
550 UZUNER et al., Medical Record De-identification
JAMIAFocus on Medical Record De-identification

Viewpoint Paper �

Evaluating the State-of-the-Art in Automatic De-identification
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A b s t r a c t To facilitate and survey studies in automatic de-identification, as a part of the i2b2 (Informatics
for Integrating Biology to the Bedside) project, authors organized a Natural Language Processing (NLP) challenge
on automatically removing private health information (PHI) from medical discharge records. This manuscript
provides an overview of this de-identification challenge, describes the data and the annotation process, explains
the evaluation metrics, discusses the nature of the systems that addressed the challenge, analyzes the results of
received system runs, and identifies directions for future research. The de-indentification challenge data consisted
of discharge summaries drawn from the Partners Healthcare system. Authors prepared this data for the challenge
by replacing authentic PHI with synthesized surrogates. To focus the challenge on non-dictionary-based de-
identification methods, the data was enriched with out-of-vocabulary PHI surrogates, i.e., made up names. The
data also included some PHI surrogates that were ambiguous with medical non-PHI terms. A total of seven teams
participated in the challenge. Each team submitted up to three system runs, for a total of sixteen submissions. The
authors used precision, recall, and F-measure to evaluate the submitted system runs based on their token-level
and instance-level performance on the ground truth. The systems with the best performance scored above 98% in
F-measure for all categories of PHI. Most out-of-vocabulary PHI could be identified accurately. However,
identifying ambiguous PHI proved challenging. The performance of systems on the test data set is encouraging.
Future evaluations of these systems will involve larger data sets from more heterogeneous sources.
� J Am Med Inform Assoc. 2007;14:550–563. DOI 10.1197/jamia.M2444.
Introduction
Clinical records can be an important source of information
for clinical and laboratory researchers alike.1,2,3 However,
most of the information in these records is in the form of free
text and extracting useful information from them requires
automatic processing (e.g., index, semantically interpret,
and search).4–9 A prerequisite to the distribution of clinical
records outside of hospitals, be it for Natural Language
Processing (NLP) or medical research, is de-identification.

De-identification ensures the removal of all personally iden-
tifying private health information (PHI) from the records.
Paragraph 164.514 of the Administrative Simplification Reg-
ulations promulgated under the Health Insurance Portabil-
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ity and Accountability Act (HIPAA) states that for data to be
treated as de-identified, it must clear one of two hurdles.

1. An expert must determine and document “that the risk is
very small that the information could be used, alone or in
combination with other reasonably available information,
by an anticipated recipient to identify an individual who
is a subject of the information.”

2. Or, the data must be purged of a specified list of seven-
teen categories of possible identifiers relating to the
patient or relatives, household members and employers,
and any other information that may make it possible to
identify the individual.10 Many institutions consider the
clinicians caring for a patient and the names of hospitals,
clinics, and wards to fall into this final category because
of the heightened risk of identifying patients from such
information.11,12

Although technologies for automatic de-identification ex-
ist,11,13–17 the development of such systems is limited by a
chicken and egg problem: systems cannot be effectively
developed without access to clinical records, but clinical
records cannot be readily made available for research (even
for de-identification) without being de-identified. To surpass
this limitation, within the Informatics for Integrating Biol-
ogy and the Bedside (i2b2) project,18 the authors created a
data set for evaluating two NLP challenge questions:

Task 1: automatic de-identification of clinical records,

i.e., de-identification challenge, and
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Task 2: identification of the smoking status of patients,
i.e., smoking challenge.

The two challenges were run as shared-tasks. In other
words, all participating teams were asked to study the two
challenge questions on the same data and their results were
compared to the same gold standard. The challenges were
accompanied by a workshop, co-sponsored by i2b2 and the
American Medical Informatics Association (AMIA), which
provided a forum for the presentation and discussion of
resulting research findings.19

A total of eighteen teams participated in the two challenges:
seven in de-identification and eleven in smoking. This
manuscript describes the data and evaluation metrics of the
de-identification challenge, provides an overview of the
systems that participated in this challenge, and tries to draw
conclusions about the state-of-the-art and the future of
de-identification. The details of the smoking challenge can
be found in Uzuner et al.20

Problem Definition and Related Work
De-identification resembles traditional Named Entity Recog-
nition (NER). Outside of the biomedical domain, the Mes-
sage Understanding Conference (MUC)21 has served as
a venue for the evaluation of NER systems. The Named
Entity tasks of MUC tested systems for their ability to
recognize organizations, persons, locations, dates and times
(relative and absolute), currency/percentage values, arti-
facts (e.g., television), anaphoric references (e.g., the plane),
etc. Following MUC, the National Institute of Standards and
Technology (NIST) organized the Information Extraction—
Named Entity task22 and the Automatic Content Extraction
(ACE) tasks.23 Both of NIST’s tasks and MUC’s NER evalu-
ations were run on newswire text.

In the biomedical domain, Critical Assessment of Information
Extraction Systems in Biology (BioCreAtIvE)24 enabled studies
on automatic identification of biomedical entities, e.g., genes
and proteins, in text drawn from various databases including
PubMed,25 FlyBase,26 Mouse Genome Informatics,27 Saccharo-
myces Genome Database,28 and Swiss-Prot.29 In addition to
BioCreAtIvE, the TREC Genomics Track30 provided a forum
for the evaluation of extraction and retrieval of biomedical
texts.

De-identification differs from NER in its focus on clinical
records. The goal of de-identification, as defined in this
challenge, is to find and remove PHI from medical records
while protecting the integrity of the data as much as
possible. De-identification algorithms need to achieve this
goal in the presence of:

• Ambiguities: PHI and non-PHI can lexically overlap,
e.g., Huntington can be the name of a disease (non-PHI) as
well as the name of a person (PHI).

• Out-of-vocabulary PHI: PHI can include misspelled and/or
foreign words that cannot be found in dictionaries.

Many approaches to traditional NER use dictionaries and
gazetteers of person, organization, and location names.
Ambiguous and out-of-vocabulary PHI reduce the contribu-
tion of dictionaries and gazetteers to de-identification and

emphasize the value of studying context and language.
Data and Annotation
The data for the de-identification challenge came from
Partners Healthcare and included solely medical discharge
summaries. We prepared the data for the challenge by
annotating and by replacing all authentic PHI with realistic
surrogates.

PHI Categories, Ambiguous
and Out-of-Vocabulary PHI
We found that, out of the seventeen textual PHI categories
listed by HIPAA, only six appeared in our data. As de-
scribed in the Introduction, we added two additional cate-
gories, doctor and hospital, resulting in eight PHI categories
in the data set. We defined the resulting PHI categories as
follows (square brackets enclose PHI):

• Patients: includes the first and last names of patients,
their health proxies, and family members. It excludes
titles, such as Mrs., e.g., Mrs. [Mary Joe] was admit-
ted. . .

• Doctors: refers to medical doctors and other practitioners
mentioned in the records. For transcribed records, it
includes the transcribers’ names and initials. It excludes
titles, such as Dr. and MD, e.g., He met with Dr. [John
Bland], MD.

