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Abstract

The large quantity of clinical data collected from the Intensive Care Unit (ICU) has made
clinical investigation by a data-driven approach more effective. In this thesis, we developed
probabilistic models for modeling variable kinetics and temporal dynamics of states. We
applied the models to the prediction of acute kidney injury (AKI), but the models are
applicable to other medical conditions as well.

It is known that serum creatinine follows first-order clearance kinetics. We developed a
stochastic kinetic model for first-order clearance and used it to model creatinine kinetics.
Some properties implied by the model that are verifiable with the available data are consis-
tent with the empirical results. Those properties are mean-reversion, variation with linear
standard deviation, and convergence of variance to a finite value.

Based on the stochastic kinetic model, creatinine can be treated as a lognormal random
variable with state-dependent parameters. We model the temporal dynamics of kidney states
and creatinine using a Hidden Markov Model. Observations of creatinine are assumed to
be random variables, with baseline creatinine as mean. Each individual baseline is itself a
random variable sampled from a population distribution. Baseline for each patient can be
estimated by combining the population distribution and all creatinine observations of the
patient using techniques similar to Bayesian inference. Prediction of acute kidney injury with
this generative model gives an AUC of 0.8259 and 0.8497 for female and male population
respectively.
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Chapter 1

Introduction

Rapid advancement of technology is transforming modern healthcare into a more complex
and data-intensive environment. This is especially true in the Intensive Care Unit (ICU),
which provides continuous and comprehensive care for critically ill patients. Because these
patients are already suffering from severe conditions, clinical decision making in the ICU
is very challenging. Any misjudgment can easily cost a life. Therefore, there has been
increasing interest in automated patient monitoring and decision support systems that can
assist physicians in decision making.

The large amount of data generated from constant monitoring of intensive care patients
is an invaluable resource for that purpose. The rich collection of clinical data, which includes
clinical measurements, lab tests, and medications, can be used for building machine learning
models that can improve the efficiency and timeliness of clinical decision making. Our
collaborators have taken the initiative to collect and disseminate such data for research

purposes [43]. This project utilized such data for the study of acute kidney injury (AKI).

1.1 Overview

In the past, investigations of diseases have been mostly based on animal models, which

are thought to be unavoidable without better alternatives. Many people, however, remain
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skeptical about the applicability of such animal models to numerous human diseases.

The advent of clinical databases that contain clinical data collected from intensive care
patients has made the data-driven approach an attractive option for the investigation of
human diseases. Many old models can be verified and new questions can be answered using
the data. The major limitation is that the data are collected during the delivery of care,
without specific research purposes. Thus, not all modeling tasks are feasible with these data.

Nevertheless, this a big step towards more use of data-driven models in medicine.

An example of a disease that is usually studied by utilizing animal models is acute kidney
injury. There are three basic types of animal models that are used in the studies of AKI,
namely ischemia, toxin and sepsis models, and several subtypes [19, 48, 50]. However, no
single model is universally applicable as each model has its pros and cons. In fact, none of the
existing models gives a reproducible model of AKI on intensive care patients. Despite these
limitations, the animal models were carefully considered during the design of the definitions
of AKI [5]. It is agreed that better models are definitely needed, but animal models remain

fundamental to improving our understanding of acute kidney injury.

Acute kidney injury is a complex disorder that is common in the intensive care setting.
It was reported that AKI affects 1% to 31% of intensive care patients. Studies have shown
that AKI is a key risk factor for mortality, with mortality rate ranging from 20% to 82%,
depending on the population and the criteria used to define AKI [12]. Despite being an
important clinical issue, a universally accepted definition of AKI did not exist until the
invention of the RIFLE classification system in 2004. Before that, various definitions had

been used in the literature, making it difficult to make comparisons across studies.

The goal of this project is to improve the prediction of renal failure by using a data-
driven approach. We hope that our model can complement the RIFLE criteria by providing
a probabilistic view to the diagnosis of renal failure. Serum creatinine is undeniably one of
the most important indicators of renal health. In order to have a better understanding of
the nature of creatinine, we model creatinine kinetics as a stochastic process. Based on that,

a generative model for the temporal dynamics of kidney states is developed and is used for
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AKI prediction. We then discuss some statistical properties of the model and its connection

to the RIFLE criteria.

1.2 Thesis Organization

This thesis is organized into the following chapters.

Chapter 2 provides an overview of the existing work on diagnosis of acute kidney injury
and statistical analysis techniques.

Chapter 3 introduces the clinical database, from which the dataset used in this project
is obtained. Some problems with the dataset that might affect statistical learning are also
described.

Chapter 4 describes the stochastic kinetic model for modeling the first-order clearance
kinetics of clinical variables. Then, some theoretical properties implied by the model are
discussed.

Chapter 5 develops the generative model for the temporal dynamics of states and clinical
observations. The algorithms for parameters estimation and state prediction with the model
are also described.

Chapter 6 examines the modeling of creatinine kinetics and the progression of acute
kidney injury using the models developed in this thesis.

Chapter 7 concludes the thesis with a summary of contributions and potential directions

for future research.
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Chapter 2

Related Work

This chapter provides an overview of the work that have been done on the diagnosis of acute
kidney injury and statistical learning that are relevant to this project. We start by providing
some background on the advancement in the definitions of AKI over the past decade. Due
to the importance of creatinine in diagnosis of AKI, there have been some studies on AKI
through modeling of creatinine kinetics. We survey some of these works, as our stochastic
kinetic model can be considered as an extension to their models. Estimation of baseline
creatinine is fundamental to diagnosis, as the stages of AKI are defined by the increase in
creatinine relative to the baseline. We describe some contemporary methods for estimating
baseline creatinine. Finally, we introduce an idea in statistics that is relevant to creatinine

observations and estimation of individual baselines.

2.1 Diagnostic Criteria

Before the invention of the RIFLE classification system in 2004, there was no consensus in
the definition of acute kidney injury. More than 30 definitions of AKI have been used in the
literature and we list some of these definitions in Table 2.1 [30].

All definitions use increases in serum creatinine as a criterion for acute kidney injury.

However, the magnitude of the required increase varies between definitions. Another notable
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Author Definition

Taylor, et al. 0.3 mg/dl increase in serum creatinine
Soloman, et al. 0.5 mg/dl increase in serum creatinine within 48 hours
Hou, et al. 0.5 mg/dl increase in serum creatinine if baseline below 1.9 mg/dl,

1.0 mg/dl increase in serum creatinine if baseline between 2.0 - 4.9 mg/dl,
1.5 mg/dl increase in serum creatinine if baseline above 5.0 mg/dl

Levy, et al. 25% increase in serum creatinine to at least 2.0 mg/dl within 48 hours
Parfrey, et al. 50% increase in serum creatinine to at least 1.4 mg/dl
Cochran, et al. more than 0.3 mg/dl and 20% increase in serum creatinine

Hirschberg, et al. | serum creatinine above 3.0 mg/dl with baseline below 1.8 mg/dl,
or “acute decrease” in creatinine clearance to below 25 ml/min

Table 2.1: Definitions of acute kidney injury that have been used in several published studies.

distinction between the definitions is whether they are based on value increase or percentage
increase. The criteria by Hou, et al. can be considered as percentage increases. Another
distinction is the duration constraint on the creatinine increase, where some definitions

imposed a 48-hour time constraint to the increase in the criteria.

In search for a standard definition of AKI, the Acute Dialysis Quality Initiative (ADQI)
group conducted a conference to gather the experts in the field. Sufficient consensus was
achieved for most of the proposed questions, resulting in the RIFLE classification system
for acute kidney injury. The RIFLE criteria classify acute kidney injury into three levels of
renal dysfunction and two clinical outcomes. The three levels or renal dysfunction are Risk
of renal dysfunction, Injury to the kidney, and Failure of kidney function. Each level has
separate criteria for creatinine and urine output (UO). The two clinical outcomes are Loss

of kidney function and End-stage renal disease (ESRD).

While the RIFLE criteria are termed the definition of AKI, they are used more like a
standardized guideline for diagnosis. It was mentioned in the report that patients classified
into the Risk stage might not actually have renal failure because the Risk stage is designed
to have high sensitivity. Specificity of the RIFLE classification system increases from the
Risk stage to the ESRD stage. The RIFLE criteria for the three stages and two outcomes

are given in Figure 2-1. For the creatinine criteria, the increases are relative to the baseline.

Of course, the RIFLE criteria are not perfect. To overcome the limitations of RIFLE,
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GFR criteria Urine oufput criteria

III T
f
i
\ Increased crealinine <1.5 or UQ <0.5 ml kg "h! {
Risk |  GFR decrease >25% =6 h | High sensitivity
\ f
\ /
Increased creatining x2 or LD <0.5 ml kg o ||Ill
Iniury\ GFR decrease >50% 12 h /
f
\ ,
Increased creatining =3 or i f
GFR decrease >75% or Usﬁ::'-a mikg " g
Failure | Greatinine = 4 mg per ikl [ High specificity
100 mi (acule rise of anuria x12 h 5/
= 0.5 mg per 100 ml dl}
; Persistent ARF = complete loss of
Loss

renal function = 4 weeks

ESRD End-stage renal disease

Figure 2-1: The three levels of renal dysfunction (Risk, Injury, Failure) and two clinical
outcomes (Loss, ESRD) of the RIFLE classification system. The shape of the figure that
becomes increasingly narrower indicates the increasing specificity across the stages of RIFLE.

the Acute Kidney Injury Network (AKIN) introduced the AKIN staging system as a refine-
ment to the RIFLE criteria [31]. The two outcomes were removed from the staging system
and remain outcomes. There has been increasing evidence that small increments in serum
creatinine are associated with adverse outcomes that manifest in increased risk of mortality
8, 39, 26]. To account for that, AKIN modified the criteria of the Risk stage to include an
absolute increase of 0.3 mg/dl from baseline creatinine, in addition to the 1.5x percentage
increase. Lastly, the criteria are based on changes that occur within 48 hours. New criteria

for the three levels of severity of AKI are given in Figure 2-2.

