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Summary This paper is based on a panel discussion held at the Artificial Intelligence
in Medicine Europe (AIME) conference in Amsterdam, The Netherlands, in July 2007. It
had been more than 15 years since Edward Shortliffe gave a talk at AIME in which he
characterized artificial intelligence (AI) in medicine as being in its ‘‘adolescence’’
(Shortliffe EH. The adolescence of AI in medicine: will the field come of age in the
’90s? Artificial Intelligence in Medicine 1993;5:93—106). In this article, the discussants
reflect on medical AI research during the subsequent years and attempt to char-
acterize thematurity and influence that has been achieved to date. Participants focus
on their personal areas of expertise, ranging from clinical decision-making, reasoning
under uncertainty, and knowledge representation to systems integration, transla-
tional bioinformatics, and cognitive issues in both the modeling of expertise and the
creation of acceptable systems.
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1. Introduction

The earliest work in medical artificial intelligence
(AI) dates to the early 1970s, when the field of AI was
about 15 years old (the phrase ‘‘artificial intelli-
gence’’ had been first coined at a famous Dartmouth
College conference in 1956 [1]). Early AI in medicine
(AIM) researchers had discovered the applicability
of AI methods to life sciences, most visibly in the
Dendral experiments [2] of the late 1960s and early
1970s, which brought together computer scientists
(e.g., Edward Feigenbaum), chemists (e.g., Carl
Djerassi), geneticists (e.g., Joshua Lederberg),
and philosophers of science (e.g., Bruce Buchanan)
in collaborative work that demonstrated the ability
to represent and utilize expert knowledge in sym-
bolic form.

There was an explosive interest in biomedical
applications of AI during the 1970s, catalyzed in
part by the creation of the SUMEX-AIM Computing
Resource [3] at Stanford University, and a sister
facility at Rutgers University, which took advantage
of the nascent ARPANET to make computing cycles
available to a national (and eventually interna-
tional) community of researchers applying AI meth-
ods to problems in biology and medicine. Several
early AIM systems including Internist-1 [4], CASNET
[5], and MYCIN [6], were developed using these
shared national resources, supported by the Division
of Research Resources at the National Institutes of
Health.

The general AI research community was fasci-
nated by the applications being developed in the
medical world, noting that significant new AI meth-
ods were emerging as AIM researchers struggled with
challenging biomedical problems. In fact, by 1978,
the leading journal in the field (Artificial Intelli-
gence, Elsevier, Amsterdam) had devoted a special
issue [7] solely to AIM research papers. Over the next
decade, the community continued to grow, and with
the formation of the American Association for Arti-
ficial Intelligence in 1980, a special subgroup on
medical applications (AAAI-M) was created.

It was against this background that Ted Shortliffe
was asked to address the June 1991 conference of the
organization that had become known as Artificial
Intelligence in Medicine Europe (AIME), held in Maas-
tricht, The Netherlands. By that time the field was in
the midst of ‘‘AI winter’’ [1], although the introduc-
tion of personal computers and high-performance
workstations was enabling new types of AIM research
andnewmodels for technology dissemination. In that
talk, he attempted to look back on the progress of AI
in medicine to date, and to anticipate the major
challenges for the decade ahead. A paper based on
that talk was later published in Artificial Intelligence
Please cite this article in press as: Patel VL, et al. The comin
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in Medicine [8]. Thus, when our panel of senior AIM
researchers was constituted for the AIME conference
in Amsterdam in July 2007, we chose to reflect on
some of the assessments and predictions that had
arisen from Shortliffe’s presentation some 16 years
earlier. This article summarizes those remarks from
the AIME 2007 panel.

2. Comments by Edward H. Shortliffe

There were three key points to my 1991 presenta-
tion, all of which I believe are equally pertinent
today. First, I claimed that AI in medicine cannot be
set off from the rest of biomedical informatics, nor
from the world of health planning and policy. Rea-
listic expectations of the field’s influence in health
care and biomedical sciences require that we draw
upon AI as only one of the many methodological
domains from which good and necessary ideas can
be derived. This amounts to an argument that AIM
researchers need to be willing to draw on other
fields of computer science and informatics as neces-
sary, ranging from principled approaches to human—
computer interaction or database theory to numer-
ical analysis and advanced statistics. It is the ulti-
mate applications, and their value in biomedicine,
that must drive our work, and this may mean being
eclectic and as oriented to policy and sociocultural
realities as we are to the technical underpinnings of
a medical AI application.

Second, we need to realize that the practical
influence of AIM in real-world settings will depend
on the development of integrated environments
that allow the merging of knowledge-based tools
with other applications. The notion of stand-alone
consultation systems had been well debunked by the
late 1980s [9], and thus we must be looking for ways
to combine ‘‘backend’’ AI notions with such ubiqui-
tous systems as electronic medical records, provider
order-entry systems, results reporting systems, e-
prescribing systems, or (on the biological side) tools
for genomic/proteomic data management and ana-
lysis. This reality creates challenges for researchers,
because the implication is that we need breadth of
knowledge and collaborations that go beyond our
immediate AI roots.

Third, our ability to influence the delivery of
health care, or the quality of biomedical research,
will depend on vision and resources from leaders
who understand that medical practice, and biome-
dical research, are inherently information-manage-
ment tasks–—and must accordingly be tackled and
supported as such. To this day I find it remarkable
how many leaders continue to view their IT invest-
ments as discretionary, and do not realize the key
g of age of artificial intelligence in medicine. Artif Intell
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strategic role that clinical and biological computing
infrastructure has on quality, error reduction, effi-
ciency, and even cost savings. Biomedical infor-
matics researchers, including those who work in
the AIM area, must learn to be effective mission-
aries, presenting their case effectively to key deci-
sion makers in ways that gradually effect the
cultural change that will be necessary for the full
impact of our technologies to be felt.

