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Abstract

This thesis develops a new approach to the diagnosis of multiple disorders
called decompositional search. Decompositional search finds plausible de-
compositions of a given problem into subproblems. Each subproblem is rep-
resented as a cluster of symptoms, which is explained by a set of disorders
called a differential diagnosis. Differential diagnoses are defined by common-
ality and disjointness constraints that arise from the symptom clusters in a
decomposition.

We design and implement an algorithm for decompositional search and
compare its efficiency with a non-decompositional diagnostic algorithm called
candidate generation. Experimental runs on a large medical knowledge base
demonstrate that decompositional search is more efficient than candidate
generation by several orders of magnitude. Further analysis reveals that
decompositional search gains much of its efficiency by exploiting decompo-
sitional structure inherent in the domain. We extend the decompositional
search approach to account for probabilistic relationships between symptoms
and disorders.

Decompositional search increases the efficiency of diagnostic problem
solving and thereby expands our ability to solve problems in complex do-
mains. Problem decompositions also facilitate one’s understanding of the
structure of a problem and thereby contribute towards more effective deci-
sion making.

Thesis Supervisor: Ramesh S. Patil
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Divide each problem that you examine into as many parts as you
can and as you need to solve them more easily.

— René Descartes, Discours de la Méthode (1637)

This rule of Descartes is of little use as long as the art of
dividing . .. remains unexplained . ... By diwviding his problem
into unsuitable parts, the unexperienced problem-solver may
increase his difficulty.

— Gottfried Leibniz, Philosophische Schriften (c. 1690)

1.1 Overview

As Descartes and Leibniz noted over 300 years ago, a problem can often
be simplified by decomposing it into smaller subproblems—when it is de-
composed correctly. Today, even with powerful computers, decompositional
methods are used extensively to solve complex problems. These methods ap-
pear in various forms as parallel programming, dynamic programming, and
divide-and-conquer algorithms [8]. However, decompositional techniques are
largely limited to problems that have an obvious recursive structure. This
prerequisite excludes many problems that are “ill structured”, where the task
of finding the correct decomposition poses a difficult task in itself [67]. This
task— “the art of dividing a problem”—is the subject of this thesis.

Specifically, we develop and analyze a method called decompositional
search that generates plausible decompositions for a given problem. Decom-
positional search extends the range of decompositional techniques to cover
a broad class of problems, those that form hypotheses to explain a set of
evidence. Such problems perform abductive reasoning, or inference to the
best explanation [25, 53]. Abductive problems arise in several guises; one
typical application is diagnosis in the presence of multiple disorders. In this
task, the goal is to explain a given set of evidence in terms of a set of mul-
tiple coexisting disorders. The task of multidisorder diagnosis constitutes
an important and practical example of abductive problem solving. Accord-
ingly, multidisorder diagnosis serves as a testbed for our development of a
decompositional search algorithm.

Our work on decompositional search is motivated by two factors. First, an
appropriate problem decomposition can simplify a complex problem, thereby
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allowing it to be solved more efficiently. Second, a problem decomposition
may be useful end product in itself, giving insight into a problem without
necessarily generating its solution. Of these two potential advantages, effi-
ciency and utility, the former is tested more easily. In this thesis, we test
efficiency by implementing the decompositional search algorithm in a com-
puter program called SYNOPsSIS. With this implementation, we then compare
decompositional search with a non-decompositional algorithm called candi-
date generation. We select this algorithm because of its predominance in the
literature and because of its close relationship with decompositional search.
Our experimental results, using a large, real-world knowledge base, show that
decompositional search is more efficient than candidate generation by several
orders of magnitude. Consequently, decompositional search greatly expands
our capability to solve problems in complex diagnostic domains.

The second advantage, utility, is not so easily tested by experiment, and
so for this claim, we appeal primarily to rhetorical arguments. The utility of
decompositional search derives from its novel data structure, called a problem
decomposition. A problem decomposition structures the given evidence by
grouping it into subproblems. In the decompositional search paradigm, di-
agnosis therefore becomes a search for structure. The structure of a problem
can convey important information, especially when there is too little evidence
for a definitive hypothesis. Moreover, a problem decomposition represents
a set of hypotheses, thereby providing a useful level of abstraction. The
search for structure in decompositional search contrasts with the traditional
paradigm, where diagnosis is a search for individual hypotheses. This view
lacks any notion of structure or abstraction over sets of hypotheses.

To achieve both efficiency and utility, the decompositional search ap-
proach relies on structure inherent in the underlying domain. Therefore,
we not only develop a decompositional search algorithm but also investi-
gate decompositional structure in diagnostic domains. We describe such
domains as having a structure that is nearly decomposable, meaning that
it consists of several groups of evidence and hypotheses called syndromes.
Within syndromes, there are relatively many causal relationships between
evidence and hypotheses; between them, there are relatively few. In this
thesis, we characterize and quantify this type of domain structure and deter-
mine experimentally its role in diagnostic complexity. Our results indicate
that decompositional search does indeed exploit domain decomposability to
a significant extent.

In this thesis, then, we investigate decomposable structure, both as an
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algorithmic device and as a natural phenomenon. As an algorithmic device,
decompositional search increases the efficiency of multidisorder diagnosis and
enables diagnostic systems to discover and communicate the structure of
a problem. As a natural phenomenon, near decomposability improves our
understanding of not only the computational complexity of diagnosis but also
the nature of the diagnostic task itself.

1.2 The Nature of Diagnosis

To better understand the issues involved in decompositional search, it is
useful to look at diagnostic reasoning from a broad perspective. In this
section, we examine diagnosis as both a form of abductive reasoning and a
type of combinatorial problem solving.

1.2.1 Abductive Reasoning

Diagnosis is a process of reasoning “backwards” about causal events. Such
reasoning is backwards because it reverses the natural progression from cause
to effect, beginning with the effect and ending up with the most plausible
cause. Backwards reasoning can be modeled by abductive inference, which
takes the following form:

Tuberculosis can cause fever.
Fever is present.

= (Abduction) Tuberculosis may be present.

Abduction differs from other forms of inference, such as induction and deduc-
tion. Induction is the process of hypothesizing a general rule from particular
instances [29]. For example, if all patients with tuberculosis have fever, we
might infer inductively that tuberculosis causes fever. On the other hand,
deduction is the process of making logically correct inferences. In contrast
with abduction, deductive inference makes “forward” inferences:

If tuberculosis is present, then fever is present.
Tuberculosis is present.

= (Deduction) Fever is present.

Abduction is closely tied to causality, while deduction is not [5]. In con-
trast, deduction handles logical implication. For example, suppose that all
patients at hospital M have fever. That is,
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If patient is in hospital M, then fever is present.

Then if we know that Smith is in hospital M, we can conclude deductively
that he has fever. In contrast, abductive inferences do not make sense unless
the underlying domain is causal. If we knew that Smith had fever, the
backward inference that he is in hospital M would be a poor explanation for
fever. Abduction fails because the statement about hospitals and fever is not
a causal relationship.

Abduction also depends heavily on notions of plausibility or likelihood.
Although probabilistic logics exist, deductive systems in logic and theorem
proving generally do not require notions of probability. Thus, causal state-
ments in abduction usually are not deterministic, but indicate only possible
causes. For example, in a patient with fever, tuberculosis may not be the ac-
tual explanation or even the best one, because there may exist a more likely
cause, such as the flu.

Because it is causal and probabilistic, abduction is well suited to many
problem-solving tasks. Abduction provides a model not only for diagnosis
but also for weighing evidence and making hypotheses, particularly for events
that are causal. Because causality is an important organizing principle in our
thinking, many problem-solving tasks share features with diagnosis, including
applications in expert systems [6, 65], natural language understanding [4, 28],
machine learning [42], logic programming [9], and default reasoning [13, 64].

1.2.2 Multiple Disorders

Diagnosis is most challenging when more than one disorder may be present
simultaneously. In multidisorder diagnosis, multiple symptoms are allowed,
and multiple disorders may plausibly explain them. For example, figure 1-1
shows a case where the flu and common cold together, but not individually,
can explain the symptoms of fever and cough. This paradigm contrasts with
diagnosis under the single-fault assumption, where only a single disorder is
assumed to explain all the symptoms [11]. Explanations that hypothesize
one or more coexisting disorders are called candidates.

By allowing candidates to express multiple disorders, we expand the
power and scope of diagnostic methods beyond the single-fault assumption.
Medical diagnosis, for instance, is characterized by patients who often have
a combination of acute and chronic diseases. Multidisorder diagnosis also
provides a framework to address other issues in diagnosis. For example,
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Tuberculosis, the flu, and malaria can cause fever.
Tuberculosis, the common cold, and asthma can cause cough.
Fever and cough are present.

= (Abduction) One of the following statements holds:
Tuberculosis may be present.
The flu and the common cold may both be present.
The flu and asthma may both be present.
Malaria and the common cold may both be present.
Malaria and asthma may both be present.

Figure 1-1 An abductive inference with multiple disorders.

multidisorder diagnosis potentially provides a framework for handling false
evidence. In such cases, a symptom that is erroneously reported to be true
could be explained by a second “disorder” that represents measurement error.

The price for this expanded power and scope is increased computational
complexity. The number of possible candidates grows exponentially with the
number of disorders under consideration [3]. This computational behavior
places a premium on finding efficient algorithms for multidisorder diagnosis,
especially if diagnostic programs are to scale up to large, real-world knowl-
edge bases.

1.3 Formalizing Diagnosis

To study multidisorder diagnosis in depth, we move from our general discus-
sion to a formal model. In this section, we provide background information
about diagnostic knowledge bases and describe the particular problem that
decompositional search addresses. We also describe the candidate generation
algorithm that is currently used to solve this problem.

1.3.1 Diagnostic Knowledge Bases

A diagnostic knowledge base represents the domain knowledge needed for
diagnostic problem solving. It consists of symptoms and disorders, and the
causal relationships between them. A symptom is a piece of evidence about
the behavior of a system. Symptoms may express subjective findings as well
as objective signs and test results. Evidence is obtained when we assign a
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truth value to a symptom: “positive” (or “present”), “negative” (or “ab-
sent”), or “unknown”. We allow “unknown” symptoms because evidence is
almost always incomplete: values of symptoms are frequently unavailable or
irrelevant to a given problem. The total sum of evidence constitutes a diag-
nostic problem, or case. A case contains a set of positive symptoms and a
set of negative symptoms. All other symptoms are assumed to be unknown.
Just as symptoms are components of evidence, disorders are components
of hypotheses. A disorder can assume a wide variety of forms. It can be a
faulty component, such as a loose connection or a burned-out light bulb, or it
can be a failure mode not connected to any particular component, such as an
accidental connection between two separate wires. A disorder might even be
an entirely global failure mode, such as an excessively high or low operating
temperature that affects the entire system. Finally, a disorder might explain
evidence without implicating the system at all, such as attributing it to
measurement error. Disorders can express any of these possibilities. All that
matters is that a disorder is accepted as a possible explanation by experts in
the domain of interest. Of course, what is acceptable depends on the available
domain knowledge and may be open to debate, thereby affecting the content
of the knowledge base. One might imagine, for instance, that a medical
knowledge base earlier in this century might have contained disorders such
as “dropsy” (now the symptom edema) and “consumption” (tuberculosis).
These symptoms and disorders are linked by causal relationships, which
are also represented in a diagnostic knowledge base. These relationships can
be represented as a bipartite graph, with disorders on one side and symp-
toms on the other. An example of a diagnostic knowledge base is shown
in figure 1-2. In this graph, a causal link between a disorder and symptom
means that the disorder is a possible cause for the symptom. Conversely, the
absence of a link indicates that the disorder is not a possible cause for the
symptom. Note that causal links specify possibility and not necessity. When
a disorder is present, all, some, or none of its possible effects may be positive.
This type of knowledge base is called a categorical knowledge base, be-
cause it specifies only the presence or absence of causal associations between
disorders and symptoms, and not their probabilistic strength [75]. We can,
however, generalize a categorical knowledge base to a probabilistic knowledge
base. In such a knowledge base, each disorder and link has an attached prob-
ability, indicating respectively the prior probability of the disorder and the
probability of the disorder causing the symptom. In this thesis, we concen-
trate on developing a theory of decompositional search for the categorical
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Cold
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Figure 1-2 A diagnostic knowledge base. Symptoms are shown on the left;
disorders on the right. Causal links connect the two sets.

case. However, our work serves as a first step towards a probabilistic theory
of decompositional search, and in fact, we will present preliminary results of
such a theory.

A diagnostic knowledge base encodes information for a particular domain,
the set of diagnostic problems for which it is valid. Diagnostic knowledge
bases of the appropriate form exist in several domains. For example, the
diagnostic program INTERNIST [39], now available as QMR [38], contains a
large medical knowledge base. This knowledge base contains information
on 600 diseases, or 80 percent of those seen commonly in general internal
medicine. The existence of such large knowledge bases enables us to test
the ability of diagnostic algorithms to scale up to real-world problems. They
also provide additional motivation to develop efficient algorithms that can
operate on such diagnostic knowledge bases.

1.3.2 Candidate Generation

A knowledge base constitutes only part of a diagnostic program. In addi-
tion, a diagnostic program requires a computational process, or diagnostic
algorithm, to make inferences based on the knowledge base. This part of
the program is also called an “inference engine” in the expert systems lit-
erature [2]. Since the knowledge base contains domain-specific information,
the diagnostic algorithm is domain-independent. Thus, work on diagnostic
algorithms can be applied to any domain knowledge base of the appropriate
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form.

One predominant diagnostic algorithm is candidate generation [14, 23,
59]. In candidate generation, the goal is to explain a set of positive symptoms
with a conjunction of disorders, or a candidate. A set of disorders is a
candidate if it explains every positive symptom in a given case. In other
words, for every positive symptom in the case, a possible cause for it must
exist in the proposed candidate. We represent candidates in square brackets,
e.g., [Flu,Cold], meaning that the symptoms Flu and Cold are present.

Note that in defining a candidate we have ignored negative symptoms.
This is because causal links express possible causation, not necessary causa-
tion. Hence we cannot rule out any disorder based on a negative symptom.
However, negative symptoms may make a candidate less likely. Thus, in this
paradigm, negative symptoms exert their role by modifying the probability
of a candidate, once it is generated. We will consider the role of negative
symptoms in our chapter on probabilistic decompositional search.

Diagnostic algorithms such as candidate generation seek those explana-
tions that are most plausible. In domains where probabilistic information
is available, the most plausible explanation is that which has the highest
conditional probability, given a particular case. But in categorical domains,
diagnostic algorithms require plausibility criteria instead to select the best
explanations [54]. Most recent diagnostic algorithms use minimality as their
plausibility criterion. A candidate is minimal when none of its subsets ex-
plains all of the positive symptoms. If the symptoms Fever and Cough are
both positive, then the candidate [F1lu,Cold] is minimal because neither [Flu]
nor [Cold] sufficiently explain both symptoms. Note that a candidate makes
no hypothesis about disorders not in the candidate. The status of these other
disorders is essentially “unknown”. Thus, a single symptom may have more
than one cause, including disorders within or outside of the candidate.

Other plausibility criteria besides minimality exist. One criterion that is
stronger than minimality is minimal cardinality. A candidate has minimal
cardinality when it explains the given symptoms using the fewest possible dis-
orders. For Fever and Cough, the single-disorder candidate [Tb] is of minimal
cardinality, meaning that all two-disorder candidates, such as [Flu,Cold], are
not. Although minimal cardinality greatly reduces the number of “plausi-
ble” candidates, most researchers consider this criterion too restrictive. For
example, a single rare disorder may exist that potentially explains the given
symptoms, but two or more common disorders may be more likely causes. So
a single-disorder candidate may indeed be less plausible than a multidisorder
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[1]

[Tb] [Flul] [Mall

SN N

[Tb] FFTu;Fbi [Flu, Cold] [Flu, Asth] BMal;Fb1 [Mal,Cold] [Mal,Asth]
Figure 1-3 Example of candidate generation. The first row shows the diagnosis

of Fever; the second row, of Fever and Cough. Nonminimal candidates are shown
crossed out.

candidate. For instance, tuberculosis may explain both a fever and cough,
but it is much less common than a coexisting flu and cold.

Plausibility criteria, like minimality, identify a set of plausible candidates.
The predominant algorithm for producing minimal candidates is candidate
generation. This technique forms the basis of both model-based diagnosis [12]
and set-covering diagnosis [58]. An example of candidate generation is shown
in figure 1-3. This example uses the knowledge base in figure 1-2 to solve
the case where symptoms Fever and Cough are both positive. The search
tree begins by explaining Fever, by creating the three candidates [Tb|, [F1lu],
and [Mal]. Each candidate corresponds to a possible cause for Fever. Each
minimal candidate is then tested for its ability to explain the next symp-
tom, Cough. Candidate [Tb| already explains Cough, so it is kept in the
search tree unaltered. Candidate [Flu], however, does not explain Cough, so
it must be expanded by the possible causes for Cough, namely, disorders Tb,
Cold, and Asth. This yields the two-disorder candidates [F1lu,Tb|, [Flu,Cold],
and [Flu,Asth]. However, candidate [Flu,Tb] is nonminimal and is pruned
because disorder Tb already explains both Fever and Cough. Similarly, can-
didate [Mal] does not explain Cough either, so it is expanded by the possible
causes for Cough to generate [Mal,Tb|, [Mal,Cold], and [Mal,Asth|. Candi-
date [Mal,Tb] is pruned because it is nonminimal. The end result is the five
minimal candidates [Tb], [Flu,Cold|, [Flu,Asth], [Mal,Cold], and [Mal,Asth].

Note that much of the reasoning in candidate generation is redundant.
Candidates [Flu| and [Mal| are expanded for the same reason: they explain
only Fever. In addition, both two-disorder candidates containing Tb are
pruned for the same reason: Tb explains both Fever and Cough. The two-
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disorder candidates that are not pruned are those that contain one disorder
that explains Fever but not Cough (i.e., Flu or Mal) and one that explains
Cough but not Fever (i.e., Cold or Asth).

This redundancy suggests that a more efficient method may be possible.
The amount of redundant reasoning might be reduced if we could group
candidates based on the rationale by which they explain the symptoms. Then
decisions about whether to expand or prune could be applied to the entire
group of candidates, rather than having to be computed for each candidate
individually.

1.4 Near Decomposability

In computer science, redundancy is a sign of structure. When a task is itera-
tive, it suggests an underlying list structure; when a task is recursive, it sug-
gests an underlying recursive structure. Likewise, the redundancy observed
in candidate generation suggests a type of structure that is decomposable.
In this section, our attention turns to whether decomposable structure can
be exploited to reduce the complexity of diagnosis.

1.4.1 Redundancy, Structure, and Complexity

Searching for minimal candidates is inherently computationally complex.
Finding the set of minimal candidates belongs to a class of problems that is
called NP-hard [3, 19]. Essentially, this means that there exists a worst-case
series of problem instances for which all known algorithms behave poorly,
requiring time that is exponential in the size of the problem. Thus, it is un-
likely that we could design an algorithm for computing minimal candidates
that is efficient in the worst-case.

However, we are not particularly interested in worst-case analyses, espe-
cially in an empirically-based task like diagnosis, where the theoretical worst
case probably never arises. A diagnostic problem is not intended to push a
diagnostic system to its computational limits. Rather, a diagnostic problem
comes from a real-world domain knowledge base and a particular case, both
of which are shaped fundamentally by the particular system being diagnosed.

Computational complexity theory, which is typically concerned with the
worst case, offers little to say about such naturally occurring instances.
In such instances, the performance of two diagnostic algorithms may dif-
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fer markedly, even though their performance in the asymptotic worst case
remains the same. Thus, we now ask whether a diagnostic algorithm can
exploit structural features of diagnostic domains and cases to increase effi-
ciency.

1.4.2 The Structure of Complex Systems

Since structure in diagnostic knowledge bases derives from the systems being
diagnosed, structure must be present in the systems themselves. Although
we must be careful not to overgeneralize, complex systems typically share a
number of features. The feature that we identify and exploit in this thesis
is the fact that complex systems are often nearly decomposable. The notion
of near decomposability derives from Herbert Simon, who describes it as
follows [68, p. 209-210]:

In hierarchic systems we can distinguish between the interactions
among subsystems, on the one hand, and the interactions within
subsystems—that is, among the parts of those subsystems—on
the other. The interactions at the different levels may be, and
often will be, of different orders of magnitude. In a formal orga-
nization there will generally be more interaction, on the average,
between two employees who are members of the same department
than between two employees from different departments. In or-
ganic substances intermolecular forces will generally be weaker
than molecular forces, and molecular forces weaker than nuclear
forces.

In a rare gas the intermolecular forces will be negligible com-
pared to those binding the molecules—we can treat the individual
particles for many purposes as if they were independent of each
other. We can describe such a system as decomposable into the
subsystems comprised of the individual particles .... As a second
approximation we may move to a theory of nearly decomposable
systems, in which the interactions among the subsystems are weak
but not negligible.

In other words, near decomposability means that complex systems can of-
ten be subdivided into subsystems, where the behaviors of subsystems are
independent or only weakly dependent on one another.
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There are various explanations for why near decomposability should exist.
Simon proposes that nearly decomposable systems are more stable and hence
more likely to develop by evolution or by design [68]. But regardless of the
reason, it appears that many diagnostic domains are indeed nearly decompos-
able. Automobiles are composed of subsystems for ignition, steering, power
transmission, braking, and so on. In medical diagnosis, the human body is
divided into organ systems, such as those for the cardiovascular (heart), pul-
monary (lung), and renal (kidney) systems. Note that these subdivisions are
not completely decomposable, only nearly so. For example, many pulmonary
diseases cause shortness of breath, but so do many cardiovascular diseases.
Some diseases, such as systemic infections, affect multiple organ systems.
Nevertheless, near decomposability remains an important and widespread
organizing principle for complex systems.

1.4.3 Syndromic Structure in Knowledge Bases

To see how near decomposability in a system might manifest in a diagnostic
knowledge base, let us examine figure 1-4. The overall appearance of the
knowledge base, shown in figure 1-4(a), exhibits little structure. But the
structure becomes apparent if the knowledge base is represented as in fig-
ure 1-4(b). This representation is equivalent, containing all of the links that
are present in the original knowledge base. However, the links are organized
into syndromes, where a syndrome is composed of a conjunction of symptoms
and a disjunction of disorders. In a syndrome, any one of the disorders could
potentially explain all of the symptoms. The knowledge base can therefore
be represented as two syndromes instead of 17 causal links.

The two syndromes in this example are not completely decomposable.
They overlap in both symptoms and disorders, namely, at symptom s; and
disorder d3. But they are nearly decomposable to the extent that causal
links within each syndrome are relatively dense and between each syndrome
are relatively sparse. Thus, the syndromes interact relatively weakly, and
indicate that the knowledge base does indeed possess nearly decompositional
structure.

Since causal relationships are complex, there may be several ways to de-
compose a knowledge base. Figure 1-4(c) shows an alternative representation
that contains only a single syndrome, instead of two. This syndrome is pos-
sible because there exists a single disorder, namely ds, that can explain all
of the symptoms. This syndrome is not equivalent to the entire knowledge
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Figure 1-4 Near decomposability in a diagnostic knowledge base. (a) Original
knowledge base. (b) An equivalent representation with two syndromes. (c¢) An
alternate decomposition with one syndrome.
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base, since not all of the links are represented. However, it does express an
important organizing idea, namely, that all five symptoms share a common
possible cause.

The existence of several possible decompositions might be expected in a
real-world knowledge base. This is because complex systems are often con-
structed hierarchically, with subsystems at various levels of abstraction. A
low-level failure might cause only a few specific symptoms. On the other
hand, a high-level failure might cause several nonspecific symptoms. Levels
of abstraction are reflected in the knowledge base, which contains symptoms,
disorders, and causal links of varying specificity. A medical knowledge base
might have general, high-level disorders, such as “infection”, as well as spe-
cific, low-level disorders, such as “abscess”. Likewise, symptoms may range
from the general, such as “malaise”, to the specific, such as “elevated white
cell count”. Another reason for multiple decompositions is that domains
are often structured according to multiple criteria. For instance, medical
diseases are defined not only on the basis of organ system, but also on the
type of pathophysiologic process, such as infections, neoplasms, metabolic
defects, and so on. Consequently, there may be several ways to decompose a
diagnostic knowledge base, any one of which might be useful in a particular
case.

1.5 Decompositional Search

1.5.1 Clusters and Differential Diagnoses

We have seen that near decomposability is apparently characteristic of diag-
nostic domains and their associated knowledge bases. By extension, we hy-
pothesize that diagnostic cases should be decomposable to the same extent.
The decompositional structure in a case can may help reduce the complexity
of search. If diagnostic cases exhibit nearly decomposable structure, then
the evidence should should yield one or more plausible decompositions. The
idea of case-specific problem decomposition is the basis of the decomposi-
tional search approach.

A case-specific decomposition is called a problem decomposition. A prob-
lem decomposition assigns the positive symptoms in a case to separate clus-
ters. The structure of a decomposition appears in figure 1-5. We repre-
sent a decomposition using parentheses, each pair of parentheses enclos-
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igure 1-5 Sgr“ucture of a prpblem decomposition. A problem decomposition is
fferentials: alset of clusters, ®ach with a dqoﬁerential diagnosis.
do dy d
—ng a cluster. ,The decompé)sition shown in the figure can be written as
(s25356) (5132ﬁ§435). (Whe&?ﬁhe notation is clear, we will eliminate commas
within clusters.) A symptom may be in more than one cluster, so clusters
may overlap; however, by definition, each cluster must have at least one
symptom not in any other cluster. Associated with each cluster is a differen-
tial diagnosis (or differential, for short), a disjunctive set of disorders that can
explain all symptoms in that cluster. We represent differential diagnoses by
braces. In figure 1-5, {d;, dy} is the differential diagnosis for cluster (s2535¢).
This means that either d; or ds is a possible explanation for symptoms s,,
s3, and sg.
The cluster and differential diagnosis together comprise a task. Thus, a
task contains both a subproblem and a set of solutions to that subproblem.
A task is similar to a syndrome, except that a syndrome is a decomposable
subunit of a knowledge base, while a task is a decomposable subunit of a
diagnostic case. We refer to the differential corresponding to a cluster as
its associated differential, and to differentials that explain other clusters as
adjacent differentials.

1.5.2 Decompositions as Constraints

The clusters of a problem decomposition represent a set of assumptions, or
constraints, about the way the evidence can be explained. Symptoms in the
same cluster are assumed to be caused by the same disorder, while symp-
toms in different clusters are assumed to be caused by different disorders.
Thus, the structure of a problem decomposition represents a set of common-
ality and disjointness constraints. The commonality constraint states that
all symptoms in a cluster must be explainable by a single disorder. The
disjointness constraint states essentially that each cluster must be explain-
able by a “unique” disorder that does not explain another cluster. If these
constraints can be satisfied, the decomposition is coherent; otherwise, it is
incoherent.

The commonality and disjointness constraints define the differential diag-
noses for the decomposition. The process of computing differential diagnoses



1.5. DECOMPOSITIONAL SEARCH 27

(Fever,Cough) (Fever) (Cough)
Cold
Asth

(a) (b)

Figure 1-6 The concept of differential formulation. Differential diagnoses are
shown as shaded areas. (a) Differential diagnosis resulting from the decomposi-
tion (Fever,Cough). (b) Differential diagnoses resulting from the decomposition
(Fever) (Cough).

is called differential formulation; the basic process is illustrated in figure 1-6.
Here we have a Venn diagram of possible causes for symptoms. The possible
causes for Fever are Tb, Flu, and Mal; the possible causes for Cough are Tb,
Cold, and Asth. With two symptoms, only two problem decompositions are
possible: (Fever,Cough) and (Fever) (Cough). For (Fever,Cough), the com-
monality constraint means that the differential diagnosis contains only Tb,
the only explanation common to both symptoms. This situation is shown
in figure 1-6(a). On the other hand, for (Fever) (Cough), the commonality
constraint allows Tb, Flu, and Mal for the first cluster, and Tb, Cold, and
Asth for the second cluster. This situation is shown in figure 1-6(b). The
disjointness constraint removes Tb from both differentials because it can ex-
plain both clusters. Tb is removed from this decomposition because it is a
unifying explanation for both clusters, which argues against the existence of
two separate clusters.

Symptoms in a cluster therefore perform two functions: (1) they help de-
fine their associated differential via a commonality constraint, and (2) they
help define adjacent differentials via disjointness constraints. The commonal-
ity constraint is satisfied by taking the intersection of the possible causes for
each symptom in the cluster. Only those disorders can be in the differential
diagnosis.

The disjointness constraint is slightly more complicated. It is satisfied by
defining a justifying set for each cluster, a subset of symptoms in the cluster
that disorders in adjacent differentials are constrained not to explain. We
define a symptom as justifying its cluster if, for every adjacent differential,
it cannot be explained by all disorders in that differential. The intuition
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(Fever)

{Tb, Flu, Mal}

/\

(Fever, Cough) (Fever) (Cough)

{Tb} {Flu, Mal} {Cold, Asth}

Figure 1-7 Example of decompositional search. The first row shows the diagnosis
of Fever; the second row, of Fever and Cough.

behind this definition is that in order for a separate cluster to be warranted,
it must contain some symptom that cannot be explained by other clusters.
With this definition, we can now explain the disjointness constraint fully.
The disjointness constraint states that disorders in a differential cannot ex-
plain the justifying set in any adjacent cluster. Note that the definition of
differential is recursive. A differential is defined by the justifying symptoms
in adjacent clusters, and the justifying symptoms in a cluster are defined by
the differentials in adjacent differentials. Nevertheless, as we shall see in this
thesis, this recursive description is well defined and can be computed.

The commonality and disjointness constraints result in a set of differ-
ential diagnoses. For disorders not in a differential diagnosis, a problem
decomposition makes no hypothesis about their presence or absence. It only
hypothesizes the minimum disorders necessary to explain the symptoms, and
other disorders may in fact be present. A problem decomposition also makes
no hypothesis about causal relationships other than between a differential di-
agnosis and its associated cluster, so that a disorder that explains one cluster
may also explain some symptoms in another cluster.

Problem decompositions are synthesized by a search process. An exam-
ple of decompositional search for the previous example of fever and cough
is shown in figure 1-7. In this example, the first symptom, Fever, can only
be decomposed in one way. This yields the differential {Tb, Flu, Mal}. The
next symptom, Cough, can either be placed in the same cluster as Fever or
be assigned to its own cluster. If Fever and Cough are in the same cluster,
the differential is {Tb}. If Fever and Cough are in different clusters, the
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differentials for them are {Flu, Mal} and {Cold, Asth}, respectively. In this
search tree, both decompositions are coherent. But some decompositions
might not be coherent, because they posit a set of commonality and disjoint-
ness constraints that cannot be satisfied. Incoherency is signaled by one or
more differential diagnoses that are empty, meaning that no disorders could
meet the constraints. Such decompositions are pruned from the search tree.

1.6 Features of Decompositional Search

Since decompositional search is a new approach to diagnosis, it introduces
some new concepts to problem solving and representation. We now present
some of the major features of decompositional approach. Other features are
discussed in the final chapter.

1.6.1 Cartesian Product Representation

A problem decomposition represents a set of candidates in a compact Carte-
sian product representation. A problem decomposition hypothesizes the pres-
ence of at least one disorder in each differential. The set of disorders so chosen
explain the positive symptoms and is therefore a candidate. The total set
of candidates that can be chosen is equivalent to the Cartesian product of
the differentials. However, we interpret the answers as unordered sets rather
than ordered sets. For example, the decomposition in figure 1-5 represents
the following set of candidates:

{db dz} X {d3, da, d5} X {d(s, dz, ds} =

[dv, ds, dg], [dy,ds, dr], [dy, ds, ds],
[dv,da, dg], [dv,da,d7], [dy,da,ds],
[dl,d5,d6], [dl,d5,d7], [d17d5,d8],
[dQ,dg,d6], [d27d3,d7], [dQ,dg,dS],
[dg, d4, dﬁ], [dQ, d4, d7], [dQ, d4, dg],
da, ds, d], [da, ds, dr],  [da, ds, ds]

We refer to the left side of the equation as the implicit or Cartesian prod-
uct representation and to the right side as an explicit representation. The
explicit representation lists each candidate individually, while the implicit
one represents a set of candidates in a Cartesian product representation. Of
the two representations, the implicit one is more compact, requiring only
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space proportional to the sum of the differential sizes. In this case, the space
required is 2 4+ 3 4+ 3 = 8 disorders. The explicit representation, on the other
hand, requires space proportional to the product of the differential sizes. The
space required is 2 x 3 x 3 = 18 candidates, each of which contains 3 disorders.

By generating and transforming sets of candidates in implicit representa-
tion, decompositional search performs diagnosis at a more abstract level than
candidate generation. In candidate generation, each node in the search tree
represents an individual candidate. On the other hand, in decompositional
search, each node defines a set of candidates, defined by the commonality
and disjointness constraints of the problem decomposition. Thus, diagno-
sis in decompositional search is a process of manipulating constraints. The
constraints are posted and tested without having to compute the candidates
explicitly. The abstract strategy of manipulating constraints on candidates,
rather than the candidates themselves, enables decompositional search to
have a smaller search space and greater efficiency.

1.6.2 Causal Equivalence

A problem decomposition groups disorders into differential diagnoses. These
groupings essentially categorize disorders according to their ability to explain
the symptoms. For example, consider the decompositions in figure 1-5. Tb
is in one differential because it is the only disorder that can explain both
Fever and Cough. Flu and Mal are in the same differential because they can
explain Fever but not Cough. And Mal and Asth are in the same differential
because they can explain Cough but not Fever. We say that disorders that
explain the same subset of symptoms are causally equivalent.

Grouping by causal equivalence makes the search process less redundant.
We have seen redundant reasoning previously in our example of candidate
generation (figure 1-3). There, candidate generation could not detect that
the disorders Flu and Mal are causally equivalent. Thus, it duplicates the
same expansion and pruning sequence for each disorder. Likewise, candidate
generation cannot determine that [Flu,Cold|, [Flu,Asth], [Mal,Cold], and
[Mal,Asth] all have the same causal structure, explaining Fever and Cough
using the same configuration of causal links. In contrast, decompositional
search groups all of these candidates together. By grouping disorders that
are causally equivalent, decompositional search is able to make decisions for
a whole set of candidates at once and thereby avoids redundancy in its search
process.
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Problem Decomposition #1 p=0.61
Symptom Cluster 1 Symptom Cluster 2
Hematocrit less than 35 & Monocytes gtr than 800 i
Proteinuria gtr than 3 g/dl Abdominal pain
Headache severe Chills
Urea nitrogen 60-100 Anorexia
Creatinine 3-10 mg/dl Fever
Urine spec. grav. 1.008-1.014
i U
Differential Diagnosis Differential Diagnosis
Glomerulonephritis Acute 0.33 i Malaria 0.56 i
Art. Nephrosclerosis 0.31 Granulocytopenia 0.20
IgA Nephropathy 0.24 Renal Tuberculosis 0.12
Goodpasture Syndrome 0.04 Hepatosplenic Lymphoma 0.06
Renal Vasculitis 0.04 Histoplasmosis 0.05
Prog. Systemic Sclerosis 0.04 Hodgkins Disease 0.01
4 Y
< >

Figure 1-8 Output of a decompositional search system. This figure illustrates
a possible interface.