• Hospitals: marks the names of medical organizations and
of nursing homes where patients are treated and may
also reside. It includes room numbers of patients, and
buildings and floors related to doctors’ affiliations,
e.g., The patient was transferred to [Gates 4].

• IDs: refers to any combination of numbers, letters, and
special characters identifying medical records, patients,
doctors, or hospitals, e.g., Provider Number: [12344].

• Dates: includes all elements of a date except for the year.
HIPAA specifies that years are not considered PHI.
Therefore, we exclude them from this category.

• Locations: includes geographic locations such as cities,
states, street names, zip codes, building names, and
numbers, e.g., He lives in [Newton].

• Phone numbers: includes telephone, pager, and fax num-
bers.

• Ages: includes ages above 90. HIPAA dictates that ages
above 90 should be collected under one category, 90�,
and should be marked as PHI. Ages below 90 can be left
as is.

Given the above definitions, we marked the authentic PHI in
the records in two stages. In the first stage, we used an
automatic system.31 In the second stage, we validated the
output of the automatic system manually. Three annotators,
including undergraduate and graduate students and a pro-
fessor, serially made three manual passes over each record.
They marked and discussed the PHI tags they disagreed on
and finalized these tags after discussion.

Next, we replaced the authentic PHI with realistic surro-
gates. For dates, IDs, phone numbers, and ages, we gener-
ated surrogates by replacing each digit with a random digit
and each letter by a random letter; we respected the exact
format of the authentic PHI and assured that synthesized
dates remained valid dates. For patients, doctors, locations,
and hospitals, we created surrogates by permuting the
syllables of existing names from dictionaries such as the U.S.

Census Bureau names database. We observed the orthogra-
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phy of the PHI in the authentic corpus and ensured that the
surrogate PHI resembled the authentic PHI in their use of
abbreviations, middle initials, full names, capitalization, etc.
We made an effort to replace all proper noun references to a
given entity with the same surrogate or orthographic vari-
ants of the same surrogate (as guided by the authentic data)
so as to preserve co-reference information, e.g., replaced John
Smith with Jane Doe and J. Smith with J. Doe consistently and
throughout. We preserved relative time information by
offsetting all dates in a record by the same number of days.

We allowed the generation of surrogates that could be found
in dictionaries and did not make any effort to eliminate such
surrogates from the data. Still, most of the generated surro-
gates could not be found in dictionaries, e.g., Valtawnprinceel
Community Memorial Hospital and Girresnet, Diedreo A.

As a part of the de-identification challenge, we aimed to
evaluate the systems’ abilities to resolve ambiguities of PHI
with non-PHI. Many de-identification methods aim to re-
move all PHI from the records without paying much atten-
tion to non-PHI that may also get removed in the process.
We believe that retaining the key medical concepts, such as
diseases, is important for protecting the integrity of the data.
Retaining such information in the records enables the use of
de-identified records for studies on drug interactions, qual-
ity of service studies, etc. To test systems on ambiguous PHI,
we replaced some of the randomly-generated surrogate
patient and doctor names with medical terms, such as
diseases, treatments, and medical test names. We thus
created ambiguities among the PHI and the non-PHI within
specific records and within the complete corpus.

The Institutional Review Boards of Partners Healthcare,
Massachusetts Institute of Technology, and the State Uni-
versity of New York approved the challenge and the data
preparation process. In all, we annotated 889 records. 669 of

Table 1 y Distribution of Instances and Tokens in the
Corpora

PHI Category

Complete Corpus

Instances Tokens

Non-PHI — 444127
Patients 929 1737
Doctors 3751 7697
Locations 263 518
Hospitals 2400 5204
Dates 7098 7651
IDs 4809 5110
Phone Numbers 232 271
Ages 16 16

Table 2 y Out-of-Vocabulary PHI in the Complete Aut
Training and Test Sub-Corpora

Authentic Corpus
Complete C

Corpu

PHI Category
Instances

(%)
Tokens

(%)
Instances

(%)

Patients 34 20 80
Doctors 43 26 85
Locations 30 22 69

Hospitals 65 35 91 4
these records were used for training. The remaining 220
were used for testing. The distributions of PHI categories in
the complete corpus and in the training and test sets are
shown in Table 1. Instances mark the number of PHI phrases
in each category while tokens mark the number of words in
each PHI category.

Table 2 shows the distribution of out-of-vocabulary PHI in
the complete challenge corpus and its subsets used for
training and testing, after the authentic PHI has been re-
placed with surrogates and after ambiguities have been
introduced. Note that the concept of being out-of-vocabu-
lary does not apply to IDs, dates, ages, and phone numbers.
Also note that out-of-vocabulary PHI tokens constitute 20 to
35% of each of patients, doctors, locations, and hospitals in
the authentic corpus; the percentages of PHI instances that
include one or more out-of-vocabulary tokens in these PHI
categories range from 30 to 65%. The exaggerated percent-
ages of out-of-vocabulary PHI in the challenge corpus allow
us to emphasize the importance of successfully de-identify-
ing such PHI. The random split of the complete challenge
corpus into training and test sub-corpora does not guarantee
similar distributions of out-of-vocabulary PHI in the two
sub-corpora.

Table 3 shows the percentage of ambiguity of each PHI
category with non-PHI in the authentic and in the challenge
corpora. The column marked “ambiguity scope” indicates
whether the PHI is ambiguous with non-PHI within the
same record or within the corpus. Note that out-of-vocabu-
lary surrogate generation eliminated some of the ambigu-
ities naturally present in locations and hospitals in the
authentic corpus while our efforts to introduce ambiguity
into the challenge data increased the ambiguity in patients
and doctors. Also note that due to random split of the
complete challenge corpus into training and test corpora,

lete Challenge Corpus, and in the Training and Test

Training Data Test Data

ances Tokens Instances Tokens

— 310504 — 133623
684 1335 245 402
681 5600 1070 2097
144 302 119 216
724 3602 676 1602
167 5490 1931 2161
666 3912 1143 1198
174 201 58 70
13 13 3 3

c and Challenge Corpora, as well as the Challenge

e Challenge Training
Sub-Corpus

Challenge Test
Sub-Corpus

ens
)

Instances
(%)

Tokens
(%)

Instances
(%)

Tokens
(%)

3 85 76 66 64
7 86 67 82 67
6 72 60 64 50
Comp

Inst

2

1
5
3

henti

halleng
s

Tok
(%

7
6
5

9 91 49 91 50
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these two corpora exhibit different levels of ambiguity from
each other. The columns marked tokens indicate the per-
centage of tokens that are ambiguous; the columns marked
instances indicate the percentage of instances that include
one or more ambiguous tokens.

Of the ambiguous PHI instances in our challenge corpus,
54% included ambiguities with medical terms; correspond-
ingly, 41% of the ambiguous tokens were ambiguous with
medical terms. In comparison, ambiguity with medical
terms was observed in 22% of the ambiguous instances in
the authentic corpus; 17% of the ambiguous tokens in this
corpus were ambiguous with medical terms.