Despite their limitations, introduction of the RIFLE and AKIN criteria has been a big
step towards a more standardized definition, allowing meaningful comparisons across studies.

Several studies have been published aiming to validate the two criteria from their applications

21



Medscapes www.medscape.com

Stage Serum creatinine criteria Urine output criteria

1 Increase of 226.4 umel/ (0.2 mg/dl) OR to 150-200% of baseline  <0.5ml’kg/h for =&h
(1.5-2.0-fold)

2 Increase to =200-300% of baseline (=2-3-fold) <0.5ml'kgh for =12h

£ Increase to =300% of baseline (=3-fold; or serum creatinina <0.3ml'kgh for 24 h OR
=354 umol/l [4.0mg/dl] with an acute rise of at least 44 pmol anuria for 12h
[0.5 ma/dl])

Only one criterion (creatinine or urine output) needs to be fulfilled to qualify for a stage. “Patients who receive renal replacement
therapy are considered to have met the criteria for Stage 3, inespective of the stage that they are in at the time of commencement
of renal replacement therapy. Permission obtained from BioMed Central @ Mehta RL et al. (2007) Crt Care 11: B31.

Sourca: Nat Clin Pract Naphrol & 2007 Matura Publishing Group

Figure 2-2: The three stages of the AKIN staging system. The increase in creatinine must
occur within 48 hours.

in clinical practice [41]. Most of the studies are based on retrospective analysis, though there
are some with prospective analysis. We are not aware of any attempt to validate the criteria

with statistical models, and our work is aimed toward that direction.

2.2 Baseline Estimation

Conceptually, AKI signifies a rapid worsening of kidney function from pre-morbid levels.
Creatinine criteria of the RIFLE and AKIN classification system are based on increase in
creatinine from the baseline value, which reflects the patients pre-morbid kidney function.
All changes should be compared to the individual baseline since the renal capability of each
individual is different. Therefore, accurate estimation of baseline creatinine has become a
fundamental component of the diagnosis of AKI.

However, we again face the problem that there is no standard definition of baseline
creatinine. Worse still, creatinine values of patients before hospitalization are usually not
available. That makes accurate evaluation of baseline from such pre-hospitalization data
totally hopeless for many patients and has spurred the development of various strategies for
estimating baseline creatinine without using pre-hospitalization creatinine values.

The ADQI group, who developed the RIFLE criteria, recommend back-calculation of

creatinine from the Modification of Diet in Renal Disease (MDRD) formula, by assuming an
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estimated GFR of 75 ml/min/1.73m? for every individual [5]. The original purpose of the
MDRD formula was to estimate GFR from creatinine value, thus the term back-calculation.
Calculation with the formula only relies on demographic information such as gender, ethnicity
and age.

Other definitions of baseline creatinine that have been used in the literature are the
creatinine at the time of hospital admission, the minimum creatinine value during the hospital
stay, estimation using some other formulas, or the lowest value among these [20, 47].

The viability of determining baseline creatinine by back-calculation with the MDRD
formula is assessed in a study by Pickering, et al. [38]. They conducted a retrospective study
on patients with known baseline creatinine. The patients were classified according to the

RIFLE criteria using the following baseline estimates:

e (75, back-calculation with MDRD assuming a GFR. of 75 ml/min/1.73m?
e (g0, back-calculation with MDRD assuming a GFR of 100 ml/min/1.73m?

e (), average of 1000 random values from a lognormal distribution fitted to the baselines

of all patients.

e (), the lowest creatinine value in the first week in the ICU

According to their results, Cr5 and Cys greatly overestimated AKI; C),, overestimated
AKI according to AKIN but correctly classified AKI according to RIFLE; Cy, correctly
classified AKI under both criteria. Among the baseline estimates considered, C, has the
best overall performance.

The authors explained that (j, performed better than Cr5 and (o9 because back-
calculation relies only on age and race, but not the actual renal function. On the other
hand, distribution of C}, is based on the aggregate renal function of the population and
therefore, can better estimate the baseline of individuals that belong to the population.

The main difference between Cj,, and Cy,,, is that (), estimates the average baseline of the
population, whereas C},,, estimates the individual baseline. However, if the renal functions

of the patients are independent, we would expect Cj, to outperform Cj,,. This result can
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be attributed to what is known as Stein’s paradox in estimation theory. Stein’s paradox will

be discussed in Section 2.4, as it is related to the empirical Bayes method.

2.3 Creatinine Kinetics

Because serum creatinine is an important indicator of renal health, there have been several
studies on creatinine kinetics in the context of acute kidney injury.

Moran, et al. investigated the course of acute kidney injury through a creatinine kinetic
model in 1985, before the invention of the RIFLE criteria [32]. They developed a model of
creatinine kinetics that assumes a constant generation rate and first-order clearance rate,
and used that model to predict the relationship between creatinine clearance and creatinine
concentration in patients with postischemic acute renal failure. Several patterns of changes
in the creatinine clearance of the patients were identified, including abrupt step decrement,
ramp decrement, and exponential decrement. Their models were shown to have good pre-
dictive performance on the course and prognosis of acute renal failure in individual patients.

In a study by Waikar, et al., the authors investigated the connection between creatinine
kinetics and severity of AKI [46]. They considered both a single-compartment model and
a two-compartment model for modeling creatinine kinetics. The single-compartment model
assumes a single compartment where creatinine is uniformly distributed and is the same
model as that used in Moral, et al. [32]. The two-compartment model assumes that creati-
nine is generated in the intracellular compartment and then diffuses by first-order kinetics
into the extracellular compartment, where clearance by the kidney occurs. Although the
two-compartment model better represents the metabolism of creatinine, the trajectories of
changes in creatinine predicted by their two models are almost identical. Therefore, the
modeling of creatinine kinetics in later chapters assumes a single-compartment model.

The authors simulated creatinine kinetics after AKI in the setting of normal kidney
function, and stage 2, 3 and 4 chronic kidney disease (CKD). They showed that 24 hours
after a 90% reduction in creatinine clearance, the percentage changes in creatinine are highly

dependent on baseline kidney function, whereas the absolute increases are approximately the
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same across all levels of baseline kidney function. From another perspective, the time to reach
a 50% increase in creatinine ranges from 4 hours for normal baseline to 27 hours for stage
4 CKD, while the time to reach a 0.5 mg/dl increase was virtually identical if the reduction
in creatinine clearance is more than 50%. Based on that, they proposed an alternative
definition of AKI that incorporates absolute changes in serum creatinine over a 24-48 hour

time period.

It occurs to me that the authors have made an implicit assumption, for which no jus-
tification is provided. They claimed that AKI definitions that use percentage increase in
creatinine are flawed because for any given percentage reduction in creatinine clearance,
percentage increase in creatinine is slower for patients with high baseline. Consequently,
identical percentage reduction in creatinine clearance results in different classifications of
AKI severity depending on baseline kidney function. The implicit assumption is that the
same percentage reduction in creatinine clearance represents the same degree of severity

increase for all levels of baseline.

I actually hold the opposite opinion, that identical absolute changes in creatinine clear-
ance result in the same severity level. My reasoning for that is based on the assumption that
random fluctuations in creatinine clearance are due to additive noise. Consider a creatinine
clearance rate k with variation 0. The likelihood of fluctuating to k+9 and k—¢ are the same
and by symmetry, changes in severity should have equal magnitude. If their assumption is
true, then the noise in creatinine clearance should be multiplicative. If the noise is indeed
additive, changes in creatinine after a short interval should have variance that is linear in
the creatinine value. This is consistent with an empirical property shown in Figure 6-2.

Nevertheless, the evidence is not strong due to various deficiencies of the data.

In a nutshell, we agree with the RIFLE criteria that the conceptual model of AKI severity
should be based on percentage changes in serum creatinine instead of absolute changes. A

creatinine kinetic model with noise will be discussed in Chapter 4.
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2.4 Empirical Bayes Method

Charles Stein shocked the statistical world in 1956 with his proof that maximum-likelihood
estimation for Gaussian models, used for more than a century, was inadmissible beyond the
simple two-dimensional situation. The simplest form of Stein’s paradox involves estimation

of parameters 61,605, ...,6, with k > 3, and for each parameter, we have one observation
.szNN<9“1), 221,,k

The maximum-likelihood estimator of @ = (61, 0,,...,0;) is just the vector of observations
x = (r1,%9,...,2;). Under squared error loss, frequentist risk of estimator x is 1 for every
value of 8. James and Stein showed that the estimator y = (y1, 9o, . .., yx) where

k—2
w=(1-5%) e s=lal?

has frequentist risk strictly less than 1 for all values of 8 [16]. The estimator y is now known
as the James-Stein estimator.
Efron and Morris provided a Bayesian derivation of the James-Stein estimator by assum-

ing a prior distribution 6; ~ N(0,7%). The Bayes estimator that minimizes the Bayes risk is

A 1
< 7'2—1—1)x

From the marginal distribution z; ~ A(0,1 + 72), S has chi-square distribution with &

[59)-

the posterior mean

degrees of freedom where

S | 1+
Substituting the unknown 1/(1 + 72) in the Bayes estimator with an unbiased estimator
(k —2)/S gives the James-Stein estimator.
Although we have chosen a prior with mean p; = 0, the James-Stein estimator dominates
the maximum-likelihood estimator for every choice of y;. The James-Stein estimator can be

thought as shrinking each observed value z; towards 0.
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In fact, the James-Stein estimator is a special case of the empirical Bayes method. Con-

sider a more general setting with
iUi’@iNN(QuUQ)a eiNN(H’aTQ)a Z:L?k

where o is known. The empirical Bayes approach finds the parameter estimates that maxi-
mize the marginal likelihood

Z; ~ N(,LL,O'Z + 7—2))

which gives it =z, 7 =5 — 0. The James-Stein estimator for this general case is given by

éi:a‘:+<1—%) (2; — 7)

which also has lower frequentist risk than the maximum likelihood estimator. However, we
now require k > 3, as we estimated one addition parameter p from the data.

