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Abstract 

Embedding knowledge is a popular and effective means of 
increasing the power of sophisticated computer applications. 
While the intellectual roots of this method go back to  the late 
1960's, the ideas were first codified, systematized and simpli- 
fied in the 1970's and have led to a large and successful expert 
systems industry in the 1980's. Despite these successes, most 
types of expertise are still extremely difficult to capture and 
many fundamental scientific and engineering challenges remain 
to this field. 

This paper will briefly review the origins and motivations for 
the field, indicate the considerable successes it has achieved, 
outline the many remaining difficulties and highlight a few in- 
dividual research results that point the way to its future devel- 
opment. 

15.1 Expertise 

What is expertise? We can turn to one of the great experts in English 
literature, Sherlock Holmes: 

"It is simplicity itself," said he; "my eyes tell me that on 
the inside of your left shoe, just where the fire-light strikes it, 
the leather is scored by six almost parallel cuts. Obviously 
they have been caused by someone who has very carelessly 
scraped round the edges of the sole in order to  remove crusted 
mud from it. Hence, you see, my double deduction that you 
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had been out in vile weather, and that you had a particularly 
malignant boot-slitting specimen of the London slavey." 

- A. Conan Doyle, Sherlock Holmes, A Scandal in Bohemia 

What is it that can account for Holmes' outstanding analytical ability? 
Certainly, he is capable of brilliant, long, perhaps convoluted logical 
chains of inference. In this simple case, parallel cuts in Watson's shoe 
may be explained by scraping, which implies that they were muddy, thus 
Dr. Watson must have been about in bad weather. Probably more im- 
portant to Holmes' capacity is his wealth of knowledge about the world. 
He must be able to make accurate and detailed observations, or else the 
informative slits in the leather would escape his notice. He must be able 
to interpret these signs and symptoms appropriately, within a context of 
immense knowledge about what is likely and what implausible. He must 
understand customary actions and behavior, habits and social relations. 
In short, his mind is alive with a vivid and crowded model of the world 
he seeks to understand. 

It  is the ability to represent and use such vast and complex interre- 
lationships of real-world knowledge that is the goal of knowledge-based 
systems, and that sets them apart from other computer programs. In 
this paper, we begin by making an argument, first recognized in the 
1960's, that encoding a great deal of this real-world knowledge is es- 
sential to enable computer programs to behave intelligently. We then 
describe a few simple architectures for programs that can exploit large 
bodies of knowledge encoded in stylized forms, and point out the success 
that such programs have had in the commercial marketplace. Next, we 
turn to a number of nagging problems that indicate a need for deeper 
analysis, and illustrate some of the promising directions of work by show- 
ing some current experimental systems that use novel methods to encode 
or use knowledge. Finally, we comment on the practice of "knowledge 
engineering" and the further commercial prospects of expert systems. 

15.2 The Case for Knowledge 

How would a robot respond in the morning to hearing its alarm clock 
ring?' Conventional artificial intelligence (AI) approaches to such a 

lThis example was first suggested to me in a conversation with Joel Moses in the 
late 1970's. 
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problem would suggest that the robot should first make a plan: for 
example, first roll out of bed, then walk to the clock, and hit the "off 
button. Such plans are ordinarily made by a process of search through a 
vast space of possible alternative plans. Figure 15.1 illustrates a typical 
view of a search-based problem solving process. We start in the initial 
situation, I, and have available to us a set of possible operations, Oi, 
each of which leads to a new possible situation, from which we have 
various further possible operations available. In addition, there is a 
goal predicate G that tells us whether a given situation in fact satisfies 
our goal. In the alarm clock example, the initial situation is the robot 
lying in bed, with the alarm clock ringing, and various other possibly- 
relevant facts about the scene (e.g., the locations of the bed, clock, 
intervening obstacles, whether the bed is on the floor or a bunk, . . .). 
Operators include those needed to implement the above plan: getting 
out of bed, walking, pushing buttons on the alarm clock. Typically, they 
also include others with possible relevance to the current task, such as 
throwing light objects, avoiding disturbing noises by covering the ears, 
etc., as well as those with no obvious relevance, such as making a phone 
call, eating a meal, etc. Our goal would be that the alarm clock no 
longer be disturbing the robot. 

A particularly simple planner might, for example, begin with our ini- 
tial scene and consider those situations that would result from taking 
each possible action (operation) from that scene. Because none of them 
leads directly to the achievement of the goal, it could then consider fur- 
ther situations resulting from new operators applied to those situations, 
and so on, until a goal state was reached. If a t  each step there are k 
available operations, there will be kn n-step plans to consider, which is 
quite impractical for even modest values of k and (especially) n. 

Unfortunately, this simple planning-oriented view of problem solving 
can degrade even further as we consider more details in a problem. For 
example, our hypothetical plan begins with the intent to roll out of 
bed. But in fact, how are we to accomplish this? We may have to  con- 
sider numerous means of getting off the bed. Having selected a possible 
method, don't we in fact have to worry about whether we are capable of 
implementing that method in detail? For example, are our robot's mus- 
cles strong enough? Is it possible that our robot's side will be crushed 
by its weight as it begins to roll? Thus when we solve problems by ex- 
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Figure 15.1 
Search space for a robot planning system. I represents the initial state from which 
search begins, arcs outward from any node indicate possible operations, Oi, that may 
be done there, leading to the state at the end of the arc, and G is a predicate that 
tells whether a given state is acceptable as the goal of search. 

plicit planning, we are in the counterintuitive situation where apparently 
adding more knowledge about the domain makes reasoning harder. 

Human thinkers fail to be paralyzed by such possibilities by having 
built up a large repertoire of physical and mental actions that they 
apply seemingly without thinking-unless some feature of the problem 
tips them off to a special need for care. Note that this use of heuristics 

is far from guaranteed. Indeed, the floor may have given way and I 
might fall through by blithely striding toward the clock, my muscles 
may in fact have atrophied during the night from a yet undiscovered, 
rapidly progressive degenerative disease, or a vagrant satellite may be 
about to rip a swath through my house and destroy the alarm clock, 
leaving no need for my intervention. Thus any aspect of the problem 
is subject to changes that are sufficiently drastic that only a careful re- 
evaluation of my situation, capabilities and goals will lead to reasonable 
behavior. Nevertheless, in the vast majority of cases, we act without 
such re-evaluation. 

Fortunately, though virtually nothing of what we "know" is certain, 
much of it is fairly reliable. Furthermore, as argued above, we can- 
not afford the alternative-to figure out everything from first principles. 

Knowledge-based Systems 
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36 
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(C40) TRIGSIMP (%) ; 

(D40) (x3 + 2x + 1) sin3 x 

Figure 15.2 
Example of an interaction with MACSYMA. Command C37 says to integrate the 
formula D36, and command C40 says (after two steps not shown here) to use trigono- 
metric identities to simplify the result, yielding D40 as the integral of D36. 

Indeed, an intelligent agent that always questions its own mental oper- 
ations is likely to be in deep trouble, and we identify such a disturbance 
as psychosis. Thus a wealth of routine knowledge and the faith to apply 
it (mostly) uncritically is necessary for everyday life. 

Large stocks of knowledge are essential in technical fields as well as 
in routine life. This is because creativity is actually relatively rare and 
difficult. Therefore, knowing how to do something is far better than 
being able to figure it out. Most of what we know in science, engineering, 
business, medicine, law, architecture, etc., does not derive from personal 
invention but from being taught and shown. 

15.3 Early Expert Systems 

Two research groups, both facing difficult real-world technical prob- 
lems, independently recognized the need to incorporate large amounts of 
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knowledge into programs in the mid- to late 1960's. The Mathlab Group 
at Project MAC, whose principal leaders at that time were Bill Martin, 
Joel Moses and Carl Engleman, began the development of a powerful, 
comprehensive system for symbolic mathematical manipulation, which 
became MACSYMA. Unlike most of its predecessors, which tended to 
focus on one part or another of the symbolic manipulation task, MAC- 
SYMA provides a broad range of capabilities, including integration, power 
series, various forms of simplification, and support for manipulating ma- 
trices, tensors, etc. Figure 15.2 shows a simple example of an interaction 
with the system. As is the case with much of the best "expert systems" 
work to follow, these researchers were less concerned with fitting their 
efforts into a neat A1 paradigm than with taking a credible cut a t  their 
problem. Moses, in his doctoral dissertation describing the symbolic 
integration program SIN, states their manifesto: 

"We . . . intended no . . . study of specific problem solv- 
ing mechanisms, but mainly desired a powerful integration 
program which behaved closely to our conception of expert 
human integrators." 

"Our emphasis in SIN is on the analysis of the problem 
domain. . . . When SIN is solving . . . difficult problems, [most 
notable is] how quickly SIN usually manages to decide which 
plan to  follow and the straightforward manner with which it 
obtains the solution thereafter." 

SIN followed a three-stage strategy, derived from a careful analysis 
of the problem of symbolic integration. First was a powerful single 
method, an elaboration of integration by parts, that solved most com- 
mon problems directly. Second, and most importantly, SIN tried a set 
of 11 highly-specific methods that attempted to recognize troublesome 
features of the problem that prevented the first method from working, 
and then tried to fix those features locally. For example, failure might 
have been caused by a complex term under a radical; in this case, SIN 

would try applying a specific method to transform that term into a form 
amenable to  further processing. Third, and finally, SIN would resort to  
a general purpose problem solver-one that searched a set of possible 
solution paths. This last stage only rarely came into play, and when 
it did, only rarely helped; if the special "tricks" failed, it was unusual 
for the general purpose methods to succeed. Thus perhaps half of SIN'S 

power came from analyzing the problem of integration and determining 
that the first method was very frequently adequate, and most of the 
other half came from the second stage tricks, which reworked problems 
that had (perhaps temporarily) escaped solution by the first. 