Note that ambiguity between different PHI categories,
i.e., inter-PHI ambiguity, also exists. Table 4 shows the level
of inter-PHI ambiguity in the authentic corpus and in the
complete challenge corpus, respectively. The Y dimension

Table 3 y Ambiguity between PHI and non-PHI in Co
Challenge Training and Test Sub-Corpora

PHI
Ambiguity

Scope

Complete Authentic
Corpus

Co

Instances
(%)

Tokens
(%)

Ins

Patients In record 2.04 1.09
In corpus 22.7 3.73 1

Doctors In record 0.64 0.31 1
In corpus 26.9 4.67 2

Locations In record 4.55 2.18
In corpus 43.9 18.4 2

Hospitals In record 29.8 18.9 3
In corpus 46.6 42.2 5

Dates In record 0.01 0.01
In corpus 1.18 0.09

IDs In record 0.00 0.00
In corpus 0.25 0.10

Phone numbers In record 0.00 0.00
In corpus 1.29 0.37

Ages In record 0.00 0.00
In corpus 0.00 0.00

Table 4 y Token-Level Inter-PHI Ambiguity in the Au
X Corpus Non-PHI Patients Docto

Y
Non-PHI (%) Authentic — 0.56 0.96

Challenge — 3.17 8.27
Patients (%) Authentic 3.73 — 35.5

Challenge 9.71 — 18.0
Doctors (%) Authentic 4.67 24.8 —

Challenge 15.1 10.31 —
Locations (%) Authentic 18.4 6.00 11.3

Challenge 10.6 3.66 8.29
Hospitals (%) Authentic 42.2 1.61 5.48

Challenge 37.2 1.23 15.0
Dates (%) Authentic 0.09 0.00 0.94

Challenge 1.10 0.00 0.65
IDs (%) Authentic 0.10 0.00 0.06

Challenge 0.06 0.00 0.06
Phone Numbers (%) Authentic 0.37 0.00 0.00

Challenge 0.37 0.00 0.00
Ages (%) Authentic 0.00 0.00 0.00
Challenge 0.00 0.00 0.00
indicates the actual category of the PHI; the X dimension
indicates the categories that they are ambiguous with,
e.g., in the authentic corpus, 0.56% of actual non-PHI are
ambiguous with patients. As can be seen, patients, doctors,
locations, and hospitals in the challenge corpus are highly
ambiguous with each other. However, Table 4 reveals that,
for most pairs of PHI categories, the level of ambiguity is
lower in the challenge corpus than in the authentic corpus.
This is an artifact of the surrogate generation process. Given
our focus on separating PHI from non-PHI, we did not inject
extra inter-PHI ambiguities into the challenge corpus. Yet,
differentiating between categories of PHI can be important
for some applications that need to build on de-identified
records, e.g., did the patient or the doctor report a particular
fact? Therefore, despite underemphasizing this task, the
de-identification challenge asks to retain the distinction

te Authentic and Challenge Corpora, and in the

e Challenge
rpus

Challenge Training
Sub-Corpus

Challenge Test
Sub-Corpus

Tokens
(%)

Instances
(%)

Tokens
(%)

Instances
(%)

Tokens
(%)

4.48 6.14 3.15 14.7 8.96
9.71 14.8 7.72 22.5 13.7
6.30 11.5 5.50 16.5 8.44

15.1 27.5 13.3 29.2 15.0
0.39 0.69 0.33 0.84 0.46

10.6 18.1 8.61 14.3 8.33
15.5 28.2 14.2 41.9 18.2
37.2 47.9 38.2 54.7 33.3

0.42 0.37 0.36 0.57 0.56
1.10 0.74 1.13 0.78 0.88
0.00 0.00 0.00 0.57 0.00
0.06 0.08 0.08 0.78 0.08
0.00 0.00 0.00 0.00 0.00
0.37 0.57 0.50 0.09 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

ic and Complete Challenge Corpora
ocations Hospitals Dates IDs Phone Numbers Ages

0.86 3.12 0.03 0.01 0.00 0.00
0.50 1.18 0.41 0.00 0.00 0.00
0.86 5.28 0.00 0.00 0.00 0.00
1.61 0.92 0.00 0.00 0.00 0.00
0.61 4.67 0.01 1.72 0.00 0.00
2.04 3.26 0.13 0.13 0.00 0.00
— 28.9 0.73 0.00 0.00 0.00
— 5.39 0.00 0.00 0.00 0.00

26.1 — 0.00 0.04 0.00 0.00
3.07 — 2.38 0.08 0.00 0.00
0.04 0.00 — 0.00 0.00 0.00
0.00 0.07 — 0.00 0.00 0.00
0.00 0.02 0.00 — 0.00 0.00
0.00 0.02 0.00 — 0.00 0.00
0.00 0.00 0.00 0.00 — 0.00
0.00 0.00 0.00 0.00 — 0.00
0.00 0.00 0.00 0.00 0.00 —
mple

mplet
Co

tances
(%)

8.36
7.9
2.9
9.9
0.76
0.1
2.0
0.9
0.42
0.75
0.00
0.06
0.00
0.43
0.00
thent
rs L
0.00 0.00 0.00 0.00 0.00 —
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between PHI categories as much as possible. Table 5 shows
the distribution of inter-PHI ambiguity in the challenge
training and test corpora, respectively. As before, the ran-
dom split of the complete challenge corpus into training and
test does not guarantee similar distributions of inter-PHI
ambiguities in these two sub-corpora.

Dictionaries are often used as a source of information in
many de-identification systems. Because of the randomly
generated and/or ambiguous surrogate PHI, we expected
dictionary-based approaches to be less successful in separat-
ing PHI from non-PHI in the challenge corpus than with the
authentic data. We hypothesize that if the systems shed light
on information that can help identify ambiguous and/or
out-of-vocabulary PHI, they can easily be complemented
with dictionaries in order to identify the more mainstream
in-vocabulary and unambiguous PHI.

Annotation Format
For the challenge, the data were tokenized, broken into
sentences, and converted into XML.32 Each record was
enclosed in �RECORD� tags and was identified by a
random, unique ID number. The text of each record was
enclosed within �TEXT� tags. Each PHI instance was
enclosed in �PHI� tags. The TYPE attribute of the opening
�PHI� tag marked the category of each PHI. See Figure 1
for an excerpt from a sample record.

Methods
We evaluated de-identification systems both at token- and
instance-level. We used precision, recall, and F-measure as
evaluation metrics.