In the 1991 talk and subsequent article, I also laid
out three key challenges for the field. First it
seemed clear to me then, as it does now, that we
need more professionals who are broadly educated
regarding the interdisciplinary nature of biomedical
informatics, including its AIM component. Having
learned that there are too few individuals with
focused training at the intersection of biomedicine
and computer science (and the other informatics
component sciences, such as decision science, cog-
nitive science, and information science), we have
tried to gear up with new formal and informal
programs offering graduate degrees and certificate
training, as well as continuing education courses for
a variety of health professionals (physicians, nurses,
dentists, pharmacists, etc.). But with growing
demands for these interdisciplinary skills, there
are still too few people capable of working effec-
tively at the intersection, even in academic or
industrial research roles, and we need more depart-
ments, more support for training positions, and
more buy-in from institutions that instinctively
eschew the formation of new academic units.

Second, in 1991 we identified the need to develop
national and international biomedical networking
infrastructures for communication, data exchange,
and information retrieval. Wewere just beginning to
embark on the ‘‘democratization’’ of the Internet in
1991, with the earliest forays into web concepts
underway. Today, 16 years later, we see remarkable
progress in this area, with growing dependence on
electronic communication, e-publishing, and online
collaborative activities based on Web 2.0 and
related concepts. There is still much work to be
U
N

C

Please cite this article in press as: Patel VL, et al. The comin
Med (2008), doi:10.1016/j.artmed.2008.07.017

Table 1 Topics and themes at AIME 2007

Computer-based knowledge generation
Clinical data mining
Probabilistic and Bayesian analysis
Visualization
Information retrieval
Temporal data mining
Knowledge discovery in databases
Natural language processing
Decision support systems
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Workflow
C
TE

D
 P

R
O

O
F

done, but I believe that the community has met the
challenge from the early 1990s and continues to
expand its capabilities and activities in this impor-
tant area.

Third, we identified the need for credible inter-
national standards for communications, data and
knowledge exchange. Again there has been a great
deal of work in this area in the intervening years, not
the least of which has been a broadened acceptance
of the importance of standards adoption to support
system integration (including, of course, the inte-
gration of AIM decision support with biomedical and
clinical data systems of various sorts). Certain stan-
dards have been widely adopted, such as HL7 for
data exchange (http://www.hl7.org), but there
continues to be much work to be done in this key
area.

Against the backdrop of these issues from 1991,
our panel at AIME-2007 encouraged me to consider
issues such as (a) How has the field advanced?, (b) In
what ways, and to what extent, has the field had a
direct influence on clinical medicine or other bio-
medical fields?, and (c) How well is the field being
supported (by funding agencies, by academic and
research organizations, and by our biomedical or
computer-science colleagues)? What follows is a
summary of some of those observations.

At first blush, AI in medicine is alive and well,
with AIM researchers using a wide array of AI-
inspired methods to tackle a broad range of impor-
tant clinical and biological problems (see Table 1).
However, although AI issues are ubiquitous in bio-
medicine, many people who are doing AIM research
do not label it as AI. What was once a catchy,
respected label has lost much of its luster–—a
casualty of AI winter and the general societal sense
that AI had somehow overpromised and failed to
deliver. Yet I see AI broadly represented in the
biomedical informatics field, in areas such as knowl-
edge representation and ontology development,
terminology and semantic modeling of domains,
decision support and reasoning under uncertainty,
model-based image processing, and many others.
g of age of artificial intelligence in medicine. Artif Intell

Data and knowledge representation
Knowledge-based health care
Feature selection/reduction
Classification and filtering
Agent-based systems
Machine learning
Text processing
Ontologies
Image processing
Clinical guidelines
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Ironically, whereas many researchers in these areas
do not call their work AI, even though the historical
and methodological roots are clearly in the AI area,
those commercial systems that claim they offer
‘‘artificial intelligence’’ almost never do–—at least
by the technical standards that wewould tend to use
in determining whether a piece of work draws on AI
methods. With the diffusion of AI research through-
out biomedical informatics, the biennial AIME con-
ference, and the international journal Artificial
Intelligence in Medicine stand out as the two
remaining forces for defining and recognizing AI in
medicine as a subfield of biomedical informatics and
computer science.

Another observation is the fascinating transition
to an emphasis on guideline-based decision support.
This parallels what is happening in clinical medicine,
where clinical guidelines have been introduced as a
proposed way to reduce unjustified clinical varia-
bility among providers and to enhance error reduc-
tion efforts. Clinical guidelines are sometimes
viewed simply as a resurgence of interest in the
‘‘clinical algorithm’’ notions that were popular in
the late 1960s and early 1970s. Guidelines are often
accompanied by algorithms or flow charts that pro-
vide declarative information about how to diagnose,
work up, or treat patients with certain conditions or
complaints. Implementing guidelines is accordingly
quite different from the classical patient-specific
decision-support efforts that had emerged for diag-
nosis and therapy planning from researchers in the
AIM community. Thus the shift to guideline issues has
in part been at the expense of ongoing work on
statistical aspects of medical diagnosis, Bayesian
belief networks, ontology development to support
reasoning under uncertainty, or complex planning
approaches applied in clinical domains. This is not to
say that guideline work has been simple. As always,
the devil is in the details, and researchers on clinical
guidelines have uncovered important challenges in
knowledge representation, standardization, inte-
gration, and presentation of advice.

