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ABSTRACT
Mapping and translating professional but arcane clinical jargons
to consumer language is essential to improve the patient-clinician
communication. Researchers have used the existing biomedical on-
tologies and consumer health vocabulary dictionary to translate
between the languages. However, such approaches are limited by
expert efforts to manually build the dictionary, which is hard to be
generalized and scalable. In this work, we utilized the embeddings
alignment method for the word mapping between unparalleled
clinical professional and consumer language embeddings. To map
semantically similar words in two different word embeddings, we
first independently trained word embeddings on both the corpus
with abundant clinical professional terms and the other with mainly
healthcare consumer terms. Then, we aligned the embeddings by
the Procrustes algorithm. We also investigated the approach with
the adversarial training with refinement. We evaluated the quality
of the alignment through the similar words retrieval both by com-
puting the model precision and as well as judging qualitatively by
human. We show that the Procrustes algorithm can be performant
for the professional consumer language embeddings alignment,
whereas adversarial training with refinement may find some rela-
tions between two languages.
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1 INTRODUCTION
Better patient-clinician communication is necessary to prevent
from defensive medicine or overtreatment [17]. In the common
clinical setting, clinicians heavily use jargons and abbreviations
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to record patients’ clinical history, condition, progression and re-
sults of examinations—this is convenient and time-saving for fast
communication between clinicians. While discharging patients,
clinicians usually provide a clinical summary along with the dis-
charge instruction in consumer-level language for patients and
their family. However, the instruction includes very limited infor-
mation that might not be able to represent the patient’s clinical
status and disease progression. The consumers may not obtain full
information through these materials. To understand more about
their clinical conditions for decision makings, for example, seeking
for the second opinion of treatment, it is inevitable to dive into
the professional-level sections of clinical summary. Yet without
domain knowledge and training, consumers may have a hard time
to clearly understand details through the professional-level clinical
summary, especially the domain-specific information recorded by
clinical specialists. Therefore, how to translate clinical professional
language to consumer-level language is essential to improve the
communication between consumers and clinicians, as well as to
assist consumers’ decision makings.

Recent studies demonstrate that explaining the same clinical con-
dition with either clinical professional or consumer-level language
affects consumers’ decision makings [16, 17]. For example, gyne-
cological patients who received the diagnosis of “polycystic ovary
syndrome” (PCOS) tend to accept more examination, such as the
ultrasonography, when the professional term “PCOS” rather than
“hormone imbalance” was informed—although PCOS is indeed a
kind of female hormone imbalance [6]. Such unnecessary overdiag-
nosis/overtreatment decisions may come from the anxiety and fear
about unknown medical domain knowledge for the professional
language. The huge information gap may further yield a potential
conflict between patients and clinicians and eventually result in
defensive medicine and overtreatment.

For effective and suitable clinical decision makings, researchers
attempted to automatically map and translate clinical professional
terms to appropriate consumer terms in clinical narrative texts
using existing biomedical ontologies and dictionaries [24]. Zeng-
Treitler et al. mapped clinical texts to be comprehensible to non-
professionals using the Unified Medical Language System (UMLS)
Metathesaurus with the consumer health vocabulary (CHV) to
perform the synonym replacement and medical concept explana-
tion insertion for mapping and translation [23]. However, the ev-
idence shows that the ontology and dictionary mapping-based
approaches have a limitation—it may not be able to map the terms
outside the vocabulary space of CHV [11]. Vydiswaran et al. used
the pattern-based mining on Wikipedia database to explore the
mapping between professional and consumer languagues [20]. The
pattern-based approach is more generalized, yet the information
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from Wikipedia may not be the appropriate proxy of professional
language that physicians commonly use in the real clinical setting.

The advances of machine learning and natural language process-
ing (NLP) have been utilized to perform different clinical NLP tasks,
from word, sentence to document-level classification [7, 13, 21]. For
word-level NLP tasks, unsupervised word embeddings techniques
learn continuous-valued word vector representations through the
co-occurrence information [2, 15, 18]. These techniques have be-
come one of the standard approaches to find the word similarity.
The concept of learning word embeddings has also been extended
to learning embeddings alignment for unimodal cross-lingual, and
even cross-modal translation with minimal human supervision [4,
5]. Utilizing machine learning and NLP techniques for clinical NLP
problems to align professional and consumer language embedding
spaces may have a potential to map and translate the languages
with minimal supervision and scalability.

