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Abstract

Capturing accurate and machine-interpretable primary
data from clinical encounters is a challenging task, yet crit-
ical to the integrity of the practice of medicine. We explore
the intriguing possibility that technology can help accu-
rately capture structured data from the clinical encounter
using a combination of automated speech recognition (ASR)
systems and tools for extraction of clinical meaning from
narrative medical text. Our goal is to produce a displayed
evolving encounter note, visible and editable (using speech)
during the encounter. This is very ambitious, and so far we
have taken only the most preliminary steps. Here we re-
port a simple proof-of-concept system and the design of the
more comprehensive one we are building, discussing both
the engineering design and challenges encountered. With-
out a formal evaluation, we were encouraged by our initial
results, so we conclude with proposed next steps.

1. Introduction

Capturing accurate structured primary data from clini-

cal encounters is critical to the integrity of medical prac-

tice. Furthermore, research in translational medicine also

depends on our ability to document patients’ clinical condi-

tions so that we can relate these to the enormous new data

sets that we can gather about patients’ genes. Unfortunately,

many studies document deficiencies in the record-keeping

process as currently practiced by clinicians. Early studies

show that actual medical records often fail to include criti-

cal information. A 1971 Army study reported critical miss-

ing data from the medical record in 10–70% of cases [17].

A 1975 study found significant discrepancies between 51

tape-recorded doctor-patient conversations and their record

[18]. More recent studies of a similar sort demonstrate

that the problem persists to today’s generation of physicians

[12, 7]. Although current practice recommends the adoption

of computerized records and computerized physician order

entry [9], these trends are met with resistance in part be-

cause they take additional time from the practice of already

busy doctors. [14]

We explore the intriguing possibility that we can bring

technology to bear on the problem of accurately capturing

machine-interpretable data from the clinical encounter us-

ing a combination of automated speech recognition (ASR)

systems and tools for extraction of clinical meaning from

narrative medical text. Our goal is to instrument the locale

of a clinical encounter (such as a doctor’s office or examina-

tion room) with one or more microphones that listen to two-

party conversations, transcribe them using ASR technology,

annotate them using medical natural language processing

(MNLP) tools, and then integrate the data they have ex-

tracted into a displayed evolving structured encounter note

that is visible to both physician and patient and that can be

edited by them using a natural speech and pointing interface

to correct errors and complete the record.

Other researchers have mounted efforts to capture accu-

rate patient records more automatically through technology

(e.g. [13], [10]), but our research is timely and novel for a

number of reasons. For one, most serious efforts in this area

occurred long enough ago that the technologies available

were inadequate to the task. The last decade has brought

many serious improvements to ASR and MNLP. Second,

we believe we are suggesting a new approach – one that

will utilize conversational interaction in an office visit and

will enable the patient and provider to interact with the sys-

tem during the encounter. Third, most research in ASR has

focused on transcribing speech (e.g. [2]); however, we pro-

pose to use ASR in an entirely different way. Rather than

capturing a simple transcript, we are using MNLP tech-

niques to extract a structured and coded encounter sum-

mary.

This is a very ambitious goal, and so far we have taken
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only the most preliminary steps toward its fulfillment. Here

we report a simple proof-of-concept system and the more

comprehensive one we are building. The proof-of-concept

permits a lash-up of Dragon’s well-known Naturally Speak-

ing ASR system [11] with an MNLP system called CaRE

(Category and Relationship Extractor) built in our labora-

tory by Sibanda [15]. These two components allow us to ex-

periment with recording at least one side of a conversation,

finding clinically significant terms in the recognized speech,

and summarizing them in a draft of the encounter note. The

more comprehensive system uses GATE, the General Ar-

chitecture for Text Engineering [5] to more thoroughly in-

tegrate the different components of this task.

2. Engineering and Integration

We chose to use one of the most successful commer-

cial ASR systems available, Dragon’s Naturally Speaking

(DNS), for interpretation of speech inputs. Colleagues at

Nuance, which produces and markets DNS, have made

available to us a well-documented System Development Kit

(SDK) for DNS that allowed us to integrate its capabilities

with other programs. They have also given us use of several

copies of their Medical Edition, which is widely used as

a transcription tool for doctors and has demonstrated good

accuracy on medical speech [6]. CaRE, the text-based lan-

guage processing tool we adopted, was implemented in a

combination of Java and Perl programs that also invoke a

number of large pre-packaged utilities such as a Support

Vector Machine (SVM) based learning system [4], the Brill

tagger [3] that uses statistical models to identify the likely

parts of speech of words, and the Link Grammar Parser

[16] that determines the syntactic structure of sentences and

sentence fragments. It also includes custom programs that

make use of a local copy of the UMLS metathesaurus [8]

to identify the semantic types of words and phrases found

in the text. Applied to text from hospital discharge sum-

maries, CaRE achieved an F-measure above 90% for re-

trieval of relevant medical concepts. Sibanda also describes

a component that recognizes relationships among words and

phrases, but we have not yet exploited this capability.