The notion of causal equivalence may not only facilitate efficiency, but
may also provide a potentially useful mode of problem solving. A problem
decomposition represents a possible structuring of the evidence and solutions.
Such a structuring may help a user understand the structure of a problem.
The output of a decompositional system might look something like figure 1-8.
This example contains two clusters, each of which has a separate differential
diagnosis. The first cluster contains symptoms and disorders related to a
renal disease, while the second contains symptoms and disorders related to
a separate infectious process. This structuring of the problem may facilitate
the user’s understanding of a diagnostic situation, more so than a listing of
plausible candidates. Thus, grouping by causal equivalence may be just as
important to our comprehension of a problem as it is to the computation of
an algorithm.
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1.7 Guide to the Thesis

This thesis develops the decompositional search approach through theory,
experiment, and analysis. Chapter 2 presents an extended example of de-
compositional search. Chapters 3 and 4 develop the theory behind decompo-
sitional search: first the “static” theory of problem decompositions, then the
“dynamic” theory of generating decompositions by a search process. These
chapters present a revised and expanded version of the ideas presented orig-
inally in [80, 81]. Given this theoretical background, we test the efficiency of
decompositional search empirically in chapter 5. These experimental results
are an expanded version of the results presented in [81, 84]. These results
are then analyzed in chapter 6, with particular attention to the role that
domain structure plays in diagnostic complexity. The analytical results in
this chapter extend the results of [82]. Chapter 7 extends decompositional
search to the probabilistic case. This chapter is an improved presentation
of the results in [83]. In the concluding chapter, we summarize our major
findings and place this work in perspective.
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Chapter 2

Example
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Most physicians attempt consciously or unconsciously to fit a
given problem into one of a series of syndromes. The syndrome
is a group of symptoms and signs of disordered function, related

to one another by means of some anatomic, physiologic, or
biochemical peculiarity . ... The diagnosis is greatly simplified if
a clinical problem conforms neatly to a well-defined syndrome,
because only a few diseases need be considered in the differential
diagnosis.

— Harrison’s Principles of Internal Medicine, 12th ed. (1991)

Decompositional strategies are often used in the real world. As Harrison’s
textbook of medicine [78, p. 3] observes, physicians often formulate plausible
symptom clusters and match them to known syndromes. In this chapter, we
consider a simple example, which also happens to be from clinical medicine.
This example uses a portion of the QMR knowledge base that has been sim-
plified to help contrast candidate generation and decompositional search.

2.1 The Problem

The knowledge base for this example, shown in figure 2-1, is taken from the
area of renal medicine, dealing with diseases of the kidney. It contains 4
symptoms, 16 disorders, and 32 causal links. The causal links are shown in
a table, which is representationally equivalent to a bipartite graph.

The symptom Cr indicates that the patient’s bloodstream has a high level
of creatinine, which is normally excreted by the kidneys. The symptom Bun
corroborates this finding, showing that the patient’s bloodstream has a high
level of urea, which should also be excreted by the kidneys. The symptom
Dehyd states that the patient is dehydrated, perhaps because the kidneys are
losing too much water or because the patient is not drinking enough. Finally,
the symptom Uo indicates that the patient’s urine output is abnormally low,
again suggesting some kidney dysfunction. In the table of causal links, an
‘X’ for a disease-symptom pair means that the disease is a possible cause for
the symptom. There are two diseases, Atn and Pra, that can each explain all
the symptoms, while the remaining 14 diseases can each explain only some
of the symptoms.
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Symptoms: Cr Serum creatinine 3 to 10 mg/dl
Bun Blood urea nitrogen 30 to 59
Dehyd Dehydration
Uo Urine output less than 400 ml/day

Disorders: Atn Acute tubular necrosis
Pra Prerenal azotemia
Lit Nephrolithiasis
Rcc Renal cell carcinoma
Pn Acute pyelonephritis
Ano Anorexia nervosa
Dm Diabetes mellitus
Mal Malaria
Pan Pancreatitis
Vol Hypovolemic shock
Prt Portal hypertension
Anl Analgesic nephropathy
Agn Acute glomerulonephritis
Sln Salt-losing nephritis
Tb Renal tuberculosis
Rta Renal tubular acidosis

Links: Atn | Pra | Lit | Rcc | Pn | Ano | Dm | Mal
Cr X X
Bun X X X
Dehyd | X X X | X | X
Uo X X X X X

Pan | Vol | Prt | Anl | Agn | S1n | Tb | Rta

Cr X | X X

Bun X X X | X X X X
Dehyd | X X X X X

Uo X X

Figure 2-1 Example knowledge base. Symptoms and disorders are listed in both
abbreviated and full forms. Causal links are represented in tabular form.
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[Atn] [Pra] [Anl] [Agn] [Tbl]

—F—f—f————F-
[Atn] [Pra] [Anl] [Agn] [Tb]

—~ [TbrAtn]
—~ [‘ThrPxral
- [Tb, Ano]
— [Tb, Dm]
—[Tb,Mall]

[Agn,Mal]

[Agn, Pan] - [Tb, Pan]
[Agn,Vol] [Tb,Vol] -
[Agn, Prt] ~[Tb, Prt]
Aga,rAnl] — [Th,-Anl]
[Agn, S1n] L. [Tb, S1n]~
[Atn]—|[-fani,atn] |||\{Agn,Anc] | [-Tb,Ane,Atn] |- [Eb,bm Atn} |- [Fb Mal Atn] [- {Tb,Pan Atn]
[Pra] —{Anl, Pra] [Agn,Dm] ~ETbrAne Pra] [ FerBmrPral - {ForMalPral — {FbPan;Pral
~[Anl,Lit] [Agn,Mal] | ~[Tb,Ano,Lit] ~[Tb,Dm,Lit] —~[Tb,Mal,Lit] ~[Tb,Pan,Lit]
~[Anl, Rcc] [Agn,Pan] | ~[Tb,Ano,Rcc] ~[Tb,Dm,Rcc] ~[Tb,Mal,Rcc] ~ [Tb, Pan,Rcc]
~[Anl, Pnl] [Agn,Vol] | ~[Tb,Ano,Pn] ~[Tb,Dm,Pn] ~[Tb,Mal,Pn] ~[Tb,Pan,Pn]
—[Anl,Agn] [Agn, Prt] | IFbrAnosAgn] —~[FbrBmrAgnl — [ThrMalAgn] ~{TbPanrAgn]
—[Anl, S1n] [Agn, Sln] | ~[TbrAno,S1in] - [T Bm,Sinl - [Th, Mal,Sin] - {ThrPan,S1n]
[Tb, S1n]

Figure 2-2 Candidate generation search tree for example. Dashed lines sepa-
rate each frontier of intermediate candidates. Arrows indicate the expansion of
intermediate candidate. Nonminimal candidates are shown crossed out.

2.2 Candidate Generation

The four symptoms can be solved by the candidate generation method, as
shown in figure 2-2. The end result of this method is the 33 minimal candi-
dates shown on the bottom row of the figure. Intermediate results, shown on
each preceding row, derive from considering each symptom sequentially. Each
intermediate node contains a minimal candidate that explains the symptoms
considered so far. If a candidate already explains the new symptom, the
candidate is kept as is. Otherwise, the candidate is expanded by creating a
new set of candidates, one for each possible cause of the new symptom. Each
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of these newly expanded candidates is then tested for minimality and pruned
if nonminimal.

For example, after symptoms Cr and Bun are processed, there are 5 min-
imal candidates: [Atn|, [Pral, [Anl], [Agn|, and [Tb]. The set of minimal
candidates does not change between the first and second symptoms. This is
because Cr is a more specific symptom than Bun. Only a few diseases can
give a high creatinine level, whereas many additional diseases can cause a
high urea nitrogen level. Thus, we say that Bun is more general than Cr, or
conversely, Cr is more specific than Bun.

The third symptom, Dehyd, illustrates redundancy in candidate genera-
tion. The candidates [Atn], [Pra], and [Anl] are not expanded, but kept as
one-disorder candidates. This is because the disorders Atn, Pra, and Anl are
each able to explain all three symptoms. However, the candidates [Agn| and
[Tb] are expanded, because they explain Cr and Bun but not Dehyd. They are
each expanded by the 10 possible causes for Dehyd, of which 3 are pruned.
The remaining candidates derived from [Agn| and those derived from [Tb] are
minimal. Thus, there are only two patterns of candidates at this point: (1)
single-disorder candidates, and (2) two-disorder candidates containing either
Agn or Tb, plus one of the disorders explaining Dehyd alone.

On the fourth symptom, Uo, candidate generation also exhibits redun-
dancy. The candidates [Atn] and [Pra] explain all four symptoms, so they
are kept unchanged. The candidate [Anl], however, does not explain Uo, so
it is expanded by the 7 possible causes for Uo. The next 8 candidates all
explain Uo, so they remain unchanged. Finally, the next 6 candidates all fail
to explain Uo, so they are expanded by the 7 possible causes for Uo. For
each of these candidates, only those containing Lit, Rcc, or Pn are minimal.
Those containing Atn, Pra, Agn, or Sln are pruned.

2.3 Decompositional Search

In decompositional search, the symptoms in our example can be explained
by five coherent decompositions, ranging from one to three clusters:

One cluster Two clusters Three clusters
(Cr,Bun,Dehyd,Uo) (Cr,Bun,Dehyd) (Uo) (Cr,Bun) (Dehyd) (Uo)
(Cr,Bun,Uo) (Dehyd)
(Cr,Bun) (Bun,Dehyd,Uo)
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(Cr)
{Atn, Pra,A:il,Agn,Tb}

(Cr,Bun)
{Atm.Pra,Anl, Agn, Tb}

R/’//;’Afzgﬁh\\\\\Adm

— T

(Cr,Bun, Dehyd) (Cr,Bun) (Dehyd) B
{Atn, Pra,Anl} {Agn,Tb} x {Ano,Dm,Mal,Pan,Vol,Prt,Sln} {Pn,Vol, Prt,
________ N — — — — — — — —_—
Adm Adm
R \

(Bun, Dehyd) (Cr, Uo) . (Bun) (Dehyd) (Cr, Uo)

R . Ad
F AN
Adj (Cr,Bun) (Dehyd Uo) \

(Bun, Dehyd) (Cr Uo,Bun)

(Bun) (Dehyd) (Cr,

N
(Cr,Bun, Dehyd, Uo) (Dehyd) (Cr,Uo,Bun) (Cr,Bun) (Dehyd) (Uo)
{Atn, Pra} | {Ano,Dm,Mal, Pan,Vol, Prt,Anl, S1ln} {Tb} x {Ano,Dm,Mal, Pan,Vo.
x {Agn} x {Lit,Rcc,Pn}
(Cr,Bun, Dehyd) (Uo) (Cr,Bun) (Bun,Dehyd,Uo)

Figure 9831} FeddhbReGoRal 288r&inice for example. DadRed 1Ag8y T83at65¢a6h
frontier of intermediate decompositions. Arrows indicate expansion of decompo-
sitions. Arrows are labeled according to the operator applied: C = covering, R
= restricting, Adj = adjoining, Adm = admixing, F = forward ambiguation, B =
backward ambiguation (not shown), and D = disambiguation. Incoherent decom-
positions are shown crossed out.

The search process that generates these decompositions is shown in figure 2-3.
We now trace the steps in this search process.

Symptom 1: High Serum Creatinine

The first symptom, Cr, can be decomposed in only one way, leading to the
following problem decomposition:

Decomposition la:
Cluster Common Causes Differential
| (cr) | Atn, Pra, Anl, Agn, Tb | Atn, Pra, Anl, Agn, Tb
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This decomposition contains one cluster and its corresponding differential
diagnosis. The set of common causes consists of diseases that satisfy the
commonality constraint, explaining all symptoms in a cluster. In this case,
the common causes consist of the five diseases that explain Cr. Since there
is only a single task, no disjointness constraints apply. Thus, the differential
is equivalent to the common cause set.

Symptom 2: High Blood Urea Nitrogen

The second symptom, Bun, can either be assigned to the existing cluster or
be placed in a new cluster. If we place it in the existing cluster, we obtain
the following decomposition:

Decomposition 2a:
Cluster  Common Causes Differential
’ (Cr,Bun) ‘ Atn, Pra, Anl, Agn, Tb ‘ Atn, Pra, Anl, Agn, Tb ‘

This decomposition contains one task, consisting of the cluster (Cr,Bun) and
the differential that explains it. The common causes are the five diseases
that explain both Cr and Bun. These diseases can be found by taking the
intersection of the causes for each symptom. As we noted before, Bun is more
general than Cr, because the possible causes for Bun are a superset of those
for Cr. Thus, the common causes remain unchanged. Since the possible
causes for Bun subsume (or cover) the common causes for (Cr), this process
is called covering. As before, since there is only a single task, the differential
equals the set of common causes.

The alternative assignment that might have been tried places Bun in a
new cluster. This process is called adjoining, and it gives rise to the following
decomposition:

Decomposition 2b (incoherent):

Cluster Common Causes Differential
(Cr) Atn, Pra, Anl, Agn, Tb
(Bun) Atn, Pra, Pn, Vol, Prt, | Pn, Vol, Prt, Sln, Rta
Ant, Agn Sln, Th, Rta

This decomposition has two tasks. The first task explains Cr, while the
second task explains Bun. The common cause sets for the two tasks are simply
the possible causes for Cr and Bun, respectively. However, the differentials
are now different from the common cause sets. The disjointness constraint
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excludes some disorders from each differential, shown crossed out in each
common causes set. The disjointness constraint removes disorders that are
unifying, essentially those that explain two or more clusters. In this case,
all of the explanations for (Cr) also explain (Bun). Thus, all of the potential
explanations for (Cr) are removed, leaving no disorders in the differential
for (Cr). The empty differential for (Cr) means that the decomposition is
incoherent and can be pruned. Incoherency means that a decomposition
posits commonality and disjointness constraints that cannot be satisfied.

The decompositional search algorithm actually did not generate decom-
position 2b, because it could foresee that it would be incoherent. When the
algorithm created decomposition 2a, it realized that the possible causes for
Bun subsume the common causes for (Cr). Thus, placing Bun in its own clus-
ter would have created a common causes set that subsumed another common
causes set, resulting in an empty differential. In general, then, when covering
is possible, no other assignment for a symptom need be considered.

Symptom 3: Dehydration

The third symptom, Dehyd, gives us the same option as before: assignment
either to the existing cluster or to a new cluster. There are 10 possible causes
for Dehyd. This time, covering is not possible because the possible causes
for Dehyd do not subsume the common causes for (Cr,Bun). Instead, when
we place Dehyd in the cluster (Cr,Bun), the set of common causes for that
cluster becomes smaller. This process is called restricting, as opposed to cov-
ering. The resulting decomposition contains three disorders in its differential,
instead of five:

Decomposition 3a:
Cluster Common Causes Differential
’ (Cr,Bun,Dehyd) ‘ Atn, Pra, Anl ‘ Atn, Pra, Anl ‘

Because covering was not possible, other assignment operators are per-
formed. A second decomposition is created by adjoining the new symptom.
This gives the decomposition (Cr,Bun) (Dehyd), containing two tasks:

Decomposition 3b:
Cluster ~ Common Causes Differential

(Cr,Bun) | Atn, Pra, Anl, Agn, Tb | Agn, Tb

(Dehyd) | Atm, Pra, Ano, Dm, Mal, | Ano, Dm, Mal, Pan, Vol, Prt, Sln
Pan, Vol, Prt, Arl, Sln
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Again, differentials are formulated by removing unifying explanations for
both common cause sets. The two differentials are non-null, so this de-
composition is coherent. This decomposition hypothesizes the presence of a
disorder from each differential diagnosis: either Agn or Tb, plus one of the
disorders explaining Dehyd alone.

In addition to covering, restricting, and adjoining, there is a fourth way
to create a decomposition, called admixing. This operator places the new
symptom in its own cluster along with one symptom that has been previously
assigned. The preconditions for a previously assigned symptom to admix
with a new symptom is that the previously assigned symptom must restrict its
cluster. In this case, the symptom Cr restricts the cluster (Cr,Bun), because
removing it yields cluster (Bun), which has more common causes. Admixing
Dehyd with Cr therefore gives the decomposition (Bun) (Cr,Dehyd).

Decomposition 3c (incoherent):
Cluster Common Causes Differential

(Bun) Atn, Pra, Pn, Vol, Prt, | Pn, Vol, Prt, Agn, Sln, Tb, Rta
Anl Agn, Sln, Tb, Rta
(Cr,Dehyd) | Atn, Pra, Ant

This decomposition yields a null differential for the cluster (Cr,Dehyd), so
this decomposition is incoherent and can be pruned.

Symptom 4: Low Urine Output

At this point, we have two coherent decompositions, (Cr,Bun,Dehyd) and
(Cr,Bun) (Dehyd), with which to incorporate the fourth symptom, Uo. We
consider each decomposition separately. For the first decomposition, cover-
ing is not possible because the causes for Uo do not subsume the common
causes for (Cr,Bun,Dehyd). Thus, decompositions are created by restricting,
adjoining, and admixing operators. Restriction gives the following decompo-
sition:

Decomposition 4a:

Cluster Common Causes Differential

’ (Cr,Bun,Dehyd,Uo) ‘ Atn, Pra ‘ Atn, Pra ‘

The differential contains the two diseases that explain all of the symptoms.
A second decomposition, (Cr,Bun,Dehyd) (Uo), is created by the adjoining
operator:
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Decomposition 4b:

Cluster Common Causes Differential

(Cr,Bun,Dehyd) | Atan, Pra, Anl Anl

(Uo) Atn, Pra Lit, Rcc, | Lit, Rec, Pn, Agn, Sln
Pn, Agn, S1ln

Third, we can admix Uo with Cr, which restricts its cluster, to initially
create the following decomposition:

Decomposition 4c:

Cluster Common Causes Differential
(Bun,Dehyd) | Atm, Pra, Vol, Prt, Anl, Sln | Vol, Prt, Anl, Sln
(Cr,Uo) Atn, Pra, Agn Agn

However, a second step, called ambiguation can now be performed. Note that
Bun covers the adjacent cluster, (Cr,Uo). This means that all of the common
causes for that cluster also explain Bun. Hence, Bun could be explained at
least as well by the new cluster. If we copy Bun to the new cluster we obtain
the following decomposition:

Decomposition 4c’:

Cluster Common Causes Differential
(Bun,Dehyd) | Atn, Pra, Vol, Prt, Anl, Sln | Vol, Prt, Anl, Sln
(Cr,Bun,Uo) | Atn, Pra, Agn Agn

Note that the common causes and differential have not changed. The symp-
tom Bun has been tentatively ambiguated and now appears in two clusters.
The meaning of an ambiguous symptom is that it has become general enough
to cover more than one cluster.

At this point, we have copied Bun to a new cluster, but have not de-
termined whether it should remain in its previous cluster. So a third step,
called disambiguation, determines whether any previous assignments of am-
biguous symptoms are still warranted. An ambiguous symptom should cover
multiple clusters, but Bun restricts its previous cluster, (Bun,Dehyd), so that
it should not remain in two clusters. We prefer to remove Bun from the
cluster it restricts, so that additional common causes from that cluster are
freed. The disambiguation step therefore changes the decomposition from
(Bun,Dehyd) (Cr,Bun,Uo) to (Dehyd) (Cr,Bun,Uo):



2.3. DECOMPOSITIONAL SEARCH 43

Decomposition 4c”:

Cluster Common Causes Differential
(Dehyd) Atn, Pra, Ano, Dm, Mal, | Ano, Dm, Mal, Pan,

Pan, Vol, Prt, Anl, Sln | Vol, Prt, Anl, Sln
(Cr,Bun,Uo) | Atn, Pra, Agn Agn

Overall, the common causes and differential for (Dehyd), which was previ-
ously (Bun,Dehyd), have been increased, while the common causes and differ-
ential for (Cr,Bun,Uo), previously (Cr,Uo), are unchanged. The total effect of
ambiguation and disambiguation has been to free the unnecessary constraint
of Bun on the first cluster. An unnecessary constraint occurs when a symp-
tom restricts its current cluster but could be assigned to another cluster that
it covers. In this case, assigning Bun to the first cluster posts an unnecessary
constraint because Bun restricted that cluster but covered the second clus-
ter. Ambiguation and disambiguation remove that constraint by effectively
moving Bun from the first cluster to the second.

So far, we have fully expanded the decomposition (Cr,Bun,Dehyd). The
remaining decomposition, (Cr,Bun) (Dehyd), can also be expanded by Uo to
produce decompositions. Uo can restrict (Cr,Bun) to give the decomposition
(Cr,Bun,Uo) (Dehyd). However, this decomposition was already generated by
the admixing operator, followed by ambiguation and disambiguation, namely,
decomposition 4¢”. We need not compute the differentials for this decompo-
sition again. This example indicates that a decomposition can be generated
by more than one path.

Uo can also restrict the second cluster, (Dehyd), to give the decomposition
(Cr,Bun) (Dehyd,Uo). This decomposition qualifies for ambiguation because
Bun covers the new cluster. However, it does not qualify for disambiguation
because Bun does not restrict its current cluster (Cr,Bun). The restricting
and ambiguation steps yield the following decomposition:

Decomposition 4d:

Cluster Common Causes Differential
(Cr,Bun) Atn, Pra, Anl, Agn, Tb | Anl, Agn, Tb
(Bun,Dehyd,Uo) | Atn, Pra, Sln Sln

Without ambiguation, we would obtain two coherent decompositions,
(Cr,Bun) (Dehyd,Uo) and (Cr) (Bun,Dehyd,Uo), with the same common cause
sets and differentials. Ambiguation avoids the arbitrary placement of Bun by
assigning it to both clusters. The decompositional search algorithm checks
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for two types of ambiguation. Forward ambiguation occurs whenever a previ-
ously assigned symptom covers the newly modified or created cluster. Back-
ward ambiguation occurs whenever the new symptom covers more than one
existing cluster. In this case, the assignment of Bun to the new cluster was
an instance of forward ambiguation.

In addition to restriction, the new symptom can be adjoined to give the
decomposition (Cr,Bun) (Dehyd) (Uo):

Decomposition 4e:
Cluster  Common Causes Differential

(Cr,Bun) | Atm, Pra, Ant, Agn, Tb | Tb

(Dehyd) | Atm, Pra, Ano, Dm, Mal, | Ano, Dm, Mal, Pan, Vol, Prt
Pan, Vol, Prt, Anl, Sin
(Uo) Atn, Pra, Lit, Rcc, Lit, Rcc, Pn
Pn, Agn, Sln

This is an example of a three-task decomposition. Differentials are computed
by removing unifying explanations, those disorders that are shared by two
or more common cause sets. The resulting decomposition explains the four
symptoms by positing one disorder from each of the three differentials.

Finally, Uo can be admixed with Cr, which restricts its cluster, (Cr,Bun).
This would give the decomposition (Bun) (Dehyd) (Cr,Uo). But Bun covers
the cluster (Cr,Uo), so ambiguation would give the decomposition

(Bun) (Dehyd) (Cr,Bun,Uo).

However, Bun restricts its previous cluster, (Bun), because the common causes
for an empty cluster is defined to be the universe of all disorders. The
disambiguation step therefore removes Bun from that cluster, yielding the
decomposition

() (Dehyd) (Cr,Bun,Uo).

Since null clusters are disallowed, this decomposition is syntactically invalid.
Thus, this decomposition is incoherent and can be pruned.

2.4 Comparing the Algorithms

Despite their differences, candidate generation and decompositional search
are closely related. In fact, decompositional search can be seen as a way of
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shows the minimal candidates produced by candidate generation and the coherent
problem decompositions produced by decompositional search. Arrows link each
decomposition with the group of minimal candidates that it entails.

generating minimal candidates. A problem decomposition posits the presence
of at least one disorder from each differential. The set of all such combinations
can be obtained by taking the Cartesian product of the differentials. The
result is called the candidate set for the given decomposition.

For instance, we can compute the candidate set for decomposition 4e as
follows:

{Tb} x {Ano, Dm, Mal, Pan, Vol, Prt} x {Lit, Rcc, Pn} =

[Tb,Ano,Lit], [Tb,Ano,Rcc|, [Tb,Ano,Pn],
[Tb,Dm,Lit|, [Tb,Dm,Rcc|, [Tb,Dm,Pn],
[Tb,Mal,.Lit], [TbMalRcc|, [Tb,Mal,Pn,
[Tb,Pan,Lit], [Tb,Pan,Rcc], [Tb,Pan,Pn],
[Tb,Vol,.Lit], [Tb,Vol,Rcc], [Tb,Vol,Pn,
[Tb,Prt,Lit], [Tb,Prt,Rcc], [Tb,Prt,Pn]

The same expansion for the other decompositions is shown in figure 2-4.
This figure shows the close relationship between candidate generation and
decompositional search. In this case, decompositional search produces the
same set of minimal candidates as candidate generation.

The figure shows that problem decompositions represent a set of candi-
dates in a compact form, grouping candidates that behave identically in the

(Cr,Bun) (Dehyd) (Uo)
{Ano,Dm,Mal, Pan,Vol, Prt
x {Lit,Rcc,Pn}
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candidate generation search tree. Therefore, decompositional search avoids
much of the redundant reasoning performed in candidate generation. De-
compositional search avoids redundancy because it groups disorders that are
causally equivalent with respect to the given symptoms. Consequently, it
avoids much of the combinatorial inefficiency of candidate generation.



Chapter 3

Problem Decomposition

47



48 CHAPTER 3. PROBLEM DECOMPOSITION

Philosophers of science have repeatedly demonstrated that more
than one theoretical construction can always be placed upon a
given collection of data.

— Thomas Kuhn, The Structure of Scientific Revolutions (1970)

The basic construct of decompositional search is a problem decomposition.
To paraphrase Kuhn [34, p. 76], problem decompositions are alternatives to
candidates as constructions that can be placed on a given set of evidence. In
this chapter, we provide a theoretical grounding for using problem decompo-
sitions as a framework for diagnostic problem solving.

3.1 Preliminaries

3.1.1 Diagnostic Problems

We begin by defining diagnostic knowledge bases and diagnostic cases. A
diagnostic knowledge base KB is a triple, (Up, Ug, L), containing a universal
set Up of disorders, a universal set Ug of symptoms, and a set L of causal
links. A causal link is a pair, (d,s), containing a disorder d € Up and
a symptom s € Us. A disorder d explains symptom s if there exists a
causal link (d,s) € L between them. Notationally, we denote the fact that
d explains s, or equivalently that (d,s) € L, by “d — s”. We denote the
opposite situation, when d does not explain s ({(d,s) € L), by “d — s”".
A causal link signifies that a disorder is a possible cause (or equivalently, a
possible explanation) for a symptom.

Diagnostic knowledge bases provide the domain knowledge to diagnose a
particular case. A diagnostic case is a pair, (P, N), where P C Uy is a set of
positive symptoms, and N C Uy is a set of negative symptoms. The positive
symptoms are symptoms that we wish to explain, while the negative symp-
toms provide information to help support or disprove proposed explanations.
The positive symptoms P and negative symptoms N are exclusive but not
exhaustive subsets of Ug. In other words,

PNAN = 0
PUN C Ug

This means that a symptom in Ug is either positive, negative, or neither, in
which case we consider that the value of the symptom is unknown. The input
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to a diagnostic problem solver consists of a diagnostic knowledge base, rep-
resenting domain knowledge, and a diagnostic case, representing a particular
behavior that we wish to explain.

3.1.2 Causation and Explanation

In diagnosis, we are not concerned with individual causal links as much as
the set of disorders that can cause a given symptom. This is called the set
of possible causes for a symptom:

Causes(s) = {deUp | d— s} (3.1)

The goal of decompositional search is to explain not individual symptoms,
but sets of symptoms. We say that a disorder d ezplains a set S of symptoms
if d explains every symptom in .S. Notationally, we express this as “d — S”.
The set of disorders that explains a set of symptoms is called the set of
common causes for a set of symptoms:

Causes(S) = {deUp | Vse€ S. d — s} (3.2)

Despite the similar mathematical notation, we use the term “possible cause”
for a singleton symptom, but for a set of symptoms, we use the term “common
causes”. We can compute the common causes for a set of symptoms by taking
the intersection of the possible causes for each symptom in the set:

Causes(S) = [ Causes(s) (3.3)

SES

In decompositional search, we deal not only with sets of symptoms but
also sets of disorders. We say that a set D of disorders disjunctively explains
a symptom s if each disorder in D explains s. Likewise, we say that a set D
of disorders disjunctively explains a set S of symptoms if each disorder in
D explains every symptom in S. We express these events by the notation
“D - ¢ and “D — S7, respectively. We use the term “disjunctive” to
contrast this notion from that in candidate generation where a candidate H
hypothesizes that all disorders in H are present. We say that H conjunctively
explains S, represented as H 2, S. The distinction between disjunctive
and conjunctive explanation holds only for disorders. When we speak about
explaining a set of symptoms, we always mean that every element in that
symptom is explained.
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A simple test to determine whether a set of disorders disjunctively ex-
plains a symptom or set of symptoms is provided by the following theorem.

Theorem 1 A set D of disorders disjunctively explains a symptom s if and
only if D C Causes(s). Likewise, a set D of disorders disjunctively explains
a set S of symptoms if and only if D C Causes(S).

Proof The quantity Causes(s) contains all disorders that can explain s. If
D is a subset of Causes(s), then all disorders in D can explain s; otherwise,
some disorder in D cannot explain s. This argument also holds when S is
substituted for s. N

This theorem tells us that a symptom is disjunctively explained by a set D of
disorders if its set of possible causes subsumes D. Likewise, a set of symptoms
is disjunctively explained by D if its set of common causes subsumes D.

3.2 Problem Decompositions

3.2.1 A Set of Symptom Clusters

Having considered sets of symptoms, we now define the main construct of
decompositional search: the problem decomposition, which is essentially a
collection of sets of symptoms.

Definition 1 A problem decomposition C for a set P of positive symptoms
is a collection of subsets of P (called clusters) such that

1. FEvery positive symptom s € P appears in some cluster C' € C, and
2. Fach cluster in C must have a symptom s not in any other cluster.

The intuition for the above definition is that a decomposition represents a
structure in which every cluster has a separate disjunctive explanation. The
first condition ensures that every positive symptom is explained. The second
condition helps ensure that each cluster is necessary. If a cluster does not
have a unique symptom s, then all symptoms in that cluster would already
be explained by virtue of their presence in other clusters.
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(s7) Or (s153) (sp) Or (s0S3)

Causes(sq) Causes(so)

Causes(sg)

Figure 3-1 The concept of ambiguity. This figure shows the decomposition
(s1) (s2). Symptom s3 could be assigned to either cluster equally well.

Example Consider a case with four positive symptoms: s, s9, s3, and
s4. Then (s15953) (s154) is a decomposition, because it contains all positive
symptoms and each cluster has a unique symptom. However, (s153) ($153)
is not a decomposition, because it does not contain symptom s;. Moreover,
(s18253) (s154) (8254) is not a decomposition, because the third cluster lacks
a symptom that does not appear in the first or second cluster. [}

3.2.2 Ambiguous and Instantiated Decompositions

A problem decomposition is similar to a partition of symptoms, except that
in a partition every symptom in a cluster must be unique to that cluster.
In contrast, a problem decomposition allows symptoms to appear in more
than one cluster, as long as at least one symptom in each cluster is unique.
We allow non-unique assignments of symptoms because a symptom may be
explained equally well by more than one cluster. When this occurs, we say
that the symptom is ambiguous with respect to the decomposition. For
instance, consider the example shown in figure 3-1. Here we show a Venn
diagram representation of three symptoms, where symptoms s; and sy are
placed in separate clusters. There is no clear preference for placing ss in
either of these clusters. A representation based on partitions would force
us to place sz in each cluster, resulting in two partitions: (s1s3) (s2) and
(s1) (s2s3). But a representation based on decompositions places sz in both
clusters to signify its ambiguous assignment: (s1s3) (s253).

A symptom can be assigned ambiguously if it subsumes the common cause
set of more than one cluster. A decomposition that contains an ambiguous
assignment is called an ambiguous decomposition. Otherwise, if it contains
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no ambiguous assignments, it is an instantiated decomposition. An ambigu-
ous decomposition represents a set of instantiated decompositions. These
instantiations can be computed by trying every possible assignment of the
ambiguous symptoms.

Example Consider the ambiguous decomposition (s152) (S15354) (S15385).
Then s; is ambiguous, having assignments in all three clusters. Symptom s3
is also ambiguous, having assignments in the second and third clusters. By
choosing all possible combinations of these assignments, we can compute the
instantiations of C:

(5152)(8384)(85), (S2)(s15354)(55), (52)(5354)(5185),

(5152)(84)(8385), (S2)(s154)(8355), (52)(54)(518385) i

Since by definition each cluster has at least one symptom not in any other
cluster, each cluster has at least one unambiguous symptom. Therefore, the
instantiation procedure is guaranteed not to produce any null clusters.

When a symptom is in several clusters, this does not mean that it is actu-
ally caused by every associated differential, but by at least one of them. From
the standpoint of explaining the symptoms, these differentials are equivalent,
and the exact causal relationship is not a critical decision.

3.3 Differential Diagnoses

3.3.1 Commonality and Disjointness Constraints

A problem decomposition assigns the given positive symptoms into clusters
and explains each cluster separately. Each cluster of symptoms is assumed
to be caused by a separate disorder. As we have mentioned previously, the
list of such disorders is called the differential diagnosis for that cluster, or
differential for short. We denote the differential for cluster C' as Diff(C).
Informally, when we speak about cluster C, we shall refer to Diff(C) as its
“associated” differential, and other differentials Diff(C"), where C" # C, as
“adjacent” differentials. Conversely, when we are speaking about differential
Diff(C'), we shall refer to C' has its “associated” cluster, and to C’ # C as
“adjacent” clusters.

While the cluster and differential diagnosis make up the structure of a
decomposition, the contents are determined by two types of constraints. A
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commonality constraint ensures that each cluster must be explainable by a
single disorder. A disjointness constraint ensures that each cluster is justified
because it cannot be explained fully by an adjacent differential.

The commonality constraint is easy to test. The set of disorders that can
explain a cluster is simply the set of common causes for that cluster.

Definition 2 A disorder d satisfies the commonality constraint for cluster

C if d € Causes(C).

The disjointness constraint is a bit more complicated. This constraint
is satisfied when a disorder cannot explain the “justifying” set of symptoms
in any adjacent cluster. In turn, a justifying symptom, or justification, is a
symptom that cannot be explained by an adjacent differential. If a cluster has
such a symptom, then its existence is “justified” because no other differential
can explain the cluster. We refer to the justifications of a cluster as Just(C).

Definition 3 A disorder d satisfies the disjointness constraint for cluster
C' if for every other cluster C' # C, d does not explain the justifications
Just(C") for that cluster.

Definition 4 A symptom s in cluster C' is a justification for that cluster if
for every other cluster C" # C', s is not explained by the differential Diff(C”)
for that cluster.

The two definitions are similar in that they state that a causal relationship
does not hold. However, the first definition states that an individual disorder
cannot explain a set of justifying symptoms, while the second definition states
that a set of disorders cannot explain an individual justifying symptom. In-
tuitively, the justification set of a cluster is its “core”, the part that cannot
be explained by any other differential, either collectively or individually.

3.3.2 Definition of Differential Diagnoses

The commonality and disjointness constraints are useful not only to deter-
mine whether a decomposition is plausible, but also define solutions to that
decomposition. These solutions are in the form of a differential diagnosis,
a set of disorders that satisfy the commonality and disjointness constraints
for a cluster. The definition of differential diagnoses is slightly complicated
by the fact that it is recursive: differentials are used to define justifications,
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which in turn, are used to define differentials. We can see the recursion
explicitly if we combine definitions 2, 3, and 4:

vC" e C —{C}.
i e C.

