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Abstract

Current question answering systems face two major challenges; the ability to employ
external knowledge and to robustly generalize to unseen expressions of questions
need to be improved. In this thesis, I introduce two works that can together help
advance question answering. First, I introduce TransINT, a novel and interpretable
knowledge graph embedding method that isomorphically preserves the implication
ordering among relations in the embedding space. Second, I present methods to train
sequence-to-sequence semantic parsing models robust to unseen paraphrases. These
two works could together serve as steps to create human-like question answering
systems that can understand unseen paraphrases and link existing and external facts
for logical inference.
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Chapter 1

Introduction

Near the end of 2018, my supervisor Professor Peter Szolovits and I were envisioning

a project to combine two relational ontologies in the medical domain - the MRREL

table of the Unified Medical Language System (UMLS) [7] and the relations of the i2b2

relations challenge dataset [52]. While these two sources of knowledge both contain

clinical multi-relational facts (such as (abciximab,may_treat, Myocardial Ischemia)),

some relations in the UMLS MRREL table subsume one in the i2b2 dataset (e.g.

may_treat of UMLS MRREL implies TrIP (Treatment improves medical problem)

of the i2b2 relations challenge). Thus, I wanted to create a seamless combination of

two knowledge graphs embedded to R𝑑, such that subsumptions of relations in the

embedding space are identically represented as in the inclusion ordering in the human

mind. While I could not achieve the original goal I had envisioned, I did devise a

method to represent implication rules in knowledge graphs isomorphically in their

embeddings.

On the other hand, with our collaborator Dr. Preethi Raghavan, I had been

working on making a family of models for semantic parsing, the task of transforming

natural language utterances into uniquely and exactly identified expressions, gener-

alizable to unseen paraphrases. For example, consider a physician using a question

answering system to query patient notes; one may choose to phrase one’s information

need in a manner that the system has not observed before. A reliable system should

be able to respond appropriately to a paraphrase of the question. Thus, we developed
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a paraphrase-robust semantic parsing mechanism.

While these two projects are fairly orthogonal, they are both useful for the com-

mon goal of knowledge-based and robust question answering (QA). Current question

answering systems face two major challenges; the ability to employ external knowledge

and to robustly generalize to unseen expressions of questions need to be improved.

Questions asked by humans often presume common sense or logical knowledge

about the world, which may not exist in the database to be queried. For example,

humans subconsciously assume that “bananas” are “yellow” (common sense) and a

father is a parent (logical implication), but current QA models seldom address such

external knowledge, if not contained in the query database itself. Recently, works such

as ERNIE [62] have attempted to merge knowledge graph embeddings with existing

language models and have shown that such a method significantly improves perfor-

mance on various downstream natural language tasks. Thus, my work in knowledge

graph representation is a stepping stone to benefit knowledge-based question answer-

ing.

Another important challenge in QA is improving model robustness to paraphrases,

which is the central problem of my project in semantic parsing. Semantic parsing is

a key component of structured question answering, in that it translates human ques-

tions into executable queries that can later retrieve answers from a database. Because

semantic parsing is closely related to question understanding, my semantic parsing

project adequately addresses the paraphrase-robustness problem of current QA mod-

els. Thus, we hope that the two projects that I have pursued during my master’s

candidacy become fruitful steps towards building knowledge-based and robust ques-

tion answering system.

In Chapter 2, I introduce TransINT, a novel and interpretable knowledge graph

embedding method that isomorphically preserves the implication ordering among re-

lations in the embedding space. In Chapter 3, I describe methods to train sequence-

to-sequence semantic parsing models robust to unseen paraphrases. In Chapter 4, I

conclude the thesis and suggest future work.
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Chapter 2

TransINT: Embedding Implication

Rules in Knowledge Graphs with

Isomorphic Intersections of Linear

Subspaces

Knowledge Graphs (KG), composed of entities and relations, provide a structured

representation of knowledge. For easy access to statistical approaches on relational

data, multiple methods to embed a KG into 𝑓(KG) ∈ R𝑑 have been introduced. Logi-

cal rules are known to enhance knowledge graph embeddings by eliminating unwanted

solutions. Implication ordering, such as is_father_of ⇒ is_parent_of, is one of the

most common types of rules. We propose TransINT, a novel and interpretable KG

embedding method that isomorphically preserves the implication ordering among rela-

tions in the embedding space. Given implication rules, TransINT maps sets of entities

(tied by a relation) to continuous sets of vectors that are inclusion-ordered isomor-

phically to relation implications. With a novel parameter sharing scheme, TransINT

enables automatic training on missing but implied facts without rule grounding. On

two benchmark datasets, we outperform the best existing state-of-the-art rule in-

tegration embedding methods with significant margins in link prediction and triple
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classification. The angles between the continuous sets embedded by TransINT pro-

vide an interpretable way to mine semantic relatedness and implication rules among

relations.

2.1 Introduction

Learning distributed vector representations of multi-relational knowledge is an active

area of research [8, 42, 31, 59, 9]. These methods map components of a KG (entities

and relations) to elements of R𝑑 and capture statistical patterns, regarding vectors

close in distance as representing similar concepts. The use cases of such embeddings

include detection of absent edges, discovery of nodes’ properties, and clustering nodes

by their connectivity with other nodes. Particularly, because many large-scale knowl-

edge bases are far from complete [40, 7], multi-relational embeddings can be useful in

automatic knowledge base completion — automatically inferring missing facts from

existing ones.

However, current KG embedding approaches, whose only concerns are to simply

learn embeddings compatible with facts in the given KG, come with limitations.

Because KG’s are largely incomplete, only requiring compatibility with existing facts

can lead to inference of wrong facts when the learned embeddings are applied to

downstream tasks. For example, if the relation has_spouse appears infrequently in

the KG, the embedding may not learn that has_spouse only holds between entities

of person types, predicting incorrect facts such as (Iphone 7, has_spouse, Ipad Pro).

Integration of rules that declare constraints on has_spouse would eliminate clearly

undesirable solutions in a large solution space of the embeddings, which would result

in fewer wrong predictions.

Thus, one focus of current research is to bring logical rules to KG embeddings

[27, 56, 60]. While existing methods impose hard geometric constraints and embed

asymmetric orderings of knowledge [41, 53, 54], many of them only embed hierarchy

(unary Is_a relations), and cannot embed binary or n-ary relations in KG’s. On

the other hand, other methods that integrate binary and n-ary rules [27, 21, 45, 13]
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do not come with empirical results that support their significant effects in reducing

logically wrong predictions.

We propose TransINT, a new and extremely powerful KG embedding method

that isomorphically preserves the implication ordering among relations in the embed-

ding space. Given pre-defined implication rules, TransINT restricts entities tied by a

relation to be embedded to vectors in a particular region of R𝑑, included isomorphi-

cally by the order of relation implication. For example, we map any entities tied by

is_father_of to vectors in a region that is included in the region for is_parent_of;

thus, we can automatically know that if John is a father of Tom, he is also his parent

even if such a fact is missing in the KG. Such embeddings are constructed by sharing

and rank-ordering the basis of the linear subspaces in which the vectors are required

to exist. The parameter sharing of our method refines the large solution space of

KG embeddings, which are learned with stochastic gradient descent, starting from

random initialization.

Mathematically, a relation can be viewed as a set of entities tied by a constraint

[47]. We take such a view on KG’s, since it gives consistency and interpretability to

model behavior. We show that angles between embedded relation sets can identify

semantic patterns and implication rules — an extension of the line of thought as in

word/ image embedding methods such as [36] and [24] to relational embedding.

The main contributions of our work are: (1) A novel KG embedding such that

implication rules in the original KG are guaranteed to unconditionally, not approx-

imately, hold. (2) Our model suggests possibilities of learning semantic relatedness

between groups of objects. (3) We significantly outperform state-of-the-art rule in-

tegration embedding methods, [27] and [21], on two benchmark datasets, FB122 and

NELL Sport/Location.

2.2 TransINT

In this section, we describe the intuition and justification for our method. We first

define relation as sets, and revisit TransH [59] as mapping relations to sets in R𝑑.
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Figure 2-1: Two equivalent ways of expressing relations. (a): relations defined in a
hypothetical KG. (b): relations defined in a set-theoretic perspective (Definition 1).
Because is_father_of ⇒ is_parent_of, the set for is_father_of is a subset of that
for is_parent_of (Definition 2).

Finally, we propose TransINT. We put * next to definitions and theorems we pro-

pose/introduce. Otherwise, we use existing definitions and cite them.

2.2.1 Sets as Relations

We define relations as sets and implication as inclusion of sets, as in set-theoretic

logic.

Definition (Relation Set): Let 𝑟𝑖 be a binary relation and 𝑥, 𝑦 entities. Then, a set

Ri such that 𝑟𝑖(𝑥, 𝑦) if and only if (𝑥, 𝑦) ∈ Ri always exists [47]. We call Ri the

relation set of 𝑟𝑖.

For example, consider the relations in Figure 2-1a and their corresponding sets in Fig-

ure 2-1b; Is_Father_Of(Tom, Harry) is equivalent to (Tom, Harry) ∈ RIs_Father_Of.

Definition (Logical Implication): For two relations, 𝑟1 implies 𝑟2 (or 𝑟1 ⇒ 𝑟2) iff

∀𝑥, 𝑦,

(𝑥, 𝑦) ∈ R1 ⇒ (𝑥, 𝑦) ∈ R2 or equivalently, R1 ⊂ R2. [47]

For example, Is_Father_Of ⇒ Is_Parent_Of. (In Figure 2-1b, RIs_Father_Of ⊂

RIs_Parent_Of ).
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Figure 2-2: Two perspectives of viewing TransH in R3; order of operations can be
flipped. (The orange dot is the origin, to emphasize that translated vectors are
equivalent.) (a): projection first, then difference — first projecting

#»

ℎ and #»
𝑡 onto

𝐻𝑖𝑠_𝑝𝑎𝑟𝑒𝑛𝑡_𝑜𝑓 , and then requiring
# »

ℎ⊥+ #»𝑟𝑗 ≈
#»
𝑡⊥ (b): difference first, then projection —

first subtracting
#»

ℎ from #»
𝑡 , and then projecting the difference (

#       »

𝑡− ℎ) to 𝐻𝑖𝑠_𝑝𝑎𝑟𝑒𝑛𝑡_𝑜𝑓

and requiring (
#       »

𝑡− ℎ)⊥ ≈ 𝑟𝑗. All (
#       »

𝑡− ℎ)⊥ belong to the red line, which is unique
because it is when #                        »𝑟𝑖𝑠_𝑝𝑎𝑟𝑒𝑛𝑡_𝑜𝑓 is translated to the origin.

