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Abstract 
The promise of the Electronic Medical Record (EMR) to store, retrieve, and communicate medical 

information effectively for a caregiver team has remained largely unfulfilled since its advent in the late 

1960’s.  Previous studies have cited that the communication function of the EMR is critical to its 

successful adoption.  Based on Mediated Agent Interaction theory, this study proposes a message-based 

model of transmission of clinical information in the EMR.  This model is implemented on an existing ICU 

clinical database, MIMIC II, to produce a database of transmission events.  Three metrics for information 

transmission are derived from exploratory and object-attribute analyses:  transmission volume, 

duration, and load (or rate).  Also derived is a set of features that includes patient’s clinical conditions 

(with acuity scores and mortality), caregiver type and distribution, care-unit locations, duration of care, 

and types of clinical records.  This list of features is reduced to a set of explanatory variables using 

correlation and univariate logistic regression.  Bayesian Network (BN) models are constructed to predict 

levels of the transmission metrics.  BN models show high prediction accuracy for measuring various 

levels of messaging volume and load, but marginal accuracy for messaging duration.  Results from these 

methods suggest that the volume of information transmitted in the ICU for adult patients is primarily 

through  charts entered by nurses and respiratory technicians (RTs).  The amount of data recorded by 

RTs increases for patients with higher acuity scores, but transmission from nurses decreases for these 

patients. The rate at which information is transmitted in the ICU for adult patients is  directly related to 

the rate at which notes and charts are entered, as well as the care-unit location where the data is 

recorded.   Further study is required to investigate factors influencing the length of time information is 

transmitted in the ICU.   This study’s findings are based on data recorded by caregivers as clinical 

observations.  Further study is necessary to corroborate these results with clinical communications data, 

including evidence of reception of clinical information by caregivers. The model proposed by this study 

may be used as a basis for future research and to discover other patterns of clinical communications. 

Thesis Supervisor:  Peter Szolovits 
Title:    Professor of Computer Science and Engineering 

Thesis Supervisor:  Roy Welsch 
Title:    Professor of Statistics and Engineering Systems  
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Introduction 
Although computerization of medical records has been a “work-in-progress” for over four decades (P.C. 

& McDonald, 2006), its adoption by clinicians has recently received far greater attention in the United 

States than in the past.  Healthcare administrators tout the benefits of the Electronic Health Record 

(EHR) by proposing that it will make clinical information accessible to the providers whenever and 

wherever needed in a comprehensible format, thereby reducing the likelihood of medical errors and 

lowering the overall costs of healthcare services (Halamka, 2008).  Clinicians, however, argue that 

current electronic medical record systems are complicated to use, may divert their attention away from 

patients at the point of care, and are expensive to incorporate into their practices (Bhattacherjee & 

Hikmet, 2007).  This longstanding debate, however, has not prevented the US congress from taking 

legislative action to incentivize all clinicians to employ EHRs in their practices.  The Health Information 

Technology for Economic and Clinical Health Act (HITECH) provision of the 2009 American Recovery and 

Reinvestment Act (ARRA) rewards healthcare providers who adopt “meaningful use” of EHR systems 

through Medicare and Medicaid reimbursements.  Clinicians who choose not to adopt EHR systems by 

2015 will be subject to reduction of such reimbursements progressively over time (HHS, Breach 

Notification for Unsecured Protected Health Information, 2009).  As a consequence, the clinician’s 

dilemma regarding EHRs is transforming from whether or not to adopt this technology to how to make 

effective use of this technology for clinical work.  In January 2010, the US Department of Health and 

Human Services (HHS) released a document which defines “meaningful use” of Electronic Health 

Records (HHS, Proposed Rules for Electronic Health Record Incentive Program, 2010).  A key element in 

this definition, cited in Table 2 of this document (and restated in Appendix A:  Federal Guideline for 

Meaningful Use of EMRs related to Clinical CommunicationA, is the technology’s effect upon 

coordination of patient care with the goal to “exchange meaningful clinical information among 

professional healthcare team” (HHS, Proposed Rules for Electronic Health Record Incentive Program, 

2010). 

This declaration highlights one of the key uses of the medical record - communication between 

providers.  As clinical care has evolved from a patient being seen by a single doctor to that of a caregiver 

team serving the needs of the patient, the need for coordination of care has been steadily on the rise 

(Miller, Scheinkestel, & Michele, 2009).  As medical professionals become increasingly specialized in 

their areas of expertise (for example, nurses as respiratory therapists), sources and volume of clinical 

information will also grow and require proper integration to ensure effectiveness.  In such a clinical 

environment, effective communication between providers is critical to the overall care for the patient.  

The repercussions of inadequate caregiver communication are several-fold:  

(a) Clinical outcome - An Australian survey found that communication issues are the most common 

cause of preventable disability or death, ranked higher than technical incompetence and neglect 

(Coiera, Jayasuriya, Hardy, Bannan, & Thorpe, 2002).  A 2005 study by the Joint Commission on 

Accreditation of Healthcare Organizations (JCAHO) reported that approximately 70% of all causes of 

sentinel events were due to lack of proper communication (JCAHO, 2005). 

(b) Cost of service - a recent study estimated that the American Health System could save $10B a year 

by improving communication (Sands, 2008). 
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(c) Quality of care - the efficiency of delivering health services is impacted by communication errors, 

which can lead to both patient and provider dissatisfaction (Edwards, et al., 2009). 

(d) Technology adoption – previous studies claim that interpersonal communication can serve as a 

barrier to adoption of technologies such as Electronic Health Records, as these technologies 

currently do not address the requirements of this use-case adequately (Coiera, When Conversation 

Is Better Than Computation, 2000). 

The last item noted above underscores the importance of the communication function of the electronic 

health record.  Clinical communication, as described in detail in the next section, requires both 

transmission and reception of clinical information between caregivers.   This paper proposes a model for 

analysis of clinical communication in the EHR.  It primarily focuses on the transmission aspect of 

communication in the EHR, by exploring patterns of transmission of clinical information. 

Thesis Organization 

This paper consists of six main sections, starting with this introduction to the topic and concluding with 

a summary of the results of this research and possible avenues for future research. 

The second section surveys the background knowledge on which this thesis research is based.  It 

describes an existing theory of multi-agent social interaction, the computing technologies underlying 

electronic health records, and an introduction to predictive, probabilistic models known as Bayesian 

belief networks. 

The third section serves as the foundation for this thesis work.  It proposes a model for transmission of 

clinical information based on the principles outlined in the second section.  It lists the assumptions that 

this model makes.  It depicts how transmission can be viewed, analyzed, and measured in the electronic 

health record through this model. 

The fourth section describes the tools and methods used to validate the proposed model.  The methods 

described include the implementation of the model on an existing clinical database and how the model 

is used to determine key factors influencing transmission of clinical information in an Intensive Care Unit 

(ICU). 

The fifth section evaluates the model against its implementation on an existing clinical database.  It 

describes the features discovered by the model that influence transmission and the performance of 

predictive models based on these features. 

The sixth section states conclusions drawn from the observations made in the previous sections.  It also 

cites the limitations of the analysis in this research and suggests possible areas for future research based 

on this work. 

The appendices support all sections mentioned above with evidential information.  The bibliography 

cites previous work referenced in this study. 
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Background 
Many studies have been conducted on doctor-patient communications, whereas, until recently, there 

has been relatively scant research on interactions between collaborators in a caregiver team.  This may 

be partially attributed to only recent development of the evolving role of nurses and technicians from 

that of subordinates to medical doctors and administrators (playing the “Nurse-Doctor game” , as 

Leonard Stein famously noted in 1968 (Stein, Watts, & Howell, 1967)) to partners in clinical decision 

making as nurse practionners, respiratory therapists, and other specialized professional roles (Germov & 

Freij, 2009).  The earliest work in clinical communications between providers can be found in 

publications by Enrico Coiera in the mid to late 1990’s.  As the model proposed by this thesis is based on 

much of his work, a brief introduction to his theory of mediated agent interaction is provided.  A 

glossary of clinical communication terms discussed in this section is also included in Appendix B:  

Glossary of Clinical Communication Terms.  

Mediated Agent Interaction Theory 
Studies in clinical communications have their foundations in computer and social sciences, from 

information science, telecommunications, and artificial intelligence to sociology, psychology, and 

linguistics.  In his seminal work on mediated agent interaction, Coiera proposes a computational model 

for interaction between agents (Coiera, Interaction design theory, 2002). 

In this model, an agent is operationally defined as an object, either human or non-human, that is 

capable of interacting with another. An interaction occurs when multiple agents exchange messages 

with one another.  A message is an object that encapsulates information and originates from a 

transmitting agent and is destined for either one or multiple receiving agents. communication is the 

process of delivering information between agents and requires a channel, a medium upon which 

information is passed (e.g., telephone, e-mail, and face-to-face are various types of media).  Figure 1 

depicts these basic components of agent-based communication.   

 

 

 

 

 When messages are sent from one transmitting agent to one and only one receiving agent, the 

communication mode is unicast.  When messages are sent by one transmitting agent and received by 

multiple receiving agents, the communication mode is multicast (as shown in Figure 2).  When messages 

are transmitted to all agents in the communication environment, the communication mode is broadcast. 

 

 

Figure 1:  Simplest model of agent-based communication:  messages are said to be unicast from the 
transmitting agent to the receiving agent. 

Transmitting 
Agent 

Receiving 
Agent Channel 
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Coeira’s Mediated Agent Interaction Theory differs from basic social interaction theory in that it makes a 

distinction between the agent and the cognitive apparatus through which the agent interprets 

information as knowledge. According to this view, the channel is not the only source of error in 

communication.  Differences in perception of information between agents can also contribute to 

communication error, as well as the environmental context in which the interaction occurs and the 

relationship between agents.  For example, the physician (or transmitting agent) sends a message 

“Check Pressure” to a nurse (or receiving agent) on a note (the channel).  Even if the message is not 

altered in the channel (e.g., the text remains legible and is read correctly), the physician may have 

intended to communicate “Enter the patient’s systolic and diastolic blood pressure readings into the 

chart”, whereas the nurse may have interpreted the message as “Make sure the patient’s ocular 

pressure is within the nominal range”.  These two perceptions of the message content are markedly 

different between the agents in this example, as the informational context is not apparent within the 

message itself (i.e., the type of pressure is not being explicitly referred to) and the functions of the roles 

of the agents is not mutually understood (i.e., the physician assumes the nurse will make a clinical 

decision whether the pressure reading fits within the nominal range). 

For the purpose of retaining a broader definition of mediated agent interaction, information is strictly 

defined as un-interpreted data passed between agents.  Information can reside on any medium in either 

structured or unstructured forms.  A datum is a single observational point (for example, a systolic blood 

pressure reading) (Shortliffe & Barnett, 2006).  Each agent possesses a model which serves as its own 

container of knowledge, or interpreted information.  In this way, knowledge is regarded as information 

structured within an agent’s model such that it can be interpreted according to the agent’s own 

perception. 

 

 

 

 

Transmitting 
Agent 

Receiving 
Agent 

Channel 

Receiving 
Agent 

Non-receiving 
Agent 

Transmitting 
Agent 

Receiving 
Agent 

Channel TX MODEL RX MODEL 

Figure 2:  Multicast agent-based communication. 

Figure 3:  Simple Model of Mediated Agent Based Communication. 
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Knowledge is said to be shared between agents, also known as common ground, when at least one of 

the agents’ models has gained knowledge as a result of their interaction.  The process of checking 

whether agents’ models agree with one another (i.e., validating shared knowledge) is known as 

grounding.  The grounding process has some associated cost, which comes in two forms:  (a) background 

information passed between agents, and (b) maintaining common ground between agents.  One 

purpose of grounding is to progressively facilitate interactions between agents, such that the cost of 

interaction is reduced over time.  grounding efficiency is the degree to which common ground conserves 

the amount of information sent during communication.  Interaction is ground-positive when grounding 

has shortened the message; ground-negative when it has lengthened the message; ground-neutral 

when message size is unchanged.  Coeira claims that interactions between agents in a given 

environment evolve to a state that has the lowest grounding cost, known as the Law of Mediated Centre 

(Coiera, Mediated Agent Interaction, 2001).  The underlying assumption is that at this equilibrium point, 

the cost-to-benefit ratio of grounding is globally optimal for all interacting agents. 

Clinical Databases 
Central to the model proposed by this thesis is the recording and interpretation of clinical information. 

Although, in practice, clinical databases consist of a blend of medical observations, such as body 

temperature readings, and opinions of medical professionals, such as diagnoses and prognoses, this 

paper adheres to the strict definition of information described in Mediated Agent Interaction Theory.  In 

this context, clinical information is defined as data that consists of a set of observations.  Each datum 

(singular of data) is regarded as a single clinical observation (for example, blood pressure reading, and 

patient’s age) (Shortliffe & Barnett, 2006).  Each observation is recorded only once, but may be viewed 

multiple times.  A clinical record is a collection of observations that has a common attribute.  For 

example, a patient’s demographic record consists of observations related to the patient’s biographic 

information, such as age, gender, and expiration status (“dead” or “alive”).  Records may be organized in 

a class-object hierarchical structure with “is-a” and “has-a” relationships with other records.  For 

instance, a patient’s record may consist of demographic, medication list, hospital admission records, 

which in turn consist of birth/death records, drug records, and census records, respectively.   Data 

within a record may be recorded at arbitrarily different times, not necessarily in chronological order.  

Data may also be viewed as part or whole of the record.  A clinical database is a collection of clinical 

records, which can be appended, modified, viewed, and searched at arbitrary times by its users.  

Individual observations may be grouped across various records to form a new record.  However, these 

summarized records are not considered part of the clinical database, rather a part of the clinical 

knowledgebase (Shortliffe & Barnett, 2006).  The database only consists of records that collectively 

comprise a unique set of observations.  Although there may be inherent redundancy in the knowledge 

derived from clinical information, each clinical observation is considered distinct on its own, with its own 

attribute, value, and recording time.  

Figure 4 describes an object-process model view of a medical record system, which illustrates the 

relationships between the key concepts described above.  Clinical observations regarding the patient are 

made outside the medical record system and only enter the system when they are stored as clinical 

records.  The internal value functions within a database benefit the caregiver, not only by providing 
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means of organizing clinical data (inserting, updating processes) and making it accessible (reading, 

searching), but also by providing a means of communication with other caregivers (inserting and 

updating by transmitters and reading and searching by receivers).  This latter aspect of the clinical 

database is the subject of this thesis. 

Medical Record System

Clinical Record

Clinical Database

Observation

Attribute

Value

Observation

Time
Observe

Read Search Insert Commit Delete

Interpret

SummarizeAnalyzeAlert

Clinical Analytics 

Software

Paper-based 

Medical Record 

System
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Figure 4:  Object-Process Model Abstraction of a Clinical Database within a Medical Record System 

There are two types of medical record systems in common use today:  (a) paper-based medical record 

system and (b) electronic.  The electronic Medical Record  has the additional value-related functions 

(summarization, analysis, and alert processes) to provide clinical decision support for the caregiver 

team.  The EMR clinical database is the focus of this study. 
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Bayesian Belief Networks 
Bayesian Belief Networks (BBNs), also known simply as belief or influence networks, describe a set of 

probabilistic inter-dependencies between an arbitrary set of random variables.  BBNs have been 

commonly used in bio-medical informatics as predictive models.   They are especially effective in 

prediction when the prior distributions of the explanatory variables are known (Ramoni & Sebastini, 

2003). 

A BBN consists of a set of nodes that represent variables and a set of directed edges between these 

nodes that connote conditional dependence relationships between nodes.  An example of such a 

structure, also known as a directed-acyclic graph (DAG) is provided in Figure 5. 

 

Figure 5: Example of a Bayesian Belief Network (AnAj, 2006) 

In the example above, the object-state “Sprinkler ON” is conditionally dependent only upon “Raining 

Weather” and “Wet Grass” is conditionally dependent upon both “Raining Weather” and “Sprinkler”.  

The conditional probability tables (CPTs) along with the network model can be used together to predict, 

for example, the likelihood of it raining, the grass being wet and the sprinkler being on, by calculating 

the joint probability as follows:  multiplying the conditional likelihood of each node given its parent, 

starting at the leaf node and progressing toward the root node.  The joint probability for this state of 

this example network is: 

P(Grass Wet=T,Sprinkler=T,Rain=T) = P(Grass Wet=T|Sprinker=T,Rain=T)*P(Sprinkler=T|Rain=T)*P(Rain=T) = 0.002 

In addition to analysis, the structure of a Bayesian network can be synthesized from underlying training 

data and its CPTs can be derived from this training dataset.  Once such a network model is learned, it 

can be used as a predictive model and/or used to analyze the conditional dependence relationships 

http://upload.wikimedia.org/wikipedia/en/0/0e/SimpleBayesNet.svg
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between attributes.  This thesis will develop BBNs for both purposes – to determine the key factors 

influencing transmission of clinical information and validating the model by evaluating their predictive 

performance. 

Clinical Communication Models 
The models proposed by this thesis comprise of: (1) an overlying architecture and framework for the 

study of clinical communications through the clinical database (herein referred to as the OSI Model of 

Interaction) and (2) an underlying model that describes the essential components of clinical 

communications (herein referred to as the Interaction Event Model).  Both models are based on the 

theories described in the previous section. 

OSI Interaction Model 
Agents in any communications system are said to interact with one another when they are exchanging 

messages with each other.   Messages contain content in the form of structured and unstructured 

information.  As a result, knowledge is shared (also known as common ground) when information that is 

interpreted by the transmitting agent is equivalent to that interpreted by the receiving agent. 

This thesis extends this notion of shared information and knowledge in Interaction Theory and applies it 

to clinical communications.  It proposes a layered model for clinical communication, similar to the OSI 

model used in telecommunications.  Figure 6 depicts this layered model, with each layer described from 

bottom up, as follows. 

At the lowest (or physical) layer, the apparatus used to exchange messages is described.  For instance, 

caregiver A transmits a message by writing a nursing note, which is read by caregiver B.  The internal 

processes for reading and writing the note are described within the physical layers of the transmitting 

and receiving agents.  The passage of the note through a message bin considers the note and the bin as 

components of the physical channel. 

At the second (or data-link layer), each message is framed within a start and a stop signal.  These signals 

are asserted by the transmitter and sensed by the receiver to indicate the boundaries of a message.  In 

this way, the integrity of the message can be assessed.  In the nursing note example, the starting and 

ending letters of the note represent the start and stop signals, respectively.  

The third (or network layer) defines the path for the messages and includes all intermediary agents 

involved in the interaction.  In this layer, messages may traverse multiple agents and may be 

transformed during transport.  For instance, the nursing note once written by caregiver A may be placed 

on a message bin, which is later sorted by caregiver C into a message box corresponding to caregiver B.  

Note that there are two separate channels in this example, the note in the message bin and the note in 

the message box.  Involvement of caregiver C is only to serve as a router of the message, but not as the 

receiving agent for the message. 

The bottom three layers require explicit indication of the channel underlying the communications 

protocol.  As such, information passed across these layers may be subject to channel noise, which can 
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modify the original informational content created by the transmitting agent.  The top four layers reside 

within the individual cognitive apparatus of the agents.  As such, they may include corrective 

mechanisms to overcome channel issues in communication. 

The fourth (or transport layer) describes mechanisms to ensure reliability of communication between 

the transmitting and the receiving agent.  These mechanisms may be incorporated through a pre-

defined protocol between the agents.  These protocols may be as complex as requiring several messages 

to be passed between agents, or may be more simply defined by inclusion of additional meta-data in the 

messages.  For instance, caregiver A may sign the nursing note before submitting it.  Caregiver B may 

check who signed the note in order to verify its authenticity and who to send a response to.  The implicit 

protocol here is that caregiver A must always sign the note before sending it.  

The fifth (or session) layer describes the starting and ending points for the entire interaction.  As social 

interactions may occur either formally or informally, these terminal points for a session may be as 

explicit as particular events that lead to the series of exchanges and terminated them, or they may be 

implicitly defined by absolute points in time.   When interactions occur in a formal session 

acknowledged by all agents involved, the session is said to be a communication script.  An example of 

such a script is patient discharge.  This session may include a series of messages shared among several 

members of the caregiver team, including recording observations from laboratory tests, implementing 

prescription orders, drawing up a discharge summary and instructions, and recording discharge time 

during release of admission.  Note that the starting and ending points of the session are defined by the 

institutional procedure for discharge that must be recognized by all agents involved. 

The sixth (or presentation layer) includes cognitive functions to interpret clinical information presented 

in the session layer as clinical knowledge.  If the interpretations are equivalent between transmitting 

and receiving agents, the clinical information is said to be understood as shared clinical knowledge; 

otherwise the information is misunderstood by the transmitting, receiving, or both parties.  Note that 

effects of channel noise in the lower three layers can also contribute to misunderstanding.  However, 

the misinterpretation of clinical information is the realization of this misunderstanding.  An example of 

such a misunderstanding is illegibility of a nurse’s progress note.  Illegibility may have had its source in 

either the process of writing the note, reading the note (physical layer), truncation of the note at either 

end (data-link layer), or deterioration of the note as it was scanned by the digital scanner (network 

layer).  However, the receiving agent may have either interpreted the information correctly or 

incorrectly depending upon cognitive function.  If the agent realizes that the information in the message 

is flawed, the agent may choose to either discard the information or seek an alternate session for 

acquiring the information. 

The topmost (or application) layer fits in the context of the role fulfilled by the agent to perform his/her 

service goal.  The application layer may introduce a priori expectations of the types of clinical 

information and knowledge available and comprehensible by the agent.  For instance, a respiratory 

therapist may be engaged in several communication sessions for a variety of patients during the course 

of a day to communicate knowledge specific to his/her area of expertise.  However, he/she may not 

comprehend or become involved in sessions that are related to physical therapy. 
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Although this model describes a framework to study all aspects of clinical communications, this thesis is 

selectively focused on information transmitted across the data-link and physical layers in a clinical 

database.  The next section describes how the model for transmission of clinical information maps to the 

Interaction Model. 

PHYSICAL PHYSICALMEDIUM:  Note, EMR, Phone, E-mail

DATA LINK:

Transmitting Agent

DATA LINK:

Receiving Agent
LINK:  Messages with framed information

NETWORK:

Intermediary Agent??
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Intermediary Agent??

NETWORK:  Route for Messages with framed 
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Communication Script
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PRESENTATION:

Transmitter’s Model

PRESENTATION:

Receiver’s Model
Clinical Knowledge

APPLICATION:

Transmitter’s Service

APPLICATION:
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Service Goals and Fulfillment

 

 

 Figure 6:  OSI Interaction Model for Clinical Communications 
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Interaction Event Model 
This thesis proposes that the components essential to understanding communications in the clinical 

database at Layers 1 and 2 of the Interaction Model are the same as those described by Interaction 

Theory.  Since clinical information is not being interpreted at these lower layers and it is assumed that 

the EMR does not transform the record content, there is no mediation of interaction in this model.  

Table 1 lists each component of Interaction Theory and its corresponding analog in the clinical 

communications domain. 