Diff(C) = <d € Causes(C) (d — s")A

vC" e C —{C"}.
(DifE(C") - )

In other words, we define a differential as those disorders that explain their
own cluster but cannot explain, either individually or disjunctively, the jus-
tifying symptoms in any other cluster. Recursive definitions can often fail
to make sense. However, the next theorem indicates that differentials are
indeed well-defined.

Theorem 2 Given a decomposition C, for each cluster C' € C there exists
a unique set of disorders that satisfy the commonality and disjointness con-
straints for C.

Proof Suppose that there exists a set of differentials Diff4(C), for C' €
C, that satisfies the constraints and there exists another set of differentials
Diff5(C), for C' € C that also satisfies the constraints. For the each set of
differentials, there is a corresponding set of justification sets, Just(C') and
Justg(C'), respectively, for C € C. We will argue by reductio ad absurdum
that for all C' € C, Diff5(C) = Diffg(C).

Suppose this statement is false. Then a cluster C' exists such that either
Diff4(C') has some disorder d not in Diff5(C) or vice versa. Without loss of
generality, let us assume that Diff5(C') has some disorder d; not in Diff4(C').
Then an infinitely long argument follows:

1. As stated previously, a cluster C' exists such that Diff5(C') has a disor-
der d; not in Diff4(C).

2. Then a cluster C" exists such that d; does not explain Justz(C’), but
d; does explain Just4(C"). Hence, there is a symptom s; in Justg(C”)
(which d; does not explain) that is not in Justa(C").

3. Then a cluster C” exists such that Diff5(C”) does not explain sq, but
Diff4(C") does explain s;. Hence, there is a disorder dy in Diffg(C")
(which does not explain s;) that is not in Diff4(C").
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4. Then a cluster C"” exists such that dy does not explain Justz(C”), but
d; does explain Just 4(C""). Hence, there is a symptom sg in Justg(C")
(which dy does not explain) that is not in Just4(C").

5. [and so on]

If our supposition were true, this argument must continue infinitely. At
cach step, either a justification set Justp(C) or a differential Diffg(C) for
the second set of differentials grows. But eventually this process must stop
because the justification set for a cluster C' cannot be larger than C' and
because the differential for C' cannot be larger than Causes(C'). Hence at
some point, the line of reasoning must fail and so the initial supposition
must be false. N

Thus, differential diagnoses are well defined by the commonality and dis-
jointness constraints. But a well defined set of constraints does not mean that
they are satisfiable. In applying the constraints, one or more differentials may
be empty. When this occurs, the common and disjointness constraints can-
not be satisfied, and we say that the decomposition is incoherent. Otherwise,
if all differential diagnoses are nonempty, the decomposition is coherent.

Definition 5 A decomposition C is coherent if, for every cluster C in C,
there exists a nonempty differential for C. Otherwise, it is incoherent.

Coherency provides a criterion for plausibility of a given decomposition. If a
decomposition imposes a satisfiable set of constraints, it is plausible; other-
wise, it is implausible. Coherency can be used as a plausibility criterion to
prune decompositions from a search tree, in the same way that minimality
is used to prune candidates in candidate generation.

3.4 Differential Formulation

The definitions above cannot be used in an algorithm until they are converted
from their declarative form into a procedural form. We now present an
procedure for formulating differential diagnoses.

3.4.1 Exclusion Sets and Unifying Disorders

To assist us, we first develop two computational constructs to be used as
intermediate quantities in the differential formulation algorithm. The first
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Figure 3-2 Justification and exclusion sets. This figure shows the relationship
between the cluster, justification set, exclusion set, and common causes set. The
justification set is a subset of its cluster, so the exclusion set is a superset of the
common causes set for the cluster.

computational construct is the exclusion set. By Definition 3, a justification
set cannot be explained by any disorder in an adjacent differential diagnosis.
We define the disorders that can explain a justification set for a cluster as its
exclusion set. The exclusion set for cluster C' is simply the set of common
causes for the justification set of C"

Excl(C) = (1 Causes(s) (3.4)
seJust(C)

Note that since the justification set is a subset of its cluster, the exclusion
set will be a superset of the common causes for the cluster. This relation is
shown in figure 3-2. The exclusion set specifies those disorders that cannot
be in an adjacent differential. The use of this construct is expressed in the
following theorem.

Theorem 3 A disorder d satisfies the disjointness constraint for cluster C
i decomposition C if and only if d is in the exclusion set for no more than
one cluster in C.

Proof (=) If d satisfies the disjointness constraint for cluster C, then d
cannot, explain the justification set for any adjacent cluster C’" # C'. Hence,
d cannot be in the exclusion set for C’. However, d must be in the exclusion
set for C' because Just(C) is a subset of C. Thus, d is in the exclusion set
for exactly one cluster in C.
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Algorithm 1 (Duplicates)

Procedure DUPLICATES (Collection A of sets)

1 Initialize the elements seen: Seen « ()

2 Initialize the duplicate elements: Duplicates < ()

3 For each set A in A do

4 For each element a in A do

5 If the element was seen before [a € Seen| then

6 The element is duplicate: Duplicates «— Duplicates U {a}
7 The element has been seen: Seen « Seen U {a}

8 Return the duplicate elements: Duplicates

Figure 3-3 Algorithm for duplicate elements. This algorithm finds the duplicate
elements in a collection of sets.

(<) If d is not in the exclusion set for cluster C”, then d does not explain
the justification set Just(C”) for that cluster. If this holds for all clusters
C" except for possibly one cluster C, then d satisfies the definition for the
disjointness constraint. W

This theorem shows that we can use exclusion sets to remove disorders
from adjacent differentials. We could therefore remove disorders by subtract-
ing each exclusion set from each differential. This would require O(|C|?) time,
where |C| is the number of clusters in decomposition C.

But Theorem 3 also suggests a way to reduce this process to O(|C|) time.
It suggests that we remove disorders contained in two or more exclusion sets.
Since these disorders explain the justification sets of more than one cluster,
we call these disorders the unifying disorders for a decomposition; this is our
second computational construct.

The unifying disorders can be computed with the aid of a function to
compute duplicate elements from a collection of sets. Let A be a collection
of sets A, and let a represent an element of A. Then the duplicates function
is

DUPLICATES(A) = {a | JA, A € A (A£A)AN(a€e A)A(ae A)}

One implementation of this function is given in figure 3-3.
With this function, the set of unifying disorders is simply the duplicate
disorders in the exclusion sets of the decomposition. Let the set of exclusion
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sets be denoted by
ExclSets(C) = {Excl(C) | C €C}
Then the set of unifying disorders is simply
Unifying(C) = DupLICATES(ExclSets(C))

This process essentially finds the duplicate elements among a set of exclusion
sets. Once the unifying disorders are computed, we can enforce the disjoint-
ness constraints by removing the unifying disorders from each differential.

Ironically, one would think that diagnosis should be a process of finding
unifying explanations, rather than discarding them. However, decomposi-
tional search does retain unifying explanations, but only when the symptoms
they explain are in the same cluster. When the symptoms are divided into
different clusters, a unifying disorder argues against having separate causes
for them. In that context, the unifying disorder is removed.

3.4.2 Algorithm for Differential Formulation

With the exclusion set and unifying disorder set defined, we now present the
algorithm for differential formulation in figure 3-4. This algorithm begins by
initializing the justification set, exclusion set, and differential for each cluster.
Then, it computes the unifying disorders as defined above and subtracts them
from each differential. It computes a new justification set for each cluster. If
the new justification set is different from the old one, its exclusion set is re-
computed and a flag is set, indicating that a justification set has been altered.
Finally, if no justification sets were altered, the algorithm halts and returns
the coherent decomposition, along with its differential diagnoses. Otherwise,
if a justification was altered, the algorithm performs another iteration of the
above steps, beginning with the unifying disorders. Along the way, if any
differentials or justification sets are found to be empty, the decomposition is
incoherent, and the algorithm terminates.

The correctness of this algorithm is expressed by the following theorem.

Theorem 4 Algorithm 2 terminates. Moreover, it returns C if and only if C
15 coherent. Finally, the differentials satisfy the commonality and disjointness
constraints of C.
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Algorithm 2 (Differential Formulation)

Procedure FORMULATE-DIFFERENTIALS (Decomposition C)
1 Initialize the unifying disorders: Unifying(C) « 0
2 For each cluster C' in decomposition C do
3 Initialize its justifications: Just(C) « C
4 Initialize its exclusion set: Excl(C') « Causes(C)
5 Initialize its differential: Diff(C') < Causes(C)
6 Return FORMULATE-DIFFERENTIALS-AUX(C)

Procedure FORMULATE-DIFFERENTIALS-AUX (Decomposition C)

7 Find the unifying disorders: Unifying(C) < DUPLICATES(ExclSets(C))
8 For each cluster C' in decomposition C do
9 Remove the unifying disorders: Diff(C') « Diff(C') — Unifying(C)
10 If the differential, Diff(C'), is empty then
11 Return “incoherent”
12 Initialize a flag for altered justification sets: Altered? «— nil
13 For each cluster C' in decomposition C

14 Remove justifications that are explained by adjacent differentials:
NewlJust « {s € Just(C) | VC" € C — {C}. Diff(C") - s}

15 If the new justification set, NewJust, is empty then

16 Return “incoherent”

17 Else if the new justification set is altered [NewJust # Just(C')| then

18 Store the new justification set: Just(C') « NewJust

19 Revise the exclusion set: Excl(C) « Nyejyst(c)Causes(s)

20 Set the altered justification flag: Altered? « t

21 If the altered justification flag, Altered?, is nil then

22 Return the decomposition C

23 Else if the altered justification flag, Altered?, is t then

24 Return FORMULATE-DIFFERENTIALS-AUX(C)

Figure 3-4 Algorithm for differential formulation. This algorithm contains a
main procedure that initializes variables and a recursive procedure that performs
the actual computation.



60 CHAPTER 3. PROBLEM DECOMPOSITION

Proof The algorithm terminates because the justification sets and differ-
ents both are monotonically nonincreasing in size. Hence, they must either
reach a fixed point, at which point the algorithm terminates, or one of these
sets becomes empty, at which point the algorithm also terminates. For cor-
rectness, note that a decomposition is incoherent only if one of its differ-
entials is empty. The algorithm returns “incoherent” under this condition.
The algorithm also returns “incoherent” if a cluster lacks a justifying symp-
tom. A decomposition would be incoherent under this condition because
the exclusion set for a empty justification set is the universe of disorders, so
all other differentials would be empty. Note that each differential satisfies
the commonality constraints, because it is a subset of the common causes
for the cluster. Finally, note that each differential satisfies the disjointness
constraints, because any disorder that is in more than one exclusion set is
removed when the unifying disorders are computed. [}

Example Consider the decomposition (s15283) (S485) (S6), shown in fig-
ure 3-5. The figure shows how the differential formulation algorithm works.
For reference, let C, Cs, and C3 denote the first, second, and third clusters,
respectively. Then, the first step removes disorder F from the differentials for
clusters Cy and Cj3, because it is unifying. In the second step, symptom s,
is found to be non-justifying, because it is explained by the differential for
cluster C5. Symptom s3 is also found to be non-justifying because now it
is explained by the differential for C5. The third step reveals disorder G to
be a unifying disorder, because it explains not only cluster C3 but also the
only justifying symptom in cluster C', namely, s;. The process terminates
after the third step, when the justification sets and differentials reach a fixed
point. Removal of the unifying explanations F and G gives us the final set
of differentials. The resulting differentials are {A, B}, {C}, and {D, E}. |}

3.5 Decompositions and Candidates

Candidate generation and decompositional search can be compared at the
level of their common denominator, namely, candidates. Problem decom-
positions represent a set of candidates because one disorder can be selected
from each differential, giving rise to a conjunction of disorders that explains
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Figure 3-5 Example of differential formulation. This figure computes the dif-
ferential diagnoses for the decomposition (s3s253) (s455) (sg). These clusters are
separated by horizontal lines, and the possible causes for each symptom are shown.
The first step removes the unifying disorder F; the second step makes symptoms
s9 and s3 non-justifying; the third step removes the unifying disorder G.
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the given problem. However, the match between the two algorithms is not
perfect. Candidate generation is intended to produce only candidates that
are minimal. For decompositional search, though, generation of candidates
is an incidental feature and adherence to the minimality criterion is not
guaranteed. In this section, we explore the relationship between problem
decompositions and minimality.

3.5.1 Candidate Sets

Each cluster in a decomposition is associated with two sets of disorders: its
common cause set and its differential diagnosis. A Cartesian product can be
performed on either of these sets, giving rise to an initial candidate set and
a final candidate set. The initial candidate set is defined as follows:

Definition 6 A candidate H is in the initial candidate set for decomposition
C if there exists a one-to-one correspondence between each disorder d in H
and each cluster C' in C such that d explains C'.

This definition tells us whether a candidate is in the initial candidate set. The
inverse process is to generate all candidates that satisfy the definition. We can
compute the initial candidate set for a decomposition by taking the Cartesian
product of the common cause sets for the clusters in the decomposition and
accepting the syntactically valid candidates that result. Some of the resulting
tuples may be syntactically invalid because they contain duplicate disorders;
these disorders can be eliminated.

Example Consider the decomposition (s15253) ($455) (S6) shown previously
in figure 3-5. The common causes for these clusters are {A, B}, {C, F, H},
and {D, E, F, G}. The initial candidate set can be computed by taking the
Cartesian product of these sets:

{A,B} x {C,F,H} x {D,E, F, G} =

[A,C.D], [AC.E], [ACF], [ACG]
[A7F7D]7 [A7F’E]7 M’ [A’F7G]?
AJHD], [AHE], [AHLF], [AHG]
[B,.C,D], [B,C.E], [B,C,F], [B.C.,Gl
[B7F7D]7 [B7F7E]7 %BTFTP%7 [B7F7G]7
[BH,D], [BHE|, [BHF], [BHG]
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Except for [A, F, F] and [B, F, F], which are syntactically invalid candidates,
the result comprises the initial candidate set for the decomposition. N

Analogously, we can define the final candidate set for a problem decom-
position by using differential diagnoses instead of common cause sets:

Definition 7 A candidate H is in the final candidate set for decomposition
C if there exists a one-to-one correspondence between each disorder d in H
and each cluster C in C such that d is in the differential diagnosis for C'.

When the context is clear, we shall refer to this set simply as the “candidate
set” for a decomposition, or Cands(C). Since the differentials are subsets of
the common cause sets, the final candidate set is a subset of the initial can-
didate set. We can compute the final candidate set by taking the Cartesian
product of the differentials of a decomposition. Because no two differentials
contain the same disorder, all of the resulting candidates will be syntactically
valid. The formula for computing the candidate set is:

Cands(C) = C)E<c Diff(C)

Example The decomposition of the previous example has differential di-
agnoses of {A, B}, {C,}, and {D, E}. Their Cartesian product is:

{A, B} x {C} x{D,E} = [ACD], [ACE]
[B,C,D], [B,C,E]

The result comprises the final candidate set for the decomposition. W

As we have seen, a Cartesian product represents a set of candidates com-
pactly. On the other hand, explicit representations of candidates require
space proportional to the product of the differential sizes.

3.5.2 Justifications for Disorders and Differentials

Previous chapters have demonstrated a close relationship between the can-
didate set of a problem decomposition and the minimal candidates produced
by candidate generation. In the example presented in chapter 2, for example,
decompositional search produced the same set of minimal candidates as can-
didate generation. The reason for the close relationship stems from the use
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of justifications to define differential diagnoses. The concept of justification
is closely related to a similar concept that could be used to define minimality.
Let us call this concept “disorder-based justification” as defined below.

Definition 8 Suppose H is a candidate for a set P of positive symptoms.
Then symptom s is a disorder-based justification for disorder d in H if d
explains s and for all other disorders d' in H, where d' # d, d’ cannot explain
s.

The concept of disorder-based justification is similar to our notion of justi-
fication, which might be considered “differential-based”. Just as differential-
based justification defines coherency, disorder-based justification can define
minimality. The minimality of a candidate was previously defined by seeing
whether any subset of the candidate could explain the positive symptoms.
With disorder-based justification, we can create an alternate, but equivalent,
definition of minimality: each disorder must have a disorder-based justifica-
tion. The equivalence of this alternate definition is provided by the following
theorem.

Theorem 5 A candidate H is minimal for a set P of positive symptoms if
and only if, for each disorder d in H, there exists a symptom s in P that is
a disorder-based justification for d.

Proof (=) Suppose candidate H is minimal for P, but contrary to the
hypothesis, some disorder d in H lacks a disorder-based justification. Then
there is no symptom explained by d that some other disorder d' in H does
not also explain. Then H — {d} is a candidate for P, contradicting the
supposition that H is minimal.

(<) Suppose every disorder in H has a disorder-based justification, but
contrary to the hypothesis, H is not minimal. Then some subset H- of H is
also a candidate for P. Suppose d is in H — H; since H- is a candidate for
P, H — {d} is also a candidate for P. Consider the set of symptoms P- in
P that d explains. Either (1) P- is empty, in which case d lacks a disorder-
based justification, or (2) since H — {d} is a candidate for P, each symptom
s in P- is associated with another disorder d’ in H that explains s. Thus d
lacks a disorder-based justification, contradicting the supposition. H

The above notion of disorder-based justification holds for a single dis-
order, in contrast with the concept of justification used in decompositional
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search, which holds for a set of disorders. Nevertheless, the general idea
of justification is similar. In determining minimality of a candidate, one
finds a disorder-based justification for each disorder in the candidate. In
determining the coherency of a decomposition, one finds a differential-based
justification for each cluster and its associated differential in the decomposi-
tion. The similarity is apparent when disorder-based and differential-based
justification are written in predicate logic:

d-Just(s,d, H) = (d — s) N Vd € H—{d}. (d — s)
Just(s, C,C) (Diff(C) —= 5) A VC' e C—{C}. (Diff(C") - s)

The analogous structure of these equations indicates that differential formu-
lation and minimal candidates may be closely related. We now explore this
relationship in more detail.

3.5.3 Candidate Sets and Minimality

We have seen that problem decompositions entail a set of candidates, and
that the nature of justifications suggests that they should be similar to min-
imal candidates. We now consider the relationship between candidate sets
and minimality in more detail. Let us consider a problem decomposition as
a generator of minimal candidates. The decomposition begins with a set of
initial candidates and, after differential formulation, ends with a set of final
candidates. We can ask, then, whether differential formulation discards any
minimal candidates, which is essentially a question about completeness. We
can also ask whether differential formulation retains any nonminimal candi-
dates, which is essentially a question about soundness.

The answer to the first question, as expressed in the following theorem,
is that differential formulation is indeed complete.

Theorem 6 Let C be a problem decomposition for a set P of positive symp-
toms. If H is in the initial candidate set for C, and H is minimal, then H
18 in the final candidate set for C.

Proof Let H be a minimal candidate in the initial candidate set for C, but
contrary to the hypothesis, H is not in the final candidate set for C. Then
there must be some disorder d in H that is in the exclusion set for both C'
and some adjacent cluster C” # C'. The differential for that cluster C’ must
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also have some disorder in H; call it d’. We now show that H is nonminimal
because H — {d'} is still a candidate.

Since d is in the exclusion set for C' and C’, every symptom s’ in C' is
explained either by d or by the differential for some other cluster C” # C".
If C” = C, then d explains every symptom s’ in C’. Hence d explains not
only C but also C’, meaning that d’ is not necessary for H to be a candidate.
Otherwise, if C” # C, then H contains some disorder d” from the differential
of C” such that every symptom s’ in C” is explained by either d or d”. Hence
d and d” explain not only C' and C” but also C’, meaning that, again, d’ is
not necessary for H to be a candidate. In either case, H — {d'} is a candidate
because all symptoms in P are still explained. Thus, we have contradicted
the supposition that H is minimal, proving that H must be in the final
candidate set for C. W

However, the answer to the question about soundness is false, as expressed
in the following theorem.

Theorem 7 There exists a set P of positive symptoms and a problem de-
composition C for P, such that not all candidates in the final candidate set
for C are minimal.

Proof Proof by example. Consider the example shown previously in fig-
ure 3-5. The final candidate set is [A,C,D], [A,C,E], [B,C,D], and [B,C,E].
The first three candidates are minimal, but [B,C,E] is nonminimal, because
[B,E] explains the positive symptoms. N

It should not surprise us that both completeness and soundness cannot
be achieved simultaneously. If order to maintain soundness in the exam-
ple above, we would have to eliminate solution [B,C,E]. We could do this
by removing either disorder B from the first differential or disorder E from
the second differential. But removing a disorder from a differential would
eliminate either minimal candidate [B,C,D] or [A,C,E] from the final candi-
date set, thereby violating completeness. On the other hand, to maintain
completeness and express the three minimal candidates in a single Cartesian
product form, we must include the nonminimal candidate [B,C,E], thereby
violating soundness.

This conflict can be seen from a geometric perspective. If we view each
of the n differentials of a decomposition along a different dimension, we get
an n-dimensional candidate space, as shown in figure 3-6. Each point in this



3.5. DECOMPOSITIONS AND CANDIDATES 67

Removable
nonminimal
candidates

L Non-removable
7 7 nonminimal
candidates

| Diff(Cy)

-l -

Causes(Cq)
Figure 3-6 Geometric representation of differential formulation. Each axis rep-

resents a different task, each with a common causes set and differential. The
Cartesian product of the common causes set contains the initial candidate set for
the decomposition. Differential formulation removes disorders from the common
causes set to compute the differentials. The Cartesian product of the differentials
contains the final candidate set for the decomposition. Some nonminimal candi-
dates cannot be removed by differential formulation because their elements also
define minimal candidates.
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space represents a candidate. Initially, the common cause sets define the set
of initial candidates. But differential formulation removes disorders from the
differential diagnoses, which is analogous to slicing off subregions of the can-
didate space. Eventually, the differentials define the set of final candidates.
All minimal candidates within the space remain, but some nonminimal can-
didates may also remain. These nonminimal candidates occupy subregions
within the minimal candidate space, so they cannot be removed without also
eliminating minimal candidates.

Our definition of differential diagnoses favors completeness at the expense
of soundness. One might expect that soundness should be a more important
criterion, but we should keep in mind the goal of abductive reasoning. In a
deductive system, the worry is that we will derive an erroneous statement, an
error of commission. Hence, soundness is usually preferred over completeness
in such systems. But in an abductive system, the worry is that we will miss
a diagnosis, an error of omission. Hence, in diagnosis, we should prefer com-
pleteness over soundness. Furthermore, there is nothing particularly special
about minimality that warrants a sound algorithm. Minimality is only one
of several conceivable plausibility criteria. Coherency is another plausibility
criterion that happens to be closely related to minimality but can be consid-
ered a standard in its own right, especially when performing decompositional
search.
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After having decomposed the problem, we try to recombine its
elements in some new manner . ... There are, of course,
unlimited possibilities of recombination. Difficult problems
demand hidden, exceptional original combinations, and the
ingenuity of the problem-solver shows itself in the originality of
the combination.

— George Polya, How to Solve It (1945)

Creative problem solving is often seen as a divine or inspirational process.
As Polya [56, p. 73] remarks, one criterion for creative problem solving is
finding original combinations of subproblems. Although we do not claim that
a routine algorithm will meet Polya’s standard for originality, our method
of diagnostic reasoning matches the decompositional style he advocates. In
the previous chapter, we discussed how to formulate differentials, once a
problem decomposition has been generated. In this chapter, we present a
search process to generate plausible problem decompositions.

4.1 Search Trees

The search tree for decompositional search is similar to the recursive method
for generating partitions. In this method, suppose we have a partition con-
taining |C| clusters. Then, a new positive symptom can added to one of
the existing |C| clusters, or added as a singleton cluster to create a partition
containing |C| + 1 clusters. This means that there are two ways to expand
an existing partition with a new symptom: either assign it to an existing
cluster or adjoin a new cluster with the symptom by itself. Together, these
two expansion operators are sufficient to generate all possible partitions.

However, for reasons explained in the previous chapter, we are interested
not in partitions but in decompositions, which allow symptoms to appear
in more than one cluster. Problem decompositions create a potential search
space, shown in figure 4-1, and complicates the search process somewhat.
The search process involves three major steps: assignment, ambiguation, and
disambiguation. These three steps are repeated for each positive symptom
in the diagnostic case. We will discuss each of these steps in the following
sections.
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Figure 4-1 Decompositional search space. This figure shows the complete de-
compositional search space for up to three symptoms. appliesArrows are labeled
according to the operator applied: C/R = covering or restricting, Adj = adjoin-
ing, Adm = admixing, F = forward ambiguation, B = backward ambiguation,
N = no ambiguation, and D = disambiguation. The arrows show only possible
transformations. Not all combinations of transformations are possible in the same
problem. For example, backward ambiguation is applicable only after the covering
operator.



72 CHAPTER 4. DECOMPOSITIONAL SEARCH

4.2 Symptom Assignment

The first step in decompositional search is symptom assignment. There are
four ways to assign a symptom to an existing decomposition: covering, re-
stricting, adjoining, and admixing. The first two operators assign a symptom
to an existing cluster, while the other two operators use the new symptom
to create a new cluster. This contrasts with the method for generating parti-
tions, which requires only two operators. The operators for decompositional
search are summarized graphically in figure 4-2.

The covering and restricting operators have the same effect, assigning a
new positive symptom s to an existing cluster C'. They differ only depend-
ing on whether the possible causes for s subsume the common causes for
C. When the possible causes for s subsume the common causes for C, the
symptom covers the cluster; otherwise, it restricts the cluster. The difference
is illustrated in the top two rows of figure 4-2. When a symptom s covers
a cluster C, the common causes for the cluster remain unchanged when s
is added to C'. On the other hand, when s restricts C', the common causes
become smaller.

The distinction between covering and restricting will recur in our presen-
tation of decompositional search. We define the two notions as follows:

Definition 9 A symptom s covers a cluster C' if
Causes(C' — {s}) = Causes(C U {s})
Otherwise, a symptom s restricts a cluster C' if

Causes(C' — {s}) C Causes(C' U{s})

These definitions essentially constitute a perturbation test. If the symptom
already belongs to a cluster, remove the symptom and see whether the set
of possible causes for that cluster enlarges. Or, if the symptom does not
belong to the cluster, add the symptom to the cluster and see whether the
set of possible causes for the cluster shrinks. Any change indicates that the
symptom restricts the cluster.

The adjoining operator creates a new singleton cluster containing only the
new symptom. For example, given decomposition (s;) and a new symptom
S9, adjoining would add a new cluster (s3) to give the decomposition (s1) (s2).
This operation is shown in the third row of figure 4-2.
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Figure 4-2 Assignment operators for decompositional search. Each row illus-
trates a different operator: covering, restricting, adjoining, and admixing.
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The admixing operator also creates a new cluster, but one containing
both the new symptom and one previously assigned. For example, given
decomposition (s1s9) and new symptom s, the admixing operator could ad-
mix s3 with either symptom s; or sy. If 51 were admixed with s3, the new
cluster would be (s1s3) and the resulting decomposition would be (s152) (s2),
as shown in the last row of figure 4-2. The symptoms that are eligible for
admixing are those that restrict their cluster and also restrict the new symp-
tom:

ADMIXABLE(s,C') = {s € C | Restricts(s,C') A Restricts(s, (s'))}

where s’ is the new symptom.

Admixing provides alternate pathways for generating coherent decompo-
sitions. These alternate pathways are useful because an incoherent decompo-
sition may have descendants that are coherent. Hence, admixing allows the
coherent descendants to be generated by a different pathway. An example
of the need for admixing is shown in figure 4-3. In this figure, the coherent
decomposition (s1) (s2) (s354) cannot be generated by covering, restricting,
or adjoining. Of these three operators, the only one potentially applicable,
restricting, cannot be performed because the required parent, (s1) (s2) (s3),
is incoherent and would have been pruned by the decompositional search al-
gorithm. However, admixing provides an alternate pathway from the parent
(s153) (s2), which is coherent.

The problem arises in part because symptom s3 is presented before sy.
Because s3 covers those disorders that cause s; and not sg, the cluster (s;)
cannot exist as long as (s;) also exists. But s, restricts the possible causes for
s3, so that it no longer covers the unique causes of s;. This allows (s;) to exist.
Thus, if s4 were presented before s3, the decomposition (s1) (s2) (s4) would
be coherent, and sz could simply restrict cluster (s4) to create the desired
decomposition. Admixing, then, is a way to remedy anomalies resulting from
symptom ordering. By combining the new symptom with previously assigned
ones, admixing can pair symptoms that might not otherwise pair.

Given these four operators, the algorithm for assigning a new symptom to
an existing decomposition is shown in figure 4-4. This algorithm first checks
to see if the new symptom s’ covers any clusters in the decomposition. If so, it
adds s’ to all clusters that it does cover and returns the single decomposition.
When covering is possible, the other assignment operators are unnecessary.

Otherwise, the algorithm performs restricting, adjoining, and admixing.
First, the restricting operator examines every cluster C' in the decomposition.
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Figure 4-3 The need for admixings.l This example shows how admixing can
generate a decomposition, (s1) (s2) (s3s4) that cannot be generated by any other
symptom assignment operator. Restriction of the decomposition (s1) (s2) (s3) will
not work because that decomposition is incoherent and thereby pruned by the
decompositional search algorithm.
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Algorithm 3 (Symptom Assignment)

Procedure AssiGN (New symptom s’, Decomposition C)

1 If symptom s covers some cluster C' € C then

2

— =
= O O 00 3O U = W

— =
W N

14
15
16

17
18

19

Create a new decomposition: C' + C
For every cluster C' € C that s’ covers do

Cover C: C" «+— CU{s'}; C"« SussTIiTUTE(C',C,C’)
Return a singleton set containing the new decomposition: {C’}

Else do

Initialize the set of new decompositions: F' «+ ()
For every cluster C' € C do
If Causes(s) N Causes(C) # () then
Restrict C: C" «— CU{s'}; C' < SussTITUTE(C',C,C)
Ambiguate, disambiguate, and add the restricted cluster:
F «— F U {D1sAMBIGUATE(AMBIGUATE(C",C’))}
Adjoin §: C" — (¢'); C'—CU{C"}
Ambiguate, disambiguate, and add the adjoined cluster:
F «— F U {DI1SAMBIGUATE(AMBIGUATE(C",C’))}
For every cluster C' € C do
For every admixable symptom s € ADMIXABLE(s’, C') do
Remove s from its previous cluster:
C' — SuBSTITUTE(C — {s},C,C)
Admix s and §": C" « (ss'); C' —C'U{C"}
Ambiguate, disambiguate, and add the admixed cluster:
F «— F U {D1SAMBIGUATE(AMBIGUATE(C", ("))}
Return the set of new decompositions: F

Procedure SUBSTITUTE (New cluster C’; Old cluster C', Decomposition C)

20 Initialize a new decomposition: C’ « ()
21 For each cluster C” € C do

22
23
24
25
26
27

If the cluster is the old one [C” = C] then

Add the new cluster: ¢’ — C'U{C"}

Compute its common causes: Causes(C”) « UsecrCauses(s)
Else do

Copy the cluster unmodified: C’' «+ C' U {C"}

Return the new decomposition C’

Figure 4-4 Algorithm for symptom assignment. This algorithm contains ex-
ecutes the covering, restricting, adjoining, and admixing operators and applies
ambiguation and disambiguation steps when appropriate.
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If the possible causes for the new symptom s’ have a nonempty intersection
with the common causes for cluster C, then a new decomposition is cre-
ated with s’ added to C. The new decompositions are then ambiguated
and disambiguated, using procedures that are discussed later in this chap-
ter. Second, the adjoining operator creates a new cluster (s') and creates
a new decomposition with (s') adjoined to the old decomposition. As with
restricting, this decomposition is ambiguated and disambiguated. Finally,
admixing finds every previously assigned symptom s that can be admixed
with the new symptom. Admixing is possible when s restricts its current
cluster and also restricts the singleton cluster (s’). When admixing is pos-
sible, a new decomposition is created, ambiguated, and disambiguated. The
assignment procedure then returns the entire set of new decompositions ob-
tained by restricting, adjoining, and admixing. This set of decompositions
can be incorporated into the new frontier of decompositions in the search
tree.

4.3 Ambiguation

A problem decomposition can assign a symptom to more than one cluster.
This signifies that the assignment of the symptom is arbitrary and does not
affect any commonality or disjointness constraints. We say that a symptom s
is ambiguous with respect to a decomposition C if there exists more than one
cluster C' € C such that s covers C'. Note that ambiguity is defined using the
common cause set and not the differential diagnosis. We use common cause
sets because at this point the assignments of potentially ambiguous symptoms
are still tentative, so differential diagnoses have not yet been formulated.

As we discussed in section 3.2.2, a decomposition with an ambiguous
symptom is said to be ambiguous; otherwise, it is instantiated. Conceptually,
an ambiguous decomposition represents a set of instantiated decompositions
with the same commonality and disjointness constraints. An ambiguous de-
composition thereby expresses symptom assignments at a higher level of ab-
straction, focusing on those symptoms that affect the differential diagnoses.
Ambiguous symptoms do not affect the differentials or even the common
cause sets because they have become too general compared to the existing
clusters. The goal, then, is to ambiguate as much as possible, a notion that
is called mazimal ambiguity:

Definition 10 A decomposition C is maximally ambiguous for a set P of
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Algorithm 4 (Ambiguation)

Procedure AMBIGUATE (Modified cluster C’, Decomposition C)
1 For all unmodified clusters C' # C" do

2 For all symptoms s in C' do
3 If s covers the modified cluster C’ then
4 Copy the symptom to the modified cluster: C" « C’" U {s}

Figure 4-5 Algorithm for ambiguation. This algorithm checks all symptoms in
the unmodified clusters and copies them to the modified cluster whenever they
cover it.

positive symptoms if for every positive symptom s in P the following condi-
tions hold:

1. If s restricts its cluster, it belongs only to that cluster.
2. Otherwise, if s covers its cluster, it belongs to all clusters that it covers.

Maximal ambiguity can be thought of as a canonical representation for sets
of similar problem decompositions. Maximal ambiguity is like a “least-
commitment” strategy [61, 62| that makes only critical symptom assignments
and avoids arbitrary ones.

The opportunity for ambiguation occurs whenever a cluster receives a
new symptom or when a new cluster is created. In either case, we refer to
cluster with the new symptom as the modified cluster. There are two ways
that ambiguation can occur: (1) The new symptom may cover more than one
existing cluster; we call this backward ambiguation. (2) Previously assigned
symptoms may cover the modified cluster; we call this forward ambiguation.

Since backward ambiguation applies only when the covering operator is
executed, this step is performed in the symptom assignment procedure (lines
3-4 of Algorithm 3). The algorithm for forward ambiguation (called simply
“ambiguation” when the context is clear), however, requires a separate pro-
cedure, which is presented in figure 4-5. This procedure takes two arguments:
the modified cluster and the decomposition to be ambiguated. The proce-
dure examines all symptoms in the unmodified clusters. Any symptom that
covers the new cluster C” is copied to it, thereby ambiguating the symptom.
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4.4 Disambiguation

After ambiguation, a decomposition may not meet the definition for max-
imal ambiguity. Therefore, we require a final step, called disambiguation,
to correct such situations. Disambiguation “undoes” some assignments of
ambiguous symptoms. The need for disambiguation arises from the forward
ambiguation step. In that step, symptoms that cover the modified cluster
are copied to that cluster. If these symptoms restrict their previous clus-
ter, they need to be removed from that cluster in order to satisfy maximal
ambiguity. Furthermore, if these symptoms are removed from their clusters,
a secondary need for disambiguation may arise. This need arises because
removing restricting symptoms from a cluster enlarges the common causes
for that cluster. Hence, an ambiguous symptom that previously covered that
cluster may now no longer cover it. The disambiguation step, presented in
figure 4-6, takes care of both of these circumstances.

