MIT/LCS/TR-176

A Digitalis Therapy Advisor with Explanations

William R. Swarlcut

Fabruary, 1977

fMassechuseits Institute of Technology

L.aboratory for Computer Science
(formarly Project MAC)

Cambridge Massachusetts 02139

A Digitalie Therapy Advisor with Explanations

by
William Roy Suartout

Submitted to the Department of Electrical Engineering and Computer Science on January 16,
1977 in partial fulfillment of the requirements for the Dagree of Master of Science. ’

Abstract

This thesis describes the English explanation facility of the OWL Digitalis Advisor, a
program designed to advise physicians regarding digitalis therapy. The program is written in
OWL, an English-based computer language being developed at MIT. The system can explain, in

. English, both the methods it uses and how those methods were applied during a particular
session. In addition, the program can explain how it acquires information and tell the user
how it deals with that information either in general or during a particular session.

Most explanations are produced directly from the code used in prescribing digitalis and
from information which is generated by the OWL interpreter as it runs. The ability of the
- program fo translate its internal structure to an English explanation is provided by structuring
the program using Semantic Model Programming. Each OWL procedure attempts to represent a
single concept or idea that should be meaningful to the physician using the system. By
organizing the program in this way, the explanations produced by the system tend to relate
well to ideas with which the physician is already acquainted.

In many current systems which ask the user a series of questions, a problem occurs if
the user ‘wishes to change his answer to a previous question. These systems accept the
change, but must recompute ali the results computed subsequent to that question to insure
that none of them are affected. Clearly, this may involve a considerable amount of
unnecessary recomputation. By using OWL, we obtain the data structures necessary to avoid
this problem. An algorithm is described that allows the system to accept a changed answer
without recomputing all prior results. This process is called updating. The updating algorithm
presented here also allows the system to provide concise explanations of the effects of the
changed answer.

Thesis Supervisor: William A. Martin
Title: Associate Professor of Electrical Engineering and Management

Thesis Supervisor: Peter Szolovits
Title: Assistant Professor of Electrical Engineering

Table of Contenta

Chapter 12 Infroduction N 7
Ll Background it i i i it ittt it st ey 8
1.1.1 Some Aspects of Digitalis Therapy . ..o viiv ittt it iterennrncnnn 8
1.1.2 Previous Digitalis Advisors et ieecreraenen e 10
1.1.3 Other Work in Explanationo oo it i i it i e it irnaracnnvnsn i2
1.2 An Qverview of the OWL Digitalis Advisorcoviiiiiiiiirnnnnnnncneeans 13
Chaplor 2: A Sample So88I0N v ive v iteraossraririvsorreasncssnasnsanss 15
2.1 The Initial Session ... i ittt it int it ittt seriatensannnnannnns 15
2.2 The Follow-up Se88I0N . .. vttt vveer it rsrrnrsnsssnsrsansssnssannansnanses 21
2.3 Explanations f et eee ettt ettt 25
23. 1 Explaining Methodsciiiiir ettt s iiecreesranassannnnns 25
23.2 ExplainingEventscoiiiinn. fareseeceaiaaare e 28
2.3.3 Explaining How a Variable is UsedinGeneral 32
2.3.4 Explaining How a Variable is SetinGeneral iiiien . 32
2.3.5 Explaining How a Variable was Used in Particular 33
2.3.6 Explaining How a Variable was SetinParticularo veaat 34
2.3.7 Explaining How aMethod may be Called i 35
2.3.8 Explaining Why aMethodwas Called i i 36 .
Chapter 3: Explanstion «= How Ws Dona e 37
Bl introduction........ ..o, erhsaetaseraasransenanaass 37
3.2 The OWL Knowledge Base and Interpreterottt ennnnnneas 37
321 The Knowledge Base . ..o viiiiiiirininanssscasssansiarasncnnaans 38
322The OWL I Interpreterottt ittt istancransnannaess 39
323 0WLT andExplanation.........ciiiiiiiiiiiianiiiracaannnansane 41
3.3 The English Generator == Turning OWL linto Englishccveeiiaveeen, 42
3.4 Semantic Model Programming: Programming for Explanation................... 45
a4l introductionciviiiiii i i e ittt e e 45
3.4.2 Semantic Model Programming and OWL T ivirnnnannnn 47
3.4.3 Semantic Model Programming and Structured Programming 50
3.5 The Explanation Routines ~~How They Work iiiiien i ittt innnneneann 51
8B Introductionttt e, deeennaeeseronanann 51
3852 DescribingMethodscvviiiiii i Ceearaaeas 51
353 Describing Eventso it iii it i it i e 53
3.5.4 Describing the Use and Setting of Variablescovvvvnn. 56
35.5 Describing When an Eventor PlanisCalledcciveeienvannes 57
3.6 Summaries and Alternate Modelst ittt it i i it e 58
361 SUMMAIIES . ..t iiisereereerssesosstosotasavesoasessananennusss 58
362 Alkernate Models it i it i i ittt et i st ar e 60
3.7 Extensions for Iteration oot iiiiiiiiiiinssttesnnscrensneanannens 62

Chaplar S Updaling 0ttt ittt itsisinsessanssnssscnnnvans 64

Al Intraduction i e 64

4.2 A Sample Sessionuiuii i e 66
4.3 An Outline of the Issues inUpdatingovuurneeneunennnennn 70
43.1 Restrictions i e 70

432 Typesof Time .. oovnineeinnnnnnns, b baeasreaes e an i 71

4.3.3 Special Data Structures for Updating0veennnennnnnnn., 72

4.4 Updating: the Algorithmovut i teiiiiirieeeeieineee 74
4.4.1 An English Descriptionouuuu i ineeern e 74

482 The Program coviniiiiiiiiinteieeers e 76

4.5 The Nitty-Grittyottt e 78
-4.5.1 Determining Precedence Time-Orderoovoereien .. 78

4.5.2 Editing Environment Liststtt e e 79

45.3 A Proof of Correctness S e eein ettt st ey 80

4.6 Comparison of Different Updating Strategiesccoiiiiinninnnn... 85
4.7 Current Performance and Possible Improvementscciiiininnennnn. o0
4.8 Explaining Updatesovveineiiniriieneinirnen i " 21
4.9 Procedures, Rules and Updatingcovtiiiiiii i e e 92
Chapter 5: Conclusions and Suggestions for Further Research0covunn. ... 93‘
S.1 Further Researchcoivniiiiiin e 93

References T N S T 25

Table of llustrations

B AN OWL Plan . ..t v ivier e vrnrrencsssosnannssosonssasasasassrssnsasarsnnns 40
3.2 Types of Specialization vviineiaiiiiii i e 43
3.3 The OWL Code to Check for Sensitivity Due to Myxedemacovnnnnen 52
3.4 An English Explanation of the Code to Check Sensitivity Due to Myxedema 53
35 An Explanation of the Event of Checking for Sensitivity Due to Myxedema............ 56
3.6 A Procedure Using Iteration ciivniiiininr it atiiiannnene 62
8.1 The PrOgramoouvreiiioonssrassatsossarssasassssnnssasstassrsoaseess 74
42 The Update List oot iiiriiiiiieiairiitrinse oo 74
43 The Environment Listvoverricnenacsonseassssnssosasoansssansaoansssnss 75
8.4 The Environment List and Temporary Environment Listccvnecnennennn 75
45 The New Update List i iininriniinnnesreansiianssanoronntacnsnnncsnans 76

4.6 The New Environment List

Acknowledgamenta

I would like to thank all those who made this possible, Howard Silverman and Dr. Stephen
Pauker were very helpful with medical assistance. Alex Sunguroff helped with the OWL
Interpreter. Varlous discussions with members of the Automatic Programming Group and the
Clinical Decision Making Group provided many valuable insights. 1 would especially like to

thank my supervisors, Professors William A, Martin and Peter Szofovits for their patience and -

advice.

This research was supporied in “part by the Health Resources Administration, U. S. Public
Heslth Service, under grant 1 RO1 MB 00107-01 from the Bureau of Health Manpower and
under grant HS 00911-01 from the National Center for Health Services Research.

Chapter 1: lsa’cmduction

 The documentation of programs {or the lack of it} is a problem that contmu
troublesome. Exlstmg documentation is frequently outdated or inaccurate, can be_d
obtain, and often can only be comprahended by other programmers.

~ This problem exists for a number of reasons. Documentation is often wrltten 0 I

_ after-thought, after a system has been completed. Frequently, the programmer i
between the system and its documentation. Thus, changes in the system are not reﬂe
the documentation unless the programmer remembers to make them. The d

also frequently physically separated from the system, so that a user may not’ h’v

documentation available when he wishes to use the system. Some programmers try ‘_

. document the code they produce by using mnemonic names for variables and procedures, yet

- such documentation remains unavailable to non-programmers.

N . il
~ 1f a program can explain its reasoning processes, user acceptance can be more €85 ¥

e deduction®

obtalned since the user can assure himself that the program makes reasonabl

]
whlch resuit m reasonable conclusions. Additionally, an explanation facility may serve

s
valuable pedagogical function. A student or practitioner may use the system and improve hi

easoning with thal of

ool for

understanding of the material that he is studying by comparing his own r

the system. .Finally, the ability to provide explanations serves as 2 valuable t

debugging the system.

~ In this thesis, a system is described which can explain itself. This system catled th?
'OWL Digitalis Advisor, is designed to advise physicians concerning digitalis therapy- It i
_ertten in OWL 1, which is a prototype of the OWL language currently under de\.relosirma"'t of

produce English

MIT[13,14,20,21} The system is "colf-documenting” in the sense that it can
odg it

explanations of the procedures that it uses and the actions it takes directly from the €

executes. Most of the explanations provided are produced in this manner, although a few
types of explanation are produced by displaying canned phrases. The physician may request
explanations during a consultation session. The explanations are designed to be undarstood
by a physician with no programming experience.

In the remainder of the introduction, some of the medical aspects of digitalis therapy
will be outlined, followed by a review of previous digitalis advisors and work in explanation.

Finally, a very brief overview of the OWL Digitalis Adviser is presented.

1.1 Background

1.1.1 Some Aapects of Digitslis Tharapy

The digitalis glycosides are a group of drugs that were originally derived from the
foxglolve, a common flowering plant. This group includes digoxin, digitoxin, oubain, cedalanid
and digitalis leaf. Among these, digoxin is currently by far the most commonly used drug. The
use of digitalis was first documented by William Withering in an article written in 1785. He
noticed that the drug caused increased urine flow, and used the drug to treat abnormal
accumulations of fluid, a condition known as dropsy, which is often the result of a failing heart.
Later, it was discovered that this diuretic effect is only secondary to the. principal effect of
digitalis, which is to strengthen and stabilize the heartbeat.

In current practice, digitalis is prescribed chiefly to patients who show signs of
congestive heart failure andfor conduction disturbances of the heart. Congestive heart failure
refers to the inability of the heart to provide the body with an adequate blood flow. This
condition causes fiuid to accumulate in the lungs and outer extremities and it is this aspect

that gives rise to the term "congestive®. Digitalis is useful in treating this condition, because it

9 .

increases the contractility of the heart, making it a more effective pump. A couduction'
disturbance appears as an arrhythmia, which is an unsteady or abnormally paced heartbeat.
Digitalis tends to slow the conduction of electrical impulses through the conduction system of
the heart, and thus steady certain types of arrhythmias. Due to the positive effect that
digitalis has on the heart, it is one of the most commonly used drugs in the United States. In
1971, it was fifth on the list of drugs most frequently prescribed by doctors through
pharmacies in the US [4,5]
There is, however, a darker side to digitalis. Like many other drugs, digitalis can also be
" a poison if too much is administered. In the case of digitalis, the ratio between a dose which
v;ill cause a therapeutic effect and one which will cause a toxic reaction is only about 1 to 2.’
This "therapeutic window" is particularly sma.H when compared with other drugs. The window
for aspirin, for examplle. is about 1 te 20. In addition, there are a numbar of factors.such as
age, weight, electrolyte balance, and history of heart damage (to name a few) that may cause
the patient to be more sensitive to digitalis and more likely to davelop a toxic reaction. These
factors must be taken into account in prescribing digitalis.

Digitalis toxicity may assume many different forms. It may manifest itself as biurred or
colored vision. Certain gastro-intestinal symptoms such as anorexia (loss of appetite), nausea
or vomiting may appear. Toxicily may alsc appear as certain types of abnormal heart
rhythms.

The clinician must be particularly careful in interpreting toxic signs, since they may have
other causes unrelated td digitalis, or in the case of some arrhythmias, they may be mistaken
for a lack of therapeutic effect. Thus, it is possible that a doctor may give a greater dose of
digitalis, mistakenly thinking that the patient is not showing adequate therapeutic effects, when
in fact he should withhold digitalis until the patient’s toxic symptoms disappear.

In the body, digitalis tends to accumulate and dissipate in an exponential fashion like the

.
i
|
|

10

charge on a capacitor in an RC circuit [5,6,71 'Digitalis leaves tha body through two routes.
Much of the drug is excreted in the urine, and the rest leaves via the liver. The exact
proportions depend on the preparation used, and how weli the patient’s kidneys aré
functioning (renal function). A doctor must coﬁsider these elements in assessing a patient’s
rasponse to the drug.

Because it is so difficult to predict a prieri how much digitalis a patient should receive,
cardiologists generally use feedback to determine the correct dose. A certain amount of
digitalis is given to a patient, the therapeutic and/or toxic effects that appear are evaluated,
and the dose the patient receives is adjusted appropriately. Once it is felt that the patient is
receiving the correct amount, the patient is placed on a maintenance program so that the
amount of digitalis he receives each day is equal to the amount lost through excretion.

Since there are a large number of factars te consider, and the exponential model is
somewhat inconvenient, many patients are treated incorrectly. Studies indicate that as many
as 20% of all patients receiving digitalis show toxic symptoms, and that the mortality rate

among these patients may be as high as 30% [4,8]

1.1.2 Pravious Digitalis Advigors

Several computer programs have been constructed to provide physicians with advice
about digitalis therapy. One of the first such programs is described by Jeliiffe {9,101 This

program was written shortly after the pharmacokinetics of the digitalis glycosides became

_understood, and was designed to compute initial dosage regimens, based on the patient’s

weight, renal function, history of digitalis therapy, and route of administration. The program is
only applicable for use with patients having normal thyroid and liver function and normal

electrolyte balance. It is capable of calculating a reasonable initial dosage regimen subiect to

11

the restrictions stated above. However, the program is deficient in two important ways. First,
the program does not take into account all the factors influencing digitalis administration. The
effects of digitalis are very much affected by electrolyte balance. This limitation makes the
program useless for those patients with attered electrolyte balances. Second, the program
only provides the initial dosage regimen. It is up to the doctor to monitor the patient’s
progress and make adjustments as toxic effects appear, or initial conditions (such as renal
function) vary.

Sheiner [8,11] produced an improved system by using feedback control techniques. The
doctor specifies a desired blood level of digitalis. The program computes an initial dosage
regimen, and after the patient is given the drug, the leve! of serum digitalis is determined. '
This data tells the program whether the digitalis is being used by the patient at the same level
that was anticipated in computing the initial regimen. The program uses this new information
to determine a new regimen, and the feedback ioop is repeated until a stable condition is
reached.

Sheiner’s program solves one of the problems in Jeiliffe’s program, but it has some
other flaws. The objective of the program is the achievement of some level of serum digitalis.
in a clinical setting, it may not be easy to specify what this leve! should be, since the proper
levei is affected by what condition the patient is receiving digitalis for, as well as certain
medical conditions the patient may suffer from, such as potassium depletion, that would make
him sensitive to digitalis. More importantly, the serum level of digitalis is not a good indicator
of clinical effect[3). In addition, Sheiner’s complex statistical methodology would make it
difficult for his system to provide clear expianations to the user.

Recently, a program has been developed by Pauker, Silverman and Gorry which differs
from earlier ones in two important respects[3} First, it constructs a patient-specific model,

reflecting the program’s knowledge of pharmacokinetics and special features of the patient’s

12

condition which may alter his response to therapy. This model is used to construct the initial

'd_osage recommendations. Second, the program makes assessments of the toxic and
therapeutic effects which actually occur in the particular patient (after he has received the
initial dose) to formulate subsequent dosage recommendations, rather than using the. blood
level of digitalis.

A limited clinical trial was performed in which the program “followed® a series of
patients managed by clinicians on & cardiology service. That trial demonstrated the program’s
ability to recommend appropriate therapy in acutely ill patients. Each of the few patients who
developed toxicity had received more digitalis than would have been recommended by the
program. The program anticipated each episode of toxicity before it was recognized clinically.
Thus, although the trial was limited, it was very encouraging. This program was used as a

basis for the OWL Digitalis Advisor.

1.1.3 Other Work in Explanation

Explanation capabilities have been implemented for systems operating in domains other
than digitalis therapy. Winograd’s SHRDLU[1] is & good example of a system able to provide
the user with some sort of explanation for its actions. The system can explain to the user
why certain actions were taken and provide the user with an English “transiation” of its goal
stack. One of the problems Winograd encountered was the conversion of MICRO-PLANNER
expressions to English.

Shortliffe[2] and Davis[12] describe the explanation system that has been implemented
for MYCIN, a system designed to help doctors in prescribing antibiotics. MYCIN functions in an
interactive manner, and is capable of explaining why certain questions were asked, as well as
the reasoning chain that it employs. The explanation systems of MYCIN and the OWL Digitalis

Advisor are compared in chapters 3 and 4.

13

- Mikelsons has been working on the problem of trying to explain programs written in
BDL (Business Definition Language) to a user unfamiliar with programming[16] His system
uses two models: one to model the program’s understanding of the problem and the other the
user’s. It uses a PLANNER-Iike mechanism to draw inferences between the models. Mikelsons®
system is still under development, hence it is impossible to compare the performance of his
system with that of the OWL Digitalis Advisor. However, it does seem safe to say that his .
system is fundamentally different from the Digitalis Advisor. For one thing, the Digitalis
Advisor does not employ any PLANNER-like inference schemes. Another difference is that
when the Digitalis Advisor was writlen, an effort was made to combine the user model and
program model into one structure as much as possible. We will see that in most cases this '
'single model is .sufficlent to give the Digitalis Advisor a good explanatory capability. In -those
cases where a single model is not adequate, the Digitalis Advisor employs Alternate Models
{described in section 3.7.2). Thus, while Milj&elsons"system will use the more sophisticated (but
also more complex) two model approach exclusively, the OWL Digitalis Advisor relies on a

. simpler éingie model whenever possible, resorting to multiple models only when necessary.

