A System for Using Time Dependent Data in Patient Management

Thomas A. Russ
MIT Laboratory for Computer Science, Cambridge, MA 02139 U.S.A.

Traditional artificial intelligence (AI) in medicine systems do not operate in an environment in which
continuously changing data is encountered. The standard approach of using a rule-based system to address
a domain with time-varying data does not work. This is because rules assume that the environment in which
they operate contains only universally true assertions. This paper presents a control system that retains
the clarity and modularity of rule-based systems while adding a capability for using data which changes
over time. The system supports temporal reasoning by providing a framework for generating steady state
abstractions from incoming data streams, and for automatically running relevant reasoning modules when
required. The resulting data-driven system can support clinical patient management systems which use

time dependent data.

1. INTRODUCTION

Many medical Al systems address the problem of diag-
nosis, most often in the context of a single consultation.

While this single visit approach may be successfully used -

for (some) diagnosis problems, it is inadequate for therapy
management. Patient management requires the tracking of
the treatment being used and the patient’s response over
time. More than one session with the same patient is an
inherent part of the management task. A management sys-
tem must be able to deal with data that changes over time.
In certain applications, it is also important to be able to
deal with data that is not immediately available.

The course of this research into temporal control systems is
motivated by the difficulties encountered in using existing
Al technology for the construction of a ventricular arrhyth-
mia advisor. This program would be used in a cardiac in-
tensive care unit. The very nature of critical care medicine
often requires therapeutic intervention before all tests can
be performed and their results reported. Furthermore, the
patient’s condition itself can change quickly, thus making
1t necessary to interpret the results of tests in light of the
changes that have taking place in the patient’s state since
the time to which those test results refer.

In a typical single-session consultation with a computer ad-
visor, if a test result is requested, but not available, then
the user has one of two choices. Either the test can be
performed and the results awaited before continuing with
the session or the consultation can continue without the
data. If data that is relevant to the decision-making pro-
Cess arrives later, the consultation must either be redone
with the newly available data, or that the data will be ig-
nored. Treating the newly reported data as if it were new

System Rule

Database Environment

Rule Set

Figure 1: Standard Rule Environment.

data is inappropriate. For example, treatment may have
been administered which would have changed the patient
parameters that the newly available test data measured.
Even in the absence of therapy, the disease process itself
could have evolved, thus changing the situation relative to
the time the test was conducted. A new consultation based
on the current state of the therapy, but using the old data

is not correct.

The correct solution would be to update the execution his-
tory of the consultation system by re-executing those parts
of the reasoning structure affected by the newly available
data. This re-execution must take place in the historical
context.

2. PROBLEMS WITH CURRENT SYSTEMS

Current rule-based expert systems do not deal with time
at all. The prototypical system has a large universal data
base which contains all of the valid data and conclusions
reached by the system. There is no provision for limiting
the validity of data to a particular period of time. This
architecture is shown in Figure 1.

* This research was supported by National Institutes of Health Grant No. R24 RR01320 from the Division of Research

Resources.

166 T.A. Russ

—T—
— o el — — — —

Figure 2: Duration of Premise Validity.

: l oA !
: I I P | '
S S I N
! : 1 : : I
! 1] | C)
! | I ma T l
! I |] ']
! | | | I I
! | I y4]
'| | | ‘—-——‘ I

| '
b : . | . I . | . |
I P S T VI

Figure 3: Database After Rule Execution.

To see where this architecture can lead to problems, con-
sider the following prototypical rule

IF 4 and 8 and C
THEN Z.

which asserts that the conclusion Z is true (added to the
data base), whenever the premises 4, B and C are in the
data base. Now consider the situation shown in Figure 2,
where the time period over which 4, 8 and C are valid is
different. The ideal situation would be to have the rule
produce the result shown in Figure 3, where Z is asserted
only in interval iy when all of 4, 8 and C are true.

It would, of course, be possible to attach some measure of
the extent over which the data in the data base was valid
and program the appropriate checking for concurrency in
the rules themselves. Unfortunately, this would destroy one
of the advantages of the rule-based paradigm, namely, that
the action of the rule is a straightforward if-then statement.
Cluttering the rule statement with additional tests would
defeat this purpose.

System Control Rule
Database System Environment
Rule Set

Figure 4: Rule Environment with Temporal Control.