This procedure finds the ambiguous symptoms in a decomposition, mak-
ing use of the DUPLICATES procedure, defined previously in Algorithm 1. It
then removes these symptoms and recomputes the common causes for each
cluster when necessary. Finally, for each previously ambiguous symptom, the
procedure finds the set of clusters that it now covers and restores it to those
clusters.

An example of disambiguation is shown in figure 4-7. The initial decom-
position is (Fever,Cough), which has a differential of {Tb}. When symptom
Wheeze is adjoined, a new decomposition (Fever,Cough) (Wheeze) is gener-
ated. The new cluster provides an opportunity for Cough to cover it, so the
ambiguation procedure copies Cough to the new cluster. However, Cough
still restricts its old cluster. Disambiguation detects this situation and re-
moves Cough from its old cluster. The resulting decomposition is therefore
(Fever) (Wheeze,Cough).

Note that disambiguation enlarges common cause sets and differentials.
In the example above, Cough restricted its old cluster, yielding only Tb in its
differential. After disambiguation, though, the old cluster had more disorders
in its differential, namely, Tb, Flu, and Mal. Effectively, the symptom Cough
was moved from a cluster that it restricted to a cluster that it covered. This
process of moving symptoms between clusters can be interpreted as freeing
unnecessary constraints. The combination of ambiguation and disambigua-
tion frees constraints placed by unnecessarily restricting symptoms. As new
symptoms are processed, new opportunities for freeing constraints may arise.
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Algorithm 5 (Disambiguation)

Procedure DISAMBIGUATE (Decomposition C)

1 Find all ambiguous symptoms: Ambiguous(C) < DUPLICATES(C)
2 For all clusters C' € C do
3 If C' contains ambiguous symptoms [C' N Ambiguous(C) # 0] do

4 Remove the ambiguous symptoms: C' « C' — Ambiguous(C)
5 Recompute its possible causes: Causes(C') < NgecCauses(s)
6 For all ambiguous symptoms s € Ambiguous(C) do
7 Initialize its set of reassignments: Reassign < ()
8 For all clusters C' € C do
9 If s covers C then
10 Add the cluster to the set of reassignments:
Reassign < Reassign U {C'}
11 If no reassignments are possible [Reassign = )] then
12 Return “degenerate”
13 Else do
14 For all reassigned clusters C' € Reassign do
15 Reassign the symptom to the cluster: C' « C' U {s}

16 Return the decomposition C

Figure 4-6 Algorithm for disambiguation. This procedure removes all ambigu-
ous symptoms, recomputes common cause sets as necessary, and reassigns the
symptoms to clusters they cover.
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Disambiguation does not always work this well. Note that disambiguation
reassigns each ambiguous symptom to fewer clusters than before. In the
extreme, or degenerate, case, an ambiguous symptom may not assignable to
any cluster. Degenerate cases can occur when an ambiguous symptom s exists
and the disambiguation step removes a symptom from every cluster that s
originally covered. Then, those clusters will have an enlarged set of common
causes, and it is possible that s will no longer cover any of them. When
a previously ambiguous symptom cannot be reassigned, the decomposition
is said to be degenerate. Degeneracy indicates that the ambiguation step
freed too many constraints. An ambiguous symptom must then be assigned
arbitrarily to place another constraint. In such cases, our procedure simply
discards the decomposition as degenerate, since other symptom assignments
will yield the desired decompositions.

An example of a degenerate decomposition is shown in figure 4-8. The
original decomposition is (s15355) (s25485). Symptom sg is then adjoined
as a new cluster, (sg). Since symptoms s; and s, cover the new cluster, the
ambiguation procedure copies them to the new cluster. The decomposition at
this point is ($15355) (S15652) (S25455). The disambiguation step then removes
the ambiguous symptoms, sy, S, and s5; recomputes the common cause sets;
and reassigns the symptoms. Symptoms s; and s, are found to restrict their
old clusters, so they are removed from those clusters. But symptom sj is
found to restrict both of its old clusters, so it cannot be assigned to any
cluster. Hence, the decomposition is degenerate.

Together, the symptom assignment, ambiguation, and disambiguation
procedures produce a set of maximally ambiguous decompositions. This
proposition is presented in the following theorem.

Theorem 8 Algorithms 3, 4, and 5 terminate. Moreover, given a maximally
ambiguous decomposition and a symptom, every decomposition produced by
the algorithms is mazximally ambiguous.

Proof The algorithms loop over only finite sets; hence they terminate. For
the rest of the theorem, we assume that all previously assigned symptoms s
in decomposition C satisfy the definition for maximal ambiguity and consider
a new symptom s’, which results in a new decomposition C’. If s’ covers some
cluster, then lines 3 and 4 of Algorithm 3 ensures that s’ is maximally am-
biguated. Since no common cause sets are changed, the maximal ambiguity
of all symptoms s is preserved. Otherwise, s’ restricts every cluster, so it
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cluster. Disambiguation removes s; and sy from the previous clusters, but s5 no
longer covers any cluster. The resulting decomposition is degenerate.
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is assigned to only one cluster by the restricting, adjoining, and admixing
operators, thereby also satisfying maximal ambiguity.

As for the previously assigned symptoms s, the only new opportunity for
covering is the cluster C’ containing s’. The other clusters C' # C’ can only
lose elements by Algorithm 5, so their common cause sets enlarge, creating
no new opportunities for covering. Algorithm 4 ensures that if s covers the
new or modified cluster it is placed in that cluster. Algorithm 5 ensures
that all ambiguous symptoms satisfy the definition of maximal ambiguity.
All symptoms not examined by Algorithm 5 covered no other clusters orig-
inally and continue to cover no other clusters, because the common causes
of clusters C will have enlarged or remained the same; they do not cover C’,
otherwise Algorithm 4 would assign them to more than one cluster and they
would have been examined by Algorithm 5. Hence the maximal ambiguity
of all previously assigned symptoms is preserved. N

4.5 Search Strategy

The symptom assignment, ambiguation, and disambiguation procedures can
explore the space of coherent decompositions when orchestrated by a suitable
search strategy. There are several ways that search could be performed [52].
A breadth-first search process would explore the entire search space of plau-
sible decompositions. Of course, depending on the particular application, we
may not want to to do this. In such cases, we could use other strategies, such
as depth-first search or beam search.

However, in this thesis, we are interested in comparing the efficiency
of two algorithms. The breadth-first paradigm allows us to examine and
compare the relative sizes of the two different search spaces. Hence, our
implemented system, SYNOPSIS, is designed to use a breadth-first search
strategy. For actual diagnostic problem solving, the system may be extended
to use other search strategies.

In figure 4-9, we present a breadth-first search algorithm for computing
all coherent decompositions for a set of positive symptoms. This algorithm
generates problem decompositions using the symptom assignment procedure.
That procedure, in turn, executes the covering, restricting, adjoining, and ad-
mixing operators, and calls the ambiguation and disambiguation procedures
as necessary. At this point, duplicate decompositions may have been gener-
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Algorithm 6 (Breadth-first Search)

Procedure DIAGNOSE (Positive symptoms P)

1 Initialize the frontier: F « ()

2 For every positive symptom s € P do

3 Expand the frontier by the symptom: F « EXPAND(s, F)
4  Return the frontier F

Procedure EXPAND (Positive symptom s, Frontier F)

5 Initialize a temporary frontier: F’ « ()

6 For every decomposition C in frontier F do
7 Collect new decompositions: F’ < F' U ASSIGN(s,C)
8 Remove duplicate decompositions: F’ < REMOVE-DUPLICATES(F’)
9 Initialize the new frontier: F” « ()
10 For every new decomposition C € F' do
11 If C is not “degenerate” then
12 Formulate its differentials: C «+— FORMULATE-DIFFERENTIALS(C)
13 If C is not “incoherent” then
14 Collect it: F” «— F"U{C}

15 Return the new frontier F’

Figure 4-9 Algorithm for breadth-first decompositional search. The top-level
procedure processes each symptom sequentially, resulting in a new frontier. The
EXPAND procedure expands each decomposition in the old frontier, removes du-
plicate decompositions, and formulates the differentials of the remaining ones.
Incoherent decompositions are pruned from the search tree.
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ated and are therefore pruned. The disambiguation step may also discover
degenerate decompositions, which are also pruned. The remaining decompo-
sitions are then submitted for formulation of their differentials. The process
of differential formulation was presented in chapter 3. The incoherent de-
compositions are then pruned and the remaining, coherent decompositions
are kept. This process repeats, yielding a frontier of coherent decompositions
for each positive symptom in the given set.

The search algorithm uses the function REMOVE-DUPLICATES to remove
duplicate elements from a set of sets. The actual implementation of this
function depends how sets are represented in the diagnostic system. An
efficient implementation of REMOVE-DUPLICATES for sets represented as bit
vectors is presented in appendix A.

4.6 Incompleteness

The breadth-first search algorithm attempts to compute a complete set of
coherent decompositions, and in practice, it generally succeeds. However,
theoretically, the decompositional search algorithm is incomplete. That is,
it may fail to generate a decomposition that is nevertheless coherent. An
example of incompleteness is provided in the following example.

Example Consider the situation shown in figure 4-10. The desired decom-
position is (s3) (s4) (815285), which is coherent. However, this decomposition
cannot be generated by the algorithm when the symptoms are processed in
the order: sq, so, S3, S4, S5. The only possible parent decomposition that
could generate the desired decomposition is (s3) (s4) (s152), by using the
restricting operator. However, this parent is not coherent, so it would have
been pruned by the algorithm. Hence the desired decomposition cannot be
generated. W

Interestingly, the desired clustering in this example can be generated if
the symptoms are processed in another order. Incompleteness arises in part
from a greedy solution of the first four symptoms. Then the algorithm cannot
recover from this greediness when processing the fifth symptom. Normally,
admixing helps the abductive decomposition algorithm recover from greed-
iness, but even admixing is not sufficient in this case. Admixing combines
the new symptom with only one previously assigned symptom. In this case,
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Figure 4-10 Example of incompleteness. Decomposition (s1s285) (s3) (s4),
which is coherent, cannot be generated by the decompositional search algorithm
when symptoms are processed in the order: si, ss9, s3, s4, s5. The only potential
parent decomposition, (s1s2) (s3) (s4) is incoherent because cluster (s3) has a null
differential.

a more powerful admixing operator, one in which two previously assigned
symptoms are combined with the new symptom, could generate the desired
decomposition. However, such an operator would probably be computation-
ally expensive, because there are combinatorially many ways to select pairs
or larger subsets of previously assigned symptoms.

Thus, the abductive decomposition is theoretically incomplete, although
we have found that it almost always gives complete sets in practice. The
algorithm could therefore be classified as a greedy or heuristic algorithm.
But the algorithm is not terribly greedy, and the alternative pathways help
make the algorithm robust. In any case, incompleteness should perhaps
expected with algorithms that solve computationally intractable problems
such as multidisorder diagnosis, since a complete algorithm for multidisorder
diagnosis would be computationally expensive. Nevertheless, the conditions
required for incompleteness are quite rare in practice, and as we shall see in
the next chapter, decompositional search is fairly robust.
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Nullins in verba (Don'’t take anyone’s word for it).
— Motto of the Royal Society of London (1660)

In this chapter, we compare the decompositional search and candidate gen-
eration algorithms empirically. Although much of our motivation for decom-
positional search is based on intuitive ideas about implicit representation
and causal equivalence, it is difficult to predict the actual computational
behavior of an algorithm. Moreover, most theoretical analysis deals with
worst-case performance and offers little to say about the average case. We
therefore investigate the computational behavior of decompositional search
through a series of four experiments. The first experiment compares the de-
compositional search and candidate generation algorithms on a wide variety
of problems. The second experiment explores characteristics of the decom-
positional search algorithm. The third experiment studies issues of symptom
presentation and ordering. The final experiment compares the algorithms on
more complex problems.

5.1 Case Selection

Our experiments draw upon the QMR medical knowledge base [38]. We chose
the medical domain because of its preponderance of complex, multidisorder
problems. Multiple disorder problems occur often in medicine. According
to a 1987 study by the National Center for Health Statistics [22], hospital
patients have an average of 3.1 diagnoses at discharge. The complexity of the
medical domain is reflected in the size of the QMR knowledge base, containing
approximately 4000 symptoms and 600 diseases. QMR therefore covers 80
percent of the diseases encountered in general internal medicine. The QMR
knowledge base constitutes a natural test of how well diagnostic algorithms
can scale up to real-world domains.

We modified the QMR knowledge base by excluding symptoms that pro-
vide contextual evidence:

Age 16 to 25 Race Black Sex Female
Age 26 to 55 Race Oriental | Sex Male
Age Greater than 55 | Race White

Contextual evidence does not represent effects of disease but rather causal
predispositions to disease. Thus, we removed these anomalous symptoms



5.1. CASE SELECTION 91

from the QMR knowledge base. Another important reason for removing con-
textual evidence was that each one is used in QMR as a placeholder for storing
epidemiologic or probabilistic information about each disease, when relevant.
Consequently, contextual symptoms were linked to almost the entire universe
of 600 diseases in the QMR knowledge base as a possible “cause”. Although
decompositional search handles such large sets well, they would have handi-
capped the candidate generation algorithm severely.

The general strategy underlying our experiments is to generate cases at
random and then diagnose them with both algorithms, comparing the time
and space required to solve the problems. We generated cases using a stochas-
tic model. In this model, we first selected one or more disorders called targets,
which were assumed to be present, although of course this assumption was
not known to the diagnostic algorithm. These target disorders were then
used to generate a set of symptoms. Symptoms were selected based on their
conditional likelihood of being caused by the target disorder, using the fre-
quency values in the QMR knowledge base. These frequency values, which
range from 1 to 5, have been shown to correspond most closely with link
probabilities, with the following mapping [26]:

Frequency Link probability

1 .03
2 .20
3 .50
4 .80
3 97

A link probability specifies the probability that a symptom will be caused by
a disorder, given that the disorder is present. For a symptom to be selected,
its link probability had to exceed a random variable distributed uniformly
between 0 and 1.

The decompositional search and candidate generation algorithms were
implemented in ANST Common Lisp [70] and compiled using Lucid Lisp.
Compilation was optimized for execution speed. We executed the algorithms
on a Sun SparcStation 2 with 48 megabytes of random access memory and
100 megabytes of virtual memory available to the Lisp process. For each
run, we measured the number of nodes expanded, the number of nodes kept,
and running time. Since the algorithms process symptoms sequentially, the
order of the symptoms in a case was an important variable. So far, we have
discussed cases as unordered sets of positive and negative symptoms. When
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we consider the set of symptoms to be an ordered sequence, we call the
sequence of symptoms a case ordering.

5.2 Single-Target Cases

For the first experiment, we generated a series of case orderings, each based on
a single target disorder. For each ordering, we selected a disorder at random
from the QMR knowledge base. Each disorder generated 7 symptoms in the
following manner. A symptom s was tentatively selected at random from the
possible effects of the disorder d. A random number uniformly distributed
between 0 and 1 was also generated. If the link probability for d and s
exceeded the random number, then symptom s was selected. Otherwise,
another symptom and number were selected at random. This process was
repeated until a set of 7 symptoms were selected. To prevent the search trees
from expanding too rapidly, only symptoms with fewer than 100 possible
causes were chosen.

A total of 100 single-target case orderings were generated in this fashion.
The order of the symptoms in each ordering was random. These case order-
ings were diagnosed by the decompositional search and candidate generation
algorithms. However, 14 of the 100 cases could not be solved by the candi-
date generation algorithm because they exceeded the memory allocated to
the Lisp process (100 megabytes). For these cases, we therefore truncated the
symptom lists at the point where the machine ran out of memory, resulting
in the following case sizes:

Symptoms
Truncated after: ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 7
Number of cases: ‘ 1 ‘ 8 ‘ 2 ‘ 3 ‘ 86

Even though the cases were generated by only a single target disease,
they constituted a test of multidisorder diagnosis. The single target disor-
der gave each case at least one single-disorder minimal candidate. But the
majority of minimal candidates contained multiple disorders. By the stan-
dard of minimality, these multidisorder candidates were as plausible as the
single-disorder candidates.

The algorithms were then compared on the set of 100 truncated and com-
plete case orderings. The total running time, number of nodes expanded, and
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number of nodes kept were recorded. In addition to these totals, the inter-
mediate results were also recorded. After each symptom was processed, the
number of intermediate nodes expanded and kept were recorded. Essentially,
these numbers measure the width of the search tree for the two algorithms.
The intermediate results for a typical ordering are shown below:

Symptoms in Case Ordering
Algorithm | s S9 S3 S4 S5 S¢St Total nodes
Cand. 337 1618 1306 1708 1848 2673 95| 9625 expanded
106 430 732 1012 405 27 T3 | 2825 kept
Decomp. 2 3 7 12 12 4 6 47  expanded
2 3 6 11 8 3 5 39  kept

As each symptom in the case ordering is processed, the algorithms create
a frontier of intermediate nodes, each node representing a candidate or de-
composition. The last column shows the total amount of work performed by
the two algorithms. This particular search tree shows that decompositional
search generates and keeps far fewer nodes at each frontier than candidate
generation.

The results above are for only one case ordering. To summarize this run,
we can compare the total number of nodes in the search tree, either expanded
or kept, and the total amount of time required. These measures correspond
to the space and time complexity of the two algorithms. Note that there
are two ways to measure space complexity. We will use the number of nodes
kept as our measure because it is more implementation-independent than the
number of nodes expanded. A clever implementation of an algorithm might
be able to predict which nodes not to expand, but any correct implementation
of an algorithm cannot alter the number of nodes kept.

Because of the wide variation in magnitude for the different cases, the
time and space complexity for the 100 case orderings are represented best
on a log-log scatterplot. Scatterplots of the total nodes kept and the total
running time are shown in figure 5-1.

The log-log scatterplots show a fairly high correlation between the two
algorithms. The correlation coefficients for the space and time complexity
graphs are 0.77 and 0.76, respectively. The high correlation indicates that
computational complexity depends in large part upon the particular case.
What is hard for one algorithm is also hard for the other one. The correla-
tion also indicates the close relationship between candidate generation and
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decompositional search. The scatterplots also fit the data to a linear form.
These linear fits have the following slope-intercept form:

In(kp) = 1.17+40.26In(kc)
In(tp) = —1.20+ 0.321n(tc)

where tp and kp are the running time and nodes kept for decompositional
search, and to and k¢ are the same quantities for candidate generation.
These equations can be converted to a polynomial form:

kp = 3.22(kc)"2

tp = 0.30(tc)%32

Therefore, the y-intercept of the lines changes complexity by only a multi-
plicative factor. However, the slope changes complexity by an exponential
power. The log-log slope, then, best indicates the relationship between the
two algorithms, and this slope is reported on each scatterplot. Another way
to look at the data is to consider it from the standpoint of candidate gener-
ation. The inverse formulas for the above equations are:

kc = 00111(1{7D)38

tC = 43.2(tp)3'1

Thus, the inverse slope is another measurement of the comparative efficiency
of the decompositional search algorithm. Although we did not show the
scatterplot for the total nodes expanded, it shows roughly the same rela-
tionship, with a log-log correlation coefficient of 0.81 and a log-log slope of
0.33 &~ 1/3.0. To save space, we will report the slope for the scatterplot of
total nodes expanded without illustrating the graph. To summarize, then,
the complexity results are:

Single-target cases, random ordering
Slope Inverse slope

Nodes kept 0.26 3.8
Nodes expanded 0.33 3.0
Running time 0.32 3.1

The results above imply that, for the given cases, the space complexity for de-
compositional search is approximately the cube root or fourth root of that of
candidate generation, depending on the criterion used. The time complexity
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for decompositional search is approximately the cube-root of that of candi-
date generation. These relationships represent only polynomial reductions in
complexity, so exponential complexity will still dominate in the worst case.
But in the given problems the savings are nevertheless substantial, allowing
real-world diagnostic problems to be solved in a reasonable amount of time.
The savings are evident if we consider that decompositional search solved
all of the problems in 10 seconds or less, while candidate generation often
required up to 30 minutes.

5.3 Characterizing Decompositional Search

5.3.1 Accuracy

Decompositional search produces nonminimal candidates as well as minimal
one in order to achieve a more compact representation. Hence, decomposi-
tional search can be considered an approximation of candidate generation,
weakening the notion of minimality in return for a gain in efficiency. In or-
der to assess this tradeoff, we now measure the degree of approximation that
decompositional search achieves. For this test, we use candidate generation
as the standard. There is no reason why decompositional search could not
constitute its own standard. But in order to compare the efficiency of al-
gorithms, we should determine that they compute approximately the same
answer. The common denominator between the two algorithms is the candi-
date, since problem decompositions can be converted to candidates, but not
vice versa.

To measure the accuracy of decompositional search, we computed the
problem decompositions for each of the 100 cases generated above. We then
expanded each problem decomposition C into its candidate set Cands(C) by
computing the Cartesian product of its differentials. The candidate sets for
all problem decompositions were then compared with the set MinCands of
minimal candidates produced by the candidate generation algorithm. Accu-
racy was then measured by the following quantities:

e Completeness: What proportion of minimal candidates are produced
by decompositional search?

| Ue Cands(C) N MinCands|
|[MinCands|

Completeness =
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e Soundness: What proportion of candidates produced by decomposi-

tional search are minimal?

| Ue Cands(C) N MinCands|
| Ue Cands(C)|

Soundness =

e Redundancy: How many problem decompositions, on the average, con-
tain a given candidate?

> ¢ |Cands(C)|
| Ue Cands(C)|

Redundancy

For all 100 cases, the decompositional search algorithm was complete
from the standpoint of generating minimal candidates. In other words, for
all cases, every minimal candidate was generated by at least one problem
decomposition. Thus, in practice at least, decompositional search exhibits
completeness in this respect.

However, the soundness and redundancy gave more variable results. As
expected, decompositional search sometimes produced candidates that were
nonminimal, and sometimes produced minimal candidates more than once.
The histograms of soundness and redundancy are shown in figure 5-2. The



98 CHAPTER 5. EXPERIMENTAL COMPARISON

52 53 52 53
51 54 51 54

(s1) (s0s3) (s4) (s152) (s354)

Figure 5-3 Example of nonminimality in decompositional search. The decom-
position on the left entails nonminimal candidates. These are nonminimal because
they contain the minimal candidates entailed by the decomposition on the right.

histogram on the left shows that, for the vast majority of cases, decompo-
sitional search was sound. In other words, almost every candidate in the
Cartesian product of the differential was also minimal. But in rare cases,
up to 52 percent of these candidates were nonminimal. The worst case oc-
curred in a case of Lymphomatoid Granulomatosis. Decompositional search
produced 133 coherent decompositions, which entailed 24172 unique candi-
dates. Candidate generation produced 11527 minimal candidates, meaning
that only 48 percent of the candidates produced by decompositional search
were minimal. This result reflects the fact that decompositional search only
approximates candidate generation, and that it includes nonminimal candi-
dates when necessary to represent the minimal candidates compactly.

This case indicates that certain situations yield decompositions with sev-
eral nonminimal disorders. One situation occurs when a combination of
mutually restricting symptoms also overlap other clusters. This example is
shown in figure 5-3. In this figure, the decomposition (s1) (s2s3) (s4) contains
a restricted cluster (sos3) as well as two peripheral clusters. The restricting
symptoms sy and s3 cover the peripheral clusters, (s3) and (sy4), to a great
extent. Consequently, many of the candidates entailed by the decomposition
are nonminimal. Each of these nonminimal candidates contains a candidate
entailed by the decomposition (s153) (s354), which is also shown in the figure.
These candidates are all minimal, meaning that many of the candidates en-
tailed by the former decomposition are nonminimal. Note however that the
decomposition (s1) (s283) (s4) still meets the definition of coherency, apart
from the minimality standard of the candidate generation approach.
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Figure 5-4 Example of redundancy in decompositional search. The two decom-
positions differ in their assignment of s5 and overlap in their candidate sets.

The histogram on the right of figure 5-2 illustrates the amount of redun-
dancy for decompositional search. This figure plots the average number of
decompositions that entails each candidate. For most cases, the measure of
redundancy is approximately 1.0, meaning that each candidate is contained
in the candidate set of only one decomposition. However, two cases exhib-
ited high levels of redundancy. The most redundancy came from a case of
Chronic Thrombocytopenic Purpura that had 65 coherent decompositions in
its final answer, entailing a total of 17770 candidates, of which only 4330 were
unique. Of the 4330 unique candidates, 3999 were minimal. The redundancy
for this case was therefore 17770/4330 ~ 4.1. The second most redundancy
came from the same highly unsound case of Lymphomatoid Granulomatosis
discussed above that had 133 coherent decompositions, entailing a total of
78930 candidates, of which only 24172 were unique. Of the 24172 unique
candidates, 11527 were minimal. The redundancy for this case was therefore
78930/24172 ~ 3.3.

These cases indicate that certain conditions yield decompositions with a
high degree of overlap in their candidate sets. Such cases apparently have a
symptom that almost, but not quite, covers two or more different clusters,
so this symptom cannot be ambiguated, even though it constrains those
clusters very weakly. A model for high levels of redundancy is illustrated in
figure 5-4. In this figure, assignment of symptom s5 to either cluster results
in two decompositions that are very similar, with entailed candidate sets that
have a high degree of overlap.
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5.3.2 Robustness

In chapter 4, we showed that decompositional search was theoretically incom-
plete. That is, it might not generate all coherent decompositions of a given
set of positive symptoms. Problems with incoherency arise when symptoms
are presented in different orderings. Given the enormous potential search
space for decompositions, this is perhaps not surprising. However, in prac-
tice, we have found that decompositional search usually gives the same sets
of decompositions, regardless of case ordering. Thus, the algorithm is fairly
robust in practice.

Of course, the best test for robustness would compare decompositional
search against a gold standard of all coherent decompositions for a given
problem. Unfortunately, we lack such a gold standard, short of the computa-
tionally intractable method of generating every possible decomposition and
testing it for coherency. Alternatively, we can test decompositional search to
see if it gives the same answers for different permutations of the same set of
symptoms.

We performed this test on the same single-target cases used in the first
experiment. For each of the 100 cases, we created 10 random orderings and
ran decompositional search on each ordering. We then determined whether
the algorithm produced the same decompositions for every ordering.

The results showed that 94 of the 100 cases each gave the same set of
coherent decompositions for all 10 case orderings. The remaining 6 cases,
however, gave different results for different orderings. On these cases, co-
herent decompositions were missed on some case orderings. The non-robust
cases are summarized in figure 5-5. This figure shows that up to 3 coherent
decompositions sometimes failed to be generated.

Nevertheless, non-robust cases were in the minority. For the other 94
cases, decompositional search proved to be robust, showing that incomplete-
ness occurs only occasionally in practice. Of course, one way to overcome
incompleteness would be to try different symptom orderings and use the
maximal set of coherent decompositions. The increased efficiency of decom-
positional search makes this computationally feasible. But the decomposi-
tions that decompositional search fails to generate have multiple interacting
clusters and may not be worth generating anyway.
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Total Missing
decompositions | decompositions
in solution 0 1 2 3

37 6 4

40 6 4

49 7 3

51 4 3 0 3
65 6 4

118 4 5 1

Figure 5-5 Non-robust cases for decompositional search. Each line represents
a case that was not robust with respect to symptom ordering. Each case lists the
total number of coherent decompositions that should have been generated. It also
lists the number of case orderings for which the algorithm missed a given number
of decompositions.

5.4 Case Presentation and Ordering

The first experiment showed that space and time complexity can vary widely
between different cases. We therefore decided to remove the variable of target
disorder selection and focus on a particular target disorder. In this exper-
iment, we compare decompositional search and candidate generation on a
single target disorder, but with different presentations of that disorder and
different orderings of each presentation.

By case presentation, we mean that a given disorder may reveal only a
subset of its possible effects. A particular presentation occurs in part because
causality in medicine is largely probabilistic: a disease may cause a certain
symptom only some of the time, and the observed effects of a disease vary
because of measurement error. Also, the information available to a clinician
is limited. Not all test results are available at the outset and the presence
of certain symptoms may be unknown to the patient or physician. The
exact set of symptoms that occur for a given target disorder is called a case
presentation. A case presentation is essentially the same as a case, but we
use the term to emphasize that the cases are generated by the same target
disorder.

By case ordering, we mean that evidence in a case may become available
in a certain sequence. The first evidence in a case may be specific, suggest-
ing only a few possible disorders, or it may be general, suggesting numerous



102 CHAPTER 5. EXPERIMENTAL COMPARISON

possibilities. Intuitively, we would expect that specific evidence makes cases
easier to solve, while general evidence makes them harder. Diagnosis is dif-
ficult when the first signs of disease are general, as is usually the case. A
patient may have only vague complaints of fatigue, suggesting numerous pos-
sible causes. Only later in a diagnostic workup does specific test information
usually become available.

These two variables, case presentation and case ordering, are the sub-
ject of our third experiment. We selected a single target disorder, prere-
nal azotemia, as our experimental model. We chose prerenal azotemia be-
cause it had relatively few possible effects, thereby generating relatively small
cases. The QMR knowledge base lists only 19 possible symptoms for prere-
nal azotemia, of which 5 are contextual symptoms dealing with age and sex.
Removing these 5 contextual symptoms, as discussed above, left us with
14 symptoms for prerenal azotemia. This compares with an average of 80
possible causes per disorder in the entire QMR knowledge base.

We generated 10 cases by stochastically picking symptoms from this pool
of 14 symptoms. In contrast with the first experiment, we did not set a limit
on the number of symptoms that could be selected. Rather, each symptom
for prerenal azotemia was considered sequentially, and if the link probabil-
ity for that symptom exceeded a randomly generated number from 0 to 1,
the symptom was selected. By not limiting the number of symptoms, we
simulated the causation of symptoms more naturally. This selection process
was performed a total of 10 times, giving 10 different sets of symptoms. The
results of this generation process are shown in figure 5-6. This figure lists the
10 cases in order of increasing complexity, so that solution of case A yields
the fewest minimal candidates, while solution of case J yields the most.

The figure shows that the stochastic selection process sometimes resulted
in inconsistent combinations of symptoms. For instance, two cases had a
serum urea nitrogen level of both 30-59 and 60-100, while four cases had a
serum creatinine level of both 0-2.9 and 3-10 mg/dl. These are somewhat
inconsistent, since we would expect only one range of values to hold for
each test result. Unfortunately, this highlights one of the deficiencies of the
diagnostic knowledge base: it does not record dependencies or relationships
among symptoms. Nevertheless, we kept the cases with these dual values.
Such cases might be interpreted as having values resulting from multiple
tests. Thus, a plausible hypothesis would presumably need to explain the
varying values.
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Cases
Symptom Causess A BCDEF GHTI J
s1 Azotemia of 2 wks or less duration 2 XX X XXX X X
sy Creatinine clearance decreased 40 XX X XXX X XXX
s3 Creatinine serum 3 to 10 mg/dl 62 | X X X X
sy Creatinine serum 2.0 to 2.9 mg/dl BT XXXXX X XXX
s5 Dehydration 76 X X X X X
s¢ Mouth mucosa dry (Xerostomia) 28 X X
s7 Oliguria 18 X X XX
sg pH urine less than 6 7 XX X X
S Sodium urine less than 20 mEq/day | 7| X X X XXX X X X
s10 Urea nitrogen serum 30 to 59 721 XX X X X X
s11 Urea nitrogen serum 60 to 100 38 X X X
s12 Urine osmolality gtr than 320 7TIXXXXXXX XXX
s13 Urine output less than 400 ml/day |29 | XX XXX X XX X
s14 Urine sp. gravity gtr than 1.020 10 XXXXXX X X
Total Symptoms: 8§ 8109 8 71211 8 10

Figure 5-6 Cases for prerenal azotemia subdomain. The columns list the symp-
toms contained in each stochastically generated case. One column also lists the
total number of possible causes for each symptom.
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Solution Distribution by Size
Class Case Algorithm 1 2 3 4 5 | Total
Cand. Gen. 1 1 25 27
1 AB.C.D Decomp. Search | 1 1 1 3
9 B Cand. Gen. 10 39 33 73
Decomp. Search | 1 0 3 1 5)
3 o Cand. Gen. 10 11 100 112
Decomp. Search | 1 0 2 1 4
4 GH Cand. Gen. 1 0 6 165 165 337
’ Decomp. Search | 1 0 1 3 1 6
5 I Cand. Gen. 1 11 8 435 15 547
Decomp. Search | 1 2 2 1 1 7
6 ] Cand. Gen. 1 21 769 8985 29325 | 39101
Decomp. Search | 1 1 3 4 1 10

Figure 5-7 Distribution of solution sizes for prerenal azotemia cases. Different
cases, such as G and H may have the same solutions, allowing them to be grouped
into solution classes.

5.4.1 Case Presentation

Each case represents a different presentation of prerenal azotemia. We solved
the 10 case presentations using the decompositional search and candidate
generation algorithms. In the process, we discovered that some cases gave
the same answers, even though they contained different sets of symptoms.
This occurred because the symptoms that varied from one case from an-
other may not have been specific or different enough to give a different set
of answers. Thus, more than one case belonged to a given solution class.
Altogether, the 10 cases yielded 6 solution classes. These solution classes
and the distributions of the solutions for both algorithms are shown in fig-
ure 5-7. This figure shows that the particular case presentation, even for the
same target disorder, greatly affects the set of answers. Cases A, B, C, and
D resulted in a relatively few minimal candidates, while case J resulted in
a solution that was several orders of magnitude larger. As figure 5-6 shows,
cases C and J differ by only a single symptom: case C contains s;, while
case J contains s13 instead. The results show that the complexity of diagno-
sis depends critically on the particular evidence available, even for the same
target disorder. One symptom can make a surprisingly large difference in
the overall complexity.
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5.4.2 Case Ordering

For each of the 10 case presentations, we generated 10 case orderings by ran-
domly permuting the symptoms. For each case, we also created a “specific-
first” ordering, where the symptoms were ordered in ascending order accord-
ing to the number of their possible causes. In other words, the first symptom
was the most specific, having the fewest possible causes, while the last symp-
tom was the most general, having the most possible causes. We also created
a “general-first” case, where the symptoms were ordered in descending or-
der, from most general to most specific. Altogether, then, each problem class
generated 12 cases, for a total of 120 cases.

We solved all case orderings using the decompositional search and can-
didate generation algorithms. As before, time and space complexity can be
compared between the two algorithms. The results are shown in figure 5-8.
Again, we see a linear correlation between the complexity of the two algo-
rithms. Linear fits of the data give rise to the following results:

Prerenal azotemia cases, random ordering
Slope  Inverse slope

Nodes kept 0.26 3.9
Nodes expanded  0.38 2.6
Running time 0.39 2.6

These formulas again show that the space required for symptom cluster-
ing algorithm is roughly the cube-root or fourth-root of that for candidate
generation, depending on the measure used, while the time required for de-
compositional search is approximately the cube-root of that for candidate
generation.

We can analyze the effects of case presentation and ordering separately,
as shown in figure 5-9. The top graph in this figure shows the distribution
of total run time for each case ordering, categorized by case presentation,
using candidate generation, while the bottom graph shows the same data for
decompositional search. The top point on each distribution shows the time
required for general-first ordering, while the bottom point shows the time
required for specific-first ordering. The remaining random orderings are as
shown, with the median, 25th, and 75th percentiles marked. Although we do
not show them, a similar graph would have resulted from the distributions
of the nodes expanded or nodes kept for each algorithm.