Meanwhile there has been impressive progress in
several AIM research areas: knowledge representa-
tion (and the associated tools, including the remark-
able worldwide impact of Protégé, itself a product
of AIM research at Stanford [10]), machine learning
and data mining for knowledge discovery (including
in text databases), and temporal representation and
reasoning (to mention only a few). Yet progress has
been slow, albeit real, in the adoption of key stan-
dards needed for integration and knowledge sharing
(e.g., controlled terminologies and their semantic
structuring, standards for representing clinical deci-
sion logic to enhance its sharability, and incorpora-
tion of AI concepts into robust, well-accepted
Please cite this article in press as: Patel VL, et al. The comin
Med (2008), doi:10.1016/j.artmed.2008.07.017
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clinical products). Many of the barriers to progress
in these latter areas have been political, fiscal, or
cultural rather than purely technical.

A particularly welcome transition has been the
gradual tendency of traditional computer science
departments to embrace biomedical applications
work. Two decades ago, it was a significant barrier
to computer scientists’ careers if they were viewed
as being ‘‘too applied’’ in any single domain. Today,
recognizing the stimulation of cutting edge compu-
ter science that can come from work on biomedical
applications (and the new sources of grant funding
that accompany such work), academic computer
science has begun to embrace biomedical applica-
tions as valid areas of emphasis for computer
science faculty members. This has been especially
true for faculty who work in the bioinformatics
domain, many of whom draw on artificial intelli-
gence methods in their work.

My summary assessment, then, is that the AI in
medicine field is robust, albeit less visible than it
was in AI’s heyday. There is clear evidence of pro-
gress, and a community of talented researchers that
would benefit from more growth in numbers and in
research grant funding. What began largely in the
United States in the late 1960s and early 1970s is
now a worldwide field, with important contributions
from around the globe, but with special acknowl-
edgement to our European colleagues who continue
to lead us with their biennial AIME conferences and
the highly regarded international journal Artificial
Intelligence in Medicine.

3. Comments by Vimla L. Patel

It was Mario Stefanelli, and the AIME program com-
mittee, who asked me to present an address at the
1991 conference at which Ted Shortliffe gave his
‘‘Adolescence of AI in medicine’’ speech. I was asked
to discuss studies in human intelligence (thinking and
reasoning) and their relationship tomedical artificial
intelligence [11]. Today Iwould like to askwhether, in
the evolution of AIM research, we have forgotten
about the humanmind as we perform ourwork. Since
the early days of AI, there has been a debate about
the extent to which people who build AI systems
shouldbemodeling howhumanbeings thinkand solve
problems. The debate is exemplified by two nick-
names for AI researchers, those who are the ‘‘scruf-
fies’’ (pragmatists in the sense that a system’s
performance on tasks ismore important to them than
whether the system solves problems as human beings
would) and the ‘‘neats’’ (formalists, theoreticians, or
psychologists who argue that true AI requires model-
ing and insights into human intelligence). In today’s
g of age of artificial intelligence in medicine. Artif Intell
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world, we need both types of people, or people who
effectively move between the extremes, since the
two approaches serve different purposes in the AI in
medicine community.

Issues that concerned the AIM community in the
1980s were different from those in the current
decade. In the past, there was an emphasis on
the development of stand-alone AI systems, using
computer science/engineering approaches, aiming
for accurate and reliable decision-making perfor-
mance, regardless of whether the system solved
problems in the same way that human experts do.
Thus our AIM traditions have tended to be derived
from the ‘‘scruffy’’ branch of AI. Today we have
moved away from these stand-alone systems [9] to
the development of integrated systems in clinical
environments, interfacing with medical record and
order-entry systems, thereby using a wide variety of
computational methods. Given that there is a dif-
ference in the way knowledge is organized in per-
formance-oriented systems from the way in which
that same knowledge is organized in the minds of
human beings [12], there is also generally no
attempt to model human reasoning processes.
There is also a greater emphasis now on clinical
workflow and socio-technical considerations among
the design issues for the AIM community.

Yet one of the lessons of informatics work in
recent decades has been that even the perfor-
mance-oriented ‘‘scruffies’’ need to build systems
with insights into the human mind if they are going
to achieve the outcomes desired. System users are,
after all, human beings, and their modes of reason-
ing and mental models of domains will determine
how they utilize and respond to advice or guidance
provided through AIM systems. As in most domains,
there has always been a gulf between technologic
artifacts and end users. Since medical practice is a
human endeavor, there is a need for bridging dis-
ciplines to enable clinicians to benefit from rapid
technologic advances. This in turn necessitates a
broadening of disciplinary boundaries to consider
cognitive and social factors related to the design
and use of technology. A large number of health
information technologies fail. Our evaluations today
tell us that most of these failures are due not to
flawed technology, but rather to the lack of sys-
tematic considerations of human issues in the design
and implementation processes. In other words,
designing and implementing these systems is not
as much an IT project as a human-centered comput-
ing effort, dependent on topics such as usability,
workflow, organizational change, and process reen-
gineering.

