilities with decompositional search should

be computationally advantageous, because a problem decomposition entails

a set of candidates. Knowing the probability of a decomposition would then

allow one to explore large portions of the candidate space at a higher level

of abstraction. A probabilistic decompositional search algorithm might then

increase the efficiency gains achieved by the categorical algorithm.

Chapter 8

Conclusion

AT

168 Conclusion

FEverything’s got a moral, if you can only find it.y

Lewis Carroll, Alice’s Adventures in Wonderland (1865)

8.1 Summary

In this thesis, we have developed a new approach to diagnosis, based on

finding plausible decompositions of a problem into subproblems. We have

designed an algorithm called decompositional search; tested the efficiency of

decompositional search against the non-decompositional candidate genera-

tion approach; and analyzed the features of the domain that account for the

efficiency of decompositional search. In addition, we have developed a pre-

liminary theory for including probabilistic considerations in decompositional
search. Therefore, our major results can be summarized as follows:

Theoretical results

We developed a formal representation for problem decompositions as a set

of clusters with associated differential diagnoses. Problem decompositions

define a set of commonality and disjointness constraints that define the dif-

ferential diagnosis for each cluster. Differentials can be formulated by using

subsets of clusters as justifications for those clusters. We developed a plausi-

bility criterion called coherency based on the satisfiability of the constraints

placed by a decomposition.

This new representation for diagnosis is closely related to minimal candi-

dates. A problem decomposition entails a candidate set, represented implic-

itly by the Cartesian product of its differential diagnoses. This candidate set

contains all minimal candidates that could potentially be generated by the

decomposition, but may also contain some nonminimal candidates required

{or the Cartesian product representation.

Coherent problem decompositions can be generated by a search process.

This search process executes three steps: symptom assignment, ambiguation,

and disambiguation. Symptoms may be assigned using covering, restricting,

adjoining, and operators. The ambiguation and disambiguation steps re-

assign symptoms that are unnecessarily restricting. They allow the search

process to ignore overly general symptoms and therefore focus on the assign-

ments of symptoms that do place constraints.

‘| Summary 169

Finally we demonstrated that decompositional search is theoretically in-

complete with respect to generating the entire set of maximally ambiguous

and coherent problem decompositions. However, in practice, decomposi-

sional search is robust and complete with respect to generating all minimal

candidates for a given problem.

Experimental results

[n general, decompositional search was more efficient than candidate genera-

tion by a power of 4 to 5 for space complexity and 3 to 5 for time complexity.

T'hese results held regardless of whether experimental cases were produced

by one or two target disorders.

We demonstrated that both case presentation and case ordering signifi-

cantly influence the complexity of problem solving, even for the same target

disorder. A single symptom can greatly influence the complexity of a prob-

lem. Ordering symptoms according to their specificity appears to be a good

heuristic strategy for reducing computational complexity.

Decompositional search was shown to be complete in practice with re-

spect to generating minimal candidates. It was also fairly robust, giving the

same set of problem decompositions regardless of symptom ordering. The

algorithm was largely, but not completely, sound and irredundant with re-

spect to generating minimal candidates. A few cases resulted in a set of

problem decompositions that either entailed a relatively large proportion of

nonminimal candidates or a large proportion of duplicated candidates among

decompositions. We constructed simple models to explain these anomalous

behaviors.

Analytical results

We conducted a worst-case theoretical analysis that suggests that candidate

generation should have complexity O(c'°¢-¢) and that decompositional search

should have complexity O(c!°8r1°¢¢), where c is the number of possible causes

for each symptom and r is a factor related to the correlation between the

possible causes of each symptom. These formulas as symptom correlation

decreases and as the knowledge base scales up in size.

Turning from a theoretical to an empirical analysis, we developed a theory

for diagnostic complexity based on the combinatorics of partial explanations.

170 Conclusion 2.

We generalized this theory by defining the explanatory power for a given set

of disorders. Disorders with lower explanatory power combine to cause most

of the complexity of diagnosis. Moreover, the distribution of explanatory

power reflects underlying domain structure that can be exploited by decom-

positional search.

We tested this theory by manipulating the explanatory power of a subdo-

main, creating both a trimmed and a redistributed subdomain. The trimmed

subdomain had disorders of least explanatory power removed, while the redis-

tributed subdomain had the possible causes for each symptom randomized.

Experimental runs on these modified subdomains suggest that, indeed, much

of the efficiency of decompositional search derives from the exploitation of

domain structure.

Finally, we considered one case in detail, by decomposing the entire pre-

renal azotemia subdomain. The resulting decompositions had clusters that

often corresponded to meaningful groups in clinical medicine. This experi-

ment suggests that decompositional structure is pervasive, existing not only

at high levels of abstraction but also at the low level of single-disorder sub-

domains.

Probabilistic results

We modeled domain probabilistic knowledge by incorporating prior probabil-

ities and link probabilities into a knowledge base. The noisy-or assumptions

provide a semantics for such a probabilistic knowledge base. We defined the

notion of causal probability and contrasted it with conditional probability.

We also defined a probability of non-causation.

Using these probabilistic quantities, we derived a formula for the proba-

bility of a case that contains both positive and negative symptoms. We also

derived a formula for the conditional probability of a candidate set, given a

case. Based on this result, we derived a formula for the conditional proba.

bility of a candidate, given a case. This equation represents a probabilistic

interpretation of a candidate that improves upon previous work, which makes

several unwarranted assumptions. All of these quantities can be computed

in time that is exponential in the number of positive symptoms in a case.

We derived a formula for the conditional probability of a task, given a

case. This probability could be combined with a task independence assump-

tion to give a polynomial-time algorithm for computing the probability of a

R Features of Decompositional Search 171

decomposition. Based on this result, we also computed the conditional prob-

ability that the single-fault assumption is true, given a case. This probability

can also be computed in polynomial time.

8.2 Features of Decompositional Search

[n this section, we present the major concepts underlying the decompositional

search approach. These concepts complement the particular results listed

above, because they provide broader principles of computation applicable to

computer science in general.

8.2.1 Implicit and Explicit Representation

The first concept is that of implicit and explicit representation. A problem

decomposition represents a set of candidates implicitly as a Cartesian prod-

uct of its differential diagnoses. In contrast, candidate generation represents

candidates explicitly. The implicit representation is more compact, requir-

ing only space proportional to the sum of its differential sizes. However,

the equivalent representation in terms of explicit candidates requires space

proportional to the product of the differential sizes.

The implicit representation can be viewed as a generator, representing

a set of candidates without necessarily computing them, except as needed.

The idea of generators occurs frequently in computer science; for instance, in

formal language theory, a grammar is an implicit generator of explicit strings

in a language [30]. Generators can offer potentially large savings in efficiency

if they can be manipulated and transformed directly, without having to con-

vert them to the explicit form and back. In this thesis, we have shown that

problem decomposition representations can indeed be transformed directly,

without having to convert them to explicit sets of candidates.

rhe implicit and explicit representations are analogous to conjunctive and

disjunctive normal forms in logic, respectively. Conjunctive normal form is

a conjunction of disjunctive statements, while disjunctive normal form is a

disjunction of conjunctive statements. Candidates have a conjunctive mean-

ing, hypothesizing that every disorder in a particular set is present. On the

other hand, differential diagnoses have a disjunctive meaning, hypothesizing

that one or more disorders in a particular set is present. Furthermore, the

172 Conclusion §.2

collection of differential diagnoses in a problem decomposition have a con-

junctive meaning, hypothesizing the presence of at least one disorder in each

differential. In chapter 1, we showed how a set of differential diagnoses can

represent a set of candidates. If we use the conjunctive and disjunctive mean-

ings above, we obtain the analogous result for disjunctive and conjunctive

normal forms:

{di Vda} AN{d3VdsV ds} A{deV d7V dg]

[di A ds A de] [dy Ads A dq

[di A dg Adg] [dy Ady Ady
[dy A ds A dg] [dy AdsAdr
[da A ds A dg] [d2 A ds A dr

[da A dy A dg] [da A dy A dr

[dy A ds A dg) [dy A ds A dr

/ [dy A d3 Ady]
[d; NA dy NA dg]

‘dy AdsAds]
‘dy AdsAdg]
"dyNdy Ndg
"dyAdsAd,

This type of efficiency obtained by decompositional search is similar to

Minsky’s observation that dividing a problem into subproblems reduces the

total complexity from the product of the individual search spaces to their

sum [40]. In diagnosis, the idea of implicit representation was noted by Reg-

gia [58], who observed that candidates could potentially be factored into

“generators”. However, he did not present an algorithm to perform the fac-

torization. Implicit representations can also be applied to domains besides

diagnosis. For instance, Hubbe and Freuder [31] have applied some of the

ideas in this thesis to develop a cross product representation for constraint

satisfaction problems. Their results also show that cross product representa

tions substantially improve the performance of standard constraint satisfac

tion algorithms.

8.2.2 Convex Approximation

Although problem decompositions are closely related to candidate genera-

tion, their representation of minimal candidates is only approximate. In

this thesis, we have established that a given problem decomposition is com-

plete but not sound with respect to generating minimal candidates. In other

words, the candidate set for a problem decomposition contains all minimal

candidates that satisfy the commonality and disjointness assumptions for

the decomposition, but it also contains some nonminimal candidates as well.

2 9 Features of Decompositional Search 173

One reason for unsoundness is that nonminimal candidates are sometimes

needed to achieve a compact Cartesian product representation. Decomposi-

tional search is therefore an approximate algorithm, and this also accounts

for some of its efficiency.

To better understand the nature of this approximation, let us consider an

analogy. Suppose we wish to represent compactly all valid combinations for

a two-cylinder combination lock, where each number to be dialed ranges be-

tween 0 and 9. A first approximation to achieving an implicit representation

is therefore

{0.1,2,3,4,5,6,7,8,9} x {0,1,2,3,4,5,6,7,8,9}

However, because of mechanical constraints, no combination may be contain

digits. Therefore, the implicit representation above is not sound with respect

to generating legal combinations. It generates some illegal combinations, such

as [0,0] and [9,9]. However, if we were to remove these illegal combinations,

a compact implicit representation would no longer be possible. The best

possible representation would be

-l

(0} x {1,2,3,4,5,6,7,8,9)

{1} x {0,2,3.4.5.6,7,8,9)

J {9} x {0,1,2.,3,4,5,6,7,8)

Thus, there is a tradeoff not only between the soundness and completeness

of a decomposition but also between soundness and compactness. Problem

decompositions can represent sets of minimal candidates compactly, but only

at the cost of generating some nonminimal candidates as well. As we have

seen experimentally, this cost is actually small in practice. The soundness of

decompositional search is generally very close to perfect, meaning that almost

all candidates entailed by a problem decomposition are minimal. In any case,

there is little harm in generating a nonminimal candidate. In diagnostic rea-

soning, inferences are only intended to be plausible and not logically sound.

[n decompositional search, we opt for generating “nonplausible” candidates

when necessary in order to achieve a compact representation.

174 Conclusion 4 /

8.2.3 Causal Structure

A problem decomposition not only produces differential diagnoses, but also

links each of them with a symptom cluster. This mapping between differen-

tial diagnoses and symptom clusters constitutes a causal structure. Causal

structures do not appear in the candidate generation approach. In that al-

gorithm, candidates are generated without specifying which disorders cause

which symptoms.

Causal structures are useful computationally because they group disor-

ders according to their causal equivalence, that is, their ability to explain

the given symptoms. An important feature of causal equivalence is that it

is problem-specific. Two disorders may have largely different sets of possible

effects, but in a particular problem, they may not be distinguishable. In the

extreme case, when only one symptom is known, all of its possible causes are

causally equivalent.
Causally equivalent disorders behave similarly in the candidate generation

search tree, so many expansion and pruning steps in candidate generation are

redundant. Indeed, this redundancy provides evidence of underlying domain

structure. By representing a group of causally equivalent candidates, a prob-

lem decomposition enables search decisions to be made about an entire set

of candidates. Thus, decompositional search avoids much of the redundant

reasoning in candidate generation.