2.2.2 Background: TransH

Given a fact triple (ℎ, 𝑟𝑗, 𝑡) in a KG (i.e., (Harry, is_father_of, Tom)), TransH maps

each entity to a vector, and each relation 𝑟𝑗 to a relation-specific hyperplane 𝐻𝑗 and

a fixed vector #»𝑟𝑗 on 𝐻𝑗 (Figure 2-2a). For each fact triple (ℎ, 𝑟𝑗, 𝑡), TransH wants

# »

ℎ⊥ + #»𝑟𝑗 ≈
#»
𝑡⊥ · · · · · (Eq. 1)

where
# »

ℎ⊥,
#»
𝑡⊥ are projections of

#»

ℎ ,
#»
𝑡 onto 𝐻𝑗 (Figure 2-2a).

Revisiting TransH We interpret TransH in a novel perspective. An equivalent

way to put Eq.1 is to change the order of subtraction and projection (Figure 2-2b):

Projection of (
#       »

𝑡− ℎ) onto 𝐻𝑗 ≈ #»𝑟𝑗 .

This means that all entity vectors (
#»

ℎ ,
#»
𝑡 ) such that their difference

#       »

𝑡− ℎ belongs to

the red line are considered to be tied by relation 𝑟𝑗 (Figure 2-2b); Rj ≈ the red line,

which is the set of all vectors whose projection onto 𝐻𝑗 is the fixed vector #»𝑟𝑗 . Thus,

upon a deeper look, TransH actually embeds a relation set in KG (Figure 2-1b)
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to a particular set in R𝑑. We call such sets relation space for now; in other words,

a relation space of some relation 𝑟𝑖 is the space where each (ℎ, 𝑟𝑖, 𝑡)’s
#       »

𝑡− ℎ can exist.

We formally visit it later in Section 3.1. Thus, in TransH,

𝑟𝑖(𝑥, 𝑦) ≡ (𝑥, 𝑦) ∈ Ri (relation in KG)

∼= #        »
𝑦 − 𝑥 ∈ relation space of 𝑟𝑖 (relation in Rd)

.

Figure 2-3: Two perspectives of viewing TransINT. (a): TransINT as TransH with
additional constraints — by intersecting 𝐻’s and projecting #»𝑟 ’s. The dotted orange
lines are the projection constraint. (b): TransINT as mapping of sets (relations
in KG’s) into linear subspaces (viewing TransINT in the relation space (Figure 2-
2b)). The blue line, red line, and the green plane are, respectively, is_father_of,
is_mother_of and is_parent_of ’s relation spaces — where

#       »

𝑡− ℎ’s of ℎ, 𝑡 tied by these
relations can exist. The blue and the red line lie on the green plane — is_parent_of ’s
relation space includes the other two’s.

2.2.3 TransINT

We propose TransINT, which, given pre-defined implication rules, guarantees isomor-

phic ordering of relations in the embedding space. Like TransH, TransINT embeds

a relation 𝑟𝑗 to a (subspace, vector) pair (𝐻𝑗, #»𝑟𝑗). However, TransINT modifies the

relation embeddings (𝐻𝑗, #»𝑟𝑗) so that the relation spaces (i.e., red line of Figure 2-2b)

are ordered by implication; we do so by intersecting the 𝐻𝑗’s and projecting the #»𝑟𝑗 ’s

(Figure 2-3a). We explain with familial relations as a running example.
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Intersecting the 𝐻𝑗’s TransINT assigns distinct hyperplanes 𝐻𝑖𝑠_𝑓𝑎𝑡ℎ𝑒𝑟_𝑜𝑓 and

𝐻𝑖𝑠_𝑚𝑜𝑡ℎ𝑒𝑟_𝑜𝑓 to is_father_of and is_mother_of. However, because is_parent_of is

implied by the aforementioned relations, we assign

𝐻𝑖𝑠_𝑝𝑎𝑟𝑒𝑛𝑡_𝑜𝑓 = 𝐻𝑖𝑠_𝑓𝑎𝑡ℎ𝑒𝑟_𝑜𝑓 ∩𝐻𝑖𝑠_𝑚𝑜𝑡ℎ𝑒𝑟_𝑜𝑓 .

In R3, TrainsINT’s 𝐻𝑖𝑠_𝑝𝑎𝑟𝑒𝑛𝑡_𝑜𝑓 is not a hyperplane but a line (Figure 2-3a), unlike

in TransH where all 𝐻𝑗’s are hyperplanes; in some R𝑑, Figure 2-3a’s 𝐻𝑖𝑠_𝑝𝑎𝑟𝑒𝑛𝑡_𝑜𝑓 will

be a linear subspace whose basis has rank 𝑑− 2.1

Projecting the #»𝑟𝑗’s TransINT constrains the #»𝑟𝑗 ’s with projections (Figure 2-3a’s

dotted orange lines). First, #                         »𝑟𝑖𝑠_𝑓𝑎𝑡ℎ𝑒𝑟_𝑜𝑓 and #                          »𝑟𝑖𝑠_𝑚𝑜𝑡ℎ𝑒𝑟_𝑜𝑓 are required to have the

same projection onto 𝐻𝑖𝑠_𝑝𝑎𝑟𝑒𝑛𝑡_𝑜𝑓 . Second, #                        »𝑟𝑖𝑠_𝑝𝑎𝑟𝑒𝑛𝑡_𝑜𝑓 is that same projection onto

𝐻𝑖𝑠_𝑝𝑎𝑟𝑒𝑛𝑡_𝑜𝑓 .

We introduced the constraints on 𝐻𝑗’s and #»𝑟𝑗 above because they result in or-

dering the relation spaces of 𝑟𝑗’s isomorphically to their relation sets. Figure 2-3b

graphically illustrates that is_parent_of ’s relation space (green hyperplane) includes

those of is_father_of (blue line) and is_mother_of (red line). More generally, the

two constraints above guarantee that (𝑅𝑖 ⊂ 𝑅𝑗) iff (𝑟𝑖’s relation space ⊂ 𝑟𝑗’s relation

space).

One thing not to be confused by is that 𝐻𝑗 is not 𝑟𝑗’s relation space. 𝐻𝑗 is a

“projecting hyperplane” assigned uniquely to each 𝑟𝑗, so that Eq. 1 can be imposed

on each fact triple (ℎ, 𝑟𝑗, 𝑡); on the other hand, the relation space of 𝑟𝑗 is the set

where all such
#       »

𝑡− ℎ belong (Figure 2-3). The focus and interest of our work are to

inclusion-order the relation spaces of 𝑟𝑗’s, not 𝐻𝑗’s..

1One weakness of TransINT is that in R𝑑, the dimension of the basis of 𝐻𝑗 can be as low as
𝑑 − ℎ − 1, when there is a chain of ℎ relations that imply 𝑟𝑗 (i.e., 𝑟1 ⇒ 𝑟2 ⇒ ... ⇒ 𝑟ℎ ⇒ 𝑟𝑗).
However, in existing benchmark datasets [7, 57, 8], the highest “ℎ” is normally less than 10, while
the embedding dimension 𝑑 is chosen among {50, 100, 200} for TransINT as well as existing KG
embedding methods [8, 59]. Thus, it is unlikley that 𝑑 − ℎ − 1 becomes significantly smaller than
𝑑. Furthermore, TransINT shows great experimental results despite the dimensions of some 𝐻𝑗 ’s
being lower than 𝑑− 1 (Section 2.5); thus, the reduction of dimensions for some 𝐻𝑗 ’s should not be
a serious problem.
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In summary, TransINT requires that

For distinct relations 𝑟𝑖, 𝑟𝑗, require the following if and only if 𝑟𝑖 ⇒ 𝑟𝑗:

Intersection Constraint: 𝐻𝑗 = 𝐻𝑖 ∩𝐻𝑗.

Projection Constraint: Projection of #»𝑟1 to 𝐻𝑗 is #»𝑟𝑗 .

where
# »

𝐻𝑖,
#  »

𝐻𝑗 and #»𝑟𝑖 ,
#»𝑟𝑗 are distinct.

In Section 2.3, we prove that these two constraints guarantee that an ordering

isomorphic to implication holds in the embedding space:

(𝑟𝑖 ⇒ 𝑟𝑗) iff (𝑟𝑖’s rel. space ⊂ 𝑟𝑗’s rel. space) or equivalently,

(𝑅𝑖 ⊂ 𝑅𝑗) iff (𝑟𝑖’s rel. space ⊂ 𝑟𝑗’s rel. space) .

2.3 TransINT’s Isomorphic Guarantee

In this section, we formally state TransINT’s isomorphic guarantee. We denote all

𝑑× 𝑑 matrices with capital letters (e.g., 𝐴) and vectors with arrows on top (e.g.,
#»

𝑏 ).

2.3.1 Projection and relation space

In R𝑑, there is a bijection between each linear subspace 𝐻𝑖 and a projection matrix 𝑃𝑖;

∀ #»𝑥 ∈ R𝑑, 𝑃𝑖𝑥 ∈ 𝐻𝑖 [48]. A random point #»𝑎 ∈ R𝑑 is projected onto 𝐻𝑖 iff multiplied by

𝑃𝑖; i.e., 𝑃𝑖𝑎 =
#»

𝑏 ∈ 𝐻𝑖. In the rest of the paper, we denote 𝑃 (or 𝑃𝑖) as the projection

matrix onto a linear subspace 𝐻 (or 𝐻𝑖). Now, we formally define a general concept

that subsumes relation space (Figure 2-3b).

Definition* (𝑆𝑜𝑙(𝑃,
#»

𝑘 )) : Let 𝐻 be a linear subspace and 𝑃 its projection matrix.