SIN became part of MACSYMA [8] and continues to play an important 
role in that system. Later progress in symbolic integration led to  the 
development of the Risch algorithm, which integrates any integrable 
function in a broad class, and much of this capability is now included in 
MACSYMA. Nevertheless, the ~IN-like first and second stage strategies 
remain because if they work, they generate more compact solutions. 
The system as a whole has grown more and more comprehensive, as 
a user community of thousands of researchers has developed and itself 
contributed to its significant, sometimes idiosyncratic, but highly useful 
expansion. The 1986 MACSYMA Reference Manual, for example, defines 
the function 

bdvaco : generates the covariant components of the vacuum 
field equations of the Brans-Dicke gravitational theory . . . 

which is clearly of use to researchers in a rather narrow domain. 
In a retrospective analysis of MACSYMA'S success, Bill Martin sug- 

gested [17] that building a knowledge-based system consists of identify- 
ing and integrating four categories of contributions: 

1. Powerful ideas: Any system will have, at its core, a small number 
(perhaps less than ten) of outstanding ideas. These are usually 
rather general, such as the notion of recursion or, indeed, the an- 
alyze/treat special cases architecture of SIN. 

2. Great Tricks or Facts of Nature: What makes a system "expert" is 
the ability to exploit some techniques of power within its domain. 
There may be a few tens of such "tricks." The Risch algorithm 
and Euclid's algorithm would certainly qualify. 

3. Unavoidable Engineering Decisions: Typically, there will be one 
or two hundred significant engineering decisions that must all be 
made with a reasonable degree of harmony in order to make the 
system elegant, uniform and usable. An example might be the 
choice in a symbolic manipulation system whether to treat unary 
minus as a special case or whether always to represent expressions 
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of the form -3: as if they were 0 - x. Such decisions may not, 
in themselves, seem very critical, but they have far-ranging conse- 
quences for many other aspects of the system. The unary/binary 
choice for negation, for instance, can have a big impact on the 
design of the simplifier. 

4. Avoidable Engineering Decisions: Martin might well have called 
these postponable rather than avoidable, but they are the myriad 
detailed decisions made in the course of fleshing out the capabil- 
ities of a large system. MACSYMA at around its loth anniversary 
contained over three thousand individual Lisp procedures, each 
embodying several detailed design decisions. 

Of course it is important to pour in the knowledge roughly in the 
order of categories given above. The powerful ideas and great tricks 
define the overall approach to a problem domain and what a program can 
hope to accomplish, and engineering decisions-whether unavoidable or 
postponable-make sense only within those confines. Unfortunately, this 
lesson has often been lost in later systems that emphasize the value of 
uniformity over careful analysis and organization; this is a topic we take 
up again later. 

The other major early expert system came from the collaborative ef- 
forts of a Stanford University group headed by Joshua Lederberg and Ed 
Feigenbaum. DENDRAL'S task was to determine the three dimensional 
structure (isomer) of a chemical compound from its chemical formula, a 
mass spectrum, and perhaps other information such as nuclear magnetic 
resonance (NMR) data. Figure 15.3 shows a schematic mass spectrom- 
eter. At the left, the unknown is fragmented, and the fragments are 
ionized and injected into a magnetic field. The more massive any frag- 
ment, the less its trajectory is curved, therefore the further it travels 
before registering in an array of detectors at the bottom. The num- 
ber of fragments detected at each mass yields the mass spectrum of the 
compound.2 

The naive approach to this task might be to catalog all known mass- 
spectra and then attempt to match each observed spectrum to all the 
known ones. Unfortunately, the required degree of accurate and selec- 
tive matching is probably impossible to achieve, and even if it were, this 

2This is a rather naive description of mass spectrometry. For more details on this 
technique and on DENDRAL itself, see the retrospective volume on that project 1151. 
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method would fail for any compound not in the program's library. Fur- 
thermore, the relationship between structures and mass spectra is not 
arbitrary, but is largely predictable from an analysis of how chemical 
compounds fragment in a mass spectrometer. Merely listing empirical 
associations between structures and spectra fails to exploit this source 
of regularity in the domain, and thus makes such a naive program much 
weaker than necessary. 

Mass Spectrometer 

Mass Spectrum 

Figure 15.3 
A Mass Spectrometer and the Mass Spectrum input to DENDRAL. The mass spec- 
trometer fragments a chemical compound into constituent parts, accelerates them, 
and deflects them in proportion to their mass. The result is a mass spectrum, a graph 
showing for each mass value how many fragments with that mass were detected. 

A significant improvement t o  this scheme formed the initial starting- 
point for the DENDRAL team. They observed that if one knows the 
empirical formula for an unknown, one can enumerate all the possible 
three dimensional structures into which that collection of atoms could 
possibly be organized.3 Next, by modeling the fragmentation process 

31ncidentally, one of the major contributions to chemistry from this project was 
the development of this generator, called CONGEN, or constrained generator. Its main 
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in the mass spectrometer, it is possible to predict which bonds in any 
such structure are likely to break, and thus to predict the sizes of the 
fragments that should be seen in the spectrum. Therefore the problem 
of identifying the structure of an unknown with a given formula reduces 
"merely" to generating all possible structures for that formula, simu- 
lating the effects of the mass spectrometer on each such structure, and 
comparing the predicted mass spectrum to the one observed for the un- 
known. It  is as if the program were generating a custom library for each 
unknown. Note that this is far more flexible than the original scheme. 
Unfortunately, it is also computationally quite intractable, because the 
number of distinct structures possible for an unknown compound may 
run into the millions. 

Nevertheless, human experts working a t  this task were able to iden- 
tify unknown compounds, clearly without examining a myriad possible 
structures. Studying their methods, it seemed that rather than begin- 
ning by enumerating possible structures, the human expert started by 
looking in the observed spectrum for evidence that certain substructures 
were present in the unknown. The expert would then consider only those 
overall structures that included these observed substructures. Similarly, 
the program was designed [5] to: 

"use whatever specialized knowledge and processes and 
whatever auxiliary data are available to infer pieces . . . of 
the solution. . . . For the remaining atoms, . . . use the gen- 
eral structure-generating machinery." 

The program thus contained a large number of specidists-small pro- 
gram fragments that examined the mass spectrum for relevant clues 
and proposed various substructures. These then contained much of the 
expert knowledge of the system and led to performance dramatically 
faster than that of the naive approach. An example of a specialist for 
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Look for two peaks at xl and 2 2  such that 

2. XI  - 28 (= x i )  is a high peak 

3. 2 2  - 28 (= x;) is a high peak 

4. a t  least one of XI or x2 is high. 

Figure 15.4 
A DENDRAL specialist for recognizing a ketone. The conditions correspond to frag- 
mentation of the chain on either side of the C = 0 structure. 

detecting a ketone is shown in Figure 15.4. Because the chain is likely 
to break at either side of the carbon double-bonded to the oxygen, we 
expect to see peaks corresponding to the CO being attached to either 
half of the broken chain and other peaks corresponding to  those halves 
without the CO. Though presumably such evidence could be mimicked 
by an alternative, more complicated explanation, expert chemists, like 
Sherlock Holmes, are willing to take the chance of being misled by such 
outstanding and valuable clues. So is DENDRAL. 

Compound No. of isomers Mass spec. NMR 

Di-iso-pentyl ether 989 18 7 
Di-n-hexyl ether 6,045 125 2 
Bis-2-ethylhexyl ether 151,375 780 2 1 
Di-n-decyl ether 11,428,365 22,366 1 

Table 15.1 
Number of isomers generated using no data, mass spectrometer data only, and mass 
spectra plus NMR data, (excerpted from [5]). 

advances were that it could generate all of the often vast number of isomers without 
repeating any, and that it could take constraints into account. Thus, if the user is 
willing to posit a given structure for some portion(s) of the molecule, CONGEN will 
only generate those complete structures that include the posited portions. Signifi- 
cantly, this is done intelligently: it does not simply generate all possibilities and cast 
out those that do not include the known portions. Instead, it actually uses those 
known portions as the starting point for generating the possible total structures. 
This strategy made CONGEN quite efficient. Not only did this represent an advance in 
theoretical chemistry, but it also provided a computational tool of great value quite 
independent of the DENDRAL system. 

The specialists and the architecture that exploits their observations 
make an enormous difference. Table 15.1 (from [5]) summarizes a few 
of the delightful results of this technique, showing the number of to- 
tal possible isomers, the number consistent with constraints suggested 
only by mass spectrum specialists, and the number consistent with con- 
straints from both mass spectrum and NMR specialists. In the most 
dramatic demonstration of the value of this technique, note the eleven- 
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million-fold reduction of search for the case of Di-n-decyl ether. Even 
when search cannot be eliminated, its reduction by orders of magnitude 
makes possible a simulate-and-match solution to the reduced problem. 

15.4 Expert Systems Architectures 

The success of these early expert systems suggested that one should be 
able to build other such systems for other domains based on the same 
fundamental ideas. Neither MACSYMA nor DENDRAL was built in a way 
that was easy to generalize, however, and it quickly became obvious that 
if expert system construction were to be made a more routine activity, 
we would have to invent standard ways of capturing and combining 
knowledge. The goal was to provide the expert system builder with a 
fixed architecture and to require only that the appropriate knowledge 
be added. Over the course of a half-dozen years of experimentation 
with particular systems, mostly in the medical decision making domain, 
researchers identified a few apparently useful such general architectures: 

a Working backward from a goal to its prerequisites by chaining of 
simple production rules. 

Matching a pattern of observables to predictions of alternative 
(clusters of) models. 

a Responding to the time-course of a changing system. 

15.4.1 Rule-based Systems 

Probably the most influential of these early systems was MYCIN, whose 
task was the diagnosis and prescription of drugs for bacterial infections 
of the blood (bacteremia), and later for meningitis as well. Mycin's or- 
ganization rested on the use of a collection of modular if-then rules, the 
uniform use of backward chaining to trace back from goals to supporting 
arguments, and a model of probabilistic inference called certainty fac- 
tors [24] inspired by Carnap, and later shown to be a variant of Bayesian 
inference with a particularly strong independence assumption [12]. Fig- 
ure 15.5 shows a rule typical of MYCIN'S knowledge base. This rule is 
particularly simple in that it requires only knowledge of various char- 
acteristics of the organism under consideration to derive another of its 
characteristics, identity. 

I F  t h e  organism 
1) s t a i n s  grampos 
2) h a s  coccus shape 
3) grows i n  chains 

THEN 
There i s  suggest ive evidence (.7) t h a t  t h e  i d e n t i t y  
of t h e  organism i s  s t rep tococcus .  

Figure 15.5 
A MYCIN rule relating characteristics of an organism to its identity. 

I F  
1) The s i t e  of t h e  c u l t u r e  is t h r o a t ,  and 
2) The i d e n t i t y  of t h e  organism is  s t rep tococcus  

THEN 
There is  s t r o n g l y  suggest ive evidence c.8) t h a t  t h e  subtype 
of t h e  organism i s  not group-D. 