Aside from making decompositional search efficient, the causal structures

inherent in problem decompositions may be useful end products in them-

selves. A user may not necessarily want to know the answer to a diagnostic

problem, but might want to fit it into an understandable paradigm. In fact,

the important question in diagnosis is often not to determine what disorder

is present, but to determine what to do next. In many diagnostic problems,

it may be premature to expect a definitive answer to the problem. Rather,

the most useful analysis would be to help determine the next set of tests to

perform.
The causal structures embodied in decompositional search may help pro-

vide this sort of analysis. Because it formulates a set of distinct subproblems,

a decompositional search system can help a user focus on each subproblem

individually. The symptom clusters can help the user focus on the subprob-

lems that are most critical or of particular interest. Moreover, the differential

diagnoses contain those disorders that compete directly against one another.

 J Features of Decompositional Search 175

The appropriate tests, then, would be those that discriminate among the

disorders in a differential diagnosis.

8.2.4 Symptom-Based Diagnosis

Decompositional search differs from most diagnostic approaches not only in

providing causal structure, but also in that it manipulates symptoms rather

than disorders. In candidate generation, nodes in the search space are com-

binations of disorders, and these nodes are expanded by adding disorders.

On the other hand, in decompositional search, nodes in the search space are

decompositions of symptoms, and these nodes are expanded by adding and

rearranging symptoms.
Symptom-based diagnosis offers several advantages over disorder-based

diagnosis. Diagnostic problems often have fewer symptoms than possible

causes. This asymmetry appears to be a fundamental consequence of the

nature of the diagnostic task. Since each symptom in a domain is linked to

a set of possible causes and since each symptom could be caused separately,

the total number of disorders under consideration generally exceeds the total

number of symptoms under consideration. Consequently, the space of symp-

tom combinations is potentially much smaller than the space of disorder

combinations.

Nevertheless, in certain situations, the number of symptoms may exceed

the number of disorders under consideration. For instance, a diagnostic case

may contain numerous symptoms all linked to the same small set of dis-

orders. But in this situation, the symptoms would all be ambiguous with

respect to each other, and decompositional search would collapse the space

of possible symptom combinations into only a few problem decompositions.

['he process of ambiguation exploits the fact that it is not the total number

of symptoms that determines the size of a symptom-based search space, but

cather the number of critical or “key” symptoms. In our theory of decom-

positional search, critical symptoms are identified by the notions of covering

and restricting. Restricting symptoms define the common causes of a cluster

and thereby constitute the critical symptoms that determine the plausible

solutions to a diagnostic problem. Covering symptoms, on the other hand,

are not critical since they often can be assigned to more than one cluster

without changing the common cause sets of the decomposition.

176 Conclusion

8.2.5 Static and Dynamic Problem Decomposition

The final feature of decompositional search we will discuss is the difference

between static and dynamic problem decomposition. Decompositional search

is certainly not the first system to use abstraction to increase efficiency [60].

However, it differs from other diagnostic programs in the way it derives ab-

stractions. In most knowledge-based algorithms, abstractions are derived by

acquiring them from experts in the domain. These abstractions are then en-

coded explicitly into the knowledge base [6]. We call this type of abstraction

static, because the abstractions are fixed in the knowledge base and used

repeatedly for each new problem.

On the other hand, decompositional search does not depend on pre-

defined abstractions in the knowledge base. Rather than relying on static

abstractions, decompositional search uses dynamic abstraction, by formulat-

ing an abstractions as needed for a particular case. Symptom clusters and

differential diagnoses are created dynamically. In this type of abstraction,

the formulation of abstractions is guided by a notion of plausibility, such as

coherency. Dynamic abstraction is made possible by the domain structure,

so that appropriate abstractions emerge from the collective set of links in the

knowledge base.

By using dynamic abstraction, decompositional search can solve problems

at an appropriate level of abstraction and can vary the level according to the

particular evidence available. When the symptoms are general, the differen-

tial diagnoses for each cluster are relatively large. But as symptoms become

more specific, the differential diagnoses become smaller. Thus, a problem

decomposition is exactly as abstract as the symptoms warrant. Variable lev-

els of abstraction not only help improve the efficiency of problem solving,

but they might also help a user understand a problem at an appropriate

level of detail. This contrasts with the candidate generation approach, which

can only present solutions at the most primitive level of abstraction, the

candidate itself.

The technique of dynamic abstraction may also help in areas other than

diagnosis, such as knowledge acquisition and machine learning. In order to

build a static abstraction, one must expend much effort to acquire knowl-

edge from a domain expert. Moreover, such knowledge acquisition is likely to

succeed primarily in domains where diagnostic expertise is highly developed

and domain knowledge is structured clearly. But many fields do not have

{3 Relation to Other Work 177

abstractions that are so well established. Even in a field like medicine, where

syndromes are touted as useful problem solving tools [10, 15, 18, 43, 78], ex-

act definitions of syndromes are difficult to pin down. Textbooks of medicine

describe individual disorders in great detail but describe syndromes in only

general terms, if at all. Moreover, the appropriate syndrome and level of

detail vary according to the exact problem at hand. so that a static abstrac-

tion needs to contain not only the abstractions but also the conditions under

which they are likely to be applicable or useful.

Finally, dynamic abstraction and static abstraction are not necessarily in-

compatible. A knowledge base might contain information about syndromes

that could be used as heuristic guides to direct the decompositional search

process. These heuristics could help a diagnostic system focus on problem de-

compositions that are most likely to produce coherent descendants. But with

an underlying dynamic abstraction process, such a system would also have

the ability to create appropriate decompositions when necessary, tailored to

the particular case at hand.

8.3 Relation to Other Work

We now place the decompositional search approach in context, comparing it

with other related work. Comparisons with probabilistic methods, such as

belief networks. were presented previously in chapter 7.

8.3.1 Diagnosis from First Principles

Decompositional search is closely related to work on diagnosis using first

principles [11]. This field was motivated by the fact that most diagnos-

tic programs, such as flowcharts and rule-based expert systems, had relied

on heuristics and problem solving strategies derived from domain experts.

Diagnosis from first principles attempts to solve problems directly from a

description of the domain, rather than relying on expert-supplied heuristics

or strategies. Another motivating factor is that flowcharts and rule-based

expert systems handle multiple disorders poorly. This deficiency is in part

due to the lack of heuristics for computing multiple disorders. Even if such

heuristics were available, they would probably be inadequate for the large

search spaces arising from multidisorder diagnosis. There have been two

178 Conclusion £..

main approaches to diagnosing from first principles: model-based diagno-

sis [12] and set-covering diagnosis [58]. These two fields differ primarily in

the way they model a domain.

Model-based diagnosis relies on two techniques: candidate generation

and conflict recognition [14]. Conflict recognition is the process of generat-

ing “conflict sets” from a structural or functional model of the system being

diagnosed. A conflict set is similar to the set of possible causes for a symp-

tom, except that a conflict set may explain an observation in the context

of a previous observation. An example of conflict recognition is provided in

figure 8-1. In this example, the circuit should have outputs of F'=12 and

G=12, but has F'=10 and G=12 instead. Since output F is incorrect, one of

the components that compute F' must be broken, namely, components A,

Mi, or M,. These three components constitute the first conflict set. The

second conflict set arises because if F' is incorrect, GG should be also be incor-

rect, assuming that components A;, A;, M;, and Mj; are working. However,

the output at GG is correct, so one of these components is broken, thereby

yielding a second conflict set. Note that the second conflict set explains the

observation that GG is correct in the context of the observation that F' is

incorrect.

Conflict recognition supplies input for candidate generation. The two

conflict sets (Ay, M1, M2) and (A,Ay,My,M3)resultintheminimalcandi-

dates [Ay], [M1], [M3, A2], and [M;, M3]. Existing programs for model-based

diagnosis process conflict sets using the candidate generation algorithm. Un-

fortunately, the computational complexity of candidate generation severely

limits the applicability of model-based diagnosis. Decompositional search can

help expand the usefulness of model-based diagnosis by providing a more ef-

ficient alternative to candidate generation. Decompositional search has no

bearing on conflict recognition, but computing conflict sets is computation-

ally much easier than generating candidates.

Whereas model-based diagnosis uses a structural or functional model of

the domain, set-covering diagnosis uses a diagnostic knowledge base to rep-

resent the domain. As discussed previously, a diagnostic knowledge base

consists of symptoms, disorders, and the causal relationships between them.

This type of knowledge base is especially appropriate for domains where

structural or functional models are unavailable or difficult to construct. For

instance, we do not yet have the ability to construct a model of the human

body with enough detail and accuracy for model-based diagnosis. However,

3

A=3 Multiplier

M1
B=2

r~ [8

Ly Multiplier |
— M2

C=2

|
D=3-,-

LL Multiplier

F=3 — M1

A=, “Rusdplic

_ I bd Ee
B=2 —-

C=2 —

r-

N=3 —

mT

Multiplier
Ma,

im

a TT Midliplie :

Raa a haha 0 ae wags RSSlbe

C=2

) Multiplier

M,

F=3 ——

Relation to Other Work 179

X

CLE Adder
—.

lv —
Adder

I

— F=10

— G=12

(a) Model

1%=° de
nr

F=10

(not 12)

V=Fh
 p—

Adder
A

(b) Symptom 1

[*=° Vader F=i10

yd

fa

eee

ETE
oe Ey

 >» G=12

(not 10)

- 7-6

(c) Symptom 2

Figure 8-1 Conflict recognition. (a) Model of a circuit. (b) Conflict recognition

for the symptom 1, resulting in the conflict set (A4;, M;, M,). (c) Conflict recogni-

tion for the symptom 2 in the context of symptom 1, resulting in the conflict set

(Ay, Ay, My, Ms).

[80 Conclusion
—~

’

~~ I_

we do have much knowledge about associations between diseases and symp-

toms. On the other hand, we can easily construct diagrams for circuits, so

much work in model-based diagnosis has been applied to circuit troubleshoot-

ing. Nevertheless, existing set-covering methods also rely predominantly on

the candidate generation algorithm and hence would benefit from the decom-

positional search algorithm.

8.3.2 Medical Diagnostic Systems

Medicine is a particularly appropriate domain for multidisorder diagnosis be-

cause the domain is large, probabilities play an important role, and multiple

coexisting diseases are common [7, 47, 63, 73, 74]. Here we focus on the

evolution of systems that attempt to solve the problem of multidisorder di-

agnosis. This excludes many early systems, such as MYCIN [65] and PIP [49],

that solve problems where only one disorder is assumed to be present.

The problem of multiple disorders was recognized by Gorry in 1968 [21].

Interestingly, Gorry’s program used a “pattern-sorting function” that essen-

tially clusters symptoms (or “attributes”, as he terms them):

The program processes the attributes through the pattern-sorting

function. This function makes decisions about the relevance of

attributes to the current diagnostic problem. If, for example, the

initial problem definition had included the attribute “sore ankle,”

the pattern-sorting function might have decided that “sore ankle”

and “persistent coughing” were manifestations of different medi-

cal problems and should be considered separately. The output of

the pattern-sorting function is a set of attributes that it believes

should be considered as a group by the program.

This pattern-sorting function essentially found symptom clusters using the

commonality constraint. That is, a symptom cluster is valid only if there

exists a disorder that can explain all symptoms in that cluster. The program

maintained a list of valid symptom clusters and decided on the basis of prob-

ability and utility which cluster to pursue. The program then selected a test

to discriminate among the disorders that could explain the cluster. Thus,

Gorry’s program can be thought of as solving the multidisorder problem se-

quentially, by solving one cluster at a time, with the capability of switching

between clusters.

 1 Relation to Other Work 181

Another system that used a sequential approach was the INTERNIST pro-

gram [39]. This program, now available as QMR [38], meaning Quick Medi-

cal Reference, contains diagnostic knowledge in the form of disease profiles,

which is essentially equivalent to the bipartite knowledge base we have been

asing in this thesis. Each disease-symptom pair has a link probability indi-

cating how likely the disease is to cause the symptom, given that the disease

is present. This probability appears as a frequency value between 1 and 5.