Then, given
#»

𝑘 on 𝐻, the set of vectors that become
#»

𝑘 when projected on to 𝐻, or

the solution space of 𝑃 #»𝑥 =
#»

𝑘 , is denoted as Sol(P,
#»

𝑘 ).

With this definition, relation space (Figure 2-3b) is (𝑆𝑜𝑙(𝑃𝑖,
#»𝑟𝑖)), where 𝑃𝑖 is the

projection matrix of 𝐻𝑖 (subspace for relation 𝑟𝑖); it is the set of points
#       »

𝑡− ℎ such

that 𝑃𝑖(
#       »

𝑡− ℎ) = #»𝑟𝑖 .
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2.3.2 Isomorphic Guarantees

Main Theorem 1 (Isomorphism): Let {(𝐻𝑖,
#»𝑟𝑖)}𝑛 be the (subspace, vector) embed-

dings assigned to relations {Ri}𝑛 by the Intersection Constraint and the Projection

Constraint ; 𝑃𝑖 the projection matrix of 𝐻𝑖. Then, ({𝑆𝑜𝑙(𝑃𝑖,
#»𝑟𝑖)}𝑛,⊂) is isomorphic

to ({Ri}𝑛,⊂).

In actual optimization, TransINT requires something less strict than 𝑃𝑖(
#       »

𝑡− ℎ) =

#»𝑟𝑖 :

𝑃𝑖(
#       »

𝑡− ℎ)− #»𝑟𝑖 ≈
#»
0 ≡ ||𝑃𝑖(

#       »

𝑡− ℎ− #»𝑟𝑖)||2 < 𝜖,

for some non-negative and small 𝜖. This bounds
#       »

𝑡− ℎ− #»𝑟𝑖 to regions with thickness

2𝜖, centered around 𝑆𝑜𝑙(𝑃𝑖,
#»𝑟𝑖) (Figure 2-4). We prove that isomorphism still holds

with this weaker requirement.

Definition* (𝑆𝑜𝑙𝜖(𝑃, 𝑘)) : Given any 𝑃 , the solution space of ||𝑃 #»𝑥− #»

𝑘 ||2 < 𝜖 (where

𝜖 ≥ 0) is denoted as Sol𝜖(P,
#»

𝑘 ).

Main Theorem 2 (Margin-aware Isomorphism): ∀𝜖 ≥ 0, ({𝑆𝑜𝑙𝜖(𝑃𝑖,
#»𝑟𝑖)}𝑛,⊂) is

isomorphic to ({Ri}𝑛,⊂).

Figure 2-4: Figure 2-3(b)’s relation spaces when 𝑃𝑖(
#       »

𝑡− ℎ) − #»𝑟𝑖 ≈
#»
0 ≡ ||𝑃𝑖(

#       »

𝑡− ℎ −
#»𝑟𝑖)||2 < 𝜖 is required. (a): Each relation space now becomes a region with thickness
𝜖, centered around figure 2-3(b)’s relation space. (b): Relationship of the angle and
area of overlap between two relation spaces. With respect to the green region, the
nearly perpendicular cylinder overlaps much less with it than the other cylinder with
much smaller angle.

23



2.4 Initialization and Training

The intersection and projection constraints can be imposed with parameter sharing.

We first introduce some preliminary definitions.

Definition* (Parent Relation): For two relations 𝑟1, 𝑟2, if 𝑟1 ⇒ 𝑟2 and there is no 𝑟3

such that 𝑟1 ⇒ 𝑟3 ⇒ 𝑟2, then 𝑟1 is parent relation of 𝑟2; 𝑟2 is child of 𝑟1. For example,

in Figure 1c of the submitted paper, is_family_of is is_parent_of ’s parent relation.

Definition* (Head Relation): A relation 𝑟 that has no parent relation is a head

relation.

For example, in Figure 1b, is_parent_family_of is a head relation.

2.4.1 Parameter Sharing Initializaion

From initialization, we bind parameters so that they satisfy the two constraints. For

each entity 𝑒𝑗, we assign a 𝑑-dimensional vector #»𝑒𝑗 . To each R𝑖, we assign (𝐻𝑖,
#»𝑟𝑖) (or

(𝐴𝑖,
#»𝑟𝑖)) with parameter sharing. We first construct the 𝐻’s.

Intersection constraint Each subspace 𝐻 can be uniquely defined by its orthog-

onal subspace. We define the orthogonal subspace of the 𝐻’s top-down. To every

head relation Rℎ, assign a 𝑑-dimensional vector #»𝑎ℎ as an orthogonal subspace for 𝐻𝑅ℎ
,

making 𝐻𝑅ℎ
a hyperplane. Then, to each R𝑖 that is not a head relation, additionally

assign a new 𝑑-dimensional vector #»𝑎𝑖 linearly independent of the bases of all of its

parents. Then, R𝑖’s basis of the orthogonal subspace for 𝐻𝑅𝑖
becomes [ #»𝑎ℎ, ...,

#»𝑎𝑝,
#»𝑎𝑖]

where #»𝑎ℎ, ...,
#»𝑎𝑝 are the vectors assigned to R𝑖’s parent relations. Projection matrices

can be uniquely constructed given the bases [ #»𝑎ℎ, ...,
#»𝑎𝑝,

#»𝑎𝑖] [48]. Now, we initialize the
#»𝑟𝑖 ’s.

Projection Constraint To the head relation Rℎ, pick any random 𝑥ℎ ∈ R𝑑 and

assign #»𝑟ℎ = 𝑃ℎ𝑥. To each non-head R𝑖 whose parent is R𝑝, assign #»𝑟𝑖 = #»𝑟𝑝 + (𝐼 −

𝑃𝑝)(𝑃𝑖)𝑥𝑖 for some random 𝑥𝑖. This results in

𝑃𝑝
#»𝑟𝑖 = 𝑃𝑝

#»𝑟𝑝 + 𝑃𝑝(𝐼 − 𝑃𝑝)(𝑃𝑖)
#»𝑥𝑖 =

#»𝑟𝑝 +
#»
0 = #»𝑟𝑝
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for any parent, child pair.

Parameters to be trained Such initialization leaves the following parameters

given a KG with entities 𝑒𝑗’s and relations 𝑟𝑖’s: (1) a 𝑑-dimensional vector ( #»𝑎ℎ) for

the head relation, (2) a 𝑑-dimensional vector ( #»𝑎𝑖) for each non-head relation, (3) a 𝑑-

dimensional vector #»𝑥𝑖 for each head and non-head relation, (4) a 𝑑-dimensional vector
#»𝑒𝑗 for each entity 𝑒𝑗. TransH and TransINT both assign two 𝑑-dimensional vectors

for each relation and one 𝑑-dimensional vector for each entity; thus, TransINT has

the same number of parameters as TransH.

2.4.2 Training

We construct negative examples (wrong fact triplets) and train with a margin-based

loss, following the same protocols as in TransE and TransH.

Training Objective We adopt the same loss function as in TransH. For each fact

triplet (ℎ, 𝑟𝑖, 𝑡), we define the score function

𝑓(ℎ, 𝑟𝑖, 𝑡) = ||𝑃𝑖(
#       »

𝑡− ℎ)− #»𝑟𝑖 ||2

and train a margin-based loss 𝐿:

𝐿 =
∑︁

(ℎ,𝑟𝑖,𝑡)∈𝐺

𝑚𝑎𝑥(0, 𝑓(ℎ, 𝑟𝑖, 𝑡)
2 + 𝛾 − 𝑓(ℎ′, 𝑟′𝑖, 𝑡

′)2).

where 𝐺 is the set of all triples in the KG and (ℎ′, 𝑟′𝑖, 𝑡
′) is a negative triple made from

corrupting (ℎ, 𝑟𝑖, 𝑡). We minimize this objective with stochastic gradient descent.

Automatic Grounding of Positive Triples Without any special treatment, our

initialization guarantees that training for a particular (ℎ, 𝑟𝑖, 𝑡) also automatically ex-

ecutes training with (ℎ, 𝑟𝑝, 𝑡) for any 𝑟𝑖 ⇒ 𝑟𝑝, at all times. For example, by traversing

(Tom, is_father_of, Harry) in the KG, the model automatically also traverses (Tom,

is_parent_of, Harry), (Tom, is_family_of, Harry), even if they are missing in the
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KG. This is because 𝑃𝑝𝑃𝑖 = 𝑃𝑝 (by Lemma 4 of Appendix A.1.1) with the given

initialization and thus,

𝑓(ℎ, 𝑟𝑝, 𝑡) = ||𝑃𝑝(
#       »

𝑡− ℎ)− #»𝑟𝑝||2
2
= ||𝑃𝑝(𝑃𝑖((

#       »

𝑡− ℎ)− #»𝑟𝑖))||2
2

≤ ||(𝑃𝑝 + (𝐼 − 𝑃𝑝))𝑃𝑖((
#       »

𝑡− ℎ)− #»𝑟𝑖))||2
2
= ||(𝑃𝑖((

#       »

𝑡− ℎ)− #»𝑟𝑖))||2
2
= 𝑓(ℎ, 𝑟𝑖, 𝑡)

In other words, training 𝑓(ℎ, 𝑟𝑖, 𝑡) towards less than 𝜖 automatically guarantees train-

ing 𝑓(ℎ, 𝑟𝑝, 𝑡) towards less than 𝜖. This eliminates the need to manually create missing

triples that are true by the implication rule.

2.5 Experiments

We evaluate TransINT on two standard benchmark datasets, Freebase 122 [8] and

NELL sport/location [57], and compare against, respectively, KALE [27] and Sim-

plE+ [21], state-of-the-art methods that integrate rules to KG embeddings, in the

trans- and bilinear family. We perform link prediction and triple classification tasks

on Freebase 122, and link prediction only on NELL sport/location (because Sim-

plE+ only reported performance on link prediction). All codes for experiments were

implemented in PyTorch [44].

