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Abstract

To date� mathematical models of population dynamics have consistently focused on
understanding the long term behavior of the interacting components� where the steady
state solutions are paramount�

For most acute infections� however� the long run behavior of the pathogen pop�
ulation is of little importance to the host and population health� We introduce the
notion of transient pathology� where the short term dynamics of within�host interac�
tion between the immune system and pathogens is the principal focus� We identify the
amplifying e�ect of the absence of a fully operative immune system on the pathogen�
esis of the initial inoculum� and its implication for the acute severity of the infection�
We then formalize the underlying dynamics� and derive two measures of transient
pathogenicity� the peak of infection 	maximum pathogenic load
 and the time to peak

of infection� both crucial to understanding the early dynamics of infection and its
consequences for early intervention�

Moreover� the di�erential importance of the windows of opportunity for di�er�
ent pathologies in individual patients� is related to the time structure of the lives of
people in di�erent vulnerability classes� Today� despite decades of studies and the
relative abundance of mortality data� our understanding of the distribution of vulner�
ability to disease and death remains inadequate� We introduce a model of mortality
selection partially o�set by social mobility� to simulate the dynamics of vulnerability
of a population cohort that is heterogeneous in health and death� We then pro�
pose a methodology for transforming mortality data from the �age�domain� to the
�time�domain�� Using our model of vulnerability� applied to mortality data in the
time�domain� we identify the signi�cance of selection and mobility for the dynamics
of mortality of di�erent vulnerability classes and the population as a whole� Finally�
we compare the mortality experience of di�erent populations
 focusing on the tran�
sient phenomenon of �mortality crossover� between di�erent pairs of populations� we
identify the potential factors producing the phenomenon� and make diagnostic use of
its underlying processes�

Thesis Supervisor� Peter Szolovits
Title� Professor
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Chapter �

Introduction

��� Why Qualitative Modeling

Our world is increasingly complex� When we attempt to model problems of the real
world� we tend to simplify these problems so we can study the models instead of
the real systems� The question is� how much simpli�cation is not too much so that
the underlying model is still a reasonable representation of the system under study�
When modeling� there are two methodologies to consider� qualitative and quantitative�
With the computational advances in the past decade or so� quantitative modeling has
gained so much popularity� yet the shortcomings of this methodology persist� Let us
examine this more closely through a brief comparative study of the two approaches�

����� Generalizability of Results

Consider� as an example� a typical predator�prey system as follows

S	�
 � s�� I	�
 � i�
dS

dt
� B � �sS � �SI

dI

dt
� �SI � �iI

where S and I are the populations of susceptible and infected with respect to an
infectious agent
 s� and i� are initial values of S and I respectively
 � is the e�ective
infection rate when individuals of type S and I come into contact
 �s and �i are the
death rates of susceptible and infected people respectively
 and B is the size of the
birth cohort� We assume new people are born into the class of susceptible�

If the constants of the above system are known� numerical methods can give num�
bers for S and I over time that later can be graphed to examine temporal behavior of
the variables� relation between S and I� the impact of di�erent intervention strategies�
etc� ����

But suppose that one or more of the parameters are no longer constant� in which
case we may ask the question� how does variation in the parameters of one variable
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a�ect the other variable and the dynamics of the system as a whole� With numerical
methods this question can be tested for di�erent values of the changing parameter�
but a set of numerical answers are only valid answers for particular situations� and
therefore cannot be generalized to unexamined situations� Hence� our understanding
of the underlying processes will not be enhanced and will be limited to special cases�

In contrast� qualitative analysis does not provide us with exact solutions or pre�
cise answers to the behavior of systems� but qualitative methodologies such as loop
analysis ��� �� ���� do allow us to study the e�ect of variation in the parameters of
systems in di�erent directions and in great depth�

����� Measurability of Parameters

Now suppose that our numerical modeler learns� due to discrepancies between the
numerical results and observation or other inconsistencies� that in our epi�system
the rate of contagion �� cannot be treated as constant and is dependent on people�s
behavior as well as the prevalence of the disease which itself is time�variant� So we
get the following dynamics

S	�
 � s�� I	�
 � i�� �	�
 � ��
dS

dt
� B � �sS � �SI

dI

dt
� �SI � �iI

d�

dt
� �	

��

� � p	t

� �


where �� is the initial infection rate
 � is the responsiveness of behavior
 and p	t

is the prevalence of the disease at time t� The new equation has an interesting
interpretation� On the one hand� it is a decreasing function of the prevalence p	t
�
implying that as the proportion of infected individuals approaches ����� people panic
and modify their behavior so that the infection rate goes up at a smaller rate with
time� On the other hand� an increase in the prevalence itself is a result of unsafe social
behavior and hazardous contacts� At the same time� public health education and
awareness campaigns positively impact people�s preventive behavior which reduces
the infection rate independent of prevalence
 thus the term ����

Adding one more variable to the system complicates the analysis to a great extent�
In the new equation� the parameter � may not be readily measurable� and collecting
any amount of quantitative information on � may be quite a costly and tedious
task� In fact� most social parameters are not measurable� In such situations� our
numerical modeler is likely to omit the new variable and its corresponding equation
from the dynamic system� This as we know� is routinely practiced in quantitative
modeling� But if the e�ect of the new variable is indeed critical in explaining the
general dynamics and possible anomalies� our understanding of the dynamics of S
will be �awed� and therefore the mismatch between the state of knowledge and the
numerical results will not be resolved� Any claims made on the basis of such �linear�
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results are hazardous and at best misleading�
With qualitative modeling� however� we may include as many variables as we

�nd necessary to best describe the dynamics of the system under study despite the
lack of data ��� �� ��� ���� In other words� �Instead of accumulating all the rele�
vant information� we see how much we can avoid measuring and still understand the
system�� ����

��� Why Modeling Transience

Daily transitory changes in the physical and social environment can make our bodies
undergo a wide range of �uctuations� Changes in the temperature
 time and content
of food intake
 patterns of physical and emotional stress
 social policies
 etc� can
cause rapid variation in the blood pressure� heart rate� induction of immune elements�
neural capacity� emotional stability� and other aspects of our physiology� Hence� we
ask� When are �uctuations of particular durations relevant to disease processes� and

when can they be averaged out� Mathematics of dynamical systems has routinely
explored the long term� or average� behavior of dynamical components� But if some
�uctuations are important in de�ning the health of a population� then we need to
identify the underlying processes producing them�

When an invading pathogen �nds its way through the epithelial surfaces� and the
normal physiology of the body is perturbed by infection� components of cellular im�
munity are able to respond quickly� but it takes several days for the humoral immunity
to be activated� But the immune system may also be inoperative for an initial period�
for many di�erent reasons� For instance� �a pulse of ��� grams of sugar can inhibit
immune activity for up to � hours
 an immunization can tie it up for a week or two
 a
major emotional trauma can reduce immune activity for months�� 	Richard Levins�
unpublished

 malnutrition can delay the immune response inde�nitely� Therefore� if
the immune system is unable to respond for some initial period� the pathogen will re�
produce freely until the host�s defenses are activated� The newly activated immunity
is then to face an exponentially �ampli�ed initial inoculum�� Therefore we ask� How
does the size of the initial inoculum and the initial delay period a�ect the outcome of

infection�
This can be approached empirically� for what diseases does the initial inocu�

lum matter� It can also be approached theoretically� after an initial infection� the
pathogen�s reproduction races against the removal by the immune system� If the
immune system is responsive� it can exceed the reproduction of the pathogen from
the start� so that the pathogen population decreases� But if the immune response
has to be induced� the pathogen may increase for a time before the immune system is
activated and overwhelmed� During this period� the pathogen may produce su�cient
damage to kill the host�

In Chapter �� we develop a mathematical model for simulating the transient dy�
namics of within�host interaction between the immune system and a pathogen� We
will then derive two measures of transience pertaining to the early dynamics of an
acute infection namely� the �peak of infection� 	hpeak
� and the �time to peak of
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infection� 	tpeak
� We relate these transient outcomes of the model to the initial
inoculum� the period during which the immune system is not fully e�ective� and var�
ious infection�speci�c parameters of reproductive rate� induction rate of the immune
system� and e�cacy of the immune elements� Finally� we make inferences about
the diagnostic use of such inter�dependencies� as �how to intervene� and �when to
intervene��

In Chapter �� we relate the di�erential importance of the windows of opportu�
nity for di�erent pathologies to the time structure of the lives of people in di�erent
vulnerability classes of a population� A population is composed of individuals who
are heterogeneous in their vulnerability to disease and death� In public health and
demography� the distribution of vulnerability is only understood in terms of age and
the underlying genetic basis� Although age and the genetic predisposition are im�
portant causes of variation in the distribution of vulnerability� they are not the only
such causes� A substantial part of such variation is due to heterogeneity in social
conditions of individuals� Therefore� it is essential to understand how certain factors
such as mortality selectivity and di�erential mobility in a population a�ect morbidity
and mortality of di�erent vulnerability classes and the population as a whole�

To model the dynamics of vulnerability� we develop a mathematical model of selec�
tion partially o�set by mobility� to simulate the dynamics of mortality of a population
heterogeneous in health� In essence� we divide a population cohort into two vulnera�
bility classes with respect to disease processes� Over time� people may move from one
vulnerability class to another due to aging or factors a�ecting social mobility� They
also die� The relation between these two processes will determine whether people die
mostly in conditions of chronic good health or of high risk and poor health� There�
fore� we have two outcomes of concern� total mortality and the proportion dying in
di�erent vulnerability classes� Our goal is to identify the domain of conditions under
which total mortality 	and mortality from classes with poor health
 would decline�
while death from classes with good health would rise or stay steady� This means that
people will live relatively healthy lives up to the time of death� For the society as a
whole� this results in lowering the terminal investment in health�

When comparing populations� interesting �anomalies� in the mortality curves
of two populations may arise� One such anomaly is the occurrence of a mortality
crossover between the Black and White populations of the United States� after about
age ��� Blacks seem to have a lower mortality rate than Whites� Today� despite
the relative richness of mortality data and nearly �� years after the discovery of the
phenomenon� our understanding of mortality crossover remains inadequate� Therefore
we ask� When will a population� initially exposed to greater force of mortality� have a

lower death rate� Section ��� is an attempt to explain the phenomenon in light of our
mathematical model of vulnerability� We �rst propose a methodology for transforming
mortality data from the age�domain to the time�domain� This is necessary because
our model simulates the mortality experience of a non�aging cohort over time� We
will then identify the conditions under which the mortality curves of two populations
cross as well as identifying the processes that govern the dynamics of the mortality
crossover� We will then extend the results to other pairs of populations� Finally� in
section ���� we generalize the results of the ��vulnerability�class to n � ��
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Chapter �

Transience in Infectious Disease

��� Motivation and Background

Microorganisms or pathogens are often characterized by their small size and their
short generation time during which they replicate at very high rates� The short
infection period� relative to the life span of the host� is another important feature
of microorganisms that causes acute pathology in their hosts� Once recovered from
infection� the host acquires life�long or transient immunity against re�infection� Such a
characterization of pathogens broadly includes viruses� bacteria� fungi� and protozoa�

����� Immunology of Infectious Disease

Our bodies are constantly exposed to infectious agents� yet we seldom acquire an
infectious disease� The epithelial surfaces of the body form an e�cient barrier to
most foreign substances 	antigens
� However� those that bypass this barrier and
successfully establish a site of infection� will face the body�s immune defenses� The
immune system performs two functions� it distinguishes between the organism�s own
cells and any intruding pathogens� and it �ghts the invaders by means innate and
adaptive immunity�

The �rst line of body�s defense mechanisms� are the phagocytes of the innate
immunity� These cells pre�exist in all vertebrates and are able to react to infection
almost immediately� Phagocytic cells� recognize� engulf and digest a wide range of
common bacterial infections� If the innate defenses of the host do not recognize the
invasive pathogens and are evaded� the next line of defense� i�e� the lymphocytes of
the induced or adaptive immunity will be required to combat the infection�

Adaptive immunity is characterized by two responses� cellular and humoral� The
cellular immunity consists of two major components� the CD�� T lymphocytes 	a�k�a�
helper T cells
� and the CD�� T lymphocytes 	a�k�a� killer T cells
� The helper T
cells reproduce to form a command center which in turn stimulates the production of
the killer T cells and the B cells in the humoral response� The killer T cells then seek
out the site of infection� and destroy the infected cells� In the humoral 	or antibody

response� helper T cells activate the B lymphocytes� which are blood cells� The B cells

��



can then produce antigen�speci�c antibody molecules which can target and destroy
the speci�c pathogen at hand�

Components of cellular immunity are able to respond to infection within ����
hours� but there is usually a delay of ��� days before humoral immunity makes its
initial response� On re�exposure to same microbial antigens later in life there is an
accelerated response in which larger amounts of speci�c antibodies are formed after
only one or two days� The capacity to respond in this manner often persistes for life�
and depends on the presence of �memory cells��

����� Transient Pathology � Window of Vulnerability

Every infection is a race between the ability of the invading microorganism to multiply
and cause disease� and the ability of the host to mobilize defenses� When an invading
pathogen �nds its way through the epithelial surfaces and establishes a site of infec�
tion� components of cellular immunity are able to respond to infection rather quickly�
However� it takes several days for the humoral immunity to be induced� When an
infection is naturally acquired� the infecting dose generally consists of a small number
of microorganisms� This� on its own� is quite insu�cient to cause signi�cant pathol�
ogy or even stimulate an immune response� But the pathogen then multiplies� and if
the immune system has to be induced� and this may indeed take several days� then
such an �initial delay period� on the part of the host can be critical� Hence� the
invading pathogen is most successful if it requires for its neutralization antibodies
that have not previously been stimulated� For most acute infections� the pathogen
replicates rapidly and at very high rates and thus can manage to stay ahead of the
host�s humoral defenses and take advantage of such a delay period�

If the immune system is readily activated� it may surpass the reproduction of the
pathogen from the start� so that the pathogenic load declines� But if the immune
response has to be induced� during the window of opportunity for the pathogen�
there can be extensive increase in antigenic mass which may lead to the death of the
host� It is during this initial delay period that the pathogen replicates freely until
the humoral defenses are activated� Hence� the initial inoculum that only consisted
of a few microorganisms at the time of inoculation� in the absence of a fully e�ective
immunity grows almost without bound� The newly activated immunity is now to face
an exponentially �ampli�ed initial inoculum�� Therefore we ask� How does the size

of the initial inoculum and the initial delay period a�ect the outcome of infection�
It is reported that for Shigella dysteriae as little as �� bacteria are su�cient

to cause oral infection ����� In malaria� Marsh reports ����� that for Plasmodium

falciparum �in a small child a sporoziote dose in the hundreds could result in a
clinically signi�cant patent parasitaemia on the �rst round of blood�stage cycle�� It
is claimed by the same author that death occurs within a few days of inoculation with
� ��� sporozoites� In measles it is reported by Hope�Simon ���� that the second case
in a household is always more severe than the �rst� presumably because more intense
contact results in a greater inoculum� For bacterial meningitis� the pathogen is present
in some ������ of the population without causing symptoms and then occasionally
escapes from control 	Richard Levins� �Mini Essays on Health�� unpublished
�
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Hence� it is of great importance to have a mathematical framework for modeling
the early dynamics of the immuno�patho system� and for making inferences about
the transient outcomes of infection namely� the �time of crisis� and �extent of crisis��
based on the size of the initial inoculum� the period during which the immune system
is not fully e�ective� and the infection�speci�c parameters�

Finally� understanding the early dynamics of infection has direct consequences
for clinical medicine and public health intervention� Anticipating the maximum
pathogenic load and the time of its occurrence has immediate implication for the
choice of plausible intervention scheme	s
� and assessing the duration of the critical
period for intervention beyond which any intervention strategy may prove ine�ective�

��� A Framework for Analysis of Transience

����� The Interaction Model

Our model of the dynamical interaction between the immune system and a pathogen
is a time�dependent� two�variable� nonlinear system of ordinary di�erential equations�
The variables are I	t
� the immune level of an infected host at time t
 and P 	t
� the
pathogenic load at time t� The following system of ordinary di�erential equations
models the dynamics of the immuno�patho system

dI

dt
� a� � �I	t
 � kP 	t
 	���


dP

dt
� rP 	t
�mI	t
P 	t
 	���


where a� represents the innate immunity
 � is the rate of decay of the immune
system
 k is the rate of induction of the immune system
 r is the reproductive rate of
the pathogen
 and m is the rate of removal of the pathogen by the immune system�
It is interesting to note the dual e�ects of some of the parameters� a� and � are both
properties of the immune system� yet � favors the pathogen
 m and k� on the other
hand� are properties of interaction between the immune system and the pathogen�
yet they both favor the immune system�

Now suppose that humoral immunity is not able to respond for some initial period�
�� During this initial delay period� the pathogen will replicate more freely since the
only control element is due to the innate immunity a�� partially o�set by �� a�

�
� Hence�

in the absence of fully responsive immune system the dynamics of the patho�system
is as follows

P 	�
 � p� 	���


dP

dt
� P 	t
	r �m

a�

�

 for � � t � � 	���


where p� is the arbitrary initial pathogenic inoculum� Equations ������� have the

simple solution� P 	t
 � p�e
�r�m

a�
�
�t� This initial dynamics at t � �� when the immune
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system becomes fully responsive� sets the initial conditions for the system of equa�

tions ������� so that P 	�
 � p�e
�r�m

a�
�
�� becomes the initial pathogenic load for the

new dynamics� We will refer to this phenomenon as the ampli�ed initial inoculum�
P 	�
 below� Therefore� we have

I	�
 �
a�

�
� P 	�
 � p�e

�r�m
a�
�
�� 	���


dI

dt
� a� � �I	t
 � kP 	t
 	���


dP

dt
� rP 	t
�mI	t
P 	t
 	���


����� Regions of Pathogenicity

Our dynamic model of interaction between the immune elements and a pathogen con�
sists of three qualitatively distinct regions of pathogenicity depending on the steady
state values and the relative magnitude of the parameters of the system of equa�
tions �������� The equilibrium values 	I�� P �
 of the system are the solutions of the
algebraic equations

a� � �I � kP � � and rP �mIP � �

namely� the points 	I�� P �
 � 	
a�

�
� �
 and 	I�� P �
 � 	

r

m
�
r��ma�

mk

� The qualitative

behavior of the solutions of the system of equations ������� and the conditions for
local stability in each region can be determined by linearizing the system in the
neighborhood of each critical point�

�� Linearizing the system in the neighborhood of 	
a�

�
� �
� we have

d

dt

�
I

P

�
�

�
BBBB�

�

�I
	
dI

dt



�

�P
	
dI

dt



�

�I
	
dP

dt



�

�P
	
dP

dt



�
CCCCA
�

I

P

�

�

�
B� �� k

�
�r �ma�

�

�
CA
�

I

P

�
	���


The characteristic polynomial� p	�
 of the above system is

p	�
 � �� � �
�� � ma� � r�

�
� 	ma� � r�


Setting p	�
 � � and solving for the eigenvalues� we get� �� � �� and �� �
�r �ma�

�
�
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For the system to be locally stable� both eigenvalues must be negative real numbers�
Hence� we must have the following conditions on the system parameters

��	a
 � � �

��	b
 ma� � �r

�� Linearizing the system in the neighborhood of 	
r

m
�
r��ma�

mk

� we have

d

dt

�
I

P

�
�

�
BBBB�

�

�I
	
dI

dt



�

�P
	
dI

dt



�

�I
	
dP

dt



�

�P
	
dP

dt



�
CCCCA
�

I

P

�

�

�
� �� k

ma� � �r

k
�

�
A� I

P

�
	���


The characteristic polynomial of the above system is� p	�
 � �� � �� � 	�r �ma�
�

which can be solved to get the eigenvalues� �� �
�� �

q
�� � �	r��ma�


�
and

�� �
���

q
�� � �	r��ma�


�
� For the system to be locally stable around 	

r

m
�
r��ma�

mk



we must have Re	�i
 � �� i � �� �� We derive the stability conditions using the
Routh�Hurwitz algorithm�

��

��

��

�������
� r��ma�
� �

��r��ma��
�

�

The stability criterion requires that all the terms in the left�hand column of the above
table have the same sign� That is� the following conditions must be satis�ed for the
system to be locally stable�

��	a
 � � �

��	b
 �r � ma�

If the parameters of the system are such that condition ��	b
 is satis�ed� then
clearly condition ��	b
 is violated� in which case the eigenvalues ��� �� will be real

and of opposite signs since
q
�� � �	ma� � r�
 � �� Consequently� the critical point

	
r

m
�
r��ma�

mk

 will be an unstable saddle point� On the other hand� if condition ��

	b
 is satis�ed� then ��� �� are real and of opposite signs� and the critical point 	
a�

�
� �


will be an unstable saddle point� We distinguish two di�erent regions under this
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Figure ���� Regions of pathogenesis� �a� Region I� Pathogen population growth cannot pick
up from the start� immune elements are strong� �b� Region II� Pathogen produces su�cient

damage before the immune elements are able to regulate its population growth� �c� Region