All technologies mediate human performance.
Technologies, whether they be computer-based or
Please cite this article in press as: Patel VL, et al. The comin
Med (2008), doi:10.1016/j.artmed.2008.07.017
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in some other form, transform the ways individuals
and groups behave. They do not merely augment,
enhance or expedite performance, although a given
technology may do all of these things. The influence
of technology is not best measured quantitatively
since it is often qualitative in nature. Technology,
tools, and artifacts not only enhance people’s ability
to perform tasks but also change the way in which
they do so. In cognitive science, this ubiquitous
phenomenon is called the representational effect,
which refers to the phenomenon that different
representations of a common abstract structure
can generate dramatically different representa-
tional efficiencies, task complexities, and beha-
vioural outcomes. These are the current
challenges that we in the AIM community face
andwill require some understanding of the cognitive
factors that influence design [13].

The importance of cognitive factors that deter-
mine how human beings comprehend information,
solve problems, and make decisions cannot be over-
stated. Investigations into the process of medical
reasoning have been one area where advances in
cognitive science have made significant contribu-
tions to AI. In particular, reasoning in a medical
context involving high throughput and high degree
of uncertainty (such as critical care environments),
compounded with constraints imposed by resource
availability, leads to increased use of heuristic stra-
tegies. The utility of heuristics lies in limiting the
extent of purposeful search through data sets. By
reducing redundancy, such strategies have substan-
tial practical value. A significant part of a physi-
cian’s cognitive effort is properly selecting and
utilizing pertinent heuristic approaches. However,
the use of heuristics introduces considerable bias in
medical reasoning, often resulting in a number of
conceptual and procedural errors. These include
misconceptions about laws governing probability,
flawed instantiation of general rules to a specific
patient at the point of care, misunderstanding prior
probabilities, as well as falsely validating a hypoth-
esis. Much of physicians’ reasoning is inductive, with
attached probability. Human thought is fallible and
we cannot appreciate the fallibility of our thinking
unless we draw on an understanding of how physi-
cians’ thinking processes operate in the real working
environment. Such level of understanding will be
necessary as AIM research further evolves [14].

Finally, given the current trend in managing med-
ical errors, the future work in AI that relates to
human beings working within a socio-cognitive con-
text becomes even more salient. Early research on
clinical errors included studies of human reliability
in the process, with the human component being
considered as just one more element in the system,
g of age of artificial intelligence in medicine. Artif Intell
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viewed as more or less equivalent to the technical
components. Just as technical safety is improved
through the reduction of technical breakdowns, it
seemed intuitive that one could improve safety
through the elimination of human errors. However,
we now know that mistakes are inevitable and
cognitively useful phenomena that cannot be totally
eliminated. This raises an issue of having suitable
goals for management and recognition of these
errors plus proper responses of the systems (and
individual) when they occur. These issues require
research so that we can better understand the
boundaries of human errors and risk taking and apply
these lessons in the design of safe systems which are
resilient [15]. Such resiliency should become a key
element in the design and implementation of future
AIM systems.

4. Comments by Mario Stefanelli

I would like to direct my remarks to the socio-
organizational approach in the development of
health care systems. Although machines are not
yet showing general intelligent behaviours, AI is
nowadays much more than a promise. AI has pro-
foundly and paradigmatically changed computer
science by introducing the separation between
knowledge representation and inference. Rather
interestingly, albeit without spotlights, the major
achievements of AI are going to be reached in the
current days. AI is now part of current software
technology solutions in the areas of logistics, data
mining and image processing. Moreover, AI is boost-
ing discovery in genetics and molecular medicine,
by providing machine learning algorithms, knowl-
edge representation formalisms, biomedical ontol-
ogies, and natural language processing tools
[16,17].

As far as medicine is concerned, knowledge man-
agement (KM) is one of the most interesting AI fields
[18]. The goal of KM is to improve organizational
performance by enabling individuals to capture,
share and apply their collective knowledge to make
optimal ‘‘decisions in real time’’. Such approach is
completely coherent with the current vision of the
role of health care organizations (HCOs) in the 21st
century [19]. The new main goals of HCO are safety,
efficiency and effectiveness, centrality of the
patient, continuity of care, care quality and access
equity. As a consequence, medical KM and health
care process management are crucial to achieve the
desired quality. The first goal of KM in medicine is
therefore the definition of effective tools for sup-
porting communication between all the actors
involved in patients’ care. Such communication
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aims at developing shared meanings of what is
happening outside and inside the HCO in order to
plan and make decisions. Shared interpretations are
needed to define the organization intent or vision
about what new knowledge and capabilities the
organization needs to develop.

Managing knowledge in HCOs, however, does not
merely focus on improving the availability of instru-
ments for improving communication. On the con-
trary, KM aims at transforming information into
actions; this transformation is the basic premise
to knowledge creation, which amplifies the knowl-
edge acquired or discovered by individuals and
makes it available through the organization [20].
From an organizational viewpoint [21,22], knowl-
edge creation is the result of a social interaction
between two fundamental types of knowledge, tacit
knowledge and explicit knowledge [23]. Tacit
knowledge is characterized by the fact that it is
personal, context specific and therefore hard to
formalize and communicate. Explicit knowledge is
transmittable through any formal or systematic
representation language, from a text written in
natural language to a (more or less) complex com-
puter-based formalism. The transformation
between explicit and tacit knowledge process has
been called knowledge conversion. Four different
modes of knowledge conversion have been postu-
lated: socialization, externalization, combination,
and internalization. Socialization is the process of
sharing experiences that creates tacit knowledge
as shared mental models and technical skills.
Newly trained physicians and nurses successfully
learn by imitating the behaviours of experienced
practitioners.