Our proof-of-concept system consists of a Java program

that presents to DNS a text window (hidden from the user)

into which it can type, much as it normally does when used

for simple dictation.1 This program observes this input win-

dow and, when enough input has been gathered, invokes

CaRE to try to interpret those data. It then presents the

interpretation in a second window, highlighting words and

terms that have been identified as clinically important ones,

and showing by color highlighting the semantic types of the

1At the time of its construction, we did not yet have access to the DNS

SDK, hence we adopted this more straightforward, if awkward, approach.

recognized terms. The left side of Figure 2 shows an exam-

ple of spoken text from a one-sided conversation interpreted

by this system. Though the simple approach taken here was

sufficient to persuade us that the larger task was feasible, its

architecture is clearly not sufficient to handle the many ad-

ditional interactive components that will be needed for the

overall project. Without a formal evaluation of this system,

we noted that it was able to make a reasonable interpretation

of uncorrected ASR output. Although there are a few false

positives, many concepts are correctly recognized with the

proper category, including some multi-word phrases that are

not built into the UMLS. Because CaRE was trained on text

from discharge summaries rather than doctor-patient con-

versations, we also believe that its performance can be im-

proved significantly once we train it on appropriate corpora

(which we do not yet have).

Although the eventual system must include multi-

speaker ASR and utilize further MNLP techniques to not

only recognize concepts but also fully interpret a two-

party conversation, we were encouraged by our initial re-

sults. Therefore, we have developed an intelligent listening

framework (ILF) that is a step toward our long-term goal of

a system that will capture all the relevant data from a doctor-

patient encounter into a well-structured encounter note.

<TEXTWITHNODES>
<Node id="0"/> Dr. <Node id="3"/>
<Node id="4"/>I<Node id="5"/>
<Node id="6"/>believe<Node id="13"/>
<Node id="14"/>I<Node id="15"/>
<Node id="16"/>have<Node id="20"/>
<Node id="21"/>a<Node id="22"/>
<Node id="23"/>brain<Node id="28"/>
<Node id="29"/>tumor<Node id="34"/>
. <NODE ID="36"/>

</TEXTWITHNODES>

Figure 1: A dictated utterance with embedded GATE
annotation nodes, as XML.

ILF is implemented as a Java program, running in Mi-

crosoft Windows, that uses the DNS SDK to control the

background operation of DNS and that also controls GATE

to create documents from the outputs of the speech interpre-

tation process. ILF is built as a flexible tool with adjustable

granularity parameters to control how often recognized text

is sent to an MNLP package for processing and how often

the .WAV recording of actual raw speech is sent to disk.2

GATE is itself a large, Java-based integrated toolkit with

useful facilities for managing corpora, multiple annotations,

2It is an unfortunate problem with the DNS SDK that this speech dump

must not be done continuously, because dumping to disk always inserts a

sentence break. This is because DNS normally uses its interpretation of the

beginning of the next utterance to decide whether the pause that caused it to

recognize two utterances does or does not correspond to an actual sentence

break. Our technique of specifying a granularity attempts to minimize this

flaw.
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None

Disease
MED

Test
Result

Symptom
Drug

Paul I hate to tell you this but you ve got cancer By cancer
I mean lymphoma We re going to have to put you on

CHEMOTHERAPY Your WBC that s your white blood cell
count is going to drop below 2000 I m very sorry about this

but I think we can give you a prescription of LORAZEPAM to

relieve your anxiety It s possible that during the course of

TREATMENT you ll have multiple organ failure For example

your lungs are going to fill with phlegm It s also possible that

you will have angina or an MI that is a myocardial infarc-
tion Do you have any questions for me Well of COURSE we

will continue to monitor your condition with regular blood
tests I just don t know what the results will be