F igure  15.6 
A MYCIN rule requiring contexts for its proper interpretation. Context must assure 
that the organism and the culture mentioned in the rule are in fact related; i.e., that 
the organism grew out of that culture. 

Figure 15.6 requires a somewhat more complex method of inter- 
pretation because it refers to not just a single entity but also t o  a 
culture. In general, there may be many cultures and many organ- 
isms being considered, but it only makes sense to apply a rule to  
those cultures and organisms where the organism was grown out of 
that particular culture. MYCIN therefore introduces a context mech- 
anism, depicted in Figure 15.7, that helps control the matching of 
rules only with appropriate bindings of related variables. It  assures 
that another rule, which might mention a culture, an organism and 
a drug being used to treat it, can be applied to  only the three sets 
of related entities: {culture-2, organism-2, drug-I), {cul ture-2,  
organism-2, drug-2) and {culture-3, organism-4, drug-3). 

The beginning of a typical MYCIN consultation is shown in Figure 15.8. 
After collecting initial data about the patient, including name, age and 
sex, the program sets as its goal to determine whether there are any sig- 
nificant infections present in this patient that require treatment. Then 
it hands control over to its general backward-chaining mechanism. In 
this case, that will seek rules in the knowledge base that can conclude 
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Operation-l Drug-4 *--- 
Figure 15.7 
A typical MYCIN context, showing the relationships between the patient, cultures, 
organisms and drugs. 

whether there is a significant infection present. Among the premises 
of such a rule might be attributes of the culture from which an organ- 
ism was drawn, as well as attributes of the organism, the patient, any 
currently-active therapies the patient is receiving, etc. In seeking any of 
these additional data, the program can initiate further backward chain- 
ing, tracing through the rules capable of confirming or denying each of 
these subsidiary questions in turn. 

In general, backward chaining follows a highly recursive pattern: 

e To find out a fact: 

- If there are rules that can conclude it, try them. 

- After the rules (if any) have been tried and the fact is still 
not known, ask the user. 

To "try" a rule: 
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-------- PATIENT-I-------- 
1) Pat ient ' s  name: FRED SMITH 
2) Sex: MALE 
3) Age: 55 
4) Have you been able t o  obtain posit ive cul tures  from 

a s i t e  a t  which Fred Smith has an infection? YES 
-------- INFECTION-I-------- 

5) %at i s  t he  infection? PRIMARY-BACTEREMIA 
6) Please give the  da te  when signs of INFECTION-1 
appeared. 5/5/75 
The most recent pos i t ive  culture associated with t h e  
primary-bacteremia w i l l  be referred t o  as:  
-------- CULTURE-l-------- 

7) From what s i t e  was t h e  specimen f o r  CULTURE-I 
taken? BLOOD 
8) Please give the  date  when t h i s  culture was - 
obtained. 5/9/75 
The f i r s t  s igni f icant  organism from t h i s  blood cu l tu re  w i l l  be 
called : 

-------- ORGANISM-I-------- 

9) Enter the  iden t i ty  of ORGANISM-1. UNKNOWN 
10) Is ORGANISM-1 a rod or  coccus (e tc .  ) ?  ROD 
11) The gram s t a i n  of ORGANISM-I: GRAMNEG 

Figure 15.8 
Beginning of a MYCIN consultation. After determining the patient's name, sex and 
age, MYCIN begins to identify the relevant objects for its investigation, and to ask 
questions by chaining backward via its rules from the fundamental goal: determine 
if there are any significant organisms requiring treatment present in this patient. 

- Try to find out if the facts in the premises are true. 

- If they all are, then assert the conclusion(s), with a suitable 
certainty. 
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INFECTION-1 i s  PRIMARY-BACTEREMIA 
The i d e n t i t y  of ORGANISM-1 may be 

<1> PSEUDOMONAS-AERUGINOSA 
<2> KLEBSIELLA-PNEUMONIAE 
<3> E. COLI 
<4> BACTEROIDES-FRAGILIS 
<5> ENTEROBACTER 
<6> PROTEUS-NON-MIRABILIS 

. . .  
CRec 11 My p r e f e r r e d  therapy recommendation i s  a s  fol lows:  

I n  o rder  t o  cover  f o r  i tems (1 2 3 5 6>: 
Give GENTAMYCIN 
Dose: 119 mg (1.7 mg/kg) q8h I V  [or I M ]  f o r  10 days 
Comments: Modify dose i n  r e n a l  f a i l u r e  

I n  o rder  t o  cover f o r  i tem <4> 
Give CLINDAMYCIN 
Dose: 595 mg (8 .5  mg/kg) q6h I V  [or I M ]  f o r  14 days 
Comments: I f  d i a r r h e a  o r  o ther  G I  symptoms develop, p a t i e n t  

should be eva lua ted  f o r  poss ib le  pseudomembranous c o l i t i s .  

Figure 15.9 
MYCIN'S therapy recommendation. Recommendations with the fewest number of 
drugs that nevertheless cover for all the suspected organism identities are preferred, 
but other, lower-ranking recommendations may also be displayed. 

In addition, the context mechanism will cause MYcIN to ask about the 
presence of additional cultures, organisms or drugs if premises of a rule 
refer to such an object that does not yet exist in the context. 

After reaching a diagnostic conclusion, MYCIN turns to making a ther- 
apeutic prescription (Figure 15.9) based on trying to minimize the num- 
ber of antimicrobial agents needed to do a good job of knocking out the 
most likely and most dangerous suspected infecting organisms. 

Operation of this general scheme with MYCIN'S stock of 400-800 rules4 
led to behavior that was arguably indistinguishable from that of expert 
physicians and that was often clearly superior to that of lesser-trained 
physicians [33]. In addition, by keeping track of what rules were run 
in which situations, the program can generate moderately sophisticated 
explanations of its reasoning. Figure 15.10, for example, shows a trace 
of how one particular rule, RULE163, was used but turned out not to 
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** Did you use  RULE 163 t o  f i n d  out anything about  ORGANISM-I? 

RULE163 was t r i e d  i n  t h e  context of ORGANISM-I, bu t  it f a i l e d  
because it i s  no t  t r u e  t h a t  t h e  p a t i e n t  has  had a geni to-urinary 
t r a c t  manipulat ive procedure (clause 3 ) .  

** Why d i d n ' t  you consider  s t reptococcus a s  a p o s s i b i l i t y ?  

The fo l lowing  r u l e  could have been used t o  determine t h a t  t h e  
i d e n t i t y  of ORGANISM-1 was s t reptococcus:  RULE033 

But c lause  2 ( t h e  morphology of t h e  organism is  coccus) was 
a l ready  known t o  be  f a l s e  f o r  ORGANISM-1, s o  t h e  r u l e  was never  

t r i e d .  

Figure 15.10 
Explanation from a MYCIN consultation. The first question investigates how a par- 
ticular rule was (or, in this case was not) applicable to a case. The second explores 
why MYCIN did not reach a particular conclusion. 

be relevant, and why the system did not reach a conclusion that the 
questioner might have considered plausible. Our intuition has always 
been strong that such abilities of programs to  explain and justify their 
behavior would turn out to be critical to  their acceptance [1][27], and 
more recent surveys of physicians' attitudes support this intuition [30]. 

15.4.2 Frame Matching 

For diagnostic reasoning, the simplest heuristic is: "it is what it looks 
like." Figure 15.11 suggests what happens when a description of the 
facts about a case are overlaid onto a description of a hypothesis. If the 
hypothesis is appropriate, there will be a reasonably good fit, though 
typically some predictions made by the hypothesis will not be found in 
the patient data, and those data may contain features not explained 
by the hypothesis. These discrepancies can be used as a good source 
of guidance to  help collect needed additional information to reach the 
correct diagnostic conclusions efficiently. 

The Present Illness Program (PIP), built by our group in the early 
1970's [22], embodied this view: 

1. From the patient's initial complaints, guess a suitable hypothesis. 

2. Use the current active hypotheses to  guide questioning. 
4The knowledge base grew with time, as the domain was extended to include 

meningitis. 



Chapter 15 Knowledge-based Systems 

Figure 15.11 
Pattern matching as a basis for diagnostic reasoning. In the absence of a perfect 
overlap between a case and a hypothesis, differences may be used to drive information 
acquisition. 

3. Failure to satisfy expectations is the strongest clue to a better 
hypothesis. Concentrate on the traditional notion of differential 
diagnosis, a means of rapidly shifting attention from an incorrect 
hypothesis to a better, related one when discrepant information 
arises. 

4. Hypotheses are activated, de-activated, confirmed or rejected 
based on (a) logical criteria and (b) probabilities resulting from 
the presence or absence of findings local to a hypothesis and causal 
relations to other hypotheses. 

Figure 15.12 shows the information flows centered on hypotheses in 
PIP. Triggers, or strongly evocative findings, implement the guessing 
strategy. Thus an important and specific fact that arises early in the 
consultation can immediately focus the program's attention to the right 
problem. Once a hypothesis is active, it can suggest others of its ex- 
pected manifestations as reasonable foci for the program to question the 
user about. Further confirmation for a hypothesis can also come from 
the program's coordinated beliefs in the presence of related hypotheses. 
PIP made its decisions to accept or reject a hypothesis either on the ba- 
sis of logical criteria-the most effective method, when available-or by 

Scoring 

Hypothesis 

'~ifferential ' 
Causally and Diagnosis 

Associationallv Heuristics 
I Related ~yp's-  1 

Figure 15.12 
PIP'S components and information flows. The knowledge base is organized around 
hypotheses. Triggers and other manifestations may evoke hypotheses, which may, in 
turn, suggest asking about other manifestations. Logical criteria and a scoring func- 
tion help determine whether a hypothesis should be accepted or rejected, and how 
strongly it should be pursued. Links to other hypotheses include a set of causal rela- 
tions and also specific heuristics for how to change the program's focus of attention 
when it believes it has been misled by earlier evidence. 

a complicated probabilistic scoring function that rewarded for the pres- 
ence of expected findings and expected related hypotheses and penalized 
for their absence. 