Each disease-symptom pair also has an evoking strength attached, indicating

the importance of considering a disease given a symptom. INTERNIST uses

these frequency values and evoking strengths to identify the highest scoring

disease. It then builds a differential diagnosis around this disease, by finding

those diseases that are competing explanations for the same symptoms. It

scores the diseases in the differential diagnosis and asks the user a question to

discriminate among them. Once the top-ranked disease scores high enough

relative to the rest of the differential, INTERNIST concludes that differential

and forms another one, based on the unexplained symptoms. Thus, IN-

TERNIST uses a score-based “partitioning heuristic” to decompose a problem

sequentially.
The sequential strategy in INTERNIST addresses the problem of multiple

disorders but often gives poor results. One problem with sequential differ-

ential formulation is that it is not robust. Each differential must be finished

before the next differential is considered. If INTERNIST formulates the first

differential incorrectly, it will misinterpret the rest of the problem. Another

issue in sequential differential formulation is how to assign symptoms to each

disorder. After concluding a disease, INTERNIST finds all symptoms that it

explains and removes them from further consideration. But this may remove

too many symptoms, since symptoms potentially caused by one differential

may actually be caused by another one. Thus, INTERNIST suffers because di-

agnostic problems are only nearly decomposable and not completely so. The

sequential technique works well on problems that are completely decompos-

able. But near decomposability complicates matters because of interactions

between subproblems and the consequent need to explore alternative decom-

positions.
To remedy these deficiencies in INTERNIST, the CADUCEUS program was

developed by Pople [57]. He emphasized the importance of “task formula-

tion” in multidisorder diagnosis, and thereby reiterated the need to identify

the correct decomposition for a given problem. CADUCEUS finds tasks by

182 Conclusion 8.4

using a combined hierarchical-causal network. The hierarchies contain pre-

formulated differential diagnoses that are triggered by causal links. Causal

links are orthogonal to hierarchical links and connect physiologically related

disease categories in different hierarchies. CADUCEUS diagnoses a problem

by first triggering multiple differential diagnoses in the hierarchies and then

following various subsumption and causal relationships to derive a globally

consistent diagnostic picture.

CADUCEUS addresses the problems of sequential differential formulation

and lack of causal integration found in INTERNIST. However, it suffers from

other problems. First, it relies on hierarchically structured differential diag-

noses. Unfortunately, differentials cannot be organized so cleanly. To rem-

edy this, differential diagnoses are triggered using a existential relationship,

meaning that some diseases under a node may not explain a given symptom.

But this substantially weakens the inference possible from that node. Sec-

ond, CADUCEUS requires a substantial amount of physiological information

to create a hierarchical-causal network. Many areas of medicine lack such a

detailed causal understanding of disease processes.

A more rigorous approach to multiple disease interactions appears in the

ABEL program by Patil [45, 48]. It structures physiological knowledge about

acids, bases, and electrolytes into several levels of abstraction. It can there-

fore reason about additive and antagonistic interactions between diseases.

But at the same time, it requires domains where such detailed information is

available and where close interactions between disorders occur. This makes

the approach well suited to narrow domains with well understood physiology,

like acid-base and electrolyte therapy, but ill suited to broad domains such

as internal medicine, at least until a detailed pathophysiological model of the

human bodv becomes available.

8.3.3 Conceptual Clustering

Decompositional search shares a number of similarities with a technique in

machine learning called conceptual clustering [17, 37]. In conceptual cluster-

ing, one is given a set of objects, and the task is to assign them to clusters

such that the set of clusters scores well on a clustering quality function.

The clustering quality function is essentially a plausibility criterion, and can

include such measures as the simplicity, commonality, disjointness, and dis-

crimination of a cluster.

J 3 Relation to Other Work 183

Although the task of conceptual clustering appears superficially identical

to that of decompositional search, it is fundamentally different in detail. In

conceptual clustering, the objects are described by pairs of variables and

their associated values. Clusters of objects are therefore described by pairs

of variables and the range of values they can take. For example, consider the

two objects:

Object 1: (Color = blue) A (Size = large) A (Shape = round)

Object 2: (Color = red) A (Size = medium) A (Shape = round)

A cluster containing these two objects might have the following description:

‘Color = blue V red] A [Size > medium] A [Shape = round]

Thus, the goal of conceptual clustering is not only to make plausible clusters

but also to describe them in a way that makes sense. The task of finding

sensible descriptions for a set of objects is a type of inductive inference called

concept learning, a central topic in machine learning [41, 79]

In contrast, whereas objects in conceptual clustering are not causally

related, decompositional search is closely tied to causal relationships. De-

compositional search relies upon causal relationships between symptoms and

disorders to derive its commonality and disjointness criteria. The plausibil-

ity of a decomposition is determined by trying to satisfy these criteria by

formulating differential diagnoses. Thus, a cluster is essentially “described”

by its differential, and differential formulation can be seen as an analogue of

concept learning for diagnosis.

Decompositional search also differs from conceptual clustering in that it

can assign symptoms to more than one cluster. In most work on conceptual

clustering, objects can belong to only one cluster. Decompositional search

assigns symptoms to multiple clusters when they cover more than one cluster.

Therefore, decompositional search distinguishes between “critical” symptom

assignments that define a cluster and “noncritical” symptom assignments

that place no constraints. This distinction is missing in conceptual clustering,

where all obiects in a cluster are treated equally.

8.3.4 Problem Reduction Techniques

Decompositional search shares some similarity with problem reduction meth-

ods in artificial intelligence. Problem reduction takes a problem and decom-

184 Conclusion 4

[ravel from Cambridge to Palo Alto
—

Go to Boston airport Fly to San Jose Go to Palo Alto

NF AN

 ry

Drive

7 A

V Take taxi Take Take Rent car Call friend

Ride subway AM flight ~~ PM flight for ride

Figure 8-2 Example of problem reduction. This AND /OR tree shows the possible

reductions for the task of moving from Cambridge to Palo Alto.

poses it into smaller subproblems. Problem reduction originated with Gel-

ernter’s geometry theorem-proving machine in 1959 [20], which was the first

program that could handle conjunctive subgoals [44, p. 138]. The technique

was also used in Slagle’s symbolic integration program SAINT [69].

Problem reduction can best be described using AND/OR trees [69]. The

nodes in an AND/OR tree alternate at each level between decomposing a

problem into subproblems (AND nodes) and providing alternative solutions

to those subproblems (OR nodes). An example of an AND /OR tree is provided

in figure 8-2. In this travel problem, the goal is to travel from Cambridge,

Massachusetts to Palo Alto, California. This goal can be decomposed into

three subgoals: getting from Cambridge to the airport in Boston, taking a

fight to the airport in San Jose, and getting to Palo Alto. This decomposition

constitutes an AND node because all three subgoals must be solved. Each

subgoal may then be solved in several ways. For example, getting to the

Boston airport can be accomplished by driving, riding the subway, or taking

a taxi. Solving a subgoal constitutes an OR node because only one solution

is necessary. This alternating process of decomposing and solving subgoals

can continue recursively.

Since Gelernter’s and Slagle’s work, problem reduction techniques have

been used in various applications, including theorem proving, automated

planning, and expert systems. Nevertheless, although problem reduction is

a technique for decomposing problems, it still does not explore the space

J Further Work 185

of alternative decompositions. Problem reduction offers only one way to

decompose a problem. There is only one AND node available to decompose a

given subgoal. The OR nodes offer a choice, but they present only alternative

solutions for a subgoal, not alternative decompositions.

On the other hand, decompositional search explores alternative decom-

positions of a problem. Decompositions must be synthesized by clustering

symptoms and cannot be chosen from a predefined selection of possibilities.

Furthermore, problem decompositions are not complete problem reductions,

since a problem reduction may have an arbitrary number of subgoal levels.

A problem decomposition, however, is only a single-level problem reduction.

It is like an AND /OR tree with only one AND node and one level of OR nodes.

This limitation arises because of the nature of diagnosis, where each symp-

tom is fully explained by a single disorder. In problem reduction, though,

subgoals can be solved by a conjunction of subgoals, hence its recursive form.

8.4 Further Work

Decompositional search constitutes a new approach to diagnostic problem

solving. Because the work here has been largely exploratory, further work

would help develop the ideas and techniques in this thesis.

One area of further research is to adapt heuristic knowledge to the decom-

positional search algorithm. A major theme of work in artificial intelligence

s the power of domain knowledge [36, 50]. Decompositional search exploits

domain structure that is inherent in the domain. However, it makes no use of

domain knowledge about structure per se. This type of heuristic knowledge

might be called structural heuristics, and could guide plausible structuring

of evidence or hypotheses. Structural heuristics, such as expert knowledge

about common syndromes, could be encoded statically in a knowledge base

and could then guide a decompositional search algorithm in assigning symp-

toms to clusters.

In addition to domain-specific knowledge about structure, there is often

case-specific information that can help to cluster symptoms. For instance,

some symptoms may occur at the same time, suggesting a common cause.

Thus, temporal clustering information might be used to group symptoms

together. Similarly, spatial relationships might be useful. For instance, two

symptoms that are anatomically close may suggest a common cause. This

186 Conclusion 8 4

type of case-specific information represents structure often available in a

diagnostic problem, but not represented in a set or sequence of symptoms.

Another area of research is to explore different search strategies. We have

used breadth-first search to compare and analyze the space and time complex-

ity of two algorithms. However, given an appropriate measure of plausibility,

decompositions might differ greatly in their level of plausibility. Thus, for

actual diagnostic applications, other search strategies would be more appro-

priate than breadth-first search. For example, best-first search, especially in

conjunction with a probabilistic evaluation function, could provide a more

efficient algorithm.

Many compromises between best-first and breadth-first search are also

possible. A beam-first search would keep a fixed number of the best interme-

diate solutions. The efficiency of the search process could then be controlled

by the width of the beam. Of course, plausibility is not the only criterion for

good diagnosis. For instance, it is important in medicine to rule out diseases

that are rare but have a high degree of morbidity or mortality. Therefore,

notions of decision making, such as utility, might also be used to guide search.

The underlying diagnostic knowledge base provides another opportunity

for further work. The decompositional search algorithm in this thesis ap-

plies to bipartite diagnostic knowledge bases that contain only symptoms

and disorders. However, domain knowledge can often be represented as a

network [46, 57, 77]. For instance, a medical knowledge base might contain

intermediate concepts between symptoms and disorders to represent patho-

physiological states. Further research might extend problem decompositions

to represent possible decompositions of a network.

Another topic for further research deals with test ordering or evidence

gathering. Diagnosis is often conducted in a hypothetico-deductive paradigm,

in a cycle of evidence gathering and hypothesis formation [16]. In this

paradigm, an initial set of evidence would yield a set of problem decom-

positions. These decompositions might then suggest additional tests to or-

der. The decompositional search approach might lead to novel test ordering

strategies, since a problem decomposition divides problems into subprob-

lems. These subproblems provide an extra level of detail with which to focus

evidence gathering.

Finally, the techniques presented here might be extended to other prob-

lem tasks. Many tasks in planning [33, 76] and problem solving [71, 72] seek

solutions with multiple components. As we have mentioned, researchers in

Further Work 187

machine learning have investigated clustering representations, and the ideas

in this thesis have found application in solving constraint-satisfaction prob-

lems [31]. The ubiquity of decompositional techniques suggests both that

structuring problems is an important task and that decomposition provides

a powerful tool for organizing and abstracting data. This thesis suggests

how structure in diagnostic problems may be discovered and exploited by

decompositional search and how problem decompositions can facilitate the

solution and understanding of ill-structured diagnostic problems.

188

Appendix A

Implementation of

Decompositional Search

Algorithm

RU

190 Implementation of Decompositional Search Algorithm A.

The following is the SYNOPSIS implementation of the decompositional search

algorithm written in ANSI Common Lisp [70]. The implementation includes

procedural details that help make the algorithm run efficiently. We present

the program in “bottom-up” order, starting with the primitive implementa-

tion and working up to the higher-order functions.

A.1 Sets

SYNOPSIS makes extensive use of sets and set operations. We implement sets

as integers that represent bit vectors. These functions are written as macros

to avoid the overhead of an extra function call. The following functions

implement the standard operations for sets:

(defmacro make-empty-set () ‘0)

(defmacro make-singleton-set (index) ‘(ash 1 ,index))

(defmacro make-full-set (size) ‘(1- (ash 1 ,size)))

(defmacro empty-set? (set) ‘(zerop ,set))

(defmacro set-equal? (setl set2) ‘(= ,setl ,set2))

(defmacro superset? (setl set2) ‘(empty-set? (logandcl ,setl ,set2)))

(defmacro subset? (setl set2) ‘(empty-set? (logandc2 ,setl ,set2)))

(defmacro set-member? (index set) ‘(logbitp ,index ,set))

(defmacro set-insert (singleton set) ‘(logior ,singleton ,set))

(defmacro set-remove (singleton set) ‘(logandc2 ,set ,singleton))

(defmacro cardinality (set) ‘(logcount ,set))

(defmacro intersect (setl set2) ‘(logand ,setl ,set2))

(defmacro intersect-sets (sets) ‘(apply #’logand ,sets))

(defmacro set-union (seti set2) ‘(logior ,setl ,set2))

A. / Sets 191

(defmacro set-union-sets (sets) ‘(apply #’logior ,sets))

(defmacro difference (setl set2) ‘(logandc2 ,setl ,set2))

The following operations are used to sort sets in lexicographic order. These

functions are useful in sorting decompositions.