1.2 An Overview of the OWL Digitelis Advisor

The OWL Digitalis Advisor consulls with a physician in an interactive manner. The
Advisor asks the clinician a number of questions about the patient and then produces 2 set of
recommendations. After the patient has received an initial dose, the program can produce a
new dosage regimen based on the reaction of the patient.

While a session is taking place, the system can explain why it is asking a question, At
the end of any session, the system can provide a number of different types of explanation. It

can explain the procedures it uses and the actions it takes either in general or for the patient

H
il
i
!
i
i

14

at hand. It can explain how varlables are set or used either in general or for a particular
patient. The system can offer the above explanations for previous sessions as well as the
current one. These explanations are described in Chapters 2 and 3. The system also allows
the user to change his answers (called "updating™ to determine the effect of different inputs
on the syster&‘s recommendations. When an answer is changed, the system recomputes the
steps that are affected--it does not recompute everything. Once the affected steps have
been recomputed, the system can provide the user with a concise explanation of the effects of
the change. Updating is described in Chapter 4.

Originally, I had hoped that the Digitalis Advisor would be able to accept requests_ in
English for explanations, Unfortunately, work on the OWL Parser! was delayed. Until it is

completed, requests for explanations must be made in the form of LISP function calls.

1. A part of the QWL system which converts natural English sentences into OWL forms,

i5

Chapter 2: A Sample Session

In this chapter two sample sessions with the OWL Digitalis Advisor are outlined. The
tirst session prescribes an initial dose for a patient with an arrhythmia. The second session
is a follow-up session which occurs a few hours after the patient received his first dose. A
number of features of the explanation facility are illustrated along the way. Output typed by
the computer appears in upper case, while entries made by the user are in lower case.

Comments about the session are in italics.

2.1 The Initial Session

ENTER AN OWL FORM 7O BE CARRIED OUT
<>I{begin therapy}l

The user indicates to the system that he wishes to start therapy for a
patient by typing the OWL Form [(begin therapy)]. Eventually, the system
will be able to accept this command and others in English.

WHAT IS THE AGE OF THE PATIENT?
ENTER NUMERICAL VALUE ====> 56

WHAT IS THE WEIGHT OF THE PATIENT?
UNITS: KG
ENTER NUMERICAL VALUE ==ma> 72

WHAT IS THE SEX OF THE PATIENT?
THE POSSIBILITIES ARE:

1. MALE

2. FEMALE
ENTER SINGLE VALUE =a==> male

Note that For answers that are single words, the user may either enter the
number of the answer or type it out.

16

WHAT IS THE CARDIAC RHYTHM?
THE POSSIBILITIES ARE:

1. NORMAL SINUS RHYTHH

Z. ATRIAL FIBRILLATION

3. ATRIAL FLUTTER

4. PAT

5. PAT WITH BLOCK

6. NON-PAROXYSMAL JUNCTIONAL TACHYCARDIA
ENTER SINGLE VALUE wuas> 2

IS THERE REGULARIZATION OF THE VENTRICULAR RHYTHM?
THE POSSIBILITIES ARE: '
1. PRESENT
- 2. ABSENT
"ENTER SINGLE VALUE =a==> uhy?

MYZ TOP GOAL IS TO BEGIN THERAPY. 1 AM NOW TRYING TO CHECK THE CARBIAC
RHYTHM. IF THE CARDIAC RHYTHM IS ATRIAL FIBRILLATION AND THERE IS
VENTRICULAR-RHYTHM REGULARIZATION THIS SUGGESTS THAT THE PACEMAKING
IMPULSES FOR THE VENTRICLES ARE NO LONGER COMING FROM THE ATRIA. IF THE
STATUS OF VENTRICULAR-RHYTHM REGULARIZATION IS PRESENT IT IS POSSIBLE
THERE MAY BE NON-PAROXYSMAL JUNCTIONAL TACHYCARDIA WHICH IS A SIGN OF
DIGETALIS TOXICITY.

The system now re-asks the user for a value.
ENTER SINGLE VALUE cmma> 2

Here, the user has asked the system to explain why it 1s asking this
question. The system responds by converting the goals on its goal stack
to English to produce the First two sentences. The system then finds and
displays a canned explanation which 1s associated with the concept that
the question is being asked about. The canned explanation usuvally
provides 1information which could not be deduced from the code of the
Advisor. Occasionally, the explanation provides & brief summary of
information that the explanation routines can determine from the coda.

2. The Digitalis Advisor refers to itself in the first person. Aithough some may object that
this tends to anthropomorphize the computer, 1 fee! that the explanations produced in this
manner are much clearer than they would have been if they were stated in the third person
o passive voice.

17

WHAT 1S THE VENTRICULAR RATE?
ENTER NUMERICAL VALUE ====> 123

WHAT 1S THE STATUS OF PVCS?
THE POSSIBILITIES ARE:
1. PRESENT
2. ABSENT
ENTER SINGLE VALUE mmma> 2
pPyUCs are premature ventricular contractions. They can be an
indication of digitalis toxicity.

WHAT 1S THE REASON OF DIGITALIZATION?
THE POSSIBILITIES ARE:

1. CHF

2. ARRHYTHMIA

3. SURGICAL-PROPHYLACTIC
ENTER YALUE(S) ==aw> 2

The system needs to know the reason that the patient 1s recelving
digitalis so that 1t can set an initial body stores goal (which may later
be modified due to sensitivities or the patient's weight).

WHAT IS THE STATUS OF DIGITALIS USE?
THE POSSIBILITIES ARE:

1. PRESENT

2. ABSENT
ENTER SINGLE VALUE w===> ahsent

IF the patient is already receiving digitalis, the system will take that
into account when prescribing a new dosage regimen.

The next few questions ask about the patient’'s renal Ffunction in some
detail. It is necessary to determine his renal function since a primary
path For digitalis excretion is through the kidneys.
1S THE URINE OUTPUT OF THE PATIENT GREATER THAN 4@8CC PER DAY?
THE POSSIBILITIES ARE:

1. GREATER THAN 4890

2. LESS THAN 468
ENTER SINGLE VALUE ==wma> 1

1S THE RENAL FUNCTION STABLE?
THE POSSIBILITIES ARE:

1. STABLE

2. UNSTABLE
ENTER SINGLE VALUE ===e> 1

'
|
1
1
|
i
i
|

18

WHAT SORT OF RENAL FUNCTION MEASURE IS AVAILABLE?
THE POSSIBILITIES ARE:

1. SERUM-CREATININE

2. CREATININE-CLEARANCE

3. NONE
ENTER SINGLE VALUE am==» 2

ENTER RECENT CREATININE-CLEARANCE VALUES WITH DATE AND TiME. TO DELETE
AN ITEM ENTER 1TS DATE AND TIME, TYPE A RETURN WHEN TEST VALUE IS
REQUESTED.

DATE TIME TEST VAL RENAL F

9/21/78 19:08 198 8.88

DO YOU WANT TO ADD OR CHANGE 1TEMS? (YES OR NO) n

The system now asks the user about several conditions that can cause the
patient to be more sensitive to digitalis (that is, more Tikely to develop
digitalis toxicity). ’
WHAT IS THE LEVEL OF SERUM CALCIUM?

ENTER NUMERICAL VALUE =w==> 7

HAS 1V CALCIUM BEEN ADMINISTERED WITHIN THE LAST TWO HOURS?
THE POSSIBILITIES ARE:

1. GIVEN

2. NOT GIVEN
ENTER SINGLE VALUE =es==> 2

WHAT IS THE LEVEL OF SERUM POTASSIUM?
ENTER NUMERICAL VALUE =me==> why?

MY TOP GOAL IS TO BEGIN THERAPY. ONE STEP IN DOING THAT IS 70O CHECK
SENSITIVITIES. 1 AM NOW TRYING TO CHECK SENSITIVITY DUE TO POTASSIUM. IF
THE LEVEL OF SERUM POTASSIUM IS UNDER 3.70 IT WiLlL CAUSE THE BODY-STORES
GDQL T? BE REDUCED SINCE A LOW POTASSIUM CONDITION WILL INCREASE DIGITALIS
SENSITIVITY.

ENTER NUMERICAL VALUE ===a> 4

IS THE PATIENT BEING GIVEN OR ABOUT TO BE GIVEN DIURETICS?
THE POSSIBILITIES ARE:

1. GIVEN

2. NOT GIVEN
ENTER SINGLE VALUE =sa=> 2

DOES THE PATIENT HAVE CARDIOMYOPATHY OR AN ACUTE.-MI?
THE POSSIBILITIES ARE:

1. PRESENT

2. ABSENT

3. SUSPECTED
ENTER SINGLE VALUE =s=a> 2

19

© WHAT IS THE STATUS OF HYPOXEMIA?
" THE POSSIBILITIES ARE:
o 1. SUSPECTED

e 2. NOT SUSPECTED
i ENTER SINGLE VALUE we==> p

 WMAT IS THE STATUS OF MYXEDEMA?
" THE POSSIBILITIES ARE:

o 1. PRESENT

2. ABSENT

= 3. UNKNOWN

_ ENTER SINGLE VALUE =ms==> 1

' "HOW LONG DO YOU MISH TO TAKE TO REACH FULL DIGITALIZATION?
' THE PDSSIBILITIES ARE:
' 1. INSTANTANEOUS RATE (1-2 HOURS)
2. RAPID RATE (1 DAY}
i 3. MODERATE RATE (2-3 DAYS)
S &, SLOW RATE (4-7 DAYS)
. ENTER SINGLE VALUE ====> 3

" Normally, the patient is Joaded with digitalis gradually so that iF any
. unforeseen toxic reactions develop, the amount of the overdose will be
- relatively small. If the patient is given enough digitalis to achieve the
‘ body stores goal all at once (the #instantaneous rate”) and an overdose
occurs, the amount of the overdose will be larger, with a corresponding
increase in the patient’'s risk.

. Finally, the system produces i1is racommendations.
" PARAMETERS USED TO MAKE RECOMMENDATIONS:

 BODY STORE GOAL we=> 0.554 MG

. PROJECTED AMOUNT ON BOARD ===> 2.068 MG

. BODY STORES SHIFT a==> B.55% MG

"~ REMAINING TIME TO REACH GOAL ===> 48,0 HRS.

- HALF LIFE ===> 43.7 HOURS 1.8 DAYS

 DAILY LOSS AT EQUILIBRIUM =e=> 0.175 MG

- ABSORPTION FACTOR ===>8.75

HOW OFTEN DO YOU WISH TO ADMINISTER DIGITALIS?
THE POSSIBILITIES ARE: :

i. a0

2. BID

3. TiD

4, Q1D

5. Q4H

6. Q8H
ENTER SINGLE VALUE ====> 3

The system asks the user how often he wishes to give digitalis. The
expression "tid” means three times per day.

20

THE DOSAGE RECOMMENDATIONS ARE:
HOURS FROM NOW ORAL
NCOW 25 MG

REPORT BACK AFTER THE FIRST DOSE.

8 .125 + .8625 MG

i 125 MG
24 125 MG
32 125 MG
48 .125 MG

ORAL MAINTENANCE SCHEﬁULE:
.25 MG

IV MAINTENANCE SCHEDULE:
ALTERNATE .25 AND .125 MG

Iv

.125 + .9825 MG

126 MG
L1256 MG
125 MG
.8625 MG
.8625 MG

The system produces recommendations in amounts that represent actual pi71
sl1zes by Finding the pill or combination of pills that comzs closest to

the ideal amount of digitalis tha patient should raceive.

This feature,

fFirst incorporated in Silverman's Advisor, represents an improvement over

~earlier digitalis advisors.

21

2.2 The Follow-up Session

The Follow up session starts here, approximately 4 hours later. As
. before, the user types an OWL form to indicate to the OWL interpreter what
" he wants to do. .

ENTER AN OWL FORM TO BE CARRIED OUT
<>[{obtain follow-up-infoll

The system asks several questions about the patient's heartbeat.
WHAT IS THE CARDIAC RHYTHM?

THE POSSIBILITIES ARE:

1. NORMAL SINUS RHYTHM

2. ATRIAL FIBRILLATION

3. ATRIAL FLUTTER

4, PAT

5. PAT WITH BLOCK _

6. NON-PARGXYSMAL JUNCTIONAL TACHYCARDIA

ENTER SiNGLE VALUE =m==a=> 2

IS THERE REGULARIZATION OF THE VENTRICULAR RHYTHM?
THE POSSIBILITIES ARE:

1. PRESENT

2. ABSENT

ENTER SINGLE VALUE =ewma> 2

WHAT IS THE VENTRICULAR RATE?
ENTER NUMERICAL VALUE ====> 105 ‘
The heart rate has decreased. This is a sign of therapeutic effect.

WHAT IS THE STATUS OF PVCS?
THE POSSIBILITIES ARE:

1. PRESENT

2. ABSENT

THE DIGITALIS HISTORY OF THE PATIENT IS NEEDED.

T0 DELETE AN ENTRY, RE-ENTER THE DATE AND TIME AND TYPE RETURN ALONE
WHEN THE DOSE 1S REQUESTED. WHEN OONE TYPE RETURN ALONE WHEN DATE IS
REQUESTED. ENTER ALL DOSES SINCE THE LAST SESSION

DATE TIME DOSE TYPE

8/21/76 11:38 8.25 PO

. DD YOU WANT TO CHANGE OR ADD ITEMS? (YES OR NO)} n

The user informs the system of the time and amount'of the single digitalis
dose the patient received.

22

ARE ANY OF THE FOLLOWING THE CONDITIONS PRESENT OR LIKELY TO APPEAR?
THE POSSIBILITIES ARE:

1. HYPOKALEMIA

2. HYPOXEMIA

3. CARDIOMYOPATHIES-MI

4. POTENTIAL POTASSIUM LOSS DUE TC DIURETICS

5. NONE
ENTER VALUE(S) wmmw> 1

The Advisor recalls those conditions from the initial session which can
degrade, and asks the user if any of them have appeared or become worse.
Since the user responded that hypokalemia might become worse the system
will ask about it in detall later. The next question asks about any
conditions that the patient was showing during the previous session that
might have improved.

HAVE ANY OF THE FOLLOWING THE CONDITIONS IMPROVED?
THE POSSIBILITIES ARE:

1. NONE

2. MYXEDEMA
ENTER VALUE(S) ====> 1

Since the user indicated that the patient might be showing signs of
hypokalemia, the system now asks him about serum potassium.
WHAT IS THE LEVEL OF SERUM POTASSIUM?

ENTER NUMERICAL VALUE =w==> why?

MY TOP GOAL IS TO OBTAIN THE FOLLOW-UP INFORMATION. ONE STEP IN DCING
THAT IS TO ADJUST FOR CHANGE IN SENSITIVITIES. 1 AM NOW TRYING TO CHECK
SENSITIVITY DUE TO POTASSIUM. IF THE LEVEL OF SERUM POTASSIUM IS UNDER
3.78 IT MWILL CAUSE THE BODY-STORES GDAL 7O BE REDUCED SINCE A LOW
POTASSIUM CONDITION WILL INCREASE DIGITALIS SENSITIVITY,

Note that the answer to the "why® question 1s different from the answer
given during the first session when the user asked the system why 1t was
asking about serum potassium. The difference 1s due to the different goal
structures that Tead to the question.

ENTER NUMERICAL VALUE am==> 3

IS THE PATIENT BEING GIVEN OR ABOUT TO BE GIVEN DIURETICS?
THE POSSIBILITIES ARE:
1. GIVEN
2. NOT GIVEN
ENTER SINGLE VALUE =as=> 2
IT IS GENERALLY AGREED THAT PATIENTS WITH LOW SERUM POTASSIUM LEVELS
ARE MORE PRONE TO DEVELOP DIG TOXICITY. PLEASE WATCH THIS PATIENT
CAREFULLY AND ADMINISTER POTASSIUM SUPPLEMENTS.
The system warns the user to try to correct the patient's hypokalemia.

23

AS THERE BEEM A CHANGE IN RENAL FUNCTION?

HE POSSIBILITIES ARE:

1. PRESENT

: 2. ABSENT

ENTER SINGLE VALUE ==as> 2

“The system asks about any changas in renal Function.

S A SERUM DIG LEVEL AVAILABLE?
_THE POSSIBILITIES ARE:

o 1. AVAILABLE

2. NOT AVAILABLE

NTER SINGLE VALUE m===> 2

A serum digitalis level is a measurement of the amount of digitalis in the
:ﬁatient

fARE THERE SIGNS OF EITHER NAUSEA, ANOREXIA, OR VISUAL
'DISTURBANCE PRESENT?

.THE POSSIBILITIES ARE:

7 1. PRESENT

_ 2. ABSENT

ENTER SINGLE VALUE ====> 2

~THIS PATIENT 1S SHOWING NO TOXIC EFFECTS. THE PATIENT 1S

"SHOMING ONLY PARTIAL THERAPEUTIC EFFECT. SINCE THE PATIENT IS IN
“THE LLOADING STAGE 1T IS BEST TO CONTINUE THE LOADING AND MAINTENANCE
"REGIMEN BELOW,

‘The system observes that the patient 1s showing a partial therapeutic
“effect, and ne toxic effects.

PARAMETERS USED TO MAKE RECOMMENDATIONS:

BODY STORE GOAL ===> 8.371 MG

Note that the body store goal has dropped due to the patient’s
hypokalemia.

PROJECTED AMOUNT ON BOARD =e==> 8,177 MG

BODY STORES SHIFT m=m=»> 8.194 MG

. REMAINING TIME TD REACH GDAL ===> 44,2 HRS,

- HALF LIFE === 43.7 HOURS 1.8 DAYS

DAILY L.OSS AT EQUILIBRIUM ===> 8.117 MG

ABSORPTION FACTOR ===>8.75

24

DO YOU STILL WISH TO GIVE DIGITALIS TID? (YES OR NO) y
THE DOSAGE RECOMMENDATIONS ARE:

HOURS FROM NOW - ORAL : Iv

S 125 MG .8625 MG
13 .8625 MG .8625 MG
21 125 MG .8625 MG
29 . 8625 MG 8625 MG
37 .0625 MG . 8625 MG

ORAL MAINTENANCE SCHEDULE:
ALTERNATE .25 AND .125 MG
IV MAINTENANCE SCHEDULE:
125 MG

25

- 2.3 Explanations

Some of the explanation capabilities are shown below. Since the system cannot
yet accept English input, the English questions asked by the user are listed in italics, followed
by the LISP form actually used to produce the explanation. All the explanations in this
section are produced by examining the actual OWL I code and the event structure created by

the interpreter. They are not canned explanations.
2.3.1 BExplaining Methods

“How do you check sensitivities?”
_ {describe-method [{check sensitivities)l)

TO CHECK SENSITIVITIES 1 DO THE FOLLOWING STEPS:

1. I CHECK SENSITIVITY DUE TO CALCIUN,

2. 1 CHECK SENSITIVITY DUE TO POTASSIUM.