Interaction Model 
Component 

Clinical Database Communications 
Analog 

Component 
Sub-system 

Transmitting Agent Caregiver Agent 

Receiving Agent Caregiver Agent 

Channel Clinical Database Channel 

Communication Modes Unicast, Multicast, Broadcast Agent, Channel 

Message Content Record of clinical observations Message 

Message Type Record Type:  one of Note, Chart, 
Report, Admission, etc.  

Message 

Message Source Location where observation recorded Channel 
Table 1:  Mapping of Clinical Database Communications to Interaction Model 

Following the mapping described above, the clinical database is transformed into an Interaction Event 

database, where each record corresponds to an interaction message.  Whenever a caregiver records a 

set of observations, he/she is transmitting a message.  Whenever a caregiver views a record in the 

database, he/she is receiving the corresponding message.  Whenever a caregiver modifies (or updates) a 

record, he/she is receiving the message and transmitting another message in its place (known as “read-

modify-write”). 

Message Format 

 In order to realize this model described above, the clinical database must include meta-information to 

support identification and characterization of interaction events.  This meta-information is captured 

within fields included in the message format described in Figure 7. 

Msg ID CGTX CGRX Start Time End Time Location Subject ID Record Type Record ID

 

Figure 7:  Interaction Event Message Format 

Each field within a message is described as follows: 

 Msg ID – unique identifier for the message. 

 CGTX – unique code identifies the transmitting agent. 

 CGRX – unique code identifies the receiving agent(s).  Lists of agents can be defined as unique 

codes for multicast messages.  A universal code can be assigned for broadcast messages. 

 Location – unique code identifies where the message was transmitted from. 
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 Subject ID – unique code identifying the patient for which the message pertains.  This field is not 

functionally required, as the record ID may prove sufficient.  However, it is provided to facilitate 

implementation, in case record ID’s are duplicated across patients. 

 Record Type – identifies the type of record or set of observations.  This field is not functionally 

required, as the record ID may prove sufficient.  However, it is provided to facilitate 

implementation, in case record ID’s are duplicated across record types. 

 Record ID – pointer to locate the actual content in the message payload.  If coded uniquely 

across all patients and record types, it can eliminate use of the subject ID and record type fields.  

If not, it can be used in conjunction with these fields to location the set of observations in the 

message. 

If CGTX and CGRX are equivalent, then the message is said to be self-referential.  If the “Start Time’ and 

“End Time” fields are equivalent, then the message denotes a specific instant in time.  The “Location” 

field pertains to the source of the message, as the model assumes that the location of the destination is 

irrelevant information.  The “Record Type” may also be coded as categories of records (for instance, 

nursing notes, chart entries, medication lists, etc.).   

Messaging Objects and Attributes 

The Interaction Event Database provides the basis for analyzing clinical communication.  There are two 

types of analyses that can be performed given this database: 

(a) temporal/causal analysis – because messages have associated time-stamps, the temporal relation 

between messages can be analyzed.  For example, the dynamic interaction between a set of caregivers 

can be analyzed regarding a particular patient case.  Abstractions can be hypothesized and tested for 

these patterns of dynamic interactions, such as communications scripts. 

(b) object-instance-based analysis – a specific communication component can be chosen as a reference 

object and its relationships to other communication objects and their attributes can be examined.  For 

example, a specific patient can be chosen as the reference object and messaging attributes pertinent to 

that patient can be analyzed. 

This thesis will focus on the later type of messaging analysis, as it will explore the key objects and 

attributes relevant to transmission of clinical information.  Study of causal relationships discovered in 

messaging patterns is deferred for future work.  
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Object-instance-based analysis requires transforming the messaging information in the Interaction Event 

Database.  This transformation, also known as summarization, derives a set of attributes from the 

relevant objects.  Table 2 lists examples of a few such attributes. 

Attribute Object Messaging Component 

Location ID Visit Message Source 

Location Type Visit Message Source 

Caregiver ID Caregiver CGTX, CGRX 

Caregiver Role Caregiver CGTX, CGRX 

Caregiver Experience Caregiver CGTX, CGRX 

Hospital Admission ID Visit Record Locator 

Patient ID Patient Record Locator 

Patient Age Patient Message Content 

Patient Sex Patient Message Content 

Patient Conditions Patient Message Content 

Expiration Status Patient Message Content 

Acuity Score Patient Message Content 

Record Type Record Record Locator 

Record ID Record Record Locator 

Day of Week Visit Message Time 

Season of Year Visit Message Time 
Table 2:  Example List of Objects and Attributes for Clinical Messaging 

The list of objects and attributes specified above are not exhaustive by any means.  The attributes 

derived from these objects may generate additional objects and attributes.  The effect of attributes on 

other attributes and objects on other objects can then be analyzed using data modeling tools, some of 

which are described in the next section. 
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Methods and Tools 
As stated in previous sections, this thesis proposes to examine patterns of information transmission in a 

clinical database and derive the key objects and attributes that significantly influence various metrics of 

message transmission.  This section details the clinical database used to implement an Interaction Event 

Database.  It also describes the techniques used to detect patterns of transmission in the database.  In 

addition, it specifies data analysis methods to determine the objects and attributes that have an 

influence upon these patterns.  Figure 8 illustrates the entire process followed by this thesis from data 

collection to analysis and conclusions.  

 

Figure 8: High-level Methodology 
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Database Description 
This study makes use of the MIMIC II (Multi-parameter Intelligent Monitoring in Intensive Care) 

database, a collection of clinical records collected at the ICU in the Beth Israel Deaconess Medical Center 

in Boston, Massachusetts (Goldberger, et al., 2000).  These records have been made available for bio-

informatics research as part of the initiative to advance patient monitoring systems.  MIMIC II consists of 

two separate databases and a collection of dictionaries:  (a) a waveform database that consists of 

acquired discrete signals captured from monitoring instruments, (b) a clinical database that is composed 

of ICU clinical data, and (c) hospital archival information that includes definitions for codified data in the 

clinical database (Clifford, Scott, & Villarroel, 2009).  This study makes use of the clinical database and 

hospital archived information only. 

Corpus 

The MIMIC II clinical database is organized by patient records, where a patient directory consists of files 

pertaining to a particular patient’s records of a given record type.  Records in all files had been already 

de-identified for public use.  As such, COUHES authorization was not required to conduct this study.  At 

the time of use, the entire database comprised of records for approximately 26,655 total admitted 

patients, segregated into 5 batches of approximately 5000 patients each.  This study uses only two of 

these batches for a corpus with data for approximately 10,000 patients. 

Observation Types 

The corpus consists of the following types of observations for each patient.  All observations 

documented for a particular type are stored in the same file.  All files pertaining to a patient are stored 

in the same directory, with name assigned the patient identifier. 

 Additives – record of additives combined with medication to administer to the patient (for 

example, IV drip) during the patient visit. 

 Admissions – record of when patient was admitted to hospital and discharged and expiration 

status at time of discharge. 

 Chart Events – record of charted observations. 

 IO Events – record of items given taken in (such as fluids) and/or output from the patient (such 

as urine, stool, and blood).  This record type includes additives and deliveries. 

 Medication Events – record of all medications given during the patient visit. 

 Census Events – record of entry and exit events in all care-unit locations visited by the patient. 

 Deliveries – record of items administered to the patient during visit (e.g., IV infusion). 

 Patient Demographic Info – age, sex, and expiration status. 

 ICD-9 code – patient condition codes as per standard. 

 Note Events – nurse’s progress notes, discharge summaries. 

 Report Events – X-ray, EKG, EEG reports. 

 Total Fluid Balance Events – record of all fluids taken or given from/to the patient. 
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Dictionaries 

The following dictionaries are available for all coded data. 

 Caregiver – unique identifier for every caregiver referenced in the records, along with title (e.g., 

“RN”, “MD”). 

 Care-units – unique identifier for every care-unit location referenced in the records, along with 

location type; e.g., CCU, SICU, MICU, T-SICU. 

 Chart items – unique identifier for every type of chart event observed with text label and 

category; e.g., SAPS-I score recorded by Laboratory of Computational Physiology (LCP), T3 by 

Chemistry. 

 I/O items – unique identifier for every type of item taken out or given to patient, along with text 

description and category; e.g., CO Fluid as IV Infusions, Urine out. 

 Medication items – unique identifier for every type of medication administered, along with text 

description and category; e.g., Vivonex. 

The following dictionary was constructed manually: 

 Caregiver Roles – association of caregiver title to experience and role, along with text 

description.  Each unique title from the caregiver dictionary was entered into this dictionary.  

For each entry, several caregivers with the same title were searched through the notes and 

reports records to determine the type of role and experience indicated by the title.  For 

example, title of “MedStu” (a.k.a. medical student) denotes the role of “doctor” with experience 

as “student” and “LPN” (a.k.a. licensed practicing nurse) denotes the role of “nurse” and 

experience as “experienced”.  Appendix C:  Caregiver Role Dictionary displays all entries used in 

this dictionary. 
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Data Extraction 
Figure 9 shows the process used to extract messaging content from the MIMIC II clinical database.  The 

process can be divided into three stages, all of which are described in sub-sections below. 

 

Figure 9:  Data Extraction Process 
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Database Format Conversion 

All records and dictionaries of the MIMIC II clinical database are downloaded in tar-gzip compressed 

format from the physionet.org web-site (Mark, 2009)and installed on a local personal computer.  

Although the original repository is in Oracle database format, all record files are provided as flat text 

files in tabular format with columns delimited by four bars (‘||||’).  The structured records (chart 

entries, additive list, medication list, I/O events, delivery events, fluid balance events, admission, and 

patient demographic records are converted easily to tab-separated format (TSV).  On the other hand, 

notes and reports records contained plain-text within the four-bar delimiters and could span several 

lines.  An AWK script embedded in a UNIX bash shell script parses these notes and reports and extracts 

the plain text as a quoted string in a tab-separated column to allow it to be recognized as a table entry. 

Once all the records were converted to TSV format, they were loaded into mySQL database (MySQL, 

2009) using an SQL command file, which was generated by a shell script for an entire batch of patient 

records.  The SQL command was then executed within mySQL application to load the database. 

Message Extraction 

The Interaction Event database was constructed as a “big” Interaction Event Table within mySQL.  This 

table was created through automated generation of mySQL commands.  An excerpt of these commands 

is provided in Appendix D:  MySQL Commands to Construct Interaction Event Table.  The following 

assumptions were made in construction of this table: 

 MSGID is the primary key in the Interaction Event Database and was automatically incremented 

for each entry added. 

 CGTX was derived from the caregiver entering the observation into the record. 

 CGRX (Receiving Caregiver Agent) was assumed to be everyone, denoted as a signed 16-bit value 

of -1, as the messages are assumed to be broadcast.  This assumption had little effect on this 

study, as it is focused on transmission only. 

 StartTime was extracted as the start time of the observation.  In cases, where there is only a 

single timestamp provided for the observation, the StartTime is equivalent to the EndTime. 

 EndTime was extracted as the completion time of the observation.  In cases, where there is only 

a single timestamp provided for the observation, the EndTime is equivalent to the StartTime. 

 Location was derived from the care-unit provided where the observation was made. 

 Subject ID was extracted directly from the patient identifier included in the observation. 

 Record Type was assigned to the type of record being extracted. 

 Record ID was extracted from the item identifier, which was provided for every record type. 

The SQL command file for patients within each batch of records was automatically generated using a 

shell script to extract the messaging content from the mySQL database.  This command file was 

executed within mySQL to perform the construction of the Interaction Event Table. 
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Summarization of Tables 

In order to perform object-attribute relation analysis within practical limits of computational time and 

memory capacity, the “big” Interaction Event Table was reduced (or “summarized”) to a set of attributes 

and transmission metrics, as described in Figure 10. 

 

Figure 10:  Summarization Process 

The objects that were hypothesized to most influence message transmission patterns are:  

 Patient – certain characteristics of the patient may affect transmission of clinical information, 

such as clinical conditions, acuity scores, age, gender, etc. 

 Hospital Visit – circumstances of the hospital stay, including care-unit location visited by the 

patient, and total length of stay may provide additional context for transmission of information. 

 Caregiver – who is involved in the care of the patient (and their role and experience) may also 

affect the transmission of clinical information. 

 The following metrics for measuring various aspects of message transmission are proposed to be: 

 Message Volume – a count of the number of messages in the attribute relation, measures the 

level of transmission across these set of attributes.  

 Messaging Duration – time duration between the first and last message in the attribute relation, 

measures the transmission period across the set of attributes. 

 Messaging Load – message volume per unit time, the average rate of message transmission (or 

transmission flow rate)calculated as the number of messages counted during the time interval 

between the first and last message transmitted for the attribute relation during the patient visit 

(which approximates to the length of stay).  .  This method of load calculation tries to achieve 

close to an overall expected value for the message load during a patient visit. 



28 
 

The object features in the summarization table described here serve as a starting point for feature 

generation and selection, described in the next section. 

Data Preparation 
The summarized tables produced by the data extraction process are loaded as object relational 

structures into the ‘R’ statistical application (Hornik, 1998) in preparation for data analysis.   

Cleaning Process 

The statistical and graphical tools of the built-in ‘R’ packages are used to visualize the “raw” output of 

the data extraction process.  Table 3 summarizes the characteristics of the data-set and the figures that 

follow show the results of this visual analysis for the key object-attributes in the summarization table.  

 

Table 3:  Characteristics of dataset before and after “cleaning process”. 
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Figure 11:  Patient distribution by age segmentation (newborns vs. non-newborns) and Location
1
   

 

Figure 12:  Patient distribution by age (newborns vs. non-newborns) and clinical condition (ICD-9 code).
1
 

                                                         
1 Ordered by number of newborns from left to right and by adults from right to left 
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Figure 13:  Patient distribution by caregiver involvement.
2
 

A sharp distinction between two sub-populations of patients in the ICU database – newborns and adults 

– can be drawn from Figure 11 to Figure 13.  Newborns are seen predominantly by specialized nurses 

and doctors in the NICUs (neo-natal intensive care units) for a vastly different set of clinical conditions 

than adults.  As a result, the newborn population was cleaned from the dataset, leaving only the adult 

population as basis for analysis. 

Examination of the dataset and dictionary tables revealed that not all caregivers were assigned titles and 

not all care-units were assigned to records.  As such, the role and experience of these caregivers and 

locations where these messages were transmitted from could not be determined.  As a result, these 

entries were scrubbed from the summary tables.  In addition, a special caregiver title and care-unit 

location designated “LCP” (abbreviation for Laboratory for Computational Physiology) was also ascribed 

for specific sets of records (these records were also removed from the summary tables).  This 

designation was found to be assigned to chart entries corresponding to SAPS I scores, a measure of the 

acuity level of the patient’s conditions.  As this metric could have an effect on transmission 

characteristics, it was included as a feature in the data analysis.  However, since not all patients were 

assigned these scores, only those that were assigned were chosen in the final dataset for analysis. 

In summary, the following “cleaning” operations are performed on the summary tables: 

 Newborns of age zero were removed. 

                                                         
2 Ordered by number of newborns from left to right and by adults from right to left. 
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 Patients with age designated 200 yrs were removed (these patients were found to have been 

deliberately assigned for de-identification purposes for those above 90 years in age). 

 Care-unit and caregiver designated as “LCP” (code 20001) were removed. 

 The following caregivers for non-newborns were found to have unknown titles and were 

removed from the analysis:  4562, 4745, 4522, 4785. 

 Records with unassigned care-unit and caregiver identifiers were also removed from analysis. 

 Only patient s with recorded SAPS I scores were retained for analysis. 

Exploratory Analyses 

Following the “cleaning” process, the summarized tables were examined in two ways: (a) histogram (or 

frequency distribution) analysis and (b) visual analysis, both of which are described below. 

Histogram Analysis 

The set of features described in Table 3 are first analyzed by examining frequency distributions of adult 

patients, as illustrated in Figure 14 and Figure 15. 

 

Figure 15:  Adult Patient Distribution by Age 

The age distribution among the adult patients in this dataset is negatively skewed toward the senior 

group and is representative of the age distribution for the entire corpus of 25,852 patients (as specified 

in the MIMIC II User’s Guide).  This suggests that adults visiting the ICU are predominantly the elderly.   

Whether the age of the patient affects information transmission is unclear from this exploratory analysis 

and, so, is included as a feature for examination. 

Figure 14:  Adult Patient Distribution by Length of Stay 
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The patient’s duration of hospital visit (or length-of-stay – LOS) in this dataset is positively skewed 

toward the lower visit times and representative of the overall corpus.  This may be expected as 

admission for most ICU patients is for acute set of conditions, rather than longer periods of care 

required for chronic illnesses.  A logarithmic transformation is needed to create a more normal 

distribution for further analysis. 

 

Figure 16:  Adult Patient Distribution by Day-of-Week Figure 17:  Adult Patient Distribution by Season-of-Year 

The days of the week and seasons of the year were preserved across the date-shift algorithm used to 

de-identify the database.  The distribution of patients in this data-set is slightly higher during mid-week 

and a bit lower during the week-end, however not substantially.  It is worth exploring further whether 

information transmission is affected by the day-of-the-week, as the patient load appears to be slightly 

different. 

In this dataset, there also appears to be slightly more patients during the winter and spring than in the 

summer and autumn.  Like day of week, it is also worth exploring whether the season has an effect on 

message transmission due to this difference in patient load. 
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The number of nurses involved in adult patient care in the ICU is far greater than any of the other 

caregiver types.  Somewhat surprising is the lower ranking of doctors, even lower than respiratory 

technicians (RT) and patient care associates (PC).  This result raises the question:  does the nature of the 

caregivers job function affect transmission?  Further analysis for this feature is required to answer this 

question. 

 

Figure 19:  Adult Patient Distribution by Caregiver experience 

Figure 18:  Adult Patient Distribution by Caregiver Role 
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Adult patients seen by senior and experienced professionals far outnumber those examined by 

their junior and student counterparts.  If the number of patients seen by the more experienced 

professionals is far greater, then do the amount, time, and rate of information differ for cases in 

which the students and junior professionals are engaged?  To investigate this further, the 

caregiver experience is retained as a potential explanatory variable. 

 

Figure 20 - Figure 21:  Patient Distribution according to first and last SAPS I scores taken. 

As only the patients with recorded SAPS I scores were selected in the dataset, several patients 

were recorded more than once, but the vast majority had only one SAPS I score recorded.  For 

the former cases, only the first and last score were taken.  For the latter cases, the first and last 

scores were assigned to the same value.  The patient distribution was, for the most part, 

preserved across first and last, probably due to the bias toward recording of a single score only.  

However, the overall distribution is also similar.  Based on the distribution described in the 

MIMIC II User’s Guide, it is also representative of the overall corpus. 
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Data Visualization 

In addition to histogram analysis, the features in the dataset are also visually examined using the 

Visualization toolset in the Weka suite of software tools (Hall, et al., 2009).  Variables are graphed in 

three dimensions (2 as vertical and horizontal axes and 1 using color) to search for possible patterns 

associated with transmission metrics, as illustrated from Figure 22 to Figure 34. 

 

 

 

 

 

Figure 22:  Message Load vs. Message Count by record type. 

Figure 22 is a plot of the number of messages recorded per hour against the number of messages, with 

those samples color-coded pertaining to the following record event categories described as follows:  : 

 IO [in BLUE] – additive, delivery, I/O, and total fluid balance events. 

 Chart [in GREEN] – chart events. 

 Rx [in RED] – medication events. 

 Note [in BLACK] – note and report events. 

As shown in Figure 22, the message load appears to be spread uniformly across all record types.  

However, at volume above 2200 messages, only the number of chart entries during patient visits is 
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visible.  This result indicates that charting load  may has a significant influence (and perhaps sole 

influence) on the overall message volume and load at higher volumes. As such, it should be included as 

an explanatory variable for further analysis. 

 

 

 

Figure 23:  Message Count vs Record Type by Caregiver Title 

Figure 23 is a plot of the count of the messages transmitted against the type of record with those 

samples pertaining to a particular caregiver color-coded according to the legend..  Clearly, the chart 

entries reach higher messaging volumes, while the other record types do not extend beyond 

approximately 4000 messages.  Plausible explanation for this pattern could be that the amount of 

charting may be at the discretion of the caregiver, whereas institutional procedural constraints may be 

limiting the other types of recording.  In addition, nurses [in BLUE] are pervasive in transmitting 

information for all record types, whereas respiratory technicians (RT) [in RED] only record chart entries 

and notes.  Examining the nature of these technicians’ notes, it appears that notes titled as “Respiratory 

Care” notes have been entered, which implies that these entries may be procedurally entered by these 

professionals, just as physicians enter discharge summaries..  In addition, presence of entries recorded 

by clinical associates is visible for all types, albeit sporadic.  Influence on message transmission at higher 

levels may be due to the record type as a chart and/or job function as a nurse.  Both these features, 

record type and job function, are retained for further analysis. 
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Figure 24:  Message Count vs. age by patient gender (Male: RED, Female: BLUE). 

Figure 24 is a plot of the number of messages transmitted against the age of the patient.  The message 

volume appears to be uniform across all ages and by gender and restricted to below, suggesting that 

these features may not have a significant effect on messaging volume.  Many of the outliers are in the 

middle-aged adults between 45 and 60 years in age, which could indicate that certain event(s) may have 

triggered the onset of extra recording for these patients.  Further investigation regarding this pattern is 

outside the scope of this study.  
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Figure 25:  Message Load vs. Age by  care-unit location 

Figure 25 is a plot of the average number of messages per hour during a patient visit against the age of 

the patient, color-coded by the care-unit in which the patient was cared for.  From the clustering of 

patients evident in this plot, age and message load appear to vary by type of care-unit location.  Trauma 

patients [in BLACK] appear to be younger in age.  On the other hand, the oldest patients tend to visit the 

cardiac units.  There is also a large population of middle-aged adults in their late thirties and forties who 

are seen in the coronary and cardiac surgical ICUs.  These adults appear to receive a lot of attention as 

the rate at which information is gathered is high compared to patients of other age groups.  For further 

analysis of whether age and care-unit location influence message load, a breakdown of care-unit types is 

necessary to draw out statistical associations.  
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Figure 26:  Message Load vs. Messaging Time by care-unit locations. 

Figure 26 is a plot of messaging rate against messaging time for adults in various care-unit locations 

(color-coded).  The general trend observed is that messaging time and load appear to be inversely 

related, which supports the calculation of the  load as (= volume / time).  