The separation of the inference engine from the rule base
was done so that the mechanical details of matching the
information in the data base to the premises of the rules
would not need to be explicitly programmed by the applica-
tions writer. Similarly, the mechanistic job of maintaining
the temporal relationships of rule premises and rule con-
clusions should not be the responsibility of the applications
writer, but rather it should be a service provided by the
programming environment.

3. USING A STATE ABSTRACTION

The key to maintaining the advantage of the rule’s per-
spicuity while at the same time allowing for events to
change with times lies in the use of the state abstraction.
This is something that is commonly done by humans in
medicine. The division of a disease course into phases or
the staging used in oncology are examples of imposing the
abstraction of discrete states with a duration in time upon
what are essentially continuous processes or a continuum
of extent of disease progress. The utility of this process
forms the basis of rule-based systems attractiveness for the
construction of expert systems.

To accomplish this goal, a control system is introduced be-
tween the system data base and the environment in which
the rules are interpreted. This new architecture is shown
in Figure 4. This control system will break the time-space
into intervals in which each of the premises is either valid or
not. (This trivially generalizes to the case where a variable
can have any number of values.) In each of these intervals,
the control system invokes the rule. Referring again to Fig-
ure 3, the rule would be used once in each of the intervals
i;-is and the results of the rule invocation would be com-
bined into intervals of validity or invalidity by the control
system.

Although it would be possible to restrict the rule invocation
to only three intervals, i;-is, i4 and is, this would require
the control structure to analyze the internal logic of the
rule, which is impractical. Instead, the same external effect

Using time dependent data in patient management

is achieved by combining adjacent process intervals with the
same value.

In summary, the control system allows time dependent con-
clusions by setting up a stable environment in which the
variables referred to by the rule (module) have only one
value. This is the provision of the state abstraction.

By using a state abstraction, similarities in cases become
more easily apparent and the use of simpler decision proce-
dures becomes possible. A rule in the production rule sys-
tem is based on the assumption that the rule is operating
in a static environment. This makes the decision process
clearer and permits an easier explanation.

Associated with this use of a state abstraction is the need to
make the abstraction based on the underlying data about
the problem. The system that is described in this paper
supports both the state abstraction and the process of form-
ing abstract states from individual data points (samples).
The main point of this paper is to show how the use of state
abstractions allows the use of rule-like reasoning in an en-
vironment with changing data. The process of forming the
state abstraction is beyond the scope of this paper.

4. OTHER WORK

Most other work done in temporal reasoning has been con-

cerned with developing general representations for time or
reasoning about temporal relanonshlps among data that

appears at different times. (See, for example, (1], (2], (3],

(5] and [7].) Little research has focused on the problem of
handling data that arrives over time, or on how to update
existing conclusions when past data changes.

Early expert systems in medicine tended to ignore the issue
of time entirely. Consultations for diagnosis were viewed as
one-time events. Some provision for correcting false infor-
mation was done. The MYCIN system (8], for example,
used a complete recalculation system, whereas the Digi-
talis Advisor [10] used dependency directed backtracking
to undo the error. The former approach can be very costly
when applied to a large amount of data. Since the purpose
of the MYCIN correction was to correct mistakes in data
entry, this was not a large handicap for that system. It is,
however, inadequate for a large management system where
such updates are important. The strategy of dependency
directed updating is therefore more appropriate. The Dig-
italis Advisor system was also designed around the single
session concept, since only the information from the cur-
rent session could be changed, but the idea of using the
data dependencies can be extended to apply to multiple.
consultations as well. The system described in this paper
follows that approach in setting up the data dependencies
of the reasoning modules and using this dependency struc-
ture to drive the recalculation necessary to update the data
base.

The shortcomings of a standard rule based system also lead
to the development of the ONCOCIN system [9] for man-
aging patients on cancer therapy protocols. The changes
in the underlying rule processor for this system were moti-
vated in part by the need to take data which changes over
time into account. Although this system does allow han-
dling multiple measurements and trends over time, what is
still missing is an ability to change data in the past and
have the system update its image of the world.

Another system that modifies the standard rule-based
structure is the Ventilation Manager (VM) developed by
Fagan. It accepts data as a stream, but does not have any
provision for updating past information. Data that arrives
is either treated as if it were current, or it is discarded as
no longer reliable since the situation has changed since the
time at which the data was relevant. In an application such
as ventilation management, when all of the data is short-
lived and results from tests and monitoring equipment is
quickly available, this does not pose a serious problem. In
other applications, the time delay in having data available,
such as the time lag on the results of certain laboratory
tests, is unavoidable. In these domains, a method of incor-
porating data that does not arrive in chronological order is
necessary.