3. I CHECK SENSITIVITY DUE TO CARDIOMYOPATHY-MI.
4. I CHECK SENSITIVITY OUE TO HYPOXEMIA.

5. I CHECK SENSITIVITY DUE TO THYROID-FUNCTION.
6. I CHECK SENSITIVITY DUE TO ADVANCED AGE.

7. 1 COMPUTE THE FACTOR OF ALTERATION.

This 1s a good exampie of the way the Digitalis Advisor is structured to
contrel the amount of information given the user. When the user asks how
the program checks for sensitivitias, the program 1ists several more
specific routines that check For special types of sensitivities. Whila
explaining the general method, the system does not indicate how the more
specialized routines work, but the user 1s free to ask about those routine
that interest him (as he does below}.

PHow do you check sensitivity due to thyroid-Function?”
{describe-method [({check (sensitivity (due (to thyroid-function}}})])

TO CHECK SENSITIVITY DUE TG THYROID-FUNCTION I OG THE FOLLOWING STEPS:

1. IF THE CURRENT VALUE OF THE STATUS OF MYXEDEMA IS UNKNOWN THEN 1 ASK l
THE USER THE LEVEL OF T4.

26

2. 1 0D ONE OF THE FOLLOWING:
2.1 [IF EITHER THE STATUS OF MYXEDEMA IS PRESENT OR THE STATUS OF
MYXEDEMA IS UNKNOWN AND THE LEVEL OF T4 1S LESS THAN 2.58 THEN I DO
THE FOLLOWING SUBSTEPS:

2.1.1 1 AOD MYXEDEMA TO THE PRESENT AND CORRECTABLE CONDITIONS.

The present and correctable conditions is a set of condiitions
that the patisnt 1s exhibiting, but that may become betier.

2.1.2 1 REMOVE MYXEDEMA FROM THE DEGRADEABLE CONDITIONS.

The degradeable conditions represent those conditions that may
become worse.

2.1.3 T SET THE FACTOR OF REDUCTION DUE TO MYXEDEMA TO 8.67.
2.1.4 1 ADD MYXEDEMA TO THE REASONS OF REDUCTION.

2.2 OTHERWISE, I ADD MYXEDEMA TO THE DEGRADEABLE CONDITIONS, REMOVE
MYXEDEMA FROM THE PRESENT AND CORRECTABLE CONDITIONS, SET THE FACTOR
OF REDUCTION DUE TO MYXEDEMA TG 1.28 AND REMOVE MHYXEDEMA FROM THE
REASONS OF REDUCTION.

“How do you check sensitivity due to potassium?®

{describe-method [{check (gensitivity {(dus (to potassium})}})l}

This is the longast single explanation of a plan.

TO CHECK SENSITIVITY DUE TO POTASSIUM [DO THE FOLLOWING STEPS:

1. I ASK THE USER THE LEVEL OF SERUM POTASSIUM.

2. 1 ASK THE USER THE STATUS OF DIURETIC USE.

3. IF THE PATIENT IS RECEIVING DIURETICS THEN I ASK THE USER THE TYPE OF

27

DIURETIC USE AND ASK THE USER THE STATUS OF POTASSIUM SUPPLEMENT USE.
4. 1 00 ONE OF THE FOLLOMING: |

4,1 IF THE LEVEL OF SERUM POTASSIUM IS LESS THAN 3.78 THEN 1 DO THE
FOLLOWING SUBSTEPS:

4,1.1 I SET THE FACTOR OF REDUCTION DUE TO HYPOKALEMIA TO 8.67.

4,1,2 | ADD HYPOKALEMIA 710 THE FPRESENT AND CORRECTABLE -
CONDITIONS.

4.1.3 1 REMOVE HYPOKALEMIA FROM THE DEGRADEABLE CONDITIONS.
4.1.4 1 ADD HYPOKALEMIA TO THE REASONS OF REDUCTION.

4.1.5 1 SUGGEST WATCHING FOR TOXICITY DUE TO HYPOKALEMIA.
4.2 OTHERWISE, 1 ADD HYPOKALEMIA TO THE OEGRADEABLE CONDITIONS,

REMOVE HYPOKALEMIA FROM THE PRESENT AND CORRECTABLE CONDITIONS, .
REMOVE HYPOKALEMIA FROM THE REASONS OF REDUCTION AND SET THE FACTOR
OF REDUCTION DUE TO HYPOKALEMIA TO 1.0@.

S. IF THE LEVEL OF SERUM POTASSIUM IS LESS THAN 3.78, THE PATIENT IS
RECEIVING DIURETICS, AND THE PATIENT IS NOT RECEIVING POTASSIUN
SUPPLEMENTS THEN 1 SUGGEST POTASSIUM SUPPLEMENT USE.

.6. 1 DO ONE OF THE FOLLOMING:
6.1 IF THE PATIENT IS RECEIVING DIURETICS, THE PATIENT IS NOT
RECEIVING POTASSIUM SUPPLEMENTS, AND THE TYPE OF DIURETIC USE IS
ACUTE THEN I DO THE FOLLOWING SUBSTEPS:

6.1.1 1 SET THE FACTOR OF REDUCTION DUE TO POTENTIAL POTASSIUM
LOSS DUE TO DIURETICS TO 8.87.

6.1.2 1 ADD POTENTIAL POTASSIUM LOSS DUE TO DIURETICS TO THE
REASONS OF REDUCTION.

B.1.3 1 ADD POTENTIAL POTASSIUM LOSS DUE 7O DIURETICS TO THE
PRESENT AND CORRECTABLE CONDITIONS.

28

6.1.4 1 REMOVE POTENTIAL POTASSIUM 0SS DUE TO DIURETICS FROM
THE DEGRADEABLE CONDITIONS.

6.1.5 1 SUGGEST WATCHING FOR TOXICITY DUE TO POTENTIAL POTASSIUM

LOSS DUE TO DIURETICS.
6.2 OTHERWISE, 1 ADD POTENTIAL POTASSIUM LOSS DUE TO DIURETICS TO THE
DEGRADEABLE CONDITIONS, REMOVE POTENTIAL POTASSIUM LDOSS DUE TO
DIURETICS FROM THE PRESENT AND CORRECTABLE CONDITIONS, SET THE FACTOR
OF REDUCTION DUE TO POTENTIAL POTASSIUM LOSS DUE TO DIURETICS TO 1.88
AND REMOVE POTENTIAL POTASSIUM LOSS DUE TO DIURETICS FROM THE REASONS
OF REDUCTION,

7. IF THE LEVEL OF SERUM POTASSIUM 1S LESS THAN 3.78, THE PATIENT 1S
RECEIVING OIURETICS, AND THE PATIENT IS RECEIVING POTASSIUM SUPPLEMENTS
THEN 1 SUGGEST INCREASING POTASSIUM SUPPLEFENT.

2.3.2 Explaining Evenia

The system can also describe events. That is, It can tell the user what
happened during a particular session. In addition to its iniended use by
physicians, this feature has been very useful in developing the Gl
Digitalis Advisor, because L may be used Tike an "ax post Facto” trace
Faciiily. Several examples are given below.

"How did you check sensitivity due to thyrold Function For this patient?®
{describe-event [(chack (sensitivity (due (to thyroid-function))}}i)

DO YOU ONLY WANT TD SEE EVENTS FROM THE CURRENT SESSION? (YES OR NO) n

The system can explain events from previous sessions as well as the
current session, since it remembers all earlier sessions. In this case,
only one event from a previous session is shown, since the method for
checking sensitivity due te thyroid-funciion 1s execuled only once.

DURING THE SESSION ON 9/21/76 AT 11:18, 1 CHECKED SENSITIVITY DUE TO -
THYROIO-FUNCTION BY EXECUTING THE FOLLOWING STEPS: .

1. T ASKED THE USER THE STATUS OF MYXEDEMA. THE USER RESPGNDED THAT THE
STATUS OF MYXEDEMA WAS PRESENT.

29

2. SINCE THE STATUS OF MYXEUEMA MWAS PRESENT I DID THE FOLLOWING:

2.1 1 ADDED MYXEDEMA TO THE PRESENT AND CORRECTABLE CONDITIONS. THE
PRESENT AND CORRECTABLE CONDITIONS THEN BECAME MYXEDEMA.

2.2 1 REMOVED MYXEDEMA FROM THE OEGRADEABLE CONDITIONS. THE
DEGRADEABLE CONDITIONS THEN BECAME HYPOKALEMIA, HYPOXEMIA,
CARDIOMYOPATHIES-MI, AND POTENTIAL POTASSIUM LOSS DUE TO DIURETICS.

2.3 1 SET THE FACTOR OF REDUCTION OUE TO MYXEOEMA TO ©.67. THE
FACTOR OF REDUCTION DUE TO MYXEDEMA WAS PREVIOUSLY UNDETERMINED.

2.4 1 ADDED MYXEDEMA TO THE REASONS OF REDUCTION. THE REASONS OF
REDUCTION THEN BECAME MYXEDEMA.

2Now did you check sensitivity dué to potassium for this patient?”®
{describs-event [(check (sensitivity (due {to potassium)}}}1)
DO YOU ONLY WANT TO SEE EVENTS FROM THE CURRENT SESSION? (YES OR NO) n

DURING THE SESSION ON 9/21/76 AT 11:18, 1 CHECKED SENSITIVITY DUE 70
POTASSIUM BY EXECUTING THE FOLLOWING STEPS:

1. I ASKED THE USER THE LEVEL OF SERUM POTASSIUM. THE USER RESPONDED THAT
THE LEVEL OF SERUM POTASSIUM WAS 4.

2. 1 ASKED THE USER THE STATUS OF DIURETIC USE. THE USER RESPONDED THAT
THE PATIENT WAS NOT RECEIVING DIURETICS.

3. SINCE THE LEVEL OF SERUM POTASSIUM WAS NOT LESS THAN 3.78, 1 DBID THE
FOLLOWING:

3.1 1 SET THE FACTOR OF REOUCTION DUE TO HYPOKALEMIA TO 1.88. THE
FACTOR OF REDUCTION DUE TO HYPOKALEMIA WAS PREVIOUSLY UNDETERMINED.

4, SINCE THE PATIENT WAS NOT RECEIVING DIURETICS,; 1 DID THE FOLLOWING:

30

4.1 1 SET THE FACTOR OF REDUCTION DUE TO POTENTIAL POTASSIUM LOSS DUE
TO DIURETICS 70 1.88. THE FACTOR OF REDUCTION DUE TO POTENTIAL .
POTASSiUM LOSS DUE TO DIURETICS WAS PREVIOUSLY UNDETERMINED.

OURING THE CURRENT SESSION, [CHECKED "SENSITIVITY DUE TO POTASSIUM BY
EXECUTING THE FOLLOWING STEPS: '

1. I ASKED THE USER THE LEVEL OF SERUM POTASSIUM. THE USER RESPONDED THAT
~THE LEVEL OF SERUM POTASSIUM UAS 3.

2. 1 ASKED THE USER THE STATUS OF DIURETIC USE. THE USER RESPONDED THAT
THE PATIENT WAS NOT RECEIVING DIURETICS.

3. SINCE THE LEVEL OF SERUM POTASSIUM WAS LESS THAN 3.78 1 DID THE
FOLLOWING:

3.1 1 SET THE FACTOR OF REDUCTION DUE TO HYPOKALEMIA TO 8.67. THE
FACTOR OF REDUCTION DUE TO. HYPOKALEMIA WAS PREVIOUSLY 1.00.

3.2 1 ADDED HYPOKALEMIA TO THE PRESENT AND CORRECTABLE CONDITIONS.
THE PRESENT AND CORRECTABLE CONDITIONS THEN BECAME MYXEDEMA AND
HYPOKALEMIA.

3.3 1 REMOVED HYPOKALEMIA FROM THE DEGRADEABLE CONDITIONS. THE
DEGRADEABLE CONDITIONS THEN BECAME HYPGXEMIA, CARDIOMYOPATHIES-MI,
AND POTENTIAL POTASSIUM LOSS DUE TO DIURETICS.

3.4 1 ADDED HYPOKALEMIA 7O THE REASONS OF REDUCTION. THE REASONS OF
REDUCTION THEN BECAME MYXEDEMA AND HYPOKALEMIA.

3.5 I SUGGESTED WATCHING FOR TOXICITY DUE TO HYPOKALEMIA.
4, SINCE THE PATIENT WAS NOT RECEIVING DIURETICS, ! DID THE FOLLOWING:
4.1 1 SET THE FACTOR OF REDUCTION DUE TO POTENTIAL PQTASSIUM LOSS DUE

TO DIURETICS 70 1.96. THE FACTOR OF REDUCTION DUE TO POTENTIAL
POTASSIUM LOSS DUE TO DIURETICS DiD NOT CHANGE.

31
how did you compute the factor of alieration Ffor this case?”
(describe-event [{compute (factor alteration)}])

DO YOU ONLY WANT TO SEE EVENTS FROM THE CURRENT SESSIUN;? {YES OR NO) n

DURING THE SESSION ON 9/21/76 AT 11:18, 1 COMPUTED THE FACTOR OF
ALTERATION BY EXECUTING THE FOLLOWING STEPS:

1. I SET THE FACTOR OF ALTERATION DUE TQ SENSITIVITIES TO THE PRODUCT OF
THE FACTOR OF REDUCTION OUE TO ADVANCED AGE (1.88), THE FACTOR OF
RECUCTION OUE TO HYPERCALCEMIA (1.8@), THE FACTOR OF REDUCTION DUE TO
HYPOKALEMIA (1.88), THE FACTOR OF REDUCTION DUE TO POTENTIAL POTASSIUM
LOSS DUE 7O DIURETICS (1.0@), THE FACTOR OF REOUCTION DUE TO HYPOXEMIA
{1.98), THE FACTOR OF REDUCTION QUE TO MYXEDEMA (8.67), AND THE FACTOR OF
REDUCTION DUE TO CARDIOMYOPATHY-MI (1.88). THE FACTOR OF ALTERATION DUE’
TO SENSITIVITIES CHANGED FROM UNDETERMINED TO 8.67.

2. SINCE THE IDEAL WEIGHT OF THE PATIENT WAS UNDETERMINED 1 SET THE FACTOR .
OF ALTERATION TO THE PRODUCT OF THE FACTOR OF ALTERATION DUE TO
SENSITIVITIES (8.67) AND THE QUOTIENT OF THE WEIGHT OF THE PATIENT (72}
AND 78.88. THE FACTOR OF ALTERATION CHANGED FROM UNDETERMINED TO @.68.

Note that when a numerical variable 1s used in a computation, the value of
the variable is printed in parentheses following the variable.

DURING THE CURRENT SESSION, 1 COMPUTED THE FACTOR OF ALTERATION BY
EXECUTING THE FOLLOWING STEPS:

1. 1 SET THE FACTOR OF ALTERATION DUE 7O SENSITIVITIES TO THE PRODUCT OF
THE FACTOR OF REDUCTION DUE TO ADVANCED AGE (1.¢8), THE FACTOR OF
REQUCTION DUE TO HYPERCALCEMIA (1.88), THE FACTOR OF REDUCTION DUE TO
HYPOKALEMIA (B.B7), THE FACTOR OF REDUCTION DUE TO POTENTIAL POTASSIUM
-LOSS DUE TO DIURETICS (1.88), THE FACTOR OF REDUCTION DUE TO HYPOXEMIA
(1.80), THE FACTOR OF REDUCTION DUE TO MYXEDEMA (@.67), AND THE FACTOR OF
REDUCTION DUE TO CARDIOMYOPATHY-MI (1.88). THE FACTOR OF ALTERATION DUE
TQ SENSITIVITIES CHANGED FROM 2.67 TO .45,

2. SINCE THE IDEAL WEIGHT OF THE PATIENT WAS UNDETERMINED 1 SET THE FACTOR
OF ALTERATION 7O THE PRODUCT OF THE FACTOR OF ALTERATION DUE TO
SENSITIVITIES (8.45) AND THE QUOTIENT OF THE WEIGHT OF THE PATIENT (72)
AND 70.98. THE FACTOR OF ALTERATION CHANGED FROM ©.83 TO 8.46.

32
2.3.3 Explaining How a Variable is Laed in Gensrsl

The system can also explain how a particular variable is used by the
system either in plans or events. The system distinguishes between the
setting of a variable and the evaluation of the variable, and different
explanation routines are used to describe each process. The example below
describes all the ways the variable [(REASONS REDUCTION)] is used (1i.e.
evafuated) in the OWL Digitalis Advisor.

®In general, how do you use the reasons of reduction?”
{describe-use-in-method [{reascns reduction)l}
i USE THE REASONS OF REDUCTION IN THE FOLLOWING WAYS:

WHILE TREATING DEFINITE TOXICITY I 00 THE FOLLOWING STEP:

1. IF EITHER ONE OF THE REASONS OF REDUCTION 1S HYPOXEMIA, ONE OF THE
REASONS OF REDUCTION IS HYPOKALEMIA, OR ONE OF THE REASONS OF REDUCTION 1S
POTENTIAL POTASSIUM LOSS DUE TO DIURETICS THEN I SAY THE SENTENCE "SINCE
THE PATIENT HAS A CORRECTABLE CONDITION WHICH MAY BE CONTRIBUTING TO THIS
TOXIC RESPONSE TRY TO CORRECT THE CONDITION AS SOON AS POSSIBLE".

WHILE SUGGESTING DIGITALIS THERAPY {S NOT APPROPRIATE [DO THE FOLLOWING
STEP:

1. IF HYPOXEMIA 1S NOT ONE OF THE REASONS OF REDUCTION AND HYPOKALEMIA 1S
NOT ONE OF THE REASONS OF REDUCTION THEN I SAY THE SENTENCE "SINCE
RESPONSE OF THE PATIENT 1S TOXIC AND NO THERAPEUTIC EFFECTS ARE OBSERVED
IT IS LEIKELY THAT DIGITALIS 1S NOT AN APPROPRIATE AGENT FOR USE IN THIS
INSTANCE" .

2.3.4 Explaining How a Variable is Set in Ganeral

This question asks the system to explain all the ways that the body siores
goal can be set.

*How do you set ihe body stores goal?®

:
b
E

33

{describe-set-in-method {{quanta body-stores-goalll)
I SET THE BODY-STORES GOAL IN THE FOLLOWING WAYS:

WHILE COMPUTING THE BODY-STORES GOAL I DO THE FOLLOWING STEP:

1. 1 SET THE BODY-STORES GOAL TO THE PRODUCT OF THE FACTOR OF ALTERATION
AND THE BASIC BODY-STORES GOAL.