James-Stein estimator can be applied to the estimation of baseline creatinine, where z;
is the log of a creatinine observation and 6; is the log baseline. While individual baselines
are independent, pooling information from the population can improve the estimates.

We use the empirical Bayes idea to model the population and individual baseline distri-
butions. However, estimation of individual baselines is not as straightforward in our case
because we have multiple states, and the state that each observation corresponds to is un-
known. In order to estimate the parameters of each state, we need to model the dependency
structure of observations and the corresponding hidden states. Our method for parameter

estimation with hidden states will be discussed in Section 5.1.
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Chapter 3

Dataset Preparation

The dataset used for machine learning and modeling in this thesis is obtained from the
MIMIC II database. The MIMIC II database contains detailed clinical records, including
lab results, bedside monitoring waveforms and electronic documentation taken during the
delivery of care in the Intensive Care Unit (ICU). In other words, the data are not collected
with any specific research purpose in mind. While the rich collection of clinical data is invalu-
able for data analytics research, there are several implications of that that makes machine
learning challenging. Special attention is required for handling problems like selection bias,
missing data, non-uniform sampling, etc. Like any data sources that required manual input
by human, the MIMIC II database is subjected to recording error. Data cleaning can be
helpful in mitigating the susceptibility to this kind of error.

This chapter gives an overview of the MIMIC II database and the various types of data
that are available in the database. The clinical variables to consider in the dataset prepa-
ration and their relevance to renal failure are discussed. Finally, we describe some issues
with the dataset that may cause problems in statistical modeling. These issues need to be
taken into account in the design of learning algorithms, as different algorithms are affected
differently by those issues. For instance, class imbalance can be detrimental to standard

classification algorithm while its effect on unsupervised learning is small.
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3.1 MIMIC II Database

The Multi-parameter Intelligent Monitoring in Intensive Care (MIMIC II) database was
created to facilitate the development and evaluation of ICU decision-support systems [10, 43].
After years of data collection, the MIMIC II database now contains physiological information
on over 30,000 patients who have been admitted to the ICU of a Boston teaching hospital.
Indeed, one of the goals of the MIMIC project is to encourage research in the development
of patient monitoring technology and there have been successful attempts in constructing

models for predicting hazardous episodes in the ICU [22].

The MIMIC II database can be divided into two components, namely the Waveform
Database and the Clinical Database. The Waveform Database contains data recorded from
bedside monitoring such as Electrocardiograph Monitors (ECG), Arterial Blood Pressure
Monitors (ABP) and Respiratory Monitors. The Clinical Database contains complete records
of clinical events that occurred during the ICU stay such as administration of medications,
lab tests, and clinical measurements, along with the timestamps. Therefore, clinical events
for each variable can be viewed as unevenly spaced time series. Besides time series data, the

Clinical Database also contains demographic information, ICD9 codes, clinical notes, etc.

This project only uses the Clinical Database, as the waveform data are less useful for our
modeling objective. Instead, time series data are used extensively for unsupervised learning.
Evaluation of the learning algorithm is based on ground truth extracted from the ICD9 codes

and clinical notes.

3.2 Relevant Variables

The Clinical Database is organized as a relational database, where each table corresponds
to a different record type. For time series data, each clinical event is stored as a row in the
appropriate table. While the attributes vary between tables, some attributes that are are

common to most tables are listed in Table 3.1.
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’ Attribute ‘ Description ‘

Subject_ID | Unique identifier for each patient

Hadm_ID Unique identifier for each hospital admission
ICUStay_ID | Unique identifier for each ICU admission
Charttime | Time at which the event occurred

ItemID Identifier to specify the exact event

Value Numeric value associated with the event

Table 3.1: Common attributes of clinical events with the descriptions.

3.2.1 Demographic Variables

Demographic information of patients are stored in the D_Patients table. It contains infor-
mation such as gender, date of birth, date of death (if applicable) and the Hadm_ID of the
patients’ admissions. Gender and age, which can be calculated from the date of birth, are
the two main demographic variables that are relevant to the prediction of AKI. The genera-
tion rate of creatinine depends on the muscle mass, which is highly correlated with age and

gender. The creatinine clearance rate of the kidney is also affected by age and gender.

3.2.2 Chart Variables

The ChartEvents table contains clinical measurements taken from patients while receiving
care in the ICU. Chart variables include heart rate, respiration rate, blood pressure, blood
gases, etc. The intervals between measurements vary depending on the measured quantities,
and range from minutes to days. Patients in a more severe condition might have higher
measurement frequency. We considered including blood pressure as a feature because it is
an indicator of decreased blood flow to the kidney. However, the correlation between blood
pressure and AKI is very weak and it introduces a lot of noise. Therefore, it was eliminated

from the feature set.

3.2.3 Lab Variables

Values from lab tests are recorded in the LabEvents table, which includes variables like serum

creatinine and BUN (blood urea nitrogen). Unlike chart variables, data for lab variables
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outside the ICU are also available in the database. Hence, we have many more samples for
lab variables than for chart variables. This project started by using both BUN and creatinine
for AKI prediction. It is known that BUN is not specific enough for the diagnosis of AKI
compared to creatinine, because it is also reacts to dehydration and heart failure. BUN was
initially included, as we thought it might give additional information about pre-renal disease.
However, BUN does not seem to carry more signal beyond that of creatinine and it actually
introduces noise in the prediction. Therefore, BUN was eventually excluded from the final

feature set.

3.2.4 10 Variables

The TotalBalEvents table recorded cumulative urine output of each patient for every 24-
hour interval in the ICU. More detailed breakdown of urine output data is also available in
the I0Events table. Of course, the values in TotalBalEvents are more stable and robust,
due to the smoothing over a 24-hour period. Urine output is one the criteria in the RIFLE
classification system. However, we decided not to use urine output for prediction due to
some problems with this variable in our data set. A more detailed discussion on this is in

Chapter 6.

3.2.5 Ground Truth

The ICD9 table contains the ICD9 codes for disease information of patients for each hospital
admission. A hospital admission is associated with acute kidney injury if the ICD9 codes

for that admission include any of the following.

445.81 580-580.99
583-584.99 586-586.99
590.1 593.89-593.99
646.21-646.22 | 669.32
866-866.99

Table 3.2: ICDY codes for Acute Kidney Injury.
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3.3 Selection Criteria

As mentioned, the database is not free from errors. There are many incidents of missing data
that may hinder analysis on the data. In our case, missing ICD9 codes is a huge problem
because the ground truth based on clinical notes alone is not reliable.

Furthermore, not all patients may have the necessary data for our learning objective. The
available data for each patient are primarily based on the patient’s physiological condition
and the physicians’ opinion. For example, creatinine values for a patient would not be
available if the physician does not think that the creatinine value would offer any additional
insight into the patient’s condition.

In the preparation of the dataset, we need to exclude patients that are not eligible ac-
cording to some criteria. In particular, we include an admission in the final dataset if all of

the following criteria are satisfied.
e ICDY codes are not missing
e patient was between 20 and 75 years old
e has at least one creatinine observation
e patient not receiving dialysis treatment
e patient have not not had kidney transplant

We limit the dataset to adult patients with ages between 20 and 75 years old to avoid the
extreme variation in kidney function due to the effects of age. In addition, that assumption
makes the age distribution within our dataset more uniform, so that the average age effect

on baseline creatinine is negligible compared to gender, AKI severity and noise.

3.4 Issues with Dataset

This section describes some problems with the dataset of that may hinder the performance of

various learning algorithms. We need to keep that in mind when learning from the data, as
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different algorithms have different degrees of vulnerability to each problem. It is important

to make sure that none of the modeling assumptions are violated.

3.4.1 Discretization

All clinical measurements are limited by the precision of the measurement apparatus. As
a result, measurements of variables that are continuous in nature can be regarded as dis-
cretizations of the real values. In the database, values of BUN are integers whereas values
of creatinine are multiples of 0.1, meaning that values of two variables are rounded to the
nearest 1.0 and 0.1 respectively.

While the effect of discretization may be negligible most of the time, it could be problem-
atic when taking non-linear transformation of the values such as logarithms and exponentials.
The set of possible values that becomes unevenly spaced after transformation is problematic
for plotting histograms. For instance, the possible values for creatinine are {0.0,0.1,0.2,...}
and taking the logarithm results in {—o00, —2.303, —1.609, ...}. Plotting the histograms of
log-creatinine require unevenly-spaced bins that respect the discretization in order to get a
decent visualization of the distribution. Figure 3-1 and Figure 3-2 illustrate the difference
between simple evenly spaced bins and bins that respect the discretization.

For that reason, goodness of fit tests that require value transformation may be unsuitable
for testing distributions of clinical variables. The test result would not be accurate as the
original distribution has been distorted by the discretization, limiting the choice of statistical
tests that can be performed on the data. For testing of distributions, a statistical test that can
be used in our case is the Pearson’s chi-squared test. The test establishes whether or not an
observed frequency distribution differs from a theoretical distribution. For example, suppose
we would like to test the hypothesis that creatinine has lognormal distribution. The observed
frequency distribution is just the normalized counts of all possible values {0,0.1,0.2,...}.
For each possible value z, the theoretical distribution is the probability of the precision
range p(x —0.05 < X < x4 0.05) where X is the lognormal distribution to compare against.

Testing on creatinine data gives a p-value of 1.0. By contrast, testing the hypothesis that
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Figure 3-1: Histogram of log-creatinine with evenly spaced bins

log-creatinine has normal distribution gives p-value that is close to zero. Normality testing
with other more powerful tests like the Anderson-Darling test, the Shapiro-Wilk test, or the

Kolmogorov-Smirnov test also results in near zero p-value.