The VM system makes an assumption of a monotonic time-
mapping between the events in the world and the time of
their presentation to the program as input. It does not have
any provision for handling old data that is entered into
the system. This capability, however, can be important.
Consider the case of blood samples being drawn from a
patient and sent to the laboratory for processing. When
the test results are reported, they refer to the state of the
patient at the time the samples were drawn, not at the time
the report is available. In the meantime, the state of the
patient may have changed due either to the disease process
or to interventions that were taken without waiting for all
testing to be complete.

5. ORGANIZATION OF THE SYSTEM

The control system contains of two types of user specified
entities. Variables are used to hold the data in the system
data base. Modules contain the code used to perform the
reasoning about the information in the data base. Time
is encoded using a discrete time model with an application
determined unit. The basic unit could be any period of
time, since the mechanics of the updating are independent
of the underlying units of the time scale. However, all times
must be given specifically in terms of the basic unit time of
the system.

Using the variables and modules, the system maintains the
state of the data base by executing the reasoning modules
when appropriate. The details of this are sketched below.

167

168 T.A. Russ

5.1. Variables

The variables in this system are divided into two classes,.

point variables and interval variables. Point variables are
used to represent data that is associated with a specifie
point in time. Since a discrete time model was chosen,
each instant in time is indivisible. Interval variables are
used to represent data which has a value over a period of
time (at least from one time point to the next one).

The point variables correspond to data samples or indi-
vidual events whereas the interval variables correspond to
states which have some duration. A major problem fac-
ing any temporal system designed on the basis of the con-
trol structure described here is the determination of states
based on input data which is essentially a stream of point
values. This is the part of the system design that is rele-
gated to the abstraction process. The abstraction process
is that part of the system which sets up the states (interval
variables). Although this is not discussed here, an exam-
ple of how this is supported in the control structure can be
found in [6]. In this paper, only the effects of the interval
variables will be discussed at length.

Interval variables are used to describe data that has some
duration. By chosing a time interval in which all relevant
interval variables have only a single value, one can achieve a
steady state abstraction, which simplifies decision-making.
This simplification is possible because it frees the reason-
ing process from the need to consider the effects of time
or change on the decision. The price of the abstraction is
that it is not possible to make the decision dependent on
the facts of the change itself. This restriction is not as seri-
ous as it may at first appear. The ability of the reasoning
modules to remember information (discussed below) allows
past data to affect current reasoning.

The advantage of using the state abstraction of interval
variables is that it allows one to state general domain prin-
ciples without reference to the particular time when they
may apply. The application of the rule at the proper time
becomes a responsibility of the control system, not the rule
writer. An example would be a rule of the following form:

IF the patient has lov serum potassium
THEN give potassium supplements.

Since the conclusion depends only on the presence of the
the input data, it is an example of reasoning which would
benefit from the presence of the steady state abstraction. It
can thus be applied by the control structure automatically
and produce its conclusion each time the premises are true.

5.2. Modules

The reasoning elements of the control structure are de-
scribed in modules. Each module defines the inputs and
outputs of the reasoning code (See Figure 5). This dec-
laration allows the control structure to track the data de-
pendency of that particular reasoning element. For each

AfC AfC AfC AfC
y Y v 1 p !
B LY By Sy
I
z Z y4

Inputs
Process
Memory Memory
—P for —>>
Module
Outputs

Figure 5: Process for a Reasoning Module.

Z
Figure 6: A Chain of Processes.

time interval in which a module is executed, the control
system creates a process. This process will only have access
to input data that concerns the time period in which it is
executing. The ouput data, likewise, will only be valid over
the same time period.

Since it may be desirable to have the reasoning depend ei-
ther on the decisions made earlier, or on historical data
derived from the earlier input data; a memory feature is
also included. When a process is executed, the memory
variables have the value that was stored in them by the
process executing in the previous interval. These variables
provide a memory capacity to the reasoning modules, which
would otherwise be dependent only upon the current in-
puts. Since the contents of the memory variables can attect
the conclusions reached, the values of the memory variables
are available to the control system.

Each interval in which there is a stable set of values for the
input variables has a process created and run by the control
structure. The entire extent of the system data base’s time
line would thus be covered by a chain of processes for each
module. Part of the chain that would be created for the
example rule of Section 2 is shown in Figure 6. Each process
(P1-Py4) receives the appropriate interval’s values of 4, B
and C; and when all are true asserts the conclusion, Z.