WHILE TREATING NO TOXICITY ACCOMPANIED-BY DEFINITE-THERAPEUTIC-EFFECT I DO
THE FOLLOWING STEP:
1. I DO ONE OF THE FOLLOWING:

1.1 IF THE PHASE OF TREATMENT IS LOADING-STAGE THEN [00 THE
FOLLOWING SUBSTEPS:

1.1.1 T SWITCH YO MAINTENANCE.

1.1.2 1 SAY THE SENTENCE "DISCONTINUE THE LOADING PROGRAM AND
PLACE THE PATIENT ON THE MAINTENANCE PROGRAM DUTLINED BELOW".

1.2 OTHERWISE, 1 SAY THE SENTENCE “CONTINUE THE MAINTENANCE PROGRANM
AND REPORT ANY CHANGES" AND SET THE BODY-STORES GOAL TO THE QUOTIENY

OF THE LEVEL OF THE PROJECTED AMOUNT OF DIGITALIS IN THE PATIENT AND
THE FACTOR OF ALTERATION.

2.3.5 Explaining How a Variable waa Usad in Particular

This 1s a question asking how the factor of alteration was used for this
particular patient. Note that events from the previous session are found
and displayed as well as those From the current session.

“How did you use the factor of alteration in this case?”

{describe-use-in-avent [{factor alteration)])

34
DO YOU ONLY WANT TO SEE EVENTS FROM THE CURRENT SESSION? (YES OR NO) n

DURING THE SESSION ON 9/21/76 AT 11:18, 1 USED THE FACTOR OF ALTERATION IN
THE FOLLOWING WAY WHILE COMPUTING THE BODY-STORES GOAL:

1. 1 SET THE BODY-STORES GOAL TD THE PRODUCT OF THE FACTOR OF ALTERATION
(86.69) AND THE BASIC BODY-STORES GUOAL (8.82). THE BODY-STORES GOAL
CHANGED FROM UNDETERMINED TO 8.55. ‘

DURING THE CURRENT SESSION, 1 USED THE FACTOR OF ALTERATION IN THE
FOLLOWING WAY WHILE COMPUTING THE BODY-STORES GOAL:

1. 1 SET THE BODY-STORES GOAL TO THE PRODUCT OF THE FACTOR OF -

ALTERATION(DB.46) AND THE BASIC BODY-STORES GOAL (8.88). THE BODY-STORES
GOAL CHANGED FROM B8.55 7O 8.37.

1 USED THE FACTOR OF ALTERATION IN THE FOLLOWING WAY WHILE COMPUTING THE
BODY-STORES GOAL:
1. 1 SET THE BODY-STORES GUDAL TO THE PRODUCT OF THE FACTOR OF ALTERATION

{8.46) AND THE BASIC BODY-STORES GOAL (0.88). THE BODY-STORES GOAL 010
"NOT CHANGE FROM 8.37.

2.3.8 Explaining How a Variable was Set in Particular

This 1s the corresponding quesiion asking how the Factor of altaration was
sat.

“How did you set the Factor of alteration in this casa?”
{descr ibe-set-in-event [{factor alteration)])
DO YOU ONLY WANT TO SEE EVENTS FROM THE CURRENT SESSION? (YES OR NO) n

DURING THE SESSION ON 9/21/76 AT 11:18, 1 USED THE FACTOR OF ALTERATION IN
THE FOLLOWING WAY WHILE COMPUTING THE FACTOR OF ALTERATION:

35

1. SINCE THE IDEAL WEIGHT OF THE PATIENT WAS UNDETERMINED 1 SET THE FACTOR
OF ALTERATION 70 THE PRODUCT OF THE FACTOR OF ALTERATION DUE TO
SENSITIVITIES (8.67) AND THE QUOTIENT OF THE WEIGHT OF THE PATIENT (72)
AND 76.688, THE FACTOR OF ALTERATION CHANGED FROM UNDETERMINED TO @.69.

DURING THE CURRENT SESSION, 1 USED THE FACTOR OF ALTERATION IN THE
FOLLOWING WAY WHILE COMPUTING THE FACTOR OF ALTERATION:

1. SINCE THE IDEAL WEIGHT OF THE PATIENT WAS UNDETERMINED I SET THE FACTOR
OF ALTERATION TO THE PRODUCT OF THE FACTOR OF ALTERATION DUE TO

SENSITIVITIES (2.45) AND THE QUOTIENT OF THE WEIGHT OF THE PATIENT (72)
AND 78.98. THE FACTOR OF ALTERATION CHANGED FROM 8.69 TO 9.4B.

2.3.7 Explaining How a Meathad may bs Callad

The sysiem can also inform the user of the way that a plan or event was
called. In the axamples below, ws first see all the possible ways that a
plan may be called, Followed by an explanation of the way that it was
called fFor this patient.

®When do you check sansitivity due to potassium?”®
{find-uhy-method [{check (senaitivity (due (to potassium))))])
! CALL CHECK SENSITIVITY DUE TO POTASSIUM IN THE FOLLOWING WAYS:

WHILE CHECKING SENSIT}VITIES I DO THE FOLLOWING STEP:
1. I CHECK SENSITIVITY DUE TO POTASSIUM.

WHILE ADJUSTING FOR CHANGE IN SENSITIVITIES 1 DO THE FOLLOWING STEPS:

1. IF ONE OF THE IMPROVED CONDITIONS IS HYPOKALEMIA THEN, 1 CHECK
SENSITIVITY DUE TO POTASSIUM.

2. IF ONE OF THE HORSENED CDNBITIUNS IS HYPOKALEMIA THEN 1 CHECK
SENSITIVITY DUE TO POTASSIUNM.

36

2.3.8 Explaining Why a Method was Called

"whe‘n did .you ;:beck sensitivity due to potassium For this patient?”
{find-uhy-event [{check (sensitivity (due {toc potassium)}})])

DO YOU ONLY WANT TO SEE EVENTS FROM THE CURRENT SESSION? (YES OR NO) n

DURING THE SESSION ON 9/21/76 AT 11:18, I CALLED CHECK SENSITIVITY DUE TO
POTASSIUM IN THE FOLLOWING WAY WHILE CHECKING SENSITIVITIES:

1. 1 CHECKED SENSITIVITY DUE TO POTASSIUM. THE FACTOR OF REDUCTION DUE TO
HYPOKALEMIA WAS 1.8¢ AND THE FACTOR OF REODUCTION DUE TO POTENTIAL
POTASSIUM LOSS DUE 7O DIURETICS WAS 1.03.

DURING THE CURRENT SESSION, 1 CALLED CHECK SENSITIVITY DUE TO POTASSIUM IN
THE FOLLOWING WAY WHILE ADJUSTING FOR CHANGE IN SENSITIVITIES:

1. SINCE THE WORSENED CONDITIONS WAS HYPOKALEMIA I CHECKED SENSITIVITY DUE
TO POTASSIUM. THE FACTOR OF REDUCTION DUE TO HYPOKALEMIA WAS 8.67 AND THE

FACTOR OF REDUCTION DUE TO POTENTIAL POTASSIUM LOSS DUE TO DIURETICS WAS
1.80.

T e T

37

Chapter 3: Explanation -- How It’ s Done

3.1 Introduction

Several features of the OWL I language and the structure of the Digitalis Advisor itself

- make it possible to produce explanations conveniently. First, the OWL I interpreter and data

l;a_se provide a number of data structures that are helpful in constructing explanations.
Second, since the form of QWL I expressions is close to English, e relatively simple program .
can be used to generate English from OWL 1. Third, the program structure of the Advisor
attempts to model the problem solving techniques used by expert cardiologists. Fourth, the
use of alternate models allows the system to provide the user with different perspectives.
These features will be described in detail in this chapter.

This chapter will also describe the functions that explain events and plans, those that
describe how the plans are called and why the events were created, and those that describe

the use and setting of variables in events and plans. Updating will be described in Chapter 4.

3.2 The OWL Knowledge Base and Interpreter

OWL [has a number of features which facilitate producing English explanations of OWL. 1
code. The entire OWL | system is too complex to be described here, however, I will attempt
to outline the basics of QWL I, and describe in some detail those features that are particularly
impartant in making explanations. If the reader desires a deeper understanding of the
linguistic theory on which the OWL project is based he can consult Martin{20] and
Hawkinson{14],

;
|
-
E3-

38

3.2.1 The Knowladge Bass

Almost all the information that an OWL | system possesses resides in the knowledge
base. Hare one may find programs, traces of programs, hierarchical structures of English, and
so forth. All the modules that make up the QWL 1 system have access to the knowledge base
and they communicate through it. In this way, any module may determine the state of the
world at any time. A conscious effort has been made to avaid “hiding” information in LISP
recursive push-down stacks and similar internal structures.

All the information in the knowledge base is represented as concepts. A concept has
three parts: a ganeralizer, a specializer, and a reference list. The concepts are organized in a
hierarchy. The generatizer of a concept is a link o a concept which is higher in the hierarchy.
It corresponds to the "a-kind-of" link in other very high level languages. The specializer of a
concept is also a link to a concept®. The specializer of a concept is the chief feature or notion
that mekes that concept different from others of its class. The reference fist of a concept is,
as the name implies, a list of all the references to the concept. All the concepts which use
some other cohcept as generalizer or specializer will appear on the reference list of that
concept. In addition, the value {if any) of a concept will be on the reference list as well as all

those concepts which use that concept as a value. The OWL Knowledge Base Handler causes

all the items above to appear on reference lists automatically. In addition, the user may place

a concept on the reference list of another concept explicitly.

When printed by the OWL printer, concepts appear enclosed in brackets as two-tuples

followed by their reference lists:

3. There is one exception. The specializer of a concept may also be a link to a symbol.
Symbols are character strings which roughly correspond to English words. Symbols are used
to place English words in the knowledge base.

39

i{generalizer specializer)
referance-item-1
reference-item-2
reference~i tem-3

refer;nca-item—nl
Perhaps a few examples taken from the Digitalis Advisor will help to clear all this up.
As the Advisor computes the body stores goal?, it adjusts the amount based on the factor of
alteration. In OWL 1, the factor of alteration appears as [(FACTOR ALTERATION)}. FACTOR is
the generalizer, while ALTERATION is the specializer. [(FACTOR ALTERATION)] is automatically
placed on the reference lists of both FACTOR and ALTERATION by the OWL Knowledge Base
Handler:

[ALTERATION
{FACTOR ALTERATION}]

IFACTOR
(FACTOR ALTERATION)!
1t is possible to find all the places that a concept C is used by examining the concepts on the
reference list of C, and then recursively examining their reference lists. This feature of the
knowledge base makes it quite easy to provide expianations that tell how a particular variable

is used.

3.2.2 Tha OWL | Interpreter

Programs may be written in OWL 1. These programs are stored in the OWL knowledge
base and they are run by the OWL I interpreter. The representation of OWL I programs

follows the same conventions outlined above. The OWL 1 interpreter has not been extensively -

4. The body stores goal is the amount of digitalis that should be "in™ the patient.

a0
documented; however, some information may be found in unpublished papers by Long[13] and
Sunguroff[21].

A plan in OWL I corresponds to a procedure in other programming languages. A plan is
a kind of predicate®. A series of steps is linked to the plan. These steps may be basic QWL 1
primitives or calls to other plans. A (somewhat simplified) plan from the Digitalis Advisor is
shown below:

((CHECK (SENSITIVITY (DUE (TO ADVANCED-AGE)}))

METHOD: <-—- {(OR
(IF-THEN (GREATER-THAN 78 (AGE PATIENT))
(BECOME (FACTOR REDUCTION-ADVANCED-AGE 8.75)})
(BECOME (FACTOR REDUCTION-ADVANCED-AGE 1.€)))]
3.1 An QWL Plan

This is a plan for checking for digitalis sensitivity due to advanced age. It says that if the age
of the patient is greater than 70 then the factor of reduction due to advanced ége is set to
0.75, otherwise, it is set to 1.0.

It is not necessary that the reader understand all the details of the representation,
however, I will outline a few major points. The name of the plan appears immediately to the
right of the left bracket, (i.e. [(CHECK (SENSITIVITY (ODUE (TO ADVANCED-AGE))})})}),
while the steps of the pian follow the coﬁcepi METHOD. An OR in OWL I works much like a
COND in LISP, that is, if the predicate of the first clause is not true the next clause is
examined and so on, until the first clause which either has no predicate or a true one is found.
A BECOME statement is an OWL I primitive used for making assertions.

Plans are invoked by calls in OWL 1. As in PLANNER[22], calls are matched to plans by a
pattern matching mechanism. Depending on the state of the world, the same call may invoke

two different plans at two different times.

5. Predicates in OWL I may be thought of as verbs in English. See Martin[20] for a more
complete discussion,

a1

As a plan executes, an evenf is created. The event may be thought of as a trace of the
execution of t.he plan. Each event is unique to a particular execution of a plan. The event
structure contains information concerning when the plan started and stopped executing, which °
plan was used, which call invoked it, and what events started execution during the event.l
Events are also created bﬁ the execution of many of the OWL system primitives, such as IF-
THEN, OR, and AND. _ The calls for these events are the QWL steps that created them. The

plans for these evenis are internally defined within the QWL system.

3.2.3 OWL | and Explanation

It should be clear that OWL I provides the user with a number of features useful in
_producing explanations. First, the fact that OWL I is an English-based language makes it
relatively easy to translate programs into English. Second, since all the system’s knowledge
rasides in ons place and in one representation, it is easier to find objects and determine the
relationships between them. Third, the events created by the interpreter make it possible to
describe what happened. The sections below will describe in more detail how these features -

are put to use.

52
3.3 The English Generator -- Turning OWL 1 into English

The English generator is a module in the OWL I system that converts simple OWL I
expressions into English. The generator is a simple program. Although it knows about the
tenses of verbs, it does not try to achieve subject-verb agreement, or perform any relatively
sophisticated operations like pronoun substitution. In the Digitalis Advisor, the explanation
routines break apart fairly complex programming constructs into simple phrases and
expressions which are output by the generator.

The generator is passed some OWL I expression. If the specializer of the expression is
a symbol, which means that the expression is just a simple English word, the system prints-it.
On the other hand, if the expression is more complex, the gen‘erator must determine a number
of things. One of the first is to determine whether to print the generalizer or specializer of
the concept first.

In QWL 1, the concept [(A B}1% may appear in English as A 8, B A, A of B, or just
A or B. The English form of a concept is indicated by placing a flag (or descriptor, to use the
proper QWL términology) on the reference list of the concept or one of its generalizers. For
example, since the descriptor OF-SPECIALIZER is found on the reference list of the concept
TYPE, the English form of [{TYPE CARDIAC-RHYTHM}] is "type of cardiac-rhythm"” When.
trying to determine the Enélish form of a concept, the generator examines the reference list of
the concept. If there is no descriptor there, it examines the reference lists of the successive
generalizers of the concept until it finds a descriptor that indicates the English form of the .

concept. Tha various types of concepts and their output forms are listed below: '

6. A and B are variables here.

43

Concept Type English Form of the Concept [{(A B}]
Internat Specializer A

Naming Specializer B

Classifying Specializer B A

0+ Specializer A of B

Object Specializer AB

3.2 Tuypes of Specialization

After determining the proper ordar for outpul, the generator calls itself recursively to
output the specializer and generalizer part of the concept. It continues to break concepts
apart until the pieces are just QWL symbols (corresponding to English words), which are then
printed.

There are a few considerations which make this scheme a little more complex. For one
thing, there is not a one-to-one mapping between OWL concepts and English. A "run® in a
lady’s stocking is very different from the "run” in “run around the block®, and we would want
to have separate concepts in QWL I to represent each idea, yet the same English word is used
to express both ideas. To get around this problem, OWL I alfows the user to specify the
English "name” of a concept. Thus the notion of a run in a stocking might a;;pear as:

[(TEAR STOCKING)
NAME: RUNI

This notation says that the concept {TEAR STOCKING) is expressed in English as "run”. While
outputing concepts, the generator checks to see if an expression is "named” by some other
axpression. If it is, the generator outputs the name of the concept instead of the concept.
The generatar is a rather simple program, vet it is quite flexible, and it is adequate for
producing explanations. As the OWL I system becomes more sophisticated, it is likely that a
more complex generator will be required, The current version of the generator is controlled
largely by syntax, and thal makes it difficult to output an expression properly when semantic

considerations are important. As an example, the generator has a great deal of difficulty

44

deciding whether or not to place a "the" in front of a noun group, because that decision is
based on semantics as well as syntax. Thus, although the current generator is not by any

means the ultimate generator, it is adequate for the Digitalis Advisor.

45

3.4 Semantic Medel Programming: Programming for Explanation.

3.4.1 Introduction

The desigher of a system that can explain itself faces a number of problems. One is to
provide the user with an explanation that answers his quastion, yet does not swamp him with
irrelevant details. To_ accomplish this, the information contained in the system needs to be
structured in some way. Different methods for structuring the information have been
proposed.

In the MYCIN system, Davis{12] uses the certainty factor of a rule as an indication of its '
“informational content”. Those rules that have a higher certainty factor are said to contain
less information, because the designers of MYCIN fee! that they are more like definitions.
Rules with lower certainty facters (hence less certain conclusions) supposedly .contain more
information. This information is used by the system in conjunction with a number supplied by
the user to determine how many goals to display when a "WHY" question is asked; If the goals
all have high certainty factors then many of them will be displayed at once, while if low
certainty faclors predominate, few will be displayed. If too mar{y or too few goals are
displayed, the user may adjust the number he supplies. In this way, MYCIN attempts to

' p_rovide the user with a summary. This approach rests on the rather weak assumption that
the importance of a rule is reflected by how certain one may be about its conclusion. Yet in
tact, in many applications, thé importance of a rule is completely independent of the certainty
of its conclusion. In a MYCIN-based system for auto repair [12, page 26] conclusions could be
reached with little inexactness. thus, if the scheme outlined above were applied to the rules
of the auto repair system, it would indicate that they were all about equally important. It is
not likely that that is correct. It seems that for many applications a different method for

providing summaries is required.

46

In & similar vein, designers of rule-based systems have had trouble expressing some
knowledge in the rule format. Davis [12, page 29] notes:

"A .. problem is the limit on the amount of knowledge which can conveniently be

expressed in a single rule. Actions which are “larger” than this limit are often

achieved by the combined effects of several rules. For many reasons, this is
difficuit to do, and often produces opague results.”

Davis [12, page 261] also observes:

"Rules are a reasonably natural and convenient form of knowledge encoding for

what may be termed "single level” phenomena - it is easy to think of single

decisions or actions in terms of a rule.