Externalization is the process of conversion of
tacit into explicit knowledge through the develop-
ment of models, protocols or guidelines. Combina-
tion is the process of recombining or reconfiguring
bodies of existing explicit knowledge that leads to
the creation of new explicit knowledge. Internali-
zation is the process of learning by repetitively
doing a task applying the explicit knowledge so that
the achieved outcomes become absorbed as new
tacit knowledge of the individual. All four phases
may effectively be supported relying on AI methods
and tools. Intelligent data analysis and data mining
support the extraction of patterns and regularities
from the process data collected during HCO activ-
ities [24]. The transformation of such patterns into
explicit knowledge requires knowledge representa-
tion formalisms and tools. Guidelines, protocols and
decision models are derived as the final part of the
externalization activity. Once knowledge is
acquired and formalized, it is effectively exploited
thanks to knowledge management methods and
g of age of artificial intelligence in medicine. Artif Intell
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Figure 1 The knowledge cycle implemented with AI
methods and tools.
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tools [25,26]. The high level combination of infor-
mation and processes may lead to the definition of
new knowledge that, once internalized and diffused
with socialization, is mirrored by the actions of HC
providers, collected by process data. The entire
knowledge cycle is thus implemented with AI tech-
nologies (see Fig. 1).

Knowledge creation is one of the basic compo-
nents of organizational learning, which refers to the
skills and processes of creating new knowledge by
doing within a working organization [27]. To reach
this goal, medical knowledge, organizational knowl-
edge and clinical information must be effectively
represented and integrated to assist patient and
citizen care. From a technological viewpoint, KM
can be implemented within a careflow management
system (CfMS) [28,29] or a service-flowmanagement
system [30]. A CfMS acts as a component of the
health information system (HIS) to completely
define, create and manage the execution of care-
flows. A CfMS involves dedicated procedures
through which administrative and supervisory tasks,
such as sharing documents and information or
assigning commitment for task execution, are
passed from a care giver to another one according
to a process definition. This consists of a network of
activities and their relationships, criteria to indi-
cate the start and termination of the process, and
information about the individual activities.

CfMS are now implemented in running HIS. For
example, within the stroke active guideline evalua-
tion (Stage) project, which involves 27 neurological
units in Italy, a CfMS was implemented at the stroke
unit ‘‘IRCCS Mondino’’ in Pavia. Currently about 250
patients have been treated with the CfMS and its
effectiveness has been shown [31].

A service-flow management system applies orga-
nizational learning concepts to chronic and sub-acute
patients care. Several models of distributed care
services havebeen recently defined.They range from
case management, intensive case management,
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assertive community treatment and community-
based practices. The latter model seems particularly
suited for implementing socio-technical learning
strategies [32]. Community-based research attempts
to improve academic research by valuing the con-
tribution that community groups make in the devel-
opment of knowledge. To this end, researchers and
practitioners share goals, problems and interests on
specific issues, solve newproblems using their knowl-
edge and find innovative solutions for new problems.
This requires the development of a ‘‘distributed’’
team identity by facilitating the conversion of impli-
cit into explicit knowledge and vice versa. As an
example, the Italian Amyloidosis Network is imple-
menting community-based research strategies to
deal with amyloidosis, a rare severe disease which
refers to a variety of conditions in which amyloid
proteins are abnormally deposited in organs and/or
tissues. The Italian network for amyloidosis involves
62 biomedical centers and the diagnostic and ther-
apeutic guidelines are approved each year during the
annual societymeeting [33]. Anational portalwithall
information and contacts related to amyloidosis has
been implemented. The goal of the portal is to
provide all participating communities to share the
latest development of research, the latest treatment
protocols and a shared health care record manage-
ment system, based on standard terminologies and
domain specific ontologies.

The number of successes of AI in medicine is likely
to grow in the near future. On the opposite side of
the general perception that AI is in its winter time,
we fully agree with Rodney Brooks [1,34]:

‘‘there’s this stupid myth out there that AI has
failed, but AI is around you every second of the day.’’

The new generation of health care information
systems and the current bioinformatics research are
constantly proving the truth of this sentence.

5. Comments by Peter Szolovits

This panel has presented a great opportunity to
review the past 15 years of progress and changes
since Shortliffe’s influential talk and publication
regarding ‘‘AIM’s adolescence’’. My own take on
the major changes that have happened over that
period is that AI in medicine is viewed today much
less as a separate field and more as an essential
component of biomedical informatics and one of the
methodologies that can help to solve problems in
health care. Although this change was already
occurring in the early 1990s and is foreshadowed
by Shortliffe’s article, I think the field has continued
to generalize and to merge with larger concerns.
g of age of artificial intelligence in medicine. Artif Intell
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Today’s ‘‘systems’’ thinking about health care
focuses not only on the classical interactions
between patients and providers but takes into
account larger-scale organizations and cycles.
We can, of course, still focus on short-term inter-
actions such as those that occur during an office
visit or hospitalization, or even during shorter-
term interactions such as those arising during a
surgical procedure or intensive care. In addition,
however, we now also pay attention to the con-
tinuous and repetitive nature of clinical care,
much of which occurs in the community rather
than in a hospital, and involves sources of knowl-
edge coming from family members, groups of
patients suffering from similar conditions, various
home-care programs, and especially web-enabled
searches and remote communications. In addition,
we are coming to recognize that the health care
system is not a static background for our efforts
but must learn from its own experiences and strive
to implement continuous process improvements
that can significantly improve health outcomes
while somewhat keeping in check the inexorable
growth of health care spending. If, as most
believe, it is true that

Phenotype ¼ fðGenotype; EnvironmentÞ
and that our ability to exploit the ‘‘new biology’’ of
high-throughput genetic measurements depends on
an ability to match these to phenotype data, then
we must view the clinical record of ‘‘natural experi-
ments’’ (diseases) as a most valuable source of data
for biomedical research [35].