This figure shows that symptom ordering has a large influence on the
time required to solve a given problem. The difference between the best and
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worst orderings can be two to three orders of magnitude. Therefore, given
a set of symptoms, a diagnostic problem solver should order them so that
the most specific symptoms are considered first. Of course, this strategy is
only heuristic. Another ordering may in fact be faster than the specific-first
ordering, perhaps because of certain structural interrelationships among the
given symptoms. However, the heuristic strategy of ordering symptoms by
specificity is easy to perform and probably near-optimal, as it was in the 10
cases shown here. This strategy makes intuitive sense, since the most specific
symptoms give us the fewest possible choices at the outset.

5.5 Multiple-Target Cases

So far, our experimental cases have been generated by only one target dis-
order. As we have pointed out before, these cases still test multidisorder
diagnosis, because most of the minimal candidates contain multiple disor-
ders. Nevertheless, we can increase the complexity of diagnosis by consider-
ing cases generated by multiple target disorders. Such cases would provide
a further test of the ability of the two algorithms to scale up to complex,
real-world cases.

In this experiment, we generated a case by picking two target disorders
at random from the QMR knowledge base. For the first disorder, we picked
7 symptoms stochastically as in the first experiment. The second disorder
also generated 7 symptoms, with the proviso that each of these symptoms
was distinct from those already generated for the first disorder. Thus, the
two disorders gave rise to 14 different symptoms. Given our results from the
previous experiment on symptom ordering, we ordered these symptoms in a
specific-first order, to allow the algorithms to solve the cases as quickly as
possible. A total of 100 double-target cases were generated in this fashion.

For comparison, we required a set of single-target cases. The cases gener-
ated in the first experiment were used for this purpose. As discussed above,
14 of those cases were truncated because they would otherwise have exceeded
the available memory allocation. The remaining 86 cases contained 7 symp-
toms each. The only difference is that in the first experiment, cases were
ordered randomly; in this experiment, they were arranged in specific-first
order.

The results for the single-target cases are shown in figure 5-10. The log-
log linear relationships gave the following results:
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Single-target cases, specific-first ordering
Slope  Inverse slope

Nodes kept 0.19 5.2
Nodes expanded  0.25 4.0
Running time 0.21 4.7

In other words, the space required for decompositional search is approxi-
mately the fourth-root or fifth-root of that required for candidate generation.
The time required for decompositional search is approximately the fifth-root
of that required for candidate generation. Note that the efficiency savings for
decompositional search are even greater than in the first experiment, where
the efficiency gain for nodes kept was a fourth-root savings, and for run-
ning time, a cube-root savings. This result suggests that decompositional
search benefits proportionately more from a specific-first ordering strategy
than candidate generation does.

We executed the decompositional search and candidate generation algo-
rithms on the double-target cases. In the process, we found that 39 of the 100
cases could not be completed by the candidate generation algorithm because
they exceeded the available memory space. As before, these cases were trun-
cated at the point where they terminated and executed again. The resulting
cases had the following characteristics:

Symptoms
Truncated after: |56 |7 [8[9]10]11[12] 13|14
Numberofcases:‘1‘6‘4‘8‘5‘ 4 ‘ 5 ‘ 4 ‘ 2 ‘61

The results for the double-target cases are shown in figure 5-11. The
log-log linear relationships gave the following results:

Double-target cases, specific-first ordering
Slope  Inverse slope

Nodes kept 0.18 5.4
Nodes expanded 0.24 4.1
Running time 0.20 5.0

In other words, the space required for decompositional search was approxi-
mately the fourth-root or fifth-root of that required for candidate generation.
The time required for decompositional search was approximately the fifth-
root of that required for candidate generation.
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The savings for the double-target cases are approximately the same as
for the single-target cases. This result indicates that the efficiency gains for
decompositional search are relatively independent of the number of actual
disorders present. In other words, the computational complexity increases
multiplicatively with each additional target disorder, regardless of the algo-
rithm used. This result follws because the solutions for each target disorder
must be combined, even in decompositional search. Nevertheless, since de-
compositional search explains each target disorder more compactly, it has
fewer decompositions to combine for each target disorder.
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The fact . ..that many complex systems have a nearly
decomposable, hierarchic structure is a major facilitating factor
enabling us to understand, describe, and even “see” such
systems and their parts.

— Herbert A. Simon, The Sciences of the Artificial (1969)

The experimental results in the previous chapter indicate that decomposi-
tional search is more efficient than candidate generation. In this chapter, we
determine the reasons why. We explore this topic in several ways. First, we
identify the major source of computational complexity, namely, the combi-
natorics of partial explanations. Then, we develop a theoretical model for
the diagnostic process and compare the two algorithms using this model. Fi-
nally, we study the role of structure in problem solving through a series of
experiments. Our analysis reveals that domain structure plays a large role
in the efficiency of multidisorder diagnosis and that decompositional search
exploits domain structure significantly.

6.1 Combinatorics of Partial Explanations

If we examine the solutions to the cases in the previous chapter, we discover
that most of the complexity of candidate generation occurs in the largest
solutions. For instance, consider the most difficult set of cases in the prerenal
azotemia experiment, those arising from problem class J. The solutions to
those cases have the following size distribution:

Solution Distribution by Size
Class | Case | Algorithm 1 2 3 4 5 | Total
6 ] Cand. Gen. 1 21 769 8985 29325 | 39101
Decomp. Search | 1 1 3 4 1 10

As the table shows, candidate generation behaves most poorly on the largest
solutions. Conversely, decompositional search represents the largest solu-
tions most compactly. For solutions of size 5, one problem decomposition
represents over 29,000 candidates. Thus, the efficiency of decompositional
search derives mainly from the compact representation of large candidates.
Ironically, the largest candidates are also usually the least likely because each
disorder requires consideration of an additional prior probability. Therefore,
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216 20

disorders disorders

Fever Cough
Figure 6-1 Combinatorics of partial explanations. This Venn diagram shows

the number of possible causes for fever alone, cough alone, and both diseases,
taken from the QMR knowledge base. The partial explanations are contained in
the non-overlapping regions of diagram.

the allocation of effort by the candidate generation algorithm is counterpro-
ductive, spending most of its time on the least likely candidates.

The reason for the explosion of large minimal candidates is a matter
of combinatorics. Consider the simple example of fever and cough from
chapter 1. In that example, fever and cough each had three possible causes,
with one cause explaining both symptoms. But consider a more realistic
version of that example. In the QMR knowledge base, fever has 321 possible
causes and cough has 125 possible causes, with 105 causes explaining both
symptoms. The Venn diagram for this situation is shown in figure 6-1.

The 105 causes for both fever and cough are complete explanations, be-
cause each can explain all of the given symptoms. But the 216 and 20 causes
in the non-overlapping regions of the Venn diagram are partial explanations,
explaining only some of the given symptoms. If only single-disorder candi-
dates are allowed, then only complete explanations need be considered. But
if we allow multiple disorders, we must construct candidates from combina-
tions of partial explanations.

Partial explanations fall into categories of causal equivalence, based on
their ability to explain the symptoms in a given case. As the knowledge
base scales up in size, the phenomenon of causal equivalence becomes in-
creasingly important. In our example, the 216 causes for fever alone are
causally equivalent, as are the 20 causes for cough alone and the 105 causes
for both fever and cough. The phenomenon of causal equivalence explains
why minimal candidates factor into Cartesian product representations. To
form a two-disorder minimal candidate, we need to select one disorder from
the 216 causes for fever alone and one disorder from the 20 causes for cough
alone. Thus, combinations of partial explanations grow multiplicatively. In
our example, the number of such combinations equals the product of the
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partial explanations for each symptom: (216)(20) = 4425.

Thus, the compact representation of combinations of partial explanations
accounts for much of the power of decompositional search. Rather than repre-
senting such combinations explicitly, decompositional search groups together
disorders that are causally equivalent. Problem decompositions represent
structures by which partial explanations combine. In our example, the 4425
two-disorder minimal candidates for fever and cough are represented by a
single decomposition. The space required to represent these candidates is
additive rather than multiplicative. The space required to represent a prob-
lem decomposition is 216 4+ 20 = 236 disorders. This compact representation
enables decompositional search to spend less space and time on generating
and evaluating large candidates.

6.2 Theoretical Analysis

In this section, we analyze the computational complexity of diagnosis by
developing a mathematical model. This model supplements the experimen-
tal results by yielding more insight into the properties of a domain that
should influence computational complexity. However, our analysis is limited
because, like most complexity analyses, it deals only with worst-case com-
plexity. Moreover, since complex models are difficult to analyze, our model
necessarily incorporates some strong simplifications.

The important parameters in our model are the number of possible causes
for each symptom and their degree of correlation. Let ¢ be the number of
possible causes per symptom, and p be the correlation between the sets of
possible causes, or simply the symptom correlation. We define the symptom
correlation for two symptoms s; and s, to be

|Causes(s;) N Causes(sy)| (6.1)

plots2) = min(|Causes(s)|, |Causes(sz)|)
Symptom correlation measures the degree of overlap between symptoms s;
and s,. It has a value between 0 and 1, with 0 signifying no overlap between
possible causes, and 1 signifying complete overlap between possible causes.
Our model assumes that ¢ and p are constant for any symptom or pair of
symptoms. By making these parameters constant, we are assuming that
possible causes for symptoms are distributed randomly. In other words, our
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simplified domain lacks any notion of structure between symptoms, except
for a constant correlation between each pair.

Our model has some interesting properties. For instance, it allows an
arbitrarily large number of symptoms in a case, but only a finite number
of disorders to be triggered. Our model has this property because the total
number of disorders grows asymptotically. The nth symptom adds a non-
overlapping area of size (1 — p)"~lc¢, which represents new disorders not in
any other symptom so far. Thus the total number of disorders triggered by
n symptoms is

ct+(1—ple+(1—p)Yc+... = ¢/p

using the formula for geometric sums. Thus, each new symptom triggers a
diminishing number of new possible causes. This is because the quantity
(1 — p)" e decreases as more symptoms are added. This model simulates
the generation of symptoms based on a single target disorder.

We assume, as the example of prerenal azotemia illustrates, that the com-
plexity of candidate generation stems primarily from the largest candidates.
These candidates derive from combining disorders that each explain only
one of the given symptoms. Our analysis therefore will concentrate on the
growth in the number of these large candidates. These candidates come from
the non-overlapping regions of the symptom space, the parts of the possible
cause sets that explain only a single symptom.

The n'! symptom removes a fraction of p from each non-overlapping re-
gion, meaning that (1—p) of each region is retained after each new symptom.
Thus, for n symptoms, there are n non-overlapping regions, each containing
(1 — p)"“lc disorders. Thus, the total number of candidates obtained by
combining these partial explanations equals

|Candidates] = ((1—p)"'e)" = (1—p)H»=Den

The number of large minimal candidates will therefore begin with a rapid
growth, controlled by the ¢" factor. Then, as more symptoms are added, the
number of large minimal candidates should decrease, as the (1—p)™™~1) factor
takes over. Since the total search complexity depends on the widest part of
the search tree, we want to know when |Candidates| reaches a maximum.
This is found by setting its derivative equal to zero:

d
_ 1— n(n—1) n
0 i (1-0p) c

= (1= p)" Ve [(2n — 1) In(1 — p) + In(]
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This implies that

—Inec

—(1/(1—p))
n o= L+b%? r=1/(1-p)

2n—1 =

Thus, the number of large minimal candidates is bounded by O(c'°#¢). This
function is plotted in the top graph of figure 6-2 for various values of ¢ and
p. The complexity is essentially exponential in the number of possible causes
per symptom (c), with the point of takeoff depending on symptom corre-
lation (p). As symptoms become less correlated, the complexity increases.
This makes sense, because smaller symptom correlations mean proportion-
ately larger non-overlapping regions, thereby increasing the number of partial
explanations that can be combined.

For decompositional search, the analysis is a bit more difficult. Recall that
a problem decomposition is a collection of subsets of P such that each cluster
contains at least one unique symptom. However, not all decompositions
can be generated by decompositional search simultaneously. This is because
some decompositions are more ambiguous than others, and decompositional
search generates only maximally ambiguous decompositions. Therefore, the
maximum number of maximally ambiguous decompositions is bounded above
by the number of partitions of P. If P contains n symptoms, this quantity
equals the n'! Bell number, b, [1]. The first few Bell numbers are:

n |1]2[3|4]5|6 | 7| 8 ] 9 | 10 |
b, | 1]2]5]15]|52]203 877 | 4140 | 21147 | 115975 |

As these terms show, the number of possible decompositions grows very
rapidly. The Bell sequence is bounded below by 2" so it grows at least
exponentially. It is bounded above by the factorial sequence, so b, < n!
for n > 2. However, our experimental evidence does not show such a rapid
rate of increase. This is partly due to the plausibility criteria that sharply
limit the number of decompositions. Thus, rather than the total number of
maximally ambiguous decompositions, we want to estimate the number of
coherent decompositions. Unfortunately, this is a difficult question and our
analysis is somewhat speculative.

We conjecture that the number of decompositions grows until the expla-
nation set for each cluster becomes small enough that it either becomes empty
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or coverable by a new symptom. This certainly occurs when most regions in
the symptom space contain only a single disorder. Then the next symptom
will either contain the disorder—thereby covering it—or not contain it—
resulting in a empty common causes set and an incoherent decomposition.
In our model, a region that explains x symptoms out of n contains

x—1 n—x (1 B p)n P T

P e = S
disorders. When the largest region contains only a single disorder, the growth
of problem decompositions should certainly halt. Thus, we want to know the
value of x that gives the largest region. If we assume that p < 0.5, the
term p/(1 — p) is less than 1, so the largest region is achieved when x is
minimized, or x = 1. These regions are again the non-overlapping regions
that we considered in the analysis of candidate generation. The number of
disorders in this region is

(L—p)" p
p (1_p)c

= T C

where r is again defined to be 1/(1 — p).
The largest region contains less than one disorder whenever

riTe < 1

(1-n) < —log,c
n > 1l+log.c

So the number of decompositions should cease growing when n exceeds log,. c.
Thus, we expect the number of clusterings to be bounded as follows:

(n!)

O(n")

O((log, ¢)"*°)
= 0 (ClOgT log,. c)

S

|Decompositions| =

<

<

In the last step, we used the fact that a'°8® = b'°8¢, The worst-case com-

plexity of decompositional search is plotted in the middle graph of figure 6-2.
Again, as with candidate generation, the complexity grows exponentially
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with the number of possible causes per symptom. The symptom correlation
parameter also controls the point at which the exponential function takes
off, with higher correlations resulting in slower growth functions. However,
for the same symptom correlation, the complexity of decompositional search
takes off at a higher value of ¢ than with candidate generation and also grows
at a slower rate. A direct comparison of candidate generation and decom-
positional search is shown in the bottom graph of figure 6-2 for a particular
value of p, namely 0.4.

6.3 Domain and Problem Structure

The theoretical analysis presented above is limited by the fact that it is a
worst-case analysis. It computes only upper bounds on the possible num-
ber of coherent decompositions or minimal candidates. However, in most
cases, this theoretical maximal limit is not reached. Moreover, the theo-
retical model made the simplifying assumptions that symptoms have equal
numbers of possible causes and that their pairwise correlations are equal.
These assumptions, of course, do not hold in natural domains. Finally, the
model does not incorporate any elements of domain structure.

In the remainder of this chapter, we examine empirically the role of do-
main structure in diagnostic complexity. It is clear that domain structure
greatly affects the computational behavior of algorithms. But it is less clear
how one should describe or quantify domain structure. We propose to mea-
sure structure by the distribution of a quantity called explanatory power. By
manipulating this quantity, we can alter domain structure and observe the
resulting effect on diagnostic complexity.

The domain knowledge, which is embodied in a bipartite knowledge base,
can be characterized by two quantities: the distribution of possible causes for
its symptoms and the distribution of possible effects for its disorders. For the
QMR knowledge base, these distributions are presented in figure 6-3. These
distributions reveal an asymmetry in the bipartite knowledge base: the pos-
sible effects are normally distributed in size, while the possible causes are
exponentially distributed. We conjecture that these distributions are charac-
teristic of most natural domains. The reason for this is that symptoms vary
considerably in their generality and specificity. Indeed, symptoms are often
designed to vary in terms of generality or specificity. General symptoms, such
as fatigue, are useful for determining whether a problem exists; they gener-
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ally are sensitive indicators of a diagnostic problem. Specific symptoms, such
as a urinary pH level, are useful for confirming or ruling out disorders. Spe-
cific tests have been developed for most disorders, so that most symptoms
in the knowledge base are specific for a small set of disorders. This explains
why possible causes for symptoms are distributed exponentially. On the other
hand, each disorder has a relatively large number of both specific and general
symptoms. This explains why possible effects for disorders are distributed
normally.

But the size distributions for the entire domain are of secondary impor-
tance compared to the particular subdomain faced by the diagnostic system.
The subdomain is defined by the symptoms in a case, which are generated by
a set of target disorders, either by experimental stochastic simulation or by
causal relationships in real life. A subdomain contains the set of symptoms
present, along with the disorders that explain each symptom. These disor-
ders are competitors of the initial target disorders. Of course, the number
of target disorders and their identity is not known to the diagnostic problem
solver.

An example of a subdomain is shown in figure 6-4. This is the subdomain
for prerenal azotemia, where we assume that all possible effects of prerenal
azotemia are in fact present. However, a different subdomain for prerenal
azotemia might be defined using a subset of its possible effects. The sub-
domain also contains disorders linked to the symptoms. In figure 6-4, these
disorders are arranged according to the number of symptoms in the subdo-
main that they explain. The disorders that explain the most symptoms are
placed closest to the middle. The disorder that explains all of the symptoms,
prerenal azotemia, is located in the center.

Thus, disorders can be ranked in terms of the fraction of positive symp-
toms in the case that they explain. We call this the explanatory power of a
disorder. We define the explanatory power of disorder d for positive symp-
toms P as

P N Effects(d
Power(d) = P ‘PT () (6.2)

where Effects(d) is the set of possible effects for d. The denominator serves to
normalize the value of Power(d) so that it lies between 0 and 1. This concept
generalizes our earlier distinction between complete and partial explanations.
A complete explanation is one whose explanatory power equals 1. A partial
explanation has explanatory power less than 1. However, rather than having
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only a dichotomy between complete and partial explanations, we now have
gradations of explanatory power.

The graph of the prerenal azotemia subdomain shown in figure 6-4 shows
how gradations of explanatory power are distributed, with a few disorders
in the middle having much explanatory power, but most disorders in the
periphery having little explanatory power. This distribution is shown more
explicitly in figure 6-5. The explanatory power for this subdomain shows a
distribution skewed towards the left, but with several disorders having an
intermediate level of explanatory power. The single disorder having max-
imal explanatory power is the target disorder, prerenal azotemia, the only
complete explanation. We describe this distribution as bimodal because it
separates those disorders having essentially no explanatory power from those
with intermediate explanatory power.

This bimodal distribution differs greatly from a normal distribution. Bi-
modality derives from the presence of decompositional structure in a do-
main. If a domain has decompositional structure, the target disorder will
belong to a group of similar disorders. Groups of disorders induce a rank-
ing among competing disorders. Some disorders will have similar possible
effects compared to the target disorder, and thereby have high explanatory
power. Other disorders will have largely different possible effects, resulting
in relatively low explanatory power. The separation of similar and dissimilar
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disorders depends on how complete the decompositional domain structure
is. The distribution of explanatory power in figure 6-5 is evidence for near
decomposability in the QMR knowledge base, at least in the neighborhood of
prerenal azotemia.

With this notion of explanatory power, we can modify our original hy-
pothesis about the combinatorics of partial explanations. We can now ascribe
diagnostic complexity to the combinatorics of disorders with low explanatory
power. We now conduct two experimental analyses to further assess the role
explanatory power in diagnostic complexity.

6.4 Trimmed Subdomain

The first analysis tests the role played by disorders with low explanatory
power. This experiment modifies the prerenal azotemia subdomain by re-
moving disorders with low explanatory power and observing the effect on
the two algorithms. Specifically, we remove those disorders in the prerenal
azotemia subdomain that explain only a single symptom. The resulting sub-
domain is called a “trimmed” subdomain, since the least powerful disorders
are trimmed. This modification removes the left-most side of the explanatory
power distribution, as shown in figure 6-6. We then run the same experimen-
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tal case orderings for the prerenal azotemia subdomain as before. Since we
have presumably removed the disorders that account for most of the combi-
natorial explosion, we expect a decrease in the space and time required for
the same cases.

We compare decompositional search and candidate generation as before,
but on the trimmed subdomain. The results are shown in figure 6-7 and
summarized below:

Prerenal azotemia cases, trimmed subdomain

Slope Inverse slope
Nodes kept 0.30 3.3
Nodes expanded  0.40 2.5
Running time 0.43 2.3

The results show that decompositional search is more efficient than candi-
date candidate, even on a simplified subdomain. However, the amount of
efficiency gain is slightly smaller than for the original subdomain. Originally,
as shown previously in figure 5-8, decompositional search had space and time
advantages that were powers of 3.9 and 2.6, respectively. With the trimmed
subdomain, these advantages lessened to powers of 3.3 and 2.3.

In addition, instead of comparing algorithms with each other, we can
analyze each of them separately on the two subdomains. We can see how
each algorithm responded to trimming of the subdomain. These comparisons
for time complexity are shown in figure 6-8. The full results are summarized
below:

Trimmed subdomain, candidate generation
Slope Inverse slope

Nodes kept 0.68 1.59
Nodes expanded 0.71 1.41
Running time 0.63 1.47

That is, adding the disorders with least explanatory power to the trimmed
subdomain would have increased the time complexity by a power of approx-
imately 1.5. Thus, the least powerful disorders accounted for a significant
portion of the diagnostic complexity.

For decompositional search, the results were similar:
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Trimmed subdomain, decompositional search

Slope Inverse slope
Nodes kept 0.77 1.30
Nodes expanded  0.76 1.32
Running time 0.74 1.37

The space and time complexity for the trimmed subdomain were powers of
1.30 and 1.37, respectively, compared to the original subdomain. Note that
the effect of trimming on decompositional search was slightly less than that
for candidate generation. That is, the least powerful disorders would have
increased the complexity of the trimmed subdomain by a power of 1.5 for
candidate generation but only 1.3 for decompositional search. This indicates
that decompositional search handles the combinatorics of the least powerful
disorders relatively better than candidate generation.

6.5 Redistributed Subdomain

Our second experimental analysis explores the role of domain structure in di-
agnostic complexity. We have argued that in a domain with decompositional
domain structure, the explanatory power for diagnostic subdomains should
have a non-normal, bimodal distribution. In such a distribution, disorders
are separated to some extent into those with relatively low explanatory power
and those with relatively high explanatory power. A bimodal distribution
is evidence of decompositional structure. Decompositional structure occurs
because the causal links in a knowledge base are not distributed randomly.
Rather, there are clusters of symptoms and corresponding clusters of disor-
ders, with relatively dense links within clusters and relatively sparse links
between them. Competing disorders therefore have varying degrees of sim-
ilarity to a given target disorder, depending on whether they belong to the
same cluster.

We hypothesize that such decompositional structure is exploited by de-
compositional search and accounts for much of its efficiency. We test this
hypothesis by experimentally removing structure from the prerenal azotemia
subdomain and observing the result. Specifically, we remove structure by
randomizing the possible causes for each symptom in the subdomain. Each
symptom keeps the same number of possible causes as before, but the actual
disorders that can cause each symptom are redistributed among the entire
set of disorders in the subdomain. The only restriction is that each symptom
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continues to contain the target disorder as a possible cause. This is done to
maintain the semantics of the subdomain, so that all symptoms derive from
the target disorder.

If we apply this procedure to the original prerenal azotemia subdomain,
we get the redistributed subdomain shown in figure 6-9. As with the orig-
inal subdomain, the disorders are arranged so that those with the greatest
explanatory power are in the middle. In this figure, the disorders exhibit
differences in explanatory power, resulting from the random redistribution
process. Comparing the figure with the original subdomain, shown previously
in figure 6-4, we may be able to discern that the distribution of explanatory
power has become more uniform. To show this change more clearly, we graph
the distribution of explanatory power in figure 6-10. This shows that the dis-
tribution of explanatory power has been changed from a bimodal distribution
to a normal one.

We use this redistributed subdomain to run the same cases for prere-
nal azotemia as before, using the candidate generation and decompositional
search algorithms. The two algorithms are compared in figure 6-11. The
linear fits are shown below:

Prerenal azotemia cases, redistributed subdomain

Slope Inverse slope
Nodes kept 0.65 1.54
Nodes expanded 0.78 1.28
Running time 0.77 1.30

These compare to the original, structured subdomain, which had efficiency
gains of 3.9, 2.6, and 2.6 for nodes kept, nodes expanded, and running time,
respectively. Thus, domain structure apparently plays a large role in making
decompositional search more efficient than candidate generation. When this
structure is removed, the efficiency gain of decompositional search lessens
substantially.

As with the trimmed subdomain experiment, we can analyze the effects
of redistribution on each algorithm individually. The graphs are shown in
figure 6-12. In these graphs, the time complexity for the redistributed sub-
domain is plotted on the abscissa, while the complexity for the structured
subdomain is plotted on the ordinate. This allows us to analyze the effects of
structure on reducing complexity. Again, only running time is plotted; the
full results for candidate generation are shown below:
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Figure 6-9 Redistributed prerenal azotemia subdomain. Symptom and disorder

labels correspond to those listed in appendix D.
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Figwre 6-10 3Distributibn of expl8natory pd®%er for rddistributed subdomain.

Explanatory POW@;Z&%%W@BWM&%MH%&%&EL@% number of symptoms in the sub-

domain that a disorder can explain. The distribution is roughly normal, compared
with the bimodal distribution of the original subdomain.

Structured subdomain, candidate generation

Slope Inverse slope
Nodes kept 0.63 1.59
Nodes expanded  0.59 1.70
Running time 0.52 1.92

These results show that the absence of domain structure increases the space
and time required for candidate generation by powers of 1.59 and 1.92, re-
spectively. Therefore, candidate generation also exploits domain structure.

However, as we have shown, decompositional search exploits structure
relatively more. The effect of structure on the space and time efficiency of
decompositional search is given below:

Structured subdomain, decompositional search

Slope Inverse slope
Nodes kept 0.25 4.0
Nodes expanded  0.32 3.1
Running time 0.32 3.1

These values are substantially greater than those for candidate generation,
indicating the relative extent to which decompositional search exploits do-
main structure.

6.6 Decomposition of a Subdomain

It is interesting that domain structure appears in such a specific example.
We would expect structure at a high levels of structure, such as organ sys-
tems. But although the symptoms related to prerenal azotemia are in the
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same organ system, they still exhibit structure. To elicit this structure fur-
ther, we now decompose the entire prerenal azotemia subdomain. This task
contrasts with the experimental runs performed so far, where only subsets of
the possible effects of prerenal azotemia have been decomposed.

Decomposition of all 14 possible effects of prerenal azotemia yields 6 co-
herent decompositions, listed in figure 6-13. These decompositions give some
insight into the structure of the prerenal azotemia subdomain. The best
decomposition places all symptoms into one cluster, with a differential con-
taining only “Prerenal Azotemia”. There are no coherent decompositions
with two clusters, suggesting that the one-cluster decomposition is much
more plausible than the others.

Nevertheless, the structure of the other decompositions is informative.
For example, the cluster (s15283855¢511) recurs in all decompositions other
than the first one. The symptoms in this cluster are:

s1  Azotemia of two weeks duration or less
so  Creatinine clearance decreased

s3  Creatinine serum 3 to 10 mg/dl

s5  Dehydration

s¢  Mouth mucosa dry (Xerostomia)

s11 Urea nitrogen serum 60 to 100

and its differential is {“Acute Renal Failure”}. This cluster indicates that
acute renal failure constitutes a distinct syndrome for the symptoms associ-
ated with prerenal azotemia. In fact, prerenal azotemia and acute renal fail-
ure are causally related diseases, as Harrison’s Principles of Internal Medicine
attests [78, p. 1145]: “Prerenal azotemia causes 40 to 80 percent of cases of
acute renal failure.”

Another interesting syndrome appears in decomposition Cs as the cluster
($759514), which consists of the symptoms

sy Oliguria hx
Sg  Sodium urine less than 20 meq per day
s14  Urine specific gravity gtr than 1.020

This cluster has the differential diagnosis {“Cardiac Failure Left Chronic
Congestive”, “Cardiac Failure Right Chronic Congestive”}, indicating that
these two types of heart failure are similar. In heart failure, a complex se-
quence of hemodynamic and hormonal adjustments cause the kidneys to re-
tain sodium and water, resulting in poor urinary output, low urinary sodium,
and concentrated urine.
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C = (318283848556578859510511812813514)
Differentials (1): {“Prerenal Azotemia”}

Cy = (89) (3152333536511) (8283848788810811812813814)

Differentials (6 x 1 x 1): {“Aldosteronism Primary” “Aldosteronism Secondary” “Car-
diac Failure Left Chronic Congestive” “Cardiac Failure Right Congestive” “Constrictive
Pericarditis” “Renal Failure Secondary To Liver Disease” } x {“Renal Failure Acute”} x
{“Glomerulonephritis Acute” }

Cs = (57) (58) (3132535536511) (82335439310311512313314)

Differentials (16 x 5 x 1 x 1): {“Arteriolar Nephrosclerosis Malignant” “Cardiac Fail-
ure Left Chronic Congestive” “Cardiac Failure Right Congestive” “Glomerulonephritis
Advanced Chronic” “Glomerulonephritis Rapidly Progressive” “Goodpasture Syndrome”
“Heat Exhaustion” “Iga Nephropathy” “Lupus Nephritis” “Progressive Systemic Sclerosis
Involving Kidneys” “Renal Artery Stenosis” “Renal Leptospirosis” “Renal Thrombotic
Thrombocytopenic Purpura” “Renal Vasculitis” “Staphylococcal Scarlet Fever” “Tubu-
lar Necrosis Acute” } x {“Analgesic Nephropathy” “Diabetic Ketoacidosis” “Hypokalemic
Nephropathy” “Renal Failure Chronic” “Renal Tubular Acidosis Proximal”} x {“Renal
Failure Acute”} x {“Renal Failure Secondary To Liver Disease” }

Cs= (38) (39) (3182833586811) (32838487810811812813814)

Differentials (5 x 6 x 1 x 3): {“Analgesic Nephropathy” “Diabetic Ketoacidosis” “Hy-
pokalemic Nephropathy” “Renal Failure Chronic” “Renal Tubular Acidosis Proximal”}
x {“Aldosteronism Primary” “Aldosteronism Secondary” “Cardiac Failure Left Chronic
Congestive” “Cardiac Failure Right Congestive” “Constrictive Pericarditis” “Renal Failure
Secondary To Liver Disease”} x {“Renal Failure Acute”} x {“Arteriolar Nephrosclerosis
Malignant” “Iga Nephropathy” “Renal Vasculitis” }

Cs = (38) (3182338556311) (3789314) (8234510312513514)

Differentials (5 x 1 x 2 x 5): {“Analgesic Nephropathy” “Diabetic Ketoacidosis” “Hy-
pokalemic Nephropathy” “Renal Failure Chronic” “Renal Tubular Acidosis Proximal”} x
{“Renal Failure Acute”} x {“Cardiac Failure Left Chronic Congestive” “Cardiac Failure
Right Congestive” } x {“Arteriolar Nephrosclerosis Malignant” “Iga Nephropathy” “Renal
Failure Secondary To Liver Disease” “Renal Vasculitis” “Toxemia Of Pregnancy” }

Ce = (57) (58) (59) (8152535556511) (8254510812813514)

Differentials (11 x 5 x 3 x 1 x 1): {“Glomerulonephritis Advanced Chronic” “Glomeru-
lonephritis Rapidly Progressive” “Goodpasture Syndrome” “Heat Exhaustion” “Lupus
Nephritis” “Progressive Systemic Sclerosis Involving Kidneys” “Renal Artery Stenosis”
“Renal Leptospirosis” “Renal Thrombotic Thrombocytopenic Purpura” “Staphylococcal
Scarlet Fever” “Tubular Necrosis Acute”} x {“Analgesic Nephropathy” “Diabetic Ke-
toacidosis” “Hypokalemic Nephropathy” “Renal Failure Chronic” “Renal Tubular Aci-
dosis Proximal”} x {“Aldosteronism Primary” “Aldosteronism Secondary” “Constrictive
Pericarditis”} x {“Renal Failure Acute”} x {“Toxemia Of Pregnancy”}

Figure 6-13 Coherent decompositions of the prerenal azotemia subdomain. The
symptom labels correspond to those listed in appendix D. Differential diagnoses
and their sizes are listed in sequence, matching that of the symptom clusters.
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Finally, several differential diagnoses group together the disorders “Ar-
teriolar Nephrosclerosis Malignant”, “IgA Nephropathy”, and “Renal Vas-
culitis”. These diseases are similar in that they are vascular diseases of the
kidney, causing renal damage by high blood pressures in the arteries supply-
ing the kidney.

Thus, this experiment provides additional evidence for the presence of
decompositional structure in diagnostic domains, even within a subdomain
created by a single target disorder. The resulting “micro-syndromes” corre-
spond to natural groupings also found in medical textbooks. Decompositional
search found these symptom clusters and disease groupings solely from the
individual patterns of causal links in the knowledge base. It did not rely on
abstractions that were explicitly encoded in the knowledge base. This type
of abstraction, called dynamic abstraction, allows decompositional search to
use abstractions inherent in a knowledge base, even when such abstractions
are not known beforehand. Dynamic abstraction also suggests that decompo-
sitional search might be applied to other domains or subdomains to discover
underlying domain structure.
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... when you have eliminated the impossible, whatever remains,
however improbable, must be the truth.

— Arthur Conan Doyle, The Sign of Four (1890)

The decompositional search algorithm presented so far is categorical; it does
not consider any information about the likelihood of disorders or symptoms.
This chapter extends decompositional search to allow such probabilistic in-
formation. This is especially important in fields such as medicine where the
probabilities of diseases and causal relationships range over several orders of
magnitude.

This chapter derives a set of formulas for the probability of a candidate
set, a candidate, and a task, conditioned on a set of positive and negative
symptoms. We also compute the probability that the single-fault assump-
tion is true. To derive these results, we first establish a precise semantics
for these quantities. In particular, we clarify the probabilistic concepts of
events, instances, link probabilities, causal probabilities, and non-causation
probabilities.

7.1 Probabilistic Knowledge Bases

A probability is a function p that assigns a number between 0 and 1 to an
event. An event is the outcome or state information for a set of objects in
some universe. For instance, let a universe consist of a jar of n balls, labeled
b1, ...,b,. Each ball can be red or white; these represent their possible states.
An event might be the condition that ball b; is red.

Intuitively, a probability measures the chance or likelihood of an event.
However, probability theory depends only on the following axioms, where €2
is the certain event, one that is always true:

1. The probability of an event A is positive:
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3. If events A and B are mutually exclusive, that is, they cannot both
occur simultaneously, then the probability that either event will occur
is the sum of their individual probabilities:

p(A+B) = p(A)+p(B)

These axioms provide sufficient basis for computing probabilities.

7.1.1 Prior Probabilities

To bring probability theory into the realm of diagnosis, consider the universe
Up of all disorders d in the knowledge base. We assume that our knowledge
base contains all possible disorders; if it is incomplete, we add a disorder
called “Other” that stands for all disorders not in the knowledge base. Then
the state of each disorder d is either positive or negative. We denote these
events respectively as dt and d~. The state of a disorder may also be left
unspecified, which we denote by the disjunction “d* Vv d~”.

An event can specify the outcomes for a set D of disorders. The event
that every disorder in D is positive is represented as D, and that every
disorder in D is negative as D~. The event that one or more disorder in D
is present is represented simply as D. Note that the event D is the opposite
of the event D~. Like sets, events can be combined. Suppose A and B
are events; then “A + B” means the disjunctive event AV B, and “AB” or
“A, B” means the conjunctive event A A B. For instance, the event where d;
is present and d is absent is denoted as di d; .