Parameter estimation from discretized samples should take into account the uncertainly
within the precision range. One way of doing that is by using the EM Algorithm, where
the undiscretized values are modeled as hidden variables [13]. Depending on the degree of
discretization, ignoring that can result in poor estimates, especially if the value distribution

within the precision range is highly asymmetric.
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Figure 3-2: Histogram of log-creatinine with bins that respect the discretization

3.4.2 Control Groups

As the MIMIC II database only contains information on patients that are admitted to the
ICU, we do not have data for other hospitalized patients who are less severely ill, not to
mention healthy individuals. The lack of control groups is obviously not favorable for infer-
ence, but fortunately, this is not an issue for AKI prediction. In fact, only a small fraction
of patients in the database have AKI and the rest can act as the control group. Besides,
data for creatinine measurements before being admitted to the ICU are also available in the
database. That is, before the overall physiological states becomes too severe. Therefore, we

have sufficient negative samples for modeling normal kidney states.
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3.4.3 Class Imbalance

As the number of patients with renal failure is only about a quarter of all patients, we have
to worry about the imbalanced class distribution instead. Standard classification algorithms
that minimize training error are vulnerable to the class imbalance problem, resulting in
poor generalization performance. Several techniques have been proposed to deal with class
imbalance, such as resampling and cost-sensitive learning, using different evaluation metrics
[23]. Nevertheless, the proposed solutions have other issues and their effectiveness depend
on the degree of imbalance, size training set, classifier involved, etc.

Our final model uses unsupervised learning, which is less affected by the imbalanced class
distribution. For performance evaluation, we consider multiple evaluation metrics including

the confusion matrix, area under ROC curve (AUC), sensitivity and specificity.

3.4.4 Unequal Intervals

The intervals between measurements of clinical variables are not constant, but vary de-
pending on the patient’s condition. Patients in critical condition usually have the relevant
variables measured more often compared to patients in stable condition, so that timely
treatment can be delivered in case the condition deteriorates.

Figure 3-3 and Figure 3-4 illustrate the distribution of creatinine measurement intervals
for normal patients and renal failure patients respectively. For both groups of patients, most
measurements are separated by a 24-hour interval. Observe that the histogram for renal
failure patients has its frequency concentrated more on left. It has local maxima at 6 hour
and 12 hour intervals, and the frequency of the two intervals are considerably higher than
that in the histogram for normal patients. All these are to be expected.

The distribution of measurement intervals that are condition-dependent is a source of
sampling bias when modeling with the intervals. Besides, certain intervals simply do not
have enough samples for statistical analysis. That makes certain modeling task infeasible.
Moreover, many time series analysis techniques that assume evenly-spaced samples will not

be applicable. Hence, modeling of temporal dynamics is difficult with the available data.
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Chapter 4

Modeling Variable Kinetics

As mentioned earlier, measurement frequencies vary among clinical variables, and an impor-
tant factor that affects the measurement frequency is rate at which each variable varies. After
each measurement, our uncertainty in the variable necessarily increases with the elapsed time
until the next measurement is made. Quantification of the random variation of the variable
with time can be useful in determining the optimal measurement intervals, for timely detec-

tion of clinical deterioration.

Time evolution of substances in biological system is governed by their kinetics and the
type of kinetics depends primarily on the substance type. Waste substances that are removed
through the kidneys are typically assumed to follow first-order clearance kinetics, where the
generation rate of the substance is constant and the removal rate is proportional to the

concentration of the substance.

This chapter investigates the kinetic model for first-order clearance, as many clinical
variables are associated with waste substances such as BUN and creatinine. Understanding
the kinetics allows us to deduce properties of the variable that can be utilized in the design
of learning algorithms. For variable with first-order clearance kinetics, the existence of a
normal range, and consequently possibly multiple abnormal ranges, suggests that modeling
the variable as being in one of several states is fruitful. This state abstraction assumes

that for each possible state, the variable has a fixed distribution with parameters that only
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depends on the current state.

4.1 First-order Clearance Kinetics

Many clinical variables are associated with the concentration of substances that follow first-
order clearance kinetics, where the generation rate is constant and the clearance rate is
proportional to the current concentration. Let x be such a variable and v be the total
volume in which z is distributed. The mass-balance equation of x after a short interval At

satisfies

A(xv) = (vg — vkz)At (4.1)

where g and k are the generation rate and clearance rate per unit volume. We can assume
that there is no change in v. Taking the limit of At, we arrive at the following differential

equation for the first-order clearance kinetics:

dx
— =g — kx. 4.2
o =9k (4.2)
Solving the differential equation gives
o=kt | 9kt
xy = xoe "+ k(l e ™). (4.3)

At any given time, the variable is a weighted combination of the initial value zy and the
equilibrium value g/k. Observe that the weight of xy decreases exponentially with time and

x; approaches the equilibrium value as ¢t — oc.

4.2 Stochastic Kinetic Model

One limitation of the model above is that it does not take into account randomness in the

physiological constants. In order to model the randomness, we add Gaussian white noise to
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the constant g and k. The mass-balance equation after augmenting with noise is
Ax = (gAt + eZ%,) + 2(—kAt + o Z%,), (4.4)

where Z%, and Z%, are independent normal random variables with mean zero and variance
At. We use time-dependent variance to model the fact that our uncertainty increases with
time. When the physiological condition is stable, we should have €2 < ¢ and 0? < k, so the
variance per unit time is small compared to the physiological constants.

In order to simplify the analysis of the model, we let ¢ = 0, and focus only on the noise
in the clearance rate. Moreover, that also ensures that x > 0 at all time, since x is the
concentration of a substance and cannot be negative. Taking the limit, we arrive at the

stochastic differential equation for the first-order clearance kinetics

where W, is a Brownian motion. Complete derivation of the solution to the stochastic
differential equation can be found in Appendix A.

Therefore, we can model the clinical variable as the stochastic process
t
X, = Xoexp(—at + oWy) + g/ exp(a(s —t) — o(W, — Wy)) ds (4.6)
0

where a = k + %0'2. The stochastic process X; gives the distribution of the clinical variable
after time ¢, conditioned on the initial value Xy. At any given time, X; is the sum of two

random variables and we will look into each of the components.

4.2.1 Initial Value

Let
A = Xoe e (4.7)
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be the initial value component of X;. Recall that W; ~ N(0,¢) and therefore, A; is a
lognormal random variable with parameter (In Xy —at, 0?t). We can think of A; as a random

variable centered at Xoe~* with multiplicative noise. The mean and variance of A; are given

by

E[A,] = Xoe ™ (4.8)
Var[A,] = X2e (7t — 1). (4.9)

Since 02 < k, the variance decreases exponentially to zero as ¢t — oo.

4.2.2 Equilibrium Value

Carmona et al. showed in [7] that the variables
t t
6—at+aWt / 6045—UW5 dS and / e—OcS-l-UWs dS
0 0
have the same distribution. Thus, we let

t
B, = g/ s =o(Wam W) g (4.10)
0

¢
= g/ exp(—as + oWy) ds (4.11)
0

be the equilibrium value component of X;.

The variable B, is the time integral of a geometric Brownian motion, which has lognormal
distribution for any fixed s. Yor gave the explicit density function of B; and the formula for

computing the moments in [29]. The first two moments of B; are as follow.

Ewg:%a—e*w (4.12)




Notice that as t — oo, the variance of B; converges to the stationary value

V =E[B] - (E[Bx])*

2

_ h (%)2_ (4.14)

The expression Var|[B;] is more complicated, but since 0% < k, we make the approximation

2¢>
k(2k — 0?)(k — 0?)

E[B] ~ (k(1—e ™2 —a*(1—e™)). (4.15)

The variance formula can then be simplified to

3k — o2 2k
- —k —k
Var[B;] = V(1 —e t><k—02<1_6 t)_k;—UQ)
2
— V(1 - (1 - 3:_ ; e_kt> . (4.16)

From the formula, we can see that the standard deviation of B; increases from 0 to V' at a

rate slower than (1 — e=*).

The distribution B; is commonly used in finance for pricing Asian options. As the exact
density function is too sophisticated for practical purpose, B; is often approximated using
a lognormal distribution. That has been shown to work well in practice. Nevertheless,
theoretical justification for the lognormal approximation does not appear until the paper
by Dufresne in 2004 [15]. In particular, he showed that B; converges in distribution to the
lognormal distribution as ¢ — 0. This is a useful result as the assumption that o is small

usually holds in biological systems.
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4.2.3 Variable Properties

As X; is the sum of two random variables for any fixed ¢, by linearity of expectation,

E[X:] = E[A;] + E[B]
= Xoe ¥ + %(1 — e, (4.17)
which coincides with the solution to the deterministic differential equation. The expected

value converges to the equilibrium value g,

k

Recall that the weight of A; decreases exponentially with time and that Var[A.] = 0.

As t — oo, we have X; ~ B; and the variance converges to

2

Var[X.] = h (%)2. (4.18)

The stochastic process has finite variance in the long run, and our uncertainty in X; does
not grow unbounded with time. Therefore, clinical variables that follow first-order clearance
kinetics should have a normal range. As long as the physiological constants doesn’t change,

our uncertainly in the variables is confined by the normal ranges.

Observe that the stochastic differential equation for the first-order clearance kinetics can

be written as

where pu = % is the equilibrium value. In this form, we can see that the drift coefficient
is proportional to (u — X3), so X, always drifts towards p with magnitude proportional to
its deviation from p. Indeed, the solution shows that X; approaches the equilibrium value
i in the long run with finite variance. Therefore, clinical variables that follow first-order

clearance kinetics should be mean-reverting.
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4.3 State Abstraction

The mean-reverting property and the convergence of variance suggest that variable X; has
a normal range around the equilibrium value. The existence of the normal range motivates
the abstraction that observations of clinical variables with first-order clearance kinetics are
independent and identically distributed random variables given the states. We assume that
X; has lognormal distribution with the equilibrium value as its mean.

The states are discrete representations of physiological conditions relevant to X;. The
major difference between the states is in the physiological constants. Therefore, the distri-
butions of X; for different states have different parameters.