In addition, certain care-unit locations appear to have bias toward messaging duration and others for 

messaging volume. For instance, messaging load appears lowest and messaging time highest for those 

adults visiting the T-SICU [in BLACK], which suggests that time may be more influential than volume for 

these patients.  In contrast, messaging duration is much lower for those visiting the CCU [in RED], with 

messaging load almost the same, which suggests that volume may be the over-riding factor.  These 

results suggest that the care-unit location has some degree of influence on these metrics, and should be 

retained for further analysis.  
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Figure 27:  Message Load vs.  Initial SAPS I score by Expiration Status (Died: RED, Survived: BLUE) 

Figure 27 is a plot of the messaging load against the initial SAPS I score assigned to the patient, color-

coded with the mortality status of the patient at the time of discharge.  As depicted, the expiration 

status is clearly associated with higher SAPS I scores.  This is expected, as SAPS I measures the acuity 

level and risk of mortality.  With respect to message load, those patients that died and had a higher 

SAPS I score did not necessarily have high transmission loads,  as there are quite a few cases with low 

and medium message loads on the right side of the plot.  Relative to patients with lower SAPS I scores, 

there does appear to be a concentration of patients that had passed away with higher message loads 

(top-right of the plot), which suggests that the acuity score may not have been fully indicative of the 

mortality of these patients, but rate of transmission of information was high.  Although this sub-

population of patients is not focused upon in this thesis work, it poses an interesting area for further 

research to characterize this set of patients. 
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Figure 28:  Message Count vs. Initial SAPS I score by Expiration Status (Died: RED, Survived: BLUE) 

Figure 28 is a plot of messaging volume against the acuity score of the patient.  In contrast to the 

uniformity of message load at higher SAPS I scores as depicted in Figure 27, messaging volume does 

appear to be relatively low for these expired patients with high SAPS I scores.  This pattern may be 

attributed  to the lower messaging time observed for these patients in Figure 29, as a shorter amount of 

time would leave little time to gather clinical information for this patients. The messaging volume does 

appear to be higher for a cluster of patients with mid-ranged SAPS I scores (top-middle of plot).  Most, if 

not all, of these patients appeared to have a positive expiration status.  The reason for this pattern is 

unclear and merits further analysis.  Although this sub-population of patients are not investigated in this 

study, it poses as an opportunity for future research.  
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Figure 29:  Messaging Time vs. Initial SAPS I score by Expiration Status (Died: RED, Survived: BLUE). 

Figure 29 is a plot of the messaging time against patients’ acuity levels.  Like messaging volume, the 

messaging time appears to be reduced for patients with higher SAPS I scores (bottom right of plot).  This 

result could be attributed to a variety of reasons, including shorter length of stay for these high-risk 

patients.  Further analysis is necessary to determine if this is the case.  
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Figure 30:  Message Count vs. Initial SAPS I score bycaregiver type. 

Figure 30 is a plot of the messaging volume against the initial SAPS I score assigned to the patients, with 

the designated caregiver illustrated in color.  Somewhat surprisingly message count (or volume of 

transmission) is not affected by the initial SAPS I score, nor the caregiver title, as it appears mostly flat 

across the entire range of scores (with a slight dip toward the higher end).  There does appear to be a 

predominance of respiratory technicians [in BLUE] for patients with initial SAPS I scores above 30, with 

reduced transmission from nurses and other caregivers (bottom right of plot).  The reason for this is 

unclear, but merits further analysis.  As such, the first and last SAPS I scores are also included as possible 

explanatory variables. 
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Figure 31:  Initial SAPS I score vs. Record type across various caregiver types. 

Figure 31 illustrates the combined findings of  

Figure 23 and  

Figure 30, where respiratory technicians predominantly transmit clinical information through chart 

entries and respiratory care notes, whereas nurses employ all records without bias toward any specific 

type, regardless of SAPS I score.  In addition, the respiratory technicians are engaged at higher SAPS I 

scores, more so than other types of caregivers.  Clinical care associates transmit information primarily by 

recording I/O events and chart entries, less so by notes and other forms.  
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Figure 32:  Initial SAPS I score vs. Location Type by caregiver type. 

Figure 32 is a plot of the initial SAPS I score assigned to patients against the care-unit in which they are 

seen, color-coded by the caregiver that observed them.  As shown on the right-hand side of the plot, 

there appears to be a shortage of records for those adult patients visiting the M-CCU.  In addition, there 

appears to be a slightly greater involvement of clinical care associates [in BLACK] in the MSICU and the 

MICU, as compared to other locations.  Also, respiratory technicians are heavily engaged for patients 

with high SAPS scores in the MICU, C-SICU, CCU, and CSRU, less so in the T-SICU and MSICU.  To 

investigate possible reasons for these patterns, the location type will be included as a feature for further 

analysis.  
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Figure 33:  Message Load vs. ICD-9 Category across various care-unit locations 

Figure 33 is a plot of the messaging load against the ICD-9 categories to which patients’ clinical 

conditions are assigned.  The ICD-9 patient condition codes are categorized using the standard ranges 

provided in the tabular index (NCHS, 2009).  Sub-ranges are included where conditions in these ranges 

were found to be of more frequent occurrence than the inclusive range.  In addition, the most frequent 

specific clinical conditions (those with a single ICD-9 code describing the condition) are cited in the table 

within Appendix E:  ICD-9 Categories with Codes and Predominant Conditions, which also indicates the 

label (prefixed with ‘Y’) assigned to each category. 

All code ranges described in Appendix E:  ICD-9 Categories with Codes and Predominant Conditions were 

plotted against message load and color-labeled with location in Figure 33.  Recognizable patterns are: 

 Trauma patients (those in range Y23) seen in the T-SICU [in BLACK] is neither associated with a 

higher nor lower message load, tending rather toward the mid-range. 

 Cardio-vascular patients (those in ranges Y7 through Y10) seen in the CCU [in RED] and C-SICU 

[in MAGENTA] appear to have higher associated message transmission loads. 

As particular patient conditions appear to have an influence on messaging load, the ICD9 category was 

included as a “macro-feature” and specific conditions of higher frequency within these ranges (specified 

in the table in Appendix E:  ICD-9 Categories with Codes and Predominant Conditions) were also 

included as features.  The list of all selected features is described in the following section. 
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Data Analysis 

Detailed Description of Selected Features 

Following the exploratory analysis, the list of object-attribute relational features was modified from 

Table 3 to include additional new attributes and eliminate a few insignificant ones.  The table in 

Appendix F:  Selection of Features for Messaging  describes the entire set of features used for statistical 

analysis.  These features are also described in the following sub-sections by object category. 

Patient Attributes 

Age 

Patients chosen for data analysis are between 15 and 90 years in age.  As this attribute has a continuous 

value between these limits, this variable was converted into discrete values, as described below. 

Sex 

Patients chosen are either male (value of ‘M’) or female (value of ‘F’). 

Expiration Status 

Patients chosen had either expired (value of ”Yes”) or not (value of “No”) during the admission period.  

SAPS I Scores 

Most, but not all, patients were assigned a Simplified Acuity Physiology Score (Type I).  Some patients 

were scored several times during hospital admission, but most patients were scored only once.  In this 

later case, the first and last scores have equivalent values.  The dataset consists of patients with at least 

one score assigned.  The SAPS I calculate tries to predict the mortality of the patient based on 

physiological parameters, such as body temperature, white-blood-cell (WBC) count, and blood pressure.  

The result is an integral value, with higher scores indicating greater risk of mortality.  Prior analyses on 

the entire cohort of patients in this database have shown that the mortality can be greater than 50% for 

patients with a SAPS score of above 33 (Clifford, Scott, & Villarroel, 2009). 

Clinical Conditions 

The clinical database includes ICD-9 codes recorded for each patient, which indicate the clinical 

conditions experienced by the patient.  The dataset utilizes these codes by grouping them by range, as 

described in Appendix E:  ICD-9 Categories with Codes and Predominant Conditions, and then selecting 

the most frequently occurring codes.  The list of specific codes includes:  diabetes, sepsis, trauma, 

hepatitis, HIV, hypercholesterolemia, anemia, alcoholism, tobacco use, Alzheimer’s, depression, heart 

failure, hypertension, acute myocardial infarction, atherosclerosis, cardiac dysrythmia, pneumonia, 

acute respiratory failure, acute renal failure, urinary tract infection, and cardiac complication.  Each of 

these codes is assigned a binary value: ‘TRUE’ if patient has the condition, ‘FALSE’ otherwise. 
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Caregiver Attributes 

The clinical database only provides a single piece of information regarding each caregiver; his/her job 

title abbreviation is stored in a dictionary.  Two attributes were generated from this title information:  

(a) the role of the caregiver and (b) the professional experience of the caregiver.  Both assignments are 

described in Appendix C:  Caregiver Role Dictionary. 

 

 

Figure 34:  Number of Caregivers Recording Entries vs. Number of Patients 

Caregiver Role 

All possible roles assigned to caregivers are described in Table 4.  The assignment based on title was 

validated by looking up references to the caregivers assigned the title in the database and checking 

whether the context of these references fit the role connoted by the title.  For instance, “RN” is 

hypothesized to be an abbreviation for “registered nurse”.  To validate this assignment, several 

caregivers holding this title were queried in the database.  As many of these caregivers had entered 

“nurse’s progress notes” for several patients,   designation of “nurse” as a role for this title was logical.  

Similarly, “RT” is assumed to be an acronym for “respiratory therapist”.  Upon verifying against the 

database, caregivers of this title entered “respiratory care notes” within the record, which provides 

sufficient evidence for this assignment. 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 500 1000 1500 2000 2500 3000 3500

N
u

m
b

er
 C

ar
eg

iv
er

s

Number Patients



49 
 

 

Role Title(s) ICU Function 

Administrator Admin, CsMngm, DirHCQ, PrADM Management 

Associate CRA, NA, PA, PA-C Physician’s, Nurse’s Assistant  

Dietician DietIn, MS-RD Nutritionist 

Doctor DR, DO, MD, MedStu, Resident Physician 

Medical Technologist BSMT, MTASCP Technician 

Nurse RN, LPN, NP, CCRN, StuRN Nurse 

Patientl Care Associate PC, UCO/PC, CoWkr, PCT Also called Clinical Care Associate 

Pharmacist PhaD, Ph, RPH, RPHS, StPHA Formulate Drugs 

Rehabilitation Specialist OTR/L, PT, PTA Physical and occupational therapy 

Researcher LCP Laboratory for Computational 

Physiology only 

Respiratory Therapist CRT, RRT, SRT Respiratory care 

Social Worker LICSW, MSWint Social Services 

Table 4:  Caregiver role descriptions 

Caregiver Experience 

Like the role of a caregiver, the experience of a caregiver is extrapolated from the job title.  The 

designation of “student” is given to a caregiver when the title includes some indication of student (for 

example, “MedStu”).   The designation of an “experienced” professional is reserved for those caregivers 

that have certifications or licensure to perform their duties.  The designation of a “junior” professional is 

assigned to those that have recently started a salaried position (for example, “interns”).  The designation 

of a “senior” professional is assigned to the remainder. 

Visit Attributes 

Day of Week 

As the day of the week is preserved in the date-shift algorithm used for de-identification of clinical 

records, it is back-calculated from the date indicated on the record.  It is also used to calculate an overall 

count of the number of days in the week the patient has been admitted in the ICU for the visit.  In this 

way, it is indicative of length of stay, at the granularity of days. 

  



50 
 

Season of Year 

As the season of the year is preserved in the date-shift algorithm used for de-identification of clinical 

records, it is back-calculated from the date indicated on the record.  It is also used to calculate an overall 

count of the number of seasons of the year the patient has been admitted in the ICU for the visit.  In this 

way, it is indicative of length of stay, at the granularity of two-and-half months. 

Length of Stay 

The length of stay, also known as the total admission time, is the entire duration of admission from the 

visit.  It lasts from time of admission to discharge.  Since it is a continuous variable, variations using 

logarithmic transformations and nominalization are also used as analogs of this variable. 

Locations and Types 

The locations within the ICU, or care-units, are coded within the clinical database.  In addition, a care-

unit dictionary provides a translation from the code to the type of unit.  All location types referenced in 

the datasets are described in Table 5. 

Abbreviation Description Function 

T-SICU Trauma Surgical Intensive Care Unit Monitoring and treatment for patients with 

injuries. 

CSRU Cardiac Surgery Recovery Unit Monitoring and treatment of patients following 

surgery for heart diseases, lethal arrhythmias. 

CCU Coronary Care Unit Care of patients with heart attacks, unstable 

angina, and other cardiac conditions. 

MICU Medical Intensive Care Unit Monitoring and care for patients with lung, 

kidney, liver, GI, blood conditions and cancers. 

C-SICU Cardiac Surgical Intensive Care Unit Treatment of patients with complex heart 

procedures, including open-heart surgery, 

transplantation, and implantation of ventricular 

assist devices.  

M-CCU Medical-Coronary Care Unit Care of patients with vascular conditions. 

M-SICU Medical-Surgical Care Unit Care of patients with severe respiratory failure, 

septic shock, and surgical procedures, such as 

intra-abdominal and orthopedic. 

Table 5:  Types of Care-unit Locations 

Each of these location types is included as a feature for each patient with a binomial value (‘TRUE’ if the 

patient was seen in this type of location and ‘FALSE’ if the patient was not seen).  In this way, the 

location type can be categorically analyzed across patients. 
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Transmission Attributes 

Record Types 

The types of records in the clinical database are equivalent to the types of observation events recorded 

by the caregivers.  This list of record types is listed in Table 6. 

Record Type Observations contained Types of Values 

Additive Amount 
Doseunit 

Numeric 
Nominal 

Chart 2 value types 

2 values 

Coded 

Numeric 

Delivery Rate 

Rate Units 

Numeric 

Nominal 

I/O Amount 
Doseunit 

Numeric 
Nominal 

Medication Volume 
Dosage 
Solution Type 

Numeric 
Numeric 
Nominal 

Note Unstructured, uncoded, unlimited Plain text 

Report Unstructured, uncoded, unlimited Plain text 

Table 6:  Types of Records in the Clinical Database 

Each type of record has an associated count, indicating the number of entries recorded for the type.  

This continuous variable also has other analogs which use logarithmic transformation and discretization 

of various types. 

Volume 

Since each observation event or record entry is regarded as transmission of a single message, a count of 

the number of messages can be tallied during any given time period.  The total message count during a 

visit is equal to the number of recorded entries during the visit.  This metric, however, is not equivalent 

to the amount of information transmitted, as this would require the total number of observations, or 

observation volume, to be considered.  This observation volume is not used in this study, as it was not 

feasible to code the vast number of note and report records by observation.  Rather, the information 

volume is estimated using the word-count in these plain text records and a value of one (1) unit for all 

other record types.  This gross metric is limited to comparison of relative amounts of information within 

a certain record type (for example, a note record with word count higher than another is assumed to 

include more observations).  This metric is not used to compare estimates across record types (for 

example, a single observation recorded in a chart cannot be compared to a report record with a 

particular word count).  Due to the inaccuracy of the estimates of note and report observations, the 

estimated total observation volume is a gross estimate of volume of information and should not be 

interpreted in terms of absolute numeric value; rather, it may only be used to compare in relative terms 

(for example, patient A is in a higher segment of total observational volume than patient B within the 
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same dataset).  Contrasting the two metrics, the messaging volume is a more reliable indicator of 

transmission volume as I/O volume, whereas the estimated observational volume is a less reliable 

indicator of information volume.  This study primarily focuses on message volume. 

Duration 

Since each observation has an associated timestamp and the admission and discharge times are also 

known, it is possible to determine the times of the first and last message (or observation event).  The 

absolute difference between these two values indicates the total messaging period during the patient 

visit.  This metric can be regarded as the active transmission period. 

Load (or Rate) 

The transmission load (or transmission rate) may pertain to either an estimate of the total observational 

content or the total message content.  The former is based on the estimate of the observational volume 

and the later based on the message volume.  In either case, the calculation is based on: 

Load (or Rate) = Volume / Duration 

The duration is taken as the time interval between the first and last message.  In this way, the load is 

calculated as the expected average rate of information flow during a patient visit. 
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Feature Analysis 

The features resulting from the exploratory analysis described in the previous section are processed in 

three stages.  First, the continuous response variables (i.e., messaging metrics – volume, duration, and 

load) are converted to categorical variables covering ranges of values in order to allow them to be 

eventually input into the Bayesware software package to generate network models.  Then, the input 

features are evaluated individually against these transformed variables using logistic regression, so  that 

they may be individually screened for association with the target variables.  The features that are found 

to be statistically significant are kept for further analysis and those found insignificant are eliminated, as 

they indicate no effect on the response variable.  The remaining list of features is further reduced by 

removing correlates of the key variables, so that they do not overshadow the effect of the primary 

explanatory variables.  This final set of explanatory variables (listed in Appendix F:  Selection of Features 

for Messaging ) is used for construction of the predictive models described in the next section.  

Discretization of Transmission Metrics 

All three types of messaging metrics are continuous variables that hold positive real values.  To facilitate 

generation of the Bayesian prediction model using the Bayesware software package (Sebastiani & 

Ramoni, Bayesware, 1999-2000), these variables are discretized (or “binned”) into ranges of values.  

Although the software provides its own utilities for quantization, the discretization step was performed 

separately at earlier stages of analysis, so that the variables are characterized as early as possible and 

any biases are discovered earlier rather than later.  This binning process is unique to each metric, based 

on its distribution in the dataset. 

Transmission Volume 

The transmission volume is measured by the following metrics:  (a) the number of messages transmitted 

during the admission period, and (b) an estimate of the number of observations by record type 

transmitted during the admission period.  The message count metric follows a severely positively 

skewed distribution, as shown in Figure 35. In order to ensure that the skew does not obfuscate the 

analysis, a logarithmic transformation was applied, as shown in Figure 36.   

Figure 36:  Frequency Distribution of Transformed Message Volume 
  using Natural Logarithm. 

Figure 35:  Frequency Distribution of Messaging Volume 
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The resulting non-skewed natural logarithmic values were then equally split into 5 bins (or quantiles) 

with equal number of patients (uniform frequency distribution).   The lower and upper quantiles were 

retained and the middle three quantiles were combined to form a mid-range, resulting in a 3-class 

variable.  The majority of the patients in this mid-range are between approximately 650 and 5000 

messages. 

Similarly, the estimated number of observations is also transformed logarithmically for each record type 

to account for the positive skew, as shown in Figure 38 to Error! Reference source not found.. 
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Figure 39:  Frequency Distribution of Natural Logarithm of 
   Estimated Total Number of Observations 

Figure 38:  Estimated Total Number of Observations 

Figure 37:  Estimated Number of Note Observations 

Figure 40:  Frequency Distribution of Natural Logarithm of 
    Estimated Note Observations. 
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The transmission duration is measured as the time period between the first and last message during the 

patient’s visit.  Like transmission volume, this metric also follows a highly positively skewed distribution.  

As such, it requires logarithmic transformation to remove the skew. 

The transformed messaging duration values were also split into 5 bins (or quantiles) with equal number 

of patients (uniform frequency distribution).  The lower and upper quantiles were retained and the 

middle three quantiles were combined to form a mid-range, resulting in a 3-class variable.  The majority 

of patient cases in this mid-range had a messaging time between 4 to 10 days, similar to the length of 

stay. 

Figure 41:  Frequency Distribution of Messaging Time Figure 42:  Frequency Distribution of Natural Logarithm of 
  Messaging Time 
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Transmission Load 

Unlike the other two metrics, the transmission load, measured as number of messages over the 

messaging period, follows a slightly positively skewed distribution.  When measured in observations per 

messaging period, the distribution is normal with high kurtosis (longer tails and less flat on top). 

 

 

 

 

 

 

 

 

 

 

The estimated observational load (based on word count for notes and reports) is in the majority 

between 15 and 50 per hour, the estimated note observational load mostly between 4 and 20 per hour, 

and the estimated chart observational load is mostly between 9 and 40 per hour.  Due to the longer tails 

in the observation loads, a log transformation is performed on the “raw” calculated values.  These 

Figure 43:  Frequency Distribution of Message Load 

Figure 45:   Frequency Distribution of Natural Logarithm 
   of Estimated Observation Load (per Hour) 

Figure 44:  Frequency Distribution of Natural Logarithm of  
  Estimated Note Observation Load (per Hour). 
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metrics are each directly segmented into 5 equal bins (or quantiles) for subsequent analysis.  The lower 

and upper quantiles were retained and the middle three quantiles were combined to form a mid-range, 

resulting in a 3-class variable.  The message load in this mid-range is between 10 and 50 messages per 

hour for the majority of patient visits.   

Attribute Elimination 

Each of the possible explanatory variables is individually evaluated for significance with the transmission 

response variables.  A univariate logistic regression model is used to perform this evaluation, followed 

by the Wald test to select features based on significance.  The Wald test calculates a Z score based on 

the logit coefficient normalized against the standard error.  An associated p value is also computed to 

test significance of the Wald-Z score.  A high absolute Z value with a low p-value indicates that the 

variable is significantly related to the response metric.  A positive Z value indicates that the variable is 

directly related to the response metric, whereas a negative Z value suggests negative correlation.  Those 

variables that are found to have low significance associated with their Wald-Z scores (p >= 0.05) are 

eliminated and others found to have more significance (p < 0.05) are retained; i.e., univariates that are 

at least 5% likely to be unassociated with the response variable are removed.  Although this approach 

reduces the complexity of the model efficiently, it has the disadvantage of eliminating attributes though 

they may potentially prove significant in concert with other variables.  A forward/backward search 

algorithm using multi-variate regression is an alternate means of performing feature reduction. Due to 

time constraints, univariate elimination is selected over the multi-variate method.  Following the 

elimination round, all remaining explanatory variables are ranked by Wald-Z scores.  

Attribute Selection 

Even after eliminating features based on significance levels, the number of attributes remains too large 

for a reasonable predictive model.  The curse of dimensionality dictates that the performance of a 

predictive model degrades as the number of features input to the model increases.  In addition, several 

variables may provide the same explanatory effect (for example, number of caregivers and number of 

caregivers by role).  This redundancy is assessed using a ranked-correlation analysis of the features.  The 

Spearman method ranks samples for a given dependant variable by its value and computes a correlation 

coefficient on the resulting rank order.   In this way, the monoticity of the relationships between the 

features is preserved.  A self-referential Spearman correlation matrix is constructed for all attributes.  

Features are clustered (by interchanging rows and columns) according to the degree of correlation.  

Features are selected from each cluster that has a unique explanatory effect. 

Bayesian Network Prediction Models 

The set of features that survived the univariate and correlation analyses are used to construct models to 

predict the transmission metric values based on these attributes.  A predictive model is chosen (rather 

than a simpler descriptive model) for several reasons:  (a) validation of the model would undergo more 

rigorous treatment, and (b) future simulation work is possible based on the predictive model.  In 

addition, since the response variables are known (the transmission metrics), supervised learning 

techniques can be utilized to construct the model.  Although a wide variety of such modeling techniques 

are available, including linear and logistic regression, tree-based methods, neural networks, support 

vector machines, and random forests (Hastie, Tibshirani, & Friedman, 2009), Bayesian Belief networks is 
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the selected method of choice.   A wealth of literature exists in the use of BN models in biomedical 

informatics (Husmeier, Dybowski, & Roberts, 2004), (Sebastiani, K.D., Szolovits, Kohane, & Ramoni, 

2006).  The Bayesian method also elicits an intuitive structure of the associations between the model 

attributes. 