In this work, we investigated the feasibility of learning the em-
beddings alignment between two characteristically different clinical
corpora. We trained two word embeddings independently on the
clinical note sections with abundant clinically professional jargons
and the others with consumer colloquial terms [2, 15]. Next, we
investigated both the Procrustes algorithm with anchors, and the
adversarial training with refinement for the unparalleled mapping
between two embedding spaces [5, 12]. Finally, we evaluated the
quality of the aligned embeddings through the similar word re-
trieval task. To our knowledge, this is the first work that applies
the embedding alignment approach for the unparalleled mapping
between clinical professional and consumer languages.

2 METHODS
2.1 Learning Word Embeddings
We adopted the word-level and subword-level skip-grams algo-
rithms for learning word embeddings of both clinical professional
and consumer languages [2, 15]. In detail, we trained the embed-
dings by setting the window size k = 3, 5. We considered the words
only appear more than 3 times, and the negative sampling rate of
10−5. The model was trained by stochastic gradient descent (SGD)
without momentum with a fixed learning rate of 0.05 for 20 epochs.
We experimented on the embedding dimension of 200.

2.2 Embeddings Alignment
Assuming that we have the x-word, d-dimension professional lan-
guage embedding P = {p1,p2, . . . ,px } ⊆ Rd and the y-word,
d-dimension consumer language embedding C = {c1, c2, . . . , cy } ⊆
Rd . We constructed the synthetic mapping dictionary to learn a
linear mapping matrixW between the two embedding spaces, such
that pi ∈ P corresponds to which c j ∈ C. Then we have the follow-
ing equation:

W⋆ = argmin
W ∈Rd×d

∥WX − Y ∥2

where X and Y are two aligned matrices of size d × k formed by k-
word embeddings selected from P and C.

We further added the orthogonality constraint onW , where the
above equation will turn into the Procrustes problem that can be
solved by singular value decomposition (SVD) with a closed form

solution [22]:

W⋆ = argminW ∈Rd×d ∥WX − Y ∥2 = UVT , whereU ΣVT = SVD(YXT )

The aligned output of the professional language input a will be
argmaxc j ∈C cos(Wpa , c j ).

To reach the minimal supervision, we did not use any clinical
term mapping dictionaries, such as UMLS CHV, in the experiments.
Instead, we leveraged the characteristics of two embeddings, which
are both in English, and only used identical character strings in
the embeddings to form a synthetic dictionary for learning the
mapping matrixW . The identical strings serve as anchors in order
to learnW with the iterative Procrustes algorithm.

To search the nearest neighbors (the most similar words), Cross-
Domain Similarity Local Scaling (CSLS) was calculated to reduce
the effect of the hubness problem that a data point tend to be nearest
neighbors of many points in a high-dimensional space [5, 8].

Adversarial Training. We also experimented with adversarial
training in case that no identical strings between embeddings can
be found. We first learn an approximated proxy forW using the
generative adversarial network (GAN) to make the aligned P and C
indistinguishable, then refine by the iterative Procrustes algorithm
to build the synthetic parallel dictionary [5, 9] .

In adversarial training, the discriminator aims to discriminate be-
tween elements randomly sampled fromWP = {Wp1,Wp2, . . . ,Wpx }
and C. The generator,W , is trained to prevent the discriminator
from making an accurate prediction. GivenW , the discriminator pa-
rameterized by θD try to minimize the following objective function
(Pro = 1 indicates that it is professional language but not consumer
language):

LD (θD |W ) = − 1
x
∑x
i=1 logPθD (Pro = 1|Wpi ) − 1

y
∑y
j=1 logPθD (Pro = 0|c j ).

Instead,W minimizes the following objective function to fool the
discriminator:

LW (W |θD ) = − 1
x
∑x
i=1 logPθD (Pro = 0|Wpi ) − 1

y
∑y
j=1 logPθD (Pro = 1|c j )

The optimizations are executed iteratively to minimizeLD andLW
until convergence [9].