We also recognize that much of what ails health
care is not innately technical at its roots. Many
problems such as inequities in care, lack of insur-
ance, unsupported practice variations, poor com-
pliance with established guidelines, poor feedback
on long-term outcomes of care, etc., require
improvements in policy and management more than
in technology. Nevertheless, technology, including
AIM technology, can provide new options to help
address these larger problems.

AIM research faces numerous interesting chal-
lenges, of which I will highlight just four: (1) better
data capture and handling, (2) improved design,
modeling and assistance for workflows, (3) reliable
methods for reassuring patients in their concerns for
confidentiality, and (4) better modeling techniques.
These pose genuine basic research problems of the
sort described in Shortliffe’s earlier article, and
therefore cannot be expected to yield short-term
solutions to the problems of health care. They do,
however, lay out a partial set of research goals that
will, if successfully met, significantly improve
health care.
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5.1. Data

Much of the early AIM research focused on capturing
the expertise of human experts in sophisticated
computer programs. Today I joke with students that
in those days we thought we knew a lot, but had
little or no actual data. Today we are inundated with
data, but have correspondingly devalued expertise.
Yet despite the huge volume of data that are now
routinely collected in health care, much of it
remains incomplete or inaccurate in critical ways.
Papers continue to document that notes of patient
encounters sometimes misrecord even basic facts
such as the chief complaint, but often get wrong
details such as the patient’s medical history or
medications being taken. Lack of commonly
accepted terminologies and ontologies makes
exchange and interoperation of even well-recorded
information difficult. Although we have moved
beyond the days when lab instruments would print
measurement results on paper and then discard the
digital data, we still routinely see nurses and tech-
nicians transcribing data from one system to another
because of standards for data exchange that are
either lacking, poorly designed or poorly implemen-
ted. The vision of all instruments interoperating for
seamless data exchange is an old one, but far from
having been achieved. Whether through stricter
standardization or more intelligent interfaces, this
needs to be solved. Wireless and portable devices
promise to support more convenient interactions,
but will require good support for reliability and
semantic reconciliation of conflicting records as
well as great data exchange capabilities. Intelligent
environments could combine speech understanding,
computer vision systems, gesture tracking, compre-
hensive recording and models of how people inter-
act to capture primary encounter data that is now
often only recorded (incorrectly) from memory.
Better natural language processing capabilities
could help unlock the value now buried in narrative
records whose content is opaque to traditional
computer systems. Error models that take into
account the typical sources of noise and corruption
in data capture could help automatically ‘‘clean’’
data about clinical care to support both more robust
assistance for the care process and better research
data.

5.2. Workflow

Systems, whether based on AIM or other methods,
must operate in conjunction with human practi-
tioners. Therefore, they must model what those
practitioners do, what information they need, and
when thedisruption causedby the systemintervening
g of age of artificial intelligence in medicine. Artif Intell
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ismore than offset by the value of its information.We
read that many medical errors are due to omission
rather than commission. This suggests that systems
working in the background should be continuously
monitoring care for every patient and checking to see
if expectations are being met. For example, one
could design a workflow system that requires inclu-
sion, with every action, of a scheduled future step
that verifies that the initially planned action was in
fact performed and that its outcome was consistent
with what was anticipated. Some systems already
notify the doctor responsible for a patient’s care of
highly abnormal lab values, and then escalate the
alert to others if they see no response [36]. Such a
strategy should apply to all clinical actions, ranging
from assuring that scheduled X-rays are actually
taken to providing growingly insistent reminders that
a child’s check-ups or immunization schedule is not
being met. Further, we know from Homer Warner’s
HELP system of 35 years ago that it is possible to
incorporate decision support at every step of clinical
care [37]. We need to make this part of routine
practice, and to overcome impediments to its adop-
tion and use.

5.3. Confidentiality

Much latent resistance to fully electronic tracking
of health care arises from people’s unfortunately
correct beliefs that aggregation of vast amounts of
sensitive health care data increase vulnerability to
massive disclosures [38]. We need only read the
daily newspapers to hear of institutional errors
that release personal data on millions of people
in a single incident. Thus far, most of these massive
releases have threatened identity theft rather
than medical disclosures, but those incidents have
also occurred on a smaller scale and such vulner-
abilities are widely recognized. To some extent,
anxiety about such releases of information could
be mitigated by universal guarantees of access to
health care and non-discrimination in insurance
based on patients’ existing conditions. That would
still leave embarrassment and a sense of violation
of personal privacy as strong motivators for con-
cern. Some technical advances that could help
with these problems would be improved ways to
establish identity, perhaps through distributed
and local schemes that avoid the need for universal
and irrepudiable identifiers. We need convenient
and secure means of authentication, better
than today’s username/password combinations,
whether by personal smart cards, biometrics, or
some clever exploitation of already-existing tech-
nologies that can serve to identify people, such as
their credit cards or cellular phones. We could also
Please cite this article in press as: Patel VL, et al. The comin
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do a better job of decoupling individuality (the
ability of systems to determine that heterogeneous
data all belong to the same person) from identity
(who that person actually is). Such an approach
could allow much of the quality and business ana-
lysis of health care to proceed and much of the
research data to be used with much lower risk of
divulging data about recognizable individuals [39].
A longer-term research challenge, perhaps unac-
hievable, is to create data sets that naturally
decay but without the need for cumbersome digital
rights management infrastructures.