Data Set Partitioning 

Independent of the learning technique used, the data set is partitioned into two groups:  (a) a training 

set and (b) a validation set.  The training set is used to construct the model and the validation set is used 

to revise the model.  In practice, the vast majority of the data is used for training and a smaller amount 

is used for model validation.  Due to the wealth of clinical data in this study, the reverse was employed, 

where twenty percent (20%) of the data was used for training and eighty percent (80%) was used to 

validate the BN models. In this way, the models also underwent more rigorous scrutiny with the larger 

validation sets.   An additional test set is generated from the clinical database for independent testing of 

the model.  The characteristics of all three datasets are described in Table 7.  As shown in the table, the 

distribution of the primary attributes, including those for patient (including expiration status and 

gender), caregiver roles, and care-unit occupancy are approximately equivelant across all datasets.  .  

The number of condition codes, total number of caregivers, and total estimated observations are slightly 

disproportionate across the datasets.  However, these characteristics are aggregated in large quantities 

and should have minimal impact, in terms of bias and variance, on evaluation.  
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Table 7:  Characteristics of Datasets 

Bayesian Network Learning 

As described in the Background section, Bayesian network models can be used to assess conditional 

dependence (and independence) relationships between variables.  In this way, how the explanatory 

variables influence the transmission metrics can be explained through the construction of such a 

conditional dependence network.  Network structures are developed using the Bayesware Discoverer 

software package (Sebastini & Ramoni, 1999-2000).  The training data set is first loaded into the 

software application.  The continuous variables are then discretized either by the frequency or the range 

of values, depending on the attribute.  Since the training and validation sets may not be comprehensive 

in covering all classes for any particular attribute, missing levels are added as possible values for each 

attribute as part of the discretization process to prepare the model against test samples that may hold 

these levels not predicted by the model.  
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The learning strategy used to construct the network is dependent upon:  (a) the ordering of the 

attributes and (b) the algorithm used to select a model. 

Ordering of Attributes 

The attributes were ordered using the following rules (in order of priority): 

 Patient’s attributes precede caregiver attributes which precede visit attributes. 

 Transmission metrics are specified last. 

 Features are sorted according to their Wald-Z scores, from highest to lowest.  

Search Algorithm 

The Bayesware software package provides three choices for the search algorithm:  greedy, arc-inversion, 

and exhaustive. 

The greedy approach, also known as the K2 algorithm, starts with the attribute at the bottom of the 

order and tries single edges between each of the remaining attributes as a parent to this child node.  

The parent is chosen with the corresponding model that yields the highest joint probability with a Bayes 

Factor above 1.  The Bayes Factor is a ratio used to assess the predictive capability of two models, by 

comparing the marginal likelihood of predicting the data given each of the models individually.  In this 

instance, the factor is used to assess whether the model has improved with the addition of the parent 

node, whether its marginal likelihood has increased (the ratio is above 1).  Once a parent node is 

selected using the Bayes Factor in this way, the algorithm then seeks another parent for the child node 

following the same process, until it cannot add any more parents.  The algorithm may also be 

constrained by the number of parents that are sought for a particular child node.  In this study, however, 

this parameter is left unrestricted for model generation in this study.  Once the child node is processed, 

the algorithm moves to the next attribute higher up in the ordering.  In this scheme, the bottom-most 

attributes have no capability of becoming parents to those attributes higher up in the order. 

The arc-inversion scheme follows the same model selection algorithm as the greedy approach, based on 

the joint probability and Bayes factor.  However, the traversal of the nodes is reversed:  from the top-

most node to the bottom-most, seeking children for parents rather than parents for children. 

The exhaustive approach attempts all possible models for the attributes and chooses the best based on 

the same criteria as the other two algorithms.  This approach is computationally too expensive for 

models with as many variables as used in this paper. 

The algorithm chosen for this application is the greedy (or K2) algorithm, as it has been cited extensively 

in the literature and used in many other applications.  

Cross-validation 

Once the network structure has been constructed using the training set, the model is evaluated against 

the validation set.  The transmission metrics are chosen as the target variables for evaluation.  The 

Bayesware application is programmed to use K=5 folds.  Predicted outcomes are collected for each 
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sample tested, along with all possible values for the attribute and the joint probability.  These values are 

stored as files for post-processing using an evaluation script.  The Bayesware application also calculates 

an accuracy figure for each target attribute.  This figure, along with the marginal likelihood for the 

model, is used to revise the ordering of the attributes, such that the model with the lowest marginal 

likelihood and the highest accuracy for the target metric is chosen. 

Model Evaluation 

Since the transmission metrics evaluated in these models are trinomial in value, the class reference 

approach is used to evaluate each level for every metric against the other two values that it can hold.  

Results for both test/validation datasets are processed sample by sample by an evaluation script which 

counts the number of correct and wrong predictions for each metric-value pair.  For each metric-value 

pair, it tabulates the evaluation counters described in Table 8. 

 Predicted = Attribute’s Value Predicted != Attribute’s Value 

Actual Value = Attribute’s Value True Positive (TP) False Negative (FN) 

Actual Value != Attribute’s Value False Positive (FP) True Negative (TN) 

Table 8:  Test/Validation Evaluation Counters 

For example, the message load metric may hold the possible values:  0-20%_quantile, 20-80%_quantile, 

80-100%_quantile.  For a test sample, if the predicted value and the actual value are in the 0-20%, then 

the result is considered a true-positive.  If the predicted value is in the 0-20% and the actual value falls in 

the quantiles between 20-100%, then the result is considered a false-positive with respect to the 0-

20%_quantile.  If the actual value falls in the 0-20% range and the predicted value falls outside this 

range, then the result is considered a false-negative with respect to 0-20%_quantile.  If the predicted 

and actual values both fall in any quantile between 20-100%, then it is considered as a true-negative 

with respect to the 0-20%_quantile. 

The evaluation counters are used to calculate the Sensitivity and the False Positive Rates of the 

predictive models for each attribute-value pair, using the following equations: 

Sensitivity = TPR = TP / (TP + FN) 

(1 – Specificity) = FPR = FP / (FP + TN) 

These values are then plotted for each validation and test fold to generate the Receiver-Operator 

Characteristic (ROC) curves for each metric-value pair.  The ROC curve is a plot of the sensitivity (or TPR) 

against FPR.  An ideal predictive model results in 100% TPR and 0% FPR (top-left corner of the plot).  Due 

to test error, however, even though the rate of correctly predicted positive values may be high, the 

number of false alarms may be also high.  The ROC curve illustrates this cost/benefit trade-off.  The area 

under the ROC curve (auROC) provides a single metric to measure the predictive capability of a model 

and is calculated using the trapezoidal rule for each curve, as results are generated.  This auROC result is 

used to assess the predictive accuracy of each model, based on its proximity to the value of 1. 
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Results and Discussion 
The transmission of information within the ICU clinical database is analyzed via four methods:  (a) data 

visualization – plots along several dimensions reveal certain messaging patterns in relation to other 

attributes, (b) histogram/frequency analysis – frequency distributions describe various features , (c) 

univariate analysis – individual association between the explanatory and response variables are 

described, and (d) Bayesian belief networks – models predict levels of the transmission metrics, as 

influenced by explanatory variables and their probabilistic inter-dependencies.   The first two analyses 

provide a descriptive view of transmission data extracted from the clinical database.  The latter two 

analyses suggest a predictive model for how clinical information is transmitted in the ICU.  Results from 

both sets are integrated to form a coherent view of how information is transmitted across the clinical 

database. 

Descriptive Models 

Messaging Patterns 

Patient Attributes 

Although the adult patients in the dataset are close to evenly distributed by gender (females outnumber 

males 3:2), they tend to be older in age, with the majority between 55 and 85 years.  Patients within this 

age group exhibit a variety of clinical conditions, but predominantly cardio-vascular in nature.  These 

older patients are also seen primarily in the cardiac care units.  In contrast, younger patients, between 

15 and 25 years, are seen primarily in the trauma and medical units for fractures, burns, wounds, 

contusions, and other such acute conditions related to trauma.  The messaging load (or transmission 

rate) appears to be much higher for patients seen for cardiovascular conditions in the cardiac units, then 

the younger patients seen in medical and trauma units.  The message count (or transmission volume), 

however, does not rise for either set of circumstances – it stays roughly constant.  In contrast, the 

messaging time is much higher for patients seen in the trauma units and much lower for patients in the 

cardiac units.   These results suggest that, in the ICU, time duration plays a more significant role than 

volume of recording activity in driving the rate of transmitted information higher.  This applies to the 

cardiac as well as trauma and medical units, albeit the metrics are inverted in both scenarios. 

Most expired patients have higher than average SAPS I scores, as expected, since the SAPS I score tries 

to predict mortality.  The message load for these patients has a wide spectrum of values, whereas 

message count is slightly less than average and the messaging time is unbiased toward either feature.  

These patterns suggest that patient’s risk of mortality on its own does not have significant influence 

over transmission of clinical information.  Other factors, however, may come into play to affect these 

response variables. 
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Caregiver Attributes 

The number of caregivers transmitting clinical information per patient grows logarithmically with the 

number of patients, which implies that the ratio of caregivers to patients is not constant in the record.  

However, the distribution of caregivers transmitting per role type does appear to be constant across all 

datasets with nurses being approximately 71% of transmitting caregivers, followed by 17-20% 

respiratory technicians, and only about 1% doctors. 

Messaging patterns appear to be specific to the caregiver type and location.  Respiratory technicians 

record predominantly chart and note entries in the cardiac units, whereas nurses record uniformly 

across all record types in all locations.  Doctors appear to rarely record entries, but when they do, they 

enter data primarily in the medical units.  Patient care associates are most actively transmitting in the 

medical care-units, but not as much in the cardiac units.   

The most striking pattern is of respiratory technicians dominating transmission of clinical information for 

patients with the highest SAPS I scores, over any other caregiver role, even nurses.  Evidence of this 

pattern is also visible in the MICU, C-SICU, and the CSRU, over other care-unit locations.  Reasons for this 

are explored during discussion of the integrated view. 

Visit Attributes 

The care-unit locations are, for the most part, functionally distinct, although researchers have found 

that patients are occasionally admitted into a given care-unit due to capacity considerations, rather than 

for their clinical condition (Zhang & Szolovits, 2008).  The T-SICUs primarily cater to patients suffering 

from traumatic conditions.  The cardiac units, C-SICU, CCU, and CSRU, serve patients with primary 

cardio-vascular clinical conditions.  The medical units, MICU and MSICU, serve patients with a variety of 

clinical conditions.  The MICU and the cardiac units appear to serve patients with the highest SAPS I 

scores.  Although respiratory technicians are transmitting from other units, they are most actively 

transmitting from these units for these patients.  Reasons for this are explored in subsequent analyses. 

The time duration for messaging is much lower in the cardiac units then it is in the medical and T-SICU 

units, despite the length-of-stay varying in these units.  This shortened messaging time may be driving 

the message load to be higher in these units.  More evidence is required to determine whether this is a 

significant trend. 

Effects of Explanatory Variables on Transmission 

Each explanatory variable is evaluated against each transmission response variable individually and only 

those found to have significant association are analyzed.  The list of significant (and insignificant) 

features and their “sphere of influence” upon the transmission metrics are illustrated in Figure 46 and 

described in Appendix F:  Selection of Features for Messaging Prediction Models 
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Figure 46:  Effect of Explanatory Variables on Transmission Metrics 

All care-unit locations, except for the trauma unit (T-SICU) and the medical-coronary care unit (M-CCU), 

appear to associate with all transmission metrics.  The other service type common to all metrics is the 

length-of-stay.  The SAPS I scores also associate with all metrics, even though expiration status only 

appears to affect messaging load.  In addition, the number of particular caregiver roles has an effect on 

all metrics, including nurses, respiratory technicians, pharmacists, and doctors.  The types of records, 

particularly notes and charts, affect all metrics. 

Patient conditions are particular to certain metrics.  The messaging time appears to be solely affected by 

chronic conditions like atherosclerosis, hypercholesterolemia, diabetes, hypertension, and viral infection 

(including HIV and hepatitis), whereas the messaging volume and load together are affected by more 

acute conditions like heart failure and acute respiratory failure.  A few patient symptoms appear to be 

affected by all metrics, including pneumonia, sepsis, acute renal failure, and cardiac dysrythmia. 
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Transmission Volume 

As shown in Table 9, the primary factors influencing transmission volume are those observations 

recorded as chart and note entries.  This result also corroborates with the patterns discovered in the 

previous section.  In addition, the number of caregivers involved in a patient case, esp. nurses, 

respiratory technicians, and patient care associates, has a strong influence on the amount of clinical 

information transmitted.  If the distribution of caregivers are biased toward nurses (over respiratory 

technicians), however, there is less clinical information transmitted.  Although the SAPS I scores are 

influential, they do not have as strong an association as the caregiver and record type attributes.  The 

care-unit locations and individual patient conditions also have less of an association with transmission 

volume. 

 

Table 9:  Univariate Effects on Message Count 

All features in Table 9 to Table 11 are defined in Appendix F:  Selection of Features for Messaging 

Prediction Models. 
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Transmission Duration  

Similar to transmission volume, the volume of total, notes, and chart observations are the most 

associated with the time duration.  Also, the number and type of caregivers are significantly associated 

with the messaging time, more so than the length-of-stay (or total admission time).  Although not as 

high ranking, a few chronic patient conditions, such as atherosclerosis, hypercholesterolemia, and 

hypertension, are shown to be inversely related to the transmission duration, which suggests that the 

messaging time is shortened for those with long-term conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 10:  Univariate Effects on Messaging Time 
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Transmission Load 

Like messaging volume and duration, the chart and note observational load appears to have strong 

effect on the overall messaging load.   However, message load appears to be associated with variables 

similar to messaging duration.  Specifically, the care-unit locations and the SAPS I scores have a strong 

association with transmission load.  Patient cases situated in the medical surgical unit (MSICU) 

experience lower transmission loads, whereas those in the other cardiac units (CCU, CSICU, and CSRU) 

and the TSICU have higher transmission loads.  The nurse and respiratory technician distribution also 

appear to have an effect on the load, where the former has a decreased load and the latter an increased 

load. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 11:  Univariate Effects on Message Load 
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Correlation Analysis 

A ranked Spearman correlation analysis is performed on the variables found to be significantly 

associated with the transmission metrics.  The rows and columns of the correlation matrix correspond to 

the features listed in Appendix F:  Selection of Features for Messaging Prediction Models.  The features 

are placed in the same order for both rows and columns.  The cells within this matrix, displayed in Figure 

47, hold the Spearman correlation coefficient between features in the corresponding row and column 

and are color-labeled as follows:  GREEN indicates the most positive association (close to a value of 

+1.0), RED the most negative association (close to a value of -1.0), and yellow with low association (close 

to a value of 0.0). 

 

Figure 47:  Spearman correlation matrix for significant univariates. 

As expected, the diagonal represents perfect correlation between each feature and itself.  In addition, 

there is high correlation between the various metrics for a common attribute (for instance, between 

estimated chart observations and logarithm of estimated chart observations).  From each set, only a 

single variable is chosen to represent an attribute, the one which has the greatest univariate effect on 

the transmission metrics (highest Z ranking). 

Between individual attributes, there is relatively low association between individual patient conditions 

and the other explanatory variables.  In contrast, the first and last SAPS I scores (second and third rows 

in the matrix) have a slightly higher correlation with other variables, including estimated observations by 

type, messaging time, message count, and number and types of transmitting caregivers.  In particular, 

there is a loose inverse relationship between the SAPS I scores and the percentage of nurses 

transmitting (r = -0.401), whereas there is a loose direct relationship with the percentage of respiratory 

technicians (r = 0.498).  This result corroborates with the univariate and visualization analyses. 

The variables that measure the number of caregivers by type have a significant positive correlation with 

one another (r =0.62 between nurses and respiratory technicians) and the overall number of caregivers 

per patient (nurses, r = 0.62, respiratory technicians, r = 0.70).  This result suggests that if the quantity of 

personnel is higher for a particular case, it is also high per caregiver type; vice versa, if the number of 

caregivers is low for a particular patient type, it is also low per caregiver type. 

The estimated number of observations, message count, and messaging time are highly correlated with 

the number of caregivers by type (nurses with total estimated observations, r = 0.91, respiratory 

technicians with total estimated observations, r = 0.70).  These results suggest that patient cases with 

higher number of caregivers have a higher messaging volume, which may be expected as there are more 

sources of transmission. 
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The messaging time is also highly correlated with the message counts (r = 0.89) and number of 

caregivers (r = 0.85).  This result may also be expected as the transmission volume may increase with 

increased time for transmission.  The association between messaging time and number of caregivers is 

less clear and merits further investigation via predictive models.  

Prediction Models 
The explanatory features found to have the greatest association with the transmission metrics are used 

to develop prediction models based on Bayesian networks.  The validity of these models is assessed by 

examining their performance on the test dataset.  The network and the associated conditional 

probability tables (CPTs) are examined to establish relationships with the metric of interest. 

Transmission Volume 

The target variable chosen for this metric, based on the univariate and correlation analyses, is the 

trinomial variable corresponding to the logarithmically transformed, message count, also labeled 

LOG_MSG_COUNT_SEGMENT in Figure 48. 

Bayesian Belief Network 

The other transmission metrics, messaging duration and load, are included in this model, in order to gain 

insight into their relative influence on messaging volume.  The learned model does show a conditional 

independence relationship with the messaging duration (LOG_MSG_TIME_SEGMENT) through the 

parent node for the number of caregivers (NUM_CAREGIVERS).  The transmission load 

(MSG_LOAD_SEGMENT) is conditionally independent through several parent nodes, including estimated 

chart (EST_CHART_OBS_SEGMENT) and I/O events (EST_IO_OBS), as well as the number of caregivers 

common to transmission duration.  These results suggest that the variables influencing messaging 

volume may be common to those affecting messaging duration and load.  These effects are analyzed 

further following evaluation of the performance of this model. 

Attributes in the resulting model also appear to be clustered around the common object relation .  

These cliques are demarcated with a dotted boundary around the cluster.  Messaging volume appears to 

be directly influenced by the record clique and other object cliques, such as care-unit and caregiver, are 

conditionally dependent upon the record clique.  This result may be expected, as the amount of 

transmission is directly related to the number of chart entries, which depends upon who is providing 

care and where it is being provided.  Somewhat surprisingly, the patient condition clique does not 

directly influence the volume of information generated.  It does so primarily through the care-unit in 

which the patient is admitted.
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Figure 48:  Bayesian Network Model to Predict Message Count 
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Prediction Performance 
The prediction performance for the model in  

 

 

 

Figure 48 on the test dataset is evaluated using ROC analysis in Figure 49 through Figure 51 and the 

performance metrics shown in Table 12. 

 

Figure 49:  ROC Curve for Prediction of Low Messaging Volume 
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Figure 50:  ROC Curve for Prediction of Medium Messaging Volume 

ROC curves are generated for five separate partitions of the test data-set, as well as for the entire dataset.  All curves tend 
sharply toward a true-positive rate and low false positive rate (top-left corner of plots), suggesting that the Bayesian 

classifier described in  

 

 

 

Figure 48 is able to discriminate reasonably well on the dataset for each of the three possible values for 

the bins corresponding to the logarithm of the messaging count.  Since the model is not calibrated 

against the targetted accuracy of the classifier, these models may have some class bias (i.e., more 

samples holding negative values for each class).   

 

Table 12:  Results of prediction of messaging volume on test dataset. 
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The medium quantile has a slightly higher performance than the other two classes, which could be 

attributed to the larger size of the medium bin (20-80%).  However, they are approximately equal and 

high in performance, which allows further analysis of this model. 

 

Figure 51:  ROC Curve for Prediction of High Messaging Volume 

Model Analysis 

As the CPT for LOG_MSG_COUNT_SEGMENT in Appendix G:  Conditional Probability Tables for Message 

Volume Prediction shows, estimated chart (EST_CHART_OBS_SEGMENT) and I/O observations 

(EST_IO_OBS) have a significant influence on all three of the values this variable can hold.  According to 

its CPT, EST_CHART_OBS_SEGMENT appears to be more heavily influenced by the number of nurses 

(NUM_NURSE_SEGMENT) than EST_IO_OBS.   EST_IO_OBS is more strongly influenced by 

NUM_CAREGIVERS than estimated additive observations (EST_ADDITIVE_OBS).  So, it appears that 

NUM_CAREGIVERS has a strong indirect influence on transmission volume through multiple dependant 

factors. 

The CPT for NUM_CAREGIVERS shows that, for a high number of caregivers, there is greater influence 

from number of nurses (NUM_NURSE_SEGMENT) than from number of respiratory technicians 

(NUM_RT_SEGMENT); however, the reverse is true for a low number of caregivers:  the number of 

respiratory technicians is more influential. 

NUM_RT_SEGMENT is influenced by both the SAPS I score and the number of nurses, albeit more 

strongly from the latter.  The number of nurses is primarily affected by the number and type of care-unit 
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locations. These locations are, in turn, influenced by certain patient conditions and ultimately the SAPS I 

score, the top-most parent in the network.  The SAPS I score has a more direct effect on transmission 

volume through the number of respiratory technicians. 

As discussed previously, clique analysis also shows that messaging volume is directly influenced by the 

record type (i.e., charts entered), and indirectly influenced by who is caring for the patient and in which 

care-unit he/she is visiting.  Clinical conditions appear to only influence the amount of information 

recorded for patients through these indirect factors. 

Transmission Duration 

Based on univariate and correlation analyses, the target variable chosen for this metric is the trinomial 

variable corresponding to the logarithmically transformed, message time, also labeled 

LOG_MSG_TIME_SEGMENT in Figure 52. 

Bayesian Belief Network 

The network model in Figure 52 includes the other transmission metrics, LOG_MSG_COUNT_SEGMENT 

and MSG_LOAD_SEGMENT.  As in the model for message count, these other metrics are included in 

order to investigate their level of influence in comparison to the other explanatory variables. 

As illustrated in the model, the messaging duration is influenced by a similar set of variables as message 

count, including the estimated number of note (EST_NOTE_OBS_SEGMENT), chart 

(EST_CHART_OBS_SEGMENT), and I/O observations (EST_IO_OBS_SEGMENT).  As messaging volume 

may be dependent upon the recording amount of each of the record types, this relationship may seem 

intuitively obvious. 

The SAPS I score (SAPS_SEGMENT) is conditionally independent with messaging duration through 

number of caregivers (NUM_CAREGIVERS), which may indicate that messaging time is not directly 

associated with the acuity level, but may be affected indirectly by the number of caregivers involved in 

the patient case. 

 Although messaging time is partially derived from total time of the visit, the length of stay 

(TOTAL_ADM_TIME) is shown to be conditionally independent from messaging time through many of 

the estimated observation metrics, including EST_IO_OBS_SEGMENT, EST_NOTE_OBS_SEGMENT, 

EST_CHART_OBS_SEGMENT, and EST_TOTAL_OBS_SEGMENT.  

The transmission load metrics, including message and observational load, are conditionally independent 

from messaging duration through the length of stay and transmission volume metrics.  This suggests 

that volume of observations may be the key driver for all metrics. 