For the discriminator, we used a two-layer neural network of size
2048 with 10% neuron dropout, and Leaky ReLU as the activation
function. We trained both the discriminator andW by SGD with a
fixed learning rate of 10−3.

The refinement of the matrixW after adversarial training was
done by iterative Procrustes algorithm, and CSLS was used to de-
cide mutual nearest neighbors. We ran 20 iterations of refinement
procedure for all experiments.

3 EXPERIMENTS
3.1 Materials

Dataset. Data was collected from the MIMIC-III database [10],
which contains 58,976 ICU patients admitted to the Beth Israel
Deaconess Medical Center (BIDMC), a large, tertiary medical center
in Boston, Massachusetts, USA. The database contains detailed
information on patients admitted between 2001 and 2012, including
hospital administrative data, vital signs, medications, laboratory
test results and survival data after hospital discharge.
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We extracted 59,654 free-text discharge summaries from the
MIMIC-III database. For all discharge summaries, we extracted and
preprocessed the sections of “History of present illness”, “Brief hos-
pital course”, “Discharge instruction” and “Followup instruction”.
We selected the sections of “History of present illness” and “Brief
hospital course” to represent the content with professional jargons
since these sections are usually the most narrative components with
thoughts and reasoning for the communication between clinicians.
“Discharge instruction” and “Followup instruction” sections instead
have consumer-level language and are written for patients and their
family. For training word embeddings, there are 443,585 sentences
in the clinical professional language set and 73,349 sentences in the
consumer language set. There are 26,333 and 6,752 unique words
in the professional and consumer term embeddings, respectively.

Although the professional and consumer language set are both
from MIMIC, the content in the source and target corpora are not
parallel. However, we expect that there are some overlapping terms
in two corpora since both of them are written in English.We utilized
these overlapping English terms as anchors during alignment.

Language Preprocessing. We applied Stanford CoreNLP toolkit,
Natural Language Toolkit (NLTK), and Porter stemming algorithm
for common linguistic preprocessing steps, such as clinical docu-
ment section and sentence fragmentation, word tokenization, stop-
words removal and word stemming, before further tasks [1, 14, 19].

3.2 Results and Discussion
We performed the mapping word retrieval task to evaluate the
quality of the alignment. For the ground truth, we used a list of
100 professional-consumer term pairs created by the clinician. To
compute the precision of mapping word retrieval, we queried the
nearest k words (k = 1, 5, 10) from the consumer language em-
bedding using each professional term in the aligned professional
language embedding.

To compare the difference between using the smaller clinical
corpus and larger general biomedical literature corpus, we used the
embedding trained on Pubmed Central Open Access subset (PMC)
and PubMed 5.4B-token/2.2M-vocabulary corpora as the baseline of
professional language embedding, as well as the embedding trained
on 6B-token/400K-vocabulary Wikipedia corpus as the baseline of
consumer language embedding [3, 18].

The results of the mapping word retrieval using Procrustes algo-
rithm with anchors approach are shown in Table 1.

Subword-level fastText word embeddings outperform original
word-level word2vec embeddings in most cases. This is highly likely
because that subword-level fastText models utilizes the character-
level n-grams information. Subword-level word embedding is useful
in capturing morphological patterns and therefore may enhance
the information about word semantics, especially for our mapping
word retrieval task.

Even though the MIMIC dataset is much smaller than PMC-
Pubmed and Wikipedia, the performance of using MIMIC is better
than using larger corpora. We hypothesized that the discharge
summaries from the MIMIC dataset are much suitable to represent
the clinical professional and consumer language, comparing with
the general PMC-Pubmed and Wikipedia corpora.

Source Target Embedding Window P@1 P@5 P@10
MIMIC-P MIMIC-C word 3/3 0.17 0.39 0.48
MIMIC-P MIMIC-C word 5/5 0.19 0.42 0.54
MIMIC-P MIMIC-C subword 3/3 0.27 0.57 0.78
MIMIC-P MIMIC-C subword 5/5 0.30 0.55 0.68

PMC-Pubmed MIMIC-C word 30/3 0.26 0.40 0.44
PMC-Pubmed MIMIC-C word 30/5 0.18 0.39 0.44
PMC-Pubmed MIMIC-C subword 30/3 0.23 0.34 0.44
PMC-Pubmed MIMIC-C subword 30/5 0.23 0.41 0.49
PMC-Pubmed Wikipedia word 30/10 0.14 0.32 0.41

Table 1: Performance of mapping word retrieval using
Procrustes algorithm. The word-level embedding is de-
rived from the original word2vec skip-grams algorithm,
the subword-level embedding is generated by fastText skip-
grams algorithm. P@k means the precision at k and P@1 is
equivalent to accuracy. MIMIC-P and MIMIC-C represents
the professional and consumer language set, respectively.