III� Pathogen may exhibit small growth� but is not capable of producing extensive damage

due to its relatively small reproduction rate� immune elements regulate its growth to an

equilibrium value quite rapidly�

condition� If �� � �	r��ma�
� then ��� �� are complex conjugates and the dynamics
will be a damped oscillation to a steady state� Otherwise� if �� � �	r��ma�
� then
��� �� are negative real� in which case� due to the relatively small reproduction rate� r�
the pathogen is not capable of producing extensive damage and is quickly regulated
by the immune elements� In this case� a small peak may be observed before the
steady decline to a steady state� Putting it all together� we distinguish three regions
of pathogenicity as follows�

Region I� If 	
a�

�
� �
 is a stable steady state� then by condition ��	b
� it must be

that the o�ensive parameters of the immune system� i�e�� a� and m are much larger
compared to r and �� Hence� the immune system can exceed the reproduction of the
pathogen from the start and the pathogenic load declines� Figure ���	a
 illustrates
the dynamics of this region�

Region II� If 	
r

m
�
r��ma�

mk

 is a stable steady state and �� � �	r� � ma�
� then

the pathogenic load will take o� until the immune system is able to react and reverse
the pathogen population growth and regulate it to some equilibrium value through
damped oscillations� Figure ���	b
 illustrates the dynamics of region II�

Region III� If 	
r

m
�
r��ma�

mk

 is a stable steady state and �� � �	r��ma�
� then it

must be that the pathogen reproduction rate� r is relatively small but that condition
��	b
 is still satis�ed� In this case� a small peak may be observed� but infection is
promptly regulated by the immune elements� Figure ���	c
 illustrates the dynamics
of this region�
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����� Measures of Pathogenicity� tpeak and hpeak

Clearly� we are interested in the analytic properties of region II and III since these
are the regions in which the dynamics of infection may exhibit interesting transient
properties� In the remainder of this paper� we will focus on the analytical properties
of region II� since region III can be characterized as a trivial case of region II� We de�
�ne two measures of transient pathogenicity corresponding to the dynamics of region
II as follows�

De�nition� Region II� wherein the pathogenic overload can cause severe disease or
death in a short time period� best characterizes the dynamics of acute infections�
We de�ne two measures of pathogenesis pertaining to the transient dynamics of this
region�

�� Maximum pathogenic load� or hpeak 	for height of the peak
� de�ned as the
pathogen population at the peak of infection� If this is large enough� the host
may not recover�

�� Time to peak of infection� or tpeak 	for time�to�peak
� de�ned as the time from
the full activation of the immune system to the peak of infection� If the inter�
vention is applied past this point� the host may not recover�

In later sections� we develop the analytic tools needed to explore the dynamics of
these measures of pathogenicity�

��� A Quadratic Model of Interaction

To date� we do not know of any exact analytic solutions for the nonlinear system of
equations �������� Using the method of time averaging ����� however� we do know
how to approximate these solutions� We are interested in functional solutions of I	t

and P 	t
 in terms of the initial conditions and various parameters of the system� To
obtain such solutions� we �rst integrate equation ���

Z t

�

dI

d�
d� �

Z t

�
�a� � �I	�
 � kP 	�
�d�

which implies that

I	t
� I	�
 � a�t� �

Z t

�
I	�
d� � k

Z t

�
P 	�
d�

or equivalently

I	t
 �
a�

�
� a�t� �

Z t

�
I	�
d� � k

Z t

�
P 	�
d� since I	�
 � a�

�

Def
�

a�

�
� a�t� �tE�I� � ktE�P � 	����


��



where E�x�
Def
�

�

t

Z t

�
x	�
d� is the expected or average value of a variable x	t
� Adapt�

ing the notation x	t
 for E�x�� we rewrite equation ���� as follows

I	t
 �
a�

�
� a�t� �tI	t
 � ktP 	t
 	����


where I	t
 and P 	t
 are the average values of the immune level and the pathogen
population respectively� for the period ��� t�� Clearly� I	t
 and P 	t
 are time variant
entities
 furthermore� all our derivations have been exact thus far� To approximate
the �transient� solutions of I	t
 and P 	t
� we need to de�ne a period during which
these solutions would closely model the behavior of the immuno�patho system at the
peak� This period is of particular importance for the upcoming transient analysis�
and will be discussed in detail in section ������ Therefore� if we further approximate
I	t
 and P 	t
 with constant terms I and P � derived for the period of interest� then
I	t
 can be approximated as follows

�I	t
 �
a�

�
� a�t� �It � kP t 	����


where �I	t
 represents an approximate solution of I	t
 for the period of interest� Simi�
larly� we can �nd an approximate functional form for P 	t
 by integrating equation ���
for the period of interest

Z t

�

dP

d�
d� � r

Z t

�
P 	�
d� �m

Z t

�
I	�
P 	�
d�

Def
� rtP 	t
�m

Z t

�
I	�
P 	�
d� 	����


In equation ����� if we replace I	t
 with the value of �I	t
 from equation ����� and
P 	t
 with the constant term P � we will then have

�Pq	t
 � P 	�
 � rP t�m

Z t

�
	
a�

�
� a�� � �I� � kP�
P 	�
d�

� rP t�m
a�

�

Z t

�
P 	�
d� �m	a� � �I � kP 


Z t

�
�P 	�
d�

� rP t�m
a�

�
P t�m	a� � �I � kP 
P

t�

�
using integration by part

or� equivalently

�Pq	t
 � P 	�
 � Pt	r �m
a�

�

�mP

t�

�
	a� � �I � kP 
 	����


where the quadratic function� �Pq	t
 	�q� for quadratic
� represents an approximation
of P 	t
� As will be demonstrated in later sections� having approximated P 	t
 and
I	t
 in terms of the initial inoculum� various parameters of the system� as well as

��



short term average measures of immunity and pathogenesis� namely I and P � we are
now equipped with a powerful analytic tool for studying the transient behavior of
infection� as well as predicting the severity and time of the peak of infection�

����� Measures of Transient Pathogenicity� tpeak and hpeak

Equipped with the qualitative solutions of section ���� we derive the two transient
measures of the patho�system tpeak and hpeak pertaining to region II� Di�erentiating
�Pq	t
 from equation ���� with respect to t we get

 �Pq � P 	r �m
a�

�

�mPt	a� � �I � kP 
 	����


since I and P are constant� Equation ���� can be equated to zero and solved for t
for which the pathogenic load is maximum� That is

tpeak �
r �ma�

�

m	a� � �I � kP 


�
r��ma�

�m	a� � �I � kP 

	����


For tpeak � �� both the numerator and denominator must have the same sign� In
section ������ we showed that in order for the interaction model of the system of
equations ������� to be locally stable in region II� we must have the condition

r��ma� � � 	����


Hence for tpeak � �� since its numerator is always positive� we must also have

a� � �I � kP � � 	����


since � � � and m � �� Therefore both the numerator and denominator of tpeak are
positive� To derive hpeak� we evaluate �Pq	t
 at tpeak as follows

hpeak � �Pq	tpeak 


� P 	�
 � P
	r �ma�

�

�

�m	a� � �I � kP 


� p�e
�r�m

a�
�
�� � P

	r��ma�

�

���m	a� � �I � kP 

	����


What are the consequences of such transient outcomes of an acute infection for the
host� Can these measures be utilized to device e�ective early intervention strategies�
How does the duration of inactivity of the humoral immunity �� and the size of the
ampli�ed initial inoculum P 	�
� a�ect these measures� the critical timing for interven�
tion� and the choice of intervention scheme� � not only in�uences the early dynamics
of infection� it may also be in�uenced by factors such as the state of nutrition or the

��



stress level of the host� This is unlike some of the other parameters of the system�
such as r or �� which may be inherent physiological characteristics of a pathogen and
the immune system� and that we may or may not be able to in�uence them� This has
signi�cant consequences for intervention� A boost to the immune system� by way of
good nutrition or through intervention� may shorten �� � manifests its e�ect on the
transient dynamics through P 	�

 an increase in � causes an exponential increase in
P 	�
 	see equation ��� and condition ����
� In this paper� we will examine the e�ect
of � on the early dynamics of infection by way of examining that of P 	�
� Hence�
we ask� How does the size of the ampli�ed initial inoculum a�ect the early dynamics

of infection� Our transient outcomes� tpeak and hpeak� also depend on the average
measures� I and P � Therefore� in order to determine the impact of P 	�
 on tpeak and
hpeak� we must �rst examine the dependency of I and P on P 	�
�

Approximating I and P

In section ���� we derived the approximations �I	t
 and �Pq	t
 describing the transient
dynamics of the immuno�patho system� based on the assumption that there exists a
period during which �Pq	t
 closely models the early dynamics of the pathogen popu�
lation growth� in turn implying that this should lead to close approximations of tpeak
and hpeak� Let T denote this period� We further de�ne T to be the time at which P 	t

regains its initial value� i�e� when P 	T 
 � P 	�
� The constant terms I and P � are then
derived in a way that they would approximate the average values of I	t
 and P 	t
 for
the period of interest T � This reasonable assumption that T is de�ned in a way that
P 	T 
 � P 	�
� not only greatly simpli�es the analysis involved in the derivations of
constant terms� it also results in close approximation of the transient measures tpeak
and hpeak since it enforces symmetry in the shape of �Pq	t
� This can be realized from
the dynamics of Figure ���� where �Pq	t
 from equation ���� is plotted against the
numerical solution of P 	t
 obtained by solving the system of equations ������� using
a fourth order Runge�Kutta method�

The constant terms I and P � are then derived in a way that they would approx�
imate the average values of I	t
 and P 	t
 for the period of interest T � To �nd I�
divide both sides of equation ��� by P and take expected value from both sides� for
� � t � T � to get

E	
�

P

dP

dt



Def
�

�

T

Z T

�

�

P

dP

dt
dt

Def
�

�

T
	lnP 	T 
� lnP 	�



� E	r �mI	t

 by equation ���

� r �mI 	����


Equation ���� together with the assumption that P 	T 
 � P 	�
 implies that

I �
r

m
	����


which implies that for the duration T � I does not depend on the initial conditions
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Figure ���� Pathogenic load in the �rst few days of a hypothetical infection after the full

activation of the immune system� The dashed parabola is the plot of the quadratic function�
�Pq�t�� the solid plot is the graph of P �t� based on the numerical solution of the system of

equations 	�
�	�� using a fourth order Runge�Kutta method� The constants of the system

are� a� 
 ������ 
 ���
� k 
 ����
� r 
 	����m 
 ��		� the initial immunity I��� 
 a�
�



������ the initial inoculum p� 
 ��� the ampli�ed initial inoculum P ��� 
 �� ���� and

� 
 	�� days� At T 
 ��
	��� when P �t� � P ���� then I 
 r
m

 ��� P � ����� tpeak � ����


days� and hpeak � 
����

I	�
 and P 	�
� To �nd P � note that at t � T � equation ���� can be written as

�Pq	T 
 � P 	�
 � PT 	r �m
a�

�

�mP

T �

�
	a� � �I � kP 


� P 	�
 since P 	T 
 � P 	�


which can then be solved for P

P �
�r �ma�

mk
�

�	r��ma�


�mkT
for � � t � T 	����


which implies that given T � P is constant for the duration t � ��� T �� Equations ����
and ���� are the constant approximations of the average values I	t
 and P 	t
 respec�
tively� for the duration t � ��� T �� Substituting the right hand side of equation ����
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for P in equation ����� we get

tpeak �
T

�

as should be expected from the symmetry assumption� Figure ��� is illustrative of
how closely our quadratic model approximates tpeak and hpeak�

P and T are inversely associated� As T gets smaller� P increases� which in turn
causes tpeak to decrease� Clearly� T is an important measure
 it provides a bound
on the critical period for intervention beyond which any intervention scheme may
prove ine�ective� Such a critical period must be less than tpeak� The relationships
between T � P � tpeak� and hpeak are clear� But how do we determine T and what is
its relationship with the initial inoculum P 	�
� In other words� it is not clear how P

depends on P 	�
 since such a dependency is masked by T �

����� A Shortcoming of the Quadratic Model

Our interest in studying the transient behavior of the immuno�patho system is moti�
vated by the observation that while the humoral immunity has not yet been activated�
there is potential for exponential increase in the antigenic mass� This means that
upon activation� the humoral immunity is to encounter a massive pathogenic load�
Although our quadratic model of pathogenesis closely models the transient measures
tpeak and hpeak� the e�ect of P 	�
 the ampli�ed initial inoculum on these measures
remains obscure since it is not clear how P 	�
 is a�ecting P or T � To understand why
our quadratic model lacks an explicit dependency on P 	�
 in the equation for P � note
that �Pq is concave down if the initial slope is increasing and concave up otherwise�
Assuming that in the absence of a fully e�ective immunity the initial slope is always
increasing� and therefore �Pq is concave down� then it must be that the second deriva�

tive of the quadratic function is negative for the period of interest� that is� !�Pq	t
 � �
for � � t � T � If �Pq	t
 is indeed a good model of P 	t
 at the end points � and T �
then it must be that !P � � as well� for � � t � T � Consider the second derivative of
the original equation at t � �

!P 	�
 �  P 	�
	r �mI	�

�mP 	�
  I	�
 by equation ���

� P 	�
	r�m
a�

�

� �mk�P 	�
�� by equations �������

� �

which implies

P 	�
 �
	r �ma�


�

��mk
	����


This means that our model is a good approximation to the actual curve at t � �
if condition ���� is satis�ed� that is� if P 	�
 is large enough� This is because as P 	�

takes on larger values and becomes closer to the threshold of condition ����� P 	t
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Figure ���� Pathogenic load in the �rst two days of hypothetical infections for di�erent

values of P ��� after the full activation of the immune system� �a� As in the dynamics of

Figure 	�	� with P ��� 
 �� ���� and the threshold � 
��
 �b� A hypothetical infection with

k 
 ������ � 
 	��� days� T 
 �������� P ��� 
 ��	�� the threshold � ���	� the peak

measures are estimated as tpeak � ���
� and hpeak � 
���� all other parameters are as in

�gure 	�	� Notice the closer approximation of the peak measures as P ��� approaches its

threshold�

becomes more parabolic in shape� which is the dynamics of the quadratic function
�Pq	t
� In fact� this phenomenon can be observed from the dynamics of Figure ���� In
Figure ���	a
� where P 	�
 � �� ��� and is well below its threshold 	� ����
� notice
how the curve of P 	t
 is �sigmoid� near the end points � and T � Compare that to
the dynamics of Figure ���	b
� where P 	�
 � ���� and is much closer to its threshold
	� ����

 notice how tight the peak approximations become as P 	�
 approaches its
threshold and P 	t
 becomes more parabolic� This indicates that our quadratic model
is not as good for modeling the end points as it is for modeling the peak measures�
unless P 	�
 is greater than some threshold� Figure ��� demonstrates the threshold
e�ect for the dynamics of Figure ��� by the behavior of the �rst derivatives� Note� in
Figure ���	b
� as P 	�
 approaches the threshold of condition ����� the approximation
to the �rst derivative at the end points becomes tighter�

Our goal is to model the behavior of the pathogen population growth at the peak
in a way that the role of the ampli�ed initial inoculum in the dynamics is explicitly
clear� Under the quadratic model� if P is as in equation ����� and if P 	�
 is larger
than the threshold of condition ����� then �Pq	t
 closely follows the behavior of P 	t
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Figure ���� The slope of P �t� versus the slope of �Pq�t� for the dynamics of Figure 	��� The

dashed line is the slope of the quadratic function �Pq�t�� the solid curve is the slope of P �t��

�a� For the dynamics of Figure 	���a�� �b� For the dynamics of Figure 	���b�� Notice the

tighter approximation of �P by ��Pq as P ��� approaches its threshold�

both at the peak and at the end points� However� in equation for P � the nature of
the dependency on P 	�
 is not clear� Furthermore� there is no reason to assume that
P 	�
 is almost always larger than the threshold of condition ����� Hence� we need to
expand upon our quadratic model of interaction�

��� Toward a Hybrid Model of Interaction

Our quadratic model of the immuno�patho system nicely models the peak measures�
tpeak and hpeak� but it fails to express theses measures solely in terms of the ampli�ed
initial inoculum and various parameters of the system� unless P 	�
 is greater than
some threshold� Although this condition may well be realistic for many acute in�
fections� it narrows the domain of possibilities� By now� it should be clear why the
quadratic model fails to closely model the end points� Looking at the dynamics of
 P 	t
 from Figure ���� it is easy to see that a good model of P 	t
 must be a fourth order

polynomial and not a second order� Hence� it is no surprise that the peak measures
can be traced so closely but not the end points� resulting in an obscure relationship
between these measures and P 	�
� which is masked by P and therefore T �

To arrive at the quadratic model� we doubly approximated the equation for P 	t


��



by replacing I	t
 with �I	t
 and assuming the average measures as constants� In
what follows� we will use only the approximation for I	t
 and will end up with an
exponential function� We will then combine the results from the two models� thus
making a �hybrid� to derive a new value of P with explicit dependency on P 	�
� This
means that the peak measures� tpeak and hpeak� can then be explicitly expressed in
terms of P 	�
 as well�

����� An Exponential Model of Interaction

In section ���� we de�ned �Pq to denote the quadratic model� By the same analogy� let
�Pe denote the exponential model to be derived below� The �rst and second derivatives
are de�ned accordingly� To derive �Pe� divide both sides of equation ��� by P and
integrate both sides to get

Z t

�

�

P

dP

d�
d�

Def
� lnP 	t
� lnP 	�


�
Z t

�
	r �mI	t

 by equation ���

�
Z t

�
	r �m�I	t



� rt�m
a�

�
t�ma�

t�

�
� m�I

t�

�
�mkP

t�

�
by equation ����

Let "	t
 � rt�ma�
�
t�ma�

t�

�
� m�I t

�

�
�mkP t�

�
� Then we have

�Pe � P 	�
e	�t�

Note that in the new model� the approximation comes from replacing I	t
 with �I	t

from section ���� This results in a higher order function� or an exponential one�
Figure ��� demonstrates how closely �Pe models the end points� The approximations
to tpeak and hpeak are not too shabby either
 the new model provides a tight upper
bound on tpeak� and a reasonable lower bound on hpeak� Compute the �rst derivative
of the new model to get

 �Pe � P 	�
	r �m
a�

�
�ma�t � m�It�mkPt
e	�t�

Figure ��� illustrates the same e�ect of capturing the behavior of the pathogen at
the end point � and T � by comparing the �rst derivatives�

Notice the goodness of the approximation by  �Pe at and close to the end points t � �
and t � �	���� 	compare to Figure ���
� As for the peak measures� in fact it can
be shown that both the quadratic and the exponential functions result in the same
approximation for tpeak� if fed by the same value of P � To demonstrate this� evaluate
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Figure ���� Pathogen population in the �rst two days of a hypothetical infection after

the full activation of the immune system� The dashed curve is the plot of the exponential

function� �Pe�t�� the solid curve is the graph of P �t� based on the numerical solution of

the system of equations 	�
�	�� using a fourth order Runge�Kutta method� All parameters

are as in Figure 	�	� Notice how closely �Pe�t� approximates the end points� P ��� and
P �T � 
 P ���
	���

 �Pe at tpeak from equation ���� as follows

 �Pe	tpeak
 � P 	�
	r �m
a�

�
�ma�tpeak � m�Itpeak �mkPtpeak
e

	�tpeak�

� P 	�


�
	r �m

a�

�

�mtpeak	a� � �I � kP 


�
e	�tpeak�

� P 	�


�
	r �m

a�

�

� r �ma�

�

m	a� � �I � kP 

m	a� � �I � kP 


�
e	�tpeak�

� �

This proves the claim that both functions approximate tpeak the same way� since the
equation for tpeak was derived from the quadratic model�
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Figure ���� The slope of P �t� versus the slope of �Pe�t� for the dynamics of Figure 	�	� The

dashed curve is the slope of the exponential function �Pe�t�� the solid curve is the slope of

P �t�� Notice the goodness of the approximation at and around the end points t 
 � and

t 
 ��
	�� �compare to Figure 	���a���

����� Predicting Transience from Initial Inoculum

To derive a relationship between P and P 	�
� we will combine our quadratic and
exponential models in such a way that we will be able to capture the strengths of
each model namely� close approximation of the peak measures by the quadratic model�
and close approximation of the end points by the exponential model� De�ne P new to
be the new average measure of the pathogen population resulting from combining the
quadratic and exponential models of interaction� Now� compute the second derivative
of the exponential model at tpeak� to get

!�Pe	tpeak
 � P 	�
�	�ma� � m�I �mkP new
e	�tpeak� �

	r �m
a�

�
�ma�tpeak � m�Itpeak �mkP newtpeak


�e	�tpeak��

� �mP 	�
	a� � �I � kP new
 exp

�
	r��ma�


�

���m	a� � �I � kP new


�
	����
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Figure ���� The slope of �Pq�t� versus the slope of �Pe�t� for the dynamics of Figure 	�	�

The dashed line is the slope of the quadratic function �Pq�t�� the solid curve is the slope of

the exponential function �Pe�t�� Notice that the two models coincide exactly at and around

the peak and away from the end points�

since tpeak � r��ma�
�m�a���I �kPnew�

by equation ����� and "	tpeak
 � �r��ma���

���m�a���I �kPnew�
�

On the other hand� !�Pq at tpeak is

!�Pq	tpeak
 � �mP new	a� � �I � kP new
 by equation ���� 	����


Both �Pe and �Pq model the behavior of the system at the peak reasonably well� and we
have shown that in fact both models approximate tpeak exactly the same� Figure ���
demonstrates this e�ect by comparing the slope of the quadratic function �Pq� versus
the slope of the exponential function �Pe
 the two models coincide exactly at and
around the peak� Therefore it would be reasonable to assume that equations ����
and ���� must be roughly the same at tpeak� Equating equations ���� and ����� we
get