Similar to the model for transmission volume, attributes in the transmission duration model cluster 

around the objects they are characterizing and form cliques.  Like volume, duration appears to be 

directly influenced by clinical observations recorded by type and indirectly influenced by the caregiver.  

Unlike volume, clinical conditions appear to have a closer effect on transmission duration through the 
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SAPS I score.  The care-unit location and specific clinical conditions appear to be conditionally 

independent of duration through this acuity score. 

However, before any of these relationships can be established, the model’s performance must be 

assessed. 
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Figure 52:  Bayesian Network Model to Predict Messaging Time 
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Prediction Performance 
The prediction performance for the model in  

 

 

 

Figure 48 on the test dataset is evaluated using ROC analysis from Figure 53 to Figure 55 and the 

performance metrics described in Table 13. 

 

Figure 53:  ROC Curve for Prediction of Low Messaging Time 
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Figure 54:  ROC Curve for Prediction of Medium Messaging Time 

As the ROC Curves show greater tendency toward the right side of the plots (in comparison to the 
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number of seasons, the total volume of observations is more predictive of the duration.  Because the 

performance is much more poor for higher level of messaging duration, NUM_SEASONS_OF_YEAR 

attribute is not a very strong predictor.  The performance is much better at medium and higher levels, 

implying that the observational volume is a much better predictor.  Following the CPTs for the 

conditional dependance chain starting bottom up from TOTAL_EST_OBS_SEGMENT, it appears that the 

joint probability of note and chart observational volume is high, and their conditional dependance on 

number of caregivers is also high.  The weakest link in this chain is between number of caregivers and 

the SAPS score, which may be driving the overall performance of the predictor. 
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Figure 55:  ROC Curve for Prediction of High Messaging Time 

Model Analysis 

The network in Figure 52 appears to be fragmented.  Most of the patient conditions are at the left end 

of the network and are separated by the expiration and trauma attributes from the rest of the network.  

The location variables at the center are influencing attributes related to number and distribution of 

certain types of caregiver specialists.  The right hand side of the network is dominated by the number of 

observations by type and number of total nurses and respiratory therapists, which also is the place for 

our transmission metric of interest, the messaging time. 

The parent node, SAPS_SEGMENT, appears to drive most of the network on the center and right hand 

sides.  Examining the CPTs, however, the associations are not as strong.  The poor prediction 

performance of the model, in comparison to the other models, suggests that the relationships within 

the model are not conclusive. 
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Table 13:  Results of prediction of messaging duration on test dataset. 
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Transmission Load 

Based on the univariate and correlation analyses, the target variable chosen for this metric is the 

trinomial variable corresponding to the message load, also labeled MSG_LOAD_SEGMENT in Error! 

Reference source not found.. 

Belief Network 

Not included in the network model in Error! Reference source not found. are the other transmission 

metrics, LOG_MSG_COUNT_SEGMENT and MSG_LOAD_SEGMENT, as the messaging load was assessed 

on the basis of the explanatory variables alone.  The previous two network models have included all 

three transmission metrics to try to elicit the relationship between these metrics.  Since transmission 

duration and volume may have a dominant influence over transmission load (the metric is derived from 

these other two), they have been excluded from the construction of this model.  In addition, univariate 

analysis shows different variables associated with messaging load and these other two metrics,  inciting 

further investigation into the influence of the explanatory variables by themselves. 

As in the other two models for transmission duration and volume, features are clustered around the 

object to which they are attributed, forming cliques.  Like these other models, load is predominantly 

influenced by the type of clinical record, including notes and charts.  Unlike the other two models, 

however, the care-unit location has an influence on the rate at which charts are entered.  Caregivers 

have an indirect impact on load through the type of clinical record being used.  The patient’s condition 

has a marginal effect upon load through the caregiver. 
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Figure 56:  Bayesian network model to predict messaging Load. 
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Prediction Performance 

The prediction performance for the model in Error! Reference source not found. on the test dataset is 

evaluated using ROC analysis from Figure 57 to Figure 59 and the performance metrics described in 

Table 14. 

 

 
Figure 57:  ROC Curve for Prediction of Low Messaging Load 
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Figure 58:  ROC Curve for Prediction of Medium Messaging Load 

Like the other two transmission metrics, ROC curves are generated for five partitions of the test dataset, 
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best performance for the medium value.  As in the case for messaging count, the slight improvement in 

performance for the medium level may be attributed to the larger bin size. 

The results in Table 14 show overall good performance for all three levels, with very low false positive 

rates, but slightly higher false negative rates.  Like the model for messaging volume, due to the class 

reference method chosen for this ROC analysis, the prediction performance may have some class bias. 
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Figure 59:  ROC Curve for Prediction of High Messaging Load 

 
Table 14:  Results of prediction of messaging load on test dataset. 
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point between these cliques.  It also influences the number of nurses and respiratory therapists, as it 

does in the other models. 

The MICU and MSICU nodes appear to play an interesting role in the network.  Examining the CPTs, it 

appears that admission of patients in this location type results in a reduced chart observation load.  This 

corroborates with the univariate analysis, which shows an inverse relationship between MICU and 

MSICU with messaging load. 

The topmost parent in the network is the trauma patient condition, which influences the location clique 

and the patient condition clique through the acute MI node.  As evident from their CPTs, these 

relationships are much weaker in the network than those toward the middle and bottom. 

As discussed previously, clique analysis shows that messaging load is directly influenced not only by the 

type of clinical record used, but also by the location in which the patient is observed.  The caregiver and 

clinical condition of the patient appear to have an indirect impact on the rate of information through 

these other two objects. 
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Integrated Model of Transmission 
Visualization, univariate, correlation, and Bayesian network analyses have revealed a number of 

patterns in transmission of clinical information.  Several of these patterns appear to reinforce each other 

and are summarized as follows. 

 The number of chart entries by nurses and respiratory technicians appears to have the strongest 

influence on all transmission metrics, over any other type of caregiver (including physicians and 

clinical care associates) and record type (including notes and medication lists, which appear to 

be bounded).  The importance of the chart is underscored by this finding. 

 At higher acuity levels, the number of transmitting respiratory technicians relative to the 

number of transmitting nurses is much greater.  At SAPS I scores above 18, the number of chart 

and note entries from the RTs is indicative of the overall transmission volume.  Surprisingly, 

messaging by nurses and other caregivers is reduced for this class of patients.  Future research 

may investigate potential causes for this pattern and determine its impact on patient outcome. 

  

 The ICU location also has a strong bearing on the overall transmission rate of clinical 

information.  The medical ICUs (MICU and MSICU) observe a reduced transmission load, 

whereas cardiac units (esp. CCU) have higher transmission rates.  Since the location to which 

patients are assigned may be due to factors other than clinical condition, it would be interesting 

to investigate whether the variance in rates is also observed for these “misplaced” patients and 

whether it has a bearing on their outcome. 

 The drivers of transmission duration are not readily apparent from the analyses conducted in 

this study.  Although the admission time may have been the intuitive choice as the prime driver, 

there appear to be other mediating factors. As such, it is possible that factors other than those 

cited in this study may have a greater explanatory effect on this metric.  Further research is 

necessary to explore this possibility. 

These findings are only applicable to the MIMIC II clinical database and the BIDMC ICU, from where 

these records were collected. 
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Conclusions 
This thesis proposes a model for the transmission of clinical information in an ICU clinical database.  This 

section summarizes the conclusions it makes based on the results of data visualization and statistical 

analyses and the limitations of the methodology followed.  A summary of the contributions it makes is 

presented, as well as recommendations for future work. 

Summary of Contributions 
In the first chapter, an overview of Mediated Agent social interaction theory is described, which 

provides the foundation for this thesis work.  This chapter also describes clinical databases and proposes 

an object-process view of this technology to show its emergent value-added properties.  A brief 

introduction to Bayesian networks is also included to describe the principles underlying the predictive 

models discussed in later chapters. 

The second chapter proposes a framework for the study of clinical communications, based on the OSI 

model, used in telecommunications.  A message-based interaction event model is also offered as a 

model for the lowest layers of this seven-layered architecture. 

The third chapter describes the methods and tools used to implement the transmission aspect of the 

Interaction Event model.  The transmission model is implemented on a corpus extracted from the 

MIMIC II clinical database.  The process of extracting messaging data, summarizing it into tables, and 

preparing the data for subsequent analysis is also described.  Techniques for data visualization and 

univariate logistic regression are presented as a descriptive approach to determine the key variables for 

transmission of clinical information.  Correlation analysis and data modeling using Bayesian networks 

are also presented as a predictive approach to determine how the explanatory variables affect the 

transmission metrics. 

The fourth chapter details the results of the methods applied from the previous chapter on the clinical 

datasets.  The results of descriptive analysis show that volume, load, and duration are informative 

response variables in the transmission of clinical information.  They also determine the primary set of 

explanatory variables associated with these transmission metrics.  The results of the predictive analysis 

show that each metric is influenced by a common set of explanatory variables, including the number of 

charts entries and the distribution of caregivers.  Explanatory variables specifically influencing 

transmission volume are number of nurses and respiratory therapists, which appear to have a 

distributional relationship for patients with higher acuity scores.  Those variables specifically influencing 

the transmission load are the care-unit locations, which are lower in medical units in comparison to the 

cardiac units.  The models for the transmission duration are found to be inconclusive, as the prediction 

models are not as accurate as those for the volume and load. 
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Limitations of Study 
This study and the methodology it has followed are based on several assumptions, which are described 

as follows: 

 Messaging data used for creating and analyzing the models of transmission has not been 

collected for the exact purpose of studying clinical communications.  For instance, it does not 

contain direct evidence of transmission and reception of clinical information by caregivers.  In 

the ideal dataset, each message would be associated with an acknowledgement of receipt by 

caregiver(s). 

 Clinical information occurring only within the clinical database is the subject of this study.  Other 

methods of communication including face-to-face, e-mail, telephone, and other such 

conversations are not supported by this thesis. 

 Only the transmission aspect of clinical communications is investigated, as the chosen dataset is 

limited to only have evidence showing transmission events and does not contain data for 

reception of this information. 

 Clinical records only provided within the dataset are used to model transmission.  Records that 

are not distributed may be other sources of transmission, not accounted for in this research. 

 Only the objects and attributes provided by the clinical database comprise the set of variables 

explored by this study.  Availability of more types of information in the database may have 

expanded the scope of these features and resulted in different models. 

 Adult patients, over the age of fifteen and under the age of ninety, have been selected as the 

cohort for this study.  Models of transmission do not support those for newborns which 

comprise the other subpopulation in the ICU clinical database. 

 Assumptions have been made of the titles specified in the caregiver dictionary, regarding the job 

function and experience of the role associated with the title.  Caregivers for which no titles have 

been assigned in this dictionary have been removed from this study. 

 Attributes are forcefully eliminated from the synthesized model based on univariate association.  

This process may have left out critical variables that influence the response variables only in 

concert with others.  The benefits of this multivariate approach are not available to this study. 

 Only the Bayesian network modeling technique, using Bayesware software package, was used to 

create a predictive model for multivariate analysis, although other techniques could have been 

utilized to perform similar analysis. 

 Influence and association between variables are only predicted by the models used in this study.  

Causation or dependence relationships cannot be drawn. 
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Future Work 
During the course of this work, several questions were raised which merit further investigation.   

Foremost, the findings of this study should be corroborated with evidence from primary source data 

collected for the purpose of studying clinical communications, including transmission of clinical 

information verified with evidence of reception of this information.  In addition, it was found that the 

prediction models for transmission duration were not accurate enough to draw conclusions about this 

metric’s association with the other variables.  This gap may require a larger set of attributes, larger 

datasets to incorporate significant sample sizes for these attributes, and better strategies for prediction.   

This study has determined statistical associations between the variables of interest.  In order to 

determine causal and dependency relationships between these variables, temporal analyses may be 

performed on the datasets used in this study.  To corroborate the prediction models proposed by the 

Bayesian techniques used in this work, other classification methods may be used including multivariate 

logistic regression, support vector machines, neural networks, and tree-based methods. 

To expand on clinical communications research based on this study, the Interaction Event model must 

be assessed using both transmission and reception of messages, which requires time-stamped logs of 

when clinical records are read.  Future work may also include messaging information on other channels, 

such as logs of telephone conversations, pager alerts, and e-mail.  
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Appendix A:  Federal Guideline for Meaningful Use of EMRs related to 

Clinical Communication 
 

Health outcomes 
policy priority 

Care goals 

Stage 1 objectives 

Stage 1 measures Eligible 
professionals 

Hospitals 

Improve care 
coordination. 

Exchange 
meaningful clinical 
information 
among 
professional 
healthcare team. 

Capability to 
exchange key 
clinical 
information (for 
example, problem 
list, medication 
list, allergies, 
diagnostic test 
results), among 
providers of care 
and patient 
authorized entities 
electronically. 

Capability to 
exchange key 
clinical 
information (for 
example, 
discharge 
summary, 
procedures, 
problem list, 
medication list, 
allergies, 
diagnostic test 
results), among 
providers of care 
and patient 
authorized entities 
electronically. 

Performed at least 
one test of 
certified EHR 
technology’s 
capacity to 
electronically 
exchange key 
clinical 
information. 

Perform 
medication 
reconciliation at 
relevant 
encounters and 
each transition of 
care. 

Perform 
medication 
reconciliation at 
relevant 
encounters and 
each transition of 
care. 

Perform 
medication 
reconciliation for 
at least 80% of 
relevant 
encounters and 
transitions of care. 

Provide summary 
care record for 
each transition of 
care and referral. 

Provide summary 
care record for 
each transition of 
care and referral. 

Provide summary 
of care record for 
at least 80% of 
transitions of care 
and referrals. 

Table 15:  Federal Guidelines for Meaningful Use of EMRs Related to Clinical Communication (HHS, Proposed Rules for 
Electronic Health Record Incentive Program, 2010) 
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Appendix B:  Glossary of Clinical Communication Terms 
 

Term Definition 

agent An object (either human or non-human) that is capable of interacting 

with another. 

interaction An exchange of messages between agents. 

transmitting agent the sender of a message 

receiving agent the receiver of a message 

message An object that encapsulates information that comprises of message 

content and a message header. 

message content Portion of the message that consists of information being shared by the 

transmitting and receiving agents (also called the payload). 

message header Portion of the message that consists of information required to pass the 

message between the transmitting and receiving agents across the 

channel. 

communication Process of sharing information and knowledge between agents. 

channel Medium upon which information is passed. 

communication mode Describes who are the receiving agent(s) of a message – must be either 

one of unicast, multicast, or broadcast. 

unicast Mode in which there is a single receiving agent. 

multicast Mode in which there are multiple receiving agents. 

broadcast Mode in which all agents are receiving agents.  

information Un-interpreted data.  

background information Contextual information required to interpret new information. 

new information Message content that has never been shared between agents. 

data (plural of datum) A set of observations. 

model Cognitive apparatus of an agent that interprets and stores information 

as knowledge. 
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knowledge Structured information that is the result of interpretation of 

information. 

common ground Knowledge shared between agents. 

grounding Process of verifying common ground between agents. 

grounding efficiency Informational cost of grounding measured as the ratio between sizes of 

background information to new information. 

ground-positive Grounding efficiency when size of new information is reduced with 

inclusion of background information. 

ground-negative Grounding efficiency when size of new information is increased with 

inclusion of background information. 

ground-neutral Grounding efficiency when size of new information is unchanged with 

inclusion of background information. 

Law of Mediated Centre Agents seek the minimal grounding cost over a series of interactions.  

clinical information Clinical data in either structured or unstructured form. 

clinical data (plural of clinical 

datum) 

A set of clinical observations. 

clinical observation Recording of a value for an attribute of a patient at a specific instant in 

time.  

clinical record Clinical data corresponding to a common attribute. 

clinical database Collection of clinical records. 

clinical knowledgebase Clinical information that has been interpreted by clinicians for mutual 

understanding. 

medical record system A set of objects and processes intended to make clinical information 

accessible, interpretable (as clinical knowledge), and communicable to 

providers and consumers in a healthcare system. 

paper-based medical record 

system 

A medical record system in which the clinical database and 

knowledgebase is stored in paper form. 

electronic Medical Record 

(EMR) System 

A medical record system in which the clinical database and 

knowledgebase is stored and processed electronically (i.e., on a 

computing platform). 
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Appendix C:  Caregiver Role Dictionary 

TITLE DESCRIPTION EXPERIENCE ROLE 

  Unknown Unknown Unknown 

NursUnk Unknown Nurse   Nurse 

DocUnk Unknown Doctor   Doctor 

TechUnk Unknown Technician   Technician 

PhaUnk Unknown Pharmacist   Pharmacist 

SWUnk Unknown Social Worker   Social_Worker 

AdmUnk Unknown Administrator   Administrator 

AL Assisted Living??   Unknown 

AR Account Representative??   Unknown 

Admin Administrator   Administrator 

BSMT Bachelor of Science in Medical Technology Junior MedTech 

CCP Certified in Clinical Perfusion (??) Experienced Nurse 

CCRN Critical Care Registered Nurse Experienced Nurse 

CPhT Certified Pharmacology Technician (??) Senior Pharmacist 

CRA Clinical Research Associate Junior Associate 

CRS Clinical Research Social Worker Senior Social_Worker 

CRT Certified Respiratory Therapist Experienced RT 

CO-Op Cooperative Student Student Nurse 

CoOPSt Cooperative Student Student Nurse 

CoOPst Cooperative Student Student Nurse 

CoOpSt Cooperative Student Student Nurse 

CoOpst Cooperative Student Student Nurse 

Coopst Cooperative Student Student Nurse 

CoopStu Cooperative Student Student Nurse 

Co-Wk Cooperative Worker Junior PC 

Co-Wkr Cooperative Worker Junior PC 

Co-Wor Cooperative Worker Junior PC 

Co-wkr Cooperative Worker Junior PC 

Co-wor Cooperative Worker Junior PC 

CoWker Cooperative Worker Junior PC 

Cowkr Cooperative Worker Junior PC 

CoWkr Cooperative Worker Junior PC 

CoWork Cooperative Worker Junior PC 

Cowork Cooperative Worker Junior PC 

coWker Cooperative Worker Junior PC 

cowker Cooperative Worker Junior PC 

Co-Ord Care Coordinator Junior PC 
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Coor Care Coordinator Junior PC 

Coord Care Coordinator Junior PC 

Coordi Care Coordinator Junior PC 

CsMngm Customer Service Management Experienced Administrator 

D Doctor Junior Doctor 

DI Doctor (intern) Junior Doctor 

DInter Doctor (Intern) Junior Doctor 

DML   Senior Unknown 

DO Doctor of Osteopathy Senior Doctor 

DRM Medicine Doctor Junior Doctor 

DietIn Dietician Intern Junior Dietician 

DirHCQ Director Health Care Quality Experienced Administrator 

DR Physician or Scientist Senior Doctor 

Dr Physician or Scientist Senior Doctor 

H Medical Technologist in Hematology(??) Senior MedTech 

HMS Harvard Medical Student Student Doctor 

HMSIV Harvard Medical Student Student Doctor 

I.S.   Senior Technician 

IS   Senior Technician 

ISCS   Senior Technician 

ISOPS   Senior Technician 

Isops   Senior Technician 

ISSUPP   Senior Technician 

ISSupp   Senior Technician 

Intern Intern Resident Junior Doctor 

LCP Laboratory for Computational Phsyio Experienced Researcher 

LICSW Licensed Clinical Social Worker Experienced Social_Worker 

LPN Licensed Practical Nurse Experienced Nurse 

LS   Experienced Unknown 

MD Doctor of Medicine Senior Doctor 

MD,PhD Doctor of Medicine, Doctor of Philosophy Experienced Doctor 

md Doctor of Medicine Senior Doctor 

Md Doctor of Medicine Senior Doctor 

MDS Master of Dental Surgery Senior Doctor 

MDs Master of Dental Surgery Senior Doctor 

MFD   Senior Unknown 

Ms Medical Student Student Doctor 

ms Medical Student Student Doctor 

MS Medical Student Student Doctor 

MS,RD Master of Science, Registered Dietician Experienced Dietician 

MSII 2nd year medical student Student Doctor 
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MSIV 4th year medical student Student Doctor 

MSV 5th year medical student Student Doctor 

MSWint Master of Social Work Junior Social_Worker 

MTASCP Medical Technologist (ASCP specialty) Experienced MedTech 

Med   Junior Unknown 

Med.   Junior Unknown 

MedSt Medical Student Student Doctor 

MedSt. Medical Student Student Doctor 

MedStu Medical Student Student Doctor 

MEDST Medical student Student Doctor 

Medst Medical Student Student Doctor 

MedSty   Student Doctor 

Medica   Student Doctor 

NA Nursing Assistant Junior Associate 

na Nursing Assistant Junior Associate 

NEOB Neonatal/Obstetrician Experienced Doctor 

NNP Neonatal Nurse Practitionner Senior Nurse 

nnp Neonatal Nurse Practitionner Senior Nurse 

NPS Nurse Practionner Senior Nurse 

NSV   Senior Nurse 

Np Nurse Practionner Senior Nurse 

NP Nurse Practionner Senior Nurse 

NsgSt Nursing Student Student Nurse 

Nurs Nurse Junior Nurse 

OTR/L 
Registered Occupational 
Therapist/Licensed Experienced Rehab 

PA Physician Assistant Junior Associate 

PA-C Physician Assistant-Certified Junior Associate 

PC Patient Care Junior PC 

PCA Patient Care Assistant Junior PC 

PCT Patient Care Technician (certified) Senior PC 

PHD Scientist Experienced Unknown 

PHaD   Experienced Pharmacist 

PS   Senior Unknown 

PT Physical Therapist Senior Rehab 

PTA Physical Therapist Assistant/Attending Junior Rehab 

Par   Senior Unknown 

Ph Pharmacy Junior Pharmacist 

Ph.Stu Pharmacy Student Student Pharmacist 

PhD Pharmacy Doctorate Experienced Pharmacist 

PhaD Pharmacy Doctorate Experienced Pharmacist 

PharmD Pharmacy Doctorate Experienced Pharmacist 
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PhStud Pharmacy Student Student Pharmacist 