Because PIP'S underlying focus of attention was strongly influenced 
by the guesses it made based on triggering from features of the input,5 
it was important for the program to have a graceful way of recovering 
from an incorrect guess. Our studies of expert human problem solving 
in medicine [13] suggested that simple backtracking is not what expert 
physicians do in this case. Instead, they appear to have "compiled" a 
set of recovery routines that say "Ah, if I've been misled into pursuing 
hypothesis x and the following discrepancies arise, this means I should 
be pursuing y instead." It may well be that learning these recovery 
heuristics is an important key to the difference between the expert and 
novice decision maker. Having them a t  hand allows the expert to  make 
more rapid guesses, possibly solving a problem very efficiently, because 
he or she knows that if the guess turns out to be problematic, there 
are probably good ways to recover from it. The novice, by contrast, 

5This is somewhat reminiscent of DENDRAL. 
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NEPMLOTIC SYNDROME, a c l i n i c a l  s t a t e  
FINDINGS : 

*1. Low serum albumin concent ra t ion  
2 .  Heavy p r o t e i n u r i a  

*3. > 5  @/day p r o t e i n u r i a  
*4. Massive symmetrical edema t h a t  i s  p a i n l e s s  and not r e d  
*5. F a c i a l  o r  p e r i - o r b i t a l  symmetric edema 

6. High serum c h o l e s t e r o l  
7. Ur ine  l i p i d s  p resen t  

IS-SUFFICIENT: Massive peda l  edema & >5 gm/day p r o t e i n u r i a  
MUST-NOT-HAVE: P r o t e i n u r i a  absent  
SCORING . . . 
MAY-BE-CAUSED-BY: AGN, CGN, nephrotoxic drugs, i n s e c t  b i t e .  

i d i o p a t h i c  nephro t ic  syndrome, lupus ,  d iabe tes  m e l l i t u s  
MAY-BE-COMPLICATED-BY: hypovolemia, c e l l u l i t i s  
MAY-BE-CAUSE-OF: sodium r e t e n t i o n  
DIFFERENTIAL DIAGNOSIS: 

neck v e i n s  e leva ted  -> c o n s t r i c t i v e  p e r i c a r d i t i s  
a s c i t e s  p resen t  -> c i r r h o s i s  
g r o s s  hematuria  -> r e n a l  v e i n  thrombosis 

Figure  15.13 
PIP'S frame for nephrotic syndrome. Among the findings, an asterisk marks triggers. 
The scoring clause has been suppressed to save space. 

must explore hypotheses more thoroughly and systematically, for fear of 
getting stuck at a bad hypothesis and having nowhere to  turn except to  
start over from the beginning. 

Figure 15.13 shows PIP'S model of nephrotic syndrome. Note the dif- 
ferential diagnosis clues at the bottom. For example, if this hypothesis 
is being considered and evidence arises for ascites (fluid accumulation in 
the abdomen), then cirrhosis should be considered as an alternative. 

PIP was the first expert system to break into the medical litera- 
ture [22], and demonstrated reasonable performance and interactive style 
in its narrow domain of specialty. The INTERNIST-I program [19] devel- 
oped a t  the University of Pittsburgh at around the same time used 
similar techniques, though with more of an emphasis on the systematic 
sorting of findings and their relations to competing and complementary 
hypotheses rather than the guess/correct scheme of PIP. The knowledge 
of INTERNIST-I, which has been developed extensively through the mas- 
sive efforts of Dr. Jack Myers and his associates, is now also used in a 
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Figure  15.14 
Feedback loop in therapy in the Digitalis Therapy Advisor. Solid arrows represent the 
flow of control, cycling clockwise around the therapy loop. Dashed arrows represent 
data flow to and from the patient-specific model. 

medical educational program called QMR (Quick Medical Reference) [18]. 
Unlike PIP and INTERNIST-I, both of which guide the interaction to help 
elicit data that seems most useful to confirm or deny hypotheses under 
consideration, QMR takes a nondirective approach. It helps to  interpret 
the significance of data reported to it, to compare various hypotheses, 
and to examine its large knowledge base. Control of the interaction, 
however, rests completely with the user. 

15.4.3 Feedback in Therapy 

Another general model suggested itself in our work on a program for 
advising physicians on the appropriate use of the heart drug digitalis, 
given to patients with certain cardiac arrhythmias and heart failure [7]. 
The early diagnostic programs (like MYCIN, PIP and INTERNIST-I) all 
considered their task to be a one-shot consultation. For therapy, the 
most important ability is not to make the right one-time suggestion but 
to analyze what is happening to the patient over a longer period and to  
adjust therapy to best meet the treatment's goals. Figure 15.14 shows 
a schematic diagram of this feedback loop. We begin with an initial 
description of the patient's situation, recorded in the patient-specific 
model (PSM). This model is used repeatedly as the source of informa- 
tion about the important factors to consider at any point, what has 
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actually happened to the patient, the program's interpretation of those 
events, and the program's plans and current concerns. The model is 
repeatedly updated as therapy proceeds, both when new facts are deter- 
mined and when new conclusions are reached. This record is intended 
to parallel the problem-oriented medical record, suggested by Weed [31] 
as the appropriate organization for keeping hospital medical records in 
general. 

Control flows clockwise around the loop. Each treatment cycle begins 
by assessing the patient's condition (as represented by the PSM). That 
assessment is stored in the PSM and forms the basis for the program's 
next step, to formulate and issue its treatment recommendations. These 
recommendations and the program's expectations of what will happen 
in the course of therapy are also recorded in the PSM, for later compar- 
ison against what actually takes place. Of course no user is obliged to 
follow these recommendations, so after an appropriate time has passed 
(based either on the program's estimate of when some event of inter- 
est should have happened or the autonomous request of the user for a 
further evaluation) the program determines what actions were actually 
taken and what consequences followed. By comparing what happened 
against the expectations stored in its model, the program can quickly 
assess whether therapy is proceeding appropriately or needs to be sig- 
nificantly modified or abandoned. This program combined a knowledge 
of the pharmacokinetics of the various preparations of digitalis with a 
set of expert-provided heuristics about how to balance the effectiveness 
versus the risk of side effects of therapy. It reproduced quite well the 
treatment style of the expert on which it was patterned, and although 
its conservative style was somewhat controversial with other experts, 
there were indications that it was less liable than human physicians to 
make life-threatening decisions by overlooking important factors in the 
therapy plan [29]. 

15.5 State of the Art in the Late 1980's 

The good news is that today the application of 1970's technology-made 
far more attractive by 1980's additions of graphics, smart user interfaces 
and ubiquitous availability on personal computers-is good enough to 
solve many interesting, worthwhile problems. 

Knowledge-based Systems 

Ed Feigenbaum and his colleagues, in their recent book The Rise of 
the Expert Company [6], report that there are now on the order of 1500 
expert system applications in actual use, with a few thousand more in 
prototype or field testing. These systems are being used for a num- 
ber of distinct reasons, including assuring that consistent and thorough 
consideration is given to all relevant factors in decision making, cap- 
turing and distributing rare or vanishing expertise, and enabling more 
customized products and services to be assembled in response to  the 
needs of customers. Despite the wide variety of reasons for using expert 
systems and the broad range of their application, a small number of 
central tasks come up over and over again: 

Diagnosis: Much as in the early systems described above, the problem 
is to determine an appropriate explanation for some (abnormal) 
constellation of observables. The topic is often computing a short 
term response to abnormal or dangerous conditions, for example 
in a chemical plant or power station, in quality control monitor- 
ing, etc. 

Selection: Often the central task is to select an appropriate part, the 
right regulation to apply, the most apt form letter. Usually there 
are many possibilities that satisfy some set of requirements. First 
one must weed out the ones that do not, then apply some optimiz- 
ing (or alternatively, satisficing, in Simon's terminology) criterion 
to choose one. Often, such systems are a means of formalizing 
corporate rules and regulations, to  get consistent and explainable 
behavior across the organization. Examples include insurance, 
credit authorization, personnel, etc. 

Configuration and planning: Configuration tasks are ones in which 
either a partial design must be completed in routine ways or a 
complete design checked and adjusted to  meet certain constraints. 
A well-known example is the XCON system of Digital Equipment 
Corporation, which is used to check the configuration of all orders 
for Digital computers. Complexity in such tasks arises principally 
from interactions among the various interdependent choices that 
must be made. Scheduling, which is in a sense the configuration 
of a set of time-dependent activities, has a similar character. 
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Feigenbaum points out that, perhaps contrary to initial expectations, 
if we classify projects as elephants, buffaloes or rabbits, depending on 
their size and scope, there are very few elephants, a small number of 
buffaloes and a large preponderance of rabbits. Thus in fact, it is often 
the simplest of the system-building ideas from the research lab that 
have been packaged into convenient tools for the end-user and are now 
being used to create quite small applications that automate, check on 
or augment the capabilities of the worker who developed the system 
for himself. Though the continuing investment in Digital's XCON is of 
the order of several million dollars per year and the estimated saving 
resulting from it is tens of millions per year, most systems that have 
been built require an investment of no more than a few tens of thousands 
of dollars (a few man-months of effort) and yield returns that pay back 
that investment in well under a year. It seems that universally, when 
a project succeeds at all, its benefit is at least an order of magnitude 
greater than its cost. 

What remains to  be done, then? Why haven't we simply declared the 
field a success, turned it over to commercial interests and moved on? 

15.5.1 Fragility of Encoded Knowledge 

To illustrate some of the remaining problems, let me cite an anecdote 
from the late 1970's' in which one of my students decided to impress 
Marvin Minsky with a developmental version of PIP. Marvin, being 
somewhat of a joker, responded to the program's request for an ini- 
tial complaint by typing the word "sick." Much to everyone's surprise, 
the program's immediate comeback was "Has he had his teeth cleaned 
lately?" The student's puzzlement only grew when he used the pro- 
gram's explanation capabilities to trace back through its logic to see 
what strange and unlikely path it followed to lead it to this unexpected 
question. 

Alas, though this is a program about the diagnosis of kidney dis- 
ease, it has no knowledge of the word "sick." Provided with a spelling 
checker to help ease problems of users mistyping medical terms, the 
program happily accepted the word "sick" and turned it into "sigmoi- 
doscopy," apparently its best match at correcting the misspelled word. 
Sigmoidoscopy happens to be an unpleasant procedure in which a tube 
is inserted from the bottom up in your intestinal tract to see if there are 

abnormalities indicating possible disease. The program's "logic" then 
proceeded roughly as follows: 

1. Sigmoidoscopy can introduce bacteria into the blood stream (if 
the tube scrapes the lining of the intestine) and might thus lead 
to bacteremia. 