2.5.1 Link Prediction on Freebase 122 and NELL Sport/Location

We compare link prediction results with KALE on Freebase 122 (FB122) and with

SimplE+ on NELL Sport/Location. The task is to predict the gold entity given a

fact triple with missing head or tail: if (ℎ, 𝑟, 𝑡) is a fact triple in the test set, predict

ℎ given (𝑟, 𝑡) or predict 𝑡 given (ℎ, 𝑟). We follow TransE, KALE, and SimplE+’s

protocol. For each test triple (ℎ, 𝑟, 𝑡), we rank the similarity score 𝑓(𝑒, 𝑟, 𝑡) when

ℎ is replaced with 𝑒 for every entity 𝑒 in the KG, and identify the rank of the gold

head entity ℎ; we do the same for the tail entity 𝑡. Aggregated over all test triples,

we report for FB 122: (i) the mean reciprocal rank (MRR), (ii) the median of the

ranks (MED), and (iii) the proportion of ranks no larger than 𝑛 (HITS@N) which
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are the same metrics reported by KALE. For NELL Sport/Location, we follow the

protocol of SimplE+ and do not report MED. A lower MED, and a higher MRR and

Hits HITS@N are better.

TransH, KALE, and SimplE+ adopt a “filtered” setting that addresses when enti-

ties that are correct, albeit not gold, are ranked before the gold entity. For example, if

the gold entity is (Tom, is_parent_of, John) and we rank every entity 𝑒 for being the

head of (?, is_parent_of, John), it is possible that Sue, John’s mother, gets ranked

before Tom. To avoid this, the “filtered setting” ignores corrupted triplets that exist

in the KG when counting the rank of the gold entity. (The setting without this is

called the “raw setting”).

TransINT’s hyperparameters are: learning rate (𝜂), margin (𝛾), embedding di-

mension (𝑑), and learning rate decay (𝛼), applied every 10 epochs to the learn-

ing rate. We find optimal configurations among the following candidates: 𝜂 ∈

{0.003, 0.005, 0.01}, 𝛾 ∈ {1, 2, 5, 10}, 𝑑 ∈ {50, 100}, 𝛼,∈ {1.0, 0.98, 0.95}; we grid-

search over each possible (𝜂, 𝛾, 𝑑, 𝛼). We create 100 mini-batches of the training

set (following the protocol of KALE) and train for a maximum of 1000 epochs with

early stopping based on the best median rank. Furthermore, we try training with

and without normalizing each of entity vectors, relation vectors, and relation sub-

space bases after every batch of training.

Experiment on Freebase 122

We compare our performance with that of KALE and previous methods (TransE,

TransH, TransR) that were compared against it, using the same dataset (FB122).

FB122 is a subset of FB15K [8] accompanied by 47 implication and transitive rules;

it consists of 122 Freebase relations on “people”, “location”, and “sports” topics. Out

of the 47 rules in FB122, 9 are transitive rules (e.g., person/nationality(x,y) ∧

country/official_language(y,z) ⇒ person/languages(x,z)) to be used for KALE.

However, since TransINT only deals with implication rules, we do not take advantage

of them, unlike KALE.

We also put us at some intentional disadvantages against KALE to assess TransINT’s
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Raw Filtered
MRR MED Hits N% MRR MED Hits N%

3 5 10 3 5 10
TransE 0.262 10.0 33.6 42.5 50.0 0.480 2.0 58.9 64.2 70.2
TransH 0.249 12.0 31.9 40.7 48.6 0.460 3.0 53.7 59.1 66.0
TransR 0.261 15.0 28.9 37.4 45.9 0.523 2.0 59.9 65.2 71.8
KALE* 0.294 9.0 36.9 44.8 51.9 0.523 2.0 61.7 66.4 72.8
TransINT𝐺 0.339 6.0 40.1 49.1 54.6 0.655 1.0 70.4 75.1 78.7
TransINT𝑁𝐺 0.323 8.0 38.3 46.6 53.8 0.620 1.0 70.1 74.1 78.3

Table 2.1: Results for link prediction on FB122.
*For KALE, we report the best performance by any of KALE-PRE, KALE-Joint,
KALE-TRIP (3 variants of KALE proposed by [27]).

Sport Location
MRR Hits N% MRR Hits N%
Filtered Raw 1 3 10 Filtered Raw 1 3 10

Logical Inference - - 28.8 - - - - 27.0 - -
SimplE 0.230 0.174 18.4 23.4 32.4 0.190 0.189 13.0 21.0 31.5
SimplE+ 0.404 0.337 33.9 44.0 50.8 0.440 0.434 43.0 44.0 45.0
TransINT𝐺 0.450 0.361 37.6 50.2 56.2 0.550 0.535 51.2 56.8 61.1
TransINT𝑁𝐺 0.431 0.362 36.7 48.7 52.1 0.536 0.534 51.1 53.3 59.0

Table 2.2: Results for link prediction on NELL sport/location.

robustness to absence of negative example grounding — the use of given rules to avoid

false negatives in creating negative examples to be used in the margin-based loss 𝐿2.

In constructing negative examples for the margin-based loss 𝐿, KALE both uses rules

(by grounding) and their own scoring scheme to avoid false negatives. While ground-

ing with FB122 is not a burdensome task, it known to be very inefficient and difficult

for extremely large datasets [15]. Thus, it is a great advantage for a KG model to

perform well without grounding of training/test data. We evaluate TransINT on two

settings, with and without rule grounding. We call them respectively TransINT𝐺

(grounding), TransINT𝑁𝐺 (no grounding).

We report link prediction results in Table 2.1; since we use the same train, test

and validation sets, we directly copy from [27] for baselines. While the filtered setting

gives better performance (as expected), the trend is generally similar between raw

2The simplest method to construct negative examples is to replace the head or tail of an existing
KG fact with another entity. For example, from (Paris, is_city_of, France), a negative example
(Paris, is_city_of, England) can be created; however, false negatives such as (Paris, is_city_of,
EU) can be created as well. Rules such as France is part of EU can prevent such false negatives.

28



and filtered. TransINT outperforms all other models by large margins in all metrics,

even without grounding; especially in the filtered setting, the Hits@N gap between

TransINT𝐺 and KALE is around 4∼6 times that between KALE and the best Trans

Baseline (TransR).

Also, while TransINT𝐺 performs higher than TransINT𝑁𝐺 in all settings/metrics,

the gap between them is much smaller than that between TransINT𝑁𝐺 and KALE,

showing that TransINT robustly brings state-of-the-art performance even without

grounding. The results suggest two possibilities in a more general sense. First, the

emphasis on true positives could be as important as or more important than avoiding

false negatives. Even without manual grounding, TransINT𝑁𝐺 has automatic ground-

ing of positive training instances enabled (Section 4.1.1.) due to model properties, and

this could be one of its success factors. Second, hard constraints on parameter struc-

tures can yield a performance boost significantly larger than that by regularization

or joint learning, which are softer constraints.

Experiment on NELL Sport/Location

We compare TransINT against SimplE+, a state-of-the-art method that outperforms

ComplEx [51] and SimplE [32], on NELL (Sport/Location) for link prediction. NELL

Sport/Location is a subset of NELL [40] accompanied by implication rules; a com-

plete list of them is available in Appendix A.2. Since we use the same train. test and

validation sets, we directly copy from [21] for baselines (Logical Inference, SimplE,

SimplE+). The results are shown in Table 2.2. Again, TransINT𝐺 and TransinT𝑁𝐺

significantly outperform other methods in all metrics. The general trends are simi-

lar to the results for FB 122; again, the performance gap between TransINT𝐺 and

TransINT𝑁𝐺 is much smaller than that between TransINT𝑁𝐺 and SimplE+.

2.5.2 Triple Classification on Freebase 122

The task is to classify whether an unobserved instance (ℎ, 𝑟, 𝑡) is correct or not, where

the test set consists of positive and negative instances. We use the same protocol and
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TransE TransH TransR KALE* TransINT𝐺 TransINT𝑁𝐺

0.634 0.641 0.619 0.677 0.781 (0.839/ 0.752) 0.743 (0.709/ 0.761)

Table 2.3: Results for triple classification on FB122, in Mean Average Precision
(MAP).

test set provided by KALE; for each test instance, we evaluate its similarity score

𝑓(ℎ, 𝑟, 𝑡) and classify it as “correct” if 𝑓(ℎ, 𝑟, 𝑡) is below a certain threshold (𝜎), a

hyperparameter to be additionally tuned for this task. We report on mean average

precision (MAP), the mean of classification precision over all distinct relations (𝑟’s)

of the test instances. We use the same experiment settings and training details as in

Link Prediction other than additionally finding optimal 𝜎.

Triple classification results are shown in Table 2.3. Again, TransINT𝐺 and TransINT𝑁𝐺

both significantly outperform all other baselines. We also separately analyze MAP

for relations that are/are not affected by the implication rules (those that appear/do

not appear in the rules), shown in parentheses of Table 2.3 with the order of (in-

fluenced relations/uninfluenced relations). We can see that both TransINT’s have

MAP higher than the overall MAP of KALE, even when the TransINT’s have the

penalty of being evaluated only on uninfluenced relations; this shows that TransINT

generates better embeddings even for those not affected by rules. Furthermore, we

comment on the role of negative example grounding; we can see that grounding does

not help performance on unaffected relations (i.e., 0.752 vs 0.761), but greatly boosts

performance on those affected by rules (0.839 vs 0.709). While TransINT does not

necessitate negative example grounding, it does improve the quality of embeddings

for those affected by rules.

2.6 Semantics Mining with Overlap Between Em-

bedded Regions

Traditional embedding methods that map an object (i.e., words, images) to a single-

ton vector learn soft tendencies between embedded vectors with cosine similarity, or
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Relation Angle imb

Not Disjoint Relatedness /people/person/nationality 22.7 1.18
Implication /people/person/place_lived/location* 46.7 3.77

Disjoint /people/cause_of_death/people 76.6 n/a
/sports/sports_team/colors 83.5 n/a

Table 2.4: Examples of angles and imb between /people/person/place_of_birth and
other relations

angular distance between two embddings. TransINT extends such a line of thought to

semantic relatedness between groups of objects, with angles between relation spaces.