Common Metrics
Precision, also known as positive predictive value (PPV),
is the percentage of the correctly identified tokens (or
entities) in a category in relation to the total number of
tokens (or entities) marked as belonging to that category.
Recall, also known as sensitivity, is the percentage of the
correctly identified tokens (or entities) in a category in
relation to the total number of tokens (or entities) in that

Table 5 y Token-Level Inter-PHI Ambiguity in the Ch
X Corpus Non-PHI Patients Doctor

Y
Non-PHI (%) Training — 1.50 5.60

Test — 2.07 5.83
Patients (%) Training 7.72 — 14.9

Test 13.7 — 15.7
Doctors (%) Training 13.7 7.63 —

Test 15.0 5.63 —
Locations (%) Training 8.61 1.32 5.30

Test 8.33 2.78 5.09
Hospitals (%) Training 38.2 1.47 14.3

Test 33.3 0.12 2.25
Dates (%) Training 1.13 0.00 0.67

Test 0.88 0.00 0.60
IDs (%) Training 0.08 0.00 0.05

Test 0.08 0.00 0.00
Phone Numbers (%) Training 0.50 0.00 0.00

Test 0.00 0.00 0.00
Ages (%) Training 0.00 0.00 0.00

Test 0.00 0.00 0.00
category. In a binary decision problem, e.g., does the entity
belong to category A or not?, the output of a classifier can be
represented in a confusion matrix which shows true posi-
tives (TP), true negatives (TN), false positives (FP), and false
negatives (FN). Precision (Eqn 1) and recall (Eqn. 2) can be
computed from such a matrix. F-measure is the weighted
mean of precision and recall; it can favor either precision or
recall (Eqn 3). In de-identification, recall is generally consid-
ered more important than precision. However, in the ab-
sence of a well-established numeric value associated with
the relative importance of recall over precision, we weigh
them equally, i.e., ��1. We also report precision and recall
of each system separately.

Precision : P �
TP

TP � FP
(1)

Recall : R �
TP

TP � FN
(2)

e Training and Test Corpora
cations Hospitals Dates IDs Phone Numbers Ages

0.32 0.86 0.41 0.00 0.00 0.00
0.16 0.79 0.41 0.00 0.00 0.00
0.37 0.45 0.00 0.00 0.00 0.00
2.24 1.00 0.00 0.00 0.00 0.00
0.66 2.13 0.13 0.09 0.00 0.00
1.43 1.34 0.14 0.00 0.00 0.00
— 4.64 0.00 0.00 0.00 0.00
— 3.24 0.00 0.00 0.00 0.00

1.83 — 2.67 0.03 0.00 0.00
0.37 — 0.00 0.00 0.00 0.00
0.00 0.09 — 0.00 0.00 0.00
0.00 0.00 — 0.00 0.00 0.00
0.00 0.03 0.00 — 0.00 0.00
0.00 0.00 0.00 — 0.00 0.00
0.00 0.00 0.00 0.00 — 0.00
0.00 0.00 0.00 0.00 — 0.00
0.00 0.00 0.00 0.00 0.00 —
0.00 0.00 0.00 0.00 0.00 —
alleng
s Lo
F i g u r e 1. Sample Discharge Summary Excerpt.
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F-measure : F� �
(1 � �) P � R

�P � R
(3)

Token-Level Evaluation
Precision, recall, and F-measure are standard evaluation
metrics in NLP.33 They are often applied at the token level
and measure the performance of systems on individual
tokens.

Instance-Level Evaluation
Instance-level evaluation is used by MUC and NIST in their
named entity recognition shared-tasks. When applied to
de-identification, instance-level evaluation checks individ-
ual PHI instances and marks the presence of a correct
instance or one of three types of errors: substitution, inser-
tion, or deletion. This evaluation models a PHI instance as a
combination of three slots: type, content, and extent.22 Each
slot has four possible values: correct, incorrect, missing, and
spurious. Type marks a PHI instance’s category, e.g., patient
or doctor. Content marks the words in the labeled PHI
instance. Extent specifies the starting and the ending points
(in terms of character indices) of the PHI instance. A PHI
instance has to consist of the correct type, content, and
extent in order to be correct (Eqn 4).a

Total Number of Correct Entities:

C � �
e�1

# hypothesized
entities

ce,

where ce ��1, if type, content, and extent are all correct

0, otherwise
(4)

An error in any one of type, content, or extent results in a
substitution error (Eqn 5). For example, an actual date
marked as an ID gives an incorrect type and results in a
substitution error. Marking 08/97 as a date when the ground
truth marks only 08 gives incorrect extent and also results in
a substitution error. In general, despite being counter-
intuitive, MUC and NIST consider all partial matches sub-
stitution errors.

Total Number of Substitution Errors:

S � �
e�1

#hypothesized
entities

se, where

se��1, if one of type, content, or extent is incorrect

0, otherwise
(5)

Spurious type, spurious content, and spurious extent char-
acterize an insertion error (Eqn 6), e.g., a non-PHI being
marked as PHI. Missing type, missing content, and missing
extent characterize a deletion error (Eqn 7), e.g., a PHI being
marked as non-PHI.

Total Number of Insertion Errors:

I � �
e�1

# hypothesized
entities

ie,

where ie ��1, if type, content, and extent are all spurious

0, otherwise
(6)
aWe used software designed by NIST.22
Total Number of Deletion Errors:

D � �
e�1

# hypothesized
entities

de,

where de ��1, if type, content, and extent are all missing

0, otherwise
(7)

Instance-level precision (Eqn 8), recall (Eqn 9), and F-
measure (Eqn 10) are computed from correct instances and
from substitution, insertion, and deletion errors. Note that
instance-level F-measure also weighs precision and recall
equally by setting ��1.

Instance-level Precision : P �
C

C � S � I
(8)

Instance-level Recall : R �
C

C � S � D
(9)

Instance-level F-measure : F �
2PR

(P � R)
(10)

Significance Testing
We tested the significance of the differences of system
performances using a randomization technique that is fre-
quently used in NLP.34,35 The null hypothesis is that the
absolute value of the difference in performances, e.g., F-
measures, of two systems is approximately equal to zero.
The randomization technique does not assume a particular
distribution of the system differences. Instead, it empirically
generates the distribution. Given two actual systems, it
randomly shuffles their responses to “units”b in the test set
N times (e.g., N � 9999) and thus creates N pairs of
pseudo-systems. It counts the number of times, n, when the
difference between the performances of the pseudo-system
pairs is greater than the difference between the perfor-
mances of the two actual systems. It computes

s �
n � 1

N � 1

If s is greater than a pre-determined cutoff �, then the
difference of the performances of the two actual systems can
be explained by chance; otherwise, the difference is signifi-
cant at level �. Following MUC’s example, we set � to 0.1
and we used complete messages, i.e., records, as units. Using
records as units requires that we treat the predictions on all
of the tokens/instances in a record as a unit; we shuffle
system responses to a record by exchanging all correspond-
ing token/instance-level predictions of two systems in the
record. Note that PHI instances and sentences could also be
used as units. However, this would implicitly give more
weight to records with more PHI instances or sentences.