(defmacro set>? (setl set2) ‘(> ,setl ,set2))

(defmacro set>=? (setl set2) ‘(> ,setl ,set2))

(defmacro set<? (setl set?) ‘(< ,setl ,set2))

{defmacro set<=7? (setl set2) ‘(<= ,setl ,set2))

Sometimes, we need to convert a set from a bit vector representation to a

list representation. The following function helps to perform the conversion.

(defmethod indices-of (set)

(loop for bit-vector = set

then (difference bit-vector (make-singleton-set index))

antil (zerop bit-vector)

for index = (1- (integer-length bit-vector))

collect index))

In decompositional search, a frequent operation is to find duplicates

among a collection of sets. The following procedure performs this function

asine operations on bit vectors:

(defmethod duplicates (sets)

(loop with gtr-than-one = (make-empty-set)

with gtr-than-zero = (make-empty-set)

for set in sets

do (setf gtr-than-one

(logior gtr-than-one (logand gtr-than-zero set)))

(setf gtr-than-zero (logior gtr-than-zero set))

finally (return gtr-than-one)))

192 Implementation of Decompositional Search Algorithm A

A.2 Primitive Classes

We now define the classes and operations dealing with the primitive elements

of a diagnostic knowledge base, namely, its symptoms and disorders. Primi-

tive classes have a name and two indices, a universal index and a case index.

The universal index is a permanent, unique number assigned to each symp-

tom and to each disorder, so that no two symptoms have the same index and

no two disorders have the same index. The case index is a temporary num-

ber assigned to a symptom or disorder as it becomes relevant to a particular

case. The case indices are therefore smaller than the universal indices, mean-

ing that set representations using case indices are also much smaller. When

a symptom or disorder acquires a case index, the singleton set containing

only that element is also stored to increase efficiency.

(defconstant start-index 0)

(defconstant not-indexed (1- start-index))

(defclass primitive ()

((name :reader name :initarg :name)

(univ-index :reader univ-index :initarg :univ-index)

(case-index :accessor case-index :initform not-indexed)

(singleton :accessor singleton :initform (make-empty-set))))

(defmethod indexed? ((p primitive))

(/= (case-index p) not-indexed))

Given the definition of a primitive class, we can now apply the set defi-

nitions to them. Since primitives have singletons attached to them, we can

simply use the stored value, instead of having to compute it each time.

(defmethod insert-elt ((p primitive) set)

(set-insert (singleton p) set))

(defmethod remove-elt ((p primitive) set)

(set-remove (singleton p) set))

(defmethod make-set (primitives)

(set-union-sets (map ’list #’singleton primitives)))

4. Primitive Classes 193

Each symptom has a set of possible causes, and each disorder has a set

of possible effects. Disorders also have a prior probability attached to them.

When a symptom or disorder is created, only the universal index can be

assigned. since the case index holds only for a particular diagnostic case.

(defclass symptom (primitive)

((univ-causes :reader univ-causes :initform (make-empty-set)

:initarg :univ-causes)

(causes :accessor causes :initform (make-empty-set))))

{defmethod make-symptom (name univ-index)

(make-instance ’symptom :name name :univ-index univ-index))

(defclass disorder (primitive)

((univ-effects :reader univ-effects :initform (make-empty-set)

:initarg :univ-effects)

{effects :accessor effects :initform (make-empty-set))

(prior-prob :reader prior-prob :initarg :prior-prob)))

(defmethod make-disorder (name univ-index prior-prob)

(make-instance ’disorder :name name :univ-index univ-index

:prior-prob prior-prob))

To generate the indices needed for symptoms and disorders, we define the

following abstraction for index generators:

(defmacro make-index-generator () ‘(1- start-index))

(defmacro reset-index-generator (generator)
‘(setf ,generator (1- start-index)))

(defmacro generate-index (generator) ‘(incf ,generator))

This abstraction is instantiated in the following procedures to generate case

ndices as needed.

(defvar *symptom-case-index* (make-index-generator))

{(defvar *disorder-case-index* (make-index-generator))

(defmethod gen-symptom-case-index () (incf *symptom-case-index*))

(defmethod gen-disorder-case-index () (incf *disorder-case-indexx*))

194 Implementation of Decompositional Search Algorithm
A

(defmethod reset-symptom-case-index ()

(setf *symptom-case-index* (1- start-index)))

(defmethod reset-disorder-case-index ()

(setf *disorder-case-index* (1- start-index)))

Since sets are represented as bit vectors, which are essentially arrays of

indices, we need to be able to lookup an element by its index. We implement

this functionality by hash tables, using the following abstraction:

(defmacro make-table (test) ‘(make-hash-table :test ,test))

(defmacro reset-table (table) ‘(clrhash ,table))

(defmacro lookup-table (key table) ‘(gethash ,key ,table))

(defmacro enter-table (key val table)

‘(setf (gethash ,key ,table) ,val))

With these operations, we can define lookup tables for the universal and

case indices of both symptoms and disorders:

(defvar *symptom-univ-indextable* (make-table #’eql))

(defvar *disorder-univ-indextable* (make-table #’eql))

(defvar *symptom-case-indextable* (make-table #’eql))

(defvar *disorder-case-indextable* (make-table #’eql))

(defmethod lookup-symptom-univ-index (index)

(lookup-table index *symptom-univ-indextablex))

(defmethod lookup-disorder-univ-index (index)

(lookup-table index *disorder-univ-indextable*))

(defmethod lookup-symptom-case-index (index)

(lookup-table index *symptom-case-indextablex))

(defmethod lookup-disorder-case-index (index)

(lookup-table index *disorder-case-indextablex*))

As we mentioned above, we often need to deal with lists of primitives,

rather than bit vectors. The following functions convert a set from its usual

bit vector representation to a list of primitives:

a WV, Primitive Classes 195

(defmethod univ-symptoms-of (set)

(map ’list #’lookup-symptom-univ-index (indices-of set)))

(defmethod symptoms-of (set)

(map ’list #’lookup-symptom-case-index (indices-of set)))

(defmethod univ-disorders-of (set)

(map ’list #’lookup-disorder-univ-index (indices-of set)))

(defmethod disorders-of (set)

(map ’list #’lookup-disorder-case-index (indices-of set)))

When a symptom is entered in a particular case, it needs to be assigned

a case index. The possible causes of the symptom are now relevant to the

diagnostic case, and so they also require case indices. The following function

logs in the required case indices.

(defmethod enter-symptom-in-case ((s symptom))

(when (not (indexed? s))

(setf (case-index s) (gen-symptom-case-index))

(enter-case-index s)

(add-to-symptom-list s)

(setf (singleton s) (make-singleton-set (case-index s)))

(let ((disorders (univ-disorders-of (univ-causes s))))

(loop for d in disorders

when (not (indexed? d))

do (setf (case-index d) (gen-disorder-case-index))

(enter-case-index d)

{setf (singleton d) (make-singleton-set (case-index d))))

(setf (causes s) (make-set disorders)))))

(defmethod enter-univ-index ((s symptom))

(enter-table (univ-index s) s *symptom-univ-indextablex*))

(defmethod enter-univ-index ((d disorder))

(enter-table (univ-index d) d *disorder-univ-indextablex))

(defmethod enter-case-index ((s symptom))

(enter-table (case-index s) s *symptom-case-indextablex))

196 Implementation of Decompositional Search Algorithm

(defmethod enter-case-index ((d disorder))

(enter-table (case-index d) d *disorder-case-indextablex))

(defmethod reset-case-indextable (case-indextable)

(maphash #’ (lambda (case-index p)

(declare (ignore case-index))

(setf (case-index p) not-indexed))

case-indextable))

(defmethod reset-case ()

(reset-case-indextable *symptom-case-indextablex)

(reset-case-indextable *disorder-case-indextablex)

(reset-symptom-case-index)
(reset-disorder-case-index)

(reset-symptom-list))

The symptoms in a case are stored in a list, so that they can be accessed

as necessary to expand a decomposition at a given level. The following

procedures implement this functionality:

(defvar *symptom-list* ’())

(defmethod reset-symptom-list () (setf *symptom-list* ’()))

{defmethod add-to-symptom-list ((s symptom))

(setf *symptom-list* (append *symptom-list* (list s))))

(defmethod get-next-symptom (level) (elt *symptom-list* level))

A.3 Tasks

A problem decomposition contains a set of clusters, each of which has an

associated differential diagnosis. In order to keep each cluster together with

its differential, we define an object called a task. A task is essentially a

subproblem, and it consists of a cluster and a differential:

(defclass task ()

((cluster :accessor cluster :initarg :cluster)

(common-causes :accessor causes :initarg :causes)

(justification-set :accessor just-set :initform (make-empty-set))

(exclusion-set :accessor excl-set :initform (make-empty-set))

(differential :accessor diff :initform (make-empty-set))))

A 3 Tasks 197

(defmethod make-task ((s symptom))

(make-instance ’task :cluster (singleton s) :causes (causes s)))

(defmethod copy-task ((task task))

(make-instance task :cluster (cluster task) :causes (causes task)))

The following operations are useful in sorting tasks:

(defmethod equal-tasks? ((taskil task) (task2 task))

(set-equal? (cluster taskl) (cluster task2)))

(defmethod task<? ((taskl task) (task2 task))

(set<? (cluster taskl) (cluster task?2)))

The following operations insert and delete symptoms from clusters. When

a symptom is inserted or removed from a cluster, the common causes for the

cluster are recomputed, except when the symptom is known to cover the

cluster. for which a separate procedure exists.

(defmethod causes (cluster)

(intersect-sets (map ’list #’causes (symptoms-of cluster))))

(defmethod add-symptom! ((s symptom) (task task))

(setf (cluster task) (insert-elt s (cluster task)))

(setf (causes task) (intersect (causes s) (causes task)))

task)

(defmethod add-covering-symptom! ((s symptom) (task task))

(setf (cluster task) (insert-elt s (cluster task)))

task)

(defmethod remove-symptom! ((s symptom) (task task))

(setf (cluster task) (remove-elt s (cluster task)))

(setf (causes task) (causes (cluster task)))

task)

(defmethod remove-symptoms'! (set (task task))

(setf (cluster task) (difference (cluster task) set))

(setf (causes task) (causes (cluster task)))

task)

198 Implementation of Decompositional Search Algorithm A.s

Two predicates that are used extensively are covering and restricting,

which are opposites. Two methods are given for each predicate: one for

clusters in existing tasks and one for clusters constructed on the fly.

{defmethod covers? ((s symptom) (task task))

(superset? (causes s) (causes task)))

(defmethod covers? ((s symptom) cluster)

(superset? (causes s) (causes cluster)))

(defmethod restricts? ((s symptom) (task task))

(not (superset? (causes s) (causes task))))

(defmethod restricts? ((s symptom) cluster)

(not (superset? (causes s) (causes cluster))))

A.4 Sets of Tasks

Since a decomposition contains multiple clusters, it will be represented by

multiple tasks. We represent a set of tasks as a list. Sets of tasks can be

altered using the following functions:

(defmethod add-task ((newtask task) task-set)

(cons newtask (map ’list #’copy-task task-set)))

(defmethod substitute-task ((oldtask task) (newtask task) task-set)

(cons newtask (map ’list #’copy-task (remove oldtask task-set))))

In addition, we will find it necessary to put sets of tasks in a particu-

lar order, so that they can be compared. The following functions sort and

compare sets of tasks.

(defmethod sort-task-set (task-set) (sort task-set #’task<?))

(defmethod equal-task-sets? (task-set-1 task-set-2)

(and (= (length task-set-1) (length task-set-2))

(every #’equal-tasks? task-set-1 task-set-2)))

A 6 Decompositions 199

(defmethod task-set<? (task-set-1 task-set-2)

(cond ((< (length task-set-1) (length task-set-2)) t)

(> (length task-set-1) (length task-set-2)) nil)

(t (loop for taskil in task-set-1

for task2 in task-set-2

when (task<? taskl task2) do (return t)

else when (task<? task2 taskl) do (return nil)

finally (return nil)))))

A.5 Decompositions

We now define the class for problem decompositions. A problem decom-

position consists of a set of tasks. We also store the unifying disorders for

the decomposition in a slot. The compute-diff? slot is a flag that indi-

cates whether the differentials for the decomposition should be computed or

recomputed.