The distribution types, however, are the same for all states since they are only affected by
the kinetics, and not the constants. Hence, variables that follow first-order clearance kinetics
have lognormal distributions with parameters that are determined by the underlying state.
It is possible that the changes in the constants also change the kinetics. Some possible
instances of that include negation of the sign of k, violation of o < 2k, or k — 0.

As an example, let X; be the serum creatinine and the states be different stages of
renal failure. All states have the same g, as the generation rate does not change with the
progression of renal failure. The main difference between the states is the clearance rate k,
as that is the main indicator of renal health. As a result, states with higher severity have

higher equilibrium value due to the decrease in &.

4.4 State Transition

The previous model assumes a stable condition where g and k are constants. The stochastic
kinetic model can also be applied to studying the progression of clinical deterioration, where
the coefficient g and k are time-dependent.

In the context of acute renal failure, the worsening of kidney function can be modeled by
a clearance rate that decreases with time k(t). The stochastic differential equation is unlikely

to have nice analytical solution. Nevertheless, it is still possible to simulate the trajectory by
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approximating with discrete time steps At. That results in a sequence of random variables,
where the expected values forms a trajectory that approximates the solution to the deter-
ministic differential equation. Variance of the sequence of variables gives the uncertainty at

those points along the trajectory.
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Chapter 5

Temporal Dynamics of States

The underlying state of diseases are usually reflected through some clinical variables. In
diagnosis of the disease, we often have to infer the states based on the observed values of
those clinical variables. Changes in states can be detected from the deviations of the variables
from the baseline, but it is not easy to decide whether the deviation is significant enough
to conclude a state change. Our decision should also take into account the odds of state

transitions.

To make things more complicated, the baseline values are different for each individual.
While it is possible to estimate the baseline from past measurements, not every patient has
enough data to produce reliable estimates. In the estimation of individual baseline, a model
that utilizes the past measurements when the data are available, and “borrows strength
from the ensemble” otherwise, would be very useful in this scenario. In addition, baseline
distribution of the population can help to improve the estimates of individual baselines, as

demonstrated by Stein’s paradox.

This chapter describes the generative model for the state dynamics and observations of
the relevant clinical variables, followed by the algorithm for learning the model parameters
from data. The trained model can then be used to infer the states given the observation

sequence of the variables.
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5.1 Generative Model for State Dynamics

This section develops the model for the temporal dynamics of a clinical variable X and the
associated state. We assume that the state abstraction holds, so the observations of X are
independent and identically distributed random variables given the states. Note that X can

be multivariate and the components need not be independent.

5.1.1 Compound Sampling Observation

Consider the following compound sampling model for the distribution of X given the state.
For each patient, we model X as a random variable sampled from a distribution with indi-
vidual parameters that reflects the patient’s state. The individual parameters of the patients
are also random variables, sampled from the population distribution.

Let xp be the observed value for patient k£, who is in state s, = i. We have

T ~ f(ﬂUk | 9k,i)

where 0y ; is the individual parameter of patient k£ in state 7. From the state abstraction,
the individual distribution should be the same for all states, though the parameters are
different. For each state 7, the individual parameter 0 ; is a random variable sampled from

the population distribution
Or,i ~ 9(Ox,i | mi)

where 7; is the population parameter for state <. Note that 7; is not a random variable and
this notation is just to make the parameter explicit.

We choose f(xy | 0ki) and g(6k; | 7;) such that the marginal distribution

m(xy, | m;) = f(@ | Oki)g(Ori | m:) dOy (5.1)

Ok,i

is tractable for parameter re-estimation in the Baum-Welch algorithm [1]. A sufficient con-

dition for that is that f(xy | 0x;) is a natural exponential family distribution with quadratic
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variance function (NEF-QVF) and ¢(0y; | n;) is the conjugate prior. NEF-QVF is a sub-
set of the exponential family that includes normal, Poisson, gamma, binomial and negative
binomial distributions. Some interesting properties NEF-QVF are discussed by Morris in
[33].

While 7; captures the population characteristics of X, the choice of population is up to
the user. For instance, learning n; from each gender separately allows us to capture the
gender effect on X, assuming that we have enough data for both genders. This gives us
flexibility in choosing the control variables based on our interest and the available data.

Although semantically different, the compound sampling model is very similar to Bayesian
inference. However, we do not assume any prior knowledge and the inference is completely

data-driven.

5.1.2 Hidden Markov Model

Let s, = {sk1,-..,Skn, } be the state sequence of patient k and @y = {zx1,..., 21, } be the
corresponding observations. As the states are unknown, we model the temporal structure
of the states and observations as a Hidden Markov Model (HMM) with M states. This
model will be used for learning the population parameters and, eventually, for inference of
the hidden states.

The hidden state sequence is modeled as a Markov chain with transition probability
D(Skt | Skt—1). Given the state sy, the corresponding observation zy is distributed accord-

ing to the compound sampling model with

P( @t | Skt =1,0k:) = f(or | Oki), D(Oki) = g(Oki | M)

Let zj,, = 1{sx; = i} be the indicator variables for states. The complete likelihood for

patient k can be written as

p(Sk: @k, Ox | M) = p(sk1) {HP(Sk,t | 3k,t—1)} {Hg(gk,i | m) [ £ (@ | Hk,i)zi’t} (5.2)

t=2 i=1
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Ideally, we would like to find n = {n;} that maximizes the observed likelihood
p(ek | M) = Z/ p(8k, Tk, Oy | ) d6. (5.3)
Sk O

However, as marginalization of s; is intractable, we resort to the EM algorithm with s as
latent variable. We cannot leave @) as a latent variable and we will describe the problem

with that later. Marginalizing 0, gives the observation distribution
plax | $.71) / TL# e | e eg(6s | 1) dbs (5.4)
Ok,i =1

Marginalization of the common parameters coupled all observations of the same states to-
gether. Thus, the observations are no longer independent given the states. This makes

parameter estimation with the EM algorithm intractable.

5.1.3 Variational Inference

In order to circumvent the tractability issue after marginalization, we approximate the ob-
servation distribution with the closest tractable distribution. In particular, we approximate

the joint distribution as factorizable into

Tk

p(xi | sk,mi) ~ Hp(xk,t | Sk, 1) (5.5)

t=1

where p(zy+ | Skt,7:) are to be determined. Let

v(y | m) HP Tho | Skyts i) (5.6)
= H V(T | i) (5.7)
t=1

52



By variational inference, we choose v(xy) that minimizes the Kullback-Leibler divergence:

v(@y | i) = arg min Dicr(v(@e | m:) || p(e | si,7m0)) (5.8)

Observe that v(xk: | 7;) can be any distribution if z,i}t = 0. Without loss of generality, we

assume that zj, , = 1 for all £. The minimization gives

vy (@ | 1) o By [Inp(@s | 85, 7)]

where E_,, ,[Inp(x | sg,7:)] denotes the expectation over Inp(xy, | sx,7;) with respect to all

the variables except for xj ;. This can be simplified to

V(T | M) o< exp (/ In(f(@re | Ori)g(Oks | mi)) dek,i) (5.9)

Ok,i

= exp (/ Inp(Ok; | k) + Inm(zg: | m:) d@kﬂ;> (5.10)

Ok,

=m(zre | 7i) (5.11)

where m(zg: | 7;) is the marginal distribution of a single observation. As a result, the

variational solution gives the approximation
T, _
p(xk | 8k, 1mi) = Hm(xk,t | 7)ot (5.12)

t=1

The marginal likelihood for each patient is then

Ty M
p(sk, i | 1) = plsea) [ [ plska | skar) [ ] p(@n | sem) (5.13)
t=2 =1
Ty M Ty )
~ p(sk,1) {Hp(sk,t | Sk,t—l)} {H m(Tk | m)z’”} : (5.14)
t=2 i=1 t=1
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5.2 Learning Algorithm

Combining the previous discussions, we now have a tractable model for the temporal dynam-
ics of states and observations. This section describes the estimation of population parameters

using the EM algorithm.

5.2.1 EM Algorithm

The expectation-maximization (EM) algorithm is an iterative procedure for finding the max-
imum likelihood estimates of parameters in models with latent variables. More details about
the EM algorithm can be found in Dempster et al. [13].

In our case, the latent variables are the hidden states s;. The log-likelihood for each

patient can be written as

t(n; yi) 1HZP Sk, T | M)

Sk793k | "7)
=1In q(sk | x
Z k| ) q(sk | )

>Z Sk!ﬂ}k (3k7$k|"7)

Cq(sk @)

-5, nZ e

=l(q,m)

where the inequality follows from Jensen’s inequality. The algorithm initializes the param-

eter estimates to some values (1), then repeats the following steps for t = 1,2,... until
convergence.
E-step Find

¢V = argmax (¢, n")

q
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M-step Update the parameter estimates to

(t+1)

n"* = argmax ((q"*, n)

n

The sequence of parameter estimates 1) increase the lower bound of the log-likelihood in

each iteration until the local maximum is reached.

5.2.2 Estimation of Population Parameters

The optimal ¢**Y in the E-step can actually be solved explicitly to give

¢t = p(sr | wk,n(”)-
According to the Rao-Blackwell theorem, the optimal parameter in M-step will be some
function of the sufficient statistics. Therefore, the E-step can be reduced to computing the
posterior expectation over the sufficient statistics.

Here is the final algorithm for learning the population parameters of the model.

Algorithm 1 Algorithm for learning the population parameter

Initialization: set n® = n® and t = 1.

while t =< T}, and [n® — V| > ¢ do
Evaluate p(zg: | skt = 1) = m(zgy | ngtfl)) for each state.
Compute p(sg+ = i | @) using the forward-backward algorithm.
Collect the sufficient statistics ~y; for each state.
Compute the optimal parameter estimates from ~;.
Set t =t 4+ 1 and update the estimates n(®.

end while

Suppose we are interested in estimating the model parameters for a population that
consists of patient 1,2,..., K. We can train the model on these patients’ data to maximize

the log-likelihood of the population

(n) = Inp(sp, @ | n) (5.15)
k=1
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using Algorithm 1. That gives the estimates for the population parameters, initial state
distribution, and the transition probability of the Hidden Markov Model. Now that we have

the full model, the model can be used for prediction.