Submissions
We allowed each team to submit up to three system runs for
the de-identification challenge. In the end, we received
sixteen de-identification system runs from seven teams.
Some of these teams viewed the de-identification task as a
problem of classification of tokens. Others viewed it as a

bFor each unit, flip a coin to decide whether to exchange system

responses for it.
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sequence tracking problem (using Hidden Markov Models
(HMM)36 or Conditional Random Fields (CRF)37). We re-
view six of these systems below. Wrenn et al., the engineers
of the seventh system, participated in the challenge but
provided us with no system description; therefore, we are
unable to review their system characteristics in this manu-
script.c

Aramaki et al.38 use CRFs to learn the features that are
important to identify PHI. They take a text chunking and
sequence tracking approach to de-identification and mark
all tokens as either beginning a chunk (B) or as being
inside(I)/outside(O) a chunk using BIO tagging.39 Their
features include local, global, and external features. Global
features encode sentential information and label consis-
tency. Sentential features mark the position of a sentence in
the record, the length of the sentence, and the last several
tokens in the previous sentence. External features come from
dictionaries for people, locations, and dates. Aramaki et al.’s
choice of sentential features are motivated by the observa-
tion that most PHI instances in discharge summaries appear
in the beginning and end of records and that the sentences
containing them are relatively shorter. The authors assume
that the most likely label for a target, i.e., the token being
tagged, is the valid label for all occurrences of that target in
a record. They achieve consistency among the labels of a
target by a two-step learning algorithm. In the first step, they
train their system with the local features of the target.
Inspired by Sibanda and Uzuner,31 they use the target itself,
token length, part of speech (POS) tag, orthography (e.g.,
capitalization), special characters (e.g., “–”), and format

cIn this paper, we refer to systems with the last name of the first

Table 6 y Summary of System Characteristics
Systems Aramaki 1 Guillen

BIO Model *
Global features

sentence position * *
sentence length *
words in previous sentence *
majority label *
trusted PHI
heading info

Local features
lexical cues1 * * (Dr, Pt, H
tokens *
n-grams
phrasal info
POS-tags *
orthographic *
token length *
affixes
special characters * * (Dt)
templates * (Dt, Ph) * (Dt, Lo,
sentence classification
frequency

External features
dictionary info *

Machine Learning method or Rules CRF Rules

1W indicates window size for lexical cues (e.g., W2 means lexical cue
author and a submission id.
patterns (e.g., “\d{3}–\d{3}–\d{4}”d for phone numbers). In
the second step, they retrain their system with all the
features from the first step plus the most frequent label
(predicted by the first step) for the target. The authors report
that the sentence features are the most informative features
for dates, IDs, and patients because of the fact that these PHI
instances appear mostly in the beginning of the records.
Dictionary information is found to be particularly useful for
dates, doctors, locations, and patients. Given the empha-
sized levels of ambiguity between PHI and non-PHI within
individual records, label consistency does not help differen-
tiate the PHI from non-PHI; however, given the under-
played inter-PHI ambiguity in records, it is useful in differ-
entiating among PHI.

Guillen40 implements a rule-based system utilizing global
features (sentence position), local features (lexical cues,
special characters, and format patterns), and syntactic
features to identify PHI. For her, sentence positions
indicate whether a sentence is in the header, body, or the
footer of the record. Guillen observes that headers contain
mainly IDs, hospitals, and dates; footers include doctors,
IDs, and dates. Guillen employs regular expressions to
identify dates and IDs; she processes the body of the
records using lexical cues and format patterns (e.g., “Mr.”
and “Discharge summary name:” mark patient names,
“live.*(in|with)” indicates locations, etc.). As syntactic
features, Guillen explores the tense and modality of verbs.
She shows that “local and syntactic features play a
significant role in identifying PHI when no [. . .] gazet-
teers and dictionaries are available.”

dThroughout this paper, we describe regular expressions using Perl

Guo 1 Guo 2 Hara 1 Hara 2
� *

�

*

* *

* (Dr, Pt, Hp)
* * * *

* * * *
* * * *
* *
* *
* *

* (except Id) * *
n-gram tree dependency tree

*
SVM SVM Rules, SVM Rules, SVM

ns the preceding and succeeding 2 tokens with respect to the target).
1

p, Ph)

Ag)
syntax.



Journal of the American Medical Informatics Association Volume 14 Number 5 Sept / Oct 2007 557
Guo et al.41 use Support Vector Machines (SVM)42 and the
“General Architecture for Text Engineering” (GATE) sys-
tem43 to produce two system runs: “Guo 1” and “Guo 2.” In
“Guo 1,” they train their system only on the local features
including the target (root form) and its length, POS tags,
orthography, affixes, and special characters. In “Guo 2,”
they enrich their feature set with lexical cues for doctors,
patients, and hospitals; with contextual features for patients
(six tokens to the left and to the right of the target); with
named entity, e.g., person, location, organization, dictionar-
ies; with named entity types predicted by an information
extraction system from the newswire domain; and with
rulese for mapping the named entities recognized by the
information extraction system to PHI categories (e.g., rules
to map a person name to either a doctor or a patient). By
comparing the results from their two runs, the authors show
that in recognizing patients, context is more powerful than
the named entity types provided by the information extrac-
tion system.

Hara44 adopts a hybrid system of rules with SVMs. (Note: a
description of the work done by Hara for the i2b2 de-
identification challenge appears as a JAMIA on-line supple-
ment to this article, and can be viewed at www.jamia.org).
His rules capture the patterns for phone numbers, dates, and
IDs. SVMs trained on global and local features recognize
hospitals, locations, patients, doctors, and ages. The features
used for SVMs include headings of sections (the heading
closest to the target), the category of the sentence as deter-
mined by a sentence classifier, the root and the surface form

eRules are captured by regular expression templates. In this manu-
script, we use the terms “rules” and “regular expression templates,”

Table 6 y Continued
Hara 3 Szarvas 1 Szarvas 2

�

* *

*

n-gram trigger all triggers n
*

* *
*
* * *

* *

* *
* *(Ag, Ph, Id) * (Ag, Ph, Id)

* *

* *
Rules, SVM boosted c4.5 voting of 3 boosted c4.5’s itera
and “format templates” interchangeably.
of the target, POS tag, and orthography. The classification of
the sentences in a record is based on the PHI categories they
contain. For this, Hara uses two types of ordered trees,
“n-gram trees” and dependency trees, with the Boosting
Algorithm for Classification Trees (BACT).45 Given this
information, he applies chunking techniques to determine
the position and span of locations, hospitals, patients, and
doctors in a sentence. Hara submitted three runs which
differ mainly in the way they classify sentences. “Hara 1”
uses n-gram trees, “Hara 2” uses dependency trees, and
“Hara 3” skips sentence classification altogether. The results
show that sentence classification hurts performance.