2. Bacteremia having been suggested as a hypothesis worthy of pur- 
suit, the program then tried to find other evidence that it may be 
present. 

3. Dental cleaning in the recent past is commonly observed in patients 
with bacteremia. In fact, it is another way of introducing bacteria 
into the blood stream. The program, knowing very little of interest 
about the patient at this point, wondered if it could thus find 
evidence to  help confirm the only hypothesis it had been able t o  
generate. 

Of course its reaction is inappropriate and there were a number of tech- 
nical corrections that we could impose to eliminate this particular unan- 
ticipated bad behavior. For example, the direction of causality needed 
to be clearly marked in associations such as those between dental clean- 
ing and bacteremia. Though in general seeking additional consequences 
of a condition is a good way to help establish its presence, seeking ad- 
ditional possible causes of a condition for which a good possible cause 
is already established is not reasonable. Minsky's conclusion from this 
episode, which can hardly be dismissed, is that the real problem is that  
the program has no common sense. According to his view, independent 
of its particular expert medical knowledge, it should be able to deter- 
mine that the above behavior violates some common understanding that  
all people, not only physicians, share. 

In a similar vein, Clancey discovered that although the knowledge base 
of MYcIN was adequate to lead to good diagnostic performance, trying 
to use its knowledge to  help teach medicine illuminated many pitfalls. 
Consider, for example, the rule in Figure 15.15. Among the five premises, 
there appear a t  least the following component bits of knowledge: 

1. Bacterial meningitis in an alcoholic is often caused by diplococcus- 
pneumoniae. 

2. Do not rely on this if you know better. 
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3. Assume that children are not alcoholics (or at least have not been 
long enough for the purpose of the first relationship to hold). 

The existing rule is perfectly adequate to cause MYCIN to behave as if it 
understood these distinct facts. In reality, however, it does not. When 
trying to build a teaching program from such jumbled knowledge, we 
can easily be misled into the sorts of common-sense-violating behavior 
we encountered above. For example, one possible reading of the rule is 
that being young somehow protects you from the observed association 
that alcoholism makes diplococcus-pneumoniae meningitis more likely. 

Some, such as Minsky, have argued that problems of this sort are 
endemic to  the enterprise of trying to build expert systems, and that 
only a set of fundamental advances in our ability to understand and 
model common-sense reasoning has any hope of overcoming such dif- 
ficulties [20]. In short, this argument holds that one cannot build a 
robust expert without first having built a robust generalist. Thus what 
prevents human doctors (for example) from making silly mistakes of the 
sort illustrated here is not great expertise, but much common experience 
acquired more through childhood and adolescence than through post- 
graduate training. Others believe that a more conventional engineering 
approach will yield significant advances. According to this view, what 
we think of as common sense is really just the accumulation of a vast 
stock of knowledge, orders of magnitude greater than what has thus far 
been encoded in any expert system [14]. Thus, if only we could catalog 
and encode such a body of knowledge, one could build new programs not 
"from scratch" but from that substantial base. The task of collecting 

I F  1) the infection is meningitis 
2) the subtype of meningitis is bacterial 
3) only circumstantial evidence is available 
4) the patient is at least 17 years old 
5) the patient is an alcoholic 

THEN 
There is suggestive evidence (.7) that diplococcus-pneumoniae - - 

is an organism causing the meningitis. 

Figure 15.15 
A MYCIN rule that confounds several distinct issues, including diagnostic strategy, 
default reasoning, and social conventions about whether to ask if children are alco- 
holics. 
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this knowledge base is daunting. It involves not only the identification 
of an encyclopedic volume of information but also the development of an 
appropriate formalism to encode it. Nevertheless, such ambitious tasks 
are now underway in at least two groups [4][14]. 

15.5.2 Complexity in the Real World 

A second, and a t  least as serious, difficulty with the current state of 
the art is that many of the methods we can now apply work very well 
on relatively straightforward problems but fail on more complex ones. 
Consider the problem of medical diagnosis as we increase its complexity 
in the following scenarios: 

1. Suppose we could guarantee that any patient was either healthy 
or had exactly one disease. In this ideal world (for the diagnosti- 
cian), the process of diagnosis is relatively easy. Every observation 
may revise our relative degree of belief in every hypothesis but 
eventually a single hypothesis must explain all the known data. 

2. In a slightly more complex world, suppose a patient could have 
more than one disease, but we know that no two diseases ever 
effect each other or ever share common symptoms. In this case, 
the bookkeeping required for diagnosis becomes more complex and 
we can no longer use arguments against one disease as arguments 
for another. 

3. In the real world, patients may have not only multiple disorders 
but also those disorders may interact strongly. This raises seri- 
ous problems of how to  allocate "credit" for an observation to  any 
of a set of diseases that may cause it, how to  deal with issues of 
"partial credit," where no disease by itself may explain an obser- 
vation but any of a number of sets of diseases may combine t o  
do so. Therapeutic interventions often share the character of such 
interacting diseases-after all, the therapy is intended to  affect the 
manifestations of the disease against which it is targeted, and so 
the patient's actual condition will be some net result of the effects 
of the disease and effects of the therapy. 

Clearly, the complexity of the diagnostic task increases greatly as we 
loosen the constraining assumptions about the world. Among the early 
diagnostic programs described above, MYCIN and PIP do not deal well 
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with any situation more complex than scenario 1. INTERNIST-I provides 
the additional machinery to tackle some of the complexity of scenario 2. 

Sometimes the specific goals of a project help ameliorate deficiencies 
in its techniques. For example, MYCIN had difficulty differentiating be- 
tween the case of a single infection by an organism whose identity was 
in doubt and a multiple infection in which each of two or more infecting 
organisms are simultaneously present. Fortunately, in dealing with bac- 
terial infections, the risks of therapy are normally much smaller than the 
risks posed by an untreated organism. As a result, it happens that the 
appropriate response to either of these situations is to treat for all of the 
possible identities of all suspected organisms. If it turns out that only a 
single infection is present, treating for all will surely cover the right one, 
whereas if there are multiple infections, treating for all will also cover 
all the right ones. Thus, by a fortunate truth about the domain, this 
potential weakness in the program does not matter. Alas, such strokes 
of good luck do not generalize well. For example, if one of the possi- 
ble infecting agents requires treatment with a drug with possible serious 
morbidities, then a human expert would put a much greater emphasis 
on distinguishing the two situations posed here. 

Among the generalizable models of expert reasoning that are under- 
stood thoroughly enough to have reached the commercial marketplace, 
very few provide facilities that go beyond the single-problem scenario 
we have outlined. And virtually none help with problems of rampant 
interaction suggested in the third scenario. This one is truly difficult, 
as we have come to realize in some of our work on the diagnosis and 
therapy of acid/base and electrolyte imbalances. Consider the following 
medical facts: 

Diarrhea causes bicarbonate (alkali) loss (lowered pH). 

Vomiting causes acid loss (increased pH). 

As a result, a patient who has diarrhea and is vomiting may in fact 
exhibit a normal pH. To capture this in a MYCIN-like system, we would 
need some equivalent of 

IF the patient  has a normal pH 
THEN There i s  suggestive evidence tha t  the  pa t ient  is  suffer ing  

from diarrhea and from vomiting. 

which is, on the face of it, an absurd interpretation of medical knowl- 
edge. Because virtually any abnormality may be canceled out by another 
under appropriate circumstances, this path Ieads to  saying that every 
normal finding suggests a vast number of these canceling combinations 
of diseases. 

Clearly, something more fundamentally sound is needed. 

15.5.3 Sources of Be t t e r  Models 

An expert physician knows a broad range of material. He or she has 
learned the "basic science" of medicine, including college and then med- 
ical school courses in biochemistry, physiology, etc. Medical school 
teaches the specifics of medicine: pathophysiology, pathology, genetics, 
etc. The expert has also learned through a process of clerkships, intern- 
ship and residency the field's state of the art or practice: the available 
tests, treatments and procedures. In addition, experience teaches much 
of value: how to apply one's knowledge most effectively, what occurs 
commonly (learning not to guess "zebra" when hearing hoofbeats, in 
the parlance of the field), local wisdom as distilled by colleagues about 
the preferred ways of approaching various problems, etc. 

Someone embarking on research in the field of medical decision making 
might in fact be tempted to approach its problems from the traditional 
scientific front: build appropriate models of what is known, then apply 
that knowledge to  the individual patient to answer any questions. For 
example, decades of research have led to fairly specific models of some 
aspects of human physiology, such as the control machinery of the cir- 
culatory system [9]. Why not plan therapy for heart disease, then, by 
adjusting such a model to the patient at hand and simply predicting the 
model's response to  all therapies under consideration? Alas, the typical 
physiologic model contains hundreds of parameters, and determining 
their values for an individual requires much more data than could be 
reasonably collected. In fact, collecting those required data might not 
only be tedious but could well require challenging the patient's system 
in ways that are unacceptably risky. Yet in the previous section we have 
argued that ignoring true models that underlie our experiences leave us 
with too little knowledge to handle tough cases. 

For most domains, not just for medicine, we really do not yet know 
how to capture the desired breadth and depth of knowledge in a com- 
puter, or how to develop programs that effectively call forth just the 
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right parts to  produce expert behavior. The following sections present 
short descriptions of a number of interesting ideas that have evolved and 
been explored in the past few years. The first batch will be drawn from 
medical reasoning, whose difficulties make it the area that has demanded 
the most of evolving A1 methods. The second batch will illustrate that 
similar needs and opportunities exist as well in other areas of knowledge- 
based systems. Each project has exploited some insight about its domain 
and task to  make possible the use of a representation and a reasoning 
method that is intermediate between the simple early systems we have 
seen and the demanding formal models of scientific investigation. The 
common thread seems to  be finding the right level of detail and precision 
and ignoring just those factors that can be omitted from the analysis 
while still getting significant value from it. 

15.6 Sophistication in Medical Reasoning 

We examine a handful of research projects that appear to point in appro- 
priate directions for progress in A1 applied to medical reasoning. The 
first addresses the problem we pointed out earlier: how to deal with 
disease hypotheses that interact strongly. The second concerns the use 
of qualitative versions of physiological models to derive results that are 
useful clinically without having to resort to  massive data collection. The 
third introduces a fundamental advance in thinking about probabilistic 
relationships. 

Unfortunately, each of these projects exists in isolation of the others 
and it is a difficult but important research goal to formulate ways of 
achieving simultaneously in a single system the advances of each. 