5.4. Modeling

I have noted the dramatically increased availability
of large collections of data, even in routine clinical
settings. New measurement techniques such as
microarrays that simultaneously determine hun-
dreds of thousands of DNA, RNA and protein levels
and methods that determine a half million SNPs or,
soon, an individual’s entire genetic sequence, can-
not be treated as simply a huge number of addi-
tional ‘‘findings’’ in traditional diagnostic or
therapeutic reasoning systems. Simply to make
sense of such volumes of data will require advanced
AI methods that can automate their analysis. As a
community, we have already adopted traditional
statistical and more novel data mining and machine
learning approaches to deal with this wealth of
data. Unfortunately, these techniques tend to dis-
cover relatively simple relationships in data and
have not yet demonstrated the ability to discover
complex causal chains of relationships that underlie
our human understanding of everything from mole-
cular biology to the complex multi-organism and
environmental factors in the epidemiology of dis-
eases such as malaria. Human expertise, developed
over centuries of experience and experimentation,
cannot be discarded in the hope that it will all be re-
discovered (more accurately) by analyzing data.
For example, I do not know of any automated
methods that would be able, from terabytes of
recorded intensive care unit monitoring data, to
discover even elementary facts such as that blood
circulates because it is pumped by the heart. There-
fore, I think it is a great challenge to build better
modeling tools that permit the integration of
human expertise (recognizing its fallibility) with
machine learning methods that exploit a huge vari-
ety of available data to formulate and test hypoth-
eses about how the human organism ‘‘works’’ in
health and illness.

Challenges for AIM remain vital and exciting.
However, we recognize that our crisis in health care
demands an ever-broader set of disciplines to create
g of age of artificial intelligence in medicine. Artif Intell
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integrated solutions. AI in general has come closer
over the years to statistics and operations research,
linguistics, communications engineering, theoreti-
cal computer science, computer systems architec-
ture, brain and cognitive science, etc. Fundamental
research progress in medicine depends on biochem-
istry, molecular biology, physiology and a host of
medical specialties. Improvements in health care
demand coordination with economics, manage-
ment, industrial engineering and policy. These
trends demand that we educate our students more
broadly and that we continue the laudable tradition
of interdisciplinary projects in AIM.

6. Comments by Michael Berthold

Before investigating the progress and ongoing chal-
lenges of AI approaches in medicine, it may be
helpful to categorize the type of science going on
in this research area.

An often used categorization of scientific
research concentrates on three phases:

(1) Collection: The initial effort relates to gather-
ing of data about the problems at hand. No clear
knowledge about underlying regularities or sys-
tems is available nor do researchers know much
about the domains of the data of interest.

(2) Systematization: The collected data is orga-
nized better and models are being built to pre-
dict certain properties–—most of these models,
however, are build without a clear knowledge
about the underlying system. The system that
has generated the original data still is very much
a black box.

(3) Formalization: A better understanding of the
underlying system has been achieved and the-
ories can be formed and validated through tar-
geted, systematic experimentation.

In sharp contrast to many other scientific dis-
ciplines, research in medical domains is still very
much stuck in the early phases. Some isolated
knowledge fragments are available about medical
systems but no fine-grained, global model exists.
One could argue that some of this research has
reached phase 2, Systematization. However, espe-
cially in pharmaceutical drug development,
experiments often end up creating data
without a clear idea about its use. In fact, much
of this data will hardly ever be read again. In
these areas, research still mostly focuses on data
collection with the sometimes rather vague
hope to stumble across discoveries which will
ultimately lead to new medications. One of the
Please cite this article in press as: Patel VL, et al. The comin
Med (2008), doi:10.1016/j.artmed.2008.07.017
TE
D

 P
R

O
O

F

key problems in these areas is the increasing
ability to generate the data and the much slower
advent in methods to deal with the resulting,
gigantic data repositories. Converting these heaps
of data into information and ultimately knowledge
is still one of the most pressing needs in biome-
dical research.

The interesting question is: do current AI meth-
ods support this type of research scenario? Most
applications of current AI methods are either focuss-
ing on unsupervised approaches which try to identify
structure in data by clustering or similar approaches
or by more or less complex means to present visua-
lizations or summaries of the data. Supervised
approaches on the other hand, focus on either
finding patterns of very particular, pre-defined type
(e.g., association rules, subgroups) or build predic-
tive models. These models can be black boxes (e.g.,
artificial neural networks) or interpretable models
(e.g., decision trees or rules). No matter which of
these techniques is used, the underlying model
families or similarity metric push a strong bias into
the analytic process. Hence current applications of
AI methods mainly focus on answering rather well-
posed questions. One could argue that this type of
problem solving approach was appropriate a decade
ago when data resources were considerably smaller
and one could hope to make sense out of them using
such restricted approaches. However, in recent
years data has far outgrown our ability to analyse
them and new,more powerful and versatile methods
are needed. One could even say that the increasing
amount of data keeps pushing this area of scientific
research back towards phase 1, the sheer collection
of new data!