A probabilistic knowledge base requires two types of quantities: prior
probabilities and link probabilities. The prior probability p(d*™) for each
disorder d is the probability that d is present, given no other information.
We denote this quantity by p(d*). The probability that a disorder is absent
is p(d7) =1 —p(d*). We will also use the following simplified notations for
these quantities:

ps = p(d") (7.1)
ps = p(d) (7.2)

We can combine prior probabilities to obtain the probabilities of sets of
disorders:

p(DY) = 1l i (7.3)

deD
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p(D7) = Ilpi (7.4)

deD

p(D) = 1= ]]pra (7.5)
deD
In these equations, we assume that disorders occur independently. In other
words, we assume that for any pair of disorders d; and ds,

p(didy) = p(df)p(d3) (7.6)

This is called the disorder independence assumption.

While most events specify only the state of some disorders in the universe,
leaving the rest unspecified, other events specify the state of all disorders in
the universe; we call such an event a disorder instance. For example, consider
the disorder instance that all disorders in a given set D are present, while
all other disorders in Up are absent. We denote this disorder instance as
D*(Up — D)~. The probability of this disorder instance is

p(D"Up—D)7) = Ilv:i Il »a
deD  deUp—D

In addition to a universe Up of disorders, a diagnostic knowledge base
also contains a universe Ug of symptoms. A symptom can be either positive
(present) or negative (absent). We denote the set of positive symptoms by P
and the negative symptoms by N. Using the same notation as for disorders,
we therefore denote a case by the event PTN~. Note that a case is not a
symptom instance; it does not specify whether symptoms in Us — (P U N)
are positive or negative.

7.1.2 Link Probabilities

In addition to having a prior probability attached to each disorder, a prob-
abilistic knowledge base has a link probability attached to each link between
a disorder and symptom. The meaning of a link probability is based on the
concept of conditioning. Conditioning changes the probability of an event
based on background information. Suppose we know that event A has oc-
curred. This information changes the probability of B from p(B) to p(B | A),
or the conditional probability of B given A. The conditional probability is
defined as

p(BA) = (7.7)
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Figure 7-1 Ei{&lﬁ]@@@ba“m%%abﬂistic knowlegééoﬁz{%@bql?liigtiﬁ%mple corre-
sponds semantically to two destroyers, d; and ds, firing upon a ship s. Prior
probabilities correspond to the probability of the destroyer being in the vicinity of
the ship. Link probabilities correspond to the destroyers’ firing accuracy.

A link probability results from conditioning on the presence of exactly one
disorder. Suppose that some symptom s is positive and that some disorder
d is present. We assume that s can only be caused by a disorder that is
present; that is, it cannot be positive without cause. Then the probability
that d causes s is

p(s™ | d*(Up = {d})")
the link probability of s given that only d is present. The conditioning
event “dT(Up—{d})~” effectively excludes all disorders other than d, thereby
focusing on the contribution of d alone towards causing s. Link probabilities

are given as primitive values by the domain expert, and to simplify the
notation, we will use special symbols for them:

ces = p(s* | d™(Up—{d})7) (7.8)
qes = p(s~ [d"(Up —{d})7)
1— Cds (79)

In a probabilistic knowledge base, each link is labeled with the value cq4,. If
a link is not present between d and s, then cgs = 0.

Since causal links are not directly observable in most domains, conditional
probabilities typically assess whether symptoms are present, not whether
they are caused by a particular disorder. Consequently, most conditional
probabilities are different from link probabilities. To see this difference, con-
sider the following example.

Example Consider the situation in figure 7-1, where a ship s becomes a
target for destroyers d; and dy;. We are concerned about whether the ship
sinks (represented by sT) or stays afloat (s7). In this problem, the destroyers
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may or may not be present in the vicinity of the ship; suppose they have
probabilities p(d) = 0.1 and p(d4 ) = 0.2 of being present, respectively. The
destroyers also differ in their firing accuracy. When present, destroyer 1 has
a 0.5 probability of sinking the ship, while destroyer 2 has a 0.4 probability
of sinking the ship. These are the link probabilities p(s™ | di d3) and p(s™ |
dydy) of the ship sinking.

The ship sinks whenever a destroyer is present and that destroyer suc-
cessfully torpedoes the ship. If both destroyers are present, the ship has the
following chance of sinking:

p(sTdfdf) = 1—(1-0.5)(1-04)=0.7

This value was computed by finding the probability that both destroyers
missed and subtracting that from 1. Now, by summing the cases where
the other destroyer is present or absent, we can determine the conditional
probabilities that the ship sinks:

p(sT1df) = p(s™|dfdy)p(dy) +p(s™ | didy)p(dy)
= (0.7)(0.2) 4 (0.5)(0.8) = 0.54

p(s™[dy) = p(s | dyd)p(dy) +p(s™ | dydy)p(dy)
— (0.7)(0.1) + (0.4)(0.9) = 0.43

Compare these with the link probabilities:

p(s" | didy) = 05
p(s* | dydy) = 04

Note that the conditional probability of the ship sinking is higher than the
link probability. This relationship holds because the conditional probability
includes those events where the other destroyer sinks the ship. Also, note
that the conditional probabilities are harder to compute. This is because link
probabilities are given as primitives, while conditional probabilities have to
computed over combinations of disorder instances. W

7.2 Causation and Probability

Given the prior and link probabilities in a diagnostic knowledge base, we
now consider the use of probabilities in reasoning about particular diagnostic
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cases. In a particular case, we usually cannot condition on the presence
or absence of a disorder, since the point of diagnosis is to determine that
information. On the other hand, we can condition on the presence and
absence of symptoms, and in fact, the main use of symptomatic information
is to change the likelihood of disorders in the universe.

Although we do not condition on disorders, we hypothesize about their
presence and absence. Furthermore, in decompositional search, we hypothe-
size about how disorders cause symptoms. In this section, we consider how
to compute the probability of hypothesized events of causation and non-
causation.

7.2.1 Causal Probabilities

A causal probability is the probability that a given disorder or set of disorders
causes a given symptom or set of symptoms. It measures the event that a
particular link or set of links in the associative knowledge base “fire”. Thus, a
causal event means not only that a symptom is positive but that a particular
disorder caused it to be positive. This event is denoted by d — s. (We do
not need “+” superscripts, because the event already implies that both s and
d are present.) For this causal event to occur, a disorder must both be present
and successfully cause the symptom. Thus, we define causal probability as:

p(d —s) = p(s* | d"(Up —{d})")p(d")
= plcas (7.10)

We multiply by p(d*) instead of p(d*(Up — {d})”) because we include the
possibility that other disorders may be present, although we still assume that
d causes s. In other words, we make no assumptions about the state of other
disorders or links. Note that causal probabilities differ from link probabilities,
because link probabilities are conditioned on a disorder instance, while causal
probabilities are not conditioned.

Example Consider again our example of the ship and two destroyers. We
wish to know that probability that a destroyer sinks a ship, without knowing
whether the destroyer is present or not. This event requires both that the
destroyer be present and that its torpedo sinks the ship. In our example, we
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can compute the probabilities that the ship is sunk by each destroyer.

p(dy — s) = (0.1)(0.5) = 0.05
p(dy — s) = (0.2)(0.4) = 0.08 |

In addition, we will find the converse of a causal event useful. This event
is expressed by d —~ s, which means that d does not cause s. A disorder d
can fail to cause s if it is absent or if it is present and its link does not fire:

p(d—s) = 1—p(d—s)
= p; + D5 qas (7.11)

Causal probabilities are especially useful in the decompositional search
approach, because a problem decomposition essentially assigns a causal struc-
ture between differential diagnoses and symptom clusters. Causal probabil-
ities help determine how feasible this structure is. In order to use causal
probabilities for problem decompositions, we need to generalize them to sets
of symptoms. This generalization requires an additional assumption, namely,
that that each disorder causes each symptom independently. In our example,
this is analogous to saying that each torpedo is independent of the others:

p(sisy [didy) = p(si | didy)p(ss | didy) (7.12)

This is the causal independence assumption. These assumptions plus the
disorder independence assumption in 7.6 are made in most other probabilistic
work. In particular, they are used by the belief networks community, where
they are called the noisy-or assumptions [51].

With these assumptions, we can now compute the probability that a set
of disorders disjunctively causes a set of symptoms. We denote this event by
D - S, which is defined formally to mean:

DS = 3deD. VseS. d—s

The probability of this event is:

p(D—5) = 1-]] (1 -7 I1 cds> (7.13)
deD ses

This probability holds because the causal event is false when every disorder

fails to cause all symptoms. A disorder causes all symptoms when it is present

and all causal links fire.
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Causal probabilities can be conditioned on events. Conditioning intro-
duces our background knowledge into the computation of a causal probabil-
ities. For instance, we may want to compute the probability that d causes s,
given that s is positive. This conditional causal probability can be computed
as follows:

p(d — S, S+)

p(s™)
p(d — s)

p(s™)

pld—s|st) =

chds
1 = Tlsev, <pd_ +p$9ds>

(7.14)

The second line follows because d — s implies s*. This combination of con-
ditioning and causation foreshadows the results derived later in this chapter.
These results generalize this calculation to sets of disorders and symptoms
and conditions also on negative symptoms.

7.2.2 Non-Causation and Symptom Probabilities

In addition to computing the probability of causal events, we can compute
the probability of non-causation, or a failure to cause a set of symptoms.
This event D —i» S means that no element in D causes any element in S.
In logical terms:

DS = VdeD. VseS. d—s

Note that this is different from the event D % S which means that now
every element in D causes all elements in S:

DS = VdeD. 3s€S. d—s

The probability of the non-causation event is given below:

(D~ S) = ]I (PE +pq |1 st> (7.15)
deD seS

This probability holds because each disorder can be considered indepen-

dently. A disorder fails to cause a set of symptoms when it is absent or

when it is present and each causal link fails.
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Quantity Notation

Prior probability Py Dy

Link probability Cds, Qds

Causal probability pld —s), p(D =5 S)

Non-causation probability p(D — A)

Figure 7-2 Summary of probabilistic notation.

The probability of non-causation is useful because it gives the probability
that a set of symptoms is absent. A set of symptoms is absent whenever they
are not caused by any disorder. We can therefore consider the non-causation
of the entire knowledge base:

p(87) = pUp —p 95)
B O I

deUp seS

By subtracting this result from 1, we get the probability that at least one
symptom from a set is present, given no other information:

p(8) = 1-]] (p; +pq [] qu> (7.17)
deUp seS
So far, we have introduced several different types of events and computed
their associated probabilities. These probabilistic quantities are summarized
in figure 7-2. We will use these quantities in the sections that follow.

7.3 Case Probability

In diagnosis, we generate hypotheses to explain a set of evidence. Thus,
probabilities in diagnosis are usually of the form p(H | E), where H is a
hypothesis and F is evidence. In diagnosis the evidence comes from a case
that includes positive symptoms P and negative symptoms N. In computing
the probability of a hypothesis, we often use Bayes’s rule:

(PN | H)p(H)

pH | PINT) = P

(7.18)

The denominator is the probability that a particular case will occur. Un-
fortunately, it is notoriously difficult to compute. The problem stems from
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the positive symptoms, since there are many ways that a set of symptoms
can be caused. Previously, we computed p(S~) and p(S), but computing
p(ST) is more difficult. Indeed, a symptom can be caused by any subset of
its possible causes. Since the number of subsets grows exponentially with
the number of elements, computing the denominator can be intractable.

Nevertheless, there is a clever technique that can make the computation of
the denominator more efficient [27]. This works by trading the combinatorics
of disorders for the combinatorics of symptoms. Specifically, the technique
uses an inclusion-exclusion principle that turns a set of positive symptoms
into alternating subsets of absent symptoms. This gives the case probability
as:

p(P*N7) = 3 (=D)IPlp(PoNT)
= > (T (pJ +ps 11 qu) (7.19)
Pce2P deUp s€P-UN

In this equation, Up contains all disorders in the universe (or knowledge
base), and 2F denotes the power set of P, so P- represents each subset of
positive symptoms P. The term PZ N~ means the event that all symptoms
in (P- U N) are absent. Essentially, we begin by making no assumptions on
P, so that P- = (), giving rise to the probability p(N~). Then, we consider
all ways that each symptom in P could be absent, in addition to N, and
subtract the corresponding probabilities. But this subtracts too much, since
it subtracts the probability for each pair of positive symptoms twice. Thus,
we add the probabilities that each pair of positive symptoms is absent, along
with the negative symptoms N. Again, this overcompensates, so we then
subtract the probabilities that each triplet of positive symptoms is absent,
and so on.
Computing this denominator requires time on the order of

027 (P + N)Up)

where P is the number of positive symptoms, A is the number of negative
symptoms, and Up is the number of disorders in the knowledge base. This
is computationally expensive, because it is an exponential function of the
number of positive symptoms. However, the number of positive symptoms
is often relatively small for a particular case, so this complexity may be
acceptable for some domains.
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Nevertheless, in many situations, we only care about finding the best
hypotheses, and not assessing their actual probabilities. In this these appli-
cations, the relative probability of a hypothesis is sufficient. The denomina-
tor is the same for all hypotheses, so we can simply ignore it in computing
relative probabilities.

7.4 Candidate Sets

Previously, we have seen that a problem decomposition entails an initial
and final candidate set. The final candidate set is entailed by a problem
decomposition after the differential diagnoses are formulated. One way to
extend probabilities to decompositional search is to compute the probability
of these candidate sets. Recall that the candidate set is given by Cartesian
product of differentials:

Cands(C) = X Diff(0)

ceC

The conditioning event is the set of positive symptoms P and negative symp-
toms N. The probability of a candidate set can be computed using the
definition of conditional probability:

PTN~Cands(C))
p(P*N~)

p(Cands(C) | PHN-) = X (7.20)

The denominator is the case probability discussed previously, so we need
solve only the numerator. To compute the numerator, we use an inclusion-
exclusion strategy, similar to that used in solving the case probability:

p(PTN~Cands(C)) = Y (=)l p(PZN~Cands(C)) (7.21)

PceQP

To compute the probability p(P-N~Cands(C)), we consider separately
those disorders in a differential and those not in any differential. Consider a
differential Diff(C'). If symptoms in (P- U N) are absent, then they cannot
be caused by any disorder in Diff(C). Yet, since Cands(C) is true, at least
one disorder in each differential must be present. The probability that at
least one disorder in Diff(C') is present but does not cause any symptoms in
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P-or N is
p(DIff(C) —> P-UN, Diff(C)) =

11 (pi II qu+p;)— I »r (7.22)

deDiff(C) s€PcUN deDiff(C)

The next step is to consider symptoms not in any differential. If symp-
toms in (P- U N) are absent, then they cannot be caused by any disorder
not in a differential. Let these other disorders be defined as

Uy, = Up— | Diff(C) (7.23)
cecC

where Up is the universe of disorders in the knowledge base. The probability
that these disorders do not cause symptoms in P- or N is

p(Up 4 PcUN) = ] (pd +p; 11 qu) (7.24)

dGUB sEPCUN

Finally, we can put the parts together. The probability of a candidate
set is
p(Cands(C) | P*N™) =

> pecor (—1) P [Teee p(Diff(C) 4 P-UN, Diff(C))] p(U;, 4 PcUN)
p(PTN~)

(7.25)

where terms are substituted from equations 7.22 and 7.24.

Computational Complexity The computational complexity of the above
set of formulas is:

Numerator (equation 7.21): O(2PNUp)
Denominator (equation 7.19):  O(2F (P + N)Up)

The denominator term dominates, so the overall computational complexity is
O(2P (P + N)Up), which is exponential in the number of positive symptoms
but linear in the number of negative symptoms and size of the knowledge
base. The numerator has roughly the same complexity as the denomina-
tor, so there is little advantage in computing relative probabilities between
decompositions as opposed to absolute probabilities.
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7.5 Candidates

The probability given in the previous section evaluates a collection of candi-
dates, namely the Cartesian product of the differential diagnoses in a prob-
lem decomposition. In this section, we specialize this formula to obtain the
probability of a single candidate D. We merely assume that the differen-
tial diagnoses Diff(C') in some decomposition C are all singletons. Then, the
candidate D is the only element in the Cartesian product:

C)€<C Diff(C) = {D}

The result for this limiting case of singleton differentials is:

p(DY | PTN7) =
1 _
P+N- oo =0T (s T aas] 1T (pa+pd 11 das
p( ) P-e2P deD seP-UN deUp—D s€ePcUN
(7.26)

The formula for the denominator, as before, can be found in equation 7.19.
In the absence of any evidence, where P = N = (), this expression reduces
to the expected result for the prior probability of a candidate:

p(DY) = [ s

deD

7.6 Tasks

Recall that a task contains a symptom cluster C' and its associated differential
diagnosis Diff(C'). The meaning of a task is that each disorder in Diff(C') is
capable of explaining all symptoms in C. Thus, a task expresses a causal
event: Diff(C) —, C. In computing the probability of a task, we assume
that no other tasks are present. The case of multiple tasks complicates
things considerably. To see why, let us try to compute the probability of a
decomposition. Unfortunately, there is no guarantee that the tasks will be
independent:

P ( A (Diff(C) - C) | P+N> # [] p(Diff(C) -~ C | CTN")
cecC ceC
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In fact, knowledge about a symptom in P or N induces dependence on all of
its possible causes, so that tasks may not be independent. Nevertheless, task
independence may be a useful approximation. This is especially true since
a problem decomposition attempts to separate symptoms into independent
clusters. We can use a task independence assumption along with the results
of this section to approximate the probability of a decomposition.

With this in mind, we proceed to compute the probability of a task, in-
dependent of other tasks. We apply the definition of conditional probability:

p(Diff(C) == C, C*tN™)
p(C*TN™)
p(Diff(C) == C, N7)
p(CTN™)
p(Diff(C) = C | N )p(N")
p(C*TN™)

p(Diff(C) = C | C*N™) =

(7.27)

The second line is justified because Diff(C) — C implies C*. The denom-
inator is the usual case probability, discussed previously. We now consider
the two factors in the numerator separately.

The second factor in the numerator of equation 7.27 is relatively simple.
It is given by:

p(N7) = ]I (pg +p5 11 qu> (7.28)

deUp seN

To compute the first factor in the numerator, we rely on the formula for
the causal event p(Diff(C') —= (), given in equation 7.13. However, the
probability of each disorder is modified by the negative symptoms:

p(Diff(C) = C|N) = 1— ] ( p(dT|N7) Hcd5> (7.29)
deDiff(0) seC

This equation requires the probability of a disorder conditioned on the
negative symptoms, that is, p(d*|N™):

p(d"N7)

p(d" | N7) = E)
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Pd Tsen qas [acvp—(ay (p;. + p;:. [Lsen qdis)
Hdz‘EUD (pc?z + pi HSEN Qdis>

p; —i_p;lr HSGN qds

The final step results from canceling all terms in numerator and denominator
except for the remaining case of d.

Putting the parts from equations 7.27, 7.28, 7.29, and 7.30 together yields
the probability of a task:

p(Diff(C) - C | C*N™) =
+ C S N S _
1 = Iaepiftc (1 _ P llieccasllien )] [acv,, (Pd + pg [leen st)

Py Py [ [y das

p(CTN~™)

(7.31)

where the denominator is the case probability in equation 7.19, applied to
the cluster C.

Computational Complexity The computational complexity of the above
equations is:

Numerator term 1 (equation 7.29): O(PNUp)
Numerator term 2 (equation 7.28): O(NUp)
Numerator: O(PNUp)
Denominator: O(2P (P + N)Up)

Although computing the denominator requires time exponential with the
number of present symptoms, the numerator requires only polynomial time.
Thus, the relative likelihood of a task can be computed quickly.

7.7 Single-Fault Assumption

The single-fault assumption was made in early work in diagnosis [11]. This
assumption simplified diagnosis by eliminating the combinatorial problems of
multiple disorders. This assumption is reasonable in domains where faults are
unlikely, since each fault usually lowers the overall probability of a candidate
by an additional prior probability. It is also a good assumption when a single
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fault can be spotted immediately, either because the device is constantly
monitored or because the device fails completely or catastrophically when a
fault does occur. When faults cannot accumulate, a single-fault assumption
is more likely.

Interestingly, the likelihood of the single-fault assumption can be com-
puted using the probability of a task derived in the previous section. The
single-fault assumption postulates a single cause for all positive symptoms.
In other words, the assumption hypothesizes a single-task decomposition
with a cluster containing the positive symptoms and a differential containing
the universe of disorders. Therefore, we can substitute P for C' and Up for
Diff(C) in equation 7.31:

p(Up - P | PTN™) =
+ C S S —
{1 o HdeUD (1 Py Hsep d: HseN 4d )} HdEUD (pd +p2{ HseN st)

pg+pg I e 9as

p(PTN™)

(7.32)

This gives the probability that one disorder in the knowledge base explains
all of the given positive symptoms. Note that if there is no disorder in the
knowledge base that can possibly explain all the symptoms, then for each d
in Up there exists some s in P such that ¢;s = 0. This would then reduce
the value of the numerator to zero, and hence yield a zero probability for the
single-fault assumption, as expected.

7.8 Relation to Other Work

7.8.1 Probabilistic Candidate Generation

Previous work on candidate generation also considers the probability of a can-
didate. But these results for the probability of a candidate are different from
the formula derived here. Previous work suffers from various assumptions
about the nature of candidates. For example, some researchers evaluate can-
didates not with conditional probabilities, but with prior probabilities. This
is the approach taken by Hamscher in his XDE system [24]. He computes
the prior probability of a candidate; moreover, he interprets a candidate as
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a disorder instance rather than an event:

p(D*(Up-D)") = [Ivi II pra

deD deUp—D

This probabilistic assessment is poor because it does not account for the role
of symptomatic evidence in changing the probability of disorders.

Another analysis is made by deKleer and Williams in their GDE sys-
tem [14]. They use the following formula for a conditional probability of a
candidate:

0 if DT predicts s # s’
p(D"|s") = < p(DT)/p(s') if DF predicts s = s
p(DT)/mp(s') if DT predicts nothing for s

where a symptom can take states si,...,s,,. Unfortunately, this equation
does not apply well to diagnostic knowledge bases. In a diagnostic knowledge
base, m = 2 and the states are st and s~. The noisy-or assumptions preclude
the first case in the above equation, since we cannot predict the absence of a
symptom s~. That is, only the presence of a symptom can be predicted by a
candidate; other disorders not in the candidate may still be present, so that
the absence of symptom cannot be predicted categorically. Furthermore, the
third case is inappropriate. It assumes that when no prediction can be made,
every possible value of a measurement is equally likely, or

p(s™ | D) =p(s | DT) =05

This seems to be a rather poor assumption. Most symptoms are unlikely,
so we should not predict that on average half of the symptoms are positive.
When D contains irrelevant knowledge, it should not affect our probability
for s, so a better assumption is

p(s™ | D) = p(sT)

In other words, if symptom s is improbable to begin with, then it should
still be improbable even after we know the irrelevant information in D*.
Conversely, if symptom s is very likely to begin with, then it should be still
be likely after we know the irrelevant information in D*. Thus, the correct
equation for GDE, applied to our domain, should be

vt 4 ) p(DT)/p(sT) if DT predicts st
p(D™[s7) = {p(D*) otherwise
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Unfortunately, even when corrected, this equation has limited usefulness.
In GDE’s domain of circuit analysis, predictions are categorical. In our
domain, though, predictions are probabilistic. It is never clear when a can-
didate predicts the presence of a symptom, so the above equation cannot
be applied. On the other hand, the formulas developed in this chapter are
applicable when predictions are both categorical and probabilistic. The cate-
gorical case is achieved simply by having link probabilities ¢4 that are either
0 or 1. Moreover, the deKleer and Williams’s formula only handles a sin-
gle positive symptom. As we have seen, the probability of several positive
symptoms is difficult to compute and requires exponential time.

Peng and Reggia [55] have considered the case where disorders cause
symptoms with arbitrary causal strengths cyss. However, their result simpli-
fies the computation by introducing two assumptions. First, they construe
candidates to be disorder instances. Second, they condition on the event
that only the given positive symptoms are actually present. Their result is
reproduced here:

(- o) I (o]

sEP deD seUg—P \deD

I »:

deUp—D

p(D*(Up = D)™ | P*(Us = P)7) =

The assumptions made by Peng and Reggia may not be valid in some do-
mains. For example, in medicine, people often have minor illnesses, such as
the common cold. But the first assumption requires that the patient not
have any diseases, however minor, except those that are included in the can-
didate. The second assumption is even less reasonable. It requires that we
know the presence or absence of every symptom in the knowledge base. This
is an infrequent situation in most domains. For example, this assumption
forces us to decide, even before a chest X-ray has been performed, whether
the result is going to be positive or negative. In most domains that deal with
uncertainty, the status of most evidence is unknown.

In our equation for the probability of a candidate (7.26), on the other
hand, both of these assumptions are relaxed. To relax the first assumption,
we have defined a candidate to be present whenever all of its component
disorders are present, regardless of whether other disorders are present or
absent; the status of these other disorders is simply unknown. To relax the
second assumption, we allow two sets of symptoms, positive and negative,
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to be specified. Symptoms in the knowledge base not in either category
are assumed to be unknown. This differs from Peng and Reggia’s approach
where only one set of symptoms, the positive ones, are specified, while all
other symptoms are assumed to be negative.

7.8.2 Belief Networks

In addition to candidate generation, another approach to multidisorder diag-
nosis is based on belief networks [51]. A belief network is a network of nodes,
where each node represents some proposition, such as a disorder, symptom,
or intermediate state. Each proposition has an attached probability, which
is updated locally and propagated to neighboring nodes as new evidence is
received.

Belief networks perform a computation that is different from candidate
generation. Whereas candidate generation deals with combinations of disor-
ders, belief networks deal mainly with individual disorders. In applications to
diagnosis, a belief network can assign a posterior probability to each disorder,
given a case with positive and negative symptoms. But these probabilities
are for individual disorders; they do not indicate what combinations of dis-
orders (called interpretations in their terminology) are likely. Unfortunately,
probabilities of individual disorders do not necessarily translate to plausible
candidates in a straightforward way. For instance, if we merely assign “pres-
ence” to each disorder with a probability greater than 0.5 and “absence”
to each disorder with a probability less than 0.5, the resulting interpreta-
tion may be highly unlikely. Or if we take the two or three most probable
disorders, the result may also be highly unlikely.

Pearl has recognized this limitation of belief networks, and he has de-
veloped a method called belief revision to compute disorder combinations.
However, belief revision is limited to finding only the best and second-best
interpretations. In order to obtain a more complete list of disorder combi-
nations, a search process such as candidate generation or decompositional
search presently offers the only alternative.

7.9 Summary and Discussion

This chapter has derived equations for various probabilistic quantities. In
summary, the equations and the computational complexity for their relative
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probabilities are:

Quantity Equations Complexity
Candidate Set 7.25,7.22,7.24 O(2PNUp)
Candidate 7.26 O(2° NUp)
Task 7.31 O(PNUp)
Single-Fault Assumption 7.32 O(PNUp)

One of the major problems with set covering approaches is that they
are essentially categorical. Perhaps, though, the results derived here may be
used to change the set covering approach to a probabilistic one. For instance,
evaluation of decomposition probabilities might be used to guide search. Un-
fortunately, the probability of a problem decomposition with more than one
cluster is difficult to quantify, since the assumption of task independence is
not valid.

However, the task independence assumption might closely approximate
the probability of a problem decomposition. For many purposes, such as
guiding search, approximate values would be sufficient. The result would be

p( \ (Diff(C) == C) | PTN7) ~ ] pDiff(C) -~ C | CTN")
CceC CceC

This would then provide a polynomial time method of assessing the probabil-
ity of a problem decomposition. This assumption may be reasonable to make
since the coherency criterion helps partition symptoms into separate causal
groups. These operations help reduce the causal and probabilistic interac-
tions between tasks, thereby supporting a task independence assumption.

In particular, combining probabilities with decompositional search should
be computationally advantageous, because a problem decomposition entails
a set of candidates. Knowing the probability of a decomposition would then
allow one to explore large portions of the candidate space at a higher level
of abstraction. A probabilistic decompositional search algorithm might then
increase the efficiency gains achieved by the categorical algorithm.
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FEverything’s got a moral, if you can only find it.

— Lewis Carroll, Alice’s Adventures in Wonderland (1865)

8.1 Summary

In this thesis, we have developed a new approach to diagnosis, based on
finding plausible decompositions of a problem into subproblems. We have
designed an algorithm called decompositional search; tested the efficiency of
decompositional search against the non-decompositional candidate genera-
tion approach; and analyzed the features of the domain that account for the
efficiency of decompositional search. In addition, we have developed a pre-
liminary theory for including probabilistic considerations in decompositional
search. Therefore, our major results can be summarized as follows:

Theoretical results

We developed a formal representation for problem decompositions as a set
of clusters with associated differential diagnoses. Problem decompositions
define a set of commonality and disjointness constraints that define the dif-
ferential diagnosis for each cluster. Differentials can be formulated by using
subsets of clusters as justifications for those clusters. We developed a plausi-
bility criterion called coherency based on the satisfiability of the constraints
placed by a decomposition.

This new representation for diagnosis is closely related to minimal candi-
dates. A problem decomposition entails a candidate set, represented implic-
itly by the Cartesian product of its differential diagnoses. This candidate set
contains all minimal candidates that could potentially be generated by the
decomposition, but may also contain some nonminimal candidates required
for the Cartesian product representation.

Coherent problem decompositions can be generated by a search process.
This search process executes three steps: symptom assignment, ambiguation,
and disambiguation. Symptoms may be assigned using covering, restricting,
adjoining, and operators. The ambiguation and disambiguation steps re-
assign symptoms that are unnecessarily restricting. They allow the search
process to ignore overly general symptoms and therefore focus on the assign-
ments of symptoms that do place constraints.
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Finally we demonstrated that decompositional search is theoretically in-
complete with respect to generating the entire set of maximally ambiguous
and coherent problem decompositions. However, in practice, decomposi-
tional search is robust and complete with respect to generating all minimal
candidates for a given problem.

Experimental results

In general, decompositional search was more efficient than candidate genera-
tion by a power of 4 to 5 for space complexity and 3 to 5 for time complexity.
These results held regardless of whether experimental cases were produced
by one or two target disorders.

We demonstrated that both case presentation and case ordering signifi-
cantly influence the complexity of problem solving, even for the same target
disorder. A single symptom can greatly influence the complexity of a prob-
lem. Ordering symptoms according to their specificity appears to be a good
heuristic strategy for reducing computational complexity.

Decompositional search was shown to be complete in practice with re-
spect to generating minimal candidates. It was also fairly robust, giving the
same set of problem decompositions regardless of symptom ordering. The
algorithm was largely, but not completely, sound and irredundant with re-
spect to generating minimal candidates. A few cases resulted in a set of
problem decompositions that either entailed a relatively large proportion of
nonminimal candidates or a large proportion of duplicated candidates among
decompositions. We constructed simple models to explain these anomalous
behaviors.

Analytical results

We conducted a worst-case theoretical analysis that suggests that candidate
generation should have complexity O(c'°¢¢) and that decompositional search
should have complexity O(c'°81°8-¢) where c is the number of possible causes
for each symptom and r is a factor related to the correlation between the
possible causes of each symptom. These formulas as symptom correlation
decreases and as the knowledge base scales up in size.

Turning from a theoretical to an empirical analysis, we developed a theory
for diagnostic complexity based on the combinatorics of partial explanations.
We generalized this theory by defining the explanatory power for a given set
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of disorders. Disorders with lower explanatory power combine to cause most
of the complexity of diagnosis. Moreover, the distribution of explanatory
power reflects underlying domain structure that can be exploited by decom-
positional search.

We tested this theory by manipulating the explanatory power of a subdo-
main, creating both a trimmed and a redistributed subdomain. The trimmed
subdomain had disorders of least explanatory power removed, while the redis-
tributed subdomain had the possible causes for each symptom randomized.
Experimental runs on these modified subdomains suggest that, indeed, much
of the efficiency of decompositional search derives from the exploitation of
domain structure.

Finally, we considered one case in detail, by decomposing the entire pre-
renal azotemia subdomain. The resulting decompositions had clusters that
often corresponded to meaningful groups in clinical medicine. This experi-
ment suggests that decompositional structure is pervasive, existing not only
at high levels of abstraction but also at the low level of single-disorder sub-
domains.

Probabilistic results

We modeled domain probabilistic knowledge by incorporating prior probabil-
ities and link probabilities into a knowledge base. The noisy-or assumptions
provide a semantics for such a probabilistic knowledge base. We defined the
notion of causal probability and contrasted it with conditional probability.
We also defined a probability of non-causation.

Using these probabilistic quantities, we derived a formula for the proba-
bility of a case that contains both positive and negative symptoms. We also
derived a formula for the conditional probability of a candidate set, given a
case. Based on this result, we derived a formula for the conditional proba-
bility of a candidate, given a case. This equation represents a probabilistic
interpretation of a candidate that improves upon previous work, which makes
several unwarranted assumptions. All of these quantities can be computed
in time that is exponential in the number of positive symptoms in a case.

We derived a formula for the conditional probability of a task, given a
case. This probability could be combined with a task independence assump-
tion to give a polynomial-time algorithm for computing the probability of a
decomposition. Based on this result, we also computed the conditional prob-
ability that the single-fault assumption is true, given a case. This probability
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can also be computed in polynomial time.

8.2 Features of Decompositional Search

In this section, we present the major concepts underlying the decompositional
search approach. These concepts complement the particular results listed
above, because they provide broader principles of computation applicable to
computer science in general.

8.2.1 Implicit and Explicit Representation

The first concept is that of implicit and explicit representation. A problem
decomposition represents a set of candidates implicitly as a Cartesian prod-
uct of its differential diagnoses. In contrast, candidate generation represents
candidates explicitly. The implicit representation is more compact, requir-
ing only space proportional to the sum of its differential sizes. However,
the equivalent representation in terms of explicit candidates requires space
proportional to the product of the differential sizes.

The implicit representation can be viewed as a generator, representing
a set of candidates without necessarily computing them, except as needed.
The idea of generators occurs frequently in computer science; for instance, in
formal language theory, a grammar is an implicit generator of explicit strings
in a language [30]. Generators can offer potentially large savings in efficiency
if they can be manipulated and transformed directly, without having to con-
vert them to the explicit form and back. In this thesis, we have shown that
problem decomposition representations can indeed be transformed directly,
without having to convert them to explicit sets of candidates.

The implicit and explicit representations are analogous to conjunctive and
disjunctive normal forms in logic, respectively. Conjunctive normal form is
a conjunction of disjunctive statements, while disjunctive normal form is a
disjunction of conjunctive statements. Candidates have a conjunctive mean-
ing, hypothesizing that every disorder in a particular set is present. On the
other hand, differential diagnoses have a disjunctive meaning, hypothesizing
that one or more disorders in a particular set is present. Furthermore, the
collection of differential diagnoses in a problem decomposition have a con-
junctive meaning, hypothesizing the presence of at least one disorder in each
differential. In chapter 1, we showed how a set of differential diagnoses can
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represent a set of candidates. If we use the conjunctive and disjunctive mean-
ings above, we obtain the analogous result for disjunctive and conjunctive
normal forms:

{di Vdo} N{ds Vv dyVds} N{dsV d;Vdg} =
[di Nd3sNdg] VvV [diANdsANd7] VvV [di ANdsANdg] V
[diANdyNdg] vV [diAdyNdr] vV [diAdyNdg] V
[di Nds ANdg] VvV [dyANdsANdy] Vo [diANds ANdg] v
[do Nd3s Ndg] V [deANdsANdr] V [daANdsNdg] V
[do Ndy Ndg] vV [deANdyNd7] V [daANdyNdg] V
[dQ/\d5/\d6] vV [dg/\d5/\d7] V [dg/\d5/\d8]

This type of efficiency obtained by decompositional search is similar to
Minsky’s observation that dividing a problem into subproblems reduces the
total complexity from the product of the individual search spaces to their
sum [40]. In diagnosis, the idea of implicit representation was noted by Reg-
gia [58], who observed that candidates could potentially be factored into
“generators”. However, he did not present an algorithm to perform the fac-
torization. Implicit representations can also be applied to domains besides
diagnosis. For instance, Hubbe and Freuder [31] have applied some of the
ideas in this thesis to develop a cross product representation for constraint
satisfaction problems. Their results also show that cross product representa-
tions substantially improve the performance of standard constraint satisfac-
tion algorithms.