15.6.1 Multi-level Models in Acid/Base Diagnosis 

In critiquing the inadequacies of first-generation expert systems, we men- 
tioned the need for diagnostic programs to deal effectively with interac- 
tions among disorders, even ones that might effectively cancel out some 
of their abnormal effects. Ramesh Patil, in his MIT doctoral thesis [21], 
introduced several important notions that combine effectively. First is 
that, at  least in domains in which some of the knowledge and obser- 
vations are quantitative, the program must be able to deal explicitly 
with not only the presence or absence, but the severity of any abnor- 

malities. For acidlbase disorders, where a t  least some of the models are 
well-known and quite precise, one may even make quantitative calcula- 
tions to assure consistency in the model. For example, in a hospitalized 
patient with severe diarrhea, the quantity and composition of the fluid 
lost may have been measured and recorded, allowing an accurate assess- 
ment of the body's losses of fluid, bicarbonate, potassium, etc. Even if 
the quantities are not known with precision, requirements of material 
balance and similar simple notions can help point out unsuspected but 
important components of a complex disease state. For example, if the 
degree of observed acidemia is inconsistent with the known sources of bi- 
carbonate loss, the program can legitimately speculate about offsetting 
factors. In the patient with diarrhea, to return to our earlier example, 
the absence of a low serum pH would suggest some other mechanism of 
bicarbonate gain or hydrogen ion loss. Thus the program might investi- 
gate whether the patient has also suffered from vomiting to a sufficient 
extent that the loss of the expected additional hydrogen ion can be 
explained.6 In this way, a normal pH can indeed serve as supporting 
evidence for the diarrhea-and-vomiting scenario, but without the need 
to encode that and all other such offsetting pairs in the program's asso- 
ciational database. 

The second major contribution of this work was to  introduce the no- 
tion of multi-level models. As suggested in Figure 15.16, it is often 
very useful to  be able to consider a case a t  a number of interrelated 
levels of detail, ranging from the experiential clinical associations repre- 
sented by the top level to the pathophysiological details represented at 
the lowest. The vertical connections, which ultimately tie the clinical 
relationships to  the physiological mechanisms that account for them (if 
known) allow information to flow in both directions. Upward, the clini- 
cal significance of laboratory data can be assessed. Downward, clinical 
impressions can constrain the interpretations that may be derived by 
the detailed models. In principle, this sort of organization also allows 
drawing the relationships between possibly related observations a t  the 
most appropriate level where knowledge of those relationships exists. In 
this particular program, however, we were unable to exploit this capabil- 
ity, because the program always tended to try to elaborate every model 
as deeply as possible. As a result, even straightforward cases in which 

6The fluid lost in vomiting is normally rich in acid. 
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Figure 15.16 
ABEL'S multi-level model of a case with diarrhea and vomiting. Level I depicts clini- 
cal associations, level I1 an intermediate level of detail, and level I11 the physiological 
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the associations were perfectly adequate to arrive at the correct answer 
would become subject to a deep, detailed and slow analysis. 

The combination of its abilities to deal with models a t  multiple levels 
of detail and to investigate components of abnormal values gave ABEL 

a powerful basis, not only for reaching sophisticated diagnostic conclu- 
sions, but also for planning an effective strategy of diagnostic testing and 
for producing good graphical and English-language explanations of its 
reasoning. Its principal limitations resided in the rather special nature 
of its domain-one of the best in medicine for having available deep 
quantitative models-and in the complexity of the program and data 
that made it difficult to  extend even to related fields, much less to  ones 
from other domains. 

15.6.2 Qualitative Physiological Models 

Often, to understand the behavior of a complex system one must ab- 
stract away from the particular details to a more qualitative view. The 
same observation underlies the enormous preference of traditional scien- 
tists and engineers for closed-form solutions to complex systems. After 
all, it is much easier to think about what a system does given a descrip- 
tion of that behavior in a simple equation than to pore over dozens or 
hundreds of simulation runs trying to comprehend it. Unfortunately, 
very few systems of real-world complexity and interest have classical 
closed-form solutions, so the name of the game is to find the right ap- 
proximations that allow compact descriptions of the system that are 
nevertheless reasonably accurate, at least to the degree required for the 
task. 

A1 researchers have introduced a large number of related ideas and 
systems, going under names such as qualitative physics, qualitative sim- 
ulation, qualitative process theory, etc. Despite important variations, 
each of these represents quantities of interest, including levels, rates of 
change (and sometimes higher derivatives) not by numbers but by more 
abstract quantities. In some cases, these can specify only whether a value 
is positive, zero or negative. Other variants allow for a small number of 
"landmark" values that partition the space of quantities into equivalence 
classes. Given these, any value may be described as belonging to  one of 
the intervals between landmarks (and usually oo and -00 are considered 
landmarks). 

mechanisms involved in the case. 
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Figure 15.17 
Heart-Failure Program's simplified model of fluid balance, indicating the effects of 
a weak heart, use of the drug digitalis, fluid therapy and diuretics on blood volume 
and edema (swelling in the tissues caused by an accumulation of fluid). Each arc is 
also associated with a typical delay, which is not shown here. 

William Long, of MIT/LCS, developed an interesting model of this 
general character to help reconstruct a scenario of past events in order 
to  explain the current presence of an apparently contradictory situa- 
tion [16]. Consider a heart failure patient with low blood volume and 
edema (an accumulation of fluids in the tissues). This situation, on the 
face of it, appears contradictory because low blood volume suggests an 
overall loss of fluid from the body, whereas edema suggests its gain. Such 
a situation is in fact an implausible steady state, but can arise a t  times 
transiently because some of the body's responses are virtually instan- 
taneous, whereas others are manifested only over long periods of time. 
To resolve this apparent contradiction, we need a system that can rec- 
ognize and exploit the different speeds with which various physiological 
mechanisms react. 

To understand this case and similar ones, we need a qualitative model 
of how the underlying disease, its effects and possible therapies interact 
and of the typical time course of these effects. Figure 15.17 shows a 
highly simplified model of the consequences of heart failure. With each 
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Figure 15.18 
Postdiction for a case of heart failure with edema and low blood volume. The time 
line stretching back into the past shows significant events as numbered times. The 
specific time of these is not known, only their relative order. Each line in the diagram 
represents the state of a variable of interest at times in the past. The history of states 
shown is consistent with a case in which (at the present time) the patient has edema 
in the face of a low blood volume. 
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causal relationship there is also an indication of the typical time over 
which it acts. From this information it is possible for us (and for the 
program) to reconstruct a plausible history of how the patient arrived 
at the current state. In Figure 15.18, we can trace the following chain 
of events back from the present, relying on the model of Figure 15.17 to 
justify each intermediate conclusion: 

1. According to the model, the only way to reach a low blood volume 
is to have been losing water for some time in the past, shown here 
in the time interval from points 4 to 1. We do not know if water 
loss is continuing now. (Note that these time points are ordinal, 
but have no specific durations implied.) 

2. The only way to lose water, in this model, is to  be acted on by a 
diuretic. Because diuretics act with a small time delay, we conclude 
that the diuretic effect was present between times 5 and 2, which 
precede the beginning and end points of the period of water loss, 
respectively. 

3. Because volumes can change only continuously, blood volume must 
have been normal before it became low, with the transition occur- 
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ring a t  some time 3, which must fall during the period of water 
loss. 

4. According to the model, the only way to have edema is to have 
had a high blood volume for some time in the past, here shown in 
the interval 9 to 6. 

5. The only way to develop a high blood volume, according to the 
model, is to retain water, here shown in the interval 10 to 7. 

In this way, we can reconstruct a plausible history. The process, which 
might be called postdiction, is essentially the dual of qualitative simula- 
tion, or prediction, where we try to describe possible future states of a 
system from knowing its present and its laws. In the case of postdiction, 
we also benefit from strong constraints imposed by any real facts we 
know about the actual past. For example, knowing the time of diuretic 
administration gives a fix on time points 2 and 5, and thereby constrains 
all the others. 

The power of methods such as this is great. Note that it permits a 
conceptual shift in what we mean by the notion of diagnosis. We no 
longer ask for the name of a disease, but for a temporally and causally- 
connected historical reconstruction. If combined with the ability to rea- 
son about the quantitative aggregation of effects, as suggested above, 
this can form the basis for a very strong diagnostic reasoner. 

15.6.3 Qualitative Probabilistic Modeling 

We noted in our introductory discussion of expertise that virtually noth- 
ing of human knowledge is truly certain. Then we argued that despite 
this uncertainty, we often act as if we believed things with certainty, 
perhaps buttressing our reasoning with special mechanisms to help get 
out of trouble when the inevitable false assumption actually leads to a 
blunder. 

Though this approach appears quite workable for many areas of human 
competence, there are others in which a far more explicit devotion to 
the study of probabilistic relationships is required. For example, there 
are many areas of medicine in which the theoretical underpinnings are 
so weak that most real decisions have to be made based on the carefully 
aggregated experience of past cases. In trying to assess the risks posed 

by various drugs or environmental conditions, in attempting to optimize 
the empirical treatment of cancer by an ever-growing pharmacopoeia of 
noxious agents, we may understand relatively little of just how or why 
an agent works. We can nevertheless extrapolate from past experiences 
by treating them as a statistical sample, and assume that a new patient 
is drawn from the same population and therefore can look forward to 
(statistically) the same range of outcomes. 

A1 research has traditionally eschewed the straightforward application 
of these ideas because of a sense that statistics tend to sweep the inter- 
esting differences under the rug rather than exposing them to  explicit 
scrutiny. Thus when a failure is noted in a statistically-based decision 
making program, e.g., a diagnostician misdiagnoses a known c a s e t h e  
statistical approach may be content to dismiss this error as the rare but 
expectable error case; it is, after all, expected that only 95% or so of the 
cases will fall exactly within the model. By contrast, the A1 approach 
would be to try to examine in detail what led to the wrong conclusion 
and to learn from it some distinguishing feature that might help avoid 
this error in the future. In brief, A1 researchers often act as if they be- 
lieved that noise is not random but is simply the result of a deeper, yet 
discoverable process. 