(defclass decomp ()

((tasks :accessor tasks :initarg :tasks)

(unifying :accessor unifying :initform (make-empty-set))

(compute-diff? :accessor compute-diff? :initarg :compute-diff?)))

(defmethod make-decomp (tasks &optional compute-diff?)

(make-instance ’decomp :tasks tasks :compute-diff? compute-diff?))

Decompositions can often be generated in duplicate. A standard repre-

sentation for decompositions helps to identify duplicates for removal. The

standard representation lists the tasks in lexicographic order according to
their case index:

(defmethod standardize ((C decomp))

(setf (tasks C) (sort-task-set (tasks C)))

C)

I'he following predicates compare decompositions, to be used for sorting

purposes:

(defmethod equal-decomps? ((C1 decomp) (C2 decomp))

(equal-task-sets? (tasks C1) (tasks C2)))

(defmethod decomp<? ((C1 decomp) (C2 decomp))
(task-set<? (tasks C1) (tasks C2)))

200 Implementation of Decompositional Search Algorithm AS

A.6 Differential Formulation

Differential formulation computes the differentials for a given decomposition.

The differentials are computed by an iterative process that recomputes the

justification set, exclusion set, unifying disorders, and differentials. When the

justification sets remain unchanged, the process terminates. During any step,

if a justification set or differential is found to be null, the process terminates,

and the result “incoherent” is thrown to the top-level procedure.

(defmethod formulate-differentials ((C decomp))

(loop for task in (tasks C)

do (setf (just-set task) (cluster task)

(excl-set task) (causes task)

(diff task) (causes task))

finally (return (formulate-differentials-aux C))))

(defmethod formulate-differentials-aux ((C decomp))

(block exit

(loop initially

(setf (unifying C)

(duplicates (map ’'list #’excl-set (tasks C))))

for task in (tasks C)

for new-diff = (difference (diff task) (unifying C))

when (empty-set? new-diff) do (return-from exit :incoherent)

else do (setf (diff task) new-diff))

(loop with altered? = nil

for task in (tasks C)

for new-just = (compute-justification task C)

when (empty-set? new-just) do (return-from exit :incoherent)

else when (not (set-equal? new-just (just-set task)))

do (setf (just-set task) new-just

(excl-set task) (causes (just-set task))

altered? t)

finally (if altered?

(return (formulate-differentials-aux C))

(return C)))))

(defmethod compute-justification ((task task) (C decomp))

Ambiguation and Disambiguation 20]

(make-set (remove-if-not #’(lambda (s) (justification? s task C))

(symptoms-of (just-set task)))))

(defmethod justification? ((s symptom) (task task) (C decomp))

(every #’ (lambda (task-i)

(not (superset? (causes 8) (diff task-i))))

{remove task (tasks C))))

A.7 Ambiguation and Disambiguation

Ambiguation is performed after a new task is created, since that task may

be coverable by previously assigned symptoms. The procedure loops through
cach symptom in each existing cluster to see if it covers the new cluster. If

50. 1t 1s added to the new cluster.

(defmethod ambiguate ((newtask task) (C decomp))

(loop for task in (remove newtask (tasks C))

for cluster = (cluster task) do

{loop for s in (symptoms-of cluster)

when (covers? s newtask)

do (add-symptom! s newtask))

finally (return C)))

Disambiguation is performed after ambiguation to remove ambiguous as-

signments that no longer hold. Ambiguous symptoms are found by finding

duplicates within the decomposition. The procedure removes these symp-

toms, recomputes the common causes for each cluster, and then reassigns

the ambiguous symptoms to the clusters that they do cover.

(defmethod disambiguate ((C decomp))

(let ((amb-symptoms (duplicates (map ’list #’cluster (tasks C)))))

(restore-ambiguous amb-symptoms
(remove-ambiguous amb-symptoms C))))

(defmethod remove-ambiguous (amb-symptoms (C decomp))
(loop for task in (tasks C)

do (remove-symptoms! amb-symptoms task)

finally (return C)))

202 Implementation of Decompositional Search Algorithm
a

(defmethod restore-ambiguous (amb-symptoms (C decomp))

(let ((symptoms (symptoms-of amb-symptoms)))
(loop for s in symptoms

for reassign = (find-reassignable s C)

when (null reassign) do (return :degenerate)

else do (loop for task in reassign

do (add-covering-symptom! s task))

finally (return C))))

(defmethod find-reassignable ((s symptom)

(loop for task in (tasks C)

when (covers? s task)

collect task))

(C decomp).

A.8 Symptom Assignment

A.8.1 Covering

The covering operator determines whether some cluster can be covered by

the new symptom. If so, it adds the symptom to each cluster that it covers.

{defmethod cover-op ((C decomp) (s symptom))

(when (coverable? C s) (list (cover-aux C s))))

(defmethod coverable? ((C decomp) (s symptom))

(some #’(lambda (task) (covers? s task)) (tasks C)))

(defmethod cover-aux ((C decomp) (s symptom))

(loop for task in (tasks C)

when (covers? s task)

collect (add-covering-symptom! s (copy-task task)) into tasks

else collect (copy-task task) into tasks

finally (return (make-decomp tasks))))

A.8.2 Restricting

The restricting operator results in several decompositions, one for each cluster

that a symptom restricts.

A 8 Symptom Assignment 203

(defmethod restrict-op ((C decomp) (s symptom))

(loop for task in (tasks C)

when (restricts? s task)

collect (restrict-task task C s)))

(defmethod restrict-task ((task task) (C decomp) (s symptom))

(let* ((newtask (add-symptom! s (copy-task task))))

(disambiguate

(ambiguate
newtask

(make-decomp (substitute-task task newtask (tasks C)) t)))))

A.8.3 Adjoining

The adjoining operator simply creates a decomposition with the new symp:

tom appended as a cluster by itself.

(defmethod adjoin-op ((C decomp) (s symptom))

(let ((newtask (make-task s)))

(list

(disambiguate

(ambiguate
newtask

(make-decomp (add-task newtask (tasks C)) t))))))

A.8.4 Admixing

The admixing operator results in several decompositions, one for each pre-

viously assigned symptom that can admix with the new symptom. The

procedure loops through all admixable symptoms in all previous clusters and

collects the resulting decompositions.

(defmethod admix-op ((C decomp) (s symptom))

(loop for task in (tasks C)

append (admix-task task C s)))

{defmethod admix-task ((task task) (C decomp) (s symptom))

(loop for admix-s in (admixable-symptoms task s)

collect (admix-symptom admix-s task C s)))

204 Implementation of Decompositional Search Algorithm
a.

[

(defmethod admix-symptom

((admix-s symptom) (task task) (C decomp) (s symptom))

(let ((result-task (add-symptom! admix-s (make-task s)))

(newtask (remove-symptom! admix-s (copy-task task))))

(disambiguate
{ambiguate
result-task

(make-decomp
(add-task result-task

(substitute-task task newtask (tasks C)))

£)))))

(defmethod admixable-symptoms ((task task) (s symptom))

(unless (= (cardinality (cluster task)) 1)

(loop with new-set = (make-set (list s))

for admix-s in (symptoms-of (cluster task))

when (and (restricts? admix-s

(remove-elt admix-s (cluster task)))

(restricts? admix-s new-set))

collect admix-s)))

A.9 Nodes

Nodes are the components of the search tree. Each node contains a decom-

position and is related to a parent node and children nodes. For debugging

and explanation purposes, each node has an operator, which explains how

its decomposition was derived from its parent decomposition.

(defclass search-class ()

((level :accessor level :initarg :level)

(probability :accessor prob :initform 0.0)))

(defclass node (search-class)

((decomp :accessor decomp :initarg :decomp)

(parent :accessor parent :initarg :parent)

(operator :accessor operator :initarg :operator)

{children :accessor children :initform ’())))

10 Nodes 205

(defmethod make-node ((C decomp) (parent node) operator)

(let ((node (make-instance ’node

:level (1+ (level parent))

:decomp C

‘parent parent

operator operator)))

{push node (children parent))

node))

fdefmethod make-root-node ()

(make-instance ’node

‘decomp (make-decomp ’())
level O

parent :none

‘operator :root))

(defmethod make-nodes (decomps (parent node) operator)

(map ’list #’(lambda (C) (make-node C parent operator))

(map ’list #’standardize (remove :degenerate decomps))))

The following procedures are used for comparing and sorting nodes, based

on their decompositions.

{defmethod equal-nodes? ((nodel node) (node2 node))

(equal-decomps? (decomp nodel) (decomp node2)))

(defmethod node<? ((nodel node) (node2 node))

(decomp<? (decomp nodeil) (decomp node2)))

Frontiers are simply the nodes generated after an iteration of the search

process. In this program, a breadth-first strategy is used, so that each frontier

is simply one level of the search tree.

(defclass frontier ()

((nodes :accessor nodes :initarg :nodes)))

(defmethod make-frontier (nodes)

(make-instance ’frontier :nodes nodes))

(defmethod make-initial-frontier ()

(reset-case)

{make-instance ’frontier

:nodes (list (make-root-node))))

206 Implementation of Decompositional Search Algorithm A. 17

A.10 Search

The following function is the top-level procedure for decompositional search.

It takes a set of symptoms and produces a frontier containing plausible prob-

lem decompositions. The procedure takes a frontier as an optional argument

so that a previous search process can be extended.

(defmethod diagnose

(symptoms &optional (frontier (make-initial-frontier)))

(loop for s in symptoms

do (enter-symptom-in-case s)

(setf frontier (make-frontier

(compute-differentials

(remove-duplicate-nodes
(expand frontier)))))

finally (return frontier)))

Expansion consists of accumulating the successors for each node in the

previous frontier. These successors are created by the symptom assignment

operators. If covering is possible, no other operator need be tried. Other-

wise, restricting, adjoining, and admixing operators are applied. Each new

decomposition is then ambiguated and disambiguated.

(defmethod expand ((frontier frontier))

(loop for n in (nodes frontier)

append (successor n (get-next-symptom (level n)))))

(defmethod successor ((n node) (s symptom))

(let ((C (decomp n)))

(or (make-nodes (cover-op C s) n :cover)

(append (make-nodes (restrict-op C s) n :restrict)

(make-nodes (adjoin-op C s) n :adjoin)

(make-nodes (admix-op C s) n :admix)))))

The following procedure removes duplicate decompositions. It speeds up

the process by sorting the decompositions by size and lexicographic order.

(defmethod remove-duplicate-nodes (nodes)

(let ((nodes (sort nodes #’node<?)))

i10

(unless

(loop

(null nodes)

for node in (rest nodes)

#ith test-node = (first nodes)

7ith result = (list (first nodes))

anless (equal-nodes? node test-node)

do (push node result) (setf test-node node)

finally (return (nreverse result))))))

Search 207

The following procedure computes the differentials for a set of nodes. It

removes those nodes that have incoherent decompositions.

(defmethod compute-differentials (nodes)

(loop for node in nodes

for decomp = (formulate-differentials (decomp node))

anless (eq decomp :incoherent)

do (setf (decomp node) decomp)

and collect node))

208

Appendix B

Implementation of Candidate

(Generation Algorithm

(19

210 Implementation of Candidate Generation Algorithm 3.2

The following is an implementation of the candidate generation algorithm

written in ANSI Common Lisp [70]. This is the implementation used for

comparison with decompositional search

B.1 Class Definitions

Candidate generation uses the same classes for symptoms and disorders as

in symptom clustering. It requires an additional class to specify a candidate,

which consists of a set of disorders.

(defclass candidate (search-class)

((disorder-set :accessor disorder-set :initarg :disorder-set)))

(defmethod make-candidate (disorders level)

(make-instance ’candidate

:level level

:disorder-set disorders))

(defmethod make-initial-candidate ()

(reset-case)

(make-instance ’candidate

level O

:disorder-set (make-empty-set)))

(defmethod update-level ((H candidate))

(setf (level H) (1+ (level H)))

1)

B.2 Search Routines

The following procedure is the top-level routine for candidate generation.

Like the implementation for decompositional search, this implementation

uses a breadth-first search strategy. The procedure takes a set of candidates

as an optional argument so that previous searches can be extended.