5.3. Updating Data

Modules are scheduled to run by the control system when-
ever one of the input or memory variables changes from its
previous value. The notion of change can be controlled by
the application programmer through the ability to associate

Using time dependent data in patient management

a function which tests for “sameness” with each variable.
By using this data dependency scheme for running modules,
it is possible to limit the updating to only those modules
which are affected by the change in the data. If at some
point, the new input data does not change the outputs,
then the updating ends. The system propagates the effects
of changed data only until a new globally stable state is
reached. By limiting the recalculation to only those mod-
ules whose inputs have changed, unnecessary computation
can be avoided.

6. CONCLUSION

The ability to handle data that varies over time is one that
must be faced by any computer system that is used to man-
age patient therapy over time. The approach described here
is one solution to this problem. It separates the mechan-
ics of maintaining and updating time dependent data from
the design of the rules that use this data for their decision
making. This separation allows the application of general
principles precisely in those time intervals in which their
application is justified by the available data. The provision
of a mechanism for maintaining the temporal relationships
between reasoning modules fulfills a similar function in the
temporal realm as the provision of a separate inference en-
gine does for the data matching realm of traditional expert
systems. This separation of function will allow more un-
derstandable systems to be produced with less programmer
effort.

There are several areas for continuing research. Currently
the control system requires having specific times for indi-
vidual data points and for the endpoints of intervals. It is
often unrealistic to expect such precise determinations of
the presence or absence of states. Extending this work to
allow inexact boundaries would make it possible to more
accurately model non-specific knowledge. Long’s work 5]
gives one possible method for approaching this problem.
The technical challenge is to do this in a way that also pre-
serves the efficiency of the updating mechanism when data
changes. Taking all possible combinations of overlapping
endpoints could easily become computationally intractable.

More work also needs to be done on the general problem
of forming state abstractions based on the stream of raw
data. Another issue that is not addressed by this research
is that of using the time course of the data itself to guide
decision-making. This would involve the matching of tem-
poral patterns in the data. One could use the database
maintained by this control system as the basis upon which
to build such a temporal pattern matching program.

An Implementation Note

The metaphor of a rule-based system was chosen for the
exposition of the work in this paper because it allows a
clearer presentation of the major reasoning issues underly-
ing this work. The actual implementation of the control
structure is based on a procedural rather than declarative
(rule-based) style of programming. The usefulness of the
state abstraction and the desirability of using this control
system is not affected by this difference in the method of
encoding the system knowledge.

These ideas have been tested with some simple examples in
the domain of cardiology.

REFERENCES

(1] Allen, J. F., “Maintaining Knowledge About Tempo-
ral Intervals,” Communications of the ACM, 26:11
(November 1983) pp. 832-843.

[2] Allen, J. F., and Hayes, P. H., “A Common-Sense The-
ory of Time,” Proceedings, IJCAI (1985) pp. 528-531.

(3] Blum, R. L., “Discovery, Confirmation, and Incorpo-
ration of Causal Relationships from a Large Time-
Oriented Clinical Data Base: The RX Project,” Com-
puters and Biomedical Research, 15 (1982) pp. 164
187.

(4] Fagan, L. M., VM: Representing Time-Dependent Re-
lations in a Medical Setting, Ph.D. Thesis, Department
of Computer Science, Stanford University (June 1980).

(5] Long, W. J,, “Reasoning About State from Causation
and Time in a Medical Domain,” Proceedings, AAAI
(1983) pp. 251-254.

(6] Long, W.J, and Russ, T. A., “A Control Structure
" for Time Dependent Reasoning,” Proceedings, IJCAI
(1983) pp. 230-232.

(7] McDermott, D. V., “A Temporal Logic for Reason-
ing About Processes and Plans,” Research Report
RR 196, Computer Science Department, Yale Univer-
sity (1981).

(8] Shortliffe, E. H., Computer Based Medial Consulta-
tions: MYCIN (American Elsevier, New York, 1976).

[9] Shortliffe, E. H.; Scott, A. C.; Bischoff, M. B; Camp-
bell, A. B.; Van Melle, W. and Jacobs, C. D., “ON-
COCIN: An Expert System for Oncology Protocol
Management,” Proceedings, IJCAI (1981) pp. 876
881.

(10] Swartout, W. R., A Digitalis Therapy Advisor with
Explanations, Technical Report MIT/LCS/TR-176,
Massachusetts Institute of Technology Laboratory for
Computer Science (1977).

169