PhaStu Pharmacy Student Student Pharmacist 

PrADM   Experienced Administrator 

PracSt   Student Nurse 

Prog   Junior Administrator 

RA   Junior Nurse 

RD   Senior Nurse 

RD,LDN   Senior Nurse 

RD/LDN   Senior Nurse 

RHP   Senior Nurse 

RN,RPh Registered Nurse, Pharmacist Experienced Nurse 

RNBA   Experienced Nurse 

RNC Registered Nurse Certified Experienced Nurse 

RNCM   Experienced Nurse 

RNStu Registered Nurse Student Student Nurse 

RNs Registered Nurse Student Nurse 

RPHS Registered Pharmacist Senior Pharmacist 

RRT Registered Respiratory Therapist Experienced RT 

RRt Registered Respiratory Therapist Experienced RT 

rrt Registered Respiratory Therapist Experienced RT 

RRTs Registered Respiratory Therapist Student RT 

RRts Registered Respiratory Therapist Student RT 

RT Respiratory Therapist Senior RT 

RTS Respiratory Therapist Student RT 

rts Respiratory Therapist Student RT 

RTSt Respiratory Therapist Student RT 

RTStu Respiratory Therapist Student Student RT 

ReAssi   Junior Doctor 

Res Resident Junior Doctor 

res Resident Junior Doctor 

Reside Resident Junior Doctor 

ReschA   Junior Doctor 

RN Registered Nurse Senior Nurse 

Rn Registered Nurse Senior Nurse 

rn Registered Nurse Senior Nurse 

Rph Registered Pharmacist Senior Pharmacist 

RPh Registered Pharmacist Senior Pharmacist 

RPH Registered Pharmacist Senior Pharmacist 

R.Ph Registered Pharmacist Senior Pharmacist 

R.Ph. Registered Pharmacist Senior Pharmacist 

SN Skilled Nurse Experienced Nurse 
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SNNP Skilled Neonatal Nurse Practitionner Experienced Nurse 

SNP Skilled/Specialized Nurse Practitionner Experienced Nurse 

SPG   Senior Unknown 

SRN Student Registered Nurse Student Nurse 

SRT Student Respiratory Therapist Student RT 

STN   Senior Nurse 

SW Social Worker Senior Social_Worker 

SWInt Social Worker Intern Junior Social_Worker 

StPHa Pharmacy Student Student Pharmacist 

StPh Pharmacy Student Student Pharmacist 

StResp Respiratory Student Student RT 

St Student Student Nurse 

Stu Student Student Nurse 

StNRS Nursing Student Student Nurse 

StNuIV IV Nursing Student Student Nurse 

StNur Nursing Student Student Nurse 

StNurs Nursing Student Student Nurse 

Stn Nursing Student Student Nurse 

StuNur Nursing Student Student Nurse 

StuRN Student RN Student Nurse 

StRN Student RN Student Nurse 

Studen Student Student Nurse 

studen Student Student Nurse 

U Unit Junior Unknown 

UA Unit A Junior PC 

UC Unit C Junior PC 

UCO   Junior PC 

UCO/PC /Patient Care Senior PC 

Unit A Unit A Junior Unknown 

VS   Junior Unknown 

ajm   Junior Unknown 

cda   Junior Unknown 

taf   Junior Unknown 

tap   Junior Unknown 
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Appendix D:  MySQL Commands to Construct Interaction Event Table 
DROP TABLE IF EXISTS mimic2_interaction_event_table; 

CREATE TABLE mimic2_interaction_event_table ( 

   msg_id   serial, 

   tx_agent bigint NOT NULL, 

   rx_agent bigint NOT NULL, 

   location bigint NOT NULL, 

   patient_id bigint NOT NULL, 

   stime    datetime NOT NULL, 

   etime    datetime NOT NULL, 

   record_type ENUM ('note','report','totalbal','med','io','delivery','chart','additive') NOT NULL, 

   record_id   bigint NOT NULL); 

DROP TABLE IF EXISTS patient_00002_interaction_events; 

CREATE TABLE patient_00002_interaction_events ( 

   msg_id   serial, 

   tx_agent bigint NOT NULL, 

   rx_agent bigint NOT NULL, 

   location bigint NOT NULL, 

   patient_id bigint NOT NULL, 

   stime    datetime NOT NULL, 

   etime    datetime NOT NULL, 

   record_type ENUM ('note','report','totalbal','med','io','delivery','chart','additive') NOT NULL, 

   record_id   bigint NOT NULL); 

DROP TABLE IF EXISTS patient_00002_ADDITIVES_interaction_events; 

CREATE TABLE patient_00002_ADDITIVES_interaction_events ( 

   msg_id   bigint, 

   tx_agent bigint NOT NULL, 

   rx_agent bigint NOT NULL, 

   location bigint NOT NULL, 

   patient_id bigint NOT NULL, 

   stime    datetime NOT NULL, 

   etime    datetime NOT NULL, 

   record_type ENUM ('note','report','totalbal','med','io','delivery','chart','additive') NOT NULL, 

   record_id   bigint NOT NULL) 

SELECT 

cgid AS tx_agent, 

-65535 AS rx_agent, 
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cuid AS location, 

subject_id AS patient_id, 

chart_time AS stime, 

chart_time AS etime, 

'additive' AS record_type, 

item_id AS record_id 

FROM patient_00002_ADDITIVES ORDER BY stime; 

INSERT INTO mimic2_interaction_event_table SELECT * FROM 

patient_00002_ADDITIVES_interaction_events WHERE (patient_id != 0); 

INSERT INTO patient_00002_interaction_events SELECT * FROM 

patient_00002_ADDITIVES_interaction_events WHERE (patient_id != 0); 

DROP TABLE IF EXISTS patient_00002_CHARTEVENTS_interaction_events; 

CREATE TABLE patient_00002_CHARTEVENTS_interaction_events ( 

   msg_id   bigint, 

   tx_agent bigint NOT NULL, 

   rx_agent bigint NOT NULL, 

   location bigint NOT NULL, 

   patient_id bigint NOT NULL, 

   stime    datetime NOT NULL, 

   etime    datetime NOT NULL, 

   record_type ENUM ('note','report','totalbal','med','io','delivery','chart','additive') NOT NULL, 

   record_id   bigint NOT NULL) 

   SELECT 

cgid AS tx_agent, 

-65535 AS rx_agent, 

cuid AS location, 

subject_id AS patient_id, 

chart_time AS stime, 

chart_time AS etime, 

'chart' AS record_type, 

item_id AS record_id 

FROM patient_00002_CHARTEVENTS ORDER BY stime; 

INSERT INTO mimic2_interaction_event_table SELECT * FROM 

patient_00002_CHARTEVENTS_interaction_events WHERE (patient_id != 0); 

INSERT INTO patient_00002_interaction_events SELECT * FROM 

patient_00002_CHARTEVENTS_interaction_events WHERE (patient_id != 0); 

DROP TABLE IF EXISTS patient_00002_DELIVERIES_interaction_events; 
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CREATE TABLE patient_00002_DELIVERIES_interaction_events ( 

   msg_id   bigint, 

   tx_agent bigint NOT NULL, 

   rx_agent bigint NOT NULL, 

   location bigint NOT NULL, 

   patient_id bigint NOT NULL, 

   stime    datetime NOT NULL, 

   etime    datetime NOT NULL, 

   record_type ENUM ('note','report','totalbal','med','io','delivery','chart','additive') NOT NULL, 

   record_id   bigint NOT NULL) 

   SELECT 

cgid AS tx_agent, 

-65535 AS rx_agent, 

cuid AS location, 

subject_id AS patient_id, 

chart_time AS stime, 

chart_time AS etime, 

'delivery' AS record_type, 

io_item_id AS record_id 

FROM patient_00002_DELIVERIES ORDER BY stime; 

INSERT INTO mimic2_interaction_event_table SELECT * FROM 

patient_00002_DELIVERIES_interaction_events WHERE (patient_id != 0); 

INSERT INTO patient_00002_interaction_events SELECT * FROM 

patient_00002_DELIVERIES_interaction_events WHERE (patient_id != 0); 

DROP TABLE IF EXISTS patient_00002_IOEVENTS_interaction_events; 

CREATE TABLE patient_00002_IOEVENTS_interaction_events ( 

   msg_id   bigint, 

   tx_agent bigint NOT NULL, 

   rx_agent bigint NOT NULL, 

   location bigint NOT NULL, 

   patient_id bigint NOT NULL, 

   stime    datetime NOT NULL, 

   etime    datetime NOT NULL, 

   record_type ENUM ('note','report','totalbal','med','io','delivery','chart','additive') NOT NULL, 

   record_id   bigint NOT NULL) 

   SELECT 

cgid AS tx_agent, 

-65535 AS rx_agent, 

cuid AS location, 
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subject_id AS patient_id, 

chart_time AS stime, 

chart_time AS etime, 

'io' AS record_type, 

item_id AS record_id 

FROM patient_00002_IOEVENTS ORDER BY stime; 

INSERT INTO mimic2_interaction_event_table SELECT * FROM 

patient_00002_IOEVENTS_interaction_events WHERE (patient_id != 0); 

INSERT INTO patient_00002_interaction_events SELECT * FROM 

patient_00002_IOEVENTS_interaction_events WHERE (patient_id != 0); 

DROP TABLE IF EXISTS patient_00002_MEDEVENTS_interaction_events; 

CREATE TABLE patient_00002_MEDEVENTS_interaction_events ( 

   msg_id   bigint, 

   tx_agent bigint NOT NULL, 

   rx_agent bigint NOT NULL, 

   location bigint NOT NULL, 

   patient_id bigint NOT NULL, 

   stime    datetime NOT NULL, 

   etime    datetime NOT NULL, 

   record_type ENUM ('note','report','totalbal','med','io','delivery','chart','additive') NOT NULL, 

   record_id   bigint NOT NULL) 

   SELECT 

cgid AS tx_agent, 

-65535 AS rx_agent, 

cuid AS location, 

subject_id AS patient_id, 

chart_time AS stime, 

chart_time AS etime, 

'med' AS record_type, 

item_id AS record_id 

FROM patient_00002_MEDEVENTS ORDER BY stime; 

INSERT INTO mimic2_interaction_event_table SELECT * FROM 

patient_00002_MEDEVENTS_interaction_events WHERE (patient_id != 0); 

INSERT INTO patient_00002_interaction_events SELECT * FROM 

patient_00002_MEDEVENTS_interaction_events WHERE (patient_id != 0); 

DROP TABLE IF EXISTS patient_00002_TOTALBALEVENTS_interaction_events; 
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CREATE TABLE patient_00002_TOTALBALEVENTS_interaction_events ( 

   msg_id   bigint, 

   tx_agent bigint NOT NULL, 

   rx_agent bigint NOT NULL, 

   location bigint NOT NULL, 

   patient_id bigint NOT NULL, 

   stime    datetime NOT NULL, 

   etime    datetime NOT NULL, 

   record_type ENUM ('note','report','totalbal','med','io','delivery','chart','additive') NOT NULL, 

   record_id   bigint NOT NULL) 

   SELECT 

cgid AS tx_agent, 

-65535 AS rx_agent, 

cuid AS location, 

subject_id AS patient_id, 

chart_time AS stime, 

chart_time AS etime, 

'totalbal' AS record_type, 

item_id AS record_id 

FROM patient_00002_TOTALBALEVENTS ORDER BY stime; 

INSERT INTO mimic2_interaction_event_table SELECT * FROM 

patient_00002_TOTALBALEVENTS_interaction_events WHERE (patient_id != 0); 

INSERT INTO patient_00002_interaction_events SELECT * FROM 

patient_00002_TOTALBALEVENTS_interaction_events WHERE (patient_id != 0); 

DROP TABLE IF EXISTS patient_00002_NOTEEVENTS_interaction_events; 

CREATE TABLE patient_00002_NOTEEVENTS_interaction_events ( 

   msg_id   bigint, 

   tx_agent bigint NOT NULL, 

   rx_agent bigint NOT NULL, 

   location bigint NOT NULL, 

   patient_id bigint NOT NULL, 

   stime    datetime NOT NULL, 

   etime    datetime NOT NULL, 

   record_type ENUM ('note','report','totalbal','med','io','delivery','chart','additive') NOT NULL, 

   record_id   bigint NOT NULL) 

   SELECT 

cgid AS tx_agent, 

-65535 AS rx_agent, 

cuid AS location, 
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subject_id AS patient_id, 

chart_time AS stime, 

chart_time AS etime, 

'note' AS record_type, 

note_id AS record_id 

FROM patient_00002_NOTEEVENTS ORDER BY stime; 

INSERT INTO mimic2_interaction_event_table SELECT * FROM 

patient_00002_NOTEEVENTS_interaction_events WHERE (patient_id != 0); 

INSERT INTO patient_00002_interaction_events SELECT * FROM 

patient_00002_NOTEEVENTS_interaction_events WHERE (patient_id != 0); 

DROP TABLE IF EXISTS patient_00002_REPORTEVENTS_interaction_events; 

CREATE TABLE patient_00002_REPORTEVENTS_interaction_events ( 

   msg_id   bigint, 

   tx_agent bigint NOT NULL, 

   rx_agent bigint NOT NULL, 

   location bigint NOT NULL, 

   patient_id bigint NOT NULL, 

   stime    datetime NOT NULL, 

   etime    datetime NOT NULL, 

   record_type ENUM ('note','report','totalbal','med','io','delivery','chart','additive') NOT NULL, 

   record_id   bigint NOT NULL) 

   SELECT 

-1 AS tx_agent, 

-65535 AS rx_agent, 

-1 AS location, 

subject_id AS patient_id, 

report_dt AS stime, 

report_dt AS etime, 

'report' AS record_type, 

report_id AS record_id 

FROM patient_00002_REPORTEVENTS ORDER BY stime; 

INSERT INTO mimic2_interaction_event_table SELECT * FROM 

patient_00002_REPORTEVENTS_interaction_events WHERE (patient_id != 0); 

INSERT INTO patient_00002_interaction_events SELECT * FROM 

patient_00002_REPORTEVENTS_interaction_events WHERE (patient_id != 0); 

DROP TABLE IF EXISTS patient_00002_NOTEINTERACTIONS_interaction_events; 
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CREATE TABLE patient_00002_NOTEINTERACTIONS_interaction_events ( 

   msg_id   bigint, 

   tx_agent bigint NOT NULL, 

   rx_agent bigint NOT NULL, 

   location bigint NOT NULL, 

   patient_id bigint NOT NULL, 

   stime    datetime NOT NULL, 

   etime    datetime NOT NULL, 

   record_type ENUM ('note','report','totalbal','med','io','delivery','chart','additive') NOT NULL, 

   record_id   bigint NOT NULL) 

   SELECT 

tx_agent AS tx_agent, 

rx_agent AS rx_agent, 

location AS location, 

patient_id AS patient_id, 

stime AS stime, 

etime AS etime, 

record_type AS record_type, 

med_id AS record_id 

FROM patient_00002_NOTEINTERACTIONS ORDER BY stime; 

INSERT INTO mimic2_interaction_event_table SELECT * FROM 

patient_00002_NOTEINTERACTIONS_interaction_events WHERE (patient_id != 0); 

INSERT INTO patient_00002_interaction_events SELECT * FROM 

patient_00002_NOTEINTERACTIONS_interaction_events WHERE (patient_id != 0); 

DROP TABLE IF EXISTS patient_00003_interaction_events; 

CREATE TABLE patient_00003_interaction_events ( 

   msg_id   serial, 

   tx_agent bigint NOT NULL, 

   rx_agent bigint NOT NULL, 

   location bigint NOT NULL, 

   patient_id bigint NOT NULL, 

   stime    datetime NOT NULL, 

   etime    datetime NOT NULL, 

   record_type ENUM ('note','report','totalbal','med','io','delivery','chart','additive') NOT NULL, 

   record_id   bigint NOT NULL); 
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Appendix E:  ICD-9 Categories with Codes and Predominant Conditions 
 

Code ICD-9 range Predominant Conditions in 
training/validation data-set 

Description of Conditions in Range 

Y1 001-139 Sepsis, HIV, Hepatitis Infectious and Parasitic Diseases 

Y2 140-239 - Neoplasms 

Y3 240-279 Diabetes, 
Hypercholesterolemia 

Endocrine, Nutritional, and Metabolic Diseases 
and Immunity Disorders 

Y4 280-289 Anemia Diseases of the Blood and Blood-forming organs 

Y5 290-319 Alcoholism, Tobacco Use,  
Depression 

Mental Diseases and Conditions 

Y6 320-389 Alzheimer’s Diseases of the Nervous System and Sense Organs 

Y7 401-405 Chronic Hypertension Hypertensive Disease 

Y8 410-414 Acute Myocardial Infarction, 
Atherosclerosis 

Ischemic Heart Disease 

Y9 428 Congestive Heart Failure Heart Failure 

Y10 420-429 Cardiac dysrythmia Other forms of Heart Disease 

Y11 430-438 - Cerebrovascular Disease 

Y12 440-449 - Diseases of Arteries, Arterioles, and Capillaries 

Y13 390-459 - Other diseases of the Circulatory System 

Y14 460-519 Pneumonia, Acute 
Respiratory Failure 

Pulmonary disorders and conditions 

Y15 520-579  Digestive System 

Y16 580-629 Acute Renal Failure, Urinary 
Tract Infection 

Genitourinary system 

Y17 630-679 - Pregnancy and Birth 

Y18 680-709 - Skin disorders and conditions 

Y19 710-739 - Musculoskeletal system 

Y20 740-759 - Congenital Anomalies 

Y21 760-779 - Certain Conditions originating in the Perinatal 
Period 

Y22 780-799 - Symptoms, Signs, and ill-defined conditions 

Y23 800-960 Trauma Injuries including fractures, burns, wounds, 
contusions,  traumatic conditions 

Y24 960-966 - Other Injuries and Poisons 

Y25 996-999 Sepsis, Cardiac Complication Other Complications, Causes of Injuries and 
Poisons 

Y26 E800-E999 - External Causes of Injury and Poisoning 

Y27 V01-V89 - Supplementary Classification of Factors 
Influencing Health Status and Contact with Health 
Services 
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Appendix F:  Selection of Features for Messaging Prediction Models 
Object Feature Attribute Attribute Values Description 

Patient 

Expired True, False Mortality status at time 
of discharge. 

Num_conditions 4 equal bins from 0 to 50 Number of ICD-9 codes 
assigned to patient. 

Alcoholic True, False ICD-9 code: 305.1 

Hypertension True, False ICD-9 code: 401.9 

Diabetes True, False ICD-9 codes: 250.00 – 
250.92 

Hypercholesterolemia True, False ICD-9 code: 272.0 

Atherosclerosis True, False ICD-9 code: 414.01 

Anemia True, False ICD-9 codes:  280.0 – 
286.0 

HIV True, False ICD-9 code: 042 

Trauma True, False ICD-9 codes:  800.09 – 
959.09 

Hepatitis True, False ICD-9 codes: 070.1 – 
070.71 

Acute_MI True, False ICD-9 codes: 410.01 – 
411.0 

Acute_renal_failure True, False ICD-9 codes: 583.9 – 585 

Acute_respiratory_failure True, False ICD-9 codes: 518.81 

Heart_failure True, False ICD-9 code: 428.0 

Cardiac_dysrythmia True, False ICD-9 codes: 427.0 – 
427.9 

Pneumonia True, False ICD-9 code: 486 

Septic True, False ICD-9 code: 038.0 – 
038.9, 995.92 

Urinary_tract_infection True, False ICD-9 code: 599.0 

Trauma True, False ICD-9 codes: 800.09 – 
959.09 

SAPS_segment Low, Medium, High Binned SAPS I scores:  0-
9, 10-13, 14-17, 18-35 

Caregiver 

Num_caregivers 4 bins: 1-6, 7-10, 11-21, 22-
202 

Number of caregivers per 
patient 

Num_social_workers 4 equal bins from 0 to 10 Number of social workers 

Num_nurse_segment Low, Medium, High Number of nurses 

Num_rehabs 4 equal bins from 0 to 10 Number of rehabilitation 
specialists (physical and 
occupational therapists). 

Num_RT_segment Low, Medium, High Binned number of 
respiratory therapists 

Num_pharmacists 4 equal bins from 0 to 10 Number of pharmacists 
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Num_doctors 4 equal bins from 0 to 10 Number of doctors 

Num_associates 4 equal bins from 0.0 to 1.0 Number of associates 

Num_pcs 4 equal bins from 0.0 to 1.0 Number of patient care 
associates. 

Nurse_dist 4 equal bins from 0.0 to 1.0 Fraction of caregivers as 
nurses 

RT_dist 4 equal bins from 0.0 to 1.0 Fraction of caregivers as 
respiratory therapists. 

Social_worker_dist 4 equal bins from 0.0 to 1.0 Fraction of caregivers as 
social workers. 

Doctor_dist 4 equal bins from 0.0 to 1.0 Fraction of caregivers as 
doctors. 

PC_dist 4 equal bins from 0.0 to 1.0 Fraction of caregivers as 
patient care associates. 

Pharmacist_dist 4 equal bins from 0.0 to 1.0 Fraction of caregivers as 
pharmacists. 

Rehab_dist 4 equal bins from 0.0 to 1.0 Fraction of caregivers as 
rehabilitation specialists. 

Associate_dist 4 equal bins from 0.0 to 1.0 Fraction of caregivers as 
associates. 

Care-unit 

T_SICU True, False Trauma Surgical Care 
Unit 

C_SICU True, False Cardiac Surgical Care Unit 

MICU True, False Medical Intensive Care 
Unit 

MSICU True, False Medical Surgical 
Intensive Care Unit 

CCU True, False Coronary Care Unit 

CSRU True, False Cardiac Surgery Recovery 
Unit 

Cardiac_unit True, False Either CCU, CSRU, or 
CSICU. 

Num_locations 4 equal bins from 0 to 15 Number of care-units 
visited. 

Care-
time 

Total_Adm_time 4 bins: 24 – 96, 97-192, 193-
312, 313-2184 

Total Length of Stay 
during admission visit. 

Num_seasons_of_year 1-4 Number of seasons of 
year. 

Num_days_of_week 1-7 Number of days of week. 

Log_msg_time_segment Low, Medium, High Binned Logarithm of total 
messaging time. 

Clinical 
Record 

Est_Note_obs_segment Low, Medium, High Binned number of 
estimated note 
observations 

Est_Chart_obs_segment Low, Medium, High Binned number of 
estimated chart 
observations 
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Est_Delivery_obs 4 bins: 0-1, 2-3, 4-5, 6-282 Number of estimated 
delivery observations 

Est_Med_obs 4 bins: 0-7, 8-45, 46-166, 
167-18498 

Number of estimated 
medication observations 

Est_Additive_obs 4 bins: 0-1, 2-3, 4-8, 9-264 Number of estimated 
additive observations 

Est_IO_obs 4 bins: 0-62, 63-164, 165-
472, 473-4196 

Number of estimated 
Input/Output 
observations. 

Est_Total_obs_segment Low, Medium, High Total number of 
estimated observations. 

Num_record_types 4 equal bins from 0 to 10 Number of record types. 

Log_msg_count_segment Low, Medium, High Binned logarithm of 
number of messages. 

Est_note_obs_load_segment Low, Medium, High Binned estimated 
number of note 
observations per hour. 

Est_chart_obs_load_segment Low, Medium, High Binned number of chart 
observations per hour. 