In Figure 2-4b, one can observe that the closer the angle between two embedded

regions, the larger the overlap in area. For entities ℎ and 𝑡 to be tied by both rela-

tions 𝑟1, 𝑟2,
#       »

𝑡− ℎ has to belong to the intersection of their relation spaces. Thus, we

hypothesize the following over any two relations 𝑟1, 𝑟2 that are not explicitly tied by

the pre-determined rules:

Let 𝑉1 be the set of
#       »

𝑡− ℎ’s in 𝑟1’s relation space (denoted as 𝑅𝑒𝑙1) and 𝑉2 that of

𝑟2’s.
(1) Angle between 𝑅𝑒𝑙1 and 𝑅𝑒𝑙2 represents semantic “disjointness” of 𝑟1, 𝑟2; the

more disjoint two relations, the closer their angle is to 90∘.

When the angle between 𝑅𝑒𝑙1 and 𝑅𝑒𝑙2 is small,

(2) if majority of 𝑉1 belongs to the overlap of 𝑉1 and 𝑉2 but not vice versa, 𝑟1 implies

𝑟2.

(3) if majority of 𝑉1 and 𝑉2 both belong to their overlap, 𝑟1 and 𝑟2 are semantically

related.
(2) and (3) consider the imbalance of membership in overlapped regions. Exact

calculation of this involves specifying an appropriate 𝜖 (Figure 2-3). As a proxy for

deciding whether an element of 𝑉1 (denoted by 𝑣1) belongs in the overlapped region,

we can consider the distance between 𝑣1 and its projection to 𝑅𝑒𝑙2; the further away 𝑣1

is from the overlap, the larger the projected distance. Call the mean of such distances

from 𝑉1 to 𝑅𝑒𝑙2 as 𝑑12 and the reverse 𝑑21. The imbalance in 𝑑12, 𝑑21 can be quantified

with 1
2
(𝑑12
𝑑21

+ 𝑑21
𝑑12

), which is minimized to 1 when 𝑑21 = 𝑑12 and increases as 𝑑12, 𝑑21

are more imbalanced; we call this factor 𝑖𝑚𝑏.

For hypothesis (1), we verified that the vast majority of relation pairs have an-
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gles near to 90∘, with the mean and median respectively 83.0∘ and 85.4∘; only 1%

of all relation pairs had angles less than 50∘. We observed that relation pairs with

angle less than 20∘ were those that can be inferred by transitively applying the pre-

determined implication rules. Relation pairs with angles within the range of [20∘, 60∘]

had strong tendencies of semantic relatedness or implication; such a tendency drasti-

cally weakened past 70∘. Table 2.4 shows the angle and 𝑖𝑚𝑏 of relations with respect

to /people/person/place_of_birth, whose trend agrees with our hypotheses. Finally,

we note that such an analysis could be possible with TransH as well, since their

method too maps
#       »

𝑡− ℎ’s to lines (Figure 2-2b).

In all of link prediction, triple classification, and semantics mining, TransINT’s

theme of assigning optimal regions to bound entity sets is unified and consistent.

These two qualities were missing in existing works such as TransE, KALE, and Sim-

plE+.

2.7 Related Work

Our work is related to two strands of research. The first is Order Embeddings [53] and

their extensions [54, 3], which are significantly limited in that only unary relations

and their hierarchies can be modeled. While [41] also approximately embeds unary

partial ordering, their focus is on achieving reasonably competent results with unsu-

pervised learning of rules in low dimensions, while ours is achieving state-of-the-art

in a supervised setting.

The second strand is those that enforce the satisfaction of common sense logical

rules for binary and 𝑛-ary relations in the embedded KG. [56] explicitly constrains

the resulting embedding to satisfy logical implications and type constraints via linear

programming, but it only requires doing so during inference, not learning. On the

other hand, [27, 45, 21] encourage embeddings to follow a set of logical rules during

learning, but their approaches involve soft induction instead of hard constraints, re-

sulting in rather insignificant improvements. Our work combines the advantages of

both [56] and works that impose rules during learning. Finally, [13] models unary re-
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lations only and [38] transitivity only, whose contributions are fundamentally different

from ours.

2.8 Conclusion

We presented TransINT, a new KG embedding method such that relation sets are

mapped to continuous sets in R𝑑, inclusion-ordered isomorphically to implication

rules. Our method is extremely powerful, outperforming existing state-of-the-art

methods on benchmark datasets by significant margins. We further proposed an

interpretable criterion for mining semantic similarity and implication rules among

sets of entities with TransINT.
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Chapter 3

Advancing Seq2seq Semantic Parsing

with Joint Paraphrase Learning

We address the problem of model generalization for sequence to sequence (seq2seq)

architectures. We propose going above and beyond data augmentation by jointly

learning paraphrases along with the main task. We observe that this is particularly

useful in correctly handling unseen sentential paraphrases in semantic parsing — map-

ping English utterances to logical forms (structured representations that uniquely and

exactly capture natural language meanings (Figure 3-1)). The proposed approach sig-

nificantly outperforms state-of-the-art seq2seq models for semantic parsing on diverse

domains: on Overnight, by up to 3.2%, and on emrQA, by 7%).

3.1 Introduction

Natural language provides a vast number of alternative ways to state something or

to ask a question. This poses a daunting challenge to natural language processing

methods because there is no possible way to enumerate all these alternatives. As a

result, many popular machine learning systems trained on benchmark datasets are

surprisingly fragile to such previously unobserved variations of the training input

at test time. An attempt to ameliorate this problem is to augment the original

training data with paraphrases. Obtaining such paraphrases from people is time-
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consuming and expensive, leaving most possible paraphrases out of an augmented

corpus. Furthermore, regardless of the magnitude of data augmentation, there always

exist unseen instances that can break the model. Thus, data augmentation alone is

an insufficient and incomplete remedy for improving model brittleness.

We propose to go above and beyond data augmentation in handling model gen-

eralization for sequence-to-sequence (seq2seq) semantic parsing and improve model

generalization to test sets that entirely consist of unseen paraphrases of the training

set. Assuming that data augmentation already took place in the training set, we pro-

pose new models that actively employ the properties of paraphrase-augmented data

as part of the training objective.

We incorporate multi-task paraphrase detection and generation learning to se-

quence models for semantic parsing. We show that our models compare over and

above other popular generalization schemes, such as feature-based or fine-tuned word

embeddings [35, 14] or paraphrase-based methods such as paraphrase embeddings

[61]. The proposed models outperform state-of-the-art models [43, 30] when evalu-

ated across a variety of settings on emrQA [43] and Overnight for semantic parsing

in the clinical and the open domain.

The main contributions of our work are as follows: (1) We propose novel multi-task

learning seq2seq semantic parsing that significantly improves model generalization to

unseen paraphrases at test time, in both the clinical and the open domain. (2) We

introduce new methods of splitting data into train/ test sets that more realistically

evaluates model generalization to paraphrases. (3) We present the first competitive

baseline for semantic parsing on the emrQA dataset.

3.2 Related Works

Dealing with unseen paraphrastic variants of the input has been a fundamental prob-

lem [39, 18]. Recently, multiple works have shown that models easily “break” when

evaluated on adversarial examples, which are noisy variants of the training inputs

[25, 29]. However, there is relatively little work that goes beyond augmentation and

36



Figure 3-1: An overview of our work. (a) The objective is to train a seq2seq para-
phrase model that is capable of accurately generalizing to unseen sentential para-
phrases only observed at test time (red). Phrases highlighted in blue are synonymous
when accompanied by a clinical condition, such as leukemia. (b) Example inputs and
outputs for semantic parsing with the emrQA dataset.

employs a new training scheme — one that actively optimizes paraphrastic general-

ization along with learning the main NLP task at hand, in neural settings.

In non-neural settings, the idea that leveraging paraphrases facilitates model-

ing sentential semantics has been repeatedly verified across various NLP tasks. In

semantic parsing, [5] deal with understanding the myriad paraphrastic variants in

which knowledge base relations can be expressed in human language. They use a

paraphrase of the original input utterance as an intermediary, which is used as an

ancillary factor in ranking the likelihood of each candidate logical form.

In neural settings, the most widespread approach is to simply generate paraphrases

for data augmentation, as used by [19] in question answering and [58] in semantic

parsing. There are relatively few approaches that explicitly incorporate pairwise

paraphrastic equivalence of inputs as part of the model. In semantic parsing, [16]

applies CNN to learn paraphrase detection in a multi-task manner; [49] generate

the simplest paraphrases for input utterances and uses them as intermediaries for

mapping input to output.

In question answering, several multi-task learning works learn paraphrase detec-

tion along with the main task; [10] optimizes a multi-task objective (negative cosine

similarity) that encourages embeddings of paraphrases to have small angular distance

in every other iteration of training. Additionally, [17] uses an auxiliary multi-task

learning objective for paraphrase detection in training multi-column convolutional
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neural networks for structured question answering. Both of these works leverage the

paraphrase clusters of the WIKIANSWERS [20] dataset. However, [17] found that

their multi-task learning method gives almost no advantage. Moreover, both works

did not analyze which domains or types of validation inputs benefited from paraphrase

learning. Most importantly, these works are fundamentally and methodologically dif-

ferent from ours, in that they leveraged the paraphrases from WIKIANSWERS not

as inputs to the main model, but only for learning paraphrase detection. On the other

hand, our work uses paraphrase instances for both multi-task paraphrase learning and

the main task, which is the driving factor behind the significant performance boost

by our models.

3.2.1 Paraphrases

Paraphrases are sentences or phrases that convey the same meaning using different

wording [6]. Methods to construct paraphrases are largely divided into syntactic vari-

ation and substitution [6]. “Does the patient have a history of leukemia?” and “Is

there leukemia in the patient’s history?” are syntactic paraphrases, with overlapping

words reordered. Most paraphrases are not fully syntactic, and involve substitutions

with synonymous phrases by matching general semantics to that of a domain sublan-

guage. E.g., “have a history of” is a general phrase and is not always synonymous

to “seen for”, but the two are paraphrases of each other when accompanied by a

condition in the clinical domain (Figure 3-1a).