Szarvas et al.46 apply an iterative named-entity recognizer to
de-identification. They treat de-identification as a classification
task and use decision trees with local features and dictionaries.
Their local features include lexical cues, phrasal information,
orthography, token length, special characters, format templates
(for ages, phone numbers, and IDs), and frequency informa-
tion. Their phrasal information includes labels of the phrase
preceding the target and whether the target is inside quotation
marks or brackets. Frequency information includes the lower/
uppercase ratio and term frequency. Szarvas et al.’s system
uses context defined by lexical triggers that are sorted based on
the strength of their association with each PHI category as de-
termined by use frequencies. They collect from training
data the lexical context of PHI tokens (window of �3) and
instances (window of �1). The authors hypothesize that the
PHI found in the structured headers of the records can be used
as trusted information which, if associated unambiguously
with only one PHI category, can be more reliable than context
for recognizing PHI in the unstructured narratives. To ensure

as 3 Wellner 1 Wellner 2 Wellner 3

� * �

trigger * W2 * W2 *W3
* * *

* * *

*L2 *L2 *L4
* * *

h, ID) * (No) *(No) *(No, Ph, Hp, Lo)

*
osted c4.5 CRF Hierarchical HMM CRF
Szarv

*

*

-gram

*

*
*

*
*(Ag, P

*

*
tive bo
consistency among the PHI labels within a record, Szarvas et al.

http://www.jamia.org
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post-process the labels of PHI and mark all occurrences of a
phrase with the label of the longest identified matching phrase.
They submit three runs: “Szarvas 1,” “Szarvas 2,” and “Szarvas
3.” In “Szarvas 1,” they use a boosted decision tree consisting
of AdaBoost47 and C4.5 classifiers48 trained on dictionaries, all
local features, and some lexical triggers. In “Szarvas 2,” they
combine the votes of three boosted classifiers trained on
dictionaries, all local features, and all lexical triggers. In “Szar-
vas 3,” they add trusted information to “Szarvas 1.”

Wellner et al.49 adapt two NER systems, LingPipe and Carafe,
to the de-identification task. They submit three runs. “Wellner
1” and “Wellner 3” use Carafe.50 “Wellner 2” uses LingPipe,51

an implementation of HMMs. Carafe is a CRF implementation
that uses n-grams and location dictionaries; it is complemented
by regular expressions that can capture the more standardized
PHI, e.g., dates. In order to lend information from structured
headers/footers to the narrative, the CRF systems treat the
entire record as a single sequence. They model features in two
ways: a transition model (using the target’s local features as
well as the current and previous PHI labels) and a label model
(using the target’s local features as well as the current PHI
label). In general, “Wellner 1” and “Wellner 2” use traditional
MUC like features, including lexical context (with window size
of �2), orthography, affixes (with length of two), special
characters, and format templates. “Wellner 3” adds to this
feature set lexical cues (e.g., “Medical center” indicates hospi-
tals) and dictionaries for people, locations, and dates. It also
increases the affix length to four characters, increases the lexical
context window to three, and adds templates for phone num-
bers, hospitals, and locations. Wellner et al. show that such
task-specific feature engineering for Carafe results in a perfor-

Table 8 y Significance Tests on F-measure, Precision, a
Szarvas

2
Szarvas

3
Szarvas

1
Wellner

1
Aramaki

1
Well

2

Wellner 3 F F F, R
Szarvas 2 — F, P, R F, R F, P, R P
Szarvas 3 — — F, P, R F, P, R P
Szarvas 1 — — — F P
Wellner 1 — — — — P
Aramaki 1 — — — — —
Wellner 2 — — — — — —
Hara 3 — — — — — —
Wrenn 3 — — — — — —
Hara 2 — — — — — —
Hara 1 — — — — — —
Wrenn 2 — — — — — —
Guo 1 — — — — — —
Wrenn 1 — — — — — —
Guo-2 — — — — — —
Systems are sorted in F-measure.
mance improvement of “Wellner 3” over “Wellner 1;” also, the
two CRF systems generally outperform the HMM system.

A summary of the characteristics of all of the above de-
scribed systems is in Table 6 where Pt means patient, Dr
means doctor, Dt means date, Hp means hospital, Ag means
age, Ph means phone number, Lo means location, Id means
ID, and No means number. Systems are referred to using the
last name of the first author and their run IDs. “*” marks
entries corresponding to the model, feature, or approach
employed by each system. Items in the brackets indicate the
PHI categories these features are applied to.

Evaluation, Results, and Discussion
We evaluated de-identification performance using precision,
recall, and F-measure at token and instance level. All evalua-
tions were performed against the same test corpus. See Table 1
through Table 5 for the details on the distribution of PHI in the
challenge test corpus. Below, we present results on all seven
team’s submissions; however, we are unable to make sense out
of Wrenn et al.’s results due to lack of a system description.

Some of the tables discussed in this manuscript are available
as JAMIA on-line data supplements at www.jamia.org. The
online supplements are marked as such in the manuscript.

Token-level Evaluation

Overall Performance
We evaluated systems on their ability to differentiate PHI
from non-PHI. For this, we lumped all eight categories of
PHI into one overall PHI category and computed the preci-
sion, recall, and F-measure for differentiating PHI from

F i g u r e 2. System Comparison
Based on Overall Token-Level Perfor-
mance on PHI (rank ordered in F-
measure).

ecall
ara
3

Wrenn
3

Hara
2
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1
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1
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1
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2

Guillen
1
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R
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non-PHI. We report performance only on PHI (see Table 7,
available in the on-line data supplements).

Figure 2 demonstrates that recall shows more variance than
precision among the sixteen system runs. This is not surpris-
ing. Almost all of the systems used patterns, e.g., regular
expressions or rules, for recognizing the format of the PHI
(see Table 6). This led to high precision. However, our data
consist of large amounts of ungrammatical text with pos-
sible misspellings, arbitrary abbreviations, etc. In addition,
even for very structured PHI such as phone numbers,
standard format assumptions do not always hold, e.g., 678-
233-5033, x 549, and 160-6305, x 2644. This makes it difficult to
capture some PHI with patterns. The machine learning
approaches and the features used amend the format patterns
(orthography, tokens, POS tags, etc.) but also fail to charac-
terize all PHI. The relative strengths of the employed learn-
ing methods and features account for most of the variance in
recall.

Analysis
Table 8 shows that the performances of most pairs of
systems are significantly different from each other. In this
table, “F,” “P,” and “R” mark the pairs of systems that are
not significantly different at � � 0.1 in F-measure, precision,
and recall, respectively. Note that we only mark the upper
diagonal due to symmetry. Note also that the top four
systems are not significantly different from each other in
F-measure.

Among the submissions, “Guillen 1” is the only solely rule-
based system; therefore, we use it as a baseline for comparison.
All other systems augment rules with machine learning tech-
niques to some extent. The systems that take advantage of
machine learning generally perform significantly better than
the baseline. Among the systems that use machine learning,
“Guo 1” is the only one that does not employ any regular
expression templates as features. With the exception of “Guo
2,” all of the machine learning systems that employ regular
expression templates as features perform significantly better
than “Guo 1.” Hybrid systems such as Hara’s that employ
rules for certain PHI categories and machine learning with
regular expression template features for others generally fall
behind the systems that use regular expression template fea-
tures for all PHI categories.

Overall, statistical learning systems with regular expression
template features for all PHI categories perform best. They
are followed by hybrid systems combining rules for some
PHI categories with learning for others, pure learning sys-
tems without regular expression template features or sup-
plementary rules, and pure rule-based systems, in that
order.