Experience with MYCIN has demonstrated, however, that even experts
acquainted with the program tend to think of a sequence of operations in
procedural terms, and find flowcharts the most convenient medium of expression.

While the flowcharts can always be converted to an equivalent set of rules, the

conversion is non-trivial, and sometimes requires reconsidering the knowledge

being expressed, since the two methodologies offer different perspectives on

knowledge organization and use.

In designing the OWL Digitalis Advisor, it was decided to use a procedural system so that
knowledge could be placed in a hierarchical structure of procedures. Since it is possible to
group knowledge conveniently, we will see that the explanations produced by the OWL
ﬂigi'talis Advisor are well-structured.

‘Another problem that confronts the system designer is the problem of reconciling the
user’s model of the problem with the program’s model of the problem. That is, when
explaining ths prograrﬁ to the user, it is necessary to take into account the possibility that the
user’s mode! of the problem is very different from the program. Mikelsons[16] has proposed
the use of two models, one to represent the program and the other the user’s model of the

problem. A problem with this approach is that when the system is modified, changes must bs

made not only to the program, but to the structures linking it to the user’s model as wel. It

47

seems that to avoid the dangers of discrepancies between the models it would be a good idea
to incorporate the user’s model into thé actual program as much as possible.

Stitl another problem that others[12] have noticed is the problem of indicating the
“intent™ of a piece of code. Programmers attempt to indicate intent by chosing mnemonic
names for variables and procedures and placing comments in their code. Yet common
programming languages throw this information away. To the LISP interpreter it makes no
difference whether a variable is called FACTOR-OF-REDUCTION or PATIENTS-WEIGHT (or
GO0001, for that matter) yet there is a tremendous difference in the intended meaning of the
variable. Being able to understanding the intention of a variable or procedure is vital if one is
to understand the intention of a system. Even experienced programmers find it very difﬁc‘uit
to understand a program if the names used in the program are misleading or meaningless. If a
system is fo explain itself, the designer must be able to indicate the intent of the code, and

this information should be maintained in a structured manner.

3.4.2 Semantic Model Programming and OwiL. |

In this section, I will attempt to show how the problems outlined above may be
ameliorated through the use of OWL 1 and Semantic Mode! Programming (SMP). SMP is actually
a synthesis of several separate ideas. One key point is that the name of a procedure should
be a conceptual summary of the actions that the procedure performs. Likewise, the role of a
variable should be indicated by its name. Another notion is that each procedure should be a
conceptual unit that models some action that an expert takes in solving a problem. By using
the principles of structured programming, it is possible to produce a hierarchy of procedures
analogous to the hierarchies produced by the OWL I notions of specialization and

decomposition?,

7. Decomposition is described by Martin [20].

48

In the Digitalis Advisor, the procedure used to start treating a patient with digitalis is
_calied [(BEGIN THERAPY)} in OWL I Its English translation should be clear. One of the ..
functions that [(BEGIN THERAPY)} calis is a function that checks for any sensitivities the
patient may have. It is called [(CHECK SENSITIVITIES)]. [(CHECK SENSITIVITIES)), in
turn, calls a number of functit;ns. One of these is [{CHECK (SENSITIVITY (DUE (TC
POTASSIUM) 1)1 which checks for digitalis sensitivity that the patient may have due to a
potassium imbalance. When the plan or event for beginning therapy is described, [{CHECK
SENSITIVITIES)] is displayed without any of the structure beneath it. 1t summarizes the
calls below it, so that they do not have to be displayed. If the user is curious abo.ut how
sensitivities are checked, he may ask, and he will see that one of the steps is to ch’eck
. sensitivity due to potassium. If he is still curious, he may inquire about that step as well,
Nptice that if he is not interested, the entire process of checking sensitivities will be
summarized as one step, so that he does not have to examine reams of output that he does
not care about. It should also be pointed out that the user need not ask questions in & "top-
down® fashion as described above, but rather he may directly ask how the system checks
sensitivity due to potassium at any time if he desires.

In the current implementation of the Digitalis Advisor, when a plan is explained, it is
assumed that when a call is made to another plan, the call is to be taken as a summary of the
actions performed by that plan. Thus, only the call is displayed. The plan referred to in the
call is not examined unless the user specifically asks about it. In the future, it might turn out
that it would be desirable if the call could be flagged to indicate that the plan it refers to
should be displayed. In the current implemantation it has been adequate to treat all calls to
plans as summarizations.

Notice that this method of summarizing output contrasts with the certainty factor

approach adopted in MYCIN. Rather than attempling to make conclusions about the

49

information coﬁtent of a rule based on its certainty factor, we are attempting to structure the
procedure; of the Advisor so that they model the structure of the problem. This methodology
places a burden on the system designer since he is no longer free to structure the program in
any manner, but instead he must attempt to model the problem with it. The fact that OWL 1 is
an English-based language may be used to advantage in constructing an appropriate program
structure.

Linguists generally befieve that the language used by a group of people reffects the
world around them[23] Since snow is important to them, Eskimos have several different
words for it to reflect different textures and types, yet English-speaking people only have
one word for snow, since it is much less critical to their lives. Like the Eskimos, physicians
have developed special vocabularies and procedures to deal with the problems that commonly
confront them. When it is useful to think of a series of steps as an aggregate, they are
grouped together and given a name which is an English word or phrase. Since it is easy for
an OWL programmer to name his procedures after English words or phrases, he may use the
English terminology used by physicians to structure his program. In that way, the structure of
the program will reflect the structures used by the best problem-solvers in the domain -- the

human physicians.

50
3.4.3 Semantic Modsl Programming and Structured Programming

The idea of Semantic Model Programming paraliels ideas developed in structured
programming. In structured programming, one decomposes a problem into smaller and smaller
pieces until the code to solve a part of the problem can be written directly. Dijkstra is clearly
aware of the relationship between explanation and structured programming. In his "Notes on
Structured Programming” [18, page 44] he states:

If 1 judge a program by itself, my central theme, I think, is that I want the

program written down as I can understand it, I want it written down as 1 would

like to explain it to somaone.

Semantic Model Programming can be viewed as an extension of structured programming. As .in
structured programming, the person using Semantic Mode! Programming decomposes a problem
into its components. The chief addition of Semantic Model Programming is that it advocates
the use of English as a guide in chosing the most appropriate decomposition of a problem from

the many possible decompositions.

51

3.5 The Explanation Routines -- How They Work

3.8.1 introduction

In this section, the various explanation routines provided by the Digitalis Advisor are
outlined. The explanation routine that deals with hypothatical situations is not described here,
it is discussed in Chapter 4. The explanation routines produce explanations directly from the
OWL 1 code that the interpreter runs, and from the event structure that the interpreter
creates. The explanations are not canned -~ a change in the procedures used by the Advisor
will be reflected in changed explanations. Even though they cen convert the OWL 1 methods io
English, the expianation routines are quite simple. Simpliicity is bossible because the OWL 1
code itself is close to English aﬁd the procedures are written in the style of Semantic Model

Programming, which facilitates explanation.

3.5.2 Describing Mathods

One of the simplest explanation routines is DESCRIBE-METHOD which describes OWL I
methods (or plans, as they are also called). This procedure is designed to answer the question
“In general, how do you ?*. DESCRIBE-METHOD describes how an OWL 1 procedure
works in general, not how it applies to a particular patient. The routine is called with a single
argument which is the OWL I plan to be described. DESCRIBE-METHOD traces out the links
which connect the steps of the OWL plan and converts steps to English as it encounters them.
Special routines are called recursively to explain certain OWL primitives such as BECOME, IF-
THEN, and OR. Note that only OWL primitives are "taken apart®. If the system encounters &
call to another OWL I plan, it only displays that call, it does not examine or describe the called

plan, since it takes the call to be a summary of the actions performed by that plan (because

52

the system is programmed using SMP). As it produces an explanation, the system indents the
output to indicate the structure of the OWL method. As an example, an OWL plan is listed
below, followed by the English explanation of it listed in Chapter 2.

[{CHECK {SENSITIVITY (DUE (TO THYROID-FUNCTION})))
PLAN
SUMMARY: (FACTOR REDUCTION-MYXEDEMA)
METHOD: (IF-THEN :
(CURRENT-VAL (STATUS MYXEDEMA) UNKNOWN)
(ASK-USER (QUANTA T4)):),
(OR
{IF-THEN
(OR:15
(STATUS MYXEDEMA PRESENT)
(AND: 1@
{STATUS MYXEDEMA UNKNOWN)
{LESS-THAN 2.5 (QUANTA T4})))
(BECOME-ALSO
{CONDITIONS CORRECTABLE-AND-PRESENT MYXEDEMA)):1,
(UNBECOME (CONDITIONS DEGRADEABLE MYXEDEMA}):1,
(BECOME (FACTOR REDUCTION-MYXEDEMA 8.67)):1,
((BECUHE-ALSD (REASONS REDUCTION MYXEUEMA}) :)
AND
(BECOME-ALLSO
(CONDITIONS DEGRADEABLE MYXEDEMA)):2
(UNBECOME
(CONDITIONS CORRECTABLE-AND-PRESENT MYXEDEMA)):2
{BECOME (FACTOR REDUCTION-MYXEDEMA 1.6)):2 -
{UNBECOME (REASONS REDUCTION MYXEDEMA}):)))

3.3 The OWL Code to Check for Sensitivity Due to Myxedema

53

(describe-method [(check (eensitivity {due ({to thyroid-function))}}]}
TO CHECK SENSITIVITY DUE TO THYROID-FUNCTION I DO THE FOLLOWING STEPS:

1. IF THE CURRENT VALUE OF THE STATUS OF MYXEDEMA IS UNKNOWN THEN 1 ASK THE
USER THE LEVEL OF T4,

2. 1 00 ONE OF THE FOLLOWING:

2.1 If EITHER THE STATUS OF MYXEDEMA IS PRESENT OR THE STATUS OF
MYXEDEMA IS UNKNOWN AND THE LEVEL OF T4 IS LESS THAN 2.58 THEN I 0O
THE FOLLOWING SUBSTEPS:

2.1.1 1 ADD MYXEDEMA TD THE PRESENT AND CORRECTABLE CONDITIONS.
2;1.2 I REMOVE MYXEDEMA FROM THE DEGRADEABLE CONDITIONS.

2.1.3 1 SET THE FACTOR OF REDUCTION DUE TQ MYXEDEMA TG 9.67.
2.1.4 1 ADD MYXEDEMA TO THE REASONS OF REDUCTION.

2.2 OTHERMISE, 1 ADD MYXEDEMA TO THE DEGRADEABLE CONDITIONS, REMOVE
MYXEDEMA FROM THE PRESENT AND CORRECTABLE CONDITIONS, SET THE FACTOR
OF REQUCTION DUE TO MYXEDEMA TO 1.80 AND REMOVE MYXEDEMA FROM THE
REASONS OF REDUCTION.

3.4 An English Explanation of the Code to Check Sensitivity Due to Myxedema

3.5.3 Dezcribing Events

The explanation routine which describes events is called, oddly enough, DESCRIBE-
EVENT. It is designed to answer the question "For this patient, how did you ... ?". This
routine is a little more sophisticated since a certain amount 'uf editing must be done to avoid
making nonsensical explanations. The principal difference between explaining events and
explaining plans is that when plans are explained all possible paths through the plan are

outlined, but when events are explained, only the specific path taken during the event is

L

54

displayed. Thus, as one would expect, the chief differences between DESCRIBE-METHOD and
DESCRIBE-EVENT are to be found in the routines that explain conditional statements.

When a simple conditional statement is encountered while explaining an event, a check is
made to see if the predicate of the conditional succeeded or failed. The event structure
contains this information. If the predicate failed, the statement is normatly not describedd. If
the predicate succeeded, the predicate is given as the reason for the actions taken by the
statement. It is not always easy to determine the reason of success or failure. If the
predicate is a disjunction of clauses that succeeds or its dual, a conjunction of clauses that
fails, it is not possible to tell which sub-clause was responsible for the success or failure
without recomputing the entire expression unless that information is stored in the event
structure. For that reason, when such a situation is detected during execution, the interpreter
also lists that sub-clause responsible for the outcome in the event structure associated with
the step. In this way, it is always possible to give the correct reason for a particular action.

The OR statement, which may contain several IF-THEN statements, is a more complex
case. Recall that the OR statement corresponds to the COND statement in LISP. As such, its
purpose is somewhat ambiguous. On the one hand, it can be used like a CASE statement in
ALGOL. That is, each of the clauses of the OR may involve the same variable, and all of the
clauses together cover a set of disjoint possibilities. In that case, the order of the clauses
usually does not matter, and the most appropriate explanation is merely to give the predicate
that succeedeq as the reason for the action taken. On the other hand, each of the clauses of
the OR may inveolve a different variable. In that case, the ordering of trlue clauses is often
important, and it seems that in explaining the OR, the predicates that failed as well as the one
that succeeded should be given as reasons for the actions taken by the statement. To

determine the type of the OR statement, the explanation routine examines the variables used

8. There are éxceptions desc'ribed in Chapter 4,

55

in the predicates before explaining the .statement. It seems that in future versions of the OWL
I interpreter in might be well to use two ditferent types of OR statements to resolve the
ambiguity.

There are a few additional considerations. Since a method can be executed several
times, there may be several events to éxplain. If so, they are explained in order. If some of
the events occurred during previous sessions, the user is asked if he wishes to see them. If
he does, the time and date of the session is given as the events are explained.

To make explanations of numerical computations clearer, the value of a numeric variable
is printed in parentheses following the variable whenever it is displayed. The values of non-
_numeric variables are usually clear from the context of the explanation and are not specifiéal%y
displayed, unless an assertion about the veriable is being described. Whenever a new
assertion is made, the new value and the old value of the variable are both given.

A final issue is that events should be explained in the past tense. When evenis are
explained, a flag is set so that the generator converts all_ verbs to past tense. A sample

explanation from chapter 2 is reproduced below.

56

{describe-event [(check (sensitivity (due (to thyroid-function})}})]1}
DO YOU ONLY WANT TO SEE EVENTS FROM THE CURRENT SESSION? (YES OR NO) n

OURING THE SESSION ON 9/21/78 AT 11:18, 1 CHECKED SENSITIVITY QUE TO
THYROID-FUNCTION BY EXECUTING THE FOLLOWING STEPS:

1. 1 ASKED THE USER THE STATUS OF MYXEDEMA. THE USER RESPONDED THAT THE
STATUS OF MYXEDEMA WAS PRESENT.

2. SINCE THE STATUS OF MYXEDEMA WAS PRESENT 1 DID THE FOLLOWING:

2.1 1 ADDED MYXEDEMA TO THE PRESENT AND CORRECTABLE CONDITIONS. THE
PRESENT AND CORRECTABLE CONDITIONS THEN BECAME MYXEDEMA.

2.2 | REMOVED MYMEDEMA FROM THE DEGRADEABLE CONDITIONS. THE
DEGRADEABLE CONDITIONS THEN BECAME HYPOKALEMIA, HYPOXEMiA,
CARDICMYOPATHIES-MI, AND POTENTIAL POTASSIUM LOSS DUE TO DIURETICS.

2.3 1 SET THE FACTOR OF REDUCTION DUE TO MYXEDEMA 7O 8.87. THE FACTOR
OF REDUCTION DUE TO MYXEDEMA WAS PREVIOUSLY UNDETERMINED.

2.4 1 ADDED MYXEDEMA 7O THE REASONS OF REDUCTION. THE REASONS OF
REOUCTION THEN BECAME MYXEDEMA.

3.5 An Explanation of the Event of Checking for Sensitivity Due to Muyxedema

3.5.4 Dascribing the Uss and Setting of Variables

The Advisor can also explain how variables are set and used in both metheds and
avents. This is done by finding the relevant steps or events and using the routines described
above to explain them. This sort of explanation is particularly usefui in determining the -
interdependencies between plans and events. The function DESCRIBE—USE—IN-@EW finds all

the uses of a variable by examining the function-evaluation-use link? of the variable. The

. 9. Function-evaluation-use links are described in chapter 4.

57

function-evaluation-use link lists all uses of the variable. The events that are found are then
axplained by the routines to describe events outlined above. The function DESCRIBE-SET-IN-
EVENT finds all the places where a variable was set by examining the reference list of the
3 variable, where all assertions about the variable are listed. These events are also described
by the routines discussed above. The functions DESCRIBE-USE-IN-METHOD and DESCRIBE-
SET-IN-METHOD work in a simitar manner. Examples of the use of the four functions may be

found at the end of chapter 2.

3.8.5 Describing When an Event or Plan is Csiled

The procedures DESCRIBE-METHOD and DESCRIBE-EVENT both go down the event and
program structures, that is, they tell the user what subevents or subcalls are made by an
event or method. It is also possible to go up.

If a user wishes to know when a particular plan is invoked, he may use the routine
called FIND-WHY-METHOD. This function finds all the places where a plan is called (using a
mechanism similar to the one outlined in the previous section) and displays them to the user.
Similarly, the user may find out why an event was created by using the function FIND-WHY-

EVENT. Examples of the use of both functions are at the end of chapter 2.

688

3.6 Summaries and Alternate Models

This section describes some other aids to explanation. Summaries and Alternate Models

were developed to deal with certain limitations of the explanation facilities.

3.8.1 Summaries

Several procedures in the Digitalis Advisor are designed to determine the vaiue of some
clinical parameter, check some problem, or compute some value. Some examples are
[(DETERMINE RENAL-FUNCTION)], [(CHECK SENSITIVITIES)], and [(COMPUTE BODY-STORES-
GOAL)]. When the system is describing the methods it uses, the names of these procedures
adequately summarize the goals they accomplish. However, when the system describes the
events they creale their names are not good summaries. It is not sufficient to say “I
computed the body stores goal.", because the user is left wondering what the body stores
goal is. Thus, there is a SUMMARY associated with certain plans. The SUMMARY is a variable
or group of variables that reflect the values that the plan is designed to determine, or in more
complex cases, the SUMMARY may be a LISP procedure which determines and displays the
relevant information when executed. The OWL variable [(QUANTA BODY-STORES-GOAL)] is a
SUMMARY of the plan [(COMPUTE BODY-STORES-GOAL)]. When an event is explained, if there
is 8 SUMMARY associated with the plan that produced the event then the variables associated
with that SUMMARY are displayed. If the SUMMARY is a LISP procedure rather than a list of
variables, then it is executed. In addition, whenever an ASK-USER event is explained, the
answer given by the user is listed. Below, a description of the event [(BEGIN THERAPY)] is

given. Summaries are listed in italics,

DURING THE CURRENT SESSION, I BEGAN THERAPY BY EXECUTING THE FOLLOKING
STEPS:

1. I INITIALIZED THE SYSTEM VARIABLES.

59

2. 1 SET THE TYPE OF THE SESSION TO INITIAL. THE TYPE OF THE SESSION WAS

PREVIOUSLY UNDETERMINED.