Table 3.1 shows examples of annotated paraphrases that are of syntactic variant

and synonymous substitution types. Some of emrQA and Overnight’s paraphrases

respectively assume knowledge of clinical (“considered for” ≡ “seen for, diagnosed

with” when collocated with a |clinical problem|) and quantitative sublanguage (“at

most two” ≡ “one or two”).
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Para. Types emrQA

Syntactic Para’s
{︂

what medication has the patient used for |problem|
what medications have been previously used for the treatment of |problem|

Substitution Para’s
{︂

is there any mention of |problem| in the patients record
has been the patient ever been considered for |problem|

Para. Types Overnight

Syntactic Para’s
{︂

find an additional author to an efron article
who is the other author for the article written by efron

Substitution Para’s
{︂

article that at most two articles cite
articles cited by two or more articles

Table 3.1: Examples of annotated paraphrases in emrQA and Overnight. Syntac-
tic variation paraphrases and synonymous substitution paraphrases are respectively
abbreviated as Syntactic Para’s and Substitution Para’s.

3.2.2 Problem Statement

Our setup assumes (1) a paraphrase-augmented dataset and (2) a baseline seq2seq

model [50], which maps an input sequence to an output sequence. Our goal is to

achieve additional improvement in model generalization, given this setup.

More formally, we are given a paraphrase-augmented dataset that consists of 𝑁

input utterances {𝑥1, ..., 𝑥𝑁} and corresponding output utterances {𝑦1, ..., 𝑦𝑁}. In-

put utterances {𝑥1, ..., 𝑥𝑁} can be partitioned into 𝐾 paraphrase groups 𝑃1, ..., 𝑃𝐾 ,

where each input utterance 𝑥𝑖 belongs to exactly one paraphrase group and each 𝑃𝑖

(𝑖 ∈ 1, ..., 𝐾) has at least two elements. The constituents of each 𝑃𝑖 are considered se-

mantically equivalent. Each 𝑃𝑖 is the set of all possible sentences that are paraphrases

of each other that we are aware of.

On the other hand, there always exist unseen paraphrases that were not included

during data augmentation. Let 𝑇1, ..., 𝑇𝐾 each be a subset of those paraphrases not

in 𝑃1, ..., 𝑃𝐾 , where all elements of 𝑇𝑖 are paraphrases of any element of 𝑃𝑖.

We use 𝑃1, .., 𝑃𝐾 as the training set and 𝑇1, ..., 𝑇𝐾 as the test set. Our goal

here is to improve model generalization to the unobserved instances in each 𝑇𝑖, by

leveraging observed instances in 𝑃𝑖 — to output a mapping from 𝑥𝑗 (𝑗 ∈ {1, ..., 𝑁})

to its corresponding output 𝑦𝑗 that performs well for (𝑥𝑖, 𝑦𝑖)’s in the test set. In

other words, given a seq2seq task with a training and a test set of input-output pairs

and several unseen observations in the test set that are paraphrases of the training

observations, we want to learn a model that can generalize accurately to unseen

paraphrases.
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Figure 3-2: Proposed models. (a): Overview of all models; the encoder embeddings
of inputs are depicted as gray boxes. (b): Simple Seq2seq (baseline) (c): Multitask
Paraphrase Generation Model (d): Multitask Paraphrase Detection Model. Green
lines represent attention weights, in (b), (c), (d). Detailed view of the multitask
paraphrase generation and detection model is omitted for simplicity.

3.3 Methods: Seq2seq with Joint Paraphrase Learn-

ing

We incorporate auxiliary multi-task learning to the main seq2seq task — learning

paraphrase generation (ParaGen), paraphrase detection (ParaDetect), and a combi-

nation of both tasks (ParaGen + ParaDetect). These methods work with any task

whose inputs and outputs are sequences, on paraphrase-augmented data.

Our proposed models are alterations of the seq2seq [50] model to actively employ

the natural properties that arise from data augmentation as part of the training

objective. First, ParaGen, ParaDetect, ParaGen + ParaDetect sample a paraphrase

of the given input and leverage it to reduce intra-class variance of paraphrases in
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the representation space. The sampled paraphrase is a term inside each model’s

respective multi-task objective, which affects the encoded input embedding in the

directions that reward paraphrastic homogeneity when back-propagated. However,

this paraphrase sampling is only required during training; at test time, the multi-task

portion of the model is discarded, and the input is passed through the seq2seq model

only. This is a realistic test scenario that does not require paraphrase identification

among test inputs; the expectation is that the multi-task training has optimized the

backbone seq2seq model’s parameters for generalization at test time.

We introduce notations, with semantic parsing on emrQA as a running exam-

ple (Figure 3-1). 𝑥 is an input utterance (e.g., “Does the patient have a history of

leukemia”) and 𝑝 is a paraphrase of it sampled from the training set (e.g., “Is leukemia

in his clinical history?”). 𝑦 is the desired output sequence (e.g., “ConditionEvent (

Leukemia ) or SymptomEvent ( Leukemia )” when the translation target is a logical

form); mapping from 𝑥 to 𝑦 is the main task, and 𝐿𝑡 is the negative-log-likelihood

(NLL) loss for this main task. 𝑦, 𝑝 are output sequence and paraphrase generated by

the models. Finally, we note that we regard an attention-based [33] seq2seq with a

bidirectional LSTM encoder and a LSTM decoder, with the dropout probability set

to 0.1 [46], as the backbone baseline model (Figure 3-3b).

3.3.1 ParaGen: Multitask Paraphrase Generation Model

Given an input utterance 𝑥, we sample from the training set one of 𝑥’s paraphrases,

𝑝, and learn paraphrase generation from 𝑥 to 𝑝 along with the main task. More

specifically, from a shared encoder that accepts 𝑥 as an input, we keep two sepa-

rately parameterized decoders that respectively produce 𝑦 (main task decoder) and

𝑝 (paraphrase generation decoder) as desired outputs (Figure 3-3c). The resulting

objective is a weighted sum of 𝐿𝑔, the loss for paraphrase generation, and 𝐿𝑡 (main

task objective), defined below:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑡 + 𝛼𝐿𝑔 (3.1)
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where 𝐿𝑔 is the NLL loss between 𝑝 and 𝑝, and 𝛼 is a hyperparameter for the weighted

sum.

ParaGen was inspired by the association model strategy of learning alignment

of word tokens between two paraphrases via log linear models [5]. However, the

association model requires paraphrase-augmented data whose inputs are labeled with

pairwise alignment, a condition not met in many situations. Neural attention is often

regarded as an unsupervised proxy for token alignment [4, 28]. By unsupervised

learning of alignment between 𝑥 and 𝑝 via neural attention (green lines in Figure

3-3c) as an auxiliary task, we attempt to influence the encoder parameters in a way

such that it maps synonymous subphrases to correlated vector representations.

3.3.2 ParaDetect: Multitask Paraphrase Detection Model

In this model, we again sample a paraphrase 𝑝 but learn paraphrase detection as the

auxiliary task — to identify whether 𝑥 and 𝑝 are paraphrases by looking at their

embeddings 𝑒𝑚𝑏𝑥 and 𝑒𝑚𝑏𝑝. We keep the same model structure as the baseline,

but we pass 𝑝 into the same encoder used for the input utterance 𝑥, to generate

𝑒𝑚𝑏𝑝, a fixed-length vector representation of 𝑝. Then, we force 𝑒𝑚𝑏𝑥 and 𝑒𝑚𝑏𝑝,

vector representations of the two paraphrases, to have high cosine similarity — a

criterion popularly used for paraphrase detection methods with input vector similarity

[34, 37, 23]. The resulting objective is a weighted sum of 𝐿𝑑, loss for paraphrase

detection, and 𝐿𝑡, loss for the target task:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑡 + 𝛽𝐿𝑑 (3.2)

where

𝐿𝑑 = 1− 𝑐𝑜𝑠(𝑒𝑚𝑏𝑥, 𝑒𝑚𝑏𝑝) = 1− 𝑒𝑚𝑏𝑥 · 𝑒𝑚𝑏𝑝
||𝑒𝑚𝑏𝑥|| ||𝑒𝑚𝑏𝑝||

and 𝛽 is a hyperparameter for the weighted sum.

What we intend to achieve is twofold. First, we want to impose homogeneity

in angular distance to semantically equivalent inputs. For high dimensional data,

cosine distance is considered as a reasonable approximation of the semantic similarity
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among embeddings, as considered by seq2seq decoders and other models, more than

Euclidean or other distance measures [12, 55]. Also, we want encoder parameters to

develop agnosticity with respect to choice of expression given identical semantics; a

different paraphrase 𝑝𝑖 of 𝑥 will be sampled at each iteration, and different expression

among the 𝑝𝑖’s will be encouraged to be ignored in cosine distance. Thus, after

training, we expect angularly close inputs (paraphrases) to map to the same desired

output.

3.3.3 Multitask Paraphrase Generation and Detection Model

We propose a combination of both models where we learn both paraphrase genera-

tion and detection as ancillary tasks. The resulting objective is a weighted sum of

𝐿𝑡, 𝐿𝑔, 𝐿𝑑:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑡 + 𝛼(𝐿𝑔 + 𝛽𝐿𝑑) (3.3)

where 𝛼, 𝛽 are hyperparameters for the weighted sums. We hope to gain both advan-

tages of ParaGen and ParaDetect by summing their objectives.

3.4 Datasets and Novel Splitting Schemes

In this section, we explain the datasets and propose a novel train/test splitting scheme

to accurately evaluate model generalization.

3.4.1 Datasets

The emrQA dataset consists of 1 million clinical-domain questions, their correspond-

ing lf’s and answer evidence in clinical notes. emrQA was created via a semi-

automated process that uses annotations for various clinical NLP tasks and used

them to slot fill natural language question templates and lf’s. The question tem-

plates were created by normalizing medical entities in real questions collected from

physicians from various health care institutions. Thus, the paraphrases in this dataset

genuinely represent how physicians would phrase their information needs in different
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ways.

Overnight is a semantic parsing dataset that provides questions and logical form

pairs for multiple sub-domains, such as recipes and basketball [58]. This dataset

was generated via crowd-sourcing on Amazon Mechanical Turk where multiple para-

phrases were generated for every lf by crowd-source workers. They also generated

sets of semantically similar questions (paraphrase groups); each paraphrase group

was randomly split across the training and test set.