Est_total_obs_load_segment Low, Medium, High Binned total number of 
observations per hour. 

msg_load_segment Low, Medium, High Binned total number of 
messages per hour. 
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Appendix G:  Conditional Probability Tables for Message Volume 

Prediction 
probability (_Log_Msg_Count_Segment_ | _Est_Io_Obs_, _Est_Chart_Obs_Segment_) 

{ 

    (0, 0):   0.200, 0.200, 0.200; 

    (0, 1):   1.000, 0.000, 0.000; 

    (0, 2):   0.154, 0.845, 0.000; 

    (0, 3):   0.200, 0.200, 0.200; 

    (0, 4):   0.200, 0.200, 0.200; 

    (1, 0):   0.200, 0.200, 0.200; 

    (1, 1):   0.930, 0.069, 0.000; 

    (1, 2):   0.000, 1.000, 0.000; 

    (1, 3):   0.200, 0.200, 0.200; 

    (1, 4):   0.200, 0.200, 0.200; 

    (2, 0):   0.200, 0.200, 0.200; 

    (2, 1):   0.010, 0.962, 0.010; 

    (2, 2):   0.000, 1.000, 0.000; 

    (2, 3):   0.001, 0.091, 0.906; 

    (2, 4):   0.200, 0.200, 0.200; 

    (3, 0):   0.200, 0.200, 0.200; 

    (3, 1):   0.200, 0.200, 0.200; 

    (3, 2):   0.000, 0.845, 0.154; 

    (3, 3):   0.000, 0.006, 0.994; 

    (3, 4):   0.200, 0.200, 0.200; 

} 

 

probability (_Est_Io_Obs_ | _Est_Additive_Obs_, _Num_Caregivers_) 

{ 

    (0, 0):  0.861, 0.139, 0.000, 0.000; 

    (0, 1):  0.545, 0.394, 0.061, 0.000; 

    (0, 2):  0.312, 0.250, 0.437, 0.001; 

    (0, 3):  0.005, 0.005, 0.985, 0.005; 

    (1, 0):  0.766, 0.233, 0.000, 0.000; 

    (1, 1):  0.360, 0.520, 0.120, 0.000; 

    (1, 2):  0.000, 0.475, 0.525, 0.000; 

    (1, 3):  0.001, 0.001, 0.634, 0.363; 

    (2, 0):  0.605, 0.394, 0.000, 0.000; 

    (2, 1):  0.085, 0.633, 0.282, 0.000; 

    (2, 2):  0.013, 0.210, 0.617, 0.161; 

    (2, 3):  0.000, 0.057, 0.245, 0.698; 
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    (3, 0):  0.003, 0.662, 0.332, 0.003; 

    (3, 1):  0.001, 0.200, 0.748, 0.051; 

    (3, 2):  0.000, 0.065, 0.630, 0.304; 

    (3, 3):  0.000, 0.000, 0.069, 0.930; 

} 

 

 

probability (_Est_Chart_Obs_Segment_ | _Num_Nurse_Segment_, _Est_Io_Obs_) 

{ 

    (0, 0):  0.006, 0.976, 0.006, 0.006, 0.006; 

    (0, 1):  0.200, 0.200, 0.200, 0.200, 0.200; 

    (0, 2):  0.200, 0.200, 0.200, 0.200, 0.200; 

    (0, 3):  0.200, 0.200, 0.200, 0.200, 0.200; 

    (1, 0):  0.000, 0.953, 0.046, 0.000, 0.000; 

    (1, 1):  0.000, 0.359, 0.640, 0.000, 0.000; 

    (1, 2):  0.002, 0.002, 0.992, 0.002, 0.002; 

    (1, 3):  0.012, 0.012, 0.953, 0.012, 0.012; 

    (2, 0):  0.000, 0.622, 0.377, 0.000, 0.000; 

    (2, 1):  0.000, 0.049, 0.951, 0.000, 0.000; 

    (2, 2):  0.000, 0.007, 0.945, 0.048, 0.000; 

    (2, 3):  0.000, 0.000, 0.548, 0.451, 0.000; 

    (3, 0):  0.200, 0.200, 0.200, 0.200, 0.200; 

    (3, 1):  0.012, 0.012, 0.953, 0.012, 0.012; 

    (3, 2):  0.000, 0.000, 0.881, 0.118, 0.000; 

    (3, 3):  0.000, 0.000, 0.051, 0.949, 0.000; 

} 

 

probability (_Est_Additive_Obs_ | _Csru_, _Num_Caregivers_) 

{ 

    (0, 0):  0.459, 0.393, 0.139, 0.008; 

    (0, 1):  0.200, 0.521, 0.270, 0.009; 

    (0, 2):  0.122, 0.290, 0.495, 0.094; 

    (0, 3):  0.021, 0.072, 0.319, 0.587; 

    (1, 0):  0.326, 0.245, 0.326, 0.102; 

    (1, 1):  0.119, 0.179, 0.476, 0.226; 

    (1, 2):  0.040, 0.119, 0.368, 0.473; 

    (1, 3):  0.010, 0.040, 0.220, 0.729; 

} 

 

probability (_Num_Caregivers_ | _Num_Rt_Segment_, _Num_Nurse_Segment_) 

{ 

    (0, 0):  0.956, 0.015, 0.015, 0.015; 
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    (0, 1):  0.905, 0.095, 0.000, 0.000; 

    (0, 2):  0.131, 0.628, 0.241, 0.000; 

    (0, 3):  0.001, 0.001, 0.461, 0.537; 

    (1, 0):  0.250, 0.250, 0.250, 0.250; 

    (1, 1):  0.250, 0.250, 0.250, 0.250; 

    (1, 2):  0.250, 0.250, 0.250, 0.250; 

    (1, 3):  0.250, 0.250, 0.250, 0.250; 

    (2, 0):  0.956, 0.015, 0.015, 0.015; 

    (2, 1):  0.521, 0.435, 0.044, 0.000; 

    (2, 2):  0.000, 0.401, 0.581, 0.018; 

    (2, 3):  0.000, 0.000, 0.295, 0.704; 

    (3, 0):  0.250, 0.250, 0.250, 0.250; 

    (3, 1):  0.003, 0.398, 0.596, 0.003; 

    (3, 2):  0.000, 0.000, 0.555, 0.444; 

    (3, 3):  0.000, 0.000, 0.000, 1.000; 

} 

 

probability (_Num_Rt_Segment_ | _Saps_Segment_, _Num_Nurse_Segment_) 

{ 

    (0, 0):  0.250, 0.250, 0.250, 0.250; 

    (0, 1):  0.250, 0.250, 0.250, 0.250; 

    (0, 2):  0.250, 0.250, 0.250, 0.250; 

    (0, 3):  0.250, 0.250, 0.250, 0.250; 

    (1, 0):  0.956, 0.015, 0.015, 0.015; 

    (1, 1):  0.873, 0.000, 0.127, 0.000; 

    (1, 2):  0.747, 0.000, 0.217, 0.036; 

    (1, 3):  0.217, 0.001, 0.434, 0.348; 

    (2, 0):  0.250, 0.250, 0.250, 0.250; 

    (2, 1):  0.544, 0.000, 0.422, 0.033; 

    (2, 2):  0.366, 0.000, 0.530, 0.104; 

    (2, 3):  0.092, 0.000, 0.264, 0.643; 

    (3, 0):  0.015, 0.015, 0.956, 0.015; 

    (3, 1):  0.281, 0.000, 0.655, 0.063; 

    (3, 2):  0.091, 0.000, 0.647, 0.261; 

    (3, 3):  0.000, 0.000, 0.133, 0.867; 

} 

 

probability (_Num_Nurse_Segment_ | _Num_Locations_) 

{ 

    (0):  0.003, 0.336, 0.513, 0.148; 

    (1):  0.000, 0.023, 0.372, 0.604; 

    (2):  0.001, 0.001, 0.149, 0.850; 
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    (3):  0.012, 0.012, 0.012, 0.964; 

    (4):  0.012, 0.012, 0.012, 0.964; 

    (5):  0.023, 0.023, 0.023, 0.932; 

    (6):  0.250, 0.250, 0.250, 0.250; 

    (7):  0.250, 0.250, 0.250, 0.250; 

    (8):  0.250, 0.250, 0.250, 0.250; 

    (9):  0.250, 0.250, 0.250, 0.250; 

} 

 

probability (_Num_Locations_ | _C_Sicu_, _Ccu_, _Csru_, _Cardiac_Unit_, _Micu_) 

{ 

    (0, 0, 0, 0, 0):  1.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000; 

    (0, 0, 0, 0, 1):  0.892, 0.099, 0.008, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000; 

    (0, 0, 0, 1, 0):  0.973, 0.003, 0.003, 0.003, 0.003, 0.003, 0.003, 0.003, 0.003, 0.003; 

    (0, 0, 0, 1, 1):  0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100; 

    (0, 0, 1, 0, 0):  0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100; 

    (0, 0, 1, 0, 1):  0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100; 

    (0, 0, 1, 1, 0):  0.930, 0.070, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000; 

    (0, 0, 1, 1, 1):  0.000, 0.874, 0.083, 0.042, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000; 

    (0, 1, 0, 0, 0):  0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100; 

    (0, 1, 0, 0, 1):  0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100; 

    (0, 1, 0, 1, 0):  0.976, 0.024, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000; 

    (0, 1, 0, 1, 1):  0.000, 0.713, 0.285, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000; 

    (0, 1, 1, 0, 0):  0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100; 

    (0, 1, 1, 0, 1):  0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100; 

    (0, 1, 1, 1, 0):  0.000, 0.886, 0.114, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000; 

    (0, 1, 1, 1, 1):  0.001, 0.001, 0.796, 0.001, 0.199, 0.001, 0.001, 0.001, 0.001, 0.001; 

    (1, 0, 0, 0, 0):  0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100; 

    (1, 0, 0, 0, 1):  0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100; 

    (1, 0, 0, 1, 0):  0.957, 0.042, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000; 

    (1, 0, 0, 1, 1):  0.000, 0.898, 0.100, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000; 

    (1, 0, 1, 0, 0):  0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100; 

    (1, 0, 1, 0, 1):  0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100; 

    (1, 0, 1, 1, 0):  0.000, 0.907, 0.091, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000; 

    (1, 0, 1, 1, 1):  0.000, 0.000, 0.747, 0.125, 0.125, 0.000, 0.000, 0.000, 0.000, 0.000; 

    (1, 1, 0, 0, 0):  0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100; 

    (1, 1, 0, 0, 1):  0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100; 

    (1, 1, 0, 1, 0):  0.000, 0.996, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000; 

    (1, 1, 0, 1, 1):  0.003, 0.003, 0.973, 0.003, 0.003, 0.003, 0.003, 0.003, 0.003, 0.003; 

    (1, 1, 1, 0, 0):  0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100; 

    (1, 1, 1, 0, 1):  0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100; 

    (1, 1, 1, 1, 0):  0.002, 0.002, 0.986, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002; 
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    (1, 1, 1, 1, 1):  0.003, 0.003, 0.003, 0.003, 0.003, 0.973, 0.003, 0.003, 0.003, 0.003; 

} 

 

probability (_Cardiac_Unit_ | _C_Sicu_, _Ccu_, _Csru_) 

{ 

    (0, 0, 0):  0.995, 0.005; 

    (0, 0, 1):  0.000, 1.000; 

    (0, 1, 0):  0.000, 1.000; 

    (0, 1, 1):  0.001, 0.999; 

    (1, 0, 0):  0.001, 0.999; 

    (1, 0, 1):  0.003, 0.997; 

    (1, 1, 0):  0.008, 0.992; 

    (1, 1, 1):  0.020, 0.980; 

} 

 

probability (_Micu_ | _Septic_) 

{ 

    (0):  0.782, 0.218; 

    (1):  0.567, 0.433; 

} 

 

probability (_Csru_ | _Ccu_, _C_Sicu_, _Micu_) 

{ 

    (0, 0, 0):  0.296, 0.704; 

    (0, 0, 1):  0.834, 0.166; 

    (0, 1, 0):  0.865, 0.135; 

    (0, 1, 1):  0.555, 0.445; 

    (1, 0, 0):  0.743, 0.257; 

    (1, 0, 1):  0.735, 0.265; 

    (1, 1, 0):  0.774, 0.226; 

    (1, 1, 1):  0.500, 0.500; 

} 

 

probability (_Ccu_ | _Acute_Renal_Failure_, _C_Sicu_, _Micu_) 

{ 

    (0, 0, 0):  0.684, 0.316; 

    (0, 0, 1):  0.864, 0.136; 

    (0, 1, 0):  0.890, 0.110; 

    (0, 1, 1):  0.996, 0.004; 

    (1, 0, 0):  0.408, 0.592; 

    (1, 0, 1):  0.947, 0.053; 

    (1, 1, 0):  0.993, 0.007; 
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    (1, 1, 1):  0.598, 0.402; 

} 

 

probability (_C_Sicu_ | _Heart_Failure_) 

{ 

    (0):  0.834, 0.166; 

    (1):  0.908, 0.092; 

} 

 

 

probability (_Acute_Renal_Failure_ | _Heart_Failure_, _Septic_) 

{ 

    (0, 0):  0.910, 0.090; 

    (0, 1):  0.619, 0.381; 

    (1, 0):  0.734, 0.266; 

    (1, 1):  0.383, 0.617; 

} 

probability (_Heart_Failure_ | _Septic_) 

{ 

    (0):  0.781, 0.219; 

    (1):  0.649, 0.351; 

} 

probability (_Septic_ | _Saps_Segment_) 

{ 

    (0):  0.500, 0.500; 

    (1):  0.913, 0.087; 

    (2):  0.894, 0.106; 

    (3):  0.789, 0.211; 

} 

probability (_Saps_Segment_) 

{ 

    5.902285291912783E-10, 0.2480000000047218, 0.47999999945698973, 0.2719999999480599; 

} 
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Appendix H:  Conditional Probability Tables for Message Duration 

Prediction 
probability (_Saps_Segment_) 
{ 
    0.24266682742288284, 0.47733307801463715, 0.2800000945624801; 
} 
 
probability (_Expired_ | _Saps_Segment_) 
{ 
    (0):  0.967, 0.033; 
    (1):  0.919, 0.081; 
    (2):  0.738, 0.262; 
} 
 
probability (_Num_Nurse_Segment_ | _Nurse_Dist_, _Num_Caregivers_) 
{ 
    (0, 0):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (0, 1):  0.001, 0.997, 0.001, 0.001, 0.001; 
    (0, 2):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (0, 3):  0.001, 0.001, 0.997, 0.001, 0.001; 
    (1, 0):  0.000, 1.000, 0.000, 0.000, 0.000; 
    (1, 1):  0.000, 1.000, 0.000, 0.000, 0.000; 
    (1, 2):  0.000, 0.238, 0.762, 0.000, 0.000; 
    (1, 3):  0.000, 0.000, 0.250, 0.750, 0.000; 
    (2, 0):  0.000, 1.000, 0.000, 0.000, 0.000; 
    (2, 1):  0.000, 0.440, 0.560, 0.000, 0.000; 
    (2, 2):  0.000, 0.000, 0.927, 0.073, 0.000; 
    (2, 3):  0.000, 0.000, 0.040, 0.960, 0.000; 
    (3, 0):  0.000, 0.843, 0.157, 0.000, 0.000; 
    (3, 1):  0.000, 0.000, 1.000, 0.000, 0.000; 
    (3, 2):  0.000, 0.000, 0.757, 0.243, 0.000; 
    (3, 3):  0.000, 0.000, 0.000, 1.000, 0.000; 
} 
 
probability (_Num_Rt_Segment_ | _Rt_Dist_, _Num_Caregivers_) 
{ 
    (0, 0):  0.953, 0.000, 0.047, 0.000, 0.000; 
    (0, 1):  0.710, 0.000, 0.290, 0.000, 0.000; 
    (0, 2):  0.319, 0.000, 0.681, 0.000, 0.000; 
    (0, 3):  0.059, 0.000, 0.456, 0.485, 0.000; 
    (1, 0):  0.000, 0.000, 1.000, 0.000, 0.000; 
    (1, 1):  0.000, 0.000, 1.000, 0.000, 0.000; 
    (1, 2):  0.000, 0.000, 0.560, 0.440, 0.000; 
    (1, 3):  0.000, 0.000, 0.000, 1.000, 0.000; 
    (2, 0):  0.000, 0.000, 1.000, 0.000, 0.000; 
    (2, 1):  0.000, 0.000, 0.800, 0.200, 0.000; 
    (2, 2):  0.000, 0.000, 0.000, 1.000, 0.000; 
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    (2, 3):  0.000, 0.000, 0.000, 1.000, 0.000; 
    (3, 0):  0.001, 0.001, 0.997, 0.001, 0.001; 
    (3, 1):  0.001, 0.001, 0.001, 0.997, 0.001; 
    (3, 2):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (3, 3):  0.001, 0.001, 0.001, 0.997, 0.001; 
} 
 
probability (_Num_Caregivers_ | _Saps_Segment_) 
{ 
    (0):  0.401, 0.319, 0.159, 0.121; 
    (1):  0.190, 0.299, 0.285, 0.226; 
    (2):  0.076, 0.186, 0.329, 0.410; 
} 
 
probability (_Nurse_Dist_ | _Num_Caregivers_, _Rt_Dist_) 
{ 
    (0, 0):  0.000, 0.000, 0.079, 0.921; 
    (0, 1):  0.000, 0.056, 0.389, 0.556; 
    (0, 2):  0.000, 0.364, 0.636, 0.000; 
    (0, 3):  0.001, 0.997, 0.001, 0.001; 
    (1, 0):  0.000, 0.000, 0.145, 0.855; 
    (1, 1):  0.000, 0.055, 0.891, 0.055; 
    (1, 2):  0.000, 0.400, 0.600, 0.000; 
    (1, 3):  0.997, 0.001, 0.001, 0.001; 
    (2, 0):  0.000, 0.000, 0.416, 0.584; 
    (2, 1):  0.000, 0.173, 0.773, 0.053; 
    (2, 2):  0.000, 0.667, 0.333, 0.000; 
    (2, 3):  0.250, 0.250, 0.250, 0.250; 
    (3, 0):  0.000, 0.000, 0.574, 0.426; 
    (3, 1):  0.000, 0.214, 0.777, 0.009; 
    (3, 2):  0.000, 1.000, 0.000, 0.000; 
    (3, 3):  0.997, 0.001, 0.001, 0.001; 
} 
 
probability (_Rt_Dist_ | _Saps_Segment_) 
{ 
    (0):  0.841, 0.132, 0.027, 0.000; 
    (1):  0.587, 0.360, 0.050, 0.003; 
    (2):  0.395, 0.510, 0.086, 0.010; 
} 
 
probability (_Est_Additive_Obs_ | _Num_Caregivers_) 
{ 
    (0):  0.382, 0.433, 0.166, 0.019; 
    (1):  0.172, 0.377, 0.373, 0.078; 
    (2):  0.100, 0.215, 0.435, 0.250; 
    (3):  0.021, 0.063, 0.233, 0.683; 
} 
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probability (_Est_Chart_Obs_Segment_ | _Est_Note_Obs_Segment_, _Est_Io_Obs_) 
{ 
    (0, 0):  0.000, 1.000, 0.000, 0.000, 0.000; 
    (0, 1):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (0, 2):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (0, 3):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (1, 0):  0.000, 0.947, 0.053, 0.000, 0.000; 
    (1, 1):  0.000, 0.283, 0.717, 0.000, 0.000; 
    (1, 2):  0.000, 0.000, 1.000, 0.000, 0.000; 
    (1, 3):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (2, 0):  0.000, 0.574, 0.426, 0.000, 0.000; 
    (2, 1):  0.000, 0.127, 0.873, 0.000, 0.000; 
    (2, 2):  0.000, 0.000, 0.961, 0.039, 0.000; 
    (2, 3):  0.000, 0.000, 0.280, 0.720, 0.000; 
    (3, 0):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (3, 1):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (3, 2):  0.000, 0.000, 0.778, 0.222, 0.000; 
    (3, 3):  0.000, 0.000, 0.030, 0.970, 0.000; 
    (4, 0):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (4, 1):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (4, 2):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (4, 3):  0.200, 0.200, 0.200, 0.200, 0.200; 
} 
 
probability (_Est_Delivery_Obs_ | _Num_Caregivers_) 
{ 
    (0):  0.255, 0.446, 0.274, 0.025; 
    (1):  0.255, 0.279, 0.382, 0.083; 
    (2):  0.080, 0.185, 0.460, 0.275; 
    (3):  0.005, 0.042, 0.143, 0.810; 
} 
 
probability (_Est_Io_Obs_ | _Est_Additive_Obs_, _Num_Caregivers_) 
{ 
    (0, 0):  0.867, 0.133, 0.000, 0.000; 
    (0, 1):  0.571, 0.400, 0.029, 0.000; 
    (0, 2):  0.200, 0.450, 0.300, 0.050; 
    (0, 3):  0.250, 0.000, 0.250, 0.500; 
    (1, 0):  0.735, 0.265, 0.000, 0.000; 
    (1, 1):  0.390, 0.519, 0.091, 0.000; 
    (1, 2):  0.047, 0.419, 0.488, 0.047; 
    (1, 3):  0.000, 0.000, 0.750, 0.250; 
    (2, 0):  0.692, 0.308, 0.000, 0.000; 
    (2, 1):  0.118, 0.618, 0.263, 0.000; 
    (2, 2):  0.011, 0.218, 0.701, 0.069; 
    (2, 3):  0.000, 0.000, 0.182, 0.818; 
    (3, 0):  0.000, 1.000, 0.000, 0.000; 
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    (3, 1):  0.000, 0.125, 0.875, 0.000; 
    (3, 2):  0.000, 0.020, 0.700, 0.280; 
    (3, 3):  0.000, 0.000, 0.031, 0.969; 
} 
 
probability (_Est_Med_Obs_ | _Est_Additive_Obs_, _Est_Io_Obs_) 
{ 
    (0, 0):  0.896, 0.104, 0.000, 0.000; 
    (0, 1):  0.806, 0.194, 0.000, 0.000; 
    (0, 2):  0.875, 0.000, 0.125, 0.000; 
    (0, 3):  0.666, 0.000, 0.000, 0.333; 
    (1, 0):  0.415, 0.585, 0.000, 0.000; 
    (1, 1):  0.316, 0.579, 0.105, 0.000; 
    (1, 2):  0.243, 0.270, 0.459, 0.027; 
    (1, 3):  0.200, 0.000, 0.600, 0.200; 
    (2, 0):  0.179, 0.714, 0.107, 0.000; 
    (2, 1):  0.068, 0.446, 0.473, 0.014; 
    (2, 2):  0.022, 0.157, 0.697, 0.124; 
    (2, 3):  0.024, 0.000, 0.381, 0.595; 
    (3, 0):  0.250, 0.250, 0.250, 0.250; 
    (3, 1):  0.000, 0.333, 0.667, 0.000; 
    (3, 2):  0.000, 0.038, 0.566, 0.396; 
    (3, 3):  0.007, 0.000, 0.065, 0.928; 
} 
 