The other major argument against probabilistic reasoning in A1 has 
been the observation that such reasoners tend to treat probabilistic re- 
lationships in very uniform ways, either imposing unrealistically strong 
assumptions such as conditional independence across the board, or re- 
quiring the collection of huge databases to provide adequate data  to as- 
sess all the dependencies. Recent advances in the methods for analyzing 
probabilistic networks of dependencies [23] have dramatically improved 
our abilities to  take true probabilistic models into account in A1 reason- 
ing programs. Nevertheless, many researchers sense that such models 
are highly sensitive to the particular distributions of probabilities that 
stock their models. Indeed, a probabilistic decision model tuned to work 
very well at deciding which patients are suffering from appendicitis a t  
one institution falters when moved to a different setting, and regains 
its acumen only when retrained on a large volume of locally-gathered 
data [2]. 

Just as we noted in the case of qualitative models of physical or phys- 
iological systems, there is a strong argument to  be made for developing 
qualitative models of probabilistic relationships. An example of such a 
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f i b r i l l a t i o n  

Figure 15.19 
Effects of digitalis and serum calcium and potassium on the heart and the patient. 
Digitalis has a beneficial effect, indicated by the top path to value: by decreasing 
conductivity, it leads to a lower heart rate, which is beneficial for the patients un- 
der consideration. The bottom path shows a possibly-fatal mechanism of toxicity: 
increasing digitalis increases automaticity, which in turn increases the risk of ventric- 
ular fibrillation, which is very highly undesirable. High levels of calcium (Ca) and 
low levels of potassium (K) in the blood also contribute to increased automaticity. 

qualitative statement is that the presence of the heart drug digitalis in a 
patient's blood increases the automaticity of the heart (the tendency of 
muscle fibers to fire spontaneously). Though we are uncommitted about 
the degree to which we will find this increase, the general statement can 
be interpreted to mean that the higher the level of the drug, the more 
likely is the spontaneous firing. At this level of generality, the relation is 
virtually a corollary of cardiac physiology and is likely to be very robust 
to changes in the subject population. Thus, though the strength of this 
relationship may vary from one group of patients to  another, the sign of 
the relation is almost sure to remain the same. 

Figure 15.19 shows part of Michael Wellman's model of the interac- 
tions of digitalis, serum calcium and serum potassium on the control 
of the heart [32]. Digitalis is a drug often used to  treat (among other 
disorders) tachycardia, a high heart rate. The benefits of treatment are 
summarized in the top path in the graph: digitalis tends to decrease 
the conductivity of the heart. Increased conductivity leads to an in- 
creased heart rate, therefore a decrease in conductivity tends to lower 
the heart rate. Because, in this instance, a higher heart rate is bad 
for the patient (leads to decreased value), the lower heart rate expected 
from decreased conductivity is beneficial. The lower path in the figure 
shows that increased digitalis, increased serum calcium and decreased 
serum potassium all increase automaticity, which increases the risk of 
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Figure 15.20 
In this model, there is not enough information to tell the aggregate effect of giv- 
ing digitalis. The qualitative graph-reduction operations defined in [32] lead to  an 
ambiguous result, showing that there is not enough information, in general, to  tell 
whether the benefits or risks of the drug are greater. 

\ 

d i g i t a l i s  

d i g i t a l i s  

Figure 15.21 
Introducing synergy into the model. Positive synergy between dig and Ca on auto- 
maticity indicates that the likelihood of digitalis causing automaticity is greater in 
the presence of higher levels of serum calcium. Positive synergy between the negative 
effects of heart rate and ventricular fibrillation serves to model indifference to heart 
rate when ventricular fibrillation is present. 

? 
value  

ventricular fibrillation, an often-fatal condition that clearly decreases 
value. 

In the description given so far, we have said nothing about the magni- 
tudes of the expected effects, only their directions. It is not surprising, 
therefore, that when we aggregate this information (in Figure 15.20) to  
ask LLIs giving digitalis a good idea?" the system is unable to  tell because 
it cannot determine whether the beneficial or harmful effects of the drug 
will predominate. 

However, it is possible to get useful information out of such a model 
without knowing quantitative relations if we add more qualitative knowl- 
edge about the joint effects of drugs and existing conditions. For exam- 
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Figure 15.22 
Thounh the effect of giving digitalis is still uncertain, synergy in the model implies 

~ -- - - -  - - 

that the optimal digitalis dose must be a decreasing function of serum calcium. 

ple, there is a synergistic interaction between the effects of digitalis and 
calcium on automaticity, as shown in Figure 15.21. This means that a 
given change in digitalis has a greater effect on automaticity when serum 
calcium is high than when it is low. Applying Wellman's calculus for 
drawing implications from such qualitative models, we arrive a t  the di- 
agram of Figure 15.22: though we still cannot tell whether giving more 
digitalis is a good idea or not, we can tell that the optimum dose of dig- 
italis is a decreasing function of serum calcium. This is in fact a result 
we had explicitly encoded from experience in the digitalis advisor, but 
the new qualitative probabilistic reasoning methods allow us to derive 
it from very general and robust principles. 

15.7 Model- based Reasoning 

The above examples have been chosen from medical applications, which 
have indeed often inspired the development of the relevant ideas. 
Medicine is by no means the only field, however, that requires reasoning 
more deeply about systems. In cases where simple experiential knowl- 
edge turns out to be inadequate, we need to build suitably abstract 
models of the domain and then reason about those models to help an- 
swer difficult questions. 

The fundamental notion of a model, in expert systems as in traditional 
fields like bridge design, is a smaller, simpler entity than the actual 
system that nevertheless exhibits many of the properties of interest in 
the real system. If the model is well-designed, simple reasoning about 
the model may be able to answer difficult questions of genuine interest 

about the actual system. A1 systems often emphasize the desire to 
model explicitly only the structural components of a system and then 
automatically to derive the behavior of the system. When the behaviors 
and interactions of the component parts are understood well enough, this 
is a very powerful method because it means that any system consisting 
of such parts can be successfully modeled merely by writing down the 
parts and their connections, and the remainder of the analysis of the 
system can take place automatically. In practice, issues such as lack of 
precise knowledge and the combinatorics of modeling interesting systems 
with a very large number of parts conspire against this simple view and 
force on the model creator a demand for careful thought about just what 
to include in and exclude from the model. 

In this section, we examine briefly two recent theses in model-based 
reasoning from Randy Davis' group in the A1 Lab, one concerning ge- 
ological reasoning, the other reasoning about the behavior of complex 
electrical circuits. 

15.7.1 Using Models for Geological Interpretation 

Reid Simmons' chosen problem was to give a geological account for an 
observed cross-section through the earth, such as that shown in Fig- 
ure 15.23. A plausible interpretation of this picture corresponds to the 
following tale. Shale was deposited on the site. Granite then intruded 
under it. After the region was uplifted, the fault toward the left of the 
diagram occurred. Then a maficigneous rock intruded across the right, 
and finally erosion leveled the top. The GoRDIUs PROGRAM generates 
just such interpretations [25]. 

In a sense, the problem here is analogous to  Long's attempt to re- 
construct the history of a complex medical process. In geology, added 
complexity derives from the geometric complexity of the diagram, the 
very large number of (combinations of) mechanisms that could have ac- 
counted for almost any part of the diagram, and the fact that we almost 
never have real data about what was actually true in the past (as might 
be the case in a carefully-tracked medical case). 

GORDIUS' approach is summarized as a sequence of three steps, the 
first two of which are analogous to the strategy developed for DENDRAL. 

First, features of the diagram are used to  generate hypotheses, which 
are constrained by relations in the diagram to  fit together only in a few 
acceptable ways. Second, a qualitative simulation checks whether the 
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Interpretation: 
1. Depositionl(Rockl,Shale) 
2. Batholithic-Intrusion2(Rock2, Granite) 
3. Uplift3(Uamountl) 
4. Faulting(Fau1t 1) 
5. Dike-Intrusion5(Ignl, Mafic-Igneous) 
6. Erosion6(Elevell) 

Figure 15.23 
GORDIUS' diagram of a geological cross-section, and its interpretation. The diagram 
shows a cross-section at the present time, and the interpretation gives a plausible 
course of events that could have resulted in the given cross-section. 

Knowledge-based Systems 

hypothesis could in fact generate the currently observed diagram. Fi- 
nally, a debugging process is used to adjust the hypothesis to eliminate 
discrepancies pointed out by the simulator. A hypothesis is repeatedly 
simulated and debugged until its consequences are consistent with ob- 
servations. 

15.7.2 Tempora l  Abstraction for Reasoning  a b o u t  Complex  
Circui ts  

To drive home the importance of choosing the correct abstractions for 
reasoning about complex systems, consider the (cramped) portion of 
the circuit diagram of a Symbolics 3600 video controller board shown 
in Figure 15.24. In the natural representation of digital circuits, where 
we may view each logic element at any time as being either on or off, 
almost any small part of this circuit is sufficiently complex that it ex- 
ceeds the reach of our meager analytical tools. To make matters worse, 
many circuit parts have internal states and a number of the wires in this 
diagram are in fact buses carrying multiple, interrelated signals. Simply 
simulating the behavior of such a circuit, given complete knowledge of 
the behavioral rules of its parts and its initial state, is a complex and 
time-consuming task. Trying to figure out what is wrong with it by 
postulating defects and then simulating until the observed abnormali- 
ties are reproduced seems hopeless-at least a t  the detailed bit-by-bit 
circuit leveL7 

Walter Hamscher actually spent a summer repairing faulty versions 
of this board and learning how technicians approached the problem. He 
discovered [ll] that they use a rich language of temporal abstractions 
to  describe behavior, including concepts such as: stay-same, change, 
duration, count, sequence, cycle, frequency, sampling, etc.; and their 
compositions. Once the circuit and its parts are understood in such 
abstract terms, relatively simple diagnostic rules suffice to help direct 
suspicion to the right candidates. For example, a very simple diagnostic 
rule might be: 

A circuit component that is supposed to  be a clock, but 
whose output is not changing, must be faulty. 

- 

7Notice that the argument here is very much the one we made against physiological 
simulation to diagnose human disease. Randy Davis and I sometimes joke in fact that 
our two domains-medicine and circuits-are not so different. The main differences 
are that in his, he can at least assume a circuit diagram that God has not chosen to 
publish for people; whereas in mine, I only have to deal with one basic model. 
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Figure 15.24 
Part of the circuit diagram of a Symbolics 3600 video controller. 
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Here we are not speaking of individual gate transitions, but rather of 
much more appropriate aggregate behavior. The notion of a clock em- 
bodies a sequence of regular transitions, with a certain frequency. "Not 
changing" is a simple, easily tested aggregate behavior. When described 
and approached in such terms, even the apparent complexity of Fig- 
ure 15.24 seems approachable. 