Figure 3-3: Illustration of the two splits. 2a is a naive split that is usually used in
existing datasets; at deployment, this is too unrealistic because it contains too many
recurring forms that were seen during training. 2b, on the other hand, disallows seen
forms (during training) appearing in the test set; it is both more challenging and
realistic than 2a.

3.4.2 Novel Train/Test Splitting Schemes

Not all paraphrases are created equal; some paraphrases are much less challenging

than others in evaluating model performance. A common yet undesirable scenario in

NLP datasets is that the form of input utterances can be repeated across training/test

splits. For example, in Overnight’s recipe domain, there are several questions in the

form of “how many 𝑥 are there” where 𝑥 is some recipe-related entity, such as “recipes”,

“ingredients”, “meals”, etc. With such datasets, the test set often contains too many

repeating forms of the training set. Such a train/test split is an unrealistic evaluation
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of model generalization.

We propose a new, more realistic way to split paraphrase-augmented data, with

the emrQA dataset as an example (Figure 3-2). emrQA consists of paraphrase groups

of inputs. Within a single group, “templates” are filled with clinical entities to produce

actual input instances (Figure 3-2 purple box). 2(a) shows a naive splitting scheme

where the input instances are split at random. On the other hand, 2(b) is a more

realistic scenario where a form that was seen during training never appears at test

time. For example, all instances of “Has the pat. ever been exposed to |problem|?”

belong to training and never when the model is evaluated. On the other hand, all

instances of “Does this patient have a history of |problem|?” never appear during

training yet do so at test time; thus, the model is tested whether it can infer the

meaning of this form only from its paraphrased forms seen during training (such as

“Has the pat. ever been exposed to |problem|?”). While this split is more challenging

than the naive one, test instances are still semantically equivalent to some training

instance, so the model is expected to catch this and generalize to unseen forms.

3.5 Experiments

We evaluate the proposed models on emrQA and Overnight, with the target task

being semantic parsing. We split emrQA into train and test sets with both “naive”

and “stricter” (Section 4) schemes, and create four distinct splits for each scheme for

fair model evaluation; Overnight has officially released train/test sets (unlike emrQA)

so we use the official splits (that are “naive”) for comparison with previous work.

Our accuracy metric is “exact match”, which only considers model outputs that

are identical to the labeled ones as correct. We mention this because “denotation ac-

curacy”, which considers logical forms that return the label answer from the database

as correct, has been used in several works on the Overnight dataset. We find this

problematic, because it often considers model outputs of quantity-related questions

right by chance; for example, models often wrongly interpret “less than or equal to

𝑥” as “< 𝑥”, but this would be considered correct if the database does not contain
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entries that are exactly 𝑥 in time, amount, etc. Because many questions in Overnight

are quantitative, we consider exact match accuracy to be a fairer metric.

3.5.1 Methods for Comparison

To adequately judge the effect of joint paraphrase learning, we use seq2seq meth-

ods that have been established as State-of-the-Art for each dataset as the backbone

baseline; proposed joint paraphrase learning is added on top of these backbones.

Seq2Seq SOTA’s No previous work exists on semantic parsing for emrQA; thus,

we establish the first competitive baseline with the copy mechanism [26] added on

the backbone seq2seq described in Section 5, for copying of medical entities (e.g.,

“leukemia”). For Overnight, we implemented [58]’s model as baseline and compared

our models with the methods of [11], which is the only work on this dataset with exact

match accuracy. We also note that, with our implementation of [58], we achieved a

baseline higher than both of the baseline and proposed methods of [11].

Paraphrase-based Generalization Methods Our primary goal is to show that

on paraphrase augmented data, active leveraging of it in the model gives additional

benefits; thus comparisons with Seq2Seq SOTA’s that don’t leverage the presence

of paraphrase clusters suffice to prove this. However, for these experiments, we also

compare our models with existing paraphrase-based generalization methods that can

be used under seq2seq settings, and show that our joint training outperforms them.

[61] introduced Gated Average Recurrent Networks (GRAN) — a GRU with an

additional averaging gate — that learn paraphrastic sentence embeddings. The au-

thors reported that pre-training with their method resulted in a performance boost

in transfer learning on SemEval tasks. To compare our methods with pre-training via

GRAN, we replace the encoder of our baseline seq2seq with a GRAN encoder pre-

trained on our tasks’ training set, with the GRAN encoder’s parameters not frozen

(allowed to be optimized).

We also compare with BERT [14] (shown to be powerful in many NLP tasks)

fine-tuned on paraphrase detection, which we framed as a sentence pair binary classi-

fication task to paraphrase/non-paraphrase, applying the procedure in [14]. For fine-
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tuning, we constructed the training set with all the paraphrase pairs in the original

corpus and added the same number of non-paraphrase pairs, sampled randomly. Clin-

icalBERT [2] was used for emrQA and 12-layer base BERT (English Wikipedia) was

used as the pre-trained base for Overnight. On both datasets, BERT was fine-tuned

well enough to identify paraphrases with around 85% accuracy. For comparison, we

took sentence embeddings from the fine-tuned BERT and replaced the encoder with

it. We could not compare with end-to-end BERT models because, to our knowledge,

no such prior work on semantic parsing exists.

Pre-trained Word Embeddings. Since pre-trained word embeddings are known

to help generalization, the idea is to evaluate the contributions of the proposed para-

phrase model over using standard methods to ensure generalization. We hypothesize

two scenarios: (1) when pre-trained embeddings are available for a large-scale corpus

beyond training data, and (2) when only corpus-trained embeddings are available. As

large-scale embeddings, we use clinical word2Vec [35] trained on all i2b2 [52] datasets

for emrQA, and officially released general English word2vec for Overnight.

3.5.2 Results

emrQA. For emrQA (Table 3.2), we can see that the proposed models outperform the

baseline under both split schemes, but do so significantly worse under the “stricter”

split; this shows that our models are capable of robustly generalizing to unseen syn-

tactic variants, but does demonstrate that our stricter splitting criterion make the

problem harder. We further compare our models with the different generalization

methods mentioned (Table 3.4). ParaGen + ParaDetect is overwhelmingly dominant

over other methods when large-scale corpus word embeddings are not available.

In emrQA, there were 338 test inputs with words that never appear during training

(such as “considered” in 2nd example of emrQA’s Substitution paraphrase in Table

3.1). These inputs largely determined model performance, with overall exact match

accuracy being proportional to that on the exact match accuracy on these inputs.

Especially, ParaGen could not capture the topic of the question (e.g., medical eval-

uation, treatment, etc.) when specific words were replaced with more general ones
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Method emrQA “naive” splitemrQA “stricter” split
(random split) (unseen paraphrases only in test set)

Baseline: Seq2seq with copy 85.24% 54.65%
Paraphrase Generation (ParaGen) 85.87% 61.97
Paraphrase Detection (ParaDetect)85.37% 62.04%
ParaGen + ParaDetect 86.55% 63.75%

Table 3.2: Exact match accuracy results on semantic parsing for emrQA, averaged
across four splits.

Method / Domain BasketballBlocksCalendarPublicationsRecipesRestaurantsHousingSocialNetwork
Baseline: Seq2seq with copy 82.8% 39.3% 59.5% 60.2% 75.0% 53.3% 47.1% 67.6%
Paraphrase Generation (ParaGen) 82.09% 40.9% 54.8% 59.6% 75.5% 53.9% 49.2% 68.3%
Paraphrase Detection (ParaDetect)83.8% 42.4% 54.2% 60.9% 74.5% 51.5% 44.4% 68.3%
ParaGen + ParaDetect 82.6% 38.6% 56.5% 63.4% 70.4% 52.4% 45.5% 67.1%
Simple Seq2Seq (Damonte et al.) 69.6% 25.1% 43.5% 32.9% 58.3% 37.3% 29.6% 51.2%
Transfer Learning (Damonte et al.) 71.1% 25.1% 48.8% 40.4% 63.4% 39.2% 38.1% 54.5%

Table 3.3: Exact match accuracy results on semantic parsing on all domains of the
Overnight dataset.

(e.g., “diagnosed for” → “considered for”). ParaDetect’s errors usually occurred in

mistakenly copying entities.

Overnight Across 7 out of 8 domains of Overnight, the best performing model

(ParaGen) outperformed baseline by up to 3.2% (Publications) with a 1.6% boost

on average (Table 3.3). We further compare our models with different generalization

methods (Table 3.4). Word2vec was not effective, as in [49], and pre-training with

BERT and GRAN were less effective than Para(Gen+Detect).

Method emrQA Overnight (Publication)
Baseline: Seq2seq with Copy* 54.65% 60.2 %
Baseline + Corpus Word2Vec 27.66% 57.1 %
Baseline + Large-Scale Word2Vec 67.57% 44.1%
BERT 52.48% 26.1%
GRAN 58.25% 58.6%
Paraphrase Generation (ParaGen) 61.97% 59.6%
ParaGen + Corpus Word2Vec 51.14% 60.25%
ParaGen + Large-scale Word2Vec 64.86% 39.8%
Paraphrase Detection (ParaDetect) 62.04% 60.9%
ParaDetect + Corpus Word2Vec 46.92% 57.8%
ParaDetect + Large-scale Word2Vec 63.02% 56.5%
Para(Gen+Dectect) 63.75% 63.4%
Para(Gen+Dectect) + Corpus Word2Vec 53.04% 60.2%
Para(Gen+Dectect) + Large-scale Word2Vec 66.67% 51.55%

Table 3.4: Exact match accuracy results on semantic parsing for emrQA (“stricter”
split scheme, averaged over 4 splits) and Overnight (publication domain only).
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3.6 Discussion: Cosine Distance Analysis (emrQA)

Figure 3-4: Results on cosine similarity between test question pairs in emrQA. Blue:
homogeneity of paraphrases; orange: nonhomogeneity of non-paraphrases.