P 	�
 � P new exp

�
� 	r��ma�


�

���m	a� � �I � kP new


�
	����


Equation ���� is indeed the key to predicting the early behavior of infection from
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Figure ���� Pathogen population in the �rst few days of a hypothetical infection after the

full activation of the immune system� The dashed parabola is the plot of the combined

method of approximation using the quadratic and the exponential functions� where �Pq�t�

is evaluated at P new� the solid plot is the graph of P �t� based on the numerical solution of

the system of equations 	�
�	�� using a fourth order Runge�Kutta method� All parameters
are as in Figure 	�	� P new � ����� tpeak � ����
 days� and hpeak � 
����

P 	�
 and the parameters of the system� By combining the quadratic and exponential
models of interaction we were able to derive P 	�
 as a function of P new� Although it
may not be easy to solve for P new analytically� given P 	�
� we can always solve for it
numerically� Notice that equation ���� de�nes an explicit relationship between P 	�

and P new� and there is no longer any dependency on T � Substituting the numerical
value of P new� obtained from equation ����� into the quadratic function �Pq from
equation ����� or equivalently into tpeak and hpeak from equations ���� and ����� we can
derive numerical estimates of the peak measures solely in terms of the initial inoculum
and parameters of the system� Figure ��� illustrates the result of the combined method
of approximation� Compare that to the dynamics of Figure ���� the hybrid method
provides a closer approximation of hpeak and a very tight lower bound on tpeak� By
employing the combined method of approximation� not only were we able to keep
the best features of each model� we were also able to estimate the peak measures
explicitly in terms of the ampli�ed initial inoculum P 	�
�

Putting it together� equation ���� can be used to solve numerically for P new�
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This in turn can be used to derive numerical estimations of tpeak and hpeak from
equations ���� and ����� Furthermore� equating the numerical value of P new from
equation ���� with the right hand side of equation ����� we can solve for T � Alter�
natively� we can solve for tpeak in terms of P new and use the derivation tpeak � T

�
�

from section ����� to evaluate T � Hence� the peak measure� as well as all interme�
diate measures can be numerically estimated based on P 	�
 and the parameters of
the system� Clearly� any information on the numerical values of tpeak and hpeak is of
great importance� They can be used to assess the duration of the critical period for
intervention� which is always � tpeak� and to decide on plausible intervention schemes
in order to interfere with the early dynamics of infection�

��� Qualitative E�ects of Initial Inoculum on Tran�

sient Measures

Before proceeding to the peak analysis� we need to clarify how a change in P 	�

impacts the average measure P new since both of the transient measures� tpeak and
hpeak� depend on this term� As established before� we assume that a change in the
ampli�ed initial inoculum is the result of a change in � only� Furthermore� an increase
in � causes P 	�
 to increase exponentially since the exponent of P 	�
 in equation ���
is always positive by condition �����

����� E�ect of Initial Inoculum on Average Pathogenicity

By equation ����� it is clear that an increase in P new causes an increase in P 	�

since both the numerator and the denominator in the exponent of equation ���� are
positive 	see conditions ���� and ����
� On the other hand� although it is not easy to
obtain an analytic solution for P new in terms of P 	�
 from equation ����� we can still
show that an increase in P 	�
 should cause an increase in P new as well� To see this�
note that if P 	�
 is increasing� it can only be associated with a change in P new since
the increase in P 	�
 is assumed to be associated with an increase in � and all other
parameters in equation ���� are assumed to be constant� Suppose for contradiction
that an increase in � causes P new to decrease� This would imply that the exponent in
equation ���� is increasing or the exponential term is decreasing� But if both terms in
the product are decreasing� then P 	�
 must be decreasing as well� which contradicts
the original assumption� Therefore� if P 	�
 is increasing� P new must be increasing as
well� implying that P 	�
 and P new are positively correlated�

����� E�ect of Initial Inoculum on tpeak

An increase in P 	�
 causes P new to increase� which in turn causes tpeak to decrease
	see equation ����
� Hence� as the ampli�ed initial inoculum takes on larger values
as � increases� the time of �crisis� will occur earlier� requiring faster intervention�
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����� E�ect of Initial Inoculum on hpeak

The e�ect of P 	�
 on hpeak is less obvious since P new appears in both the numerator
and the denominator of the second term in the equation for hpeak 	see equation ����
�
Di�erentiating hpeak with respect to P 	�
 or P new will not help� Instead� we will
infer the direction of change in hpeak by deriving an equation for hpeak in terms of the
second derivative of P 	t
 from the original equations� Evaluation of equation ��� at
tpeak produces

 I	tpeak
 � a� � �I	tpeak
 � kP 	tpeak


� a� � �
r

m
� khpeak 	����


since P 	tpeak
 � hpeak� and since

I	tpeak
 � �
 P 	tpeak


mP 	tpeak

�

rP 	tpeak


mP 	tpeak

by equation ���

�
r

m
since  P 	tpeak
 � �

Di�erentiation of equation ��� at tpeak to get an explicit relationship between  I	tpeak
�
hpeak� and !P 	tpeak
 produces

!P 	tpeak
 � r  P 	tpeak
�m
h
I	tpeak
  P 	tpeak
 �  I	tpeak
P 	tpeak


i
� �m  I	tpeak
hpeak since  P 	tpeak
 � �

� �m	a� � �
r

m
� khpeak
hpeak by equation ����

� 	�r �ma�
hpeak �mk	hpeak

�

Solving the above quadratic equation for hpeak we get

hpeak �
�

�km

�
	r��ma�
�

q
	r��ma�
� � �mk !P 	tpeak


	
	����


Clearly� hpeak � �� so we will only consider the positive solution of equation �����
Replacing !P 	tpeak
 in equation ���� with either its quadratic or its exponential ap�
proximation is the �nal step needed in order to infer the direction of change in hpeak
with respect to P 	�
� We will do both� If we replace !P 	tpeak
 with its quadratic
approximation from equation ���� we get

hpeak �
�

�km

�
	r��ma�
 �

q
	r��ma�
� � �m�kP new	a� � �I � kP new


	

Now� an increase in P 	�
 causes P new to increase� which in turn causes hpeak to
increase� Let 
 � a� � �I � kP new� Then replacing !P 	tpeak
 with its exponential

��



approximation from equation ���� gets

hpeak �
�

�km



�	r��ma�
 �

vuut	r��ma�
� � �m�kP 	�

 exp

�
	r��ma�
�

���m


��

�

�

�km

�
	r��ma�
 �

q
	r��ma�
� � �m�kP 	�



	
	����


since � �
�r��ma���

���m�
�� by conditions ���� and ���� from section ������ An increase

in P 	�
 also causes an increase in P new� which together cause inequality ���� and
hpeak to increase�

The intuition behind the argument that hpeak and P 	�
 change in the same direc�
tion is much more straightforward than the preceding analysis� Note that an increase
in P 	�
 causes tpeak� and similarly T � to decrease� On the other hand� an increase in
P 	�
 causes P new to increase� The only way to compensate for the e�ect of an increase
in P new in a shorter time period is for hpeak to increase� resulting in a �thinner� and
�taller� parabolic shape�

��� Summary

We de�ned the notion of �transient pathogenicity� to encompass the early dynam�
ics of the within�host pathogenesis of acute infectious disease� We recognized the
amplifying e�ect of the initial period of inactivity of humoral immunity� �� on the
pathogenic growth of the initial inoculum� We further demonstrated that in the ab�
sence of a fully e�ective immunity� the initial pathogenic population consisting of a
few microorganisms will grow freely and without bound until humoral immunity is in�
duced� This �ampli�ed initial inoculum�� P 	�
� is therefore the new initial pathogenic
load at the time of full activation of the immune system� Using the method of time
averaging� we developed a quadratic model and an exponential model of the transient
behavior of the pathogen after the full activation of the immune system when the
newly activated immunity is to face extensive antigenic mass� We further derived
the transient measures� tpeak 	the time from the full activation of the immune system
to the peak of infection
 and hpeak 	maximum pathogenic load of infection
� under
the quadratic model� The two models were then combined in order to express the
outcomes of early dynamics of infection in terms of P 	�
 and the parameters of the
system only� The qualitative analysis of this combined method of approximation en�
abled us to derive explicit relationships between P 	�
 and and the peak measures�
tpeak and hpeak� Therefore� we have established qualitatively that

�� As the duration of inactivity of the humoral immunity � increases� the initial
antigenic mass increases exponentially with �� Upon activation� the humoral
immunity must therefore face and combat a massive pathogenic load�

�� As the duration of inactivity of the humoral immunity � increases� tpeak de�
creases� causing the �crisis� to occur earlier� making the critical window for
intervention smaller�
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�� As the duration of inactivity of the humoral immunity � increases� hpeak in�
creases� making the intensity of �crisis� greater�

�� Putting � and � together� as the duration of inactivity of the humoral immunity
� increases� the damage to the host will be much more extensive in a shorter
time period�

Although some of the parameters of the immuno�patho dynamics may be inherent
physiological properties of the interacting components that we may not be able to
in�uence� � may very well be in�uenced by the nutrition state or the stress level of the
host� A boost to the immune system may be equivalent to reducing �
 thus reducing
the maximum pathogenic load and delaying the time of its occurrence� This has
signi�cant consequences for diagnostics and intervention� Having derived the peak
measures tpeak and hpeak explicitly in terms of P 	�
 and the parameters of the system�
we established quantitatively that

�� Given �� P 	�
� and various parameters of the immuno�patho dynamics� we can
numerically estimate the time of �crisis� tpeak� and therefore assess the duration
of the critical period for intervention beyond which any intervention scheme
may prove ine�ective�

�� Given �� P 	�
� and various parameters of the immuno�patho dynamics� we can
numerically estimate the extent of �crisis� hpeak� and therefore decide on the
domain of plausible intervention strategies needed to interfere with the dynam�
ics�

If it is indeed possible to predict the within�host early behavior of acute infections from
the initial inoculum and a few related immunological and pathological parameters�
and if there is su�cient data on average parameter values for a cohort� then we can
classify the transient dynamics of infections based on their peak measures� critical
period to intervene� and plausible intervention schemes�
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Chapter �

Transience in Population Health

��� Motivation and Background

Our interest in studying the dynamics of vulnerability in a population is doubly mo�
tivated by the subtle existence of unidenti�ed �nonlinearity� embedded in the math�
ematics of �linear� systems
 and the obscure� yet signi�cant� notion of �mortality� in
public health and demography�

On the one hand� although linear dynamic systems have been well studied and in a
sense are considered trivial to analyze� but in fact in an intuitive sense� they are neither
understood nor trivial� The mystery lies in the observation that even if the dynamics
of a multi�variable system is linear� its characteristic equation is nonlinear� This
means that the relationship between the eigenvalues and the parameters of the system
is not necessarily linear and may not be at all obvious� Although the solutions to
linear systems are relatively easy to obtain� they involve the eigenvalues and therefore
such explicit solutions do not necessarily reveal much about the underlying dynamics�
and how perturbation in a system� acting through the system parameters� a�ect each
variable and the dynamics of the system as a whole� Hence� our goal is to make
intuitive sense of the underlying formality and gain insight into the nonlinear and
obscure relationships between the parameters and di�erent outcomes of the system�

On the other hand� despite decades of studies and the relative abundance of mor�
tality data� our understanding of the dynamics of vulnerability to disease processes
and mortality has remained inadequate� A population is de�ned by its constituent
individuals who are heterogeneous in their vulnerability to disease and death� To�
day� the distribution of vulnerability is recognized and understood in terms of the
underlying genetic basis and age� Although both the genetic predisposition and age
are important causes of variation in the distribution of vulnerability� a substantial
part of such variation is due to heterogeneity in the social conditions of individu�
als� Therefore� a sound theory of population vulnerability is to take account of both
the inherent physiological and social heterogeneity in the population� If we divide a
population into di�erent vulnerability classes� then over time� people may move from
one vulnerability class to another due to aging� disease processes� health improvement
policies� acquiring knowledge or wealth
 they also die� The relationship between these
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processes namely� mortality selectivity and mobility� will determine whether people
in di�erent vulnerability classes die mostly in conditions of chronic good health or
of high risk and poor health� This is particularly important when we compare the
age�speci�c mortality rates of di�erent populations and encounter irregularities that
may defy common sense�

One of the �anomalies� of mortality data is that after about age ��� the death
rate for the White population appears to be higher than that of the Black population�
a phenomenon referred to as �mortality crossover� in demography and public health
literature� For nearly �� years the crossover phenomenon has intrigued scholars� In
more recent years� in particular since the inclusion of �Black� in the ethnic and racial
vocabulary of the Vital Statistics of the United States� the Black�White mortality
crossover has puzzled demographers and social scientists in the United States� and has
divided them into two schools of thought� Some argue that the crossover phenomenon
is not real and is the result of inaccuracies in data due to the tendency of age over�
reporting among the Black elderly� Others insist that it is real and hypothesize that it
is due to selective processes� Today� despite the relative wealth of mortality data and a
long history of debates over the existence of mortality crossovers and characterization
of the intersecting populations� the mystery remains unraveled� Therefore we ask�
When will a population� initially exposed to a greater force of mortality� have a lower

death rate�
This chapter is an attempt to educate the common sense about the hidden non�

linearity in the dynamics of linear systems by developing the mathematics of the dy�
namics of vulnerability in a population
 identify the factors in�uencing the mortality
of people residing in di�erent vulnerability classes in a population and the mortality
of the population as a whole
 to compare the mortality experiences of di�erent pairs
of populations whose mortality curves cross
 identify the underlying processes gov�
erning the existence and dynamics of mortality crossover
 and �nally interpret the
consequential outcomes of the analysis as di�erent public health intervention strate�
gies�

��� A Model of ��Vulnerability�Class

Suppose that a population cohort is distributed among two vulnerability classes V�
and V�� each associated with its own mortality rate �� and ��� Here� �vulnerability�
is de�ned with respect to disease processes and the general health of a population

thus a high vulnerability class implies higher morbidity and mortality as well� Hence�
we assume V� is more vulnerable than V�� and therefore �� � ��� We de�ne the
di�erential mortality ������ as the rate of selection which is a measure of inequality
due to physiological or social conditions� Furthermore� individuals in one class may
move to another due to disease processes� natural processes such as aging� loss of
fortune� or health�detrimental policies� in which case the �ow a��� is from V� to V�
 or
due to factors a�ecting viability such as acquiring knowledge or wealth� or through
health�improvement policies� in which case the �ow a��� is from V� to V�� We further
assume that a�� � a��
 that is� for an individual at any point in time it is more likely
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to move to the class with poor health than to the class with good health� Since there

is no birth in this model� then �t � �� we have the condition that
�X

i
�

Vi	t
 � �� with

the base case V�	�
�V�	�
 � �� Further� all parameters of the system are assumed to
be constant� The following linear system of ordinary di�erential equations captures
the dynamics of vulnerability of a population that is heterogeneous in health and
death� as outlined above and depicted in Figure ����

dV�

dt
� �V�	a�� � ��
 � a��V� 	���


dV�

dt
� a��V� � V�	a�� � ��
 	���


The system of equations ������� has one critical point 	�� �
� which is asymptotically
stable� The characteristic polynomial p	�
� of the coe�cient matrix of the above
system is�

p	�
 �

�������
��� � a�� � � a��

a�� ��� � a�� � �

�������
Expanding the determinant and collecting the terms in �� we get�

p	�
 � �� � 	a�� � �� � a�� � ��
� � 	���� � ��a�� � a����
 	���


Solving for the roots of the characteristic polynomial� we get

�� �
�

�

�
��� � a�� � a�� � �� �

q
	a�� � �� � a�� � ��


� � �a��a��

�
	���


�� �
�

�

�
��� � a�� � a�� � �� �

q
	a�� � �� � a�� � ��


� � �a��a��

�
	���


Both eigenvalues are real� since
q

	a�� � �� � a�� � ��

� � �a��a�� � �� Clearly �� �

�
 for �� � �� we must show

j��� � a�� � a�� � ��j �
q

	a�� � �� � a�� � ��

� � �a��a��

Subtract the square of the right�hand�side from the square of the left�hand�side of
the above inequality to get

	�� � a�� � a�� � ��

� � 	a�� � �� � a�� � ��


� � �a��a��

� 	�� � a��

� � 	a�� � ��


� � �	�� � a��
	a�� � ��
� 	�� � a��

� � 	a�� � ��


�

��	�� � a��
	a�� � ��
� �a��a��

� �	a�� � ��

� � �	���� � ��a�� � ��a��


� �

��



Figure ���� A population cohort consisting of two vulnerability classes� People in one

class may move to another according to the transition rates a�� and a��� or they may die

according to the class�speci�c mortality rates �� and ���

Hence �� � � and the system is asymptotically stable� Throughout this chapter we
will assume that �� is the dominant eigenvalue since j��j � j��j by equations ��� and
����

����� From Frequency to Ratio� A Transformation

In the absence of birth or migration in the model� the population in each class� and
therefore the population as a whole� will eventually become extinct� In principle�
the vulnerability�ratio V�

V�
reaches a steady state value before either V� or V� reach

their �nal null values� We will prove the existence of a steady state solution for the
vulnerability�ratio in Theorem �� An important implication of the theorem is that
at time t� when V�

V�
is in steady state� the total population V�	t
 � V�	t
� is still in

transience� Ideally� for the steady state solution to be worthy of analysis� we would
like� 	�
 a �reasonable� proportion of the population to be alive when V�

V�
is in or

near the steady state
 	�
 the steady state solution of the vulnerability�ratio can be
utilized to infer information about the transient state of the population mortality and
the proportion dying in each vulnerability class� In later sections� we will demonstrate
how the steady state solutions� to be derived in this section� can be used to make
inferences about the transient state of population mortality�

Hence� we transform our two dimensional linear system describing the rate of
change in the frequency of each vulnerability class� into one quadratic equation de�
scribing the rate of change in the ratio of the frequency of the two vulnerability
classes� First� multiply equation ��� by V� and equation ��� by V� to get

dV�

dt
V� � �V�V�	a�� � ��
 � a��V�

� 	���


dV�

dt
V� � a��V�

� � V�V�	a�� � ��
 	���


Subtract equation ��� from equation ��� and divide both sides of the new equation
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by V�
� to get a single� quadratic� di�erential equation as follows

dV�
dt
V� � dV�

dt
V�

V�
�

def
�

d

dt

�
V�

V�

�

� �a��
�
V�

V�

��
� 	a�� � �� � a�� � ��


V�

V�
� a�� 	���


The resulting equation describes the rate of change in the population vulnerability�
ratio� In the following theorem� we will prove the existence of the steady state solution
for the population vulnerability�ratio�

Theorem � The population vulnerability�ratio
V�

V�
� corresponding to the system of

ordinary di�erential equations �������� is asymptotically stable�

Proof� Let C�� C�� C�� C� be constants� Then
V�

V�
can be written in its general form as

follows

V�

V�
�

C�e
��t � C�e

��t

C�e��t � C�e��t

�
C� � C�e

�������t

C� � C�e�������t

�
C�

C� � C�e�������t
�

C�

C�e�������t � C�

� C�

C�
as t��� and if �� is the dominant eigenvalue

� C�

C�
as t��� and if �� is the dominant eigenvalue

which proves the existence of a steady state solution�

Therefore� by Theorem �� and since by equation ��� the result of the transfor�
mation is a polynomial of degree two� the approach to the steady state must be
monotone� Note That The validity of Theorem � stands still even if the system is
unidirectional� Without loss of generality� suppose that a�� � �� Then we have

V�

V�
�

C�e
��t

C�e��t � C�e��t

�
C�

C� � C�e�������t

� C�

C�
as t��� and if �� is the dominant eigenvalue

� � as t��� and if �� is the dominant eigenvalue

which again proves the existence of a steady state solution� However� if there is no
transitional �ow between the vulnerability classes� then there cannot be any steady
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state solution� In the absence of any inter�class �ow� the eigenvalues are simply the
class�speci�c mortality rates �� and ��
 and since there is no �ow to partially regulate
the population� the ratio will not be stable� To see this� note that

V�

V�
�

C�e
��t

C�e��t

�
C�e

�������t

C�

� � as t��� and if �� is the dominant eigenvalue

� � as t��� and if �� is the dominant eigenvalue

We will explore these special cases in detail in section ������

����� Steady State Solutions

At the steady state� when
d	V�

V�



dt
� �� we can solve equation ��� for V�

V�
to get

�
V�

V�

��
�

a�� � �� � a�� � �� �
q

	a�� � �� � a�� � ��

� � �a��a��

�a��

�
�

�

�
a��

a��
�

��

a��
� �� ��

a��
�

s
	
a��

a��
�

��

a��
� �� ��

a��


�

� �
a��

a��

�
	���


where
�
V�
V�

�
�

represent the steady state solution of the population vulnerability�ratio
V�
V�

� Let � represent the total population mortality rate� Then by de�nition�

� �
��V� � ��V�

V� � V�

�
��

V�
V�

� ��
V�
V�

� �
	����


As equation ���� reveals� since �� and �� are constant� � must also have a steady
state solution� Furthermore� � should reach its steady state value at the same time
when V�

V�
does� However� ��s dynamics is opposite that of V�

V�
� To see this� di�erentiate

equation ���� with respect to V�
V�

to get

��

� V�
V�

�
��	� � V�

V�

� ��

V�
V�
� ��

	� � V�
V�


�

�
�� � ��

	� � V�
V�


�

� � since �� � �� by de�nition 	����
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This implies a negative correlation between � and V�
V�

� which in turn implies that � also
monotonically approaches its steady state� In Theorems � and �� we will further es�
tablish that the vulnerability�ratio V�

V�
is indeed a monotonically �increasing� process�

and therefore the population mortality � must be a monotonically �decreasing� pro�
cess� Let �� represent the steady state population mortality� Then by equation ����
we have

�� �
��
�
V�
V�

�
�

� ���
V�
V�

�
�

� �
	����


Similarly� we de�ne ��� and ��� as the steady state proportion of people dying in V�
and V� respectively� Then by de�nition we have

��� �
��
�
V�
V�

�
�

�
V�
V�

�
�

� �
	����


and

��� �
���

V�
V�

�
�

� �
	����


Our interest in the investigation of the dynamics of vulnerability is twofold� On the
one hand we want to reduce the total population mortality
 on the other hand� we
want a larger proportion of deaths in the population to come from the class with
good health� This means that people will live relatively healthy up to the time of
death� For the society as a whole� this results in lowering the terminal investment in
health� Hence� we need to identify the underlying processes that govern the dynamics
of mortality
 this will be done in the next section� But before we proceed to the next
section� �rst we need to establish that mortality� as produced by the vulnerability
model� is a monotonically decreasing process to its steady state ��� To prove this
property� we require another important concept in the vocabulary of the dynamics of
vulnerability namely� �the time to steady state�� Let tp denote the time it takes for
V�
V�

to reach 	p	���
� of its steady state value� Then we have the following theorems�

Theorem � The population vulnerability�ratio
V�

V�
is a monotonically increasing pro�

cess�

Proof� Recall the de�nition of tp as the time it takes for V�
V�

to reach 	p	 ���
� of its

steady state value C�

C�
� Rewrite V�

V�
in equation ��� in terms of its steady state value�

i�e� as pC�

C�

� to get

d

dt

�
V�

V�

�
�

C�

C�

dp

dt
� � a��

�
p
C�

C�

��
� 	a�� � �� � a�� � ��


�
p
C�

C�

�
� a��

��



which implies

dp

dt
� �a��C�

C�
p� � 	a�� � �� � a�� � ��
p � a��

C�

C�

� �a��C�

C�

�
p� � C�

C�

"

a��
p� a��

a��

�
C�

C�

���

� a��
C�

C�

	p� a
	b� p


where " � �� � a�� � a�� � ��
 and a and b are the roots of the new polynomial� i�e
when dp

dt
� �� Since p can attain a maximum value of �� we already know that one of

the roots of the polynomial must be �� Let # �
q

	�� � a�� � a�� � ��

� � �a��a�� �p

"� � �a��a��
 then solve explicitly for a and b to get

a �
"�#

�a��
C�

C�

�
C�

C�

"�#

�a��

�
�

�a��
" � #

��
"�#

�a��

�
by equation ���

�
"�#

" � #
� � since # � j"j 	����


and

b �
" � #

�a��
C�

C�

�
C�

C�

" � #

�a��

�
�

�a��
" � #

��
" � #

�a��

�
by equation ���

�
" � #

" � #
� �

Next using linear fractional transformation� we linearize the di�erential equation by
introducing a new variable u as follows

u �
p� a

b� p
�

p� a

�� p
since b � � 	����


Solve for p in terms of u to get

p �
a � bu

� � u
�

a � u

� � u
since b � �

��



Di�erentiate the new variable u with respect to t to get

du

dt
�

du

dp

dp

dt
�

	�� p
 � 	p� a


	�� p
�
a��

C�

C�
	p� a
	�� p


�

�
p� a

�� p

�
a��

C�

C�
	�� a


�

�
p� a

�� p

�
# since �� a � b� a � C�

C�

��
�a��

� #u

Solve the above ODE to get

u	t
 � u�e
�t 	����


where u� is the initial value of u at time t � �� Replace t with tp in equation ����
and solve the equation for tp to get

tp �
ln
�
u�tp�
u�

�
#

	����


where u	tp
 is as in equation ����� and u� � p��a

b�p�
� p��a

��p�
since b � �� For large values

of p� u	tp
 � ��a
��p

� Hence� u	tp
 can be approximated as follows

u	tp
 � �� a

�� p

�
�

�� p

�
�� "�#

" � #

�
by equation ����

�
�

�� p

�
�#

" � #

�
	����


To rewrite u� in terms of " and #� let V� � V����
V����

� Note that p�
�
C�

C�

�
� V�� which

implies that p� � V�
�
C�

C�

�
� �V�a��

	��
	see equation ���
� Hence we have

u� �
p� � a

�� p�

�
�V�a��
	��

� 	��
	��

�� �V�a��
	��

�
#� " � �V�a��
# � "� �V�a��

	����


For tp to have a positive de�nite value� ln
�
u�tp�
u�

�
� �� This implies that both u	tp
 � �

and u� � �� Clearly� u	tp
 � � since � � p � � and a � �� What about u�� The
numerator in equation ���� is always positive since # � j"j� But u� has a singularity
at # � "� �V�a�� � �� Clearly the denominator must also always be positive or else

��



u� � �� For the denominator to be positive we must have

# � "� �V�a�� � �

which implies

# � "

�a��
� V�

or equivalently

�
V�

V�

��
� V� by equation ��� 	����


This means that for tp � �� # � "� �V�a�� � �� which in turn implies that the steady
state vulnerability�ratio must be larger than the initial vulnerability�ratio� Theorem �
established that the vulnerability�ratio V�

V�
� is a monotone process� Inequality ����

further establishes that it must be monotonically �increasing� since its �nal value is
larger than its initial value�

Theorem � The population mortality �� as de�ned by equation ���	� is a monoton�

ically decreasing process�

Proof� Immediate by Theorem � and inequality �����

The following theorem is of particular importance to the upcoming analysis�

Theorem � �� � ��d� where �� is the steady state population mortality and �d is

the dominant eigenvalue of the system of equations ��������

Proof� First we show ��� is an eigenvalue of the system� Then we argue that it must
be the dominant one� If ��� is indeed an eigenvalue� then it must have the same
qualitative properties of the eigenvalues derived from the characteristic polynomial
in equation ���� Let�s examine this� Let � be such eigenvalue� Then we have�

�� �
��
�
V�
V�

�
�

� ���
V�
V�

�
�

� �
by equation ����

� ��

or equivalently

��

�
V�

V�

��
� �� � ��

��
V�

V�

��
� �

�


 � � �� �
�
V�

V�

��
	�� � ��


��



which implies

�
V�

V�

��
�

� � ��

�� � ��
	����


Replace the new steady�state vulnerability�ratio from equation ���� into equation ���

when
d	V�

V�



dt
� �� we get

�a��
�

� � ��

�� � ��

��
� 	a�� � �� � a�� � ��


�
� � ��

�� � ��

�
� a�� � �

Expand the squared term and set the numerator to zero to get

�a��	�� � ���� � ��
�
� 	a�� � �� � a�� � ��
	�

� � ���� � ��� � ���


�a��	�
� � ���� � ��

�
 � �

Collect the terms in � as follows

��	�a�� � a�� � �� � a�� � �� � a��


��	����a�� � ��a�� � ���� � ��a�� � ��
� � ��a�� � ��

� � ��a�� � ���� � ���a��


�	�a����� � ����a�� � ����
� � ����a�� � ��

��� � a����
�
 � �

Simplify further to get

��	�� � ��
 � ��a��	�� � ��
 � a��	�� � ��
 � 	�� � ��
	�� � ��
�

�	����	�� � ��
 � a����	�� � ��
 � a����	�� � ��

 � �

Factor out the common terms and simplify further to �nally get

�� � �	a�� � a�� � �� � ��
 � 	���� � a���� � a����
 � � 	����


Note that the new polynomial in �� is the same as the characteristic polynomial of
the coe�cient matrix of the system of equations ������� 	see equation ���
� Therefore�
it must be that �� � ��i� i � �� �� But since at the steady state� as we have shown
in Theorem �� only the e�ect of the dominant eigenvalue remains� it must be that
��� is the dominant eigenvalue�

��



��� Qualitative E�ects of Parameter Change on

Steady State Solutions

����� Special Cases of Interest

No Transition

Suppose there is no transition �ow between the vulnerability classes� In this case�
since each class Vi has its own decay rate �i� i � �� �� and is independent of the other
class� then the eigenvalues of the system will simply correspond to the decay rates
�� and ��� If �� � ��� then simple selection would shift the population toward the
low vulnerable class as it declines� Hence� the mortality for the whole population
will approach that of V�� Furthermore� if there is no transition �ow between the
vulnerability classes� then the vulnerability�ratio does not have a steady state� To
see this� write V� and V� in their general forms with �� � ��� and �� � ���� That
is� let V� � C�e

���t and V� � C�e
���t� where C�� C� are constants� Then

V�

V�
�

C�e
���t

C�e���t

�
C�e

�������t

C�

� � as t��
 if �� � ��

This also implies that ��� � �� as t � �
 ��� � ���
V�
V�

�
�

��
� ��� as t � �
 and

therefore �� � ��� � ��� � �� as t � �� as we suspected� Figure ��� illustrates an
example of the dynamics of mortality in the absence of �ow�

Unidirectional Transition

Now suppose that the system in unidirectional in transition between the vulnerability
classes� Without loss of generality suppose that a�� � �� Due to the e�ect of aging�
which is incorporated in the �ow to the high�vulnerable class� as well as the reality
of the nature of societal mobility� it would only be sensible to assume that a�� �� ��
Write V� and V� in their general forms� i�e�� V� � C�e

��t and V� � C�e
��t � C�e

��t�
where C�� C�� C� are constants� Then

V�

V�
�

C�e
��t

C�e��t � C�e��t

�
C�

C� � C�e�������t

� C�

C�

as t��� and if �� is the dominant eigenvalue

� � as t��� and if �� is the dominant eigenvalue

��



0.03

0.04

0.05

0.06

0.07

Death Rate

0 20 40 60 80 100 120

Time (years)

Figure ���� Dynamics of mortality when there is no transition �ow between the vulnera�

bility classes and the process is driven only by the force of selection �� � ��� Parameter

values are �� 
 ������� 
 ���� a�� 
 a�� 
 �� The initial conditions are� V���� 
 ���� and

V���� 
 ���� Note that total mortality approaches the mortality of the low�vulnerable class

��� as time progresses�

Solve for the eigenvalues to get� �� � ��� � a�� and �� � ���� Then� for the
steady state solution to exit� we must have �� � �� � �� which is equivalent to the
condition that �� � �� � a�� � Now let�s derive the steady state solutions of the
vulnerability�ratio� total mortality� and the proportion dying in each class�

�
V�

V�

��
�

�

a��
	�� � a�� � ��
 	����


��� �
��	�� � �� � a��


�� � ��

� ��

�
�� a��

�� � ��

�
	����


��



��� �
a����

�� � ��
	����


�� � ��� � ���

�
��	�� � �� � a��
 � a����

�� � ��

�
��	�� � ��
 � a��	�� � ��


�� � ��
� �� � a�� 	����


Figure ��� demonstrates the dynamics of population mortality under unidirectional
transition from V� to V�� Notice that the dynamics is the opposite of that of Figure ����
where mortality is a monotonically decreasing process� In the absence of any �ow from
V� to V� to partially regulate the population� mortality will increase monotonically
to a steady state� We are now ready to investigate the e�ect of change in the system
parameters ��� ��� and a��� on the steady state solutions�

E	ect of Change in ��� ��
 and a�� on Steady State Solutions

To study the e�ect of change� we �rst di�erentiate the steady state solutions ���������������
and ���� with respect to all three parameters ��� ��� a��� as follows

�

���

�
V�

V�

��
�

��

a��
� �

�

���

�
V�

V�

��
�

�

a��
� �

�

�a��

�
V�

V�

��
�

�� � ��

	a��

�

� � since �� � ��

����
���

�
	�� � �� � a�� � ��
	�� � ��
 � ��	�� � �� � a��


	�� � ��

�

�
	�� � �� � a��
	�� � �� � ��
� ��	�� � ��


	�� � ��

�

�
��� � ����� � ��� � a����

	�� � ��

�

�
	�� � ��


� � a����

	�� � ��

�

��
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Figure ���� Dynamics of mortality when the transition �ow is unidirectional� The process

is driven by the force of selection �� � ��� partially o�set by mobility from V� to V��

Parameter values are �� 
 ���	��� 
 ����� a�� 
 �� and a�� 
 ����� The initial conditions

are� V���� 
 ���� and V���� 
 ����

� � if 	�� � ��

� � a����

� � otherwise 	����


This dual e�ect of change in �� can be better understood simply by analyzing the
e�ect of each term in the product in the right hand side of equation ����� The �rst
term is simply ��� which therefore implies that ��� increases with the death rate in V��
The second term is the fraction of the population in V�� which decreases with �� and
in turn will cause the proportion dying in V�� i�e� ���� to decrease� These opposing
processes� i�e� the mortality and vitality of V�� result in an intermediate peak� which
can be observed in Figure ���	a
�

����
���

�
�� � ��	�� � �� � a��


	�� � ��

�

�
��	�� �� � �� � a��


	�� � ��

�

��
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Figure ���� E�ect of change in �� on the unidirectional steady state mortality �a� on ���
�b� on ��� �c� on ��� Parameter values are �� 
 ��	� a�� 
 ����� and � � �� � �����
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Figure ���� E�ect of change in �� on the unidirectional steady state mortality� �a� on ���
�b� on ��� �c� on ��� Parameter values are �� 
 ����� a�� 
 ����
� and ���� � �� � ��

� � since � � ��� ��� a�� � � and j�� � �� � a��j � �

Here� an increase in �� further increases the rate of selection against V�� killing o�
more people as they arrive in V� from V�� This reduces the fraction alive in V�� thereby
decreasing the ratio V�

V�
� which in turn causes ��� � ��

��
V�
V�

to increase� This e�ect can

be seen in Figure ���	a
�

����
�a��

�
���

�� � ��
� �

��
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Figure ���� E�ect of change in a�� on the unidirectional steady state mortality� �a� on ���
�b� on ��� �c� on ��� Parameter values are �� 
 ���	��� 
 ���� and ���� � a�� � ��

An increase in the out��ow of V� causes more people to move to V� to die� This
reduces the fraction residing in V�� which presumably opens more room in V� and
increases the vitality of V� due to the availability of resources� which in turn causes
��� to decrease monotonically with a��� This e�ect can be seen in Figure ���	a
�

����
���

�
a����

	�� � ��

�

� �

An increase in �� decreases the fraction of people alive in V�� thereby decreasing
the ratio V�

V�
� which in turn causes ��� � ��

��
V�
V�

to increase� This e�ect can be seen in

Figure ���	b
�

����
���

�
a��	�� � ��
� ��a��

	�� � ��

�

�
���a��

	�� � ��

�

� �

An increase in �� further increases the rate of selection against V�
 thus decreases
the fraction alive in V�� Therefore the proportion dying in V�� i�e� ���� decrease
monotonically with ��� This e�ect can be seen in Figure ���	b
�

����
�a��

�
��

�� � ��
� �

��



Increase of �ow to V� exposes the new residents to a greater force of mortality ���
which in turn causes ��� to increase� Figure ���	b
 is illustrative of this e�ects�

���

���
� �

This is the result of combined e�ects of �� on ��� and ���� Figure ���	c
 illustrates
this e�ect�

���

���
� �

This is the result of the opposing e�ects of �� on ��� and ���� Figure ���	c
 illustrates
this e�ect�

���

�a��
� �

Increased �ow to V� decreases the frequency of V�� but it also decreases that of
V� since more people will arrive in V� to be exposed to a greater force of mortality
��� The contribution to the total mortality is therefore positive since an increasingly
greater proportion of the population is exposed to a higher death rate� This e�ect
can be seen in Figure ���	c
�

Consequences for Intervention� Putting It All Together

Assuming that the condition for the existence of the steady state solution in a system
with unidirectional �ow is satis�ed� i�e� �� � �� � a�� � �� for ��� to change in
the direction of ��� we further require the condition that 	�� � ��


� � a���� 	see
inequality ����
� This means that if �� is decreasing� and as long as � � 	�����


� �

a����� �
�

� will increase� while ��� and �� decrease� Although� this e�ect produces the
desired outcomes� i�e� lowers the general mortality
 lowers the proportion dying in the
class with poor health
 and increases the proportion who die in the class with good
health� it can be misleading in terms of its implication for intervention� This would
imply that in order to achieve the desired objectives� �� must be further reduced$ On
the other hand� increasing �� also produces a similar e�ect� �� does not change as we
increase ��
 �

�

� decreases
 and ��� increases� This would imply that in order to achieve
the desired e�ect� �� must be further increased$

Whether the desired e�ect is achieved by way of a reduction in �� or an increase
in ��� the rate of selection �� � ��� will be further increased as an immediate result�
This as we know� is which is a measure of inequality either due to physiological or
social conditions� Hence� a reduction in the total mortality of a population cannot
necessarily be interpreted as improvement in the state of health of the population�
It could be due to either a rise in the mortality of the least healthy� or a fall in the
mortality of those with good health� and overall due to a stronger selection�

The same e�ect is produced by way of a reduction in the �ow rate a��� Put in terms
of public health intervention� in the absence of transition �ow from the least healthy

��



class to the one with good health� further reduction in a�� would result in a �rigid�
population� divided in health and death� resembling the dynamics of a population
driven by simple selection without mobility�

����� General Case

In this section� we investigate the e�ect of change in the system parameters ��� ��� a���

and a��� on the steady state solutions�
�
V�
V�

�
�

� ��� ���� and ���� As indicated in sec�
tion ������ we have two objectives of interest� lowering the death rate for the popula�
tion
 and increasing the proportion dying in the class with good health� Therefore� we
need to capture those events that cause �� and ��� to decrease� while at the same time
cause ��� to increase or stay steady� Hence we address two fundamental questions� 	�

�What type of processes cause �� and ��� to behave di�erently��� and 	�
 �What are

the consequences of such e�ects for intervention��

E	ect of Change in ��

A change in �� causes
�
V�
V�

�
�

to change in the opposite direction� To see this e�ect�
we di�erentiate equation ��� with respect to �� to get

�

���

�
V�

V�

��
�

��

�a��

�
�� �

�	a�� � �� � a�� � ��


�
q

	a�� � �� � a�� � ��

� � �a��a��

�
A

� � since
���� a������a�����p

�a������a������
���a��a��

���� � �

This in turn causes ��� to change in the direction of �� since
�
V�
V�

�
�

appears in the

denominator of ��� 	see equation ����
� Figure ���	b
 illustrates this e�ect�
The e�ect on �� can be realized by di�erentiating ��� with respect to �� since

by Theorem � we know �� is the magnitude of the dominant eigenvalue� Therefore
we have

���

���
�

�	���

���

�
�

���

�
�

�

�
�� � a�� � a�� � �� �

q
	a�� � �� � a�� � ��


� � �a��a��

��

�
�

�

�
�� �

�	a�� � �� � a�� � ��


�
q

	a�� � �� � a�� � ��

� � �a��a��

�
A

� � since
���� a������a�����p

�a������a������
���a��a��

���� � �

which implies that �� changes in the direction of ��� Figure ���	c
 demonstrates the
dynamics of �� with respect to ��� The e�ect on ��� is less obvious since both the

numerator and the denominator of equations ���� and ���� contain the ratio
�
V�
V�

�
�

�

Let
�
V�
V�

�
�

� X� Note that �X
���

� �X
�

� where # �
q

	a�� � �� � a�� � ��

� � �a��a���
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Figure ���� E�ect of change in the value of �� on steady state solutions� �a� on ��� �b� on

��� �c� on ��� Parameter values are �� 
 ���� a�� 
 ����� a�� 
 ����
� and � � �� � ���

Then di�erentiating ��� with respect to �� we get

����
���

�
	X � ��  X
	� � X
� ��X  X

	� � X
�

�
X � X� � ��  X

	� � X
�

�
X � X� � ��X

�

	� � X
�

�
X	� � X � ��

�



	� � X
�

� � if � � X � ��
�

� � otherwise 	����


Note that when � �X � ��
�

� we have �� � ��� which is in contrast with the original
assumption that �� � ��� Hence� we can exclude this situation from the analysis and
conclude that ��� always increases with ��� Figure ���	a
 illustrates this e�ect
 notice
that ��� increases to a peak at �� � ��� after which it declines�

E	ect of Change in ���
V�
V�

�
�

changes in the direction of ��� To see this� di�erentiate equation ��� with
respect to �� to get
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V�
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which implies that �� also changes in the direction of ��� Figure ���	c
 demonstrates
the dynamics of �� with respect to ��� The e�ect on ��� is less obvious since both
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This dual e�ect of change in �� on the proportion dying in V� is due to two opposing
processes in the dynamics� On the one hand� an increase in �� results in the death
of more people as they arrive from V�
 this causes the proportion dying in V� to
increase� On the other hand� as �� takes on larger values� the strong selection against
V� causes the fraction alive in V� to decrease
 this causes the proportion dying in V�
to decrease� These opposing processes� i�e� the mortality and vitality of V�� result in
an intermediate peak� which can be observed in Figure ���	b
�

E	ect of Change in a�� and a��

If ��� �� are �xed and changes in the system are the result of change in the �ow

rates� then the relationship between the direction of change in
�
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�
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and those of the
steady state mortality can be uniquely de�ned� In other words� using the following
corollaries� we can infer the direction of change in ���� �
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Corollary � If ��� �� are �xed and changes in the system are only due to changes
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Proof� Immediate from equation �����

Equipped with these results� we are now ready to investigate the e�ect of change in

the �ow rates on the steady state solutions� A change in a�� changes
�
V�
V�
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in the
same direction� To see this e�ect� we di�erentiate equation ��� with respect to a�� as
follows
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Thus by Corollaries ���� and �� a change in the �ow rate a�� causes ��� to change in
the same direction� while ��� and �� will change in the opposite direction� Figure ���
demonstrates these e�ects�
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Hence� by Corollaries ���� and �� a change in the �ow rate a�� causes ��� to change in
the opposite direction� while ��� and �� will change in the direction of a��� Figure ����
demonstrate these e�ects� Notice the symmetry in the dynamics of Figure ��� and
that of Figure �����
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Consequences for Intervention� Putting It All Together

A decrease in �� causes all three steady state mortality outcomes ���� �
�

�� and �� to
decline� Although� this e�ect produces two of the three desired outcomes� i�e� lowers
the general mortality ��� and lowers the proportion dying in the class with poor health
���� yet it can be misleading in terms of its implication for intervention� This would
imply that in order to achieve the desired objectives� �� must be further reduced$
Therefore a reduction in the population mortality and the mortality of those with
poor health� is not necessarily conclusive of improvement in health
 it may very well
be due to further improvement in the health of those already having good health� On
the other hand� as �� decreases below a threshold� i�e� as long as � � X � ��

X
�

	see
inequality ����
� all three outcomes ��� ���� and ��� decrease� Although the proportion
dying in the class with good health also declines� between a decrease in �� and a
decrease in ��� the latter is more sensible in terms of public health intervention
and produces a more desirable outcome� it lowers the general mortality �� and the
proportion dying the class with poor health ���� at a much faster rate� A reduction
in �� can be interpreted as medical interventions such as improved emergency room
care or increased ambulance services for the poor and elderly�

It is only through the changes in the �ow rates a�� and a�� that all three outcomes
of interest can be achieved in a sensible manner for intervention� In other words� an
increase in a�� or a decrease in a��� generates opposite dynamics for �� and ���� That
is� while the general mortality ��� and the proportion dying in the class with poor
health decline� at the same time the proportion dying in the class with good health
rises� This means that people will live generally healthy until the time of death�

What is the domain of di�erent intervention strategies pertaining to such changes
in the �ow rates� The answer may vary with the age group of the population under
study� For instance� if there is a push to move people from the high�vulnerable class
to the low� through social programs or educational e�orts or health improvement
policies such as cleaning up the minority neighborhoods or however an incremental
change in a�� 	or a decremental change in a��
 may come about� the bottom line is
that it will change the dynamics of vulnerability as we live it today�

��� Comparing Populations	 Mortality Crossover

One of the �anomalies� of mortality data is that after about age ��� the death rate
for the White population appears to be higher than that of the Black population� a
phenomenon referred to as �mortality crossover� in demography and public health
literature� Figure ���� demonstrates the crossover phenomenon for the all�cause Black
and White mortality� for the male and female populations of the United States in
����� The same phenomenon of gradually converging and intersecting the mortality
curves has been observed with respect to disease processes� Figure ���� and Figure ��
�� illustrate the crossover phenomenon for the Black and White mortality due to
diseases of heart� for the respective male and female populations of the United States
during the period ���������� Note that the age�at�crossover is slightly higher for

��
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Figure ����� Age�speci�c all�cause death rates for the Black and White populations of the

United States� �a� Male� �b� Female� Source� Vital Statistics of the United States� �����

the female population than the male population� for both all�cause and cause�speci�c
mortality� Further the cause�speci�c age�at�crossover is slightly lower than the all�
cause age�at�crossover for both the male and female populations� But this is a rather
sensible outcome since the all�cause mortality is the weighted average of all cause�
speci�c mortality�

For nearly �� years� the crossover phenomenon has intrigued scholars� and has di�
vided them into two schools of thought� Some argue that the crossover phenomenon
is not real and is the result of inaccuracies in data due to age over�reporting at older
ages� Others insist that it is real and hypothesize that it is due to selective processes�
In the early �����s� Raymond Pearl� when comparing the mortality experiences of dif�
ferent populations� noticed the phenomenon for the �rst time� At �rst� he attributed
it to erroneous data and found it inconsistent with common sense� Why should a
population with lower life expectancy which is exposed to a harsher environment and
greater force of mortality� exhibit better survival in the long run 	relative to the life
span
� However� in ����� as he was developing his theory of lifetime chances of death
����� he rediscovered the phenomenon and found it entirely consistent with the process
of mortality selectivity�

Since Pearl� there has been substantial debate over the existence of the phe�
nomenon and its meaning� Sam Preston and colleagues have argued extensively
against its realness ��� �� �� ���� They have demonstrated by matching the death
certi�cates of persons �� years and older to records of the same individuals in U�S�
censuses that there are serious errors and inconsistencies in the mortality data� al�
though they were not been able to eliminate the Black�White mortality crossover
 the
age�at�crossover merely increased to an older age as data was corrected� On the other
hand� Nam et al� ���� ��� have examined the existence of crossovers for a large number
of paired populations at di�erent points in time and reported that about one�third of
all possible pairs of age�speci�c curves exhibit the crossover phenomenon� Vaupel et
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Figure ����� Age�speci�c death rate for diseases of heart� Black male versus White male�

�������� Source� Vital Statistics of the United States� ��������

al� ����� and Manton and Stellard ��� ��� ���� have further elaborated on the selectivity
hypothesis using a selection model of frailty� Nam ���� provides an overview of the
history of the debate over the crossover phenomenon�

More recently� a group of scientists at the North Carolina site of the Established
Populations for Epidemiologic Studies of the Elderly 	EPESE
� founded by the Na�
tional Institute on Aging� examined the phenomenon through a prospective cohort
study ���� They devised a cohort study of ���� men and women� consisting of ����
Whites and ���� Blacks� �� years and older� living in North Carolina� They were
interviewed in ���� and were followed up until ����� All�cause and cardiovascular
disease mortality rates were calculated� with adjustment made for sociodemographic
and coronary heart disease 	CHD
 risk factors� They recorded the age and date of
birth for Black and White participants in the same manner up to � years before
death� so that their ages were more likely to be accurate than ages on death certi��
cates that would be normally reported by relatives� They further hypothesized that if
age over�reporting among Blacks is to explain the appearance of mortality crossover�
then the mortality crossover must be observed across all causes of death� However�
in their study the mortality crossover was only observed for CHD and not for any
other diseases the participants died from� Therefore they concluded that the mortal�
ity crossover is indeed a real phenomenon between the Black and White populations
of North Carolina� and they attributed it to selective survival of the healthiest oldest
Blacks or other biomedical factors a�ecting longevity after age ���

Today� despite the relative wealth of mortality data and the long history of debates

��
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Figure ����� Age�speci�c death rate for diseases of heart� Black female versus White female�

�������� Source� Vital Statistics of the United States� ��������

over the existence of mortality crossovers and characterization of the intersecting pop�
ulations� our understanding of the crossover phenomenon remains inadequate� This
chapter is an attempt to explain the phenomenon in light of our vulnerability model�
driven by the processes of selection and mobility� The model was developed in sec�
tion ���� Here� we ask� When will a population� initially exposed to greater force of

mortality� have a lower death rate� To shed light on this matter� we �rst argue that
the crossover phenomenon is indeed a dynamic one and propose a method for trans�
forming data from the �age�domain� to the �time�domain�� This step is necessary
in order for our model to mimic the transient dynamics of mortality experience of a
population in a realistic manner� We will then identify the conditions under which
the mortality curves of two populations cross as well as identifying the processes that
govern the dynamics of the mortality crossover� Finally� we extend the results to
other populations�

����� Dynamics of Crossover

Is the mortality crossover between the Black and White populations a dynamic phe�
nomenon� Or� has the age�at�crossover stayed relatively the same over time� In fact�
it turns out that the age�at�crossover for the Black and White populations has been
a time varying phenomenon� Prior to ����� the national vital registration system
divided the population of the United States into �White� and �Others�� and there�
fore we are left with no clue for investigating the existence of crossover phenomenon

��



before ����� In ����� �Black� was recognized as a distinct race or color among the
�non�White� population� Starting in ����� other racial and ethnic groups were added
into the vital statistics vocabulary� Today� these groups include �American Indian or
Alaskan Native�� �Asian or Paci�c Islander�� �Hispanic�� and �White� non�Hispanic��
Despite the lack of racially distinct and reliable mortality data prior to ������ looking
at the dynamics of the age�at�crossover during the seemingly short period of �����
����� can still be enlightening� Figure ���� demonstrates the crossover phenomenon
between the Black and White male populations in the United States� for the period
���������� In ����� the age�at�crossover was at the brink of entering the age group
�����
 after ����� the age�at�crossover moved up into the upper half of the age group
�����
 in ���� it is on the brink of entering into the age group ���� One could deduce
from all this that prior to ����� the�age�at�crossover must have been in the younger
age groups� although we cannot say with certainty what the initial age�at�crossover
might have been� The only evidence toward the validity of this claim would be the
comparison of the mortality data from the years ���� and ����� In those years the
vital registration system included records of deaths for non�residents of the United
States� But if on average� the e�ect of such inclusion is the same for both the Black
and White populations� then studying these records can still help put matters in per�
spective� Figure ���� demonstrates the dynamics of mortality crossover for the years
���� and ����� Compare them to the dynamics of Figure ����� In ���� and �����
the age�at�crossover is well within the age group ������ whereas starting in ���� it is
at the brink of entering the next age group ������

If the mortality crossover is indeed a dynamic phenomenon� what are the under�
lying processes that govern its dynamics� To identify and analyze the e�ect of such
processes using our model of vulnerability� we need to link the outcomes of our model
and the implications derived from mortality data� Our abstract model of transition
among di�erent vulnerability classes models the mortality experience of a population
cohort over time and does not take account of the e�ect of aging explicitly� In sec�
tion ����� we established that mortality� as produced by our vulnerability model� is
a monotonically decreasing process� as should be the mortality experience of a non�
aging cohort over time� For our abstract model to simulate the transient behavior
of mortality at the crossover� �rst we need to make a transformation from mortality
data in the �age�domain� to mortality data in the �time�domain�� In other words�
given a set of age�speci�c mortality data at di�erent points in time� as in Figure �����
we will transform them to a set of time�dependent mortality data for di�erent age
groups� That is� we still work with the same data� only we change our perspective of
it�

����� From 	age
domain� to 	time
domain�

Let A� represent the age�at�crossover� and Y� be the year�at�crossover� Then the
following transformation is necessary to map the mortality data from the age�domain

�For the period ��������� the vital registration system included deaths of non�residents of the

United States�

��
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Figure ����� Age�speci�c all�cause death rates� Black male versus White male� ��������

Source� Vital Statistics of the United States� ��������
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Figure ����� Age�speci�c all�cause death rates� Black male versus White male for the years

���� and ���
� �a� ����� �b� ���
� Source� Vital Statistics of the United States� �����

���
�

to the time�domain�

�� For every age group� plot the mortality curves of Black and White populations
of that age group over time� We will end up with a collection of cohort�speci�c
Black�White mortality in the time�domain� Figure ���� demonstrates the trans�
formation process for the age groups ������ ������ and ����

�� To determine the correspondence of A� to the transformed data from step ��
for every age group in the time�domain� one of the following must be true�

	a
 If the Black curve is consistently dominating the White curve over a time
period� it means that A� must be in an older age group for that time
window� Figure ����	a
 demonstrates an example of the case� where the
mortality of the White population is consistently below that of the Black
population� indicating that A� must be in one of the age groups older than
������

	b
 If the Black curve is consistently dominated by the White curve over a
time period� it means that A� must be in a younger age group for that
time window� Figure ����	c
 illustrates an example of the case� where the
mortality curve of the White population is consistently above that of the
Black population for the period �������� This means that A� must be in
one of the age groups younger than ����

	c
 If the two curves are crossing at a particular year Y�� then it is indicative
of a change in A�� Assuming that the A� is only increasing over time�
then the Black curve is dominated by the White curve prior to Y�� and
dominating the White curve thereafter� In this case� the interpretation of
change is the following� A� passed the median age of the age group at year
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Figure ����� All cause longitudinal death rates� Black male versus White male� ��������

�a� cohort� �
��� year�old� �b� cohort� �
��� year�old� �c� cohort� �
� year�old� Source�

Vital Statistics of the United States� ��������

Y�� For example� the crossover in Figure ����	b
 indicates that in �����
A� has �roughly�� moved up to the upper half of the age group ������

Clearly� the above mapping is a one�to�one correspondence � A collection of instances
in the age�domain can be uniquely transformed into a collection of instances in the
time�domain and vice versa� Although Y� in the time�domain has a di�erent interpre�
tation than A� in the age�domain� the above mapping is sound in the sense that the
dynamics of crossover is preserved and can therefore be analyzed using our abstract
model of vulnerability� But more importantly� the transformation of mortality data
obviates the need for further modi�cation of our model to directly incorporate the
e�ect of aging� we took a short cut of transforming the data to match the speci�ca�
tions of the model rather than modifying the model to directly accommodate for the
aging e�ect in the data�

To identify the processes governing the existence of a mortality crossover as well
as its dynamics� we will make use of the steady state solutions of the vulnerability�
ratio and population mortality� derived in section ������ to make inferences about the
transient dynamics of mortality of a population at the crossover� That is� despite the
lack of an explicit solution for the transient vulnerability of a population� we will be
able to identify the conditions for the existence and change in the age�at�crossover�
and make diagnostic use of them�

�Needless to say that the mortality rate of an age group� taken from the Vital Statistics of the

United States� is a weighted average for that age group� Under uniform distribution� however� if

for an age group in the time domain� two populations cross in the above manner� it must be that

the majority of the strata of that age group have higher death rates in one population� Thus the

median age of an age group can be used to represent the threshold for change in A�� This rough

interpretation of A� would not have been necessary� had we access to single age group mortality

data�
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����� A Modi�ed Model of �
Vulnerability
Class

Although the dynamics of population mortality� as produced by our model of ��
Vulnerability�Class� matches that of a non�aging cohort� the dynamics of population
�vitality�� does not match that of a non�aging cohort� Recall from section ����� that
in the absence of birth or migration in the model� the population in each vulnerability
class and therefore the total population will eventually become extinct� But this is
descriptive of the behavior of an �aging� cohort� where a �xed number of individuals
who are born at the same time� will age simultaneously and die as time progresses�
Hence in this case� the notion of progression in time matches that of age� However�
the vitality of a non�aging population cohort should grow over time� as it has been�
due to the continuous increase in infant survivability and therefore the increase in the
life expectancy of man�

Hence� we need to modify our original system so that it can accommodate for the
increase in the vitality of a non�aging cohort� while the dynamics of mortality stays
the same� In other words� we want the population to grow without bound� as opposed
to becoming extinct� while the vulnerability�ratio V�

V�
� maintains its original dynamics�

To achieve these objectives� we modify the original system of ODE�s ������� as follows

dV�

dt
� �V�	a�� � �� � c
 � a��V� 	����


dV�

dt
� a��V� � V�	a�� � �� � c
 	����


where c is a positive constant that in principle should be larger than the rate of selec�
tion ������ This new addition makes the population vitality to increase unbounded�
The new system is now unstable
 implying that at least one of its eigenvalues is pos�
itive� Let ��� �� be the eigenvalues of the new system� The characteristic polynomial
p	�
 of the coe�cient matrix of the new system is

p	�
 �

�������
��� � a�� � c� � a��

a�� ��� � a�� � c� �

�������
Expanding the determinant and collecting the terms in �� we get

p	�
 � �� � 	a�� � �� � a�� � �� � �c
�

�	���� � ��a�� � a����
� c	a�� � �� � a�� � ��
 � c�

Solving for the roots of the new characteristic polynomial� we get

�� � �� � c

�� � �� � c 	����


where ��� �� are the eigenvalues of the original system from section ���� Furthermore�

�The term vitality refers to the proportion of population alive at a point in time�
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if we assume that �� is the dominant eigenvalue in the original system� then �� is the
dominant eigenvalue in the new system� i�e� �� is the positive eigenvalue� To transform
the new two dimensional linear system describing the rate of change in the frequency
of each vulnerability class� into one quadratic equation describing the rate of change
in the ratio of the frequency of the two vulnerability classes� we follow the same
procedure as in section ������ First multiply equation ���� by V� and equation ����
by V� to get

dV�

dt
V� � �V�V�	a�� � �� � c
 � a��V�

� 	����


dV�

dt
V� � a��V�

� � V�V�	a�� � �� � c
 	����


Next� subtract equation ���� from equation ���� and divide both sides of the new
equation by V�

� to get a single quadratic di�erential equation as follows

dV�
dt
V� � dV�

dt
V�

V�
�

def
�

d

dt

�
V�

V�

�

� �V�
V�

	a�� � ��
 � c
V�

V�
� c

V�

V�
�
V�

V�
	a�� � ��


�a�� � a��

�
V�

V�

��

� �a��
�
V�

V�

��
� 	a�� � �� � a�� � ��


V�

V�
� a��

which is exactly the same as equation ��� that was derived from the original system�
This means that all the results pertaining to the dynamics of vulnerability�ratio�
including the existence of a steady state solution� stand still� What about population
mortality� Recall the de�nitions of total mortality � and its steady state value ��

from section ������ as functions of ��� ��� and the ratio V�
V�

� If the vulnerability�
ratio in the new system is exactly the same as the one from the original system�
then there is no reason to assume that mortality should be any di�erent� In other
words� the population mortality in the new system is a monotonically decreasing
process as well� Furthermore� the �nal mortality �� is the same as the dominant
eigenvalue in the original system� or put in terms of the dominant eigenvalue of the
new system� �� � c � �� � �� 	see equation ����
� Therefore� we conclude that all
major results pertaining to the dynamics of the vulnerability�ratio and population
mortality� derived for the ��Vulnerability�Class� will strongly hold for the Modi�ed���
Vulnerability�Class� In subsequent sections� we will make use of these results to infer
knowledge about the dynamics of mortality of two non�aging cohorts at the crossover�
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����� From Steady State to Transience� Conditions for Exis


tence of Crossover

Suppose we have two populations B and W � each modeled after the dynamics of the
system of equations ������� and that of Figure ���� Let B�� B� represent the low and
high vulnerability classes of B respectively
 W�� W� be those of W 
 �B and �W be
the respective population mortality for B and W 
 and ��B� ��W represent the steady
state population mortality for B and W respectively�

In the age�domain� when B and W cross� B initially has a higher mortality rate�
but then the mortality rates of the two populations gradually converge� cross at
some age� after which W attains a higher death rate� This crossover phenomenon�
once transformed into the time�domain� has the following correspondence� for all age
groups older than the age group containing A�� B must have a lower death rate
at all times over the period of investigation� and for all age groups younger than the
age group containing A�� B must have a higher death rate at all times over the period
of investigation� Figure ���� illustrates this mapping for three adjacent cohorts in the
Black and White populations� Hence� the relationship between the mortality curves
in the oldest age group of two populations provides su�cient clues into the existence
of crossover� Recall from the transformation recipe in section ����� that given an age
group� if the B curve is consistently dominated by the W curve� it indicates that A�
for B and W must be within a younger age group� Whatever that younger age group
may be� the implication of such an observation is straightforward� the age�speci�c
mortality curves of B and W do cross� Therefore� to identify the conditions under
which the age�speci�c mortality curves of B and W cross� we need to identify the
conditions under which the longitudinal mortality curve of B is consistently below
W in the oldest age group� Ultimately� the implications suggested by such analysis
should expand to all intermediate age groups older than the age group containing A��
By symmetry� the inverse of the results is implied for all age groups younger than the
age group containing A��

For our abstract model of vulnerability to simulate the dynamics of the mortality
experience of the oldest age group of two populations in the time�domain� the following
conditions must be satis�ed�

�� The initial mortality rate for B must be lower than the initial mortality rate
for W � In other words� �B	�
 � �W 	�
�

�� The �nal mortality rate for B must also be lower than that for W � In other
words� ��B � ��W �

The existence of these two conditions is su�cient to deduce that the mortality curve
of the oldest cohort in B is consistently below that of W at all times� and therefore
deduce the existence of crossover in a younger age group� This is because the only
other way for B to have lower initial and �nal mortality rates than W � is for B

to have higher mortality rates at all other intermediate points� which would imply
a double�crossing in the two curves� In the following lemma we show this cannot
happen�
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Lemma � There cannot exist a double�crossing between the mortality curves of two

populations�

Proof� Suppose for contradiction that the mortality curves of B and W cross twice�
Then this means that W � which initially is above B� must �curve� twice at the points
of crossing� In the vulnerability model� however� mortality is a monotone process to
a steady state� This requires for a mortality curve to �bend� only once� Hence� if
the initial and �nal mortality of B are below those of W � then B must have lower
mortality at all intermediate points in time�

Therefore by Lemma �� the existence of the above two conditions in the oldest
cohort of B and W necessarily implies the existence of A� in one of the younger
age groups� This result has the remarkable implication that the underlying processes
governing the existence of crossover can be inferred from the steady state solutions
of the vulnerability�ratio and population mortality� In subsequent sections� we map
the above two conditions into conditions in terms of the system parameters and the
initial values� under two di�erent assumptions� 	�
 when class�speci�c mortality rates
��� �� are the same for both populations but the �ow rates are di�erent
 	�
 when the
�ow rates a��� a�� are the same for both populations but the class�speci�c mortality
rates are di�erent�

Di	erent Flow Rates� Same Mortality Rates

Suppose B and W have the same class�speci�c mortality rates �� and ��� Let B�	�
�
B�	�
 be the initial conditions for B
 W�	�
� W�	�
 be the initial conditions for W 

and B�

B�
� W�

W�
represent the population vulnerability�ratio for B and W respectively� If

�� and �� are the same for both populations� then the �rst condition on the existence
of crossover implies

�B	�
 � �W 	�



 ��B�	�
 � ��B�	�
 � ��W�	�
 � ��W�	�



 ��	��B�	�

 � ��B�	�
 � ��	��W�	�

 � ��W�	�



 ��	W�	�
� B�	�

 � ��	W�	�
� B�	�




 	W�	�
� B�	�

	�� � ��
 � �


 W�	�
 � B�	�
 since by de�nition �� � �� 	����


which in turn implies

B�	�
 � W�	�
 	����


Putting inequalities ���� and ���� together� we get

B�	�


B�	�

�

W�	�


W�	�

	����


This means that the oldest cohort in B� initially had a higher vulnerability�ratio

��



than that of W � Here� �initially� refers to the initial year in the scope of the study�
In this work� the initial year is ���� as depicted in Figure ����� Inequality ���� is a
rather sensible outcome� lower initial death rate for the oldest cohort in B is due to
a higher initial vulnerability�ratio in B
 the class with good health in B contained a
higher proportion of old�aged residents compared to the class with good health in W �
By symmetry� the class with poor health in B had a smaller residency by old�aged
people than the one in W �

To express condition � for the existence of crossover in terms of the system pa�

rameters� let
�
B�

B�

�
�

be the steady state vulnerability�ratio for B� and
�
W�

W�

�
�

be the
steady state vulnerability�ratio for W � Then condition � for the existence of crossover
implies

��B � ��W
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This means that for populationB to have a lower �nal death rate� its �nal vulnerability�
ratio must be higher than that of W � In other words� the conditions for the existence
of mortality crossover can be inferred from the conditions for the existence of the
vulnerability�ratio crossover� Recall that the existence of mortality crossover in the
age�domain implies non�intersecting mortality curves of the oldest cohort in the time�
domain� Inequality ���� further asserts that the question of whether two mortality
curves in the time�domain intersect� can be con�rmed from the status of the corre�
sponding vulnerability�ratio curves� Figure ���� portrays an example of this situation�
where the dynamics of mortality 	Figure ����	a

 can be inferred from the dynamics of
vulnerability�ratio 	Figure ����	b

� Notice the symmetry in the relative dominance
of the curves between Figure ����	a
 and Figure ����	b
�

Let the �ow rates for B be as before� and the �ow rates for population W be
represented by A�� and A��� Then by equation ��� we have

�
B�

B�

��
�

�

�

�
a��

a��
�

��

a��
� �� ��

a��
�

s
	
a��

a��
�

��

a��
� �� ��

a��


�

� �
a��

a��

�
	����
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Figure ����� Inferring the transient dynamics of mortality of two hypothetical populations

in the time�domain from the dynamics of their vulnerability�ratio� Both populations have

similar class�speci�c mortality rates but they di�er in their mobility rates� The initial

conditions are� B���� 
 ����� B���� 
 ����� W���� 
 ���� and W���� 
 ���� The system

parameters are� a�� 
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The second condition for the existence of crossover� i�e� whether ��B � ��W � can now

be investigated by asking whether
�
B�

B�

�
�

�
�
W�

W�

�
�

� We will answer this question by
examining all possible relationships between the �ow rates aij and Aij� i � �� �� Let
a��
a��

and A��

A��

denote the �mobility�ratio� for B and W respectively� where the mobility�
ratio of a population is de�ned as a measure of the relative ease of mobility to the
class with good health� Then there are �ve cases to consider�

�� a�� � A���

Then if a�� � A��� clearly
�
B�

B�

�
�

�
�
W�

W�

�
�

� and therefore ��B � ��W � Hence�
under this assumption� the only way for population B to have a smaller �nal
mortality rate� is to have a stronger mobility from the high vulnerability class
to the low vulnerability class� compared to that of W � This condition translated
in terms of the mobility ratios� clearly implies that a��

a��
� A��

A��
�

�� a�� � A���
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Then if 	a�� � A��
� then the only way for ��B � ��W � is to have 	a��
a��

�
A��

A��

� This increases the possibility that 	a��������

a��
� A��������

A��

� and therefore�

B�

B�

�
�

�
�
W�

W�

�
�

� Hence under stronger mobility from B� to B� compared to that
of W � the only way for population B to have a smaller �nal mortality rate� is
to also have a stronger mobility from B� to B� compared to that of W � Note
that once again this condition reduces to a condition in terms of the mobility
ratios� i�e� a��

a��
� A��

A��

�

�� a�� � A��� Then we have � cases to consider�

��	a
 	a�� � A��
� Then since 	a��
a��

� A��

A��

 and 	�����

a��
� �����

A��

� it must

be that
�
B�

B�

�
�

�
�
W�

W�

�
�

� and therefore ��B � ��W � Hence� under this
assumption� for population B to have a lower �nal mortality rate� is
to have the rate of mobility from B� to B� to be at least as strong
as mobility rate from W� to W�� This condition is also equivalent to
having a��

a��
� A��

A��
�

��	b
 	a�� � A��
� Then there are � cases to consider�

��	b
	a

a��

a��
� A��

A��
� Then since 	a�� � A��
� we have 	�����

a��
�

�����
A��


� which implies
�
B�

B�

�
�

�
�
W�

W�

�
�

� and therefore ��B �

��W � Hence� under the assumption that the rate of mobility
from B� to B� is smaller than that from W� to W�� one way
for population B to have a lower �nal mortality rate� is to
also have a smaller mobility rate from B� to B�� to the extent
that a��

a��
� A��

A��
� This condition portrays B as an �almost�

rigid population with low rates of social mobility subject to
B� being more mobile than B��

��	b
	b

a��

a��
�

A��

A��
� Under this condition� the only way for

�
B�

B�

�
�

��
W�

W�

�
�

would be if 	a�� 
 A��

 this is to guarantee that
������a��

a��
� ������A��

A��
	 Hence� under the assumptions that

the mobility rate from B� to B� and B�s mobility�ratio are
weaker than their counterparts in W � the only way for B to
have a smaller �nal mortality rate� is if the mobility rate from
B� to B� is �much� weaker than that in W � This portrays B
as a �very� rigid population with almost no social mobility
	compare this to condition ��	b
	a

�

Note that all sensible conditions for the existence of crossover� expressed in terms of
the �ow rates� reduce to a single condition in terms of the mobility ratios� that is
a��
a��

� A��

A��
�

Putting it all together� under the assumption that B and W have the same class�
speci�c mortality rates and only di�er in their mobility rates and the initial conditions�

��



for A� to exist� or for the oldest cohort in B to have consistently lower death rate
than W � the following must hold�

�� B����
B����

�
W����
W����

for the oldest cohort� This implies that initially B had a higher
proportion of its old�aged individuals residing in the class with good health�
compared to its counterpart in W �

�� The mobility�ratio for B must be higher than that of W � In other words� we
must have a��

a��
� A��

A��
� which indicates that the relative rate of mobility to the

class with good health is more easily facilitated for the oldest cohort in B than
the oldest cohort in W �

�� Conditions � and � apply to all cohorts older than the cohort containing A��

�� By symmetry� the converse of conditions � and � must hold for all cohorts
younger than the cohort containing A��

Di	erent Mortality Rates� Same Flow Rates

Now suppose that the �ow rates are the same for B and W � but they di�er in their
class�speci�c mortality rates� Let ��� �� be the class�speci�c mortality rates for B�
and m�� m� be those of W � Further� de�ne SB � �� � �� and SW � m� �m� to be
the respective selection rates for B and W � where the selection rate is a measure of
inequality due to physiological or social conditions�

For the �rst condition on the existence of crossover to hold� we must have

�B	�
 � �W 	�



 ��B�	�
 � ��B�	�
 � m�W�	�
 � m�W�	�



 ��	�� B�	�

 � ��B�	�
 � m�	��W�	�

 � m�W�	�



 B�	�
	�� � ��
 � �� � W�	�
	m� �m�
 � m�


 B�	�


W�	�

�

m� �m�

�� � ��
�

m� � ��

W�	�
	�� � ��

	����


Given the system parameters and the initial conditions� inequality ���� can be used
to numerically verify whether the ratio of the initial conditions is within the bound
determined by the selection ratio and the relative di�erence of mortality rates of
the classes with good health� Whether B�	�
 � W�	�
 or B�	�
 � W�	�
� will be
determined when we qualitatively analyze the second condition on the existence of
crossover� For the second condition to hold� i�e� for ��B � ��W � we need the following
lemma in order to establish a bound in terms of the di�erential selection and the
system parameters�

Lemma � If x � � and y � �� then x� y � x��y�

�y
�

Proof
 There are two cases to consider�

��



�� If x � y � �� then we have

�y � x � y since x � y

Multiply both sides of the inequality by 	x� y
 and divide by �y to get

x� y �
x� � y�

�y
since x � y � �

�� If x � y � �� then we have

� �
y � x

�y
since y � x

Multiply both sides of the inequality by 	y � x
 to get

y � x �
y� � x�

�y
since y � x � �

Multiply both sides of the inequality by �� to get

x� y �
x� � y�

�y

Let �B and �W denote the dominant eigenvalues of the dynamical systems rep�
resented by B and W respectively
 f � a�� � a�� be the di�erential �ow rate
 and

#B �
q

	SB � f
� � �a��a�� and #W �
q

	SW � f
� � �a��a��� Then� for ��B � ��W �
by Theorem � we have

��B � ��W
which implies

�� � �� �
q

	SB � f
� � �a��a�� � m� � m� �
q

	SW � f
� � �a��a��

or equivalently

�� � �� �m� �m� � #B �#W

�
#�

B �#�
W

�#W

by Lemma �

�
�

�#W

�
	SB � f
� � �a��a�� � 	SW � f
� � �a��a��

�

�
�

�#W

�
S�
B � S�

W � �f	SB � SW 

�

��



�
�

�#W

		SB � SW 
	SB � SW 
� �f	SB � SW 



�
�

�#W

	SB � SW 
	SB � SW � �f
 	����


Given the system parameters� inequality ���� can be used to numerically verify
the relationship between the selection terms and the system parameters� However�
to interpret the second condition for the existence of crossover in terms of simple
relationships between the class�speci�c mortality rates of the two populations� we
need to qualitatively analyze all possible cases� This task can be carried out by
analyzing the di�erential selection� Hence� there are two cases to consider�

�� If SB � ����� � SW � m��m�� that is� if the rate of selection for B is higher

than the rate of selection for W � then it must be that
�
B�

B�

�
�

�
�
W�

W�

�
�

� since the

�ow rates are the same 	see equations ���� and ����
� Under stronger selection
in B� there are two possible cases that can occur�

	a
 �� � m� but �� � m�� The opposite cannot happen since it would contra�
dict the assumption that SB � SW �

	b
 �i � mi for i � �� �� The opposite cannot happen since then ��B � ��W and
this would contradict the assumption that ��B � ��W �

We are now prepared to determine whether B�	�
 � W�	�
 or B�	�
 � W�	�
�
The following lemma establishes that if condition �	a
 is satis�ed� then B�	�
 �
W�	�
� For condition �	b
� one must resort to inequality ���� to verify the
relationship numerically� since either B�	�
 � W�	�
 or B�	�
 � W�	�
 can
hold�

Lemma � If SB � SW � �� � m�� and �� � m�� then B�	�
 � W�	�
�

Proof
 Suppose for contradiction that B�	�
 � W�	�
� Then this would imply
that B�	�
 � W�	�
� Therefore we have the following inequalities�

��B�	�
 � m�W�	�

��B�	�
 � m�W�	�


since �� � m� and �� � m� by the assumptions in the lemma� Multiply the
second inequality by �� to get�

��B�	�
 � m�W�	�

���B�	�
 � �m�W�	�


Subtract the second inequality from the �rst to get

��B�	�
 � ��B�	�
 � m�W�	�
 � m�W�	�


��
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Figure ����� Comparing the mortality experience of two hypothetical populations in the

time�domain� where one population �solid curve� has a higher selection rate� Both popula�

tions have similar mobility rates� but they di�er in their class�speci�c mortality rates� The

initial conditions are� B���� 
 ����
� B���� 
 ����
� W���� 
 ���� and W���� 
 ���� The

system parameters are� a�� 
 ����� a�� 
 ����� �� 
 ����� �� 
 �����	� m� 
 ����	� and
m� 
 �����

or equivalently

�B	�
 � �W 	�


But this contradicts the assumption that B has a lower initial death rate than
W � i�e� �B	�
 � �W 	�
� Therefore it must be that B�	�
 � W�	�
�

Rewriting the result of Lemma � in terms of the ratio of the initial conditions�
we get

B�	�


B�	�

�

W�	�


W�	�


Figure ���� demonstrates an example of the case when �� � m� and �� � m��

�� If SB � ��� �� � SW � m� �m�� that is� if the rate of selection for B is lower

than the rate of selection for W � then it must be that
�
B�

B�

�
�

�
�
W�

W�

�
�

� since the

�ow rates are the same 	see equations ���� and ����
� Under a weaker selection
in B� there are two possible cases that can occur�

	a
 �� � m� but �� � m�� The opposite cannot happen since it would contra�
dict the assumption that SW � SB�

��



	b
 �i � mi for i � �� �� The opposite cannot happen since then ��B � ��W and
this would contradict the assumption that ��B � ��W �

The following lemma establishes that if condition �	a
 is satis�ed� then B�	�
 �
W�	�
� For condition �	b
� one must resort to inequality ���� to verify the
relationship numerically� since either B�	�
 � W�	�
 or B�	�
 � W�	�
 can
hold�

Lemma � If SB � SW � �� � m�� and �� � m�� then B�	�
 � W�	�
�

Proof
 Suppose for contradiction that B�	�
 � W�	�
� Then this would imply
that B�	�
 � W�	�
� Therefore we have the following inequalities�

��B�	�
 � m�W�	�

��B�	�
 � m�W�	�


since �� � m� and �� � m� by the assumptions in the lemma� Multiply the
second inequality by �� to get�

��B�	�
 � m�W�	�

���B�	�
 � �m�W�	�


Subtract the second inequality from the �rst to get

��B�	�
 � ��B�	�
 � m�W�	�
 � m�W�	�


or equivalently

�B	�
 � �W 	�


But this contradicts the assumption that B has a lower initial mortality rate
than W � i�e� �B	�
 � �W 	�
� Therefore it must be that B�	�
 � W�	�
�

Rewriting the result of Lemma � in terms of the ratio of the initial conditions�
we get

B�	�


B�	�

�

W�	�


W�	�


Figure ���� demonstrates an example of the case when �� � m� and �� � m��

Putting it all together� under the assumption that B and W only di�er in their
class�speci�c mortality rates� for A� to exist� or for the oldest cohort in B to have
consistently lower death rate than W over time� one of the following must hold�

�� Either both classes in B have lower death rates than the classes in W � ir�
respective of di�erential selection or di�erential initial conditions� as long as
inequality ���� is satis�ed�

��
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Figure ����� Comparing the mortality experience of two hypothetical populations in the

time�domain� where one population �dashed curve� has a higher selection rate� Both pop�

ulations have similar mobility rates� but they di�er in their class�speci�c mortality rates�

The initial conditions are� B���� 
 ��	�� B���� 
 ����� W���� 
 ���� and W���� 
 ���� The

system parameters are� a�� 
 ����� a�� 
 ����� �� 
 ������� �� 
 ������ m� 
 ����	� and
m� 
 �����

�� Or the outcome depends on the di�erential selection�

	a
 If SB � SW � i�e� B has a higher selection rate than W � then B����
B����

�
W����
W����

�
and the class with poor health in B is experiencing higher mortality than its
counterpart in W � In other words� under stronger selection in B� although
people in the class with poor health are dying at a faster rate than their
counterparts in W � but since a higher proportion of people initially resided
in the class with good health in B� and enjoyed a lower rate of mortality
than their counterparts in W � then on average in the long run� B attains a
lower death rate� This portrays a situation� where the mortality selectivity
is high in B so that B is a population heterogeneous in health and death�

	b
 If SB � SW � i�e� B has a lower selection rate than W � then B����
B����

� W����
W����

�
and the class with good health in B is experiencing higher mortality than
its counterpart in W � In other words� under a weaker selection in B� since
people in the class with poor health in B are not as badly o� as their
counterparts in W � and since people in the class with good health in B are
dying faster than their counterparts in W � then in the long run B exhibits
a lower death rate� This portrays a situation� where B is a population
more homogeneous in health and death�

��



����� From Steady State to Transience� Conditions for Change

in Crossover

In the time�domain� a change in the age�at�crossover to an older age can be detected
as follows� for any age group� if the mortality curves of B and W cross conditioned
upon that B has lower death rates prior to the year at intersection Y�� and higher
death rates thereafter� it would be indicative of a change in A�� For the age group
exhibiting this phenomenon� this would mean that A� was in the lower half of that
age group prior to Y�
 and A� increased to the upper half of the age group after Y�
	see Figure ����	b

� The opposite would imply a decline in A�� In this section� we
investigate the conditions for change under the assumption that A� for B and W can
only increase over time� as it has been evident from the Black and White mortality
data thus far� Such a correspondence enforces the following conditions on the initial
and �nal mortality of the cohort exhibiting the crossover�

�� The initial mortality rate for B must be lower than the initial mortality rate
for W � In other words� �B	�
 � �W 	�
�

�� The �nal mortality rate for B� however� must be higher than that for W � In
other words� ��B � ��W �

Clearly� by Lemma � there cannot be a double�crossing in the mortality curves of B
and W � Therefore� the above two conditions are necessary and su�cient to imply a
crossover at time Y�� One remarkable implication of conditions � and � is that the
underlying processes governing the dynamics of crossover can be inferred from the
steady state solution of the population mortality� In subsequent sections� we inves�
tigate the conditions for change in A� under two di�erent assumptions� 	�
 when
class�speci�c mortality rates ��� �� are the same for both populations but the �ow
rates are di�erent
 	�
 when the �ow rates a��� a�� are the same for both populations
but the class�speci�c mortality rates are di�erent�

Di	erent Flow Rates� Same Mortality Rates

Suppose B and W have the same class�speci�c mortality rates �� and ��� but they
di�er in their mobility rates� As before� let a��� a�� be the �ow rates in B� and
A��� A�� be those in W � If �� and �� are the same for both populations B and W �
then necessarily �B and �W cross at the same time as when B�

B�

and W�

W�

cross 	see
equation ���� for �
� Therefore� it is possible to infer the conditions for the crossing
of the mortality curves� from the conditions for the crossing of the vulnerability�ratio
curves� Figure ���� demonstrates an example of this situation� where the dynamics
of mortality 	Figure ����	a

 can be inferred from the dynamics of vulnerability�ratio
	Figure ����	b

� Note that Y� is the same in both �gures�

If �� and �� are the same for both populations� then the �rst condition for change
in A� will be similar to condition ����� Therefore we have

B�	�


B�	�

�

W�	�


W�	�


��
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Figure ����� Inferring the conditions for change in the age�at�crossover for two hypothetical
populations in the time�domain� from the conditions for crossing of their vulnerability�ratio

curves� Both populations have similar class�speci�c mortality rates but they di�er in their

mobility rates� The initial conditions are� B���� 
 ����� B���� 
 ����� W���� 
 ����

and W���� 
 ���� The system parameters are� a�� 
 ������� a�� 
 �����
� A�� 
 �����

A�� 
 ����� �� 
 ����	� �� 
 �����
� The mobility ratios are� a��
a��
� ����� and A��

A��
� ������

�a� Comparing the dynamics of mortality� �b� Comparing the dynamics of the vulnerability�

ratio� Note that Y� 
 �� years in both �gures�

This means that the initial vulnerability�ratio for the cohort containing A� is higher
for B than for W � This is a rather intuitive outcome� lower initial death rate for the
cohort containing A� in B� is due to having a higher proportion of people of that age
group residing in the low�vulnerability class of B compared to that of W �

Note that under the assumption that only the �ow rates di�er across the two
populations� the second condition for change in A� is the opposite of the second
condition for the existence of A� 	see section �����
� Therefore to express the second
condition for change in A�� in terms of the �ow rates and the initial conditions� we
need to reverse the conclusive remark pertaining to the �nal mortality and redirect it
to the age group containing A� instead of the oldest cohort� Hence� we conclude that
under the assumption that the �ow rates are di�erent across the two populations� for
B and W to cross� or for A� to be a dynamic phenomenon� the following must hold�

�� B����
B����

� W����
W����

for the cohort containing A�� This implies that initially B had
a higher proportion of individuals of that age group residing in the class with
good health� compared to that in W �

�� The mobility�ratio for the cohort containing A� in B� must be lower than that
in W � In other words� a��

a��
� A��

A��
indicates that the relative rate of mobility to

��



the class with good health is better facilitated for the individuals of that age
group in W than those in B�

Putting it together� for the cohort exhibiting the crossover phenomenon� initially B

must have had a higher proportion living in the class with better health relative to
W 
 thus B enjoyed a lower initial death rate� But then as time progressed� due to a
lower mobility�ratio in B compared to W � the dynamics of vulnerability changed so
that B has attained a higher death rate in the long run�

Di	erent Mortality Rates� Same Flow Rates

Now suppose that the �ow rates are the same for both populations� but they di�er in
their class�speci�c mortality rates� As before� let ��� �� be the class�speci�c mortality
rates for B� and m�� m� be those of W � Under this assumption� when �B and
�W cross� B�

B�
and W�

W�
may cross at a di�erent point in time or may not cross at

all� Hence� we can no longer infer the dynamics of mortality from the dynamics
of vulnerability�ratio� Figure ���� demonstrates an example of a situation in which
the mortality curves of two populations cross but their vulnerability�ratio curves do
not� In contrast� Figure ���� exempli�es a situation when both the mortality and
the vulnerability�ratio curves of two populations cross but the time at intersection is
di�erent for each�

For the �rst condition on change in A� to hold� inequality ���� must be satis�ed�
Whether B�	�
 � W�	�
 or B�	�
 � W�	�
� will be determined when we qualitatively
analyze the second condition for change in A�� For the second condition to hold� i�e�
for ��B � ��W � exactly the opposite of inequality ���� must be satis�ed� That is� we
have

�� � �� �m� �m� �
�

�#W

	SB � SW 
	SB � SW � �f
 	����


Given the system parameters� inequality ���� can be used to numerically verify the
relationship between the selection terms and the system parameters� However� to
interpret the second condition for change in the age�at�crossover in terms of simple
relationships between the class�speci�c mortality rates of the two populations� we
need to qualitatively analyze all possible cases� This can be carried out by analyzing
the di�erential selection� Hence� there are two cases to consider�

�� If SB � ����� � SW � m��m�� that is� if the rate of selection for B is higher

than the rate of selection for W � then it must be that
�
B�

B�

�
�

�
�
W�

W�

�
�

� since the

�ow rates are the same 	see equations ���� and ����
� Under stronger selection
in B� there are two possible cases that can occur�

	a
 �� � m� but �� � m�� The opposite cannot happen since it would contra�
dict the assumption that SB � SW �

	b
 �i � mi for i � �� �� The opposite cannot happen since then ��B � ��W and
this would contradict the assumption that ��B � ��W �

��
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Figure ����� �a� Detecting change in A� by comparing the mortality experience of

two hypothetical populations in the time�domain� �b� Comparing the dynamics of their

vulnerability�ratio� Here� one population �solid curve� has a higher selection rate� Both

populations have similar mobility rates� but they di�er in their class�speci�c mortality

rates� The initial conditions are� B���� 
 ���	� B���� 
 ����� W���� 
 ��	���	� and

W���� 
 �������� The system parameters are� a�� 
 A�� 
 ����	� a�� 
 A�� 
 �����

a�� 
 A�� 
 ����� �� 
 ������� �� 
 ����	�� m� 
 ����	� and m� 
 �����

By Lemma �� condition �	a
 further requires that B�	�
 � W�	�
� For condition
�	b
� one must resort to inequality ���� to verify the relationship numerically�
since either B�	�
 � W�	�
 or B�	�
 � W�	�
 can hold� Putting it in terms of
the ratio of the initial conditions� the result of Lemma � can also be stated as
follows

B�	�


B�	�

�

W�	�


W�	�


Figure ���� demonstrates an example of the case when �� � m� and �� � m��

�� If SB � ��� �� � SW � m� �m�� that is� if the rate of selection for B is lower

than the rate of selection for W � then it must be that
�
B�

B�

�
�

�
�
W�

W�

�
�

� Under a
weaker selection in B� there are two possible cases that can occur�

	a
 �� � m� but �� � m�� The opposite cannot happen since it would contra�
dict the assumption that SW � SB�

	b
 �i � mi for i � �� �� The opposite cannot happen since then ��B � ��W and
this would contradict the assumption that ��B � ��W �

By Lemma �� condition �	a
 further requires that B�	�
 � W�	�
� For condition

��
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Figure ����� �a� Detecting change in A� by comparing the mortality experience of

two hypothetical populations in the time�domain� �b� Comparing the dynamics of their

vulnerability�ratio� Here� one population �solid curve� has a lower selection rate� Both popu�

lations have similar mobility rates� but they di�er in their class�speci�c mortality rates� The

initial conditions are� B���� 
 ����	� B���� 
 ������ W���� 
 ��	��� and W���� 
 ������

The system parameters are� a�� 
 ����	� a�� 
 A�� 
 ����� a�� 
 A�� 
 ����� �� 
 �����
�

�� 
 �����
� m� 
 ����	� and m� 
 ����� Note that Y� is di�erent in each �gure� thus Y�
in the mortality curves cannot be inferred from Y� in the vulnerability�ratio curves�

�	b
� one must resort to inequality ���� to verify the relationship numerically�
since either B�	�
 � W�	�
 or B�	�
 � W�	�
 can hold� Putting it in terms of
the ratio of the initial conditions� the result of Lemma � can also be stated as
follows

B�	�


B�	�

�

W�	�


W�	�


Figure ���� demonstrates an example of the case when �� � m� and �� � m��

Putting it all together� under the assumption that B and W only di�er in their class�
speci�c mortality rates� for A� to be a dynamic phenomenon 	or for B to have a
higher �nal death rate� while having a lower initial death rate
� one of the following
must hold�

�� Either both classes in B have higher death rates than the classes in W� ir�
respective of di�erential selection or di�erential initial conditions� as long as
inequality ���� is satis�ed�

�� Or the outcome depends on the di�erential selection�

��



	a
 If SB � SW � i�e� B has a higher selection rate than W � then B����
B����

�
W����
W����

�
and the class with poor health in B is experiencing a higher mortality
than its counterpart in W � In other words� under a stronger selection in
B� although a higher proportion of people initially resided in the class
with good health in B� and enjoyed a lower rate of mortality than their
counterparts in W � but since people in the class with poor health are dying
at a faster rate� relative to W � in the long run B attains a higher death
rate� This portrays the B population in the age group containing A�� as
a population heterogeneous in health�

	b
 If SB � SW � i�e� B has a lower selection rate than W � then B����
B����

�
W����
W����

�
and the class with good health in B is experiencing a higher mortality
than its counterpart in W � In other words� under a weaker selection in B�
since people in the class with good health in B are worse o� than their
counterparts in W � even though people in the class with poor health in B

are dying at a slower rate than their counterparts in W � in the long run
B exhibits a higher death rate� This portrays the B population in the age
group containing A�� as a population �almost� homogeneous in health�

����
 The Black and White Finale� Putting It All Together

If the Black and White age�at�crossover has indeed been steadily rising over time� and
if the age�at�crossover would increase at a faster rate than the average life span� then
one could only deduce that the crossover phenomenon must eventually disappear�
Therefore� we ask� What are the implications of such diminishing e�ects�

Using our abstract model of vulnerability� we investigated the conditions for the
existence� as well as the conditions governing the dynamics� of the mortality crossover
for the Black and White populations� in sections ����� and ������ Assuming that the
class�speci�c mortality rates were the same for Blacks and Whites� we were able to
examine the e�ect of social processes� acting through the �ow rates� as potential
underlying causes of the crossover and its dynamics� On the other hand� assuming
that the mobility rates were the same for Blacks and Whites� we were able to examine
the e�ect of di�erential selection as the underlying cause of the crossover and its
dynamics� The class of all mathematically plausible conditions� so derived� is now
selectively reduced to a sub�class of conditions that are also socially sensible� given
the real�life Black and White dynamics� Therefore� we conclude that�

�� If class�speci�c mortality rates ��� �� are the same for both populations� then�

	a
 For the crossover phenomenon to exist within an age group� in all cohorts
older than the one containing A�� the mobility�ratio for Blacks must be
greater than that for Whites� This means that among the older Black
population� movement to the class with good health must be better facili�
tated� compared to the White elderly� In other words� the social mobility
gap is not as wide among the Black elderly and therefore there is a higher
degree of homogeneity in the distribution of vulnerability to disease and

��



death among them
 the polarization into distinct vulnerability classes has
not yet extended to� or is not as well de�ned for� all age groups in B�
Older aged population in B� is still enjoying a somewhat homogeneous
social conditions of life� while the younger population is more heteroge�
neous in vulnerability to disease and death� and is exposed to a high rate
of selection�

	b
 For A� to increase to an older age� the cohort containing A� must exhibit
a smaller mobility�ratio for Blacks than for Whites� This means that for
all age groups younger than� and including the lower half of the age�group
containing A�� it is harder for Blacks to move to the class with good
heath than it is for Whites� In other words� as the entire Black population
is aging� the polarization into distinct vulnerability classes extends to the
age group containing A�� This means that a larger proportion of the Black
population is now experiencing heterogeneity in the conditions of life� and
is exposed to a greater force of selection�

�� If the mobility rates a��� a�� are the same for both populations� then�

	a
 For the crossover phenomenon to exist within an age group� all cohorts
older than the one containing A�� must either exhibit lower mortality rates
in both classes of B than those in W � irrespective of di�erential selectivity

or the selection rate is weaker among the Blacks� with the class with good
health experiencing a greater force of mortality in B compared to its coun�
terpart in W � This means that vulnerability to death is more homogeneous
among the Black elderly than the Whites of the same generation�

	b
 For A� to increase to an older age� the cohort containing A� must either
exhibit a higher mortality in both classes in B than in W � irrespective of
di�erential selectivity
 or the selection rate is higher for Blacks than for
Whites� with the class with poor health in B experiencing a greater force of
mortality� This means that the younger Black population is heterogeneous
in vulnerability to death� and class formation is extending to the older
population�

To the extent that the Black population is not yet entirely divided into distinct classes
of vulnerability� and the population is partially homogeneous in their vulnerability
to disease and death� the age�at�crossover exists and is representative of inequality
in the conditions of life between Blacks and Whites� As the Black population is
further polarizing into di�erent vulnerability classes by� further increase in di�erential
mortality� or further reduction in social mobility� or both� as the population is aging�
inequality in the conditions of health extends to older age groups� thereby increasing
the age�at�crossover with the White population� Hence� we attribute the dynamics of
mortality crossover� or in the case of Black versus White� the increase in the age�at�
crossover over time� to the Black�White conditions of life becoming more similar in
the sense that the gap between di�erent vulnerability classes in B is increasing and
such class�based vulnerability structure is extending to the older Black population�

��



As distinct vulnerability classes are forming among the younger Black population and
extending to older generations� as the population ages as a whole� social and selective
processes further modify the dynamics of inequality� These processes� although in the
modern sense are new for Blacks� for the White population of the United States are
perhaps as old as the Civil War�

����� Other Populations

Is the crossover phenomenon unique to the mortality dynamics of the Black and White
populations� Or� are there other pairs of populations that exhibit a similar transient
behavior in their mortality curves� From time to time� demographers have reported
the discovery of the crossover phenomenon for di�erent pairs of populations in di�er�
ent parts of the world� Spiegelman ���� reported an incident of the phenomenon when
studying the age�speci�c mortality rates of Jews and non�Jews in Canada� and made a
reference to similar �ndings for Jews and non�Jews in New York City and Berlin� For
him Jews were the Whites and non�Jews were the Blacks� The age�at�crossover was
observed to be at young adult ages for these populations� He consequently attributed
the existence of the crossover to detrimental life style of Jews� particularly dietary�
Nam ���� compared the age�speci�c mortality rates of several pairs of provinces in
China for which the quality of data was regarded as exceptionally sound� He found
convergence of mortality curves in all pairs
 and the appearance of crossover in older
age groups in a few� For an overview of discovery of mortality crossovers for di�erent
pairs of populations in di�erent parts of the world� see ���� ��� ����

In fact� if we have reasons to believe that the crossover phenomenon is merely a
side e�ect of inequality in the mortality selectivity� as well as inequality in the socio�
economic conditions of life between populations 	as demonstrated above
� one should
expect to revisit the crossover phenomenon for di�erent pairs of populations exhibiting
dissimilar conditions of life� As the socio�economic gap increases in a population� as
a population continues to lose homogeneity in conditions of health and death among
its individuals� as the boundaries of class divisions in health and vulnerability are
better de�ned and become more pronounced in a population� the age�at�crossover
also continues to increase to older age groups� Therefore� we conjecture that the
younger the process of polarization into di�erent health classes in a population� the
younger the age�at�crossover�

It is interesting to note that our interpretation of the direction of change in the
age�at�crossover is even in contrast with the arguments made by one of the propo�
nents of the selectivity process� as a potential cause of the crossover� Charles Nam�
one of the prominent demographers arguing in favor of the existence of the crossover�
writes� �The mortality convergence and crossover process is a dynamic one� As socio�
economic characteristics of two populations become more alike� as frailty conditions
of those populations become more alike� and as the quality of demographic data col�
lected for the populations become more alike� mortality convergence and crossover
will decline and eventually disappear� To the extent that those equalities are not
obtained� mortality convergence will probably continue� and mortality crossover will
probably occur at some age� however late�� ����� To date� we have not found any

��



evidence of prior examination of the dynamics of crossover in a non�speculative man�
ner� Therefore� any proclamation that is not the least based on studying the trends
in mortality data� should be considered at best speculative and open to investiga�
tion� Moreover� despite the controversial nature and signi�cance of the Black�White
crossover� the mortality trends for other pairs of populations in the United States�
have never been studied� If in fact the crossover phenomenon can be observed for
pairs of populations other than the Black�White pair� then our perceptions of the
crossover phenomenon may have to be reexamined�

We have examined the above conjecture in light of limited data available for
two other minority populations in the United States� the American�Indian and the
Hispanic� Figure ���� demonstrates the dynamics of mortality crossover for the
American�Indian and Alaskan Native male versus the White male over the years
���� and ����� In ����� the age�at�crossover was in the upper half of the age group
������ whereas in ���� it was well within the age group ������ Hence� in �� years�
A� has increased by about � years 	from � �� to � ��
� Compare that to the Black�
White age�at�crossover for those years
 in ����� the Black�White age�at�crossover is
about �� years older than A� for Native�White 	see Figure ����
� Figure ���� is the
result of transforming the mortality data for American Indians from the age�domain
to the time�domain in the manner presented in section ������ Figure ����	b
 further
illustrates that A� passed the median age of ���� in �����

Similarly� examining the dynamics of mortality crossover in the age�domain for
the Hispanic male versus the White male reveals that the phenomenon is still very
young for this pair of populations� Figure ���� shows that in ����� A� � �� whereas
in ����� A� seems to have passed the median age ���� of the age group ������ That
is� in the period of �� years� the age�at�crossover has increased only by about � years�
The Hispanic�White age�at�crossover is not only younger than the age�at�crossover
for Native�White by �� years
 it has also exhibited a much slower rate of growth
during the same time period� An interesting dynamics is observed when we change
the scope of the study to the female population� The age�at�crossover is even younger
for the Hispanic�White female population� Figure ���� demonstrates that in �����
the age�at�crossover was at the brink of entering the age group ����� whereas in
����� it has entered the lower half of the next age group ������ Although the age�
at�crossover is younger among the female population� but it seems to have had a
faster rate of growth� in �� years� it has increased by about �� years� which is ���
times faster than the growth for the Hispanic�White male� However� compared to the
dynamics of Black�White or Native�White� the Hispanic�White dynamics is rather
new� Therefore� further investigation into the dynamics of the age�at�crossover for
this pair of populations must await until more� and better quality� data is available�

Comparing the mortality trends of other pairs of populations is quite enlighten�
ing� In particular� the appearance of mortality crossovers for the Native�White and
Hispanic�White should strengthen the doubt that mortality crossover is merely the re�
sult of erroneous data� If the Black�White mortality crossover is indeed hypothesized
to be a side e�ect of age over�reporting among the Black elderly� then an alternative
premise is needed to rationalize the appearance of mortality crossovers at very young
ages for the Native�White and Hispanic�White�
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Figure ����� Age�speci�c all�cause death rates� Native�American male versus White male�
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Figure ����� All cause longitudinal death rates� Native�American male versus White male�
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�
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Figure ����� Age�speci�c all�cause death rates� Hispanics male versus White male� for the

years ���
 and ����� �a� ���
� �b� ����� Source� Vital Statistics of the United States� ���
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Figure ����� Age�speci�c all�cause death rates� Hispanics female versus White female� for

the years ���
 and ����� �a� ���
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��� n�Vulnerability�Class	 Generalization

Suppose that a population cohort is distributed among n � � vulnerability classes
Vi� each associated with its own mortality rate �i� i � � 	 	 	 n� The degree of vulner�
ability is assumed to increase with the subscript i
 thus �n � �n�� � 	 	 	 � �� � ���
Furthermore� individuals in one class may move to another due to disease processes�
aging� loss of fortune� or health�detrimental social policies� in which case the �ow
ai���i� i � n� �� is to the adjacent higher vulnerability class
 or due to factors a�ect�
ing viability such as acquiring knowledge or wealth� or through health�improvement
policies� in which case the �ow ai���i� i � � is to the adjacent lower vulnerability
class� Since there is no birth in this model� at any point in time� we must have the

condition that
iX

i
�

Vi � �� Further� all parameters of the system are assumed to be

constant� The following linear system of n ordinary di�erential equations captures
the dynamics of vulnerability of a population� heterogeneous in health and death�

dV�

dt
� �V�	a�� � ��
 � a��V�

dV�

dt
� a��V� � V�	a�� � �� � a��
 � a��V� 	����


���
���

dVn

dt
� an�n��Vn�� � Vn	an���n � �n


Let A be the n	 n coe�cient matrix corresponding to system ����

A �

�
BBBBBBBBB�

a�� a�� � � 	 	 	 � �
a�� a�� a�� � 	 	 	 � �
� a�� a�� a�� � 	 	 	 �
���

���
���

���
���

���
���

� � 	 	 	 � an���n�� an���n�� an���n
� � 	 	 	 � � an�n�� ann

�
CCCCCCCCCA

where the main diagonal entries aii� i � � � � �n� are the self�damping terms� for V��
a�� � �a�����
 for Vn� ann � �an���n��n
 and for all intermediate Vi� i � � � � �n���
aii � �ai���i � ai���i � �i�

����� Major Results

Matrix A is a tridiagonal matrix� A tridiagonal matrix is de�ned as a matrix whose
only nonzero entries occur on the main diagonal or on the two diagonals which are
immediate neighbors of the main diagonal� The diagonals immediately below and
above the main diagonal are referred to as the sub�diagonal and super�diagonal re�
spectively� Tridiagonal matrices and their properties have been well studied� Based
on such known properties� here we will generalize two of the major results for the

��



��dimensional system� from section ���� to the n�dimensional system �����

Lemma � The eigenvalues of the n	 n coe�cient matrix A� are all real�

Proof� Recall from elementary linear algebra� that a tridiagonal matrix is irreducible if
and only if every sub�diagonal and super�diagonal element is nonzero� Furthermore� if
a 	real
 matrix is tridiagonal and irreducible� then its eigenvalues are real and distinct�
Hence� matrix A is irreducible and all its eigenvalues are real�

Theorem � �� � ��d� where �� is the steady state population mortality and �d is

the dominant eigenvalue of the n	 n coe�cient matrix A�

Proof� Recall from elementary linear algebra that if the eigenvalues of a matrix are
distinct� then the matrix can be diagonalized� In the proof of Lemma �� we already
established that matrix A is irreducible and therefore all its eigenvalues are distinct�
Hence� matrix A must be diagonalizable� This means that A can be written as

A � U % U�� 	����


where

% �

�
BBBB�

�� � 	 	 	 �
� �� 	 	 	 �
���

���
���

���
� � 	 	 	 �n

�
CCCCA

is an n	n matrix of n distinct eigenvalues of A
 U is an n	n matrix whose columns
are the eigenvectors of A
 and U�� is its inverse� Expressed in vector notation� the
n�dimensional dynamical system ���� can be written as follows

A V �  V

where

V �

�
BBBB�

V�
V�
���
Vn

�
CCCCA

is the n	 � column vector of n vulnerability classes
 and

 V �

�
BBBBB�

 V�
 V�
���
 Vn

�
CCCCCA

��



is the n 	 � column vector of the �rst derivatives of n vulnerability classes� The
solution of the system can also be written in vector notation as follows