15.8 Software Methodology 

The successful exploitation even of the somewhat limited means a t  
our current disposal has some interesting lessons for the field of soft- 
ware methodology. In contrast to the rather formal specification- 
implementation-verification-based methods advocated by many (includ- 
ing John Guttag in this volume), the expert systems field places a great 
emphasis on the incremental interweaving of specification, design, im- 
plementation and testing [26]. The fundamental driving force for this 
radically different orientation is that, in building expert systems, it is 
quite typical that the developers do not fully understand what their 
system is really supposed to  do until they have worked seriously with 
experts from the domain, implemented various preliminary ideas, re- 
vised their goals based on test cases, etc. How could one specify a priori 
what it means to build a system for providing therapeutic management 
assistance to doctors treating patients with heart failure? What is the 
"correct" specification of a geological interpretation system? Initially 
neither the expert nor the system builder may have a clear idea. Fur- 
ther, such a clear idea may not be able to emerge until the developers 
have had a chance to assess just what is technically feasible (within the 
time and resource constraints of the project) or how useful it actually 
is to get the sort of interpretation or advice that was initially the goal. 
It is mostly through such experience that new task requirements or new 
modes of use are worked out. 

The fact that in a very real sense expert system developers "don't 
know what they're doing" means that the greatest emphasis must be 
placed on high quality development environments. Such environments 
include support for rapid prototyping, incremental debugging, and the 
ability to  postpone commitments. This often means systems that pro- 
vide both compilation and interpretation, generic operators, "object- 
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oriented" programming, all in the interest of simplifying the process of 
changing one's mind. These environments may also take the form of 
shells or toolkits that pre-package simple, routine methods for solving 
various problems or problem components. In light of the observation 
that many of the systems being built are small, often built by the do- 
main expert, these environments must also support the illusion that 
anyone, even 'Lnonprogrammers," can program. 

What is new to software engineering in the tools that currently sup- 
port practical system development? Primary is the adoption of a "very 
high level language" viewpoint-direct support for problem solving ab- 
stractions that are not present in conventional programming languages. 
Also important is support for the characteristics of expert systems (listed 
below), primarily the explicit representation of knowledge and built-in 
facilities for explanation and the examination and updating of the sys- 
tem's knowledge. 

The final advance brought to software engineering is mainly an inter- 
esting and important matter of perception. Many expert system lan- 
guages and tools appeal to the end user to program his or her ideas 
directly. We have suggested some of the technical reasons why this will 
strike many as more plausible than a similar appeal for end-users to take 
up COBOL or c directly. In addition, however, it appears that there is 
a component akin to Dumbo's magic feather8 in these appeals. Inter- 
estingly, the motivated end-user discovers that he or she can, indeed, 
fly! 

15.9 Conclusion 

We have argued that the embedding of large quantities of knowledge in 
computer programs is an excellent technique for enabling us to build so- 
phisticated applications, called expert systems. We examined the roots 
of this idea, looked at some of the simplified ways in which it has reached 
commercial application, considered some of the problems remaining in 
our basic conception of how to build such systems, and looked a t  a hand- 

'For those without small children, in the Walt Disney classic animated film, 
Dumbo discovers that he can fly with the aid of a "magic" feather. Upon accidentally 
losing the feather, his fast-talking mouse assistant has a hard time convincing him 
that he really can fly, feather or no. 

ful of interesting efforts recently emerged from the research laboratories 
that point toward dramatically improved future capabilities. 

In conclusion, I want to take a retrospective look a t  what characterizes 
knowledge-based, or expert, systems and to reflect on the difficulties that 
lie ahead in adapting today's exciting research ideas to  practical use. 

Having looked a t  a number of expert systems, can we now say just 
what they are? After all, any system is in a sense an expert a t  whatever 
it was designed to do, and saying that knowledge-based systems embody 
knowledge can not really distinguish them from other programs. After 
all, how many programs are there that do not in some sense contain 
knowledge? What do we mean, then? Perhaps the following list of 
characteristics is a useful guide: 

1. Expert systems typically operate in domains in which there are 
many possible answers to most problems. Therefore, the naive 
approach to problem solving, as suggested in our robot and alarm 
clock example, will involve search. The prime responsibility of the 
expert system is to  apply its knowledge to  eliminate or significantly 
reduce the magnitude of the search. Thus expertise yields the 
ability to get an adequate answer without systematically exploring 
nearly all the possibilities. 

2. Expert systems, like most A1 systems, use predominantly sym- 
bolic rather than numerical computing methods. Thus the data 
structures are often composed of complex interlinked structures. 

3. Explicit representations of the universe of discourse typically play 
a causal role in the reasoning of the system. Thus the system 
works by manipulating an explicit encoding of its knowledge, which 
is thought to be an abstraction and decomposition of the most 
important aspects of the real world. A corollary is that the system 
typically has some form of self-knowledge: it can explain what it 
knows explicitly, and trace out the reasoning steps that led from 
its observations to its conclusions. 

4. The problem solving methods are often deliberately human-like, 
patterned on the observed behavior of human experts. Sometimes 
this is because no other theories of the domain are available. In 
other circumstances, it is motivated by the desire to make details 
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of the program's operation meaningful to human experts who may 
have to evaluate it or work with it. 

5. Finally, expert systems often contain an explicit representation of 
their own goals. They can therefore participate in the choice of 
the most appropriate problem solving methods for addressing the 
task at hand. 

15.9.1 Difficult Challenges 

In the late 1980's, there appear to be only a few principal challenges 
standing in the way of our ability to create much more sophisticated 
expert systems. 

First is the need to conjoin the clever insights and techniques exem- 
plified by some of the research projects above. Though each program 
achieves an impressive demonstration of needed capabilities, we have lit- 
tle idea how to combine these coherently. Thus a program that reasons 
about a multi-level causal hierarchy of hypotheses, while a t  the same 
time including appropriate temporal abstractions and postdiction ma- 
chinery, while at the same time allowing the expression of quantitative 
and qualitative probabilistic relationships, is not currently in sight. A 
few years ago, our intuition was that progress in knowledge represen- 
tation research would slowly lay the groundwork to achieve just this 
sort of integration, if not at one stroke, at least by providing powerful 
representation languages that would allow us to express all the relevant 
knowledge in a single language [28]. Given that start, we could then 
evolve toward systems with multiple abilities to handle all aspects of very 
complex domains and problems. Alas, this intuition has a t  least tem- 
porarily foundered on harsh experience [3][10]-the current languages 
just are not up to the task. 

The second difficulty is the sheer size of the knowledge base needed 
for a program to have a comprehensive understanding of a field. In 1976 
our colleagues [22] arrived at "an upper bound of approximately one mil- 
lion facts as the core body of information in general internal medicine." 
Even to encode such a vast body of knowledge once is a daunting task. 
Lacking an agreed-upon universal representation language (at least one 
that is easier for computers to manipulate than English) means that 
this task may need to be undertaken repeatedly, as new ways of using 

it are d isc~vered .~  One consequence is that research in the field is slow. 
Between the need to develop interesting new ideas, to implement these 
as complex and large computer programs, and to  describe a respectable 
chunk of knowledge in a form appropriate for the new program, five 
years passes easily in the life of a researcher (read "graduate student"). 

The problem of acquiring the required knowledge is being attacked 
by two routes. The frontal assault simply treats the difficulty as a very 
large engineering problem. Thus such projects as Lenat's CYC [14] plan 
to build a very large encyclopedic knowledge base by incrementally re- 
solving representation problems, inventing conventions as needed, and 
steadily accumulating a valuable collection of descriptions of aspects of 
the world. Similarly, though in a more limited domain, the UMLS (Uni- 
fied Medical Language Systems) project attempts to develop translation 
methods to allow the interchange and integration of knowledge among 
various existing representation and indexing schemes [4]. The flanking 
maneuver assumes that the best way to gather the required knowledge 
is by developing techniques for the computer to  learn it directly from 
interactions with human experts, direct investigation and experimenta- 
tion under autonomous program control, or experience as described in 
large databases. Learning is currently a vibrant topic of A1 research, but 
just as with advanced expert systems techniques themselves, the results 
are more promising than achieved. 

15.9.2 The Fu tu re  

Ultimately, it seems impossible to separate the long term advance of 
expert systems from A1 research in general. Rather simple tools avail- 
able today, based on ten-year-old ideas, empower users to build valuable 
applications. As we succeed in integrating and simplifying today's re- 
search ideas, new generations of expert system technology will enable 
tomorrow's users to build much more sophisticated programs. Eventu- 
ally, every interesting advance at the roots of A1 research feeds directly 
into better experimental expert systems, and finally into applications. 

91n addition, in many rapidly-evolving domains such as medicine, the knowledge 
itself changes with dramatic speed. This means that quite aside from the technical 
reasons for re-encoding knowledge, portions of it may need to be continually re- 
encoded just to keep up to date. 
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Abstract 

The construction of useful legged vehicles depends on progress 
in several areas of engineering and science. Legged vehicles will 
need systems that control joint motions, sequence the use of legs, 
monitor and manipulate balance, generate motions to use known 
footholds, sense the terrain to find good footholds and calculate 
negotiable foothold sequences. As yet, most of these tasks are 
not well understood, but research is underway. If this research is 
successful, it will lead to the development of legged vehicles that 
travel efficiently and quickly in terrain where softness, grade or 
obstacles make existing vehicles ineffective. Such vehicles may 
be useful in industrial, agricultural and military applications. 
This paper reviews these issues as well as  a history of research 
on active balance, running and legged robot development. 

16.1 Why Study Legged Machines? 

Aside from the sheer thrill of creating machines that actually run, there 
are two serious reasons for exploring legged machines. One reason is 
mobility: there is a need for vehicles that can travel in difficult terrain, 
where existing vehicles cannot go. Wheels excel on prepared surfaces 
such as rails and roads, but perform poorly where the terrain is soft 
or uneven. Because of these limitations only about half the earth's 
landmass is accessible to existing wheeled and tracked vehicles, whereas 
a much greater area can be reached by animals on foot. It should be 

This paper is excerpted from Legged Robots that Balance by M . H .  Raibert, MIT 
Press, Cambridge, MA, 1986. 