Best Systems. Among learning systems with template fea-
tures, “Wellner 3,” “Szarvas 2,” “Szarvas 3,” and “Szarvas 1”
are the best performers in terms of F-measure. “Wellner 1,”
“Szarvas 2,” “Szarvas 3,” “Aramaki 1,” and “Szarvas 1” give
the best precision. “Wellner 3,” “Szarvas 1,” “Szarvas 2,”
and “Szarvas 3” give the best recall. In general, Wellner’s
and Aramaki’s systems take a sequence tracking approach to
de-identification and use CRFs to map features to PHI.
Szarvas’ systems classify individual tokens with boosted

decision trees.
Detailed review of the CRF systems, “Wellner 1,” “Wellner
3,” and “Aramaki 1,” shows that the reliance on majority
labels does not significantly improve the precision of “Ara-
maki 1” but lowers its recall significantly. This is due to the
ambiguity between PHI and non-PHI. For example, one of
our records contains references to DRS. RIGHT AND SIGNS
where a majority of the occurrences of both RIGHT and
SIGNS are marked as non-PHI. When compared to “Wellner
1,” the task-specific feature engineering in “Wellner 3”
improves recall; more specifically, the lexical cues of “Well-
ner 3” trade precision for recall. For example, this system
marks all acronyms with the lexical cue “H” as a hospital
when only some such acronyms in fact are, e.g., BPH in
prostatectomy for BPH stands for Benign Prostatic Hyperplasia.

Szarvas et al. show that decision trees give competitive
performance to CRFs in token-level classification of PHI.
According to Szarvas’ own analysis,46 frequency informa-
tion and trusted PHI help improve system F-measures. Their
frequency information consists of term frequency (tf), low-
ercase/uppercase ratio, etc. Low tf tends to indicate some
categories of PHI, e.g., IDs. Similarly, lowercase/uppercase
ratio is a good indicator of names. For example, typical
names either consist of all uppercase letters, e.g., DR.
RIGHT, or are capitalized, e.g., Dr. Kaystkote. Hence, if
lowercase to uppercase ratio is close to 0 or around 1–1/l
(where l is averaged word length), it is highly likely that the
target is in a name. Frequency information, when combined
with lexical triggers for doctors, patients, locations, and
hospitals, can be effective in predicting these PHI categories.
The best lexical cues come from the trusted PHI obtained
from structured headers and footers of the records. For
example, TR, DD, TD, and CC lines of the footer in Figure 3
clearly mark doctors, dates, dates, and doctors respectively.

Performance on PHI Categories In addition to overall system
evaluation on distinguishing PHI from non-PHI, we evaluated
systems for their ability to recognize the exact category of PHI.
Given the differences in the percentages of out-of-vocabulary
and ambiguous tokens included in each PHI category, we
present results on each category separately (please see Tables 9
through 11 in the on-line data supplement). The results sum-
marized in Figure 4, Figure 5, and Figure 6 show that all
systems have the hardest time when identifying locations
(F-measures below 80%) and phone numbers (F-measures
generally below 90%). For all other PHI categories, including
the categories with the highest ambiguities and most out-of-
vocabulary tokens (i.e., hospitals and doctors), the system
performances are generally comparable to, if not better than,
their overall performance. Of the systems that are not in the top

F i g u r e 3. Sample Footer.
five in overall performance, “Hara 3” is among the top three



560 UZUNER et al., Medical Record De-identification
systems in recognizing patients; this system gives its worst
performance on locations.

For locations, poor performance is partly caused by the pres-
ence of few training examples. In the training set, only 144
instances (302 tokens) of locations exist (compare to other PHI
categories in Table 1). The ability to learn locations is further
limited by the fact that, unlike hospitals that are indicated by
many lexical cues such as “admitted to,” “transferred to,”
“Medical Center,” and “Hospital,” locations have few lexical
cues. Even the system with the best performance on locations,
i.e., “Wellner 3,” completely misses 38, partially matches 7, and
mislabels as hospitals 5 of the 119 location instances present in
the test corpus. Its partial matches tend to miss the abbrevia-
tions associated with states, e.g., MA.

F i g u r e 4. F-measure on Individual PHI
Categories. Sorted by Performance on Pa-
tients.

F i g u r e 5. Precision on Individual PHI
Categories. Sorted by Performance on Pa-
tients.
For phone numbers, examination of system responses show
that many systems suffered from lack of comprehensive rules.
Even the system with the best performance on phone numbers,
i.e., “Aramaki 1,” missed the phone number (692) 673 3025, the
pager number 917070-7689, the extensions in 678-233-5033,
x549 and in 160-6305, x2644, and the area code in 337-4296, 936.
All of these PHI are considered phone numbers but deviate
from the rules dedicated to recognizing phone numbers by
“Aramaki 1.” In general, deviation from the expected tem-
plates complicate the recognition of phone numbers, which
already suffer from a lack of training examples (174 instances
consisting of 201 tokens in training data).

Results on Ambiguous and Out-of-Vocabulary
PHI Tokens
To gain insight into the strengths of systems on out-of-vocab-
ulary and ambiguous PHI tokens, we analyzed their
performance on such tokens in the challenge test corpus
separately. We found that the top six systems in Figure 2
are in the top six in terms of performance on out-of-
vocabulary PHI also. Given the dominance of out-of-
vocabulary PHI in the test corpus, this observation is not
surprising.

F i g u r e 6. Recall on Individual PHI Cate-
gories. Sorted by Performance on Patients.

F i g u r e 7. F-measure on Out-of-Vocabulary and Ambig-
uous PHI. Sorted by Performance on Out-of-Vocabulary

PHI.
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In addition to performance on out-of-vocabulary PHI, Figure 7
shows the performance of systems in classifying ambigu-
ous tokens into PHI and non-PHI categories, taking into
consideration all ambiguities (including inter-PHI ambi-
guities) and taking into consideration only the PHI tokens
that are ambiguous with non-PHI (please see Tables 12
through 14 in the on-line supplements). We see that
“Guillen 1” gives the worst performance on ambiguous
PHI tokens. This implies that Guillen’s rules capture the
features present in unambiguous PHI tokens but don’t
generalize well to ambiguous data. For the systems that
employ machine learning with local features, perfor-
mances on ambiguous PHI tokens are comparable to
performances on all PHI. Note that systems using dictio-
naries also use abundant local features, thus their perfor-
mances on ambiguous PHI tokens show no significant
difference from overall performances, e.g., ”Wellner 3,”
Szarvas et al.’s systems, and Aramaki et al.’s systems.
Local features by themselves can recognize ambiguous
PHI tokens and produce comparable results.

Instance-level Evaluation
In addition to token-level evaluation, we performed instance-
level evaluation. We measured the performance of systems on
differentiating instances of PHI from non-PHI, without any
regard to the exact categories of PHI. Figure 8 shows that the
top performing systems in token-level evaluation also gave the
best performance in instance-level evaluation. Please refer to
Table 15 in the on-line data supplements for details.