5.3 Prediction

This section applies the model to the inference of individual distributions and state sequences.
Inference of individual distributions is a general case of baseline estimation, since the dis-
tributions contain baseline information for each states. Decoding of the most-likely state
sequence use the individual distributions for variable observations in the Viterbi algorithm.

With the estimates of the population parameter 7);, the posterior distribution of the
individual parameter 0y ; given the observations x;, is

Tk

p(Oki | @) o [ £l@ne | On) 0 g(Ons | ). (5.16)

t=1

For evaluating the posterior distribution, the variables z,iﬂf are substituted by the estimator
E[z;, | @k, 7;], which can be computed using the forward-backward algorithm.
With the posterior distribution of the individual parameter, the predictive distribution

of future observations given the state is then

play | sy =1, @k, 7;) = f(@r | Ori)p(Or,i | i, 1;) By ;. (5.17)
Ok,i

The predictive distribution is tractable, since p(6y; | x,n;) will have the same form as the

population distribution g(6x; | ;).

5.3.1 Baseline Estimation

Deviations of clinical variables from the baseline are used as diagnostic criteria for some

diseases. For instance, the stages of acute kidney injury are actually defined in terms of the
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increase in creatinine from the baseline. Despite its definitive role in diagnosis, a universal
definition of baseline creatinine has yet to emerge. Several definitions have been used in
various studies, such as the creatinine at the time of hospital admission, the minimum
creatinine value during the hospital stay, the creatinine estimated from the Modification of

Diet in Renal Disease (MDRD) formula or the lowest value among these [20].

We consider a probabilistic interpretation of the baseline for variable Xj. Let ¢ be the
normal state. Our belief in the baseline for patient k after we observed x is fully character-
ized by p(xy | s = i, @k, n;). The posterior distribution naturally combines the population
baseline with past observations. It is also consistent with our hope that as more past obser-

vations becomes available, the influence of the population baseline will also decrease.

Therefore, the posterior distribution itself is a good description of the baseline. Another
description that is more concise is the expected value of x;, under this distribution. If the
distribution is lognormal, the median might be another good representation of the baseline

27].

5.3.2 Inference of States

After training the model on the dataset, the model can be used for state prediction. Given a
sequence of observations for a patient, the most likely state sequence can be inferred using the
Viterbi algorithm [40]. If history of past observations is available, the predictive distribution
p(zg | sp =i, @k, 7;) is used as the observation distribution of z;. Otherwise, we just use the

marginal distribution m(z | 7;).

However, we need to be careful in the computation of the predictive distribution from
previous observations. Observations that are too old should be discarded, as the individual

parameters might have changed due to aging.
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5.4 Discussion

We mentioned that the individual parameters cannot be treated as latent variables. Zhang
et al. [52] suggested an evidence framework for learning Bayesian HMM with an exponential
family distribution for the observations. They also use the EM algorithm to optimize the
likelihood, but 6, is treated as latent variables rather than being marginalized.

The problem with their approach is that the algorithm estimates 0y ; for every ¢ and k in
the E-step. In the M-step, the population parameter 7; is estimated from sufficient statistics
that depend only on 0y ;, and not x. Since the estimation of 6y ; is entirely based on xj, that
gives horrible estimates if patient k is never in state i. Moreover, the estimation of 7; gives
equal weight to each 6 ,. So the estimator would be highly biased if a substantial fraction
of patients are never in state 7.

A necessary condition for this model to work well is that for each state, the number of
patients that are never in that state is small. Consequently, we would have to marginalize
the individual parameters as that condition is far from the truth in our dataset.

We have developed a generative model for inference of kidney states given observations
of the relevant clinical variables. Baseline estimation based on available observations is a
common clinical problem with practical importance. The two main challenges in baseline
estimation are the lack of past observations for certain patients and the unknown state se-
quence. We tackled the problem of insufficient data by utilizing the idea of “borrowing
strength from the ensemble” in statistics. In that way, patients with limited observations
data can borrow baseline information of the population. Besides, our method is an unsu-
pervised learning and the true state sequence is not required as an input. Another popular
unsupervised learning technique that can be used is clustering, which clusters the obser-
vations into different states. Our approach has the advantage of being able to exploit the
temporal structure of the data. Clustering does not take the temporal dependency between
the observations and just assign each observation to the most likely state. In addition, our
model is generative while the clustering model is not.

The concept of individual distribution is more general than the variable baseline. Ac-
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cording to our model, the baseline can be assumed to be the posterior mean of the variable,
which can be easily calculated. The model also tells us the uncertainty associated with the

baseline estimates based on the number of observations we have.
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Chapter 6

Results

This chapter discusses the application of the models developed in previous chapters to the
diagnosis of acute kidney injury (AKI). Renal health is mainly reflected through serum
creatinine and urine output. Therefore, changes in the two variables have been used to

define the stages of acute kidney injury in the RIFLE classification system.

Due to various problems with urine output, we are only using serum creatinine for our
modeling. The reasons for not using urine output for renal failure prediction is explained in

the next section.

As discussed earlier, creatinine kinetics can be modeled as a first-order clearance model
and this model has been applied in a number of studies [32, 46]. We modeled creatinine
kinetics using the stochastic kinetic model developed in Chapter 4 and consider some of
its properties. We managed to find empirical evidences that can verify some statistical

properties predicted by the model.

The model for state dynamics presented in Chapter 5 is used to model the stages of
renal dysfunction in RIFLE. The expected value of the creatinine distribution for each state
is computed and compared to the RIFLE criteria. Finally, performance of the model in

prediction is assessed based on the ground truth.
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6.1 Urine Output

Although urine output is one of the staging criteria of the RIFLE system, we decided not to
use urine output for our predictive modeling. The reasons for that are given below.

Some members of the Acute Kidney Injury Network (AKIN) felt that urine output is not
specific enough for the designation of AKI. It is known that the urine volume could also be
influenced by the factors other than renal health, such as hydration state, use of diuretics,
and presence of obstruction. Thus any decrease in urine may not be attributed to renal
dysfunction because there are several other possibilities. Therefore, the use of urine output
in diagnosis requires careful consideration of the clinical context.

The urine criterion for the Risk stage in RIFLE is urine volume less than 0.5 ml/kg per
hour for 6 hours. Erdbruegger, et al. noted in [17] that for a 70 kg male adult, this represents
a urine volume of 210 ml in 6 hours which, if maintained, would be 840 ml/day. By limiting
fluid intake, many healthy individuals could meet this criterion. Thus, the authors discourage
diagnosis of AKI based solely upon urine output.

It is worth noting that the urine output criteria are not in balance with the corresponding
creatinine criteria and are too sensitive [41]. In other words, Risk patients defined by crea-
tinine criteria may be more severely ill compared to those defined by urine output criteria.
Serum creatinine has also been shown to be a better predictor of mortality than urine output
[41].

Diagnosis using urine output has low clinical utility because accurate measurement of
urine output is difficult in non-intensive care unit settings. Moreover, in order to get a
robust estimate of the average urine volume, urine collection has to be done more than once
over the span of several hours. This is more troublesome compared to the measurements of
creatinine.

The urine volume can have large variation even for the same individual, as it is also
affected by fluctuations in total fluid consumed and the frequency of urination. That causes
the variable to have low signal to noise ratio. By looking at the histogram, the empirical

distribution of urine output for the population is not smooth either. That makes it hard to
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model the variable with any known probability distribution.

Because measurement of urine output is difficult outside the ICU, the MIMIC II database
only contains the urine output of the patients during their ICU stay. On the other hand,
creatinine values for the whole hospital admission, or even outside the hospital, are included
in the database. So there are more data for creatinine than for urine output that are available
for machine learning.

More importantly, the available ground truths are for each hospital admission. If the
patients had renal failure only when outside the ICU, the available urine output data would
not reflect the ground truth. It is well recognized that uncomplicated AKI can usually be
managed outside the ICU [30]. Thus, AKI patients in the ICU are likely to have some
other problems as well. Learning solely from the data collected during an ICU stay might
introduce the issue of selection bias.

We compared several supervised learning models to identify acute kidney injury using
each of the following feature sets: urine output only, creatinine only, urine output and
creatinine. The true labels were extracted from ICD9 codes and clinical notes. It turned
out that the model constructed using only creatinine gave the best performance, which
strengthens our belief that urine output has low predictive power due to the various problems
mentioned above.

For the ease of modeling, we rely on serum creatinine alone for the prediction of renal

failure.

6.2 Creatinine Kinetics

We modeled creatinine kinetics using the stochastic first-order clearance model, and looked
at the changes in creatinine over a short time scale where the kinetic effect is visible. Our
goal is to validate the applicability of the model to creatinine. Empirical properties of the
short-term changes in creatinine are compared to the properties predicted by the stochastic
kinetic model.

Parameter estimation for the stochastic kinetic model is difficult due to the uneven distri-
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bution of measurement intervals. Most of the creatinine measurements are within 24 hours
from the last measurement. Measurements with shorter intervals are usually associated
with sick patients, which causes sample selection bias. Nevertheless, if we had better data,

estimation of the clearance rate k£ would be very useful in detecting renal failure.

To investigate the reasonableness of the stochastic kinetic model, we examine how it fits
data for adult patients with age between 20 and 75 years old, without renal failure. We will
return to including patients with renal failure when applying the model for state dynamics

in Section 6.3.

6.2.1 Heuristic Interpretation

Let X; be the value of creatinine, which is assumed to follow first-order clearance kinetics.

Recall that X, satisfies the stochastic differential equation
dX; = (g — kXy) dt + (e + 0 X3) dW,.