Figure 2: Proof-of-concept output (left), as “heard” by DNS and interpreted by CaRE, and ILF architechture (right).
The left pane shows color-coded CaRE-recognized concepts from single party dictation. When combined with other
MNLP technologies, this information will be used to automatically produce a coded encounter note.

and interactive text mark-up [5]. We plan to re-create the

MNLP processing capabilities of CaRE within the GATE

framework, to allow us to experiment with variations that

combine different methods for accomplishing its tasks. ILF

allows more complex interfacing with MNLP than our orig-

inal prototype. For example, the MNLP framework can re-

port to ILF that it does not have enough unprocessed text

to accurately interpret the speech and can request that more

be captured. Currently we use a dummy processing module

that simply accepts its inputs without altering or further an-

notating them. The ILF architecture is diagrammed on the

right side of Figure 2. An example of an ILF XML utter-

ance output appears in Figure 1. The two types of annota-

tions ILF automatically produces after DNS interpretation

are shown in Figure 3.

Two of the principal advantages of using the DNS SDK

rather than the simple dictation-to-text interface of our ini-

tial effort are that (1) the SDK can capture the actual input

sounds into a .WAV file, and (2) we can query it for alter-

native interpretations of any portion of the speech signal.

When the actual sounds being interpreted are dumped into

a file by DNS, it can be instructed also to record the start

and stop times of each utterance (these are the segments of

speech between natural breaks such as pauses) and of each

word (the units identified by the ASR algorithm). In addi-

tion, the SDK can provide a list of the top alternative inter-

pretations of the last utterance and its confidence score for

each word in the top choice. Therefore it will be possible,

in a future, more integrated system, to go back and reinter-

pret segments of the speech input if what was transcribed

does not appear to make sense. It should also be possible

to build recognizers for non-speech noise sources that may

occur often in our target clinical setting, such as a cough

or a baby crying. With the recorded timing information for

each element of the interpreted text, such a recognizer could

identify segments of input that should be omitted from inter-

pretation. Another, yet more powerful possible design that

is not supported by the current SDK would permit ILF to

provide feedback to the DNS recognition algorithm based

on the semantic plausibility of what is being recognized.

<ANNOTATION ID="13" TYPE="12" STARTNODE="0"

ENDNODE="36">

<Feature>

<Name className="java.lang.String">rank</Name>

<Value className="java.lang.Integer">12</Value>

</Feature>

<Feature>

<Name className="java.lang.String">phrase</Name>

<Value className="java.lang.String">Dr. Doctor
Eppel Levi had a brain tumor<Value>

</Feature>

</ANNOTATION>

<ANNOTATION ID="27" TYPE="UTT" STARTNODE="0"

ENDNODE="36">

<Feature>

<Name className="java.lang.String">start</Name>

<Value className="java.lang.Double">0.000</Value>

</Feature>

<Feature>

<Name className="java.lang.String">end</Name>

<Value className="java.lang.Double">3.033</Value>

</Feature>

<Feature>

<Name className="java.lang.String">dbid</Name>

<Value className="java.lang.Integer">28</Value>

</Feature>

</ANNOTATION>

Figure 3: Two annotations for the utterance represented
by Figure 1. The first is the 12th alternative phrase
choice. The second is the sound dump timing and as-
sociated WAV file id.
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3. Difficulties Encountered

As with much of contemporary software engineering, the

greatest challenges in combining these tools has been to

deal with the many incompatible components. Some of the

difficulties we have encountered will illustrate this theme:

First, CaRE consists of a complex set of interrelated tools

developed in various programming languages and originally

deployed in a Linux environment. DNS runs only in Mi-

crosoft Windows and is strongly coupled to such Windows-

only technologies as ActiveX controls and COM objects.

GATE has been developed on a Java platform. Conse-

quently, tying all of these pieces together required consid-

erable effort including utilizing a Java-COM bridge3 and

developing workarounds for the missing Unix facilities that

tie CaRE’s pieces together. For future extensions, we will

almost certainly need to recode much of CaRE in Java, to

allow its proper integration into the GATE framework.

Second, although we find the graphical user interface

presented by that system to be robust and relatively easy

to use, we have had the opposite experience with the Ap-

plication Programmer’s Interface (API). We found places

where its behavior is not predictable from the documen-

tation, and others where documented calls simply do not

work. One particular area where we encountered serious

problems has been in utilizing GATE’s persistence tools,

which should work best with an actual database backend.