(defmethod generate-candidates

(symptoms &optional (candidates (list (make-initial-candidate))))

 9 Predicates 211

(loop for s in symptoms

do (enter-symptom-in-case s)

(setf candidates (expand-candidates candidates))

finally (return candidates)))

Expansion adds the possible causes for the new symptom to each existing

candidate, unless the candidate alreadv explains the symptom

(defmethod expand-candidates (candidates)

(loop for H in candidates

append (cand-successor H (get-next-symptom (level H)))))

(defmethod cand-successor ((H candidate) (s symptom))

(if (explains? H s)

(1ist (update-level H))

(loop with disorder-list = (disorders-of (disorder-set H))

with seen-symptoms = (seen-symptoms (level H))

for d in (disorders-of (causes s8))

when (minimal? disorder-list d seen-symptoms)

collect (add-disorder d H))))

defmethod add-disorder ((d disorder) (H candidate))

{(make-candidate (insert-elt d (disorder-set H)) (1+ (level H))))

‘defmethod seen-svmptoms (level) (make-full-set level))

B.3 Predicates

I'he following predicates provide the notions of minimality and validity.

(defmethod minimal? (disorder-list (new-d disorder) seen-symptoms)

(let ((new-disorder-list (cons new-d disorder-list)))

(notany #’ (lambda (4)

(valid? (remove d new-disorder-list) seen-symptoms))

disorder-1list)))

(defmethod valid? (disorder-list seen-symptoms)

(superset? (compute-explained-symptoms disorder-list)

seen-symptoms))

212 Implementation of Candidate Generation Algorithm

(defmethod explains? ((H candidate) (s symptom))

(not (empty-set? (intersect (disorder-set H) (causes s)))))

(defmethod compute-explained-symptoms (disorder-list)

(set-union-sets (map ’list #’effects disorder-list)))

Appendix C

Support Routines

14

214 Support Routines C.2

In appendices A and B, we presented the basic implementation of the de-

compositional search and candidate generation algorithms. However, to use

the algorithms themselves, additional supporting routines are needed. These

routines are not part of the algorithms per se, but provide input and output

facilities. Thus, the following support routines are only simple suggestions.

Undoubtedly, an implementation intended for actual use would require more

elaborate supporting facilities. As in the previous appendices, these routines

are written in ANSI Common Lisp [70].

C.1 Link Probability Data Structures

The decompositional search algorithm in appendix A does not specify data

structures for storing link probabilities. Here we offer one possible set of data

structures for holding link probabilities.

(defvar *link-probabilities* (make-hash-table :test #’equal))

(defmethod reset-probability-tables ()

(clrhash *link-probabilitiesx))

(defmethod link-prob ((d disorder) (s symptom))

(let ((prob (gethash (cons (univ-index d) (univ-index s))

1ink-probabilitiesx)))
(if (null prob) 0.0 prob)))

(defmethod enter-link-prob (disorder-index symptom-index link-prob)

(setf (gethash (cons disorder-index symptom-index)

*link-probabilitiesx)
link-prob))

C.2 Knowledge Base Input

Here we provide a simple interface to read in a knowledge base. The knowl:

edge base is assumed to be in three files. One file contains a list of dis-

orders, with their prior probabilities and indices. A second file contains a

list of symptoms, with their indices. A third file contains the links between

symptoms and disorders. Each disorder, symptom, or link is contained on

 1 Knowledge Base Input 215

a separate line. The following definitions give one possible format for these

files:

(defmethod dz-indexfile-index (string) (string-first string))

(defmethod dz-indexfile-prior-prob (string) (string-second string))

(defmethod dz-indexfile-name (string) (string-cddr string))

(defmethod sx-indexfile-index (string) (string-first string))

(defmethod sx-indexfile-name (string) (string-tail string))

(defmethod linkfile-disorder-index (string) (string-first string))

(defmethod linkfile-symptom-index (string) (string-second string))

(defmethod linkfile-link-prob (string) (string-third string))

I'he following procedures provide utility functions to obtain input from a file:

(defmacro doline ((string file) &body body)

(let ((f (gensym)))

‘(with-open-file (,f ,file :direction :input)

(loop while (not (end-of-file? ,f))

for ,string = (read-next-line ,f)

until (empty-string? ,string)

do ,@body))))

{defmethod end-of-file? (file)

(eq :eof (peek-char nil file nil :eof)))

(defmethod read-next-line (file)

(unless (end-of-file? file)

(loop for string = (read-line file)

until (or (end-of-file? file)

(not (empty-string? string)))

finally (return (trim-spaces string)))))

(defmethod empty-string? (string)

(every #’(lambda (char) (member char °’(#\Space #\Tab #\Page)))

string))

(defmethod trim-spaces (string)

(string-trim °’ (#\Space #\Tab #\Page) string))

216 ~~ Support Routines C2

The following procedures provide abstractions for extracting strings from
each line of a file:

(defmethod string-head (string)
(multiple-value-bind (value index)

(read-from-string string)
value))

{defmethod string-tail (string)

(trim-spaces
(subseq string

(multiple-value-bind (value index)

(read-from-string string)
index))))

(defmethod string-first (string)

(string-head string))
(defmethod string-second (string)

(string-head (string-tail string)))
(defmethod string-third (string)

(string-head (string-tail (string-tail string))))
(defmethod string-cddr (string)

(string-tail (string-tail string)))

Often, we will want to look up disorders and symptoms by the name.

I'he following procedures implement tables to associate the names of these

objects with the objects themselves:

(defmethod enter-primitive ((p primitive))

(enter-univ-index p)

(enter-name p))

(defvar *symptom-nametable* (make-table #’equal))

(defvar *disorder-nametable* (make-table #’equal))

(defmethod reset-nametables ()

(reset-table *symptom-nametablex)

(reset-table *disorder-nametablex*))

ap. Knowledge Base Input 217

(defmethod enter-name ((s symptom))

(enter-table (name s) s *symptom-nametablex))

(defmethod enter-name ((d disorder))

(enter-table (name d) d *disorder-nametablex))

(defmethod lookup-symptom-name (name)

(lookup-table name *symptom-nametablex))

(defmethod lookup-disorder-name (name)

(lookup-table name *disorder-nametable*))

Finally, the following procedures provide routines for loading a diagnostic

knowledge base.

{defmethod load-kb (dz-indexfile sx-indextile linktila)

(reset-nametables)

(reset-probability-tables)
(read-dz-indexfile dz-indexfile)

(read-sx-indexfile sx-indexfile)

(read-linkfile-for-causes linkfile)

(read-linkfile-for-probs linkfile))

(defmethod read-dz-indexfile (file)

(doline (string file)

(enter-primitive
(make-disorder (dz-indexfile-name string)

(dz-indexfile-index string)

(dz-indexfile-prior-prob string)))))

(defmethod read-sx-indexfile (file)

(doline (string file)

(enter-primitive
{(make-symptom (sx-indexfile-name string)

(sx-indexfile-index string)))))

(defmethod read-linkfile-for-causes (file)

(doline (string file)

{(let* ((disorder-index (linkfile-disorder-index string))

(symptom-index (linkfile-symptom-index string))

(s (lookup-symptom-univ-index symptom-index)))
(reinitialize-instance

218 Support Routines
Fa
w.'

3 :univ-causes

(set-insert (make-singleton-set disorder-index)

(univ-causes s))))))

{defmethod read-linkfile-for-probs (file)

(doline (string file)

(enter-link-probdb
(linkfile-disorder-index string)

(linkfile-symptom-index string)
(linkfile-link-prob string))))

C.3 Interface

Interfaces are highly machine-dependent. Here we provide a simple interface

to print the results of the decompositional search and candidate generation

algorithms. The output is intended to be used for processing by TEX [32, 35].

(defvar *print* ’name)

(defmethod print-object ((s symptom) stream)

(cond ((eq *print* ’name)

(format stream "~S" (name s)))

{(eq *print* ’univ-index)

(format stream "s_{"D}" (univ-index s)))

(t (format stream "s_{"D}" (case-index s)))))

(defmethod print-object ((d disorder) stream)

(cond ((eq *print* ’name)

(format stream "~S" (name d)))

((eq *print* ’univ-index)
(format stream "d_{"D}" (univ-index d)))

(t (format stream "d_{"D}" (case-index d)))))

(defmethod print-frontier ((f frontier))

(loop for node in (nodes f)

for i from 1

do (format t "~)~S <--(°S)-- ~s"

node (operator node) (parent node))

(format t "~Y%${\\cal C}_"D =" i)

(print-node node)))

vdFa Interface 219

(defmethod print-node (node)

(print-tasks (sort-task-set (tasks (decomp node)))))

(defmethod print-tasks (tasks)

(print-decomposition tasks)
(format t "$\\\\")

(format t "~/Differentials $\\langle "]

(print-diff-sizes tasks)
(format t " \\rangle$:~%")

(format t "$")

(print-differentials tasks)
(format t "$7%"))

(defmethod print-decomposition (tasks)

(loop for task in tasks do (print-cluster task)))

‘defmethod print-diff-sizes (tasks)

(loop for task in (butlast tasks)

do (print-diff-size task)

(format t " \\cross ")

finally (print-diff-size (car (last tasks)))))

(defmethod print-diff-size (task)

(format t "“D" (cardinality (diff task))))

(defmethod print-differentials (tasks)

(loop for task in (butlast tasks)

do (print-diff task)

(format t "~% \\cross™)}")

finally (print-diff (car (last tasks)))))

(defmethod print-cluster ((task task))

(format t "°S" (symptoms-of (cluster task))))

(defmethod print-diff ((task task))

(format t "\\{")

(loop for disorder in (disorders-of (diff task))

do (format t "~S" disorder))

(format t "\\}"))

220 Support Routines
~

“]

(defmethod sort-candidates-by-size (candidates)

(stable-sort candidates #°< :key #’size))

(defmethod size ((H candidate))

(cardinality (disorder-set H)))

The following procedures provide similar output routines for printing candi.
dates:

(defmethod print-candidates (candidates)

(loop for H in (sort-candidates-by-size candidates)

with current-size = 0

when (> (size H) current-size)

do (format t "~)~/Cardinality “D:" (size H))

(setf current-size (size H))

(print-candidate H)

else do (print-candidate H)))

(defmethod print-candidate ((H candidate))

(format t "[")

(loop for d in (disorders-of (disorder-set H))

do (format t "~S " d))

(format t "]"))

Appendix D

Subdomain for Prerenal

Azotemia

))|

222 Subdomain for Prerenal Azotemia I}
9

/

D.1 Symptoms

This is a list of the possible effects of the disorder prerenal azotemia:

S1

So

Sa

S4

Se

Se

Qo

5

S 9

S10

S11

S12

$13

S14

Azotemia Of Two Week (s) Duration Or Less

Creatinine Clearance Decreased

Creatinine Serum 3 To 10 Mg Per DI

Creatinine Serum Increased Not Over 2.9 Mg Per DI

Dehydration

Mouth Mucosa Dry (Xerostomia)

Oliguria Hx
Ph Urine Less Than 6

Sodium Urine Less Than 20 Meq Per Day

Urea Nitrogen Serum 30 To 59

Urea Nitrogen Serum 60 To 100

Urine Osmolality Gtr Than 320

Urine Output Less Than 400 MI Per Day

Urine Specific Gravity Gtr Than 1.020

D.2 Disorders

This 1s a list of the competitors of the prerenal azotemia. These are disorders

that can cause one or more of the effects of prerenal azotemia

dq

do

Addisons Disease Secondary To Adrenal Destruction

Addisons Disease Secondary To Idiopathic Atrophy

Adrenal Apoplexy

Adrenal Insufficiency Secondary To Hypopituitarism

Aldosteronism Primary

Aldosteronism Secondary
Alzheimers Disease

Amebic Colitis

Amyloidosis Systemic

Analgesic Nephropathy
Angiodysplasia Of Right Colon
Anorexia Nervosa

]