As we are interested in the short-term changes in X;, we consider the following heuristic

interpretation of the stochastic differential equation. For a short time interval At, we have
AXt ~ (g — kXt)At + (6 + O'Xt> ZAt (61)

where Zx; ~ N (0, At). Hence, AX; can be approximated by a normal random variable with

mean (g — kX;)At and standard deviation (e + o X;)VAt.

We then compare the empirical drift and diffusion of AX; to this interpretation. We
barely have enough samples that have measurement intervals of 6 hours, not to mention
samples with shorter measurement intervals. Therefore, we focus on model validation by
comparing to the empirical trend rather than parameter estimation. It is also unclear whether

this is a good approximation with At being 6 hours.
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6.2.2 Mean-reverting Drift

The expected value of AX; is proportional to the drift coefficient (¢ — kX;). Figure 6-1
shows the plot of the sample mean of AX; of normal patients against X; with At = 6 hours.
We can see the the sample mean decreases linearly with X;, which is consistent with the
stochastic model.

The population average for p corresponds to the point with zero mean drift, which is
slightly below 0.6 mg/dl. The average drift is positive for X; < 0.6 and negative otherwise.
As the normal range of creatinine is 0.5 - 1.2 mg/dl, the distribution of X; within this range

has positive skew.

—0.06 | .

—0.08 | .

—0.10 | .

0.1 0.6 0.3 T0 T3
Concentration (mg/dl)

Figure 6-1: Mean of the change in creatinine for different values of creatinine
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6.2.3 Linear Diffusion

The standard deviation of AXj is proportional to the diffusion coefficient e4+0.X;. We plotted
the standard deviation of AX; samples of normal patients against X; with At of 6 hours in
Figure 6-2. The sample standard deviation of AX; increases linearly with X;, which agrees
with the model. The multiplicative noise makes the lognormal distribution a good model for

the Xt-
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Figure 6-2: Standard deviation of the change in creatinine for different values of creatinine

6.2.4 Convergence of Variance

Figure 6-3 shows the plot of the standard deviation of AX; of normal patients against

measurement intervals. Due to the limited data, we plotted samples for every three hours
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so the variance at t = 2,5, 8, ... are estimated from samples with intervals within ¢ + 1 hour.
The standard deviation of X; and AX; are the same, because they only differ by a constant
Xo. From the plot, we can see that the standard deviation converges to a finite value as

predicted by the stochastic kinetic model.

t

The decay rate of e * can actually be roughly approximated from the rate of increase

of the standard deviation. From Equation 4.16, the standard deviation increases at an

fkt).

asymptotic rate that is slightly slower than (1 — e We can see that the increase in

t would be very small

standard deviation is negligible after 15 hours, implying that e=*
by then. That might give us some confidence in the independence assumption of state

abstraction, as most values are separated by 24-hour intervals.

An important point to note is that the empirical variance for small At may be larger
than the theoretical value due to the selection bias problem. Patients with relatively higher
measurement frequency for creatinine may indicate an unstable renal condition that the
physician perceives as at risk of having AKI. Therefore, the variation in creatinine is probably

higher compared to normal patients.

The convergence rate of the variance of X; might be helpful for determining the measure-
ment interval. As the variance saturates after about 15 hours from the measurement, we do
not have more information about X; beyond what we know about the normal range. Hence,
daily measurement works fine for normal patient; for patients at risk however, intervals

shorter than 12-hour might be more appropriate.

6.2.5 Generation and Clearance

From the kinetic model, creatinine is a mean-reverting process that fluctuates around the
mean u = g/k, and the mean-reverting property agrees with the empirical result as shown
in Figure 6-1. Let v be the total body water. The mean can be written as

v _9

M_kv_g
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Figure 6-3: Standard deviation of the change in creatinine for different durations after mea-
surement

where ¢’ and k" are the generation and clearance rate of creatinine respectively. Both quan-

tities have been extensively studied by several authors.

The most widely-used formula for estimating creatinine clearance rate is the Cockcroft-

Gault formula, proposed by Cockeroft and Gault in [11]. The formula gives

140 — Age) x (Mass in kg) x (0.85 if Female)

k/ — (
75 x (Serum Creatinine in mg/dl)

(6.2)

where £’ has unit ml/min. Using our model, this formula can be interpreted as estimating
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k' = ¢ /n with

g = (140 — Age) x (Mass in kg) x (0.85 if Female) + 75

p = (Serum Creatinine in mg/dl).

The model also suggests that the mean of serum creatinine is proportional to the gener-
ation rate ¢’, which is consistent with the work of Clark, et al. [9] and Shinzato, et al. [44]

on creatinine generation rate.

6.3 Kidney State Dynamics

This section applies the generative model for state dynamics of Chapter 5 to model the
progression of acute kidney injury. Given the creatinine values as an observation sequence,
our goal is to infer the disease state, for classifying the stage of acute kidney injury.

For this experiment, we restrict our dataset to adult patients aged between 20 and 75
years. Each gender is trained separately so that the estimated population parameters capture

the characteristics of each gender. The size of the final dataset is summarized in Table 6.1

Female | Male
Patients 3331 4990
Admissions | 3692 5326
Samples 77916 | 96186

Table 6.1: The number of patients, hospital admissions, and creatinine samples for each
gender.

Different hospital admissions of the same patient that are separated by too long are
treated as different patients because the individual parameters may have changed. We
break the observation sequence of each patient at points where the time interval between
consecutive observations exceeds 6 months.

The states are chosen based on the RIFLE and AKIN classification system. In particular,

we let the states be Normal, Risk, Injury, and Failure, to correspond to the three levels of
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renal dysfunction in both systems.

6.3.1 Lognormal Model for Creatinine

From the stochastic kinetic model, the distribution of creatinine for each state can be modeled
using a lognormal distribution. Let X} be the log of creatinine. The individual distribution

and population distribution of X are

[, | )\k,i) = N()\k,mgf); g(/\k;,i | 1hi) = N(Mi,ﬂ?)-

The variances of individual distributions are assumed to be the same for all patients. Marginal-

izing the individual parameter )\, gives the marginal distribution
m(zy | ) = N (i, 77 + 07).

Using our model for state dynamics with 4 states, the parameters u; and 72 + o2 for
each state can be estimated from the data. Subtracting a consistent estimate of o7 from the

marginal variance gives the estimates of 77.

The posterior distribution p(Ax; | @k, i1;) is a normal distribution with parameter

EAei | Tk, i) = Brpti + (1 — By) T (6.3)
Var[ A | @, pi] = B2, (6.4)
where 4
0’ _— Dt Zealkt

By,

= . Ty = —————.
2 2 i ) )
g T Zt Rt Zt Rt

The variables 2, are replaced with the estimator E[z;, | @, y;], which can be computed
using the forward-backward algorithm. The estimators E[z} , | @, ts] = p(ske =1 | g, f1:)

can be thought of as the “soft count” for the discrete samples.
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The predictive distribution for observations of X, is then

play | sk =1, @k, ;) = Fl@e | Mei)pNei | 2, pi) dAi
Ak,i

= N (Bypi + (1 = By,)Zy, 07 + Bpr?) (6.5)

With the predictive distribution and the parameter estimates, inference of the patients’ states

can be done by the Viterbi algorithm.

6.3.2 Goodness of Fit

The marginal distribution of z; can be verified by comparing the empirical distribution of
the creatinine of patients in the same state to the lognormal distribution. Figure 6-4 shows
the histogram of creatinine of normal patients and the density function of the lognormal

distribution with parameters estimated by maximum likelihood.
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Figure 6-4: Histogram of creatinine values of normal patients and the probability density
functions of the lognormal distribution. Left: female, Right: male

The probability plot comparing the empirical distribution of creatinine to the lognormal
distribution is shown in Figure 6-5. The data fits the lognormal distribution quite closely
except for some outliers at the high end of the range. Those outliers probably belong to

other states.
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Figure 6-5: Probability plot of creatinine values of normal patients versus the lognormal
distribution. Left: female, Right: male.

We tested the goodness of fit with the Pearson’s chi-squared test, which gives the following
results. With the high p-value, we accept the hypothesis that the marginal distribution of

creatinine is lognormal. In other words, m(zy | i;) is a normal distribution.

Female | Male
x? statistics | 0.0673 | 0.065
p-value 1 1

Table 6.2: Results of Pearson’s chi-squared test for goodness of fit

6.3.3 Stages of Acute Kidney Injury

Based on the state abstraction, creatinine is assumed to have lognormal distribution with
different parameters at different states. We train the model on the patients’ data in order to
learn the population parameters of the distributions. The results are then compared to the
RIFLE and AKIN scheme. The creatinine criteria for the three stages of renal dysfunction
in RIFLE and AKIN are listed in Table 6.3. For comparison with our model,

Table 6.4 shows the population mean of creatinine for each state computed from the
lognormal distributions.

The typical values of creatinine for each state are represented as ranges (m/s,m x s) in
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RIFLE AKIN
Risk Cr > 1.5 x baseline Cr > 1.5 x baseline,
or Cr > baseline + 0.3 mg/dl
Injury | Cr > 2 X baseline Cr > 2 x baseline
Failure | Cr > 3 X baseline, or Cr > 4 mg/dl | Cr > 3 X baseline, or Cr > 4 mg/dl
with acute rise of > 0.5 mg/dl with acute rise of > 0.5 mg/dl

Table 6.3: The creatinine criteria in RIFLE and AKIN classification system. For AKIN, the
increase in creatinine must occur within 48 hours. Cr, serum creatinine.

Female | Male
Normal | 0.594 | 0.740
Risk 1.073 | 1.217
Injury 1.858 | 2.023
Failure | 4.595 | 4.496

Table 6.4: Population mean of creatinine for each state

Table 6.5, where m and s are the median and geometric standard deviation of the distribution
respectively. The range is centered at the median and includes 68.27% of all values. This is
a better representation for the multiplicative nature of the lognormal distribution, compared

to the (mean + standard deviation) representation.