8.2.2 Convex Approximation

Although problem decompositions are closely related to candidate genera-
tion, their representation of minimal candidates is only approximate. In
this thesis, we have established that a given problem decomposition is com-
plete but not sound with respect to generating minimal candidates. In other
words, the candidate set for a problem decomposition contains all minimal
candidates that satisfy the commonality and disjointness assumptions for
the decomposition, but it also contains some nonminimal candidates as well.
One reason for unsoundness is that nonminimal candidates are sometimes
needed to achieve a compact Cartesian product representation. Decomposi-
tional search is therefore an approximate algorithm, and this also accounts
for some of its efficiency.
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To better understand the nature of this approximation, let us consider an
analogy. Suppose we wish to represent compactly all valid combinations for
a two-cylinder combination lock, where each number to be dialed ranges be-
tween 0 and 9. A first approximation to achieving an implicit representation
is therefore

{0,1,2,3,4,5,6,7,8,9 x {0,1,2,3,4,5,6,7,8,9}

However, because of mechanical constraints, no combination may be contain
digits. Therefore, the implicit representation above is not sound with respect
to generating legal combinations. It generates some illegal combinations, such
as [0,0] and [9,9]. However, if we were to remove these illegal combinations,
a compact implicit representation would no longer be possible. The best
possible representation would be

{0} x {1,2,3,4,5,6,7,8,9}
U {1} x {0,2,3,4,5,6,7,8,9}

U {9} x {0,1,2,3,4,5,6,7,8}

Thus, there is a tradeoff not only between the soundness and completeness
of a decomposition but also between soundness and compactness. Problem
decompositions can represent sets of minimal candidates compactly, but only
at the cost of generating some nonminimal candidates as well. As we have
seen experimentally, this cost is actually small in practice. The soundness of
decompositional search is generally very close to perfect, meaning that almost
all candidates entailed by a problem decomposition are minimal. In any case,
there is little harm in generating a nonminimal candidate. In diagnostic rea-
soning, inferences are only intended to be plausible and not logically sound.
In decompositional search, we opt for generating “nonplausible” candidates
when necessary in order to achieve a compact representation.

8.2.3 Causal Structure

A problem decomposition not only produces differential diagnoses, but also
links each of them with a symptom cluster. This mapping between differen-
tial diagnoses and symptom clusters constitutes a causal structure. Causal
structures do not appear in the candidate generation approach. In that al-
gorithm, candidates are generated without specifying which disorders cause
which symptoms.
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Causal structures are useful computationally because they group disor-
ders according to their causal equivalence, that is, their ability to explain
the given symptoms. An important feature of causal equivalence is that it
is problem-specific. Two disorders may have largely different sets of possible
effects, but in a particular problem, they may not be distinguishable. In the
extreme case, when only one symptom is known, all of its possible causes are
causally equivalent.

Causally equivalent disorders behave similarly in the candidate generation
search tree, so many expansion and pruning steps in candidate generation are
redundant. Indeed, this redundancy provides evidence of underlying domain
structure. By representing a group of causally equivalent candidates, a prob-
lem decomposition enables search decisions to be made about an entire set
of candidates. Thus, decompositional search avoids much of the redundant
reasoning in candidate generation.

Aside from making decompositional search efficient, the causal structures
inherent in problem decompositions may be useful end products in them-
selves. A user may not necessarily want to know the answer to a diagnostic
problem, but might want to fit it into an understandable paradigm. In fact,
the important question in diagnosis is often not to determine what disorder
is present, but to determine what to do next. In many diagnostic problems,
it may be premature to expect a definitive answer to the problem. Rather,
the most useful analysis would be to help determine the next set of tests to
perform.

The causal structures embodied in decompositional search may help pro-
vide this sort of analysis. Because it formulates a set of distinct subproblems,
a decompositional search system can help a user focus on each subproblem
individually. The symptom clusters can help the user focus on the subprob-
lems that are most critical or of particular interest. Moreover, the differential
diagnoses contain those disorders that compete directly against one another.
The appropriate tests, then, would be those that discriminate among the
disorders in a differential diagnosis.

8.2.4 Symptom-Based Diagnosis

Decompositional search differs from most diagnostic approaches not only in
providing causal structure, but also in that it manipulates symptoms rather
than disorders. In candidate generation, nodes in the search space are com-
binations of disorders, and these nodes are expanded by adding disorders.
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On the other hand, in decompositional search, nodes in the search space are
decompositions of symptoms, and these nodes are expanded by adding and
rearranging symptoms.

Symptom-based diagnosis offers several advantages over disorder-based
diagnosis. Diagnostic problems often have fewer symptoms than possible
causes. This asymmetry appears to be a fundamental consequence of the
nature of the diagnostic task. Since each symptom in a domain is linked to
a set of possible causes and since each symptom could be caused separately,
the total number of disorders under consideration generally exceeds the total
number of symptoms under consideration. Consequently, the space of symp-
tom combinations is potentially much smaller than the space of disorder
combinations.

Nevertheless, in certain situations, the number of symptoms may exceed
the number of disorders under consideration. For instance, a diagnostic case
may contain numerous symptoms all linked to the same small set of dis-
orders. But in this situation, the symptoms would all be ambiguous with
respect to each other, and decompositional search would collapse the space
of possible symptom combinations into only a few problem decompositions.
The process of ambiguation exploits the fact that it is not the total number
of symptoms that determines the size of a symptom-based search space, but
rather the number of critical or “key” symptoms. In our theory of decom-
positional search, critical symptoms are identified by the notions of covering
and restricting. Restricting symptoms define the common causes of a cluster
and thereby constitute the critical symptoms that determine the plausible
solutions to a diagnostic problem. Covering symptoms, on the other hand,
are not critical since they often can be assigned to more than one cluster
without changing the common cause sets of the decomposition.

8.2.5 Static and Dynamic Problem Decomposition

The final feature of decompositional search we will discuss is the difference
between static and dynamic problem decomposition. Decompositional search
is certainly not the first system to use abstraction to increase efficiency [60].
However, it differs from other diagnostic programs in the way it derives ab-
stractions. In most knowledge-based algorithms, abstractions are derived by
acquiring them from experts in the domain. These abstractions are then en-
coded explicitly into the knowledge base [6]. We call this type of abstraction
static, because the abstractions are fixed in the knowledge base and used
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repeatedly for each new problem.

On the other hand, decompositional search does not depend on pre-
defined abstractions in the knowledge base. Rather than relying on static
abstractions, decompositional search uses dynamic abstraction, by formulat-
ing an abstractions as needed for a particular case. Symptom clusters and
differential diagnoses are created dynamically. In this type of abstraction,
the formulation of abstractions is guided by a notion of plausibility, such as
coherency. Dynamic abstraction is made possible by the domain structure,
so that appropriate abstractions emerge from the collective set of links in the
knowledge base.

By using dynamic abstraction, decompositional search can solve problems
at an appropriate level of abstraction and can vary the level according to the
particular evidence available. When the symptoms are general, the differen-
tial diagnoses for each cluster are relatively large. But as symptoms become
more specific, the differential diagnoses become smaller. Thus, a problem
decomposition is exactly as abstract as the symptoms warrant. Variable lev-
els of abstraction not only help improve the efficiency of problem solving,
but they might also help a user understand a problem at an appropriate
level of detail. This contrasts with the candidate generation approach, which
can only present solutions at the most primitive level of abstraction, the
candidate itself.

The technique of dynamic abstraction may also help in areas other than
diagnosis, such as knowledge acquisition and machine learning. In order to
build a static abstraction, one must expend much effort to acquire knowl-
edge from a domain expert. Moreover, such knowledge acquisition is likely to
succeed primarily in domains where diagnostic expertise is highly developed
and domain knowledge is structured clearly. But many fields do not have
abstractions that are so well established. Even in a field like medicine, where
syndromes are touted as useful problem solving tools [10, 15, 18, 43, 78], ex-
act definitions of syndromes are difficult to pin down. Textbooks of medicine
describe individual disorders in great detail but describe syndromes in only
general terms, if at all. Moreover, the appropriate syndrome and level of
detail vary according to the exact problem at hand, so that a static abstrac-
tion needs to contain not only the abstractions but also the conditions under
which they are likely to be applicable or useful.

Finally, dynamic abstraction and static abstraction are not necessarily in-
compatible. A knowledge base might contain information about syndromes
that could be used as heuristic guides to direct the decompositional search
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process. These heuristics could help a diagnostic system focus on problem de-
compositions that are most likely to produce coherent descendants. But with
an underlying dynamic abstraction process, such a system would also have
the ability to create appropriate decompositions when necessary, tailored to
the particular case at hand.

8.3 Relation to Other Work

We now place the decompositional search approach in context, comparing it
with other related work. Comparisons with probabilistic methods, such as
belief networks, were presented previously in chapter 7.

8.3.1 Diagnosis from First Principles

Decompositional search is closely related to work on diagnosis using first
principles [11]. This field was motivated by the fact that most diagnos-
tic programs, such as flowcharts and rule-based expert systems, had relied
on heuristics and problem solving strategies derived from domain experts.
Diagnosis from first principles attempts to solve problems directly from a
description of the domain, rather than relying on expert-supplied heuristics
or strategies. Another motivating factor is that flowcharts and rule-based
expert systems handle multiple disorders poorly. This deficiency is in part
due to the lack of heuristics for computing multiple disorders. Even if such
heuristics were available, they would probably be inadequate for the large
search spaces arising from multidisorder diagnosis. There have been two
main approaches to diagnosing from first principles: model-based diagno-
sis [12] and set-covering diagnosis [58]. These two fields differ primarily in
the way they model a domain.

Model-based diagnosis relies on two techniques: candidate generation
and conflict recognition [14]. Conflict recognition is the process of generat-
ing “conflict sets” from a structural or functional model of the system being
diagnosed. A conflict set is similar to the set of possible causes for a symp-
tom, except that a conflict set may explain an observation in the context
of a previous observation. An example of conflict recognition is provided in
figure 8-1. In this example, the circuit should have outputs of F'=12 and
G=12, but has F'=10 and G=12 instead. Since output F' is incorrect, one of
the components that compute F' must be broken, namely, components Aq,
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Figure 8-1 Conflict recognition. (a) Model of a circuit. (b) Conflict recognition
for the symptom 1, resulting in the conflict set (A1, M7, Ms). (c) Conflict recogni-
tion for the symptom 2 in the context of symptom 1, resulting in the conflict set
<A1, AQ, M, M3>
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My, or My. These three components constitute the first conflict set. The
second conflict set arises because if F' is incorrect, G should be also be incor-
rect, assuming that components Ay, Ay, M;, and M3 are working. However,
the output at G is correct, so one of these components is broken, thereby
yielding a second conflict set. Note that the second conflict set explains the
observation that G is correct in the context of the observation that F' is
incorrect.

Conflict recognition supplies input for candidate generation. The two
conflict sets (A1, My, My) and (Ay, Ay, My, M3) result in the minimal candi-
dates [A1], [M1], [Ma, As], and [Ms, Mj]. Existing programs for model-based
diagnosis process conflict sets using the candidate generation algorithm. Un-
fortunately, the computational complexity of candidate generation severely
limits the applicability of model-based diagnosis. Decompositional search can
help expand the usefulness of model-based diagnosis by providing a more ef-
ficient alternative to candidate generation. Decompositional search has no
bearing on conflict recognition, but computing conflict sets is computation-
ally much easier than generating candidates.

Whereas model-based diagnosis uses a structural or functional model of
the domain, set-covering diagnosis uses a diagnostic knowledge base to rep-
resent the domain. As discussed previously, a diagnostic knowledge base
consists of symptoms, disorders, and the causal relationships between them.
This type of knowledge base is especially appropriate for domains where
structural or functional models are unavailable or difficult to construct. For
instance, we do not yet have the ability to construct a model of the human
body with enough detail and accuracy for model-based diagnosis. However,
we do have much knowledge about associations between diseases and symp-
toms. On the other hand, we can easily construct diagrams for circuits, so
much work in model-based diagnosis has been applied to circuit troubleshoot-
ing. Nevertheless, existing set-covering methods also rely predominantly on
the candidate generation algorithm and hence would benefit from the decom-
positional search algorithm.

8.3.2 Medical Diagnostic Systems

Medicine is a particularly appropriate domain for multidisorder diagnosis be-
cause the domain is large, probabilities play an important role, and multiple
coexisting diseases are common [7, 47, 63, 73, 74]. Here we focus on the
evolution of systems that attempt to solve the problem of multidisorder di-
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agnosis. This excludes many early systems, such as MYCIN [65] and P1P [49],
that solve problems where only one disorder is assumed to be present.

The problem of multiple disorders was recognized by Gorry in 1968 [21].
Interestingly, Gorry’s program used a “pattern-sorting function” that essen-
tially clusters symptoms (or “attributes”, as he terms them):

The program processes the attributes through the pattern-sorting
function. This function makes decisions about the relevance of
attributes to the current diagnostic problem. If, for example, the
initial problem definition had included the attribute “sore ankle,”
the pattern-sorting function might have decided that “sore ankle”
and “persistent coughing” were manifestations of different medi-
cal problems and should be considered separately. The output of
the pattern-sorting function is a set of attributes that it believes
should be considered as a group by the program.

This pattern-sorting function essentially found symptom clusters using the
commonality constraint. That is, a symptom cluster is valid only if there
exists a disorder that can explain all symptoms in that cluster. The program
maintained a list of valid symptom clusters and decided on the basis of prob-
ability and utility which cluster to pursue. The program then selected a test
to discriminate among the disorders that could explain the cluster. Thus,
Gorry’s program can be thought of as solving the multidisorder problem se-
quentially, by solving one cluster at a time, with the capability of switching
between clusters.

Another system that used a sequential approach was the INTERNIST pro-
gram [39]. This program, now available as QMR [38], meaning Quick Medi-
cal Reference, contains diagnostic knowledge in the form of disease profiles,
which is essentially equivalent to the bipartite knowledge base we have been
using in this thesis. Each disease-symptom pair has a link probability indi-
cating how likely the disease is to cause the symptom, given that the disease
is present. This probability appears as a frequency value between 1 and 5.
Each disease-symptom pair also has an evoking strength attached, indicating
the importance of considering a disease given a symptom. INTERNIST uses
these frequency values and evoking strengths to identify the highest scoring
disease. It then builds a differential diagnosis around this disease, by finding
those diseases that are competing explanations for the same symptoms. It
scores the diseases in the differential diagnosis and asks the user a question to
discriminate among them. Once the top-ranked disease scores high enough
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relative to the rest of the differential, INTERNIST concludes that differential
and forms another one, based on the unexplained symptoms. Thus, IN-
TERNIST uses a score-based “partitioning heuristic” to decompose a problem
sequentially.

The sequential strategy in INTERNIST addresses the problem of multiple
disorders but often gives poor results. One problem with sequential differ-
ential formulation is that it is not robust. Each differential must be finished
before the next differential is considered. If INTERNIST formulates the first
differential incorrectly, it will misinterpret the rest of the problem. Another
issue in sequential differential formulation is how to assign symptoms to each
disorder. After concluding a disease, INTERNIST finds all symptoms that it
explains and removes them from further consideration. But this may remove
too many symptoms, since symptoms potentially caused by one differential
may actually be caused by another one. Thus, INTERNIST suffers because di-
agnostic problems are only nearly decomposable and not completely so. The
sequential technique works well on problems that are completely decompos-
able. But near decomposability complicates matters because of interactions
between subproblems and the consequent need to explore alternative decom-
positions.

To remedy these deficiencies in INTERNIST, the CADUCEUS program was
developed by Pople [57]. He emphasized the importance of “task formula-
tion” in multidisorder diagnosis, and thereby reiterated the need to identify
the correct decomposition for a given problem. CADUCEUS finds tasks by
using a combined hierarchical-causal network. The hierarchies contain pre-
formulated differential diagnoses that are triggered by causal links. Causal
links are orthogonal to hierarchical links and connect physiologically related
disease categories in different hierarchies. CADUCEUS diagnoses a problem
by first triggering multiple differential diagnoses in the hierarchies and then
following various subsumption and causal relationships to derive a globally
consistent diagnostic picture.

CADUCEUS addresses the problems of sequential differential formulation
and lack of causal integration found in INTERNIST. However, it suffers from
other problems. First, it relies on hierarchically structured differential diag-
noses. Unfortunately, differentials cannot be organized so cleanly. To rem-
edy this, differential diagnoses are triggered using a existential relationship,
meaning that some diseases under a node may not explain a given symptom.
But this substantially weakens the inference possible from that node. Sec-
ond, CADUCEUS requires a substantial amount of physiological information
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to create a hierarchical-causal network. Many areas of medicine lack such a
detailed causal understanding of disease processes.

A more rigorous approach to multiple disease interactions appears in the
ABEL program by Patil [45, 48]. It structures physiological knowledge about
acids, bases, and electrolytes into several levels of abstraction. It can there-
fore reason about additive and antagonistic interactions between diseases.
But at the same time, it requires domains where such detailed information is
available and where close interactions between disorders occur. This makes
the approach well suited to narrow domains with well understood physiology,
like acid-base and electrolyte therapy, but ill suited to broad domains such
as internal medicine, at least until a detailed pathophysiological model of the
human body becomes available.

8.3.3 Conceptual Clustering

Decompositional search shares a number of similarities with a technique in
machine learning called conceptual clustering [17, 37]. In conceptual cluster-
ing, one is given a set of objects, and the task is to assign them to clusters
such that the set of clusters scores well on a clustering quality function.
The clustering quality function is essentially a plausibility criterion, and can
include such measures as the simplicity, commonality, disjointness, and dis-
crimination of a cluster.

Although the task of conceptual clustering appears superficially identical
to that of decompositional search, it is fundamentally different in detail. In
conceptual clustering, the objects are described by pairs of variables and
their associated values. Clusters of objects are therefore described by pairs
of variables and the range of values they can take. For example, consider the
two objects:

Object 1:  (Color = blue) A (Size = large) A (Shape = round)
Object 2:  (Color = red) A (Size = medium) A (Shape = round)

A cluster containing these two objects might have the following description:
[Color = blue V red] A [Size > medium]| A [Shape = round]

Thus, the goal of conceptual clustering is not only to make plausible clusters
but also to describe them in a way that makes sense. The task of finding
sensible descriptions for a set of objects is a type of inductive inference called
concept learning, a central topic in machine learning [41, 79
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In contrast, whereas objects in conceptual clustering are not causally
related, decompositional search is closely tied to causal relationships. De-
compositional search relies upon causal relationships between symptoms and
disorders to derive its commonality and disjointness criteria. The plausibil-
ity of a decomposition is determined by trying to satisfy these criteria by
formulating differential diagnoses. Thus, a cluster is essentially “described”
by its differential, and differential formulation can be seen as an analogue of
concept learning for diagnosis.

Decompositional search also differs from conceptual clustering in that it
can assign symptoms to more than one cluster. In most work on conceptual
clustering, objects can belong to only one cluster. Decompositional search
assigns symptoms to multiple clusters when they cover more than one cluster.
Therefore, decompositional search distinguishes between “critical” symptom
assignments that define a cluster and “noncritical” symptom assignments
that place no constraints. This distinction is missing in conceptual clustering,
where all objects in a cluster are treated equally.

8.3.4 Problem Reduction Techniques

Decompositional search shares some similarity with problem reduction meth-
ods in artificial intelligence. Problem reduction takes a problem and decom-
poses it into smaller subproblems. Problem reduction originated with Gel-
ernter’s geometry theorem-proving machine in 1959 [20], which was the first
program that could handle conjunctive subgoals [44, p. 138]. The technique
was also used in Slagle’s symbolic integration program SAINT [69].

Problem reduction can best be described using AND/OR trees [69]. The
nodes in an AND/OR tree alternate at each level between decomposing a
problem into subproblems (AND nodes) and providing alternative solutions
to those subproblems (OR nodes). An example of an AND/OR tree is provided
in figure 8-2. In this travel problem, the goal is to travel from Cambridge,
Massachusetts to Palo Alto, California. This goal can be decomposed into
three subgoals: getting from Cambridge to the airport in Boston, taking a
flight to the airport in San Jose, and getting to Palo Alto. This decomposition
constitutes an AND node because all three subgoals must be solved. Each
subgoal may then be solved in several ways. For example, getting to the
Boston airport can be accomplished by driving, riding the subway, or taking
a taxi. Solving a subgoal constitutes an OR node because only one solution
is necessary. This alternating process of decomposing and solving subgoals
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reductions for the task of moving from Cambridge to Palo Alto.

can continue recursively.

Since Gelernter’s and Slagle’s work, problem reduction techniques have
been used in various applications, including theorem proving, automated
planning, and expert systems. Nevertheless, although problem reduction is
a technique for decomposing problems, it still does not explore the space
of alternative decompositions. Problem reduction offers only one way to
decompose a problem. There is only one AND node available to decompose a
given subgoal. The OR nodes offer a choice, but they present only alternative
solutions for a subgoal, not alternative decompositions.

On the other hand, decompositional search explores alternative decom-
positions of a problem. Decompositions must be synthesized by clustering
symptoms and cannot be chosen from a predefined selection of possibilities.
Furthermore, problem decompositions are not complete problem reductions,
since a problem reduction may have an arbitrary number of subgoal levels.
A problem decomposition, however, is only a single-level problem reduction.
It is like an AND/OR tree with only one AND node and one level of OR nodes.
This limitation arises because of the nature of diagnosis, where each symp-
tom is fully explained by a single disorder. In problem reduction, though,
subgoals can be solved by a conjunction of subgoals, hence its recursive form.

8.4 Further Work

Decompositional search constitutes a new approach to diagnostic problem
solving. Because the work here has been largely exploratory, further work
would help develop the ideas and techniques in this thesis.

One area of further research is to adapt heuristic knowledge to the decom-
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positional search algorithm. A major theme of work in artificial intelligence
is the power of domain knowledge [36, 50]. Decompositional search exploits
domain structure that is inherent in the domain. However, it makes no use of
domain knowledge about structure per se. This type of heuristic knowledge
might be called structural heuristics, and could guide plausible structuring
of evidence or hypotheses. Structural heuristics, such as expert knowledge
about common syndromes, could be encoded statically in a knowledge base
and could then guide a decompositional search algorithm in assigning symp-
toms to clusters.

In addition to domain-specific knowledge about structure, there is often
case-specific information that can help to cluster symptoms. For instance,
some symptoms may occur at the same time, suggesting a common cause.
Thus, temporal clustering information might be used to group symptoms
together. Similarly, spatial relationships might be useful. For instance, two
symptoms that are anatomically close may suggest a common cause. This
type of case-specific information represents structure often available in a
diagnostic problem, but not represented in a set or sequence of symptoms.

Another area of research is to explore different search strategies. We have
used breadth-first search to compare and analyze the space and time complex-
ity of two algorithms. However, given an appropriate measure of plausibility,
decompositions might differ greatly in their level of plausibility. Thus, for
actual diagnostic applications, other search strategies would be more appro-
priate than breadth-first search. For example, best-first search, especially in
conjunction with a probabilistic evaluation function, could provide a more
efficient algorithm.

Many compromises between best-first and breadth-first search are also
possible. A beam-first search would keep a fixed number of the best interme-
diate solutions. The efficiency of the search process could then be controlled
by the width of the beam. Of course, plausibility is not the only criterion for
good diagnosis. For instance, it is important in medicine to rule out diseases
that are rare but have a high degree of morbidity or mortality. Therefore,
notions of decision making, such as utility, might also be used to guide search.

The underlying diagnostic knowledge base provides another opportunity
for further work. The decompositional search algorithm in this thesis ap-
plies to bipartite diagnostic knowledge bases that contain only symptoms
and disorders. However, domain knowledge can often be represented as a
network [46, 57, 77]. For instance, a medical knowledge base might contain
intermediate concepts between symptoms and disorders to represent patho-



180 CHAPTER 8. CONCLUSION

physiological states. Further research might extend problem decompositions
to represent possible decompositions of a network.

Another topic for further research deals with test ordering or evidence
gathering. Diagnosis is often conducted in a hypothetico-deductive paradigm,
in a cycle of evidence gathering and hypothesis formation [16]. In this
paradigm, an initial set of evidence would yield a set of problem decom-
positions. These decompositions might then suggest additional tests to or-
der. The decompositional search approach might lead to novel test ordering
strategies, since a problem decomposition divides problems into subprob-
lems. These subproblems provide an extra level of detail with which to focus
evidence gathering.

Finally, the techniques presented here might be extended to other prob-
lem tasks. Many tasks in planning [33, 76] and problem solving [71, 72] seek
solutions with multiple components. As we have mentioned, researchers in
machine learning have investigated clustering representations, and the ideas
in this thesis have found application in solving constraint-satisfaction prob-
lems [31]. The ubiquity of decompositional techniques suggests both that
structuring problems is an important task and that decomposition provides
a powerful tool for organizing and abstracting data. This thesis suggests
how structure in diagnostic problems may be discovered and exploited by
decompositional search and how problem decompositions can facilitate the
solution and understanding of ill-structured diagnostic problems.
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The following is the SYNOPSIS implementation of the decompositional search
algorithm written in ANSI Common Lisp [70]. The implementation includes
procedural details that help make the algorithm run efficiently. We present
the program in “bottom-up” order, starting with the primitive implementa-
tion and working up to the higher-order functions.

A.1 Sets

SYNOPSIS makes extensive use of sets and set operations. We implement sets
as integers that represent bit vectors. These functions are written as macros

to avoid the overhead of an extra function call.

The following functions

implement the standard operations for sets:

(defmacro

(defmacro

(defmacro

(defmacro

(defmacro

(defmacro

(defmacro

(defmacro

(defmacro

(defmacro

(defmacro

(defmacro

(defmacro

(defmacro

make-empty-set () ‘0)

make-singleton-set (index) ‘(ash 1 ,index))
make-full-set (size) ‘(1- (ash 1 ,size)))
empty-set? (set) ‘(zerop ,set))
set-equal? (setl set2) ‘(= ,setl ,set2))

superset? (setl set2) ‘(empty-set? (logandcl ,setl ,set2)))
subset? (setl set2) ‘(empty-set? (logandc2 ,setl ,set2)))
set-member? (index set) ‘(logbitp ,index ,set))

set-insert (singleton set) ‘(logior ,singleton ,set))
set-remove (singleton set) ‘(logandc2 ,set ,singleton))
cardinality (set) ‘(logcount ,set))

intersect (setl set2) ‘(logand ,setl ,set2))

intersect-sets (sets) ‘(apply #’logand ,sets))

set-union (setl set2) ‘(logior ,setl ,set2))
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(defmacro set-union-sets (sets) ‘(apply #’logior ,sets))
(defmacro difference (setl set2) ‘(logandc2 ,setl ,set2))

The following operations are used to sort sets in lexicographic order. These
functions are useful in sorting decompositions.

(defmacro set>? (setl set2) ‘(> ,setl ,set2))
(defmacro set>=7 (setl set2) ‘(> ,setl ,set2))
(defmacro set<? (setl set2) ‘(< ,setl ,set2))
(defmacro set<=7 (setl set2) ‘(<= ,setl ,set2))

Sometimes, we need to convert a set from a bit vector representation to a
list representation. The following function helps to perform the conversion.

(defmethod indices-of (set)
(loop for bit-vector = set
then (difference bit-vector (make-singleton-set index))
until (zerop bit-vector)
for index = (1- (integer-length bit-vector))
collect index))

In decompositional search, a frequent operation is to find duplicates
among a collection of sets. The following procedure performs this function
using operations on bit vectors:

(defmethod duplicates (sets)

(loop with gtr-than-one = (make-empty-set)
with gtr-than-zero = (make-empty-set)
for set in sets
do (setf gtr-than-one

(logior gtr-than-one (logand gtr-than-zero set)))
(setf gtr-than-zero (logior gtr-than-zero set))

finally (return gtr-than-one)))
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A.2 Primitive Classes

We now define the classes and operations dealing with the primitive elements
of a diagnostic knowledge base, namely, its symptoms and disorders. Primi-
tive classes have a name and two indices, a universal index and a case index.
The universal index is a permanent, unique number assigned to each symp-
tom and to each disorder, so that no two symptoms have the same index and
no two disorders have the same index. The case index is a temporary num-
ber assigned to a symptom or disorder as it becomes relevant to a particular
case. The case indices are therefore smaller than the universal indices, mean-
ing that set representations using case indices are also much smaller. When
a symptom or disorder acquires a case index, the singleton set containing
only that element is also stored to increase efficiency.

(defconstant start-index 0)
(defconstant not-indexed (1- start-index))

(defclass primitive ()
((name :reader name :initarg :name)
(univ-index :reader univ-index :initarg :univ-index)
(case-index :accessor case-index :initform not-indexed)
(singleton :accessor singleton :initform (make-empty-set))))

(defmethod indexed? ((p primitive))
(/= (case-index p) not-indexed))

Given the definition of a primitive class, we can now apply the set defi-
nitions to them. Since primitives have singletons attached to them, we can
simply use the stored value, instead of having to compute it each time.

(defmethod insert-elt ((p primitive) set)
(set-insert (singleton p) set))

(defmethod remove-elt ((p primitive) set)
(set-remove (singleton p) set))

(defmethod make-set (primitives)
(set-union-sets (map ’list #’singleton primitives)))
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Each symptom has a set of possible causes, and each disorder has a set
of possible effects. Disorders also have a prior probability attached to them.
When a symptom or disorder is created, only the universal index can be
assigned, since the case index holds only for a particular diagnostic case.

(defclass symptom (primitive)
((univ-causes :reader univ-causes :initform (make-empty-set)
tinitarg :univ-causes)
(causes :accessor causes :initform (make-empty-set))))

(defmethod make-symptom (name univ-index)
(make-instance ’symptom :name name :univ-index univ-index))

(defclass disorder (primitive)
((univ-effects :reader univ-effects :initform (make-empty-set)
:initarg :univ-effects)
(effects :accessor effects :initform (make-empty-set))
(prior-prob :reader prior-prob :initarg :prior-prob)))

(defmethod make-disorder (name univ-index prior-prob)
(make-instance ’disorder :name name :univ-index univ-index
:prior-prob prior-prob))

To generate the indices needed for symptoms and disorders, we define the
following abstraction for index generators:

(defmacro make-index-generator () ‘(1- start-index))

(defmacro reset-index-generator (generator)
‘(setf ,generator (1- start-index)))

(defmacro generate-index (generator) ¢(incf ,generator))

This abstraction is instantiated in the following procedures to generate case
indices as needed.

(defvar *symptom-case-index* (make-index-generator))
(defvar *disorder-case-index* (make-index-generator))

(defmethod gen-symptom-case-index () (incf *symptom-case-index*))
(defmethod gen-disorder-case-index () (incf *disorder-case-index*))
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(defmethod reset-symptom-case-index ()

(setf *symptom-case-index* (1- start-index)))
(defmethod reset-disorder-case-index ()

(setf *disorder-case-index* (1- start-index)))

Since sets are represented as bit vectors, which are essentially arrays of
indices, we need to be able to lookup an element by its index. We implement
this functionality by hash tables, using the following abstraction:

(defmacro make-table (test) ‘(make-hash-table :test ,test))
(defmacro reset-table (table) ‘(clrhash ,table))
(defmacro lookup-table (key table) ‘(gethash ,key ,table))

(defmacro enter-table (key val table)
‘(setf (gethash ,key ,table) ,val))

With these operations, we can define lookup tables for the universal and
case indices of both symptoms and disorders:

(defvar *symptom-univ-indextable* (make-table #’eql))
(defvar *disorder-univ-indextablex (make-table #’eql))
(defvar *symptom-case-indextable* (make-table #’eql))
(defvar *disorder-case-indextable* (make-table #’eql))

(defmethod lookup-symptom-univ-index (index)
(lookup-table index *symptom-univ-indextablex))

(defmethod lookup-disorder-univ-index (index)
(Lookup-table index *disorder-univ-indextablex*))

(defmethod lookup-symptom-case-index (index)
(Lookup-table index *symptom-case-indextablex))

(defmethod lookup-disorder-case-index (index)
(lookup-table index *disorder-case-indextablex))

As we mentioned above, we often need to deal with lists of primitives,
rather than bit vectors. The following functions convert a set from its usual
bit vector representation to a list of primitives:
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(defmethod univ-symptoms-of (set)
(map ’list #’lookup-symptom-univ-index (indices-of set)))

(defmethod symptoms-of (set)
(map ’list #’lookup-symptom-case-index (indices-of set)))

(defmethod univ-disorders-of (set)
(map ’list #’lookup-disorder-univ-index (indices-of set)))

(defmethod disorders-of (set)
(map ’list #’lookup-disorder-case-index (indices-of set)))

When a symptom is entered in a particular case, it needs to be assigned
a case index. The possible causes of the symptom are now relevant to the
diagnostic case, and so they also require case indices. The following function
logs in the required case indices.

(defmethod enter-symptom-in-case ((s symptom))
(when (not (indexed? s))
(setf (case-index s) (gen-symptom-case-index))
(enter-case-index s)
(add-to-symptom-list s)
(setf (singleton s) (make-singleton-set (case-index s)))
(let ((disorders (univ-disorders-of (univ-causes s))))
(loop for d in disorders
when (not (indexed? d))
do (setf (case-index d) (gen-disorder-case-index))
(enter-case-index d)
(setf (singleton d) (make-singleton-set (case-index d))))
(setf (causes s) (make-set disorders)))))

(defmethod enter-univ-index ((s symptom))
(enter-table (univ-index s) s *symptom-univ-indextablex))

(defmethod enter-univ-index ((d disorder))
(enter-table (univ-index d) d *disorder-univ-indextablex))

(defmethod enter-case-index ((s symptom))
(enter-table (case-index s) s *symptom-case-indextablex))

(defmethod enter-case-index ((d disorder))
(enter-table (case-index d) d *disorder-case-indextablex*))
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(defmethod reset-case-indextable (case-indextable)
(maphash #’(lambda (case-index p)
(declare (ignore case-index))
(setf (case-index p) not-indexed))
case-indextable))

(defmethod reset-case ()
(reset-case-indextable *symptom-case-indextablex)
(reset-case-indextable *disorder-case-indextable*)
(reset-symptom-case-index)
(reset-disorder-case-index)
(reset-symptom-1list))

The symptoms in a case are stored in a list, so that they can be accessed
as necessary to expand a decomposition at a given level. The following
procedures implement this functionality:

(defvar *symptom-list* ’())
(defmethod reset-symptom-list () (setf *symptom-list* ’()))

(defmethod add-to-symptom-list ((s symptom))
(setf *symptom-list* (append *symptom-list* (list s))))

(defmethod get-next-symptom (level) (elt *symptom-list* level))

A.3 Tasks

A problem decomposition contains a set of clusters, each of which has an
associated differential diagnosis. In order to keep each cluster together with
its differential, we define an object called a task. A task is essentially a
subproblem, and it consists of a cluster and a differential:

(defclass task O
((cluster :accessor cluster :initarg :cluster)
(common-causes :accessor causes :initarg :causes)
(justification-set :accessor just-set :initform (make-empty-set))
(exclusion-set :accessor excl-set :initform (make-empty-set))
(differential :accessor diff :initform (make-empty-set))))
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(defmethod make-task ((s symptom))
(make-instance ’task :cluster (singleton s) :causes (causes s)))

(defmethod copy-task ((task task))
(make-instance ’task :cluster (cluster task) :causes (causes task)))

The following operations are useful in sorting tasks:

(defmethod equal-tasks? ((taskl task) (task2 task))
(set-equal? (cluster taskl) (cluster task2)))

(defmethod task<? ((taskl task) (task2 task))
(set<? (cluster taskl) (cluster task2)))

The following operations insert and delete symptoms from clusters. When
a symptom is inserted or removed from a cluster, the common causes for the
cluster are recomputed, except when the symptom is known to cover the
cluster, for which a separate procedure exists.