V � eAt V 	�
 	����


where

V 	�
 �

�
BBBB�

V�	�

V�	�


���
Vn	�


�
CCCCA

is an n	 � column vector of the initial conditions
 and

eAt � U

�
BBBB�

e��t � 	 	 	 �
� e��t 	 	 	 �
���

���
���

���
� � 	 	 	 e�nt

�
CCCCAU�� since A is diagonalizable 	����


Without loss of generality� suppose �� � �d is the dominant eigenvalue for the coef�
�cient matrix A� Then� at the steady state� when e��t � e�it� �i � �� equation ����
can be rewritten as follows

V � U

�
BBBB�

e��t � 	 	 	 �
� � 	 	 	 �
���

���
���

���
� � 	 	 	 �

�
CCCCAU�� V 	�
 	����


Now� note that the sum of n ODE�s of the dynamical system ���� is the negative of
the weighted average of all Vi�s� i � �� � � �n� That is

nX
i
�

dVi

dt
� �

nX
i
�

�iVi 	����


To write equation ���� in matrix notation� let

& � ���� ��� � � � � �n�

be an �	 n row vector of class�speci�c mortality rates� Then equation ���� can be
rewritten in vector notation as follows

�& V � � A V

��



where ��

nz �� �
��� �� � � � � �� is an � 	 n row vector of ��s� Expanding A and V as in

equations ���� and ���� we get

�& V � � U % U�� U� �z �
I

�
BBBB�

e��t � 	 	 	 �
� � 	 	 	 �
���

���
���

���
� � 	 	 	 �

�
CCCCAU�� V 	�


where I is an n	 n identity matrix� Write % in its explicit matrix form to get

�& V � � U

�
BBBB�

�� � 	 	 	 �
� �� 	 	 	 �
���

���
���

���
� � 	 	 	 �n

�
CCCCA

� �z �
�

�
BBBB�

e��t � 	 	 	 �
� � 	 	 	 �
���

���
���

���
� � 	 	 	 �

�
CCCCAU�� V 	�


� � U

�
BBBB�

��e
��t � 	 	 	 �

� � 	 	 	 �
���

���
���

���
� � 	 	 	 �

�
CCCCAU�� V 	�


� �� � U

�
BBBB�

e��t � 	 	 	 �
� � 	 	 	 �
���

���
���

���
� � 	 	 	 �

�
CCCCAU�� V 	�


� �z �
V

since �� is a scalar

� �� � V 	����


In equation ����� �� is a scalar
 ��

nz �� �
��� �� � � � � ��
 V is an n	 � column vector
 and &

is an �	 n row vector� Multiply through on each side of the equation to reduce each
side to its scalar form� and reset �� � �d� to get

�d ��� �� � � � � ��

�
BBBB�

V�
V�
���
Vn

�
CCCCA � ����� ��� � � � � �n�

�
BBBB�

V�
V�
���
Vn

�
CCCCA 	����


or equivalently

�d

nX
i
�

Vi � �
nX
i
�

�iVi

��



which in turn implies

�d � �
Pn

i
� �iViPn
i
� Vi

Divide both the numerator and denominator of the right�hand�side of the above
equation by V� to get the steady state vulnerability�ratios� Then we have

� �
Pn

i
� �i
�
Vi
V�

�
�

Pn
i
�

�
Vi
V�

�
�

� ��� by de�nition

����� Qualitative Complexity of the General Case

Recall from section ����� that we transformed a system of two ODE�s into one
quadratic ODE describing the rate of change in the vulnerability�ratio V�

V�
� Utilizing

the ratio and its steady state value
�
V�
V�

�
�

� we then made inferences about the dynam�
ics of population mortality � and its steady state value ��� For the ��dimensional

dynamical system� we would need to know two such ratios 	e�g�
�
V�
V�

�
�

and
�
V�
V�

�
�


�
the solution of each being dependent on the other� To demonstrate the complexity of
the analysis involved� consider the �	 � case� To arrive at an ODE for the ratio V�

V�
�

multiply  V� by V�� and  V� by V�� to get

 V�V� � �V�V�	a�� � ��
 � a��V
�
�

 V�V� � a��V
�
� � 	a�� � �� � a��
V�V� � a��V�V�

Subtract the second equation from the �rst and divide by V�
� to get

 V�V� �  V�V�
V�

�

def
�

d

dt

�
V�

V�

�
�

�a��
�
V�

V�

��
� 	a�� � �� � a�� � a�� � ��


V�

V�
� a��

�
V�

V�

��
V�

V�

�
� a��

Similarly� to arrive at an ODE for the ratio V�
V�

� multiply  V� by V�� and  V� by V�� to
get

 V�V� � a��V�V� � 	a�� � �� � a��
V�V� � a��V
�
�

 V�V� � a��V
�
� � 	a�� � ��
V�V�

Subtract the second equation from the �rst and divide by V�
� to get

 V�V� �  V�V�
V�

�

def
�

d

dt

�
V�

V�

�
�

��



�a��
�
V�

V�

��
� 	a�� � �� � a�� � a�� � ��


V�

V�
� a��

�
V�

V�

��
V�

V�

�
� a��

De�ne the population mortality � as follows

� �
��V� � ��V� � ��V�

V� � V� � V�

�
��
�
V�
V�

�
� �� � ��

�
V�
V�

�
�
V�
V�

�
� � �

�
V�
V�

�
and similarly the steady state population mortality �� as follows

�� �
��
�
V�
V�

�
�

� �� � ��
�
V�
V�

�
�

�
V�
V�

�
�

� � �
�
V�
V�

�
�

Since by Theorem � �� � ��d� then we must have

��d �
��
�
V�
V�

�
�

� �� � ��
�
V�
V�

�
�

�
V�
V�

�
�

� � �
�
V�
V�

�
�

which implies

��

�
V�

V�

��
� �� � ��

�
V�

V�
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Solve for the steady state vulnerability ratios to get

�
V�

V�

��
�

	�d � ��
 �
�
V�
V�

�
�

	�d � ��


��d � ��

and

�
V�

V�

��
�

	�d � ��
 �
�
V�
V�

�
�

	�d � ��


��d � ��

Clearly� without making further assumptions on the relationship between the two
ratios� we would be left with one equation and two unknowns� Similarly� for the n�
dimensional case� we can transform n ODE�s into n�� ODE�s for vulnerability�ratios�
each dependent on the dominant eigenvalue and the remaining n�� ratios� Although
in the context of the population dynamics of vulnerability� it is reasonable to assume
n � � or n � �� the qualitative analysis carried out for n � � in the previous sections�
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cannot be repeated with ease even for n � �� Therefore� the validity of all the results
other than the ones proved in this section� i�e� Lemma � and Theorem �� would have
to be examined numerically for n � �� To further demonstrate the di�culty of the
qualitative analysis involved� consider the characteristic polynomial for n � �

p	�
 � �� � ��	�� � �� � �� � a�� � a�� � a�� � a��
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Although our dynamical system is linear and therefore in principle we are able to solve
explicitly for Vi�s� but in fact the characteristic polynomial is signi�cantly �nonlinear��
Compare the characteristic polynomial ��� for the ��dimensional case� with the ��
dimensional characteristic polynomial ����� In polynomial ���� there are � possible
combinations of � system parameters� � of which are of order �
 in polynomial �����
however� there are �� possible combinations of � system parameters� � of which are
of order � and �� are of order �� This means that as the number of vulnerability
classes n grows� the number of system parameters grow� and therefore the roots of
the characteristic polynomial not only become highly nonlinear� but the number of
nonlinear terms constituting the eigenvalues become enormous� In the ��dimensional
case� the eigenvalues� nonlinearity is of order �
 the eigenvalues contain all possible
parameter combinations of orders � and � 	see equations ��� and ���
� In the ��
dimensional case� the eigenvalues� nonlinearity is of order �
 the eigenvalues contain
all possible parameter combinations of orders � 	 	 	 �
 thus the e�ect of a change� acting
through any of the � system parameters� on the mortality�related outcomes may not
be at all a straightforward task� Let m denote the number of parameters in a system
of n vulnerability classes� Then� we hypothesize that the qualitative complexity of
the analysis is O	mn
�

����� Quantitative Results

We have numerically examined the validity of the results of the previous sections�
for n � �� �� �� All major results pertaining to the qualitative analysis of the ��
dimensional case� maintained their validity for n � �� Focusing on the principal
outcome of this chapter� namely the mortality crossover and its dynamics� if the re�
sults are indeed valid for n � �� then this means that irrespective of the number
of vulnerability classes� the existence of a mortality crossover for two populations is
always an indication of inequality in the conditions of life� where one of the two inter�
secting populations� on average� is subjected to a harsher environment and a greater
force of mortality� One such population experiences duality in the dynamics of vul�
nerability of the age structure of the population� the proportion of the population
that is younger than the age�at�crossover is already divided into distinct vulnerability
classes and is therefore �more� heterogeneous in health and death
 the rest of the
population that is older than the age�at�crossover� however� is �more� homogeneous
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in vulnerability to disease and death� But then the population is aging� and with
it� the age�at�crossover is changing� A change in the age�at�crossover to an older age
is therefore an indication of formation and further extension of distinct vulnerability
classes into the older generation of the population� This further increases the in�
equality in the conditions of life within one population
 thus making the vulnerability
structure of the two populations more similar�

��� Summary

We developed a dynamic model of selection partially o�set by mobility� to mimic
the inherent heterogeneity in the vulnerability structure of a population cohort� In
the absence of birth or migration in the model� the population eventually becomes
extinct� while the ratio of the frequency of vulnerability classes reaches a steady state�
Therefore a transformation from a system of two linear ordinary di�erential equations�
describing the rate of change in the frequency of each vulnerability class Vi� i � �� ��
into a single quadratic ordinary di�erential equation� describing the rate of change in
the vulnerability�ratio V�

V�
� made it possible to infer the dynamics of the steady state

mortality from the dynamics of the steady state vulnerability�ratio� We established
qualitatively that�

�� As the class�speci�c mortality rates ��� �� increase� the �nal population mor�
tality �� also increases�

�� As the mortality of the class with good health �� increases� the �nal population
mortality ��� the �nal proportion dying in the class with good health ���� and
the �nal proportion dying in the class with poor health ���� will all increase�

�� As the mortality for the class with poor health �� increases�

	a
 the �nal population mortality ��� and the �nal proportion dying in the
class with good health ���� also increase�

	b
 the �nal proportion dying in the class with poor health ���� however� in�
creases to a peak at high values of ��� after which it slowly declines to a
high steady state value� This is because at high values of ��� when selec�
tion is strong and against the high�vulnerability class V�� almost everyone
in the population dies early in the process� This causes the system to reach
its steady state at a faster rate� thus causing a slight decline toward the
steady state�

�� As the �ow rate a��� from the low�vulnerability class V� to the high�vulnerability
class V� increases� the �nal population mortality �� and the �nal proportion
dying in the high�vulnerability class ��� increase� while the �nal proportion dying
in the low�vulnerability class ��� declines�
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�� As the �ow rate a��� from the high�vulnerability class V� to the low�vulnerability
class V� increases� the �nal population mortality �� and the �nal proportion
dying in the high�vulnerability class ��� decline� while the �nal proportion dying
in the low�vulnerability class ��� increases�

To make diagnostic use of the above qualitative analysis� we de�ned our goal in
investigating the dynamics of mortality to be twofold� on the one hand� we want to
reduce the population mortality
 on the other hand� we want a larger proportion of
deaths in the population to come from the low�vulnerability class� This means that
people will live relatively healthy up to the time of death� For society as a whole�
this results in lowering the terminal investment in health� As can be seen from the
outcomes of the above analysis� only increasing a�� or decreasing a�� will facilitate
these goals� This can be accomplished through health improvement policies� cleaning
up the minority neighborhoods� educational campaigns� etc�

Motivated by the existing �anomaly� of a mortality crossover between the Black
and White populations of the United States� we were then set to compare populations�
To utilize our model of vulnerability that simulates the mortality experience of a
non�aging cohort over time� we devised a transformation strategy to map mortality
data from the age�domain to the time�domain� Equipped with the results of the
qualitative analysis of the steady state solutions of mortality� as outlined above� we
were able to make inferences about the transient behavior of population mortality at
the crossover� Hence� by transforming the domain of data� as well as transforming
the �explicit� solutions at the steady state to �implicit� derivations at the transient
state� we established qualitatively that�

�� For the crossover to exist between the Black and White populations� the fol�
lowing must hold�

	a
 If both the Black and White populations have the same class�speci�c mor�
tality rates ��� ��� and only di�er in their mobility rates� then the relative
rate of mobility to the class with better health must be higher for the Black
cohorts older than the cohort containing the age�at�crossover� than their
White counterparts� By symmetry� the relative rate of mobility to the class
with better health must be lower for the Black cohorts younger than the
cohort containing the age�at�crossover� than their White counterparts�

	b
 If both the Black and White populations have the same mobility rates
a��� a��� and only di�er in their class�speci�c mortality rates� then all Black
cohorts older than the cohort containing the age�at�crossover must have�

i� Either lower class�speci�c mortality rates than their White counter�
parts� irrespective of the rate of selection�

ii� Or a lower selection rate 	due to the class with good health having a
higher death rate and the class with poor health having a lower death
rate
 compared to their White counterparts�

By symmetry� all Black cohorts younger than the cohort containing the
age�at�crossover must have�
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i� Either higher class�speci�c mortality rates than their White counter�
parts� irrespective of the rate of selection�

ii� Or a higher selection rate 	due to the class with good health having a
lower death rate and the class with poor health having a higher death
rate
 compared to their White counterparts�

Hence� the existence of a mortality crossover between the Black and White
populations is the result of a greater force of mortality selectivity or a smaller
rate of relative mobility to the class with good health� among the younger
Black population� the younger population is heterogeneous in the conditions
of life� where distinct vulnerability classes have been formed� The older Black
population� however� is more homogeneous in the conditions of life� higher rate
of relative mobility and a weaker force of selection
 the vulnerability classes are
not so distinct in the older population� Therefore� the appearance of a mortality
crossover is an indication of dissimilarity in the �vulnerability structure�of the
two populations�

�� For the mortality crossover to be a dynamic phenomenon� or more speci�cally�
for the Black�White age�at�crossover to increase to older age groups over time�
the following must hold�

	a
 If both the Black and White populations have the same class�speci�c mor�
tality rates ��� ��� and only di�er in their mobility rates� then the relative
rate of mobility to the class with better health must be lower for the Black
cohort containing the age�at�crossover� than their White counterparts�

	b
 If both the Black and White populations have the same mobility rates
a��� a��� and only di�er in their class�speci�c mortality rates� then the
Black population in the age group containing the age�at�crossover must
have�

i� Either higher class�speci�c mortality rates than their White counter�
parts� irrespective of the rate of selection


ii� Or a higher selection rate 	due to the class with good health having a
lower death rate and the class with poor health having a higher death
rate
 compared to their White counterparts�

Hence� the Black�White age�at�crossover increases� either as the rate of mor�
tality selectivity in the Black cohort containing the age�at�crossover increases

or as the relative rate of mobility to the class with good health slows down for
the Black cohort containing the age�at�crossover� more so than it does for the
White cohort� Therefore an increase in the age�at�crossover is an indication of
further extension of the increasing gap between the high� and low�vulnerability
classes� to the older Black population� As the older Black population becomes
more heterogeneous in the conditions of life and the vulnerability classes form
and extend to the entire population � the �vulnerability structure� of the Black
and White populations becomes more similar�

���



Chapter �

Conclusions

We introduced the notion of �transience in population dynamics� in the context of
within�host dynamic interaction of the immune system with a pathogen
 and popu�
lation health� We demonstrated that qualitative analysis of transience can be quite
enlightening and rich in information� We further reasoned that the information so
obtained� will not only enhance our understanding of the underlying processes� but
more importantly� it contains diagnostic values for making �timely� public health
intervention�

Our interest in investigating the impacts of transitory changes in the physical and
social environment on the dynamics of interacting components was spurred by the
following observations�

�� Although the mathematics of linear systems is well studied and looked upon as
trivial� it is in fact in an intuitive sense� neither understood nor trivial� This
is because despite the dynamics of the system being linear� the characteristic
polynomial is nonlinear
 thus the equations governing the eigenvalues are non�
linear� Therefore� having explicit solutions that are in terms of the eigenvalues
provides no comfort when trying to understand �why things are the way they
are� and �why things become the way they become�� Hence� the need for iden�
tifying the e�ect of each system parameter and the initial conditions� on the
components of a system and the system as a whole�

�� Although mathematical models of population dynamics have almost always fo�
cused on the long term behavior of the interacting components� but in fact
the steady state solutions are of little diagnostic value for the hosts invaded by
pathogens or for the population health� This becomes clear when we realize
that under transitory changes in the physical and social environment� our phys�
iology is subject to a wide range of �uctuations� some of which are related to�
or determinant of� disease processes and therefore detrimental to our health�

�� Although genetic predisposition and age are important causes of variation in the
distribution of vulnerability of a population� they are not the only ones� While a
substantial part of such variation is due to heterogeneity in the social conditions
of individuals� in public health and demography� the distribution of vulnerability
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is only understood in terms of age and the underlying genetics� Thus� despite
the relative abundance of mortality data and decades of investigations� our
understanding of the distribution of vulnerability of a population to disease
and death� remains incomplete�

The results of the qualitative analysis of transience in infectious disease and popula�
tion health� as developed in this thesis� can be summarized as follows�

�� We developed a dynamic model of within�host interaction between the immune
system and a pathogen to simulate the early dynamics of acute infectious disease
in the absence of a fully e�ective immune system� Consequently�

	a
 We identi�ed the amplifying e�ect of the absence of a fully operative im�
mune system on the pathogenesis of the initial inoculum at the start of
infection�

	b
 We derived two measures of transience hpeak and tpeak� to respectively mea�
sure the �the peak of infection� 	maximum pathogenic population
 and
the �time to peak of infection�� in terms of the initial inoculum� initial
immunity� and various infection�speci�c parameters of reproductive rate�
induction rate of the immune system� and e�cacy of the immune elements�

	c
 We made diagnostic use of such outcomes for devising e�ective� early in�
tervention strategies� as �how to intervene� and �when to intervene��

�� Motivated by the occurrence of a mortality crossover between the Black and
White populations of the United States� we developed a model of selection
partially o�set by mobility� to simulate the dynamics of vulnerability in a pop�
ulation heterogeneous in health� This abstract model mimics the mortality
experience of a non�aging cohort over time� which requires mortality to be a
monotonically decreasing process to a steady state� Therefore� to analyze the
dynamics of mortality�

	a
 We transformed the linear model of two ordinary di�erential equations into
a single quadratic di�erential equation� describing the rate of change in the
ratio of the two vulnerability classes� This was based on the realization
that in the absence of birth or migration in the model� the population of
each vulnerability classes should eventually become extinct� while the ratio
of the population of the two classes reaches a steady state�

	b
 We derived and analyzed the steady state population mortality based on
the steady state population vulnerability�ratio�

	c
 We proposed and implemented a transformation strategy for mapping mor�
tality data from the age�domain to the time�domain� This transformation
was the key intermediate step to making inferences about the underlying
processes governing the existence of crossover and its dynamics
 the model
was then used to analyze the trends in mortality data�
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	d
 We used the �explicit� steady state solutions for the vulnerability�ratio and
population mortality� derived in earlier sections� to make inferences about
the transient state of mortality at the crossover� We concluded that�

i� For the crossover to exist the Black population must be heterogeneous
in health among its younger population� up to and including the age
group containing the age�at�crossover� while the population older than
the age�at�crossover is more homogeneous in health� This means that
distinct vulnerability classes are formed in the Black population� but
are not quite extended to the entire population� These e�ects are
achieved by factors such as a higher selection rate among the younger
population and a lower selection rate among the older population
 or
a lower relative rate of mobility to the class with good health among
the younger population and a higher relative rate of mobility among
the older population�

ii� For the age�at�crossover to change� or more speci�cally for the Black�
White age�at�crossover to dynamically increase to older age groups�
the Black population in the age group containing the age�at�crossover
must become more heterogeneous in health� This means that vul�
nerability classes have been formed and are extending to the older
Black population as the population ages as a whole� These e�ects are
achieved by way of either a higher selection rate or a lower relative rate
of mobility to the class with good health� for the Black cohort con�
taining the age�at�crossover� compared to their White counterparts�

iii� We compared the mortality experiences of other pairs of populations
in the United States� Speci�cally� we compared the mortality trends
of the Native�American population with that of the White
 and the
mortality trends of the Hispanic population with that of the White�
We learned that�

A� For both pairs of populations� their age�speci�c mortality curves
cross�

B� The age�at�crossover appears to be �younger� for the Native�White
pair� compared to Black�White
 and it is �much younger� for the
Hispanic�White pair�

Open problems are�

�� To apply the results pertaining to the within�host early behavior of acute in�
fectious disease to infection�speci�c data� The goal is to ultimately classify
infections based on their transient properties� the critical period to intervene�
and plausible intervention schemes�

�� To extend the results pertaining to the within�host detection of the peak of acute
infectious disease to the within�population detection of the peak of outbreaks
of infectious disease� thereby facilitating the development of early surveillance
techniques�
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�� To extend the results of the Black�and�White mortality crossover to other pop�
ulations� thereby enhancing our understanding of the dynamics of mortality
crossover in its entirety� This will not only further re�ne our notion of the
multi�faceted distribution of vulnerability in a population� but it can also ed�
ucate the common sense as to how di�erent people� under di�erent social and
physical transitory changes of di�erent durations� age and die�
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