Therefore new methods are needed which allow
to uncover the unexpected, allow the user to inter-
actively form new, initially often confusing hypoth-
eses and assist them in discovering truly new
insights –—ultimately leading to an understanding
of the underlying system. One could describe such
a system as an ‘‘external AI’’, assisting the user in
what she can do best: quickly sorting out the useless
aspects from the currently interesting information
pieces, probing and discarding potentially interest-
ing connections and associations and narrowing
down on the gems hidden in the vast amounts of
available data. Such a system should not attempt to
do the discovery job for users –—instead it needs to
support them by giving associative, intuitive access
to everything the system has access to: unstruc-
tured and semi-structured data all the way to
humanly annotated pieces of expert knowledge.
Hence we need to be developing discovery-support
systems rather than automated discovery systems
[40].
g of age of artificial intelligence in medicine. Artif Intell
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7. Concluding remarks by Riccardo
Bellazzi and Ameen Abu-Hanna (AIME
2007 Program Chairs)

Over the last few years medicine’s identity as a
data-rich quantitative field has become much more
appreciated–—especially with the use of electronic
data capture and data management systems for
both clinical care and biomedical research. The
abundance of data is strongly accelerating the pro-
cess of transforming medicine from art to science
and is providing new ways to carry on biomedical
research. Data-driven studies are more and more
frequent, looking at the discovery of new, unex-
pected knowledge as the ‘‘holy grail’’ buried in the
data. Image-based and molecular-based diagnoses
are becoming standard ways to assess a patient’s
disease precisely; guidelines and protocols are dis-
seminated to standardize a patient’s treatment.
Finally, health care organizations are now consid-
ered complex companies, which may be studied
from a business perspective. It is against this back-
ground that the panelists of AIME 2007 offered their
thoughts on the ‘‘coming age of AI in medicine’’. The
coming of age of a person is the transition from
adolescence to adulthood. AIM is approaching 40
years of age, but for scientific disciplines it is hard to
discern whether and when such a transition takes
place, partly due to the lack of standard criteria to
establish this transition. For example when AIM was
about 25 years old Coiera argued that AIM was not
yet being successful–—if success is judged as making
an impact on the practice of medicine [41]. Haux is
of the opinion that the field of medical informatics
as a whole is still relatively young but that it has had
an impact on the quality and efficiency of health
care and on biomedical research [42]. Regardless of
the specific criteria one chooses to use to mark
transitions on the maturity scale, the authors of
this paper are of the opinion that:

� AIM draws upon many disciplines. Computer
science, the background perhaps characterizing
most AIM researchers, is only one such discipline–—
albeit an important one. AIM research is continu-
ously widening its scope and there is a need for
more people with background in the disciplines at
the intersection defining AIM and its parent field
of biomedical informatics.

� AIM methods are becoming more and more inte-
grated within other applications. Paradoxically,
this diminishing of explicit visibility is a sign of the
success of the AIM program.

� We have come a long way in creating and/or
utilizing the information and communication
infrastructures needed for the AIM applications,
Please cite this article in press as: Patel VL, et al. The comin
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but there are still challenges and barriers such as
defining communication and data sharing stan-
dards, having access to data which are complete
and coded according to agreed upon terminolo-
gical systems.

� There is a move from ‘‘does the system work?’’ to
‘‘does the system also help?’’ This implies imple-
menting and testing AIM-based solutions within
the environment of clinical practice. Sophisti-
cated evaluation designs are being used to assess
impact on both process and patient outcomes.

� The staggering amounts of data generated and
collected in the biomedical field gave impetus to
research on (statistical) machine learning that
tries to make sense of these data. There is still
a long way to go in order to find causal relations in
the data, but an equally useful purpose is to
create tools that act as discovery-support systems
facilitating the work of the human interpreter.

� Evidence-based medicine has fostered the imple-
mentation of guidelines and protocols; AI
approaches have been demonstrated to be useful
for building and checking them, and workflow
systems appear to be the proper way to apply
guidelines in dynamic environments.

� There is, however, a strong need to apply AI tools
and methods besides data and guidelines. Scien-
tists working in a ‘‘data-driven world’’ are recog-
nizing the strong risk of concentrating on data
gathering and analysis alone. Poor systematiza-
tion and poor formalization of knowledge may
result in accumulating data without knowledge
extraction and/or without knowledge exploita-
tion. On the other hand, a ‘‘guideline-based
world’’ may strongly suffer from a lack of flex-
ibility; dogmatic guidelines may constrain efforts
to deal effectively with tailored decision-making
and may overlook the importance of research on
complex planning, decision-making under uncer-
tainty, and individual risk management.

In summary, the challenge for AI in the next years
will be to ground the current research scenario in its
AI roots. As recognized by all panelists, the repre-
sentation of all kinds of knowledge and high-level
systemsmodeling are important topics for basic AI in
medicine research. Moreover, the effective exploi-
tation of knowledge in building decision-making
tools and in extracting information from the data
is also very important. The field of intelligent data
analysis seems relevant in this regard [43,44]. Since
AI in medicine applications today span from mole-
cular medicine to organizational modeling, the role
of modeling human reasoning and cognitive science
must be re-evaluated. Modeling and reasoning will
play a significant role as we strive to build successful
g of age of artificial intelligence in medicine. Artif Intell
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systems and to deal with their impact on how peo-
ple, from research groups to healthcare teams,
perform their work. Last but not least, strong inter-
disciplinary education programs should be further
fostered, to improve the quality of researchers and
practitioners and to help the dissemination of AI
methods and principles in the biomedical infor-
matics community.

The AI in medicine leaders participating in the
AIME 2007 panel have argued that AI in medicine is
coming of age as a discipline. An assessment of its
current status has been helpful as we seek to pro-
pose future directions to improve not only biome-
dical informatics but also biomedical research more
generally.
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