1

dr

da

=

dg

dg

dio

diy

d2

—

J. 2 Disorders 223

dis Arteriolar Nephrosclerosis Benign (Essential Hypertension)

dis Arteriolar Nephrosclerosis Malignant (Malignant Hypertension)

dis Aspergillosis Disseminated

die Atheromatous Embolism

dy7 Botulism

dis Brain Neoplasm Secondary Multiple

dig Campylobacter Enteritis

dye Carcinoid Syndrome Secondary To Bronchial Neoplasm

dy; Carcinoid Syndrome Secondary To Hepatic Metastases

dy Carcinoma Of Esophagus

dys Cardiac Failure Left Chronic Congestive

dys Cardiac Failure Right Congestive

dys Cardiogenic Shock Acute

dys Celiac Sprue

dy7 Ceramide Trihexoside Lipoidosis (Fabrys Disease)

das Cerebral Artery Thrombosis Or Dissection With Encephalomalacia

dog Cerebral Embolism

dsp Cerebral Lymphoma Primary

ds; Cerebral Malaria

ds; Cerebral Neoplasm Single Frontal

dss Cerebral Neoplasm Single Parietal

dz4 Cerebral Neoplasm Single Temporal
dss Constrictive Pericarditis

dsg Crohns Disease Of Colon

ds; Crohns Disease Of Small Intestine

dss Cryoimmunoglobulinemic Syndrome

dzg Cryptococcal Meningitis

dso Cushings Syndrome Secondary To Adrenal Adenoma (s)

dyn Cushings Syndrome Secondary To Adrenal Carcinoma

d4s Cushings Syndrome Secondary To Iatrogenic Steroid Excess

dss Diabetes Insipidus

d4q Diabetes Insipidus Nephrogenic

d45 Diabetes Mellitus

dse Diabetic Ketoacidosis

dy Diabetic Nephropathy

224 ~~ Subdomain for Prerenal Azotemia

dss

dag
dso
ds1

ds2

dss
ds4

dss
dse

ds7

dss

dso
deo

Ectopic Acth Syndrome

Encephalitis Acute Viral

Fatty Liver Of Pregnancy Acute

Gastrointestinal Sarcoidosis

Glomerulonephritis Acute

Glomerulonephritis Advanced Chronic

Glomerulonephritis Focal

Glomerulonephritis Latent

Glomerulonephritis Rapidly Progressive

Goodpasture Syndrome (Renal Component)
Gouty Nephropathy Chronic
Heat Exhaustion

Hereditary Nephritis (Alports Syndrome)
Herpes Simplex Encephalitis

Histoplasma Meningitis
Histoplasmosis Disseminated

Hydronephrosis

Hyperparathyroidism Primary

Hyperthyroidism (Graves Disease)
Hypokalemic Nephropathy
Hypovolemic Shock

Iga Nephropathy
[Immune Deficiency Syndrome Acquired (AIDS)
Intestinal Giardiasis

Intracerebral Hematoma

Lead Nephropathy Chronic

Lead Poisoning
Left Ventricular Failure Acute

Leukemia Chronic Lymphocytic

Listeria Meningitis

Lupus Nephritis
Malaria

Mallory Weiss Syndrome

Medullary Cystic Kidney
Membranous Glomerulopathy

de1
dg2

des
dea
des
dee
der

des
deo

dzo

dr

d79

drs

dr4

drs

dze

d+

drs
dre

dso
ds1

dso

()©

rr. y

dss
dg4

dgs
de

ds7

dss
dso

doo

dot

do?

dys
doa
dos

doe
doz

dog

doo

100
d101

d102
d103
104
d105
d106

dor

d108
d109
dy 10

di11

d112

d113
di14
dis
dy 16

Disorders 225

Meningococcal Meningitis
Meningococcemia Acute

Myeloid Metaplasia (Primary Myelofibrosis)
Nephritis Acute Interstitial Allergic

Nephritis Interstitial Non Allergic

Nephrolithiasis
Nephrotic Syndrome
Pancreatic Cholera

Pancreatitis Acute

Paroxysmal Nocturnal Hemoglobinuria Involving Kidneys

Peptic Ulcer With Hemorrhage
Peritonitis Acute Generalized

Pheochromocytoma
Pituitary Cushings Syndrome

Plague Meningitis
Plasma Cell Myeloma

Pneumococcal Meningitis

Polycystic Renal Disease

Polymyositis/ Dermatomyositis
Porphyria Acute Intermittent

Prerenal Azotemia

Presinusoidal Portal Hypertension

Progressive Systemic Sclerosis

Progressive Systemic Sclerosis Involving Kidneys
Pseudomembranous Colitis

Pyelonephritis Acute

Pyelonephritis Chronic

Pyloric Obstruction

Renal Amyloidosis

Renal Artery Stenosis

Renal Cell Carcinoma

Renal Failure Acute

Renal Failure Chronic (Uremia)

Renal Failure Secondary To Liver Disease (Hepatorenal Syndrome)
Renal Infarction

226 Subdomain for Prerenal Azotemia

dis

dig

di20
dig

di22

d123
d124

digs
di26
di27

di2s
di29
d130
diay
di32

di33
di34
diss
di36
di37
di3s
di39
d140

d141

diaz

dias
dias

dias
diae
dar

Renal Interstitial Sarcoidosis

Renal Leptospirosis

Renal Thrombotic Thrombocytopenic Purpura

Renal Tuberculosis

Renal Tubular Acidosis Distal

Renal Tubular Acidosis Proximal (Fanconi Syndrome)

Renal Vasculitis

Renal Vein Thrombosis

Rocky Mountain Spotted Fever

Salt Losing Nephritis

Shigellosis
Sinusoidal Or Postsinusoidal Portal Hypertension

Sjogrens Syndrome
Small Bowel Obstruction

Small Intestinal Lymphoma

Staphylococcal Scarlet Fever (Toxic Shock Syndrome)

Staphylococcus Aureus Meningitis
Subdural Hematoma

Superior Mesenteric Artery Insufficiency Acute

Superior Mesenteric Vein Thrombosis

Thrombotic Thrombocytopenic Purpura

Thyrotoxic Storm

Toxemia Of Pregnancy

Trichinosis

Tuberculous Meningitis

Tubular Necrosis Acute

Tularemia

Typhoid Fever

Ulcerative Colitis

Waldenstroms Macroglobulinemia

).¢

; 3 Causal Links 227

D.3 Causal Links

This is a listing of the links between symptoms and disorders in the subdo-

main for prerenal azotemia:

Causes(s1) = {dios d114}

Causes(s;) = {do dis d14 die da7 ds dss dss dss dse ds7 dss deo dea deo d73 dra

drs dg dgz doz dog digo dios dios dios di11 di12 dia dirs die dirr duis digo

dy22 di23 di24 dias digo di43}

Causes(ss) = {dio di3 dia dig daz dy7 ds2 dss dse ds7 dss deo des deg d73 drs ds;

dsz dse ds7 doz dioo dios dios dios di11 di1z di14 duis dite dir7 dis dire dizo

d121 di24 dios dy43}

Causes(sq) = {ds dg dio dis di4 die der dss dss dys daz ds? dss ds4 dss dse ds7
dss deo des des der deg drs drs dre drs dsy dss dss dss dse dg7 dsg dog dos dog

di0o dior dios dios dios dios dios di11 di12 dire dir7 dirs dite diz dia diag

di23 di24 di25 di27 diss diss diao dias dar}

Causes(ss) = {ds dy ds dy dy ds dio di diz diz dis dig daz dae das dag dso ds;
dg daz d3s dae dar d3g daz dag dus dae dag dso dso der des des des des dro dry

dra d77 d7g dso dgs dsg dg7 doo doy dog doy dor dog dog dioz dios dios dior dito

di14 dis digs digs diz7 dis digg dizi dizz dia diss diss dizr dise diaz diss

d144 dias dise}

Causes(sg) = {ds da ds dy diz di7 doo dai dor dys dug das dag dso dso dee dse

dg? doo dioz d1o3 dia di1s dior diso disg dian dias}

Causes(s7) = {d14 das daa ds2 dss ds ds7 dso deo drs dioa dios di12 di19 d120

dy24 diss d143}

Causes(sg) = {dio dss ds2 de? di03 dis dias}

Causes(sg) = {ds dg daz dag das dpa dite}

Causes(s10) = {ds dog d1o dy3 dq4 dys dig das dar dss dso da dy d43 d44 dar das

228 Subdomain for Prerenal Azotemia
%

Fe
LE

ds1 ds2 dss ds4 dss dse dsz dss deo des dea der des deo drs drs dre drs dso ds
dg dss dge dsr dso doy dos doe dos d100 di03 dio4 dios dio6 dios dio9 din diz
dite di17 dis dig di20 din diz dias di24 diss di27 diae di33 di3s di40 dias
diaz}

Causes(s11) = {dio di3 di4 dis die dar dy7 ds ds3 dse ds? dss deo dss dso drs
drs dg1 dse dsr doa dioo dios dios dios di11 di12 di1a dirs dite di17 di1s die

d120 di21 di124 dis di43}

Causes(s)2) = {da ds2 deg d103 d116 d124 d140}

Causes(s13) = {d14 die daz ds2 dss dse ds7 dea deg drs dse dsr dss d100 d103 d10e

dios di11 d112 d113 die d117 dio di20 di24 dizs diz7 digo dias}

Causes(s14) = {d14 das da4 ds2 dso d7s dio3 die di124 dy40}

Bibliography

1] Eric T. Bell. Exponential numbers. American Mathematical Monthly,

41:411-419, 1934.

2] Bruce G. Buchanan and Edward H. Shortliffe, editors. Rule-Based Ez-

pert Systems: The MYCIN Experiments of the Stanford Heuristic Pro-

gramming Project. Addison-Wesley, Reading, Massachusetts, 1984.

[3] Tom Bylander, Dean Allemang, Michael C. Tanner, and John R. Joseph-

son. The computational complexity of abduction. Artificial Intelligence,

19:25-60. 1991.

4] Eugene Charniak and Robert Goldman. A probabilistic model of plan

recognition. In Proceedings of the National Conference on Artificial In-

telligence, pages 160-165. American Association for Artificial Intelli-

gence, 1991.

5] Eugene Charniak and Drew McDermott. Introduction to Artificial In-

telligence. Addison-Weslev. Reading, MA, 1985.

6] William J. Clancey. Heuristic classification. Artificial Intelligence,
27:280-350. 1985.

 7] William J. Clancey and Edward H. Shortliffe, editors. Readings in Med-

ical Artificial Intelligence: The First Decade. Addison Wesley, Reading,

Mass.. 1984.

8] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. In-

troduction to Algorithms The MIT Press, Cambridge, Massachusetts,

1990).

YoY

230 Bibliography

9] P. T. Cox and T. Pietrzykowski. General diagnosis by abductive in-

ference. In Proceedings of the 1987 Symposium on Logic Programming,

pages 183-189, 1987.

[10] Paul Cutler. Problem Solving in Clinical Medicine. Williams and

Wilkins, Baltimore, 1985.

[11] Randall Davis. Diagnostic reasoning based on structure and behavior.

Artificial Intelligence, 24:347-410, 1984.

[12] Randall Davis and Walter Hamscher. Model-based reasoning: Trou

bleshooting. In Shrobe [66], pages 297-346.

[13] Johan de Kleer. Problem solving with the ATMS. Artificial Intelligence.

28:197-224., 1986.

14] Johan de Kleer and Brian C. Williams. Diagnosing multiple faults.

Artificial Intelligence, 32:97-130, 1987.

[15] David M. Eddy and Charles H. Clanton. The art of diagnosis: Solv-

ing the clinicopathological exercise. New England Journal of Medicine,

306:1263-1268, 1982.

[16] Arthur S. Elstein, Lee S. Shulman, and Sarah A. Sprafka. Medical Prob-

lem Solving: An Analysis of Clinical Reasoning. Harvard University

Press, Cambridge, Mass., 1978.

[17] Douglas Fisher and Pat Langley. Approaches to conceptual clustering.

In International Joint Conference on Artificial Intelligence, pages 691-

697. 1985.

[18] Janet Gale and Philip Marsden. Medical Diagnosis: From Student to

Clinician. Oxford University Press, Oxford, 1983.

[19] Michael R. Garey and David S. Johnson. Computers and Intractability.

W. H. Freeman, 1979.

[20] H. Gelernter. Realization of a geometry-theorem proving machine. In

E. A. Feigenbaum and J. Feldman, editors, Computers and Thought,

pages 134-152. McGraw-Hill, New York, 1963.

Bibliography 231

21] G. Anthony Gorry. Strategies for computer-aided diagnosis. Mathemat-
1cal Biosciences, 2:293-318. 1968.

22] Edmund J. Graves. National hospital discharge survey: Annual sum-

mary, 1987. Vital and Health Statistics 13(99), National Center for

Health Statistics, 1989.