(defmethod causes (cluster)
(intersect-sets (map ’list #’causes (symptoms-of cluster))))

(defmethod add-symptom! ((s symptom) (task task))
(setf (cluster task) (insert-elt s (cluster task)))
(setf (causes task) (intersect (causes s) (causes task)))
task)

(defmethod add-covering-symptom! ((s symptom) (task task))
(setf (cluster task) (insert-elt s (cluster task)))
task)

(defmethod remove-symptom! ((s symptom) (task task))
(setf (cluster task) (remove-elt s (cluster task)))
(setf (causes task) (causes (cluster task)))
task)

(defmethod remove-symptoms! (set (task task))
(setf (cluster task) (difference (cluster task) set))
(setf (causes task) (causes (cluster task)))
task)
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Two predicates that are used extensively are covering and restricting,
which are opposites. Two methods are given for each predicate: one for
clusters in existing tasks and one for clusters constructed on the fly.

(defmethod covers? ((s symptom) (task task))
(superset? (causes s) (causes task)))

(defmethod covers? ((s symptom) cluster)
(superset? (causes s) (causes cluster)))

(defmethod restricts? ((s symptom) (task task))
(not (superset? (causes s) (causes task))))

(defmethod restricts? ((s symptom) cluster)
(not (superset? (causes s) (causes cluster))))

A.4 Sets of Tasks

Since a decomposition contains multiple clusters, it will be represented by
multiple tasks. We represent a set of tasks as a list. Sets of tasks can be
altered using the following functions:

(defmethod add-task ((newtask task) task-set)
(cons newtask (map ’list #’copy-task task-set)))

(defmethod substitute-task ((oldtask task) (newtask task) task-set)
(cons newtask (map ’list #’copy-task (remove oldtask task-set))))

In addition, we will find it necessary to put sets of tasks in a particu-
lar order, so that they can be compared. The following functions sort and
compare sets of tasks.

(defmethod sort-task-set (task-set) (sort task-set #’task<?))
(defmethod equal-task-sets? (task-set-1 task-set-2)

(and (= (length task-set-1) (length task-set-2))
(every #’equal-tasks? task-set-1 task-set-2)))
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(defmethod task-set<? (task-set-1 task-set-2)
(cond ((< (length task-set-1) (length task-set-2)) t)

((> (length task-set-1) (length task-set-2)) nil)

(t (Loop for taskl in task-set-1
for task2 in task-set-2
when (task<? taskl task2) do (return t)
else when (task<? task2 taskl) do (return nil)
finally (return nil)))))

A.5 Decompositions

We now define the class for problem decompositions. A problem decom-
position consists of a set of tasks. We also store the unifying disorders for
the decomposition in a slot. The compute-diff? slot is a flag that indi-
cates whether the differentials for the decomposition should be computed or
recomputed.

(defclass decomp ()
((tasks :accessor tasks :initarg :tasks)
(unifying :accessor unifying :initform (make-empty-set))
(compute-diff? :accessor compute-diff? :initarg :compute-diff?)))

(defmethod make-decomp (tasks &optional compute-diff?)
(make-instance ’decomp :tasks tasks :compute-diff? compute-diff?))

Decompositions can often be generated in duplicate. A standard repre-
sentation for decompositions helps to identify duplicates for removal. The
standard representation lists the tasks in lexicographic order according to
their case index:

(defmethod standardize ((C decomp))
(setf (tasks C) (sort-task-set (tasks C)))
C)

The following predicates compare decompositions, to be used for sorting
purposes:

(defmethod equal-decomps? ((C1 decomp) (C2 decomp))
(equal-task-sets? (tasks C1) (tasks C2)))

(defmethod decomp<? ((C1 decomp) (C2 decomp))
(task-set<? (tasks Cl) (tasks C2)))
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A.6 Differential Formulation

Differential formulation computes the differentials for a given decomposition.
The differentials are computed by an iterative process that recomputes the
justification set, exclusion set, unifying disorders, and differentials. When the
justification sets remain unchanged, the process terminates. During any step,
if a justification set or differential is found to be null, the process terminates,
and the result “incoherent” is thrown to the top-level procedure

(defmethod formulate-differentials ((C decomp))
(loop for task in (tasks C)
do (setf (just-set task) (cluster task)
(excl-set task) (causes task)
(diff task) (causes task))
finally (return (formulate-differentials-aux C))))

(defmethod formulate-differentials-aux ((C decomp))
(block exit
(loop initially

(setf (unifying C)
(duplicates (map ’list #’excl-set (tasks C))))

for task in (tasks C)

for new-diff = (difference (diff task) (unifying C))

when (empty-set? new-diff) do (return-from exit :incoherent)

else do (setf (diff task) new-diff))

(loop with altered? = nil
for task in (tasks C)
for new-just = (compute-justification task C)
when (empty-set? new-just) do (return-from exit :incoherent)
else when (not (set-equal? new-just (just-set task)))
do (setf (just-set task) new-just
(excl-set task) (causes (just-set task))
altered? t)
finally (if altered?
(return (formulate-differentials-aux C))
(return C€)))))

(defmethod compute-justification ((task task) (C decomp))
(make-set (remove-if-not #’(lambda (s) (justification? s task C))
(symptoms-of (just-set task)))))
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(defmethod justification? ((s symptom) (task task) (C decomp))
(every #’(lambda (task-i)
(not (superset? (causes s) (diff task-i))))
(remove task (tasks C))))

A.7 Ambiguation and Disambiguation

Ambiguation is performed after a new task is created, since that task may
be coverable by previously assigned symptoms. The procedure loops through
each symptom in each existing cluster to see if it covers the new cluster. If
so, it is added to the new cluster.

(defmethod ambiguate ((newtask task) (C decomp))
(loop for task in (remove newtask (tasks C))
for cluster = (cluster task) do
(loop for s in (symptoms-of cluster)
when (covers? s newtask)

do (add-symptom! s newtask))
finally (return C)))

Disambiguation is performed after ambiguation to remove ambiguous as-
signments that no longer hold. Ambiguous symptoms are found by finding
duplicates within the decomposition. The procedure removes these symp-
toms, recomputes the common causes for each cluster, and then reassigns
the ambiguous symptoms to the clusters that they do cover.

(defmethod disambiguate ((C decomp))
(let ((amb-symptoms (duplicates (map ’list #’cluster (tasks C)))))
(restore-ambiguous amb-symptoms
(remove-ambiguous amb-symptoms C))))

(defmethod remove-ambiguous (amb-symptoms (C decomp))
(loop for task in (tasks C)
do (remove-symptoms! amb-symptoms task)
finally (return C)))

(defmethod restore-ambiguous (amb-symptoms (C decomp))
(let ((symptoms (symptoms-of amb-symptoms)))
(loop for s in symptoms



194APPENDIX A. IMPLEMENTATION OF DECOMPOSITIONAL SEARCH ALGORITHM

for reassign = (find-reassignable s C)
when (null reassign) do (return :degenerate)
else do (loop for task in reassign

do (add-covering-symptom! s task))
finally (return C))))

(defmethod find-reassignable ((s symptom) (C decomp))
(loop for task in (tasks C)
when (covers? s task)
collect task))

A.8 Symptom Assignment

A.8.1 Covering

The covering operator determines whether some cluster can be covered by
the new symptom. If so, it adds the symptom to each cluster that it covers.

(defmethod cover-op ((C decomp) (s symptom))
(when (coverable? C s) (list (cover-aux C s))))

(defmethod coverable? ((C decomp) (s symptom))
(some #’(lambda (task) (covers? s task)) (tasks C)))

(defmethod cover-aux ((C decomp) (s symptom))
(Loop for task in (tasks C)
when (covers? s task)
collect (add-covering-symptom! s (copy-task task)) into tasks
else collect (copy-task task) into tasks
finally (return (make-decomp tasks))))

A.8.2 Restricting

The restricting operator results in several decompositions, one for each cluster
that a symptom restricts.

(defmethod restrict-op ((C decomp) (s symptom))
(loop for task in (tasks C)
when (restricts? s task)
collect (restrict-task task C s)))
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(defmethod restrict-task ((task task) (C decomp) (s symptom))
(let* ((newtask (add-symptom! s (copy-task task))))
(disambiguate
(ambiguate
newtask
(make-decomp (substitute-task task newtask (tasks C)) t)))))

A.8.3 Adjoining

The adjoining operator simply creates a decomposition with the new symp-
tom appended as a cluster by itself.

(defmethod adjoin-op ((C decomp) (s symptom))
(let ((newtask (make-task s)))
(list
(disambiguate
(ambiguate
newtask
(make-decomp (add-task newtask (tasks C)) t))))))

A.8.4 Admixing

The admixing operator results in several decompositions, one for each pre-
viously assigned symptom that can admix with the new symptom. The
procedure loops through all admixable symptoms in all previous clusters and
collects the resulting decompositions.

(defmethod admix-op ((C decomp) (s symptom))
(loop for task in (tasks C)
append (admix-task task C s)))

(defmethod admix-task ((task task) (C decomp) (s symptom))
(loop for admix-s in (admixable-symptoms task s)
collect (admix-symptom admix-s task C s)))

(defmethod admix-symptom
((admix-s symptom) (task task) (C decomp) (s symptom))
(let ((result-task (add-symptom! admix-s (make-task s)))
(newtask (remove-symptom! admix-s (copy-task task))))
(disambiguate
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(ambiguate
result-task
(make-decomp
(add-task result-task
(substitute-task task newtask (tasks C)))
t)))))

(defmethod admixable-symptoms ((task task) (s symptom))
(unless (= (cardinality (cluster task)) 1)
(loop with new-set = (make-set (list s))
for admix-s in (symptoms-of (cluster task))
when (and (restricts? admix-s
(remove-elt admix-s (cluster task)))
(restricts? admix-s new-set))

collect admix-s)))

A.9 Nodes

Nodes are the components of the search tree. Each node contains a decom-
position and is related to a parent node and children nodes. For debugging
and explanation purposes, each node has an operator, which explains how
its decomposition was derived from its parent decomposition.

(defclass search-class ()
((level :accessor level :initarg :level)
(probability :accessor prob :initform 0.0)))

(defclass node (search-class)

((decomp :accessor decomp :initarg :decomp)
(parent :accessor parent :initarg :parent)
(operator :accessor operator :initarg :operator)
(children :accessor children :initform ’())))

(defmethod make-node ((C decomp) (parent node) operator)
(let ((node (make-instance ’node

:level (1+ (level parent))
:decomp C
:parent parent
:operator operator)))

(push node (children parent))

node))
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(defmethod make-root-node ()
(make-instance ’node
:decomp (make-decomp ’())
:level O
:parent :none
:operator :root))

(defmethod make-nodes (decomps (parent node) operator)
(map ’list #’(lambda (C) (make-node C parent operator))
(map ’list #’standardize (remove :degenerate decomps))))

The following procedures are used for comparing and sorting nodes, based
on their decompositions.

(defmethod equal-nodes? ((nodel node) (node2 node))
(equal-decomps? (decomp nodel) (decomp node2)))

(defmethod node<? ((nodel node) (node2 node))
(decomp<? (decomp nodel) (decomp node2)))

Frontiers are simply the nodes generated after an iteration of the search
process. In this program, a breadth-first strategy is used, so that each frontier
is simply one level of the search tree.

(defclass frontier ()
((nodes :accessor nodes :initarg :nodes)))

(defmethod make-frontier (nodes)
(make-instance ’frontier :nodes nodes))

(defmethod make-initial-frontier ()
(reset-case)
(make-instance ’frontier
:nodes (list (make-root-node))))

A.10 Search

The following function is the top-level procedure for decompositional search.
It takes a set of symptoms and produces a frontier containing plausible prob-
lem decompositions. The procedure takes a frontier as an optional argument
so that a previous search process can be extended.
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(defmethod diagnose
(symptoms &optional (frontier (make-initial-frontier)))
(loop for s in symptoms
do (enter-symptom-in-case s)
(setf frontier (make-frontier
(compute-differentials
(remove-duplicate-nodes
(expand frontier)))))
finally (return frontier)))

Expansion consists of accumulating the successors for each node in the
previous frontier. These successors are created by the symptom assignment
operators. If covering is possible, no other operator need be tried. Other-
wise, restricting, adjoining, and admixing operators are applied. Each new
decomposition is then ambiguated and disambiguated.

(defmethod expand ((frontier frontier))
(loop for n in (nodes frontier)
append (successor n (get-next-symptom (level n)))))

(defmethod successor ((n node) (s symptom))
(let ((C (decomp n)))
(or (make-nodes (cover-op C s) n :cover)
(append (make-nodes (restrict-op C s) n :restrict)
(make-nodes (adjoin-op C s) n :adjoin)
(make-nodes (admix-op C s) n :admix)))))

The following procedure removes duplicate decompositions. It speeds up
the process by sorting the decompositions by size and lexicographic order.

(defmethod remove-duplicate-nodes (nodes)
(let ((nodes (sort nodes #’node<?)))
(unless (null nodes)
(loop for node in (rest nodes)
with test-node = (first nodes)
with result = (list (first nodes))
unless (equal-nodes? node test-node)
do (push node result) (setf test-node node)
finally (return (nreverse result))))))
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The following procedure computes the differentials for a set of nodes. It
removes those nodes that have incoherent decompositions.

(defmethod compute-differentials (nodes)
(loop for node in nodes
for decomp = (formulate-differentials (decomp node))
unless (eq decomp :incoherent)
do (setf (decomp node) decomp)
and collect node))
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The following is an implementation of the candidate generation algorithm
written in ANSI Common Lisp [70]. This is the implementation used for
comparison with decompositional search.

B.1 Class Definitions

Candidate generation uses the same classes for symptoms and disorders as
in symptom clustering. It requires an additional class to specify a candidate,
which consists of a set of disorders.

(defclass candidate (search-class)
((disorder-set :accessor disorder-set :initarg :disorder-set)))

(defmethod make-candidate (disorders level)
(make-instance ’candidate
:level level
:disorder-set disorders))

(defmethod make-initial-candidate ()
(reset-case)
(make-instance ’candidate
:level O
:disorder-set (make-empty-set)))

(defmethod update-level ((H candidate))
(setf (level H) (1+ (level H)))
H)

B.2 Search Routines

The following procedure is the top-level routine for candidate generation.
Like the implementation for decompositional search, this implementation
uses a breadth-first search strategy. The procedure takes a set of candidates
as an optional argument so that previous searches can be extended.

(defmethod generate-candidates
(symptoms &optional (candidates (list (make-initial-candidate))))
(loop for s in symptoms
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do (enter-symptom-in-case s)
(setf candidates (expand-candidates candidates))
finally (return candidates)))

Expansion adds the possible causes for the new symptom to each existing
candidate, unless the candidate already explains the symptom.

(defmethod expand-candidates (candidates)
(loop for H in candidates
append (cand-successor H (get-next-symptom (level H)))))

(defmethod cand-successor ((H candidate) (s symptom))
(if (explains? H s)

(1ist (update-level H))

(loop with disorder-list = (disorders-of (disorder-set H))
with seen-symptoms = (seen-symptoms (level H))
for d in (disorders-of (causes s))
when (minimal? disorder-list d seen-symptoms)
collect (add-disorder d H))))

(defmethod add-disorder ((d disorder) (H candidate))
(make-candidate (insert-elt d (disorder-set H)) (1+ (level H))))

(defmethod seen-symptoms (level) (make-full-set level))

B.3 Predicates

The following predicates provide the notions of minimality and validity.

(defmethod minimal? (disorder-list (new-d disorder) seen-symptoms)
(let ((new-disorder-list (cons new-d disorder-list)))
(notany #’(lambda (d)
(valid? (remove d new-disorder-list) seen-symptoms))
disorder-1list)))

(defmethod valid? (disorder-list seen-symptoms)
(superset? (compute-explained-symptoms disorder-list)
seen-symptoms) )

(defmethod explains? ((H candidate) (s symptom))
(not (empty-set? (intersect (disorder-set H) (causes s)))))

(defmethod compute-explained-symptoms (disorder-list)
(set-union-sets (map ’list #’effects disorder-list)))
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In appendices A and B, we presented the basic implementation of the de-
compositional search and candidate generation algorithms. However, to use
the algorithms themselves, additional supporting routines are needed. These
routines are not part of the algorithms per se, but provide input and output
facilities. Thus, the following support routines are only simple suggestions.
Undoubtedly, an implementation intended for actual use would require more
elaborate supporting facilities. As in the previous appendices, these routines
are written in ANSI Common Lisp [70].

C.1 Link Probability Data Structures

The decompositional search algorithm in appendix A does not specify data
structures for storing link probabilities. Here we offer one possible set of data
structures for holding link probabilities.

(defvar *link-probabilities* (make-hash-table :test #’equal))

(defmethod reset-probability-tables ()
(clrhash *link-probabilities*))

(defmethod link-prob ((d disorder) (s symptom))
(let ((prob (gethash (cons (univ-index d) (univ-index s))
*1ink-probabilities*)))
(if (null prob) 0.0 prob)))

(defmethod enter-link-prob (disorder-index symptom-index link-prob)
(setf (gethash (cons disorder-index symptom-index)
*link-probabilitiesx*)
link-prob))

C.2 Knowledge Base Input

Here we provide a simple interface to read in a knowledge base. The knowl-
edge base is assumed to be in three files. One file contains a list of dis-
orders, with their prior probabilities and indices. A second file contains a
list of symptoms, with their indices. A third file contains the links between
symptoms and disorders. Each disorder, symptom, or link is contained on
a separate line. The following definitions give one possible format for these

files:
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(defmethod dz-indexfile-index (string) (string-first string))
(defmethod dz-indexfile-prior-prob (string) (string-second string))
(defmethod dz-indexfile-name (string) (string-cddr string))

(defmethod sx-indexfile-index (string) (string-first string))
(defmethod sx-indexfile-name (string) (string-tail string))

(defmethod linkfile-disorder-index (string) (string-first string))
(defmethod linkfile-symptom-index (string) (string-second string))
(defmethod linkfile-link-prob (string) (string-third string))

The following procedures provide utility functions to obtain input from a file:

(defmacro doline ((string file) &body body)
(let ((f (gensym)))
‘(with-open-file (,f ,file :direction :input)
(loop while (not (end-of-file? ,f))
for ,string = (read-next-line ,f)
until (empty-string? ,string)
do ,@body))))

(defmethod end-of-file? (file)
(eq :eof (peek-char nil file nil :eof)))

(defmethod read-next-line (file)
(unless (end-of-file? file)
(loop for string = (read-line file)
until (or (end-of-file? file)
(not (empty-string? string)))
finally (return (trim-spaces string)))))

(defmethod empty-string? (string)
(every #’(lambda (char) (member char ’ (#\Space #\Tab #\Page)))
string))

(defmethod trim-spaces (string)
(string-trim °’ (#\Space #\Tab #\Page) string))

The following procedures provide abstractions for extracting strings from
each line of a file:
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(defmethod string-head (string)
(multiple-value-bind (value index)
(read-from-string string)
value))

(defmethod string-tail (string)
(trim-spaces
(subseq string
(multiple-value-bind (value index)
(read-from-string string)
index))))

(defmethod string-first (string)
(string-head string))
(defmethod string-second (string)
(string-head (string-tail string)))
(defmethod string-third (string)
(string-head (string-tail (string-tail string))))
(defmethod string-cddr (string)
(string-tail (string-tail string)))

Often, we will want to look up disorders and symptoms by the name.
The following procedures implement tables to associate the names of these
objects with the objects themselves:

(defmethod enter-primitive ((p primitive))
(enter-univ-index p)
(enter-name p))

(defvar *symptom-nametable* (make-table #’equal))
(defvar *disorder-nametable* (make-table #’equal))

(defmethod reset-nametables ()
(reset-table *symptom-nametablex)
(reset-table *disorder-nametablex))

(defmethod enter-name ((s symptom))
(enter-table (name s) s *symptom-nametablex*))
(defmethod enter-name ((d disorder))
(enter-table (name d) d *disorder-nametablex))
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(defmethod lookup-symptom-name (name)
(lookup-table name *symptom-nametablex))

(defmethod lookup-disorder-name (name)
(lookup-table name *disorder-nametablex))

Finally, the following procedures provide routines for loading a diagnostic
knowledge base.

(defmethod load-kb (dz-indexfile sx-indexfile linkfile)
(reset-nametables)
(reset-probability-tables)
(read-dz-indexfile dz-indexfile)
(read-sx-indexfile sx-indexfile)
(read-linkfile-for—causes linkfile)
(read-linkfile-for-probs linkfile))

(defmethod read-dz-indexfile (file)
(doline (string file)
(enter-primitive
(make-disorder (dz-indexfile-name string)
(dz-indexfile-index string)
(dz-indexfile-prior-prob string)))))

(defmethod read-sx-indexfile (file)
(doline (string file)
(enter-primitive
(make-symptom (sx-indexfile-name string)
(sx-indexfile-index string)))))

(defmethod read-linkfile-for-causes (file)
(doline (string file)
(let* ((disorder-index (linkfile-disorder-index string))

(symptom-index (linkfile-symptom-index string))
(s (lookup-symptom-univ-index symptom-index)))

(reinitialize-instance

s :univ-causes

(set-insert (make-singleton-set disorder-index)

(univ-causes s))))))

(defmethod read-linkfile-for-probs (file)
(doline (string file)
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(enter-link-prob
(linkfile-disorder-index string)
(1inkfile-symptom-index string)
(linkfile-link-prob string))))

C.3 Interface

Interfaces are highly machine-dependent. Here we provide a simple interface
to print the results of the decompositional search and candidate generation
algorithms. The output is intended to be used for processing by TEX [32, 35].

(defvar *print* ’name)

(defmethod print-object ((s symptom) stream)
(cond ((eq *print* ’name)
(format stream "~S" (name s)))
((eq *print* ’univ-index)
(format stream "s_{"D}" (univ-index s)))
(t (format stream "s_{"D}" (case-index s)))))

(defmethod print-object ((d disorder) stream)
(cond ((eq *print* ’name)
(format stream "~S" (name d)))
((eq *print* ’univ-index)
(format stream "d_{"D}" (univ-index d)))
(t (format stream "d_{"D}" (case-index d)))))

(defmethod print-frontier ((f frontier))
(loop for node in (nodes f)
for i from 1
do (format t "“%”S <--("8)-- 38"
node (operator node) (parent node))
(format t ""%${\\cal C}_"D =" i)
(print-node node)))

(defmethod print-node (node)
(print-tasks (sort-task-set (tasks (decomp node)))))
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(defmethod print-tasks (tasks)
(print-decomposition tasks)
(format t "$\\\\")
(format t ""%Differentials $\\langle ")
(print-diff-sizes tasks)
(format t " \\rangle$:~%")
(format t "$")
(print-differentials tasks)
(format t "$7%"))

(defmethod print-decomposition (tasks)
(loop for task in tasks do (print-cluster task)))

(defmethod print-diff-sizes (tasks)
(loop for task in (butlast tasks)
do (print-diff-size task)
(format t " \\cross ")
finally (print-diff-size (car (last tasks)))))

(defmethod print-diff-size (task)
(format t ""D" (cardinality (diff task))))

(defmethod print-differentials (tasks)
(loop for task in (butlast tasks)
do (print-diff task)
(format t ""% \\cross™%")
finally (print-diff (car (last tasks)))))

(defmethod print-cluster ((task task))
(format t "7S" (symptoms-of (cluster task))))

(defmethod print-diff ((task task))
(format t "\\{")
(loop for disorder in (disorders-of (diff task))
do (format t "~S" disorder))
(format t "\\}"))

(defmethod sort-candidates-by-size (candidates)
(stable-sort candidates #’< :key #’size))

(defmethod size ((H candidate))
(cardinality (disorder-set H)))
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The following procedures provide similar output routines for printing candi-
dates:

(defmethod print-candidates (candidates)
(loop for H in (sort-candidates-by-size candidates)
with current-size = 0
when (> (size H) current-size)
do (format t "~%"JCardinality ~“D:" (size H))
(setf current-size (size H))
(print-candidate H)
else do (print-candidate H)))

(defmethod print-candidate ((H candidate))
(format t "[")
(loop for d in (disorders-of (disorder-set H))
do (format t "“S " d))
(format t "I"))
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D.1

APPENDIX D. SUBDOMAIN FOR PRERENAL AZOTEMIA

Symptoms

This is a list of the possible effects of the disorder prerenal azotemia:

S1
52
83
Sy
S5
Se
S7
S8
S9
S10
S11
S12
513
S14

Azotemia Of Two Week (s) Duration Or Less
Creatinine Clearance Decreased

Creatinine Serum 3 To 10 Mg Per DI
Creatinine Serum Increased Not Over 2.9 Mg Per DI
Dehydration

Mouth Mucosa Dry (Xerostomia)

Oliguria Hx

Ph Urine Less Than 6

Sodium Urine Less Than 20 Meq Per Day
Urea Nitrogen Serum 30 To 59

Urea Nitrogen Serum 60 To 100

Urine Osmolality Gtr Than 320

Urine Output Less Than 400 M1 Per Day
Urine Specific Gravity Gtr Than 1.020

D.2 Disorders

This is a list of the competitors of the prerenal azotemia. These are disorders
that can cause one or more of the effects of prerenal azotemia.

dy
da
ds
dy
ds
de

Addisons Disease Secondary To Adrenal Destruction
Addisons Disease Secondary To Idiopathic Atrophy
Adrenal Apoplexy

Adrenal Insufficiency Secondary To Hypopituitarism
Aldosteronism Primary

Aldosteronism Secondary

Alzheimers Disease

Amebic Colitis

Amyloidosis Systemic

Analgesic Nephropathy

Angiodysplasia Of Right Colon

Anorexia Nervosa
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di3  Arteriolar Nephrosclerosis Benign (Essential Hypertension)
dy4 Arteriolar Nephrosclerosis Malignant (Malignant Hypertension)
dys Aspergillosis Disseminated

dig  Atheromatous Embolism

dy7  Botulism

dig Brain Neoplasm Secondary Multiple

dig Campylobacter Enteritis

dyy Carcinoid Syndrome Secondary To Bronchial Neoplasm
dy;  Carcinoid Syndrome Secondary To Hepatic Metastases

dys  Carcinoma Of Esophagus

dsz  Cardiac Failure Left Chronic Congestive

doy Cardiac Failure Right Congestive

dys  Cardiogenic Shock Acute

deg Celiac Sprue

dy;  Ceramide Trihexoside Lipoidosis (Fabrys Disease)

dsg  Cerebral Artery Thrombosis Or Dissection With Encephalomalacia
dag Cerebral Embolism

d3p Cerebral Lymphoma Primary

d3;  Cerebral Malaria

d3s Cerebral Neoplasm Single Frontal

dsz Cerebral Neoplasm Single Parietal

d3s Cerebral Neoplasm Single Temporal

dss  Constrictive Pericarditis

dsg Crohns Disease Of Colon

ds7  Crohns Disease Of Small Intestine

dsg  Cryoimmunoglobulinemic Syndrome

d3g Cryptococcal Meningitis

dy Cushings Syndrome Secondary To Adrenal Adenoma (s)
dy;  Cushings Syndrome Secondary To Adrenal Carcinoma

dso Cushings Syndrome Secondary To Iatrogenic Steroid Excess
ds3 Diabetes Insipidus

dys Diabetes Insipidus Nephrogenic

dss Diabetes Mellitus

dss Diabetic Ketoacidosis

dy7  Diabetic Nephropathy
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Ectopic Acth Syndrome

Encephalitis Acute Viral

Fatty Liver Of Pregnancy Acute
Gastrointestinal Sarcoidosis
Glomerulonephritis Acute
Glomerulonephritis Advanced Chronic
Glomerulonephritis Focal
Glomerulonephritis Latent
Glomerulonephritis Rapidly Progressive
Goodpasture Syndrome (Renal Component)
Gouty Nephropathy Chronic

Heat Exhaustion

Hereditary Nephritis (Alports Syndrome)
Herpes Simplex Encephalitis
Histoplasma Meningitis

Histoplasmosis Disseminated
Hydronephrosis

Hyperparathyroidism Primary
Hyperthyroidism (Graves Disease)
Hypokalemic Nephropathy
Hypovolemic Shock

Iga Nephropathy

Immune Deficiency Syndrome Acquired (AIDS)
Intestinal Giardiasis

Intracerebral Hematoma

Lead Nephropathy Chronic

Lead Poisoning

Left Ventricular Failure Acute
Leukemia Chronic Lymphocytic
Listeria Meningitis

Lupus Nephritis

Malaria

Mallory Weiss Syndrome

Medullary Cystic Kidney

Membranous Glomerulopathy
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d83
ds4
d85
d86
d87
d88

Meningococcal Meningitis
Meningococcemia Acute

Myeloid Metaplasia (Primary Myelofibrosis)
Nephritis Acute Interstitial Allergic
Nephritis Interstitial Non Allergic
Nephrolithiasis

Nephrotic Syndrome

Pancreatic Cholera

Pancreatitis Acute

Paroxysmal Nocturnal Hemoglobinuria Involving Kidneys
Peptic Ulcer With Hemorrhage

Peritonitis Acute Generalized
Pheochromocytoma

Pituitary Cushings Syndrome

Plague Meningitis

Plasma Cell Myeloma

Pneumococcal Meningitis

Polycystic Renal Disease
Polymyositis/Dermatomyositis

Porphyria Acute Intermittent

Prerenal Azotemia

Presinusoidal Portal Hypertension
Progressive Systemic Sclerosis

Progressive Systemic Sclerosis Involving Kidneys
Pseudomembranous Colitis

Pyelonephritis Acute

Pyelonephritis Chronic

Pyloric Obstruction

Renal Amyloidosis

Renal Artery Stenosis

Renal Cell Carcinoma

Renal Failure Acute

Renal Failure Chronic (Uremia)

Renal Failure Secondary To Liver Disease (Hepatorenal Syndrome)
Renal Infarction
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d118
d119
d120
d121
d122
d123
d124
d125
d126
d127
d128
d129
d130
d131
d132
d133
d134
d135
d136
d137
d138
d139
d140
d141
d142
d143
d144
d145
d146
d147

APPENDIX D. SUBDOMAIN FOR PRERENAL AZOTEMIA

Renal Interstitial Sarcoidosis

Renal Leptospirosis

Renal Thrombotic Thrombocytopenic Purpura
Renal Tuberculosis

Renal Tubular Acidosis Distal

Renal Tubular Acidosis Proximal (Fanconi Syndrome)
Renal Vasculitis

Renal Vein Thrombosis

Rocky Mountain Spotted Fever

Salt Losing Nephritis

Shigellosis

Sinusoidal Or Postsinusoidal Portal Hypertension
Sjogrens Syndrome

Small Bowel Obstruction

Small Intestinal Lymphoma

Staphylococcal Scarlet Fever (Toxic Shock Syndrome)
Staphylococcus Aureus Meningitis

Subdural Hematoma

Superior Mesenteric Artery Insufficiency Acute
Superior Mesenteric Vein Thrombosis
Thrombotic Thrombocytopenic Purpura
Thyrotoxic Storm

Toxemia Of Pregnancy

Trichinosis

Tuberculous Meningitis

Tubular Necrosis Acute

Tularemia

Typhoid Fever

Ulcerative Colitis

Waldenstroms Macroglobulinemia
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D.3 Causal Links

This is a listing of the links between symptoms and disorders in the subdo-
main for prerenal azotemia:

Causes(s1) = {dio3 d114}

CaUSGS(Sz) = {d10 di3 dya di da7 dso ds3 dsa dss dse ds7 dsg deo des deg drz dra
d7g dg1 dgo doa dog dioo dios dios diog di11 dirz diia diis dite diir diis digo
dy22 diog diog dias diao d143}

Causes(53) = {dm d13 dyg d16 d27 d47 d52 d53 d56 d57 d58 d60 d64 d69 d73 d78 d81
dso dge ds7 doa dioo dios dios diog dir1 diiz diia diis die diir dis ditg dizo
dy21 digq dios d143}

Causes(s4) = {d5 dy dio dy3 diy dis doy dzg dyz dag da7 dsg dsz dsy dss dse dsy
dsg deo de3 des de7 deg dr3 dry dre drg dgy dga dgs dgs dse ds7 dgg doa dgs dog
dioo dio1 dioz dios dios dios diog dini diiz dite diir diig divg dizo dio1r dige
di23 di24 digs dig7 digs digs diso diss d147}

Causes(s5) = {dl dy d3 dy d? ds le dyy dyo d17 d18 d19 dao d26 d28 d29 d30 d31
dso dss dsy dsg ds7 dsg daz das das das dag dso dsg de1 dez des des des dro dr
d7o d77 drg dgo dsg dge ds7 doo do1 dos doa dor dog dog dio2 dios dioa dior di1o

d114 d115 d125 d126 d127 d128 d129 d131 d132 d134 d135 d136 d137 d139 d142 d143
d144 d145 d146}

CaUSGS(Sﬁ) = {d1 dy ds dy dio di7 doy doy doy das dyg das das dso dsg des dse
ds7 doo dio2 dios di1a di1s dior diso disg din d143}

CaUSGS(S7) = {d14 das doy dso dss dse ds7 dsg deo drs dios dios diiz diig di2o
dy24 dy33 d143}

CaUSGS(Ss) = {dlo dye ds2 dg7 dyoz diis d123}
CaUSGS(Sg) = {d5 dg da3 day d3s dyo3 d116}
Causes(s10) = {ds dg dio di3 dig dis dig dos dor dsg dao day dao dyz dag dy7 dys

d51 d52 d53 d54 d55 d56 d57 d58 d60 d63 d64 dﬁ? d68 d69 d73 d74 d76 d78 d80 d81
d82 d84 d86 d87 d89 d92 d95 d96 d98 leO d103 d104 d105 d106 d108 d109 dlll d112



220 APPENDIX D. SUBDOMAIN FOR PRERENAL AZOTEMIA

d116 dll? d118 d119 d120 d121 d122 d123 d124 d125 d127 d129 d133 d138 d140 d143
d147}

CauS@S(Sll) = {dlo dy3 dig dis dig doy da7 dso dss dse dsy dsg deo dea deg drs
drs dgy dge dg7 doa dipo dios dios dioo di11 dirz diia dirs dite diir diis ding
dy20 di21 di2g dios d143}

Causes(512) = {d14 ds2 dey dioz di1e di24 d140}

CaUSGS(Sm) = {d14 di6 dar ds ds3 dse ds7 dea deg drg dge dg7 dss dioo dioz dios
dyos di11 dirz diis diie dirr dirg di2o diga dias dior digo d143}

CaUSQS(SM) = {d14 d23 daa d52 d69 d75 d103 d116 dy24 d140}
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