Female Male
Normal | (0.405, 0.783) | (0.531, 0.948)
Risk (0.874, 1.272) | (1.020, 1.413)
Injury | (1.488, 2.228) | (1.665, 2.381)
( ) | ( )

Failure | (3.137, 6.045 3.062, 5.922

Table 6.5: Typical values of creatinine for each state

Recall that creatinine of normal patients always drifts towards the mean at around 0.6
mg/dl. That is close to the mean of the Normal stage, as expected. The commonly accepted
normal range of creatinine is 0.5-1.1 mg/dl for female and 0.6-1.2 mg/dl for male. Lowers
bounds of the normal ranges are slightly higher than the mean of Normal stage, whereas
the upper bounds are just around the mean of Risk stage. This is a reasonable probabilistic
interpretation of normal ranges as creatinine value higher than the mean of Risk is likely to

be attributed to AKI, even for patients with high baseline.
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The 0.3 mg/dl increment in creatinine in the Risk stage is not much larger than the
0.05 mg/dl precision of creatinine measurement, but from the tables, the increase in severity
is significant. Observe that the range of typical values that accounts for 68.27% of all
values only spans about 0.4 mg/dl. If we consider a female with creatinine of 0.7 mg/dl,
an increment of 0.3 mg/dl increases her percentile in the population from 0.75 to 0.96. The
patient is still more likely to be in the Normal stage since the increment is less than 50%,
but the likelihood of Risk stage has increased substantially.

Ratio of the mean of Risk to the mean of Normal is around 1.7. If we assume that
baseline creatinine is the mean of the distribution at the Normal stage, then the ratio for
RIFLE is 1.5, which is lower than what we have. Since the Risk stage of RIFLE is known
to have high sensitivity, this discrepancy can be attributed to that tradeoff.

There is a difference of about 0.5 mg/dl between the mean of Failure and the value 4
mg/dl used in RIFLE. However, the difference is not large for that level of creatinine, since

the noise is multiplicative.

6.3.4 Classification Results

Performance of the model is evaluated by comparing the prediction of the model to the
true states of patients extracted from the database for each hospital admission. To get
the true states, we look for evidence of acute kidney injury in the patients from the ICD9
codes and clinical notes. For each admission, the observation sequence of creatinine during
the admission is given as an input to the trained model, which then return the most likely
state sequence. Prediction for that admission is the most severe state in the predicted state

sequence. Performance of the model under several metrics is summarized in Table 6.6.

Female | Male

Sensitivity 0.8271 | 0.8565
Specificity 0.8702 | 0.8720
Area under ROC | 0.8259 | 0.8497

Table 6.6: Sensitivity, specificity and the area under ROC of the model.
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Our model for state dynamics have demonstrated reasonably well performance on the
prediction of acute kidney injury. The statistical properties of the models are also consistent
with the universal definitions of AKI. Given the creatinine values, the most likely states of
the patients can be efficiently computed using the algorithm discussed previously. In the
case when a computer is unavailable, a simple diagnostic test can also be performed based
on the mean and typical values provided in the tables. For example, consider a muscular
male patient at age of 22 years old and has creatinine value of 1.2 mg/dl. His creatinine
is closer to the mean of Risk stage and is outside the typical values of the Normal stage.
However, his baseline creatinine should be at high percentile of the population distribution
because creatinine generation rate increases with muscle mass. Since his creatinine is not at
the higher end of the typical values of Risk state, he is more likely to be in Normal state
than the Risk state.

5
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Chapter 7

Conclusion

In this thesis, we have developed probabilistic models for modeling variable kinetics and the
temporal dynamics of states. This chapter starts by providing a summary of the thesis,

followed by some potential directions for future research.

7.1 Summary

This thesis presents a probabilistic model of the dynamics of kidney function, demonstrates
how to estimate parameters of that model from measured creatinine values, and applies the
model to diagnosis of acute kidney injury according to a multi-state model. It compares the
states automatically discovered by our formalism to the standard RIFLE and AKIN criteria.

Chapter 1 introduced the concepts of kidney injury and the contemporary approach
of using data-driven statistical models for clinical analysis and prediction problems, and
provided an outline of the rest of the thesis.

In chapter 2, we provided some of the relevant background for this thesis. The chapter
begins with a brief summary of the evolution of the diagnostic criteria of acute kidney injury.
Then, we discussed the role of creatinine baseline estimation in diagnosis and some existing
methods for baseline estimation. We also analyzed some studies on creatinine kinetics in the

context of acute kidney injury.
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Chapter 3 gave an overview of the MIMIC II database and the various types of data that
are available for modeling. Then, some problems with the dataset that may hinder machine
learning performance were described.

In chapter 4, we developed the stochastic kinetic model for first-order clearance kinetics,
which can be used to model the kinetics of creatinine and other waste substances. Then, we
discussed some statistical properties of the model. The chapter concluded with the concept
of state abstraction for modeling clinical variables with first-order clearance kinetics.

Chapter 5 described the generative model for the temporal dynamics of states and the
relevant clinical variables. To account for the normal range of the variable and the baseline
that varies between individuals, we modeled variable distribution by the compound sampling
model to distinguish between individual and population distributions. The overall temporal
structure was modeled as a Hidden Markov Model with an observation distribution that
follows the compound sampling model. Details of approximations to the model to make
it tractable and the algorithm for parameter estimation were also included in the chapter.
Finally, we discussed the application of the model to state prediction and baseline estimation.

Chapter 6 started with the verification of the stochastic kinetic model with creatinine
data. We applied the generative model for state dynamics to the diagnosis of acute kidney

injury based on the values of serum creatinine. The state distributions of the model were

compared to the RIFLE and AKIN criteria.

7.2 Future Work

This section discusses potential research directions for further investigations, which can be

divided into
e applications of the models in other disease domain
e improving the models

e ideas for other related models
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The models developed in this thesis can be applied to various clinical problems. The
stochastic kinetic model that assumes first-order clearance is applicable to other substances,
such as BUN. The model can be easily modified to any linear kinetics, where the general
solution is available in Appendix A. The model for state dynamics can be used to model other
clinical conditions, as long as the condition is manifested in clinical variables for which the
state abstraction hold. For example, observations of BUN can be used to detect conditions

like heart failure and dehydration using the model.

A possible improvement that can be made to the model is to relax the approximation
assumptions. Recall that we approximated the joint marginal distribution of observations
by assuming that the observations are independent. If we are able overcome the tractability
issue with weaker assumptions, we will have a more accurate model for the structure of the

problem.

Due to the influence of the RIFLE criteria, we modeled acute kidney injury with a discrete
number of states, representing different severity levels. An advantage of having discrete
states is that it captures clustering effect of different levels of severity in the population.
An alternative direction to explore is to use a continuous state representation, in which case

state inference can be done by employing techniques such as the Kalman Filter.

In fact, we can go one step further by combining state inference and stochastic kinetic
modeling. The strategy would be to infer the creatinine clearance rate from the stochastic
process directly. Under this scheme, the clearance rate is no longer a constant, but a con-
tinuous function of time. However, this approach is also more susceptible to noise and has
many subtle issues to consider. The stochastic differential equation is also unlikely to have

an analytical solution.

This concludes our examination of the use of stochastic dynamic modeling to help analyze
acute kidney injury. We were able to demonstrate that such a model yields strong diagnostic
performance based only on variation in a patient’s serum creatinine, and that the states

identified by the model correspond reasonably well to those chosen by human experts to

79



classify stages of acute kidney injury. We have argued that the methods developed are also
more broadly applicable to the dynamics of other clinical measures that exhibit first-order
clearance kinetics, and suggested several possible extensions of this work to make better

approximations and to use continuous rather than discrete states.
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Appendix A

Linear Stochastic Differential

Equation

We derive the solution to the general linear stochastic differential equation (SDE). After
that, we simplify the solution for the case with constant coefficients that are independent

time.

A.1 The General Solution
Consider the general linear stochastic differential equation
dX; = (e(t) +d(t) Xy) dt + (e(t) + f(t)X;) dW; (A.1)

where ¢, d, e, f are deterministic function of time, and W; is a Brownian motion. We first

try for a solution of the form X; = P,Q); with

th = a(t) dt -+ b(t) th, QO = XO
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and function a, b to be chosen. By Ito’s formula, we have

dXy = PdQy + Qud P, + fOP, dt
=dX; dt + fX; dW, + (a+ fb) P, dt + bP, dW,.

We choose a, b such that
(a+ fb)P, dt + bP, dW; = c dt + e dWV,

which gives

Notice that

t 1 t
P, = exp (/0 d(s) — §f(s)2 ds +/0 f(s) dWs)
and P, > 0 almost surely. Hence,
¢ =X t — P td t Pt aw,
Q= Yo+ [ (o) = fe)elN P ds+ [ el

Let
B; = /0 d(s) — %f(s)2 ds —i—/o f(s) dWs.

We arrive at the solution to the linear stochastic differential equation:

X= e (Yo [els) = ersone > dst [ et aw,)
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A.2 Solution to SDE with Constant Coefficients

This section simplifies the general solution to the case with constant coefficients that are
time independent. In particular, we let ¢(t) = g, d(t) = —k, e(t) = €, and f(t) = 0. As a
result,

1
Bt = —(k + 50’2)t + O'Wt (A8)

and the solution becomes

t t
X, =Pt (Xo + (g — 60)/ e Bs ds + e/ e Bs dWs) (A.9)
0 0

The last term involves stochastic integral of geometric Brownian motion e~?s, which can be

simplified further using Ito’s formula. Let f(t,W;) = e~ 5. By Ito’s formula,

of 10%f of

e P —1=eP((k+0%) dt — o dW,)

Rearranging the terms gives us

t 1 — —B: k 2 t
/ e B dW, = S o / e B ds (A.10)
0 0

o o

Substituting A.10 into A.9 gives

k? t
X, = b <X0—|—£(1—eBt)+gJ+ e/eBs ds)
o 0

g

t
= v+ (Xo+v)eP + (g + kv)e? / e B ds (A.11)
0

€
where v = —.

Q
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