3. 1 ASKED THE USER THE AGE OF THE PATIENT. THE USER RESPONDED THAT THE

AGE OF THE PATIENT WAS 56.

4, 1 ASKED THE USER THE WEIGHT OF THE PATIENT. THE USER RESPONDED THAT THE

WEIGHT OF THE PATIENT WAS 72.

S. I ASKED THE USER THE SEX OF THE PATIENT. T7HE USER RESPONDED THAT THE

SEX OF THE PATIENT WAS MALE.

6. 1 CHECKED THE CARDIAC RHYTHM. THE CARDIAC RHYTHM WAS ATRIAL

FIBRILLATION.

7. | DETERMINED THE REASON OF DIGITALIZATION. THE REASON OF DIGITALIZATION

WAS ARRHYTHMIA.

8. 1 ASKED THE USER THE STATUS OF DIGITALIS USE. THE USER RESPONDED THAT

DIGITALIS WAS NOT GIVEN.

9. 1 SELECTED THE TYPE OF PREPARATION. THE TYPE OF PRESENT PREPARATION WAS

DIGOXIN.

18. 1 ODETERMINED THE RENAL FUNCTION. THE MOST RECENT RENAL FUNCTION

MEASURE SHOWED THAT THE RENAL FUNCTION WAS 80%.

11. 1 CHECKED SENSITIVITIES. THE REASONS OF REDUCTION WERE MYXEDEMA AND

THE FACTOR OF ALTERATION WAS 0.69. .
12. 1 COMPUTED THE BODY-STORES GOAL. THE BODY-STORES GOAL WAS 0.55.

13. 1. DETERMINED THE PHASE OF TREATMENT. THE PHASE OF TREATMENT WAS

- LOADING~-STAGE.

14, 1 SET THE STATUS OF DIGITALIS USE TO PRESENT. THE STATUS OF DIGITALIS

USE WAS PREVIOUSLY ABSENT.
15. I GAVE RECOMMENDATIONS.

60
3.68.2 Alternate Models

When writing a computer program, it is occasionally necessary to use methods that are
totally foreign to the users of the system. This may be brought about by pragmatic
considerations, a desire to improve the system’s performance, or possibly b_ecause the
methods used by humans are not suitable for computers and vice versa. Whenever this
situation occufs, it will not be possible to give explanations using the ideas of Semantic Model
Programming alone. To solve this problem, it is instructive to reflect on the techniques used
by human teachers in similar circumstances.

When a teacher is trying to explain a new concept to his students, he will often try‘io
draw an analogy between what the students already know and the new concept. For example,
a teacher trying to explain the fundamental notions of electrical potential, current, and
rasistance may use the fami%i.ar mode! of a water tank with an outlet at the bottom. The depth
of water in the tank is analogous to the potential, the flow of water through the outlet may be
taken as current, and the notion of resistance is analogous to the diameter of the outiet.

In the Digitalis Advisor, a weighted sum is computed to indicate whether or not the
condition of a patient suffering from congestive heart failure is improving. It seems likely that
many doctors are not aquainted with the idea of using a weighted sum to evaluate the
condition of a patient.. For that reason, the routines that assess the condition of the patient
are linked with an alternate model. The alternate mode! describes in canned English text what
the routine is trying to accomplish. In addition, some of the steps of the routine are linked to
the text descriptions that describe what they do. The reason for linking specific steps to the .
aiternate model is that that way, when events created by the routine are described, only
those parts of the alternate model linked to steps which actually executed will be displayed.
A procedure to check weight gain in patients with congestive heart failure is shown below.

The parts of the alternate model are printed in italics.

61

{descr ibe-method [{check uweight-gain)])}

TG CHECK THE WEIGHT GAIN I USE A WEIGHTED SUM SCHEME. THAT IS5, THE
CONDITION OF THE PATIENT IS REFLECTED BY THE VALUE OF THE MEASURE OF
THERAPEUTIC IMPROVEMENT. A POSITIVE VALUE INDICATES IMPROVEMENT WHILE A
NEGATIVE VALUE INDICATES A WORSENING. THE MAGNITUDE OF THE MEASURE OF
THERAPEUTIC IMPROVEMENT INDICATES THE DEGREE OF IMPROVEMENT OR WORSENING.
I 00 THE FOLLOWING STEPS:

i. I 00 ONE OF THE FOLLOWING:

1.1 IF THE CURRENT VALUE OF THE WEIGHT OF THE PATIENT IS NOT GREATER
THAN THE [DEAL WEIGHT OF THE PATIENT AND THE BASE-LINE VALUE OF THE
WEIGHT OF THE PATIENT IS GREATER THAN THE IDEAL WEIGHT OF THE PATIENT
THEN I DO THE FOLLOWING SUBSTEPS:

1.1.1 1 ADD ACTUAL-WEIGHT-LESS-THAN-1DEAL-WEIGHT TO THE SIGNS OF
THERAPEUTIC EFFECT. :

1.1.2 1 SET THE MEASURE OF THERAPEUTIC IMPROVEMENT TO 15, - IN
OTHER WORDS, I NOTE THAT THERE HAS BEEN A SIGNIFICANT
IMPROVEMENT .

1.2 OTHERWISE, IF THE PREVIOUS VALUE OF THE WEIGHT OF THE PATIENT IS
GREATER THAN THE WEIGHT OF THE PATIENT THEN I DO THE FOLLOWING
SUBSTEPS:

1.2.1 1 ADD WEIGHT-LOSSAGE TO THE SIGNS OF THERAPEUTIC EFFECT.

1.2.2 [SET THE MEASURE OF THERAPEUTIC IMPROVEMENT 10 6. IN
OTHER WORDS, I NOTE THAT THERE HAS BEEN A REASONABLE IMPROVEMENT.

1.3 OTHERWISE, IF THE PREVIOUS VALUE OF THE WEIGHT OF THE PATIENT IS
LESS THAN THE MWEIGHT OF THE PATIENT THEN I SET THE MEASURE OF
THERAPEUTIC IMPROVEMENT TO -15. IN OTHER WORDS, I NOTE THAT THE
CONDITION OF THE PATIENT HAS BECOME CONSIDERABLY WORSE.

62

3.7 Extonsions for lteration

In this section, we will describe what might need to be done to explain programs that
use iteration extensively. As a sample problem, we will try to explain a simple program that
delermines whether or not a number is prime and returns a message. The algoyithm appears

in ALGOL below:10

PROCEDURE PRIME? (X)

BEGIN

INTEGER Js

J s 13

WHILE (J < SORT(X}) AND {J = J & TRUNCATE(X/J)) DO
Ji= J+ 2;

IF €J = SORT(X)})} THEN
RETURN("IT'S PRIME"™)
ELSE
RETURN{"IT'S NOT PRIME");
END3

3.6 A Procedure Using [teration

This simple exampie differs from most of the code found in the Digitalis Advisor. Most of that
code does not use iteration. However, it is clearly necessary to be able to explain iteration.
The OWL 1 interpreter has no higher level constructs for expressing loops other than the
simple goto-conditional construction. Programmers generally find the more explicit constructs
such as FOR loops and WHILE loops useful. It seems that it would be desirable to add soms
similar staiements to OWL.

The addition of some new statements would not only make programming easier, but
would be an aid to producing explanations as well. Normally, the OWL 1 interpreter remembers

every computation it makes, In the example above, it is rather unlikely that it would ever be

10. I make no claim that this is the best way to determine if a number is prime. This example
is used for iflustration only.

63

desirable to remember all the computations made during the WHILE lcop. The WHILE
statement could be a signal to the QWL interpreter that it was to summarize the actions taken
during the loop.

When people explain a loop in a program, they often do it in the following way: They
explain all the actions taken during the first iteration of the loop, and possibly the second,
then they do not explain subsequent iterations until the terminating conditions are reached.
Usually this is a sufficient explanation, because the actions taken on each iteration are so
similar that they can be understood in general by merely examining a few specific cases. The
OWL I interpreter could adopt a similar strategy. When executing a WHILE statement, the
interpreter could save the results of the first couple of iterations and the terminaiing
conditions of the loop. When asited to explain the loop, the system would use this summary.
Using this method, a great deal of storage could be saved in programs that use iteration

extensively, yéi, clear explanations could still be given.

64

Chapter 4: Updating

4.1 Introduction

This chapter deals with a different type of explanation. Updating refers to the process
of changing a previously given answer to a question, and explaining the effect of that change
on the recommendations.

Since the digitalis advisor receives information from the user by asking the user a
number of multiple choice questions, there are only a limited number of possible answers. A
user may sometimes fesl that the correct answer is "in between” two of the those answers.
Though forced to give one answer, he may wish to know how much the answer he chooses
affects the outcome. Additionally, the user may wish to see the sffects of a different answer
to become better acquainted with the program. Updating provides a, solution to these
probiems. The user may give one answer during the course of a session, and then change
’ that answer at the end of the session to determine how sensitive the final recommendations
are to that answer.

Ideally, updating would not require any data structures not normally created by the
interpreter during execution. It would not re-axecute any steps not affected by an update.
Finally, it would perform an update in such a way that it could easily give the user a concise
explanation of the effects of that update.

There are many different ways to do updating. Each of them approximates to some
degree the ideal outlined above, though none of them achieves it. The end of this chapter will
detail 2 number of them with their advantages and disadvantages; however, a brief overview
of various approaches will be given here. MYCIN uses what might be called the recomputation

approachi12] When a user wishes to change an answer, the system accepts the new answer

65

from the user, saves all other answers that the user-has given, then re-initializes itself and

_starts the session over from the very beginning. The system does not inquire about anytﬁing

it has already asked the user, since it has stored all previous answers and since the questions
in. MYCIN are generally assumed to be independent!! (as they are in the OWL Digitalis
Advisor). This approach does not require any extre storage (other than the storage for
answers to previous questions), but It takes a considerable amount of computation time to
change an answer.

Another approach might be called the "support”™ approach. Many deductive systems
have used this technique. I refer to it as the "support” approach because the key idea is that
the system links the facts that support a conclusion to that conclusion. The expectation is tl';at
when a fact is changed, the system will, in most cases, be able to change its conclusions
accordingly without recomputing everything, thereby saving computation time. One potential
problem with this approach is that the overhead required to do updating based on the
supports may be so great that there is little actual saving of computer time.

The updating mechanism that the QWL Digitalis Advisor uses is essentially a support
approach. This technique was chosen not only to try to save computation time, but more
importantly, because it makes it easier to produce concise explanations of the update. The
goal is to recompute only atfected steps. Concise explanation is then easy, because only the

affected steps should be explained to the user.

11. That is, a change in the answer to one question does not, in general, imply that other
answers must be changed.

66

4.2 A Sample Session
This section shows a sample session with a user. The user’s inputs are in lower case,
while the advisor’s output is in upper case. Comments about the session appear in italics.

This sample is a continuation of the sample initial session in chapter 2. It begins just after the

system has presented dosage recommendations during the initial session. The user wants to

vary a few parameters to see what effect they have on the outcome of the session.

ENTER AN OWL FORM TO BE CARRIED OUT.
<»{(hypothesize (status hupoxemial}l}l

The user indicates to the system that he wishas io make a naw hypothesis
about the siatus of hypoxemia.

YOU STATED THAT THE STATUS OF HYPOXEMIA WAS NOT SUSPECTED. IF YOU WISH TO
CHANGE THAT ANSWER, PLEASE GIVE YOUR NEW RESPONSE BELOW.

WHAT IS THE STATUS OF HYPOXEMIA?
THE POSSIBILITIES ARE:

1. SUSPECTED
2. NOT SUSPECTED

ENTER SINGLE VALUE =e=s> suspected
The system reminds the user of his previous raesponse, and asks him for a

pew one. The user indicates that he suspects hypoxemia. This answer s
different than the one he gave during the original session.

WHAT IS THE LEVEL OF PO2?

ENTER NUMERICAL VALUE e===> 45
PLEASE TRY TO CORRECT THE HYPOXEMIA AS SOON AS POSSIBLE.

The user indicates that the patient is quite hypoxemic, and the advisor
suggests correcting the condition.

&7

Since the change in the status of hypoxemia has resulted in a changs in the
raecommendations, the advisor prints the new parameters and makes & new
prescription.

PARAMETERS USED TO MAKE RECDHNENDAT!ﬁNS:

BOOY STORE GOAL ===> 8,371 MG

PROJECTED AMOUNT ON BOARD =w=e> 6.0808 MG

BODY STORES SHIFT ===> 8.371 MG

REMAINING TIME TO REACH GOAL =wa=> 48.8 HRS.
HALF LIFE ===> 43.7 HOURS 1.8 DAYS
DAILY LOSS AT EQUILIBRIUM ===> 8.117 MG
ABSORPTION FACTOR m==»8.75

Recall that 1n Chapter 2 the recommended body stores goal was 0.35 mg.
THE DOSAGE RECOMMENDAYIONS ARE:

HOURS FROM NOW ORAL v

NOW 125 + .08625 MG JA25 MG

REPORT BACK AFTER THE FIRST DOSE.

8 125 MG .8625 MG
18 .0625 MG 125 MG
26 125 MG 8625 MG
32 9625 MG .8625 MG
48 .9625 MG .8625 G

ORAL MAINTENANCE SCHEDULE:
ALTERNATE .25 MG AND .125 MG
IV MAINTENANCE SCHEDULE:
125 MG

UPDATE COMPLETED.

The system now returns, indicating that all necessary changes have been '
made. The user may now ask the system to describe the update.

68

(describe-update)
THE PRINCIPAL RESULTS OF THE UPDATE WERE:

1. WHILE CHECKING SENSITIVITY DUE TO HYPOXEMIA, I ASKED THE USER THE STATUS
OF HYPOXEMIA. I MADE A DIFFERENT DECISION THAN BEFORE THE UPDATE. SINCE

THE CURRENT VALUE OF THE STATUS OF HYPOXEMIA WAS SUSPECTED 1 DID THE

FOLLOWING:

1.1 1 ASKED THE USER THE LEVEL OF P0O2. THE USER RESPONDED THAT THE
LEVEL OF PD2 WAS 4S.

1.2 SINCE THE LEVEL OF P02 (45) WAS LESS THAN 58.88 ! DID THE
FOLLOWING:

1.2.1 1 SET THE FACTOR OF REOUCTION DUE TO HYPOXEMIA TO 8.67.
{BEFORE UPDATING, THE VALUE WAS 1.88.)

1.2.2 | ADDED HYPOXEMIA TO THE PRESENT AND CORRECTABLE
CONDITIONS. THE PRESENT AND CORRECTABLE CONDITIONS BECAME
HYPOXEMIA AND MYXEDEMA.

1.2.3 1 REMOVED HYPOXEMIA FROM THE DEGRADEABLE CONDITIONS., THE
DEGRADEABLE CONDITIONS BECAME HYPOKALEMIA, CARDIOMYOPATHIES-MI,
AND POTENTIAL POTASSIUM LOSS DUE TG DIURETICS.

1.2.4 | ADDED HYPOXEMIA TO THE REASONS OF REDUCTION., THE REASONS
OF REDUCTION BECAME HYPOXEMIA AND MYXEDEMA.

Recall From chapter 2 that these are sets which indicate why a
reduction was made, and which conditions can degrade or improve.

2. | MADE A DIFFERENT DECISION THAN BEFORE THE UPDATE. SINCE THE STATUS OF
HYPOXEMIA UWAS SUSPECTED AND THE LEVEL OF P02 (45, FORMERLY UNDETERMINED)
WAS LESS THAN 65.00 1 SUGGESTED CORRECTING HYPOXEMIA.

3. WHILE COMPUTING THE FACTOR OF ALTERATION, I SET THE FACTOR OF ALTERATION
OUE TO SENSITIVITIES 70 THE PRODUCT OF THE FACTOR OF REDUCTION DUE TO
ADVANCED AGE (1.88), THE FACTOR OF REDUCTION DUE TO HYPERCALCEMIA (1.80),
THE FACTOR OF REDUCTION DUE TO HYPOKALEMIA {(1.88), THE FACTOR OF REDUCTION
DUE TO POTENTIAL POTASSIUM LOSS DUE TO DIURETICS (1.68), THE FACTOR OF
REDUCTION DUE TO HYPOXEMIA (@8.87), THE FACTOR OF REDUCTION DUE TO MYXEDEMA
{6.67), AND THE FACTOR OF REDUCTION DUE TO CARDIGHMYOPATHY-MI (1.88). THE
FACTOR OF ALTERATION DUE TO SENSITIVITIES WAS SET 710 8.45. (BEFORE
UPDATING, THE VALUE WAS 8.67.)

69

4, 1 SET THE FACTOR OF ALTERATION TO THE PRODUCT OF THE FACTOR OF
ALTERATION DUE TO SENSITIVITIES (9.45) AND THE QUOTIENT OF THE WEIGHT OF
THE PATIENT (72) AND 70.08. THE FACTOR OF ALTERATION WAS SET TO 8.46.
(BEFGRE UPDATING, THE VALUE WAS 8.63.}

5. WHILE COMPUTING THE BODY-STORES GOAL, 1 SET THE BODY-STORES GOAL TO THE
PRODUCT OF THE FACTOR OF ALTERATION {8.48) AND THE BASIC BODY-STORES GOAL
{8.80). THE BODY-STORES GOAL WAS SET TO 8.37. (BEFORE UPDATING, THE VALUE
WAS 8.55.)

6. WHILE GIVING RECOMMENDATIONS, 1 PRINTED THE PARAMETERS.
7. 1 MADE THE PRESCRIPTION.

Mow the user would 1ike to change the value of serum potassium.

‘§>[(hgpothesiza {quanta serum-potassium))]

YOU STATED THAT THE LEVEL OF SERUM POTASSIUM WAS 4. IF YOU WISH TO CHANGE
THAT ANSWER, PLEASE GIVE YOUR NEW RESPONSE BELOW.

WHAT IS THE LEVEL OF SERUM POTASSIUM?
ENTER NUMERICAL VALUE =s==> 4.2
UPDATE COMPLETED.

It appears that nothing was changed by the update. The reason
why becomes apparent when the user asks the system to describe
the updats.

{descr ibe-update)

THE PRINCEIPAL RESULTS OF THE UPDATE WERE:

1. WHILE CHECKING SENSITIVITY DUE TO POTASSIUM, | ASKED THE USER THE LEVEL
OF SERUM POTASSIUM. THE USER RESPONDED THAT THE LEVEL OF SERUM POTASS1UM
WAS 4.208.