probability (_Est_Note_Obs_Segment_ | _Est_Io_Obs_, _Num_Caregivers_) 
{ 
    (0, 0):  0.042, 0.725, 0.233, 0.000, 0.000; 
    (0, 1):  0.000, 0.458, 0.542, 0.000, 0.000; 
    (0, 2):  0.000, 0.000, 1.000, 0.000, 0.000; 
    (0, 3):  0.001, 0.001, 0.997, 0.001, 0.001; 
    (1, 0):  0.000, 0.432, 0.568, 0.000, 0.000; 
    (1, 1):  0.000, 0.330, 0.670, 0.000, 0.000; 
    (1, 2):  0.000, 0.064, 0.936, 0.000, 0.000; 
    (1, 3):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (2, 0):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (2, 1):  0.000, 0.119, 0.857, 0.024, 0.000; 
    (2, 2):  0.000, 0.016, 0.854, 0.130, 0.000; 
    (2, 3):  0.000, 0.000, 0.545, 0.455, 0.000; 
    (3, 0):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (3, 1):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (3, 2):  0.000, 0.000, 0.565, 0.435, 0.000; 
    (3, 3):  0.000, 0.000, 0.072, 0.928, 0.000; 
} 
 
probability (_Total_Est_Obs_Segment_ | _Est_Note_Obs_Segment_, _Est_Chart_Obs_Segment_) 
{ 
    (0, 0):  0.200, 0.200, 0.200, 0.200, 0.200; 
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    (0, 1):  0.000, 1.000, 0.000, 0.000, 0.000; 
    (0, 2):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (0, 3):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (0, 4):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (1, 0):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (1, 1):  0.000, 1.000, 0.000, 0.000, 0.000; 
    (1, 2):  0.000, 0.137, 0.863, 0.000, 0.000; 
    (1, 3):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (1, 4):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (2, 0):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (2, 1):  0.000, 0.768, 0.232, 0.000, 0.000; 
    (2, 2):  0.000, 0.003, 0.997, 0.000, 0.000; 
    (2, 3):  0.000, 0.000, 0.333, 0.667, 0.000; 
    (2, 4):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (3, 0):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (3, 1):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (3, 2):  0.000, 0.000, 0.692, 0.308, 0.000; 
    (3, 3):  0.000, 0.000, 0.000, 1.000, 0.000; 
    (3, 4):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (4, 0):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (4, 1):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (4, 2):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (4, 3):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (4, 4):  0.200, 0.200, 0.200, 0.200, 0.200; 
} 
 
probability (_Log_Msg_Count_Segment_ | _Est_Io_Obs_, _Est_Chart_Obs_Segment_) 
{ 
    (0, 0):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (0, 1):  0.000, 1.000, 0.000, 0.000, 0.000; 
    (0, 2):  0.000, 0.057, 0.943, 0.000, 0.000; 
    (0, 3):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (0, 4):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (1, 0):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (1, 1):  0.000, 0.844, 0.156, 0.000, 0.000; 
    (1, 2):  0.000, 0.000, 1.000, 0.000, 0.000; 
    (1, 3):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (1, 4):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (2, 0):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (2, 1):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (2, 2):  0.000, 0.000, 1.000, 0.000, 0.000; 
    (2, 3):  0.000, 0.000, 0.250, 0.750, 0.000; 
    (2, 4):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (3, 0):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (3, 1):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (3, 2):  0.000, 0.000, 0.917, 0.083, 0.000; 
    (3, 3):  0.000, 0.000, 0.000, 1.000, 0.000; 
    (3, 4):  0.200, 0.200, 0.200, 0.200, 0.200; 
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} 
 
probability (_Num_Seasons_Of_Year_ | _Est_Io_Obs_) 
{ 
    (0):  0.000, 0.989, 0.011, 0.000, 0.000; 
    (1):  0.000, 0.952, 0.048, 0.000, 0.000; 
    (2):  0.000, 0.866, 0.134, 0.000, 0.000; 
    (3):  0.000, 0.550, 0.370, 0.058, 0.021; 
} 
 
probability (_Total_Adm_Time_ | _Est_Io_Obs_) 
{ 
    (0):  0.471, 0.316, 0.155, 0.059; 
    (1):  0.187, 0.476, 0.225, 0.112; 
    (2):  0.080, 0.305, 0.337, 0.278; 
    (3):  0.011, 0.127, 0.233, 0.630; 
} 
 
probability (_Log_Msg_Time_Segment_ | _Num_Seasons_Of_Year_, _Total_Est_Obs_Segment_) 
{ 
    (0, 0):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (0, 1):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (0, 2):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (0, 3):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (0, 4):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (1, 0):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (1, 1):  0.000, 0.780, 0.220, 0.000, 0.000; 
    (1, 2):  0.000, 0.114, 0.806, 0.080, 0.000; 
    (1, 3):  0.000, 0.000, 0.382, 0.618, 0.000; 
    (1, 4):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (2, 0):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (2, 1):  0.000, 0.500, 0.500, 0.000, 0.000; 
    (2, 2):  0.000, 0.031, 0.406, 0.562, 0.000; 
    (2, 3):  0.000, 0.000, 0.042, 0.958, 0.000; 
    (2, 4):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (3, 0):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (3, 1):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (3, 2):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (3, 3):  0.000, 0.000, 0.000, 1.000, 0.000; 
    (3, 4):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (4, 0):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (4, 1):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (4, 2):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (4, 3):  0.000, 0.000, 0.000, 1.000, 0.000; 
    (4, 4):  0.200, 0.200, 0.200, 0.200, 0.200; 
} 
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Appendix I:  Conditional Probability Tables for Message Load Prediction 
probability (_Msg_Load_Segment_ | _Est_Total_Obs_Load_Segment_, 
_Est_Chart_Obs_Load_Segment_) 
{ 
    (0, 0):  0.008, 0.969, 0.008, 0.008, 0.008; 
    (0, 1):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (0, 2):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (0, 3):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (0, 4):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (1, 0):  0.003, 0.989, 0.003, 0.003, 0.003; 
    (1, 1):  0.001, 0.991, 0.008, 0.000, 0.000; 
    (1, 2):  0.000, 0.133, 0.867, 0.000, 0.000; 
    (1, 3):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (1, 4):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (2, 0):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (2, 1):  0.000, 0.880, 0.120, 0.000, 0.000; 
    (2, 2):  0.000, 0.003, 0.984, 0.012, 0.000; 
    (2, 3):  0.000, 0.000, 0.178, 0.822, 0.000; 
    (2, 4):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (3, 0):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (3, 1):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (3, 2):  0.000, 0.000, 0.829, 0.171, 0.000; 
    (3, 3):  0.000, 0.000, 0.024, 0.976, 0.000; 
    (3, 4):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (4, 0):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (4, 1):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (4, 2):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (4, 3):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (4, 4):  0.008, 0.008, 0.008, 0.008, 0.969; 
} 
probability (_Est_Total_Obs_Load_Segment_ | _Est_Note_Obs_Load_Segment_, 
_Est_Chart_Obs_Load_Segment_) 
{ 
    (0, 0):  0.332, 0.661, 0.003, 0.003, 0.003; 
    (0, 1):  0.000, 1.000, 0.000, 0.000, 0.000; 
    (0, 2):  0.000, 0.411, 0.587, 0.000, 0.000; 
    (0, 3):  0.000, 0.000, 0.545, 0.455, 0.000; 
    (0, 4):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (1, 0):  0.008, 0.969, 0.008, 0.008, 0.008; 
    (1, 1):  0.000, 1.000, 0.000, 0.000, 0.000; 
    (1, 2):  0.000, 0.276, 0.724, 0.000, 0.000; 
    (1, 3):  0.000, 0.000, 0.734, 0.266, 0.000; 
    (1, 4):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (2, 0):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (2, 1):  0.000, 0.743, 0.257, 0.000, 0.000; 
    (2, 2):  0.000, 0.014, 0.984, 0.002, 0.000; 
    (2, 3):  0.000, 0.000, 0.295, 0.705, 0.000; 



 

122 

    (2, 4):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (3, 0):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (3, 1):  0.000, 0.048, 0.952, 0.000, 0.000; 
    (3, 2):  0.000, 0.000, 0.675, 0.325, 0.000; 
    (3, 3):  0.000, 0.000, 0.000, 1.000, 0.000; 
    (3, 4):  0.008, 0.008, 0.008, 0.008, 0.969; 
    (4, 0):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (4, 1):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (4, 2):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (4, 3):  0.008, 0.008, 0.008, 0.969, 0.008; 
    (4, 4):  0.200, 0.200, 0.200, 0.200, 0.200; 
} 
probability (_Est_Chart_Obs_Load_Segment_ | _Msicu_, _Est_Note_Obs_Load_Segment_) 
{ 
    (0, 0):  0.053, 0.475, 0.280, 0.193, 0.000; 
    (0, 1):  0.000, 0.700, 0.276, 0.023, 0.000; 
    (0, 2):  0.000, 0.117, 0.602, 0.281, 0.000; 
    (0, 3):  0.000, 0.023, 0.515, 0.461, 0.001; 
    (0, 4):  0.018, 0.018, 0.018, 0.927, 0.018; 
    (1, 0):  0.000, 0.885, 0.110, 0.005, 0.000; 
    (1, 1):  0.007, 0.888, 0.104, 0.000, 0.000; 
    (1, 2):  0.000, 0.234, 0.752, 0.015, 0.000; 
    (1, 3):  0.000, 0.053, 0.667, 0.281, 0.000; 
    (1, 4):  0.200, 0.200, 0.200, 0.200, 0.200; 
} 
probability (_Est_Note_Obs_Load_Segment_ | _Num_Seasons_Of_Year_, _Est_Note_Obs_Segment_) 
{ 
    (0, 0):  1.000, 0.000, 0.000, 0.000, 0.000; 
    (0, 1):  0.000, 0.342, 0.525, 0.132, 0.001; 
    (0, 2):  0.000, 0.090, 0.627, 0.283, 0.000; 
    (0, 3):  0.000, 0.106, 0.407, 0.486, 0.000; 
    (0, 4):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (1, 0):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (1, 1):  0.001, 0.544, 0.363, 0.091, 0.001; 
    (1, 2):  0.000, 0.682, 0.262, 0.056, 0.000; 
    (1, 3):  0.000, 0.571, 0.236, 0.193, 0.000; 
    (1, 4):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (2, 0):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (2, 1):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (2, 2):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (2, 3):  0.000, 0.923, 0.058, 0.019, 0.000; 
    (2, 4):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (3, 0):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (3, 1):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (3, 2):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (3, 3):  0.000, 0.937, 0.000, 0.063, 0.000; 
    (3, 4):  0.010, 0.010, 0.962, 0.010, 0.010; 
} 
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probability (_Num_Seasons_Of_Year_ | _Est_Note_Obs_Segment_) 
{ 
    (0):  1.000, 0.000, 0.000, 0.000; 
    (1):  0.986, 0.014, 0.000, 0.000; 
    (2):  0.925, 0.075, 0.000, 0.000; 
    (3):  0.568, 0.351, 0.062, 0.019; 
    (4):  0.042, 0.042, 0.042, 0.875; 
} 
probability (_Est_Note_Obs_Segment_ | _Num_Caregivers_, _Est_Chart_Obs_Segment_) 
{ 
    (0, 0):  0.743, 0.249, 0.002, 0.002, 0.002; 
    (0, 1):  0.113, 0.745, 0.142, 0.000, 0.000; 
    (0, 2):  0.000, 0.424, 0.576, 0.000, 0.000; 
    (0, 3):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (0, 4):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (1, 0):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (1, 1):  0.004, 0.582, 0.414, 0.000, 0.000; 
    (1, 2):  0.000, 0.225, 0.773, 0.002, 0.000; 
    (1, 3):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (1, 4):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (2, 0):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (2, 1):  0.001, 0.182, 0.815, 0.001, 0.001; 
    (2, 2):  0.000, 0.022, 0.907, 0.070, 0.000; 
    (2, 3):  0.000, 0.000, 0.388, 0.611, 0.000; 
    (2, 4):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (3, 0):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (3, 1):  0.200, 0.200, 0.200, 0.200, 0.200; 
    (3, 2):  0.000, 0.000, 0.676, 0.324, 0.000; 
    (3, 3):  0.000, 0.000, 0.076, 0.924, 0.000; 
    (3, 4):  0.010, 0.010, 0.010, 0.010, 0.962; 
} 
probability (_Est_Chart_Obs_Segment_ | _Num_Caregivers_) 
{ 
    (0):  0.006, 0.818, 0.176, 0.000, 0.000; 
    (1):  0.000, 0.315, 0.685, 0.000, 0.000; 
    (2):  0.000, 0.011, 0.882, 0.107, 0.000; 
    (3):  0.000, 0.000, 0.127, 0.871, 0.001; 
} 
 
probability (_Num_Caregivers_ | _Num_Rt_Segment_, _Num_Nurse_Segment_) 
{ 
    (0, 0):  0.250, 0.250, 0.250, 0.250; 
    (1, 0):  0.250, 0.250, 0.250, 0.250; 
    (2, 0):  0.199, 0.263, 0.286, 0.251; 
    (3, 0):  0.250, 0.250, 0.250, 0.250; 
} 
probability (_Num_Rt_Segment_ | _Saps_Segment_, _Num_Nurse_Segment_) 
{ 
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    (0, 0):  0.000, 0.000, 1.000, 0.000; 
    (1, 0):  0.000, 0.000, 1.000, 0.000; 
    (2, 0):  0.000, 0.000, 1.000, 0.000; 
} 
probability (_Num_Nurse_Segment_ | _Saps_Segment_, _Num_Locations_) 
{ 
    (0, 0):  1.000; 
    (0, 1):  1.000; 
    (0, 2):  1.000; 
    (0, 3):  1.000; 
    (1, 0):  1.000; 
    (1, 1):  1.000; 
    (1, 2):  1.000; 
    (1, 3):  1.000; 
    (2, 0):  1.000; 
    (2, 1):  1.000; 
    (2, 2):  1.000; 
    (2, 3):  1.000; 
} 
probability (_Num_Locations_ | _Cardiac_Unit_, _Micu_) 
{ 
    (0, 0):  0.999, 0.000, 0.000, 0.000; 
    (0, 1):  1.000, 0.000, 0.000, 0.000; 
    (1, 0):  0.999, 0.000, 0.000, 0.000; 
    (1, 1):  0.947, 0.052, 0.000, 0.000; 
} 
probability (_Cardiac_Unit_ | _C_Sicu_, _Ccu_, _Csru_) 
{ 
    (0, 0, 0):  0.992, 0.008; 
    (0, 0, 1):  0.000, 1.000; 
    (0, 1, 0):  0.000, 1.000; 
    (0, 1, 1):  0.000, 1.000; 
    (1, 0, 0):  0.000, 1.000; 
    (1, 0, 1):  0.000, 1.000; 
    (1, 1, 0):  0.000, 1.000; 
    (1, 1, 1):  0.000, 1.000; 
} 
probability (_Msicu_ | _T_Sicu_, _C_Sicu_, _Trauma_, _Micu_, _Ccu_, _Csru_) 
{ 
    (0, 0, 0, 0, 0, 0):  0.034, 0.966; 
    (0, 0, 0, 0, 0, 1):  0.984, 0.016; 
    (0, 0, 0, 0, 1, 0):  0.967, 0.033; 
    (0, 0, 0, 0, 1, 1):  0.972, 0.028; 
    (0, 0, 0, 1, 0, 0):  0.948, 0.052; 
    (0, 0, 0, 1, 0, 1):  0.913, 0.087; 
    (0, 0, 0, 1, 1, 0):  0.914, 0.086; 
    (0, 0, 0, 1, 1, 1):  0.880, 0.120; 
    (0, 0, 1, 0, 0, 0):  0.001, 0.999; 
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    (0, 0, 1, 0, 0, 1):  1.000, 0.000; 
    (0, 0, 1, 0, 1, 0):  1.000, 0.000; 
    (0, 0, 1, 0, 1, 1):  0.999, 0.001; 
    (0, 0, 1, 1, 0, 0):  1.000, 0.000; 
    (0, 0, 1, 1, 0, 1):  0.909, 0.091; 
    (0, 0, 1, 1, 1, 0):  1.000, 0.000; 
    (0, 0, 1, 1, 1, 1):  1.000, 0.000; 
    (0, 1, 0, 0, 0, 0):  0.978, 0.022; 
    (0, 1, 0, 0, 0, 1):  0.946, 0.054; 
    (0, 1, 0, 0, 1, 0):  1.000, 0.000; 
    (0, 1, 0, 0, 1, 1):  1.000, 0.000; 
    (0, 1, 0, 1, 0, 0):  0.971, 0.029; 
    (0, 1, 0, 1, 0, 1):  0.867, 0.133; 
    (0, 1, 0, 1, 1, 0):  0.875, 0.125; 
    (0, 1, 0, 1, 1, 1):  0.769, 0.231; 
    (0, 1, 1, 0, 0, 0):  1.000, 0.000; 
    (0, 1, 1, 0, 0, 1):  1.000, 0.000; 
    (0, 1, 1, 0, 1, 0):  0.856, 0.144; 
    (0, 1, 1, 0, 1, 1):  1.000, 0.000; 
    (0, 1, 1, 1, 0, 0):  1.000, 0.000; 
    (0, 1, 1, 1, 0, 1):  1.000, 0.000; 
    (0, 1, 1, 1, 1, 0):  0.996, 0.004; 
    (0, 1, 1, 1, 1, 1):  0.992, 0.008; 
    (1, 0, 0, 0, 0, 0):  0.969, 0.031; 
    (1, 0, 0, 0, 0, 1):  1.000, 0.000; 
    (1, 0, 0, 0, 1, 0):  0.999, 0.001; 
    (1, 0, 0, 0, 1, 1):  0.996, 0.004; 
    (1, 0, 0, 1, 0, 0):  0.999, 0.001; 
    (1, 0, 0, 1, 0, 1):  1.000, 0.000; 
    (1, 0, 0, 1, 1, 0):  0.500, 0.500; 
    (1, 0, 0, 1, 1, 1):  0.500, 0.500; 
    (1, 0, 1, 0, 0, 0):  1.000, 0.000; 
    (1, 0, 1, 0, 0, 1):  0.992, 0.008; 
    (1, 0, 1, 0, 1, 0):  0.992, 0.008; 
    (1, 0, 1, 0, 1, 1):  0.500, 0.500; 
    (1, 0, 1, 1, 0, 0):  1.000, 0.000; 
    (1, 0, 1, 1, 0, 1):  0.500, 0.500; 
    (1, 0, 1, 1, 1, 0):  0.500, 0.500; 
    (1, 0, 1, 1, 1, 1):  0.500, 0.500; 
    (1, 1, 0, 0, 0, 0):  0.998, 0.002; 
    (1, 1, 0, 0, 0, 1):  0.996, 0.004; 
    (1, 1, 0, 0, 1, 0):  0.997, 0.003; 
    (1, 1, 0, 0, 1, 1):  0.500, 0.500; 
    (1, 1, 0, 1, 0, 0):  0.500, 0.500; 
    (1, 1, 0, 1, 0, 1):  0.008, 0.992; 
    (1, 1, 0, 1, 1, 0):  0.992, 0.008; 
    (1, 1, 0, 1, 1, 1):  0.992, 0.008; 
    (1, 1, 1, 0, 0, 0):  0.500, 0.500; 
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    (1, 1, 1, 0, 0, 1):  0.500, 0.500; 
    (1, 1, 1, 0, 1, 0):  0.500, 0.500; 
    (1, 1, 1, 0, 1, 1):  0.992, 0.008; 
    (1, 1, 1, 1, 0, 0):  0.500, 0.500; 
    (1, 1, 1, 1, 0, 1):  0.500, 0.500; 
    (1, 1, 1, 1, 1, 0):  0.500, 0.500; 
    (1, 1, 1, 1, 1, 1):  0.500, 0.500; 
} 
probability (_Micu_ | _T_Sicu_, _C_Sicu_, _Ccu_, _Csru_) 
{ 
    (0, 0, 0, 0):  0.297, 0.703; 
    (0, 0, 0, 1):  0.926, 0.074; 
    (0, 0, 1, 0):  0.866, 0.134; 
    (0, 0, 1, 1):  0.843, 0.157; 
    (0, 1, 0, 0):  0.865, 0.135; 
    (0, 1, 0, 1):  0.730, 0.270; 
    (0, 1, 1, 0):  0.783, 0.217; 
    (0, 1, 1, 1):  0.563, 0.437; 
    (1, 0, 0, 0):  0.929, 0.071; 
    (1, 0, 0, 1):  0.908, 0.092; 
    (1, 0, 1, 0):  1.000, 0.000; 
    (1, 0, 1, 1):  0.985, 0.015; 
    (1, 1, 0, 0):  0.992, 0.008; 
    (1, 1, 0, 1):  0.663, 0.337; 
    (1, 1, 1, 0):  0.746, 0.254; 
    (1, 1, 1, 1):  0.500, 0.500; 
} 
probability (_Csru_ | _T_Sicu_, _C_Sicu_, _Ccu_) 
{ 
    (0, 0, 0):  0.437, 0.563; 
    (0, 0, 1):  0.776, 0.224; 
    (0, 1, 0):  0.847, 0.153; 
    (0, 1, 1):  0.590, 0.410; 
    (1, 0, 0):  0.911, 0.089; 
    (1, 0, 1):  0.780, 0.220; 
    (1, 1, 0):  0.570, 0.430; 
    (1, 1, 1):  0.663, 0.337; 
} 
probability (_Ccu_ | _T_Sicu_, _C_Sicu_, _Acute_Mi_) 
{ 
    (0, 0, 0):  0.757, 0.243; 
    (0, 0, 1):  0.398, 0.602; 
    (0, 1, 0):  0.860, 0.140; 
    (0, 1, 1):  0.502, 0.498; 
    (1, 0, 0):  0.944, 0.056; 
    (1, 0, 1):  0.753, 0.247; 
    (1, 1, 0):  0.500, 0.500; 
    (1, 1, 1):  0.944, 0.056; 
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} 
probability (_C_Sicu_ | _Acute_Mi_, _T_Sicu_, _Trauma_) 
{ 
    (0, 0, 0):  0.868, 0.132; 
    (0, 0, 1):  0.605, 0.395; 
    (0, 1, 0):  0.820, 0.180; 
    (0, 1, 1):  0.987, 0.013; 
    (1, 0, 0):  0.949, 0.051; 
    (1, 0, 1):  0.834, 0.166; 
    (1, 1, 0):  0.890, 0.110; 
    (1, 1, 1):  0.500, 0.500; 
} 
probability (_T_Sicu_ | _Trauma_) 
{ 
    (0):  0.976, 0.024; 
    (1):  0.841, 0.159; 
} 
probability (_Acute_Mi_ | _Trauma_) 
{ 
    (0):  0.840, 0.160; 
    (1):  0.962, 0.038; 
} 
probability (_Trauma_) 
{ 
    0.8598933965057743, 0.14010660349422563; 
} 
probability (_Expired_ | _Saps_Segment_) 
{ 
    (0):  0.974, 0.026; 
    (1):  0.896, 0.104; 
    (2):  0.806, 0.194; 
} 
probability (_Saps_Segment_) 
{ 
    0.2574024281907018, 0.48193070772875335, 0.2606668640805449; 
} 
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