GATE describes support for the free PostgreSQL database,

but due to GATE’s poor support of the latest release and

Windows’ poor support of the prior release, we struggled

to connect GATE and PostgreSQL. We were able to over-

come many of these problems, but we are still unable to use

GATE’s database-backed persistent document implementa-

tion reliably. It appears that some undiscovered error in its

implementation causes changes sometimes not to be com-

municated to the database record.

4. Challenges and Next Steps

The current version of ILF is quite functional for the two

tasks described here: (1) capturing transcribed speech and

metadata from a single speaker and (2) inputting these into

a database-backed text engineering framework. We have

mentioned the need to incorporate into GATE the CaRE-

like abilities to interpret the transcribed text into a concise

and valid structured record of the encounter. This should be

a “mere matter of programming,” because we have previ-

ously built similar systems. We believe, however, that there

are several other major challenges facing us in our work on

this project.

3We settled on JACOB [1], which in our evaluation was the most stable

and functional of the open source tools.

First, current ASR systems seem built for use by a sin-

gle user, not the pair (at least) that participate in a clinical

encounter. Thus DNS expects that every utterance heard by

it comes from the same speaker, hence it applies the same

language and speaker model to all inputs. This is clearly

wrong in our setting, and will lead to degraded performance

if, for example, one party to the conversation is female and

the other male, or if one has a very different accent than

the other, making any language model a poor fit for both.

There are, in the research laboratory, ASR systems designed

to be far more speaker independent than DNS, and perhaps

they could be adapted to our task. We have also consid-

ered running two instances of DNS, one listening to the doc-

tor, the other the patient. It is not currently possible to run

more than one instance of the software on a single machine,

which is a shame in the era where two, four and even eight-

core personal computers are becoming commonplace. Thus

our current plan is to use two computers to interpret the two

participants’ inputs, and then to use a network-based coor-

dination protocol to assure synchrony between what is said

by the two parties.

Second, although doctors may be willing to train a sys-

tem to their voice patterns and speaking styles, patients cer-

tainly will not have the opportunity or time to do so. DNS

does come with a generic language model that claims to

be able to handle the ASR task without any training, but

such use clearly degrades accuracy. Again, we may need

to use more research-stage systems that have been designed

explicitly for such audiences if the DNS models are inade-

quate.

Third, the quality and placement of microphones seems

to be critical to good ASR performance. Indeed, DNS rec-

ommends use of a headset microphone, which may be suit-

able for dictation but is probably not acceptable in a clinical

encounter. We have used such microphones in our experi-

ments so far. Alternatives include high-quality lapel micro-

phones, whose placement farther from the speaker’s mouth

puts them at a disadvantage, but which may be sufficiently

unobtrusive to be acceptable. A better option would be an

array microphone, which uses dynamic signal processing

techniques with an array of microphone inputs, typically ar-

ranged in a line, to isolate sounds that come from a specific

direction and distance in the space before them. These can

be used several feet from the speaker, and thus do not inter-

fere with the speaker’s freedom of movement. Such systems

had been quite expensive, but continued price reductions

have now made them available for under $100. Unfortu-

nately, our very limited experience with one such system

suggests that they do not perform as well for ASR as the

headset-mounted microphones.

Fourth, we must accumulate a significant set of doctor-

patient conversations to use as training data in developing

the statistical models that go into CaRE and similar sys-
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tems. In addition, if we find that our initial serial approach

to the interpretation task does not yield sufficient accuracy,

we may need to develop a more sophisticated integration

between various components of ILF so that quality mea-

surements in different parts of the system can control the

effort expended by other parts to reach some globally opti-

mal interpretation.

Finally, the challenge of creating a primarily speech-

based interface that will allow a doctor and patient to cor-

rect a visually-presented encounter record seems daunting.

Clearly, dictation-oriented commands such as “delete last

paragraph” are completely inappropriate to this setting. In-

stead, such corrections need to be made through natural

speech, based on the semantics of what the system believes

and shows. Thus, we should expect statements more like

“no, he suffered his heart attack in 1985, not 1995.” We are

unaware of existing techniques for doing this, which raises

both the risks and rewards of our approach.

This first pass at our ambitious goal of automating doc-

umentation of clinical encounters yielded two positive re-

sults. First, it encouraged us that, given enough time and

effort, the goal is reachable. Second, it gave us a realistic

understanding of the strengths and weaknesses of the state

of the art and helped us to anticipate and plan for the chal-

lenges that lie ahead.
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