2. 1 MADE THE SAME DECISION AS BEFORE THE UPDATE. SINCE THE LEVEL OF SERUM
POTASSIUM (4,28, FORMERLY 4) WAS NOT LESS THAN 3.78, 1 DID THE FOLLOWING:

2.1 1 SET THE FACTOR OF REDUCTION DUE TG HYPDKALEMIA TO 1.08. (THIS
VALUE WAS NOT CHANGED BY THE UPDATE.)

70

4.3 An Qutline of the lesues in Updating

The OWL Digitalis Advisor attempts to minimize the number of steps that it re-
executes in performing an update. It finds those portions of OWL methods which are directly
or indirectly affected by the update and re-executes them alone. Since usually only a few
steps are affected, it is relatively easy to produce concise explanations of the effects of the
update. This section outlines some of the factors that must be taken into account in designing

such an update machanism.

4.2.1 Reatrictions

First, we will state some restrictions, These were imposed to make programming easier.
and the following discussion clearer.

The Digitalis Advisor consults with the doctor during several sessions. The time ‘
between sessions can be as long as several days. The system does not allow updates to have
effects in sessions other than the current session, That is, the doctor may not change an
answer that was given during a previous session and observe the effects of that change. This
restriction may be justified on medical grounds. it seems likely that a doctor would use a’
special set of methods to deal with the problem of a changed answer to a quesfion in a prior
session, since the patient would have already received a prescription based on the data given
before the update. The update mechanism discussed here is rot désigned to invoke special
procedures, end hence it would not be an appropriéte solution to this problem.

Another restriction is that OWL procedures in the Digitalis Advisor are not allowed to
pass arguments. In the context of the Digitalis Advisor, this is not really a restriction since

the Advisor does not need procedures that pass parameters--all procedures communicate

71

through semantically meaningful global variables. It is likely that more sophisticated systems
will need to be able to pass parameters, hence more research will be required to resclve the

problem of passing arguments.

4.3.2 Types of Time

In most programming systems, the \;alue of a variable depends upon when it is
examined. For example, if we examine a variable used as a counter in a loop before the loop
is executed, its value rﬁay be undetermined. While the loop is being executed, the value of the
variable will depend on the number of completed iterations. Thus, the relationship betw'aen
time and value is very important for a correct updating strategy.

In the OWL Digitalis Advisor, there are three different kinds of time which affect values.
The first type is called real-world time. It refers to the time that a fact became true or was
observed in the real world. For instance, the serum caicium level of a particular patient may
have been observed to be 4.2 on September 27, 1976 at 2:00 pm. The second type is
computation time. It refers to the time that a fact was entered into the data base, as the
result either of a user’s answer to a question, or of a calculation. To continue the example,
the Digitalis Advisor may have been informed of the patient’s serum calcium level at 5:00 pm
on the day it was observed. The third type of time is called precedence time-order. It refers
to the relationships between the values of a variable and the events that assert the values.
Informally, it expresses the notion that some steps must be done before others may be
performed. In the loop example above, the counter takes on many vaiues. Each of these
values is correct at some time, but only one is correct at any given time. Precedence time-
order stresses the relational quality of time rather than the notion of time as a point on a

timo-line. In a programming snvironment which does not allow updating, the precedence time-

72

order is modelled by the computation time. If updating is allowed, the computation time of one
Ie__vent may precede the computation time of another, yet their precedence time-order may be
reversed, When updating is allowed, the value of a variable depends solely on pretadence
time-order. If we had a computer that allowed parallel computation, the precedence time-
order would be isomorphic to the dependencies between statements. In a serial machine, the
precedence time-order is actually a stronger ordering than the dependency ordering, since for
a serial machine, the. precedence time-order is a total ordering while the dependency ordering
ts only & partial ordering. -
The OWL Digitalis Advisor performs updates (which require knowledge of dependéncies)
without requiring the programmer to explicitly indicate the dependencies. The system ’can
discover a precedence time-order as it exscutes which can be used as a model for ths

dependencies, and, therefore, as a basis for updating.
4.3.3 Special Data Siructuras for Updating

During execution, the OWL | interpreter creates data structures which are used by the
updating mechanism to find which steps should ba re-executed, to determine the value of
variables, and so forth. These data are not needed for normal interpretive execution. If a
system designer anticipates that updates will not be needed, he may set a switch so that the
data structures are not created.

Whenever the value of a variable is used in computing a value, determining the truth of
& predicate in a conditional branch, or making a pattern match, the event evaluating the
variable is linked to the variable. This link is called a function-evaluation-use of the variable.
Such links are used to find all the events that might be changed by a change in the value of
the variable.

When making updates, it is vital that the interpreter be able to evaluate the variables of

73

some previously computed step s0 that all the variables (except those changed by 'the update)
will evaluate to the values they had when the step was originally executed. This feature is
also used by the routines that describe events. It is necessary to create a data structure
which wilt model the p.recedence time-order relationships between the vaiues of a variable at
various times, and the values of other variables. The OWL Digitalis Advisor uses an
environment list to accomplish this. The environment list is similar to the association list used .
in some imptementations of LISP for variable binding, except the environment list is never
“popped”, As naw assertions are made, they are placed at the front of the environment list.
Each assertion contains both the variable and its value (like a dotted p;ir in LISP). To find the
current value of somé variable, we merely go down the environment fist until we find the fi’rsi'
assertion involving that variable, The value associated with that first assertion is the current
value of the variable. If we wish to find the value of a variable before the execution of some
event, we find that point in the environment list v)hich corresponds o the start of the event,
and start our search for the first assertion involving the variable from there. Note that the
. precedénce time-order relationships between assertions are intrinsic to the structure of the
éhvironment list itself. It is possible to maintain this structure during an update by editing it.
When a step is re-executed, any assertions resulting from the original execution of the step
are deleted from the environment list, while those resulting from the re-execution are inserted
in place of the originals. The mechanisms involved in maintaining this structure are described

in more detail below.

748
4.4 Updating: the Algorithm
4.4.1 An English Daecription

This section provides a description of how the updating mechanism works. After the
advisor has presented its recommendations, the user may indicate to the system that he
wishes to change an answer hé gave previously.

For the purposes of iflustration, suppose that the variable a in the program!? listed in
Figure 4.1 has been changed from 0 to 2. The updating algorithm would then proceed in the
following manner: |

1. First, the system creates an update-event. After the update is completed, the

update-event will contain links to all the updated events, as well as a link to the

variable that was changed by the user. These links are used in making
expianations. :

2. The system finds all the uses of the variable to be changed by examining the

function-evaluation-use links associated with the variable. These events are

placed in an update-list so that they are in ascending precedence time-order
(Figure 4.2).

b s= 23 if a <1 then

if a <1 then!® b= 1;
b:= 1

¢ ta 53

d = ¢ % by

4.1 The Program 4,2 The Update List

3. The system finds that point in the environment-list which corresponds to the
start of the original execution of the first event on the update-list. When finding
values, the system will start examining the environmeni-list from this point so
that the corresponding step will be re-executed in the original environment as

12. For clarity, this program is listed in pedagogic ALGOL rather than QWL L. » . I

13. Assume thai the varisble a does not have a value before this step is executed, so that the s
interpreter will ask the user the value using the mechanism described in Chapter 3.

75
modified by prior updates 1% (Figure 4.3). To find the correct point, the system
goes down the environment list from its head untit it comes to the first assertion
that precedes the event being updated in procedural time-order.

b = 2 <—- environment list pointer

a=8

c=b

d = 18

4,3 The Environment List
8, As the system re-executes the step, it places any assertions made by the step
on a temporary-environment-list. To find the value of a variable the system
examines the temporary-environment-list before looking at the environment-ist
(Figure 4.4). The system also places an update link between the event created
by the original execution of the step and the event created by re-executing the
step. By checking for this link, it is easy to tell whether or not an event has
been updated.

b = 2 <-—environment list pointer aw2

a=8 b=1

c =5

d = 18

Environment List Temporary Environment List

4.4 The Environment List and Temporary Environment List

5. After the step has been re-executed, the system determines which variables
were changed by the update of that step. There are several ways that a variable
‘may be given a new value. A new asserlion may be made during the re-
execution of a step that is different from the assertion (if any) made during the
original execution of the step, or the re-execution of a step may not make an
assertion about a variable that was asserted during the original execution of the
step. If the value of a variable is affected in either way, all the events which
used that variable that have not been updated and have a greater precedence

~ time-order than the step just executed are merged into the update-list. If an
event being merged in is superior {o an event already on the list, the subevent is
removed {(Figure 4.5).

6. The assertions on the temporary-environment-list are merged into the
environment-list (Figure 4.6). The environment-list and temporary-~-environment-
list are kept separate until this step to facilitate the comparisons in step B.

14. On the first iteration of the algorithm, the first event in the list will be either a step which
will directly ask the user for the new value of the variable or a conditional statement which
will cause the system to re-ask the user in the process of computing truth of the predicate.

76

7. The whole process is repeated, starting at 3, with the next event on the update
list. The process stops when there are no more events on the update-list.

d 1= c % b b =2
a=2
b=l
¢ = 5 <——- painter
d =10

15

4,5 The Neuw Update List ’ 4,6 The Neu Environment List

" 4.4.2 The Program

In this section, a LISF implementation of the top-level updating function is given. Those
functions which depend heavily on QWL data base functions are not shown, but are described

in English below.

(DEFUN UPDATE (VARIABLE-TO-BE-CHANGED)
(PROG (CHANGED-VARIABLES EVENT-BEING-UPDATED)
(SETQ *UPDATE-LIST% NIL)
(CREATE-UPDATE-EVENT)
(SETQ CHANGED-VARIABLES (LIST VARIABLE-TO-BE-CHANGED))
A (INSERT-EVENTS (EXAMINE-FUNCTION-EVALUATION-USE CHANGED-VARIABLES)).
(COND ({NULL xUPDATE-LISTx)
(SETQ *ENVIRONMENT-LIST-POINTER® NIL)
{RETURN 'DONE})
(T
(SETQ EVENT-BEING-UPDATED (CAR »UPDATE-LISTx%))
{SETQ »UPDATE-LIST% (COR »UPDATE-L1ST%))
{SET-ENVIRONMENT-LIST-POINTER EVENT-BEING-UPDATED)
{RE-EXECUTE-STEP (FIND-CALL-FOR-EVENT EVENT-BEING-UPDATED))
{SETQ CHANGED-VARIABLES
(COMPARE-ENVIRONMENT-LISTS EVENT-BEING-UPDATED) }
{MERGE-ENY IRONMENT-LISTS EVENT-BEING-UPDATED)
(GO AY))))

¢UPDATE-LIST# is a global list that is the list of events that need to be updated.

15. Prior to the re-exacution of the step associated with the next event on the update list.

77

sENVIRONMENT-LIST-POINTER# is a global pointer into the environment list. If it is not null,
the evaluation routines use it in determining where to start looking for values. If it is null, the
evaluation routines start from the head of the environment list.

CREATE-UPDATE-EVENT is a function that creates an update event. All events re-executed

during the update will be linked to the update event. These links are used to explain the
update. :

EXAMINE-FUNCTION-EVALUATION-USE is a function that accepts a list of variables as input. It
returns a list of events which are the events that used the variables in the input list. These
events are found by examining the FUNCTION-EVALUATION-USE link on the reference lists of
the variables,

INSERT-EVENTS is a function that merges the events that need to be updated into the
sUPDATE-LISTs. The events are merged in procedural time-order so that the order of the
sUPDATE-LIST# is always maintained. Before one of the input events is inserted into the
2UPDATE-LIST# a few checks are performed. If an event to be inserted precedes the last
step updated in procedural time-order, or if the event has already been updated, the event is
not inserted in the update list. In addition, if the event is a subevent of an event already on
the sUPDATE-LISTs it is not inserted. Conversely, if the event to be inserted is superior to an *
event already on the 2UPDATE-LIST# the subevent is removed and replaced by its superior.

SET-ENVIRONMENT-LIST-POINTER is a function which sets the *ENVIRONMENT-LIST-POINTER=
to the first assertion on the environment list which precedes the step being updated in
procedural time order.

FIND-CALL-FOR-EVENT finds the call associated with an event.
RE-EXECUTE-STEP causes the QWL interpreter to re-execute a particular stép.

COMPARE-ENVIRONMENT-LISTS maps down the temporary environment-list and the
environment-list to dstermine which variables have changed during the re-sxecution of the

_ step.

MERGE-ENVIRONMENT-LISTS splices the environment-list and temporary environment list
together. The temporary environment-list is re-set to nit.

78

4.5 The Nitty-Gritty

This section describes in some detail how some of the things described in the preceding
section are actually implemented. The casual reader may skip this section without loss of

continuity.
4.5.1 Determining Precedsence Time-Order

In the section above, it was stated that events are merged into the update-list in
ascending precedence time-order. A predicate is needed that can determine the precedence
time-order of events. Computation time alone cannot be used, and there are no explicit links
in the interprgter that indicate the precedence time-ordering of two evenis. However, if the
subevent structures associated with events are examined in conjunction with their computation
times it is possible to determins the‘precedence time-ordering of the events.

The algorithm for determining precedence time-order during updaies makes a few
assumptions, Assume that neither event has been updated. If either event has already been
updated, it is not necessary to insert it in the update list. Further assume that neither event
is a subevent of the other. If it were, only the superior event needs to be placed on ths
update list. The aigorithm works in the foliowing way:

1. To begin with, the depth in the subevent structure is determined for each of

the two events being compared. If one event is deeper than the other, the

system goes up the subevent structure from the deeper event until it finds an

event at the same level as the shallower event. These are the two events that

will be compared. Call them A and B.

2. If either A or B has an update link on its reference list, it is replaced by the
corresponding original event, found by following update links backward.

3. Next, the events immediately superior to A and B are compared. If they are
the same (i.e. if A and B are both immediate subevents of the same event), the
computation times of the events are compared. The one with the earlier
computation is the earlier event in precedence time-order.

79
4, 1t the events immediately superior to A and B are different, the algorithm sets
A and B to their immediate superiors and loops back to step 2.
This algorithm works by going up the subevent structure from each of the two events being
compared until it finds two events that are immadiate subevents of the same event. After the
original events are found!®, a comparison may be made on the basis of computation time, since
all the effects of updates have been removed. Earlier we pointed out that if no updating has
occurred, the computation time may be used as a model for precedence time-~order. By going
back to the original events, the updates are essentially “removed”, and we can use their

computation times to determine the precedence time order.

4.5.2 Editing Environment Liate

In performing an update, it is necessary to be able to splice new assertions into the
environment list. Although the actual splicing is easy enough, the process of finding the points
where the splice should startl? and stop is a little more involved. If the event being updated
is just an assertion, it’s easy to find the start and stop points: the assertion is found in the
environment list and removed. On the other hand, the step being updated may contain several
assertions, conditional expressions, and so forth. To find where the splice should start, the
system finds the last assertion made before the start of the event being updated. The last
assertion is found by examining the subevents of the events immediately preceding the event
being updated. Finding the stop point of the splice is easier: it is just the last assertion made
by the event being updated. If no assertions were made, then the stopping point is just the

same as the starting point since no assertions need to be removed from the environment list.

16. Tracing over update links does not affect the depth.

17. The starting point of the splice is also the point (referred to in step 3 of the algorithm,
page 74) at which the functions that evaluate variables start looking at the environment list.

80
4.5.3 A Proof of Correctness

In this section, we will prove that the updating algorithm described above produces

correct results. Qur proof will be by induction. We will show that if certain conditions are

true before the re-execution of some OWL I program step, the algorithm assures that they will
remain true after the step has been re-executed.

Suppose that a variable A which originally had the value x has been changed to y. We

will assume that the following statements are true at the end of step 3 (page 74), after any

number of iterations of the updating algorithm:

1. The next event £ which must be re-executed is at the head of the update list.

2. The pointer into the environment list has been set so that all variables evaluate
to the values they would have had at this point in the program if the value of the
variable A had originally been y.

3. All events preceding £ in precedence time-order which must be re-executed to
obtain correct resuits have aiready been re-sxecuted.

4, The update list contains, in precedence time-order, all those events that are
known {prior to the re-execution of £} to nead updating, that is, the update list
contains all events which invaolve variables that have already been changed by
the update,

81

Basis:

First, we need a basis for our induction. Suppose that steps 1, 2, and 3 of the update
algorithm have each been executed exactly once. Lemma A (below) states that £ will be on
the function-evaluation-use links of the variable A being changed by the update. Then, by the
action of step 2 of the algorithm, assumption 1 must be true. The action of step 3 assures
that assumption 2 holds. Since the first event to be re-executed must depend on A, there can
be no events prior to £ in procedural ﬁme-order which must be re-executed. Thus,
assumption 3 is true. Since no events have been re-executed, only those evenis depending

on A are known to need updating, thus assumption 4 is correct.

Induction:
Now that we have a basis, we suppose that the assumptions are trus after n iterations of the

algorithm. We need to show that they will be true after n+l iterations.

Claim 1:

The re-execution of £ will produce exactly the same results as it would have if A
were originally set to y.

There are only two ways this claim may be false,

1. If variables used during the re-execution of £ but set before E evaluate
incorrectly then the claim is false. However, assumption 2 contradicts this
statement.

2. 1f variables set within £ evaluate incorrectly during the execution of E. This
cannot happen because the updating algorithm uses a temporary-environment-list
which contains all those assertions made during the re-execution of E. When
evaluating variables during the re-execution of E, the system examines the
temporary-environment-list before examining the environment list18,

18. See the description of the algorithm above for a more compiete explanation of the
temporary-environment-list,

82

After re-execution, and the removal of £ from the update list, the assertions on the
temporary-anvironment-list are compared with those on that portion of the environment list
corresponding to the original execution of £ to determine which variables changed. A variable

may change in three ways:

1. It may be assigned a different value than it originally received,

2. It may be set during the re-execution of the event, although it was not set
during the original execution.

3. It may not be set during the re-execution, although it was set before.

in all cases, the events making use of variables whose values have changed are inserted in
precedence time-order into the update list. These events are found by examining ths
function-evaluation-use links associated with the changed variables. Lemma A (below) shows
that all events which must be updated as the resuit of a change in a variable may be found on
the function-evaluation-use list of that variable. An event is not inserted if:

1. The event is before E in precedence. time-order. {Not necessary by assumption
3)

2. The event has already been updéted.

It an event being merged in is superior to an event already on the list, the subevent is
removed,

Since assumption 4 was true before E was re-executed and all events associated with
variables changed by £ were added to the update list, assumption 4 remains valid. Assumption
1 also remains valid since assumption 4 is true, and since all events associated with variables
changed by £ were inserted in precedence time-order. Assumption 3 is valid since if there

were any events between £ and £’ (the event at the head of the update list after tha re-

83

execution of £) which required updating, these events would have been- inserted into the
update list.