23] Russell Greiner, Barbara A. Smith, and Ralph W. Wilkerson. A cor-

rection to the algorithm in Reiter’s theory of diagnosis (research note).

Artificial Intelligence. 41:79-88, 1989.

24] Walter C. Hamscher. Model-Based Troubleshooting of Digital Systems.

PhD thesis, Massachusetts Institute of Technology, August 1988.

25] Gilbert Harman. The inference to the best explanation. Philosophical

Review. LXXIV:88-95. 1965.

26] David Heckerman and Randolph A. Miller. Towards a better under-

standing of INTERNIST-1 knowledge base. In R. Salamon, B. Blum, and

M. Jorgensen, editors, MEDINFO 86: Proceedings of the Fifth Confer-

ence on Medical Informatics, pages 22-26, Washington, October 1986.

North-Holland.

[27] David E. Heckerman. A tractable inference algorithm for diagnosing

multiple diseases. In Max Henrion, Ross D. Shachter, Laveen N. Kanal,

and John F. Lemmer, editors, Uncertainty in Artificial Intelligence 5,

Machine Intelligence and Pattern Recognition Series, Volume 10, pages

163-171. North-Holland. 1990.

28] Jerry R. Hobbs, Mark Stickel, Paul Martin, and Douglas Edwards. In-

terpretation as abduction. In Proceedings of the 26th Annual Meeting

of the Association for Computational Linguistics, pages 95-103. 1988.

29] John H. Holland, Keith J. Holyoak, Richard E. Nisbett, and Paul R.

Thagard. Induction: Processes of Inference, Learning, and Discovery.

MIT Press. 1986

30] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata

Theory, Languages, and Computation. Addison-Wesley, 1979.

232 Bibliography

[31] Paul D. Hubbe and Eugene C. Freuder. An efficient cross product rep-

resentation of the constraint problem search space. In Proceedings of the

National Conference on Artificial Intelligence. American Association for

Artificial Intelligence, 1992.

[32] Donald E. Knuth. The TgXbook. Addison-Wesley, 1984.

[33] Richard E. Korf. Planning as search: A quantitative approach. Artificial

Intelligence, 33:65-88, 1987.

[34] Thomas S. Kuhn. The Structure of Scientific Revolutions. The Univer-

sity of Chicago Press, second edition, 1970.

35] Leslie Lamport. IATEX: A Document Preparation System. Addison

Wesley, 1986.

36] Douglas B. Lenat. The nature of heuristics. Artificial Intelligence,

19:189-249. 1982.

[37] Ryszard S. Michalski and Robert E. Stepp. Automated construction of

classifications: conceptual clustering versus numerical taxonomy. [EEE

Transactions on Pattern Analysis and Machine Intelligence, PAMI-

5:396-410. 1983.

38] R. A. Miller, M. A. McNeil, S. M. Challinor, F. E. Masari, Jr., and

J. D. Myers. The Internist-1/Quick Medical Reference project—Status

report. Western Journal of Medicine, 145:816-822, 1986.

39] Randolph A. Miller, Harry E. Pople, Jr., and Jack D. Myers. Internist-

1, an experimental computer-based diagnostic consultant for general

internal medicine. New England Journal of Medicine, 307:468-476, 1982.

40] Marvin Minsky. Steps toward artificial intelligence. In Edward A.

Feigenbaum and Jerome Feldman, editors, Computers and Thought,

pages 406-450. McGraw-Hill, 1963.

41] Tom M. Mitchell. Generalization as search. Artificial Intelligence,

18:203-226, 1982.

Bibliography 233

[42] Tom M. Mitchell, R. M. Keller, and Smadar T. Kedar-Cabelli.

Explanation-based generalization: a unifying view. Machine Learning,

1(1):47-80. 1986.

[43] Edmond A. Murphy. The Logic of Medicine. Johns Hopkins, Baltimore.

1976.

[44] Allen Newell and Herbert A. Simon. Human Problem Solving. Prentice-

Hall, 1972.

45] Ramesh S. Patil. Causal representation of patient illness for electrolyte

and acid-base diagnosis. TR 267, Massachusetts Institute of Technology,

Laboratory for Computer Science, 545 Technology Square, Cambridge,
MA. 02139. October 1981.

46] Ramesh S. Patil. Causal reasoning in computer programs for medical

diagnosis. Computer Methods and Programs in Biomedicine, 25:117-124,

1987.

[47] Ramesh S. Patil. Artificial intelligence techniques for diagnostic reason

ing in medicine. In Shrobe [66], pages 347-379.

[48] Ramesh S. Patil, Peter Szolovits, and William B. Schwartz. Causal

understanding of patient illness in medical diagnosis. In Proceedings

of the Seventh International Joint Conference on Artificial Intelligence,

pages 893-899, 1981

[49] Stephen G. Pauker, G. Anthony Gorry, Jerome P. Kassirer, and

William B. Schwartz. Towards the simulation of clinical cognition:

Taking a present illness by computer. American Journal of Medicine,

650:981-996. 1976.

50] Judea Pearl. Heuristics: Intelligent Search Strategies for Computer

Problem Solving. Addison-Wesley, Reading, MA, 1984.

[51] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks

of Plausible Inference. Morgan Kaufmann, San Mateo. CA. 1988.

[52] Judea Pearl and Richard E. Korf. Search techniques. Annual Reviews

of Computer Science, 2:451-467, 1987.

234 Bibliography

[53] Charles S. Peirce. Collected Papers. Harvard University Press, 1960.

[54] Yun Peng and James A. Reggia. Plausibility of diagnostic hypotheses:

The nature of simplicity. In Proceedings of the National Conference on

Artificial Intelligence, pages 140-145. American Association for Artifi-

cial Intelligence, 1986.

[55] Yun Peng and James A. Reggia. A probabilistic causal model for di-

agnostic problem solving—Part I: Integrating symbolic causal inference

with numeric probabilistic inference. IEEE Transactions on Systems,

Man, and Cybernetics, SMC-17:146-162, 1987.

[56] George Polya. How to Solve It. Princeton University Press, 1945.

[57] Harry E. Pople, Jr. Heuristic methods for imposing structure on

ill-structured problems: The structuring of medical diagnostics. In

Szolovits [73], pages 119-190.

[68] James A. Reggia, Dana S. Nau, and Pearl Y. Wang. Diagnostic expert

systems based on a set covering model. International Journal of Man-

Machine Studies, 19:437-460, 1983.

59] Raymond Reiter. A theory of diagnosis from first principles. Artificial

Intelligence. 32:57-96, 1987.

[60] Earl D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Arti-

ficial Intelligence, 5:115-135, 1974.

[61] Earl D. Sacerdoti. The nonlinear nature of plans. In Proceedings of the

Fourth International Joint Conference on Artificial Intelligence, pages

206-214. 1975.

[62] Earl D. Sacerdoti. A Structure for Plans and Behavior. American Else-

vier, 1977.

63] William B. Schwartz, Ramesh S. Patil, and Peter Szolovits. Artificial

intelligence in medicine: Where do we stand? New England Journal of

Medicine, 316:685-688, 1987.

Bibliography 235

[64] Bart Selman and Hector J. Levesque. Abductive and default reasoning:

A computational core. In Proceedings of the National Conference on Ar-

tificial Intelligence, pages 343-348. American Association for Artificial

[ntelligence, 1990.

[65] Edward H. Shortliffe. MYCIN: Computer-based Medical Consultations.

American Elsevier, New York, 1976.

66] Howard Shrobe, editor. FEzploring Artificial Intelligence: Survey Talks

from the National Conferences on Artificial Intelligence. Morgan Kauf-

man, 1988.

67] Herbert A. Simon. The structure of ill-structured problems. Artificial

Intelligence, 4:181-201, 1973.

[68] Herbert A. Simon. The Sciences of the Artificial. MIT Press, second

edition, 1981.

'69] James R. Slagle. A heuristic program that solves symbolic integration

problems in freshman calculus. Journal of the Association for Computing

Machinery, 10:507-520. 1963.

70] Guy L. Steele Jr. Common LISP: The Language. Digital Press, second

edition. 1990.

71] Mark Stefik. Planning with constraints (MOLGEN: Part 1). Artificial

Intelligence, 16:111-140, 1981.

72] Mark Stefik. Planning and meta-planning (MOLGEN: Part 2). Artificial

Intelligence, 16:141-170, 1981.

73] Peter Szolovits, editor. Artificial Intelligence in Medicine, volume 51 of

AAAS Selected Symposium Series. Westview Press, Boulder, Colorado,

1982.

74] Peter Szolovits, Ramesh S. Patil, and William B. Schwartz. Artificial

intelligence in medical diagnosis. Annals of Internal Medicine, 108:80-

R7. 1988.

75] Peter Szolovits and Stephen G. Pauker. Categorical and probabilistic

reasoning in medical diagnosis. Artificial Intelligence, 11:115-144, 1978.

236 Bibliography

[76] Richard Waldinger. Achieving several goals simultaneously. In E. Elcock

and D. Michie, editors, Machine Intelligence 8, pages 94-136. Edinburgh

University Press, 1977.

77] Sholom M. Weiss, Casimir A. Kulikowski, Saul Amarel, and Aaron Safir.

A model-based method for computer-aided medical decision making.

Artificial Intelligence, 11:145-172, 1978.

78] Jean D. Wilson et al., editors. Harrison’s Principles of Internal

Medicine. McGraw-Hill, New York, twelfth edition, 1991.

79] Patrick H. Winston. Learning structural descriptions from examples.

In Patrick H. Winston, editor, The Psychology of Computer Vision,

chapter 5, pages 157-209. McGraw Hill, New York, 1975.

80] Thomas D. Wu. Symptom clustering and syndromic knowledge in di-

agnostic problem solving. In Proceedings of the Thirteenth Symposium

on Computer Applications in Medical Care, pages 45-49, Washington,

November 1989. IEEE Computer Society.

81] Thomas D. Wu. Efficient diagnosis of multiple disorders based on a

symptom clustering approach. In Proceedings of the National Confer-

ence on Artificial Intelligence, pages 357-364. American Association for

Artificial Intelligence, 1990.

32] Thomas D. Wu. Domain structure and the complexity of diagnostic

problem solving. In Proceedings of the National Conference on Artificial

Intelligence, pages 855-861. American Association for Artificial Intelli-

gence, 1991.

83] Thomas D. Wu. Probabilistic evaluation of candidate sets for multidis-

order diagnosis. In P. P. Bonissone, M. Henrion, L. N. Kanal, and J. F.

Lemmer, editors, Uncertainty in Artificial Intelligence 6, pages 107-115.

Elsevier Science Publishers B. V., 1991.

84] Thomas D. Wu. A problem decomposition method for efficient diag-

nosis and interpretation of multiple disorders. Computer Methods and

Programs in Biomedicine, 35:239-250, 1991.

	A decompositional search algorithm for efficient diagnosis of multiple disorders /
	TitlePage
	Abstract
	Acknowledgements
	Contents
	Figures
	Chapter 1
	Figure 1-1
	Figure 1-2
	Figure 1-3
	Figure 1-4
	Figure 1-5
	Figure 1-6
	Figure 1-7
	Figure 1-8

	Chapter 2
	Figure 2-1
	Figure 2-2
	Figure 2-3
	Figure 2-4

	Chapter 3
	Figure 3-1
	Figure 3-2
	Figure 3-3
	Figure 3-4
	Figure 3-5
	Figure 3-6

	Chapter 4
	Figure 4-1
	Figure 4-2
	Figure 4-3
	Figure 4-4
	Figure 4-5
	Figure 4-6
	Figure 4-7
	Figure 4-8
	Figure 4-9
	Figure 4-10

	Chapter 5
	Figure 5-1
	Figure 5-2
	Figure 5-3
	Figure 5-4
	Figure 5-5
	Figure 5-6
	Figure 5-7
	Figure 5-8
	Figure 5-9
	Figure 5-10
	Figure 5-11

	Chapter 6
	Figure 6-1
	Figure 6-2
	Figure 6-3
	Figure 6-4
	Figure 6-5
	Figure 6-6
	Figure 6-7
	Figure 6-8
	Figure 6-9
	Figure 6-10
	Figure 6-11
	Figure 6-12

	Chapter 7
	Figure 7-1
	Figure 7-2

	Chapter 8
	Figure 8-1
	Figure 8-2

	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Bibliography