In Table 2, we demonstrate that we retrieve the meaningful
mapped consumer terms from the aligned embedding using profes-
sional terms as queries through mapping word retrieval. In Figure 1,
we visualize the aligned embeddings spaces with principal compo-
nent analysis (PCA). We found that using the Procrustes algorithm
with anchors can align two embeddings well. The semantically sim-
ilar clinical professional terms (blue) and consumer (red) terms are
close to each other. For example, “mass”, “tumor”, “cancer” “malig-
nancy”, “carcinoma” are clustered 1, and the profession abbreviation
“SOB” as well as the professional term “dyspnea” is close to the con-
sumer term “breath”.

We did not observe the comparable performance of embeddings
alignment in adversarial training approaches. Possible reasons are
due to the training sample size and the possible unsimilar shapes
of distribution between the source and target embeddings. Yet, we
observed a pattern that the aligned embeddings generated by the
adversarial training capture the relation between professional and
consumer anatomy-related terms as shown in Figure 1 (right). Fur-
ther investigation of the relation vector between the professional-
consumer term pairs is required.

Figure 1: Visualization of the aligned embedding spaces us-
ing principal component analysis (PCA). (Left) Procrustes
algorithm with anchors approach. The semantically similar
professional (blue) and consumer terms (red) are clustered.
(Right) Adversarial training approach. There are similar re-
lation vectors between professional (blue) and correspond-
ing consumer anatomy-related terms (red).
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epistaxis cardiac nephropathy cholangiography qd tumor hepatic hematemesis
spontaneous catheterization renal drug-eluting EC tumor liver coffee-ground
coffee-ground heart kidney stent once/day cancer hepatic black
light-headed attack hepatitis ureteral QD obstructing Whipple bloody
nosebleed coronary HIV stented Ramipril resection gastropathy tarry

stools cardiac aka circumflex Zocor mass Pork colored
melena angioplasty diastolic bare meq metastatic Mayonnaise grounds
bleeds myocardial pancreatitis stents Mesalamine cerebellum belly stools
bloody cardioversion Epo sphincterotomy 3.125 occipital portal bright

black/tarry bypass Diabetes metal QHS hepatocellular scarring black/tarry
10days EP lupus biliary 162 polypectomy Y dark

Table 2: Examples of the top-10 nearest neighbor terms in the consumer language embedding queried by clinical professional
terms (the topmost row).We highlight the commonly used appropriate corresponding consumer terms of each queried clinical
professional term in boldface. For example, “nosebleed” is the appropriate consumer version of “epistaxis”.

4 CONCLUSION AND FUTUREWORK
We demonstrate the capability of embeddings alignment for map-
ping unparalleled clinical professional and consumer languages
in word-level. We found that the Procrustes algorithm with an-
chors approach with the subword-level word embeddings trained
on clinical narrative texts, rather than larger general corpus, outper-
formed the other combinations. The aligned embeddings learned
from the adversarial training approach reveal the relation between
professional and consumer anatomy-related terms.

In this study, we first performed clinical professional and con-
sumer language embeddings alignment without the knowledge and
supervision from biomedical ontologies and dictionaries, and just
use the minimal supervision using the identical strings across cor-
pora. We also applied the method to the real clinical text corpora,
which are derived from the clinical discharge summaries in the
MIMIC-III database.

Some limitations in the current study provide the possibility of
future directions. We need to explore larger clinical note sets to im-
prove the quality of word embeddings and validate the method. We
can also extend the word-level approach to concept-level approach.
The issue of the instability of adversarial training also needs to be
considered in the future. For instance, using Wasserstein GANor
cycle-consistent adversarial networks,instead of original GAN, may
be potential approaches to improve the performance.
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