Al that remains, then, is to show that assumption 2 remains valid. Recall from the
section on editing environment lists that the environment Eiét pointer is set to the first
assertion in the environment list that is earlier in precedence. time-order than £, 1If
assumption 2 were no longer valid, the values that invalidate it must appear on the
_environment list between the points corresponding to the starts of £ and £. However, since
all values asserted by £ are spliced in and the old values are spliced out, and since no events

between the end of £ and the start of £ are atfected, assumption 2 must still hold.

Claim 2:
If the OWL program being updated terminates under all conditions, then the
update also terminates. That is, the update mechanism will not introduce any
endless loops into a program that always terminates.

This claim is true, since steps corresponding to events from the update list are executed in

ascending procedurel time-order, and there ere only a finite number of steps that may be

updated.

Furthermore, at termination, by assumption 3, the results are correct. By assumption 2,
evaluation of any variable will give the correct value. Finally, by claim 1, the actions taken by

the update are the same as would have been taken if A had been set to y.

Lemma A:

Whenever an event @ must be re-executed due to a change in the value of a
variable, either e or an event superior to e will found on the function-gvaluation-
use links of that variable.

84

Whanever a step uses a variable either in an assignment, a computation, or 2 predicate, that
step is finked to the variable by the function-evaluation-use link. Suppose that there is some
step which must be re-executed due to a change in the value of a variable then either:

1. The step was executed before the update, so that it must be on the function-
, evaluation-use link.

2. The step was not executed before. Then it can only be executed if a superior
predicate evaluates differently than originaily. That implies that some superior
event whose plan contains the predicate will bs on the function-evaluation-use
link.

|
i
.

4.6 Comparison of Different Updating Strategies

in comparing the various methods of updating it is difficult to analyze them
guantitatively, since their performance is very dependent on the state of the knowladge base
and the interdependencies among steps of the OWL code. However, it is possible to state
certain general characteristics of each approach and indicate which ones would be most suited
to various types of applications.

In the introduction to this chapler, two broad types of updating were listed--the
recomputation method and the “support” approach. Each approach has a number of
interesting variations.

The mos;t primitive way to do recomputation is given in the introduction: to change the
value of a variable, the system starts over from the very beginning and recomputes
everything. Since this method throws away all the results of the session (except possibly the
user’s answers to questions), it has the advantage that no data structures need to be kept
around to indicate intermediate states of the program. Thus, when the interpreter is running
normally, there is no additional cost associated with having an update capability. A significant
disadvantage of this approaﬁh is that it is very difficult to write an explanation routine to
describe the changes resulting from the change of a variable value, since the results prior to
the update are thrown away before the update begins. Another disadvantage is that the
entire session must be recomputed, which means that many statements which are unaffected
by the change in the value of the variable will be nonetheless re-executed. This approach to
recomputation, then, is most appropriate when updates are done infrequently, when the
purpose of the update is primarily to correct an answer rather than understand the behavior
of the program if 'a parameter is varied, or when there is little storage available to record the

extra data structures required by other methods.

86

There is also a less primitive recomputation approach. If we are willing to use some
storage to record the state of the system at various points {slowing down the interpreter
slightly to record them) we can speed up the updating process by re-creating the state of the
system at some point prior to the change in the variable and letting the interpreter re-
execute from that point. This approach speeds up the updating process at the cost of
decressed normal execution speed and increased storage costs. How often we record the
state of the system will directly determine both the speed-up we may expect in updating and
the increased cost in storage and normal running time.

The other approach is the "support” method. In this method, dependencies between
various parts of a system are used to determine what must be re-computed when a c'hange
ocecurs. The dependencies may be explicitly hand-coded by the system designer, or they may
be automatically generated by the system itself. Bosyj [19] has recently produced a system
for the design of procurement systems which uses hand-coded dependencies. The advantages
of this approach are that the system overhead imposed is quite low, and the updating strategy
itself is relatively simple. The disaévantage is thet programming the systom iz more
cumbersome with a greater chance for error.

In the remainder of this section, we will compare the procedure used in the OWL
Digitalis Advisor with the approach used in EL, a system using automatically generated
dependencies recently described by Stallman and Sussman [15] This system uses a set of
rules to analyze dc circuits. It makes as many conclusions about the circuit as it can, and then,
it the circuit is not completely sclved, it assumes values for the remaining unknown
parameters in the circuit. If assumed values lead to contradictions, they are changed, and the
analysis continues. EL, like the Digitalis Advisor, attempts to avoid recomputing unaffected
deductions wh-en a change occurs. EL links conclusions to the assertions that were used to

deduce them. All deductions are based on information given by the user, assumptions, or

a7

other deductions. All information given by the user is linked to a special node called GIVEN,
When the user wishes to change an assertion he has méde, the system breaks the link
between the old a‘ssertion and the GIVEN node. Then the system traces over all links, starting
from the GIVEN node, marking the assertions that are still valid}®. Those assertions that are
not marked are removed from the data base.. Those facts that remain are guaranteed to be
valid. The facts that have been removed are saved in a special area. Those facts that are
considered valid are said to be in, while those that have been removed are said to be out.

In comparing ‘Stallman and Sussman’s approach to the approach used in the QWL
Digitalis Advisor, it should be pointed out that EL is a rule-based system, while the Digitalis'
Advisor is a procedural system. This difference in basic system design is reflected in the
updating strategies each system uses. There are, however, some interesting comparisons te
be made between the two,

After the fact garbage coflector has been run, EL is free to use a valid assertion in
making new conclusions, independent of the order in which the original computations were
made. It is not possible to do this in the OWL Digitalis Advisor -~ and it is possible to imagine
a few situations (described below) in which some statements which were not affected by a
change would be unnacessarily recomputed?’. However, the reason EL can use assertions
independently of the order in which they were computed is that it makes the assumption that
the order of computation does not matter. Although this assumption may be valid for rule-
based systems operating in the world of circuits that EL analyzes, it is not always valid in a
procedural system. For example, the value of the body stores goal in the Digitalis Advisor is
very much dependent on its relationship to the order of computation of other steps. The OWL

Digitalis Advisor can model these relationships through use of the environment list.

19. This phase is very similar in concept to the mark phase used by the LISP garbage
collector. For that reason, Stallman and Sussman refer to this routine as the fact garbage
collector.

20. No such situations have, {o my knowledge, ever come up in the Digitalis Advisor.

It was noted above that situations could be imagined where the updating scheme used
in the Digitalis Advisor would re-axecute steps which were not affected by the update. A few
examples will -illustrate how this problem may occur. Suppose that a portion of an OWL

methed has the following schema:

/ \
steplA steplB

L] [

e:tepNA stepMB
- COMPUTE X COMPUTE X

That is, the program makes a decision at point Y, and executes some steps, then it computes
the value of the variable X, Let us suppose that the first time this code was executed the
statements on the left branch were executed, but that the user has cha_nged a variable which
affects the decision at Y so that now during the update, the statements on the right branch
are to be executed. Let us further suppose that the value .o.f X computed by COMPUTE X is
not affected by th.e update. In this case, COMPUTE X will be re-executed (since it is a subsiep
of the right branch), even though the results it gives are unaffected by the changed variable. |

Lot us ook at another example. Suppose we have this schema:

89

steplA steplB
COMPUTE X
\ /
\ /
N/
\/

|
atepN
COMPUTE X

Again suppose that the first time this section was executed the left branch was taken, and that
now a variable has been changed so that during the upda.te the right branch will be executed.
Also suppose that the function COMPUTE X is unaffected by the changed variable. As the
system executes the right branch, the value of X computed during the first execution will be
unavailable to it, since it was computed later in precedence time-order during the original
execution of this fragment, so that COMPUTE X will have to be unnecessarily re-executed.
What should be done about this? Would it be a good idea to have some sort of
mechanism analogous to the fact garbage collector of EL that would go through the code of
the program and mark all values that might have changed? 1 fee! the answer is “probably not”,
First, the situations described above are relatively rare. They have never occurred in the
Digitalis Advisor?l. Second, the updating mechanism woutd have to be more complicated, so
that the hoped for gains in speed might not materialize. It is probably better to allow a small

amount of "unnecessary” recomputation to take place than go to great lengths to eliminate it.

21. In fact, if it is true that COMPUTE X always computes the same value regardiess of the
path taken, then these are just examples of poor programming practice. In both cases, the call
to COMPUTE X could be executed before the decision point Y, eliminating the extra call. 1f
that were done, no "unnecessary” recomputation would result.

.
|

90
4.7 Current Performance and Possible improvements

Although no formal analysis of the updating algorithm has been attempted,k it is possible
to describe qualitatively some of the performance characteristics. In programs which have
many interdependencies between steps, the Digitalis Advisor’s updating scheme is often

slower than the recomputation approach. The slowness is due to the fact that when a variable

"changes in a highly interconnected program many steps must bs re-executed. The process of

inserting events in the update list, finding splice points, and so forth adds a considerable
overheed to the interpreter. Even though fower steps are re-executed, the fact that each one
takes longer results in slower computations. Fortunately, the Digitalis Advisor is relatively
sparsely intercennected.

Another potential problem with the updating scheme involves the environment list.
There is a danger that as programs become more complex, the process of evaluating a
variable wili take an intolerably long time as the environment list becomes lengthy22, To
improve performance, the interpreter could use the first position of the reference list of @
variable as a value cell for that variable’s current value {as it now does when not running in
"updatable” mode). During normal execution of the interpreter, the value ceil would be
examined to evaluate the variable, although the environment list would still be maintainad to
allow updating. During an update, the environment list would be used for evaluation purposes,
but the value cells of changed variables would be altered to reflect their new values. This
approach improves the speed of evaluation without elimin‘ating the advantages of an

environment list,

22. This probiem is similar to the one that cccurs in LISP interpreters which do not use
shallow-binding. In the current Digitalis Advisor, the cost of using the environment list
exclusively is only about a 2% increase in execution time.

91

4.8 Explaining Updates

Since the update process re-executes only significant steps, it is quite easy to provide
the user with a concise explanation of the update. An update-event is linked to all the steps
re-executed during the update, so that finding the relevant events is easy.

The system can use the routines for explaining events described in Chapter 3 with just
a few changes to take account of the special nature of updates. One change is that at certain
decision points, the system compares the decision made during the updete with the decision
made before the update, and informs the user if the decisions differed or were the sa;m. In
addition, if these decisions involve variables with numerical values, the values of the varizble
before and after updating are displayed for the user. Note that it is not always possible to
compare decisions, since the system may go down a different path during an update. The
system compares decisions only it the update step making the decision is directly linked to the
step it updates. This approach makes sense since these decisions will tend to be the most
important ones.

Normally, the explanation system does not display a conditional statement it the
predicate of the statement was false and the statement did not perform any action. However,
if in the course of an update, some conditional statement which set some variables before the
update does not now set those variables, we must explain this to the user, since the values of

_the variables have been changed.

As the system performs an update, it pulls out separate steps from OWL methods.
Méreiy reciting these steps could result in somewhaf confusing explanations, since the
structure of the methods would not be appsrent. For that reason, the explanation system
prefaces its explanation of a step with the OWL method that the step was part of. As an

enasmple, the explanation of step 3 of the sample session uses the name of the OWL method

92

that cantains the step to state "WHILE COMPUTING THE FACTOR OF ALTERATION..." Step

4 is not prefaced since it comes from the same method.

4.9 Procedures, Rules and Updating

A common criticism leveled by those who advocate the use of rule-based systems
against those using procedural systems is that the knowledge embedded within procedures is
trapped in those procedures: it cannot be taken out a bit at a time and used in new situations.
Thus, they argue that procedural systems are less flexible than rule-based systems. ' The
proceduralists respond that it is difficult to impose any structure on a rule-based system, so
that each rule must indicéte exactly those conditions under which it is applicable. Thus, they
say, there is no notion of being able to apply knowledge within some context.

Recently, Davis has used the notion of strategies to impose some structure on rule-
based systems[12]. 1 feel that the updating mechanism outlined in this chapter represenis a
move toward freeing the knowledge embedded within procedures, theraby bringing some of
the flexibility of rule-based systems to a procedural system. Note that in normal operstion,
the OWL Digitalis Advisor is a structured procedural system. This structure makes it easy to
produce clear expianations, and carry on interviews with a physician in an orderly fashion.
Mowever, when an update is performed, the system uses individual steps from procedures, and
puts them together dynamically creating what is, in essence, a new procedure for updating.
Thus, the knowledge contained within the procedures is extracted from them and put together
in 2 new way to perform a new task. The original structure remains, however, and {as was
shown in the‘ preceding section) is still very useful in making explanations of the update.
Thus, the OWL Digitalis Advisor overcomes some of the limitations of a procedural system,

while retaining the advantages of its structure.

93

Chapter 5: Conclusions and Suggestions for Further Research

A very desirable capability for any expert problem solving system is the ability to
explain its reasoning processes. User acceptance Is more easily obtained if the user can
assure himself that the program makes reasonable deductions which result in reasonable
conclusions. An explanation feature may be a valuable pedagogical tool. Finally, it can be
very useful in debugging the problem solving system itself.

The OWL Digitalis Advisor can explain, in English, the procedures it uses and the actions
they take. It can also explain how its variables are set and used. In addition, the Advisor
allows the user to change answers he has given to determine the effect on 'the
recommendations produced by the system. The Advisor can produce a concise explanation of
the changes introduced by a change in an answer. The explanations are produced directly
trom the code it executes. The Advisor is siructured in a manner that attempts te model the
understanding a cardiologist would have of digitalis therapy. The system is not designed to

replace physicians, rather, it is designed to assist them in prescribing digitalis.

5.1 Further Research

There are a number of interesting issues involving explanation that remain unresolved.
The OWL Digitalis Advisor can be extended in a number of ways.

It still remains to be determined how adequate the explanations are that the Digitalis
Advisor provides. The limited experience we have had in demonstrating the program to
doctors and medical students indicates that they generally find’ the éxpianations
understandable, but they are occasionally confused by some of the terms it employs. A

clinical trial is planned in the near future which should provide some answer to this question.

94

The clinical trial should also shed some light on the problem of constructing a mode! of
the user. “. would be good if the Digitalis Advisor could take into account a user’s
sophistication and experience when constructing explanations. An explanation that is
appropriate for a medical student might be much too tedious for a cardiologist.

If the Digitalis Advisor is to be used in a clinical setting, it will have to be able to accept
questions from the user in English. The problem of accepting English input can be attacked in
three stages. For the immediate future, a simple parser could be constructed similar to the
one used in MYCIN[2] After the OWL parser becomes operational, work could begi.n on a
mora sophisticated understanding module that could be more precise in its und:erstanding of
English. Finally, one could envision a quite complex system that would attempt to understand a
user’s confusions. It would then use the model of the user to produc-e an explanation.

The current system produces explanations which are based on the code it executes.

' 'I_'hese explanations often lack a notion of the medical reasons behind the actions. That is, the
system can explain that it reduced the dose because the patient’s level of serum calcium was
below 3.7, but it cannot explain why the level 3.7 is so significant. In fact, 3.7 is an arbitrary
figure to some degree, yet the system should be able to explain that, It is possible that these
explanations could be provided by making sophisticated use of a "medical alternate model”

Currently, the system can explain why it performed a particular action. A medical model
might aid it in answering the corresponding question: "Why didn’t you . if the
medical model were reasonably complete, the system might be able to use it to deal with new
situations. The current program is quite rigid and cannot deal with conditions that were not
anticipated when the program was written. Some of the ideas developed by Carboneli[17]

might be useful in solving this problem.

95

References

1. Winograd T: Computer program for understanding natural language... Al TR-17, 1971

2 Shortliffe El: MYCIN: A rule-based computer program for advising physicians regarding
antimicrobial therapy selection. SAIL AIM 251, 1974

3. Sitverman H: A digitalis therapy advisor. MAC TR-143, 1975
4, Qgilvie R, Reudy & #An educstional program in digitalis therapy. JAMA 22250-85, 1972

5. Doherty JE: Digitalis Glycosides: Pharmacokinetics and their clinical imptications. Ann
Intern Med 79:229-238, 1973

6. Doherty JE, Flanigan WJ et al: Tritiated Digoxin XIV, Enterohepatic circutation, absorption
and excration studies in human volunteers. Circulation 42:867-873, 1970

7. Doherty JE, Perkins WH, Mitchell GK: Tritisted digoxin studies in human subjects. Arch
Intern Mad 108:531-539, 1961

8. Peck CC, Sheiner L8 ot al: Computer-assisted digoxin therapy. N Eng J Med 289:441-446,
1973 '

9. Jeliiffe RW, Busll J, Kalaba R et al: A computer program for digitalis dosage regimens. hMath I
Biosci 9:179-193, 1970 '

10. Jelliffe RW, Buell J, Kalaba R: Reduction of digitalis toxicity by computer-assisted
glycoside dosage regimens. Ann Intern Med 77:891-%06, 1972

11, Sheiner LB, Rosenherg B, Meimon K: Modelling of individual pharmacokinetics for
computer-aided drug dosage. Computers and Biomedical Research 5:441-489, 1972

12. Davis R: Applications of meta level knowledge o the construction, maintenance and use of
large knowledge bases. SAIL AlM-283, 1978

13. Long W: Question snswering in Owl. Automatic Programming Group Internal Memo

96

14. Hawkinson L: The representation of concepts in Owl. Proceedings of the Fourth IJCAI,
1975

15. Stallman RM, Sussman GJ: Forward reasoning and dependency-directed backtracking in
system for computer-aided circuit analysis. Al Memo 380, 1976

16. Mikelsons M: Computer assisted application description. Second ACM Symposium on
Principles of Programming Languages, 1975

17. Carbonell JR, Collins AM: Natural semantics in artificial intelligence. Third 1JCAI, 1973
18. Dahl QJ, Dijkstra EW, Hoare CAR: Structured Programming. Academic Press, 1972

19. Bosyj M: A program for the design of procurement systems. MIT Laboratory for
Computer Science TR-160, 1976

20. Martin WA: A theory of English grammar. MIT Laboratory for Computer Science Technical
Memo (in preparation)

21. Sunguroff A: OWL interpreter reference manual. MIT Automatic Programming Group
Internal Mamo, 1976

22. Hewitt C: Dascription and theorstical analysis (using schemata) of PLANNER: a language for
proving theorems and manipulating models in a robot. MIT Al TR-258, 1972

23. Whorf BL: Language, thought and resality. JB Carroll (ed). MIT Press, Cambridge, Mass.
and John Wiley and Sons, New York, 1956