Figure 8 confirms the findings in Figure 2 and shows that the
systems differ more in recall than in precision. However,
comparing Figure 8 with Figure 2 also shows that all system
performances are lower at the instance-level than they are at
token-level. This is expected because instance-level evalua-
tion gives systems no partial credit for marking part of a PHI
instance correctly. It only gives credit for instances that are
marked exactly correctly.

Significance Testing
Significance tests gave similar results on instance-level evalu-
ation as they did on token-level. Resulting matrices are shown
in Table 16. Again, “F,” “P,” and “R” mark the pairs of systems
that are not significantly different at � � 0.1 in F-measure,
precision, and recall respectively.

Findings on instance-level evaluation confirm the results of
token-level evaluation. In particular, despite the change in
their absolute rankings relative to each other, “Szarvas 3,”
“Szarvas 2,” “Szarvas 1,” “Wellner 3,” and “Wellner 1” are
still the top five systems.

Common Errors
Analysis of the errors of the top six systems by Aramaki et al.,

F i g u r e 8. System Comparison
Based on Overall Instance-Level Per-
formance on PHI (rank ordered by
F-measure). Guillen’s output did not
meet our instance-level evaluation
requirements and was therefore ex-
cluded from this evaluation.
Szarvas et al., and Wellner et al. show that ambiguous and
out-of-vocabulary PHI play a role in the overall performance of
the systems. Some ambiguous and out-of-vocabulary PHI
cause missed or partially recognized PHI. Overall:

• All of the top six systems perform generally well on
patients; they only miss very few ambiguous and out-of-
vocabulary patient names such as Randdor So.

• All of the top six systems are challenged by ambiguous
and out-of-vocabulary entries in doctors. In particular,
they tend to miss the ambiguous token Can in Ettrent Can
and fail to recognize the out-of-vocabulary Freierm , Le. In
addition, the lack of correct punctuation in the records
affects the performance of these systems in recognizing
the doctor names correctly. In particular, many doctor
names are followed immediately by the name of the
hospital that the doctor is affiliated with; however, the
records lack the correct punctuation that would mark the
end of the doctor name and the beginning of the hospital
name, e.g., Dr. Fa Knottippsfyfe Fairm of Ijordcompmac Hospital,
i.e., Dr. Fa Knottippsfyfe Fairm who works at the Ijordcomp-
mac Hospital. The systems are able to only partially
recognize many such PHI.

• All of the top six systems make mistakes on marking
locations such as South Dakota Rangers and Port Authori-
ties. They also miss ambiguous and out-of-vocabulary
locations such as Ph, Goo, and Apem.

• Among the top six, “Aramaki 1” has an especially hard
time on and only partially recognizes many hospitals. In
particular, this system misses Ingree and Ot of in the
phrase Ingree and Ot of Weamanshy Medical Center; it
misses the tokens Fairm of in the phrase Fairm of Ijord-
compmac Hospital; and it over-marks the tokens Cardiac
Surgical in the phrase Nilame Hospital Cardiac Surgical.

• Surprisingly, effective removal of dates proves to be
non-trivial. We observe that dates are highly ambiguous
with medical measurements and the systems tend to miss
some dates with even standard formats, e.g., 9/10.

Generalization and Practical Use
The results of evaluations summarized in this paper are quite
encouraging and suggest that the best techniques are able to
find nearly all instances of PHI in the test data. We are left with
two important unanswered questions:

1. Does success on this challenge problem extrapolate to
similar performance on other, untested data sets?

2. Can health policy makers rely on this level of perfor-
mance to permit automated or semi-automated disclo-
sure of health data for research purposes without undue
risk to patients?

Unfortunately, we have strong reasons to suspect that extrap-
olation will be difficult. We have noted that a number of the

systems took advantage of the specific organization of dis-
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charge summaries that are characteristic of the institution from
which these were drawn. We have also observed, anecdotally,
that a Web-based demonstration program of our own con-
struction, but based on techniques very similar to those eval-
uated here, did well on test data but suffers occasional serious
lapses when challenged with volunteered examples not drawn
from our own data.31 For example, in almost all of the
challenge data set (both training and test sets), patients are
referred to as Mr. Smith or Ms. Jane Doe, and never as Bill or Sam
Smith. Therefore, machine learning methods overfit the data’s
style and learn to rely heavily on lexical clues such as Ms. These
and other similar observations argue that systems should be
trained on much larger and more heterogeneous data sets in
order to allow their developers to judge more accurately how
well they really perform. Studies on confusion set disambigu-
ation, i.e., “choosing the correct use of a word given a set of
words with which it is commonly used,” demonstrate that
three orders of magnitude larger data sets lead to significantly
improved performance using unchanged methods;52 we sus-
pect that the same would be true of de-identification. However,
because creation of gold standard data sets is very time
consuming and because this process requires access to sensi-
tive patient data, it may be very difficult to increase the data set
a thousand fold. Instead, we anticipate that unsupervised
techniques, perhaps bootstrapped from data de-identified by
programs such as those reported here, will need to be devel-
oped.

The second question, “how good is good enough?,” combines
many diverse issues of ethics, liability, law, and regulations
with the performance questions we report on here. We are not
aware of strict criteria to be enforced by Institutional Review
Boards when they agree that release of (nearly completely)
de-identified data is safe. We know from past experience that
human performance on de-identification tasks is imperfect and
some studies show that computer algorithms perform at least
as well.11 A currently popular approach is to approve release of
data for research only under a limited data use agreement,
where the recipient agrees contractually not to try to re-identify
patients. In this case, institutions rely on automated de-identi-
fication methods only to reduce the risk of inadvertent disclo-
sure. The need for such agreements to use data does, however,
inject delays and may discourage widespread legitimate data

Table 16 y Significance Test on Instance-Level F-measu
Szarvas

2
Szarvas

1
Wellner

3
Wellner

1
Aramaki

1
W

Szarvas 3 F, P, R R F, R
Szarvas 2 — F, R F, R
Szarvas 1 — — F, R P
Wellner 3 — — — P
Wellner 1 — — — —
Aramaki 1 — — — — —
Wellner 2 — — — — —
Hara 3 — — — — —
Wrenn 3 — — — — —
Hara 2 — — — — —
Hara 1 — — — — —
Wrenn 2 — — — — —
Wrenn 1 — — — — —
Guo 1 — — — — —
exploitation.
Conclusion
In this paper, we described the i2b2 shared-task on de-identi-
fication, including the details of data preparation, overview of
participating systems, details of evaluation metrics, and our
findings. Our analysis shows that statistical learning systems
utilizing rule templates as features give the best de-identifica-
tion performance on our corpus, followed by hybrid systems of
rules and machine learning, pure machine learning systems
without rule features or supplementary rules, and pure rule-
based systems, in that order. Results indicate that although
ambiguity of tokens can deteriorate performance, out-of-vo-
cabulary PHI can be effectively identified in this corpus.

Overall, the systems reviewed in this paper show that much
can be accomplished to de-identify data with the best tech-
niques. Future challenges remain, including the need to make
systems robust to greater variation in challenge data, e.g., data
from different sources and of different formats, and policy
issues to delineate the circumstances under which automated
de-identification methods can be safely used.
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