To understand the contribution of the proposed paraphrase models, we study the

cosine similarity between embeddings of sentence pairs, a general metric in textual

similarity and paraphrase detection [1, 22] in Figure 3-4. We do this by calculating the

similarity between the last hidden state of the encoder for a pair of input utterances

in the test set, for the four splits of emrQA’s “stricter” splitting scheme. We calculate

two metrics: (1) the average cosine similarity between pairs of paraphrase utterances

(Avg. para cos, blue bar in Figure 3-4) and (2) the average difference between cosine

similarity of paraphrase pairs and that of non-paraphrase pairs (Avg. cos gap, orange

bar in Figure 3-4). They respectively quantify (1) how homogenously paraphrase

utterances are embedded as vectors, and (2) how nonhomogeneously non-paraphrase

utterances are embedded; high numbers in both quantities are ideal, if our models

behave as intended in the methods section. We observed that ParaDetect achieves

noticeably the highest Avg. para cos, and ParaGen the highest Avg. cos gap; ParaGen

+ ParaDetect shows something in between the two but closer to ParaDetect. These

cosine statistics of embeddings seem to be indicative of model performance. ParaGen

+ ParaDetect, which embeds both paraphrases homogenously and non-paraphrases

nonhomogenously, performs the best in terms of exact match accuracy; the other two
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models also achieve higher performance than baseline, with much higher Avg. para

cos and Avg. cos gap than baseline.

3.7 Conclusion

We presented a new general seq2seq semantic parsing framework where the main task

is trained together with a paraphrase-learning objective to enhance model general-

ization. We also introduced new splitting schemes that reflect realistic evaluation for

practical use. Our proposed approaches outperform the state-of-the-art across three

datasets across both the open and clinical domain.
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Chapter 4

Conclusion

We presented TransINT and a new framework to robustly train seq2seq semantic

parsing models. The two works could together serve as steps to create human-like

question answering systems that can understand unseen paraphrases and link existing

and external facts for logical inference. While not touched upon in this thesis, one

could attempt to extend TransINT to medical knowledge graphs, as I had originally

envisioned. Furthermore, one could combine the two projects, by employing the

logical knowledge of TransINT for paraphrase-robust semantic parsing. These will be

interesting and meaningful future works to pursue.
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Appendix A

Appendix for Chapter 2

A.1 Proof For TransINT’s Isomorphic Guarantee

Here, we provide the proofs for Main Theorems 1 and 2. We also explain some

concepts necessary in explaining the proofs. We put * next to definitions and theorems

we propose/ introduce. Otherwise, we use existing definitions and cite them.

A.1.1 Linear Subspace and Projection

We explain in detail elements of R𝑑 that were intuitively discussed. In this and later

sections, we mark all lemmas and definitions that we newly introduce with *; those

not marked with * are accompanied by reference for proof. We denote all 𝑑 × 𝑑

matrices with capital letters (ex) 𝐴) and vectors with arrows on top (ex)
#»

𝑏 ).

Linear Subspace and Rank

The linear subspace given by 𝐴(𝑥 − #»

𝑏 ) = 0 (𝐴 is 𝑑 × 𝑑 matrix and 𝑏 ∈ R𝑑) is

the set of 𝑥 ∈ R𝑑 that are solutions to the equation; its rank is the number of

constraints 𝐴(𝑥 − #»

𝑏 ) = 0 imposes. For example, in R3, a hyperplane is a set of
#»𝑥 = [ 𝑥1, 𝑥2, 𝑥3] ∈ R3 such that 𝑎𝑥1 + 𝑏𝑥2 + 𝑐𝑥3 − 𝑑 = 0 for some scalars 𝑎, 𝑏, 𝑐, 𝑑;

because vectors are bound by one equation (or its “𝐴" only really contains one effective

equation), a hyperplane’s rank is 1 (equivalently 𝑟𝑎𝑛𝑘(𝐴) = 1). On the other hand,
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Figure A-1: Projection matrices of linear subspaces that inclusion-ordered.

a line in R3 imposes to 2 constraints, and its rank is 2 (equivalently 𝑟𝑎𝑛𝑘(𝐴) = 2).

Consider two linear subspaces 𝐻1, 𝐻2, each given by 𝐴1(
#»𝑥 − #»

𝑏1) = 0, 𝐴2(
#»𝑥 − #»

𝑏2) =

0. Then,

(𝐻1 ⊂ 𝐻2) ⇔ (𝐴1(
#»𝑥 − #»

𝑏1) = 0 ⇒ 𝐴2(
#»𝑥 − #»

𝑏2) = 0)

by definition. In the rest of the paper, denote 𝐻𝑖 as the linear subspace given by some

𝐴𝑖(
#»𝑥 − #»

𝑏𝑖) = 0.

Properties of Projection

Invariance For all #»𝑥 on 𝐻, projecting #»𝑥 onto 𝐻 is still #»𝑥 ; the converse is also

true.

Lemma 1 𝑃 #»𝑥 = #»𝑥 ⇔ #»𝑥 ∈ 𝐻 [Linalg].

Orthogonality Projection decomposes any vector #»𝑥 to two orthogonal components

- 𝑃 #»𝑥 and (𝐼 − 𝑃 ) #»𝑥 . Thus, for any projection matrix 𝑃 , 𝐼 − 𝑃 is also a projection

matrix that is orthogonal to 𝑃 (i.e. 𝑃 (𝐼 − 𝑃 ) = 0) [Linalg].

Lemma 2 Let 𝑃 be a projection matrix. Then 𝐼 − 𝑃 is also a projection matrix

such that 𝑃 (𝐼 − 𝑃 ) = 0 [Linalg].

The following lemma also follows.

Lemma 3 ||𝑃 #»𝑥 || ≤ ||𝑃 #»𝑥 + (𝐼 − 𝑃 ) #»𝑥 || = || #»𝑥 || [Linalg].

Projection onto an included space If one subspace 𝐻1 includes 𝐻2, the order

of projecting a point onto them does not matter. For example, in Figure 3, a random
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point #»𝑎 in 𝑅3 can be first projected onto 𝐻1 at
#»

𝑏 , and then onto 𝐻3 at
#»

𝑑 . On

the other hand, it can be first projected onto 𝐻3 at
#»

𝑑 , and then onto 𝐻1 at still
#»

𝑑 .

Thus, the order of applying projections onto spaces that includes one another does

not matter.

If we generalize, we obtain the following two lemmas (Figure 5):

Lemma 4* Every two subspaces 𝐻1 ⊂ 𝐻2 if and only if 𝑃1𝑃2 = 𝑃2𝑃1 = 𝑃1.

proof) By Lemma 1, if 𝐻1 ⊂ 𝐻2, then 𝑃2
#»𝑥 = #»𝑥 ∀ #»𝑥 ∈ 𝐻1. On the other hand, if

𝐻1 ̸⊂ 𝐻2, then there is some #»𝑥 ∈ 𝐻1,
#»𝑥 ̸∈ 𝐻2 such that 𝑃2

#»𝑥 ̸= #»𝑥 . Thus,

𝐻1 ⊂ 𝐻2 ⇔ ∀ #»𝑥 ∈ 𝐻1, 𝑃2
#»𝑥 = #»𝑥

⇔ ∀ #»𝑦 , 𝑃2(𝑃1
#»𝑦 ) = 𝑃1

#»𝑦 ⇔ 𝑃2𝑃1 = 𝑃1.

Because projection matrices are symmetric [Linalg],

𝑃2𝑃1 = 𝑃1 = 𝑃1
𝑇 = 𝑃1

𝑇𝑃2
𝑇 = 𝑃1𝑃2.

Lemma 5* For two subspaces 𝐻1, 𝐻2 and vector
#»

𝑘 ∈ 𝐻2,

𝐻1 ⊂ 𝐻2 ⇔ 𝑆𝑜𝑙(𝑃2,
#»

𝑘 ) ⊂ 𝑆𝑜𝑙(𝑃1, 𝑃1
#»

𝑘 ).

proof) 𝑆𝑜𝑙(𝑃2,
#»

𝑘 ) ⊂ 𝑆𝑜𝑙(𝑃1, 𝑃1
#»

𝑘 ) is equivlaent to ∀ #»𝑥 ∈ R𝑑, 𝑃2
#»𝑥 =

#»

𝑘 ⇒ 𝑃1
#»𝑥 =

𝑃1
#»

𝑘 .

By Lemma 4, if 𝐻1 ⊂ 𝐻2 ⇔ 𝑃1𝑃2 = 𝑃1. Since
#»

𝑘 ∈ 𝑃2, 𝑃2
#»𝑥 =

#»

𝑘 ⇔ 𝑃2(𝑥−
#»

𝑘 ) =
#»
0 ⇔ 𝑃1(𝑃2

#»𝑥 − #»

𝑘 ) =
#»
0 ⇔ 𝑃1𝑃2

#»𝑥 = 𝑃1
#»

𝑘 ⇔ 𝑃1
#»𝑥 = 𝑃1

#»

𝑘 .

Partial ordering If two subspaces strictly include one another, projection is uniquely

defined from lower rank subspace to higher rank subspace, but not the other way

around. For example, in Figure 3, a point #»𝑎 in 𝑅3 (rank 0) is always projected onto

𝐻1 (rank 1) at point
#»

𝑏 . Similarly, point
#»

𝑏 on 𝐻1 (rank 1) is always projected onto

similarly, onto 𝐻3 (order 2) at point 𝑑. However, “inverse projection" from 𝐻3 to 𝐻1 is

not defined, because not only
#»

𝑏 but other points on 𝐻1 (such as
#»

𝑏′ ) project to 𝐻3 at
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point
#»

𝑑 ; these points belong to 𝑆𝑜𝑙(𝑃3,
#»

𝑑 ). In other words, 𝑆𝑜𝑙(𝑃1,
#»

𝑏 ) ⊂ 𝑆𝑜𝑙(𝑃3,
#»

𝑑 ).

This is the key intuition for isomorphism , which we prove in the next chapter.

A.1.2 Proof for Isomorphism

Now, we prove that TransINT’s two constraints (section 2.3) guarantee isomorphic

ordering in the embedding space.

Two posets are isomorphic if their sizes are the same and there exists an order-

preseving mapping between them. Thus, any two posets ({𝐴𝑖}𝑛,⊂), ({𝐵𝑖}𝑛,⊂) are

isomorphic if |{𝐴𝑖}𝑛| = |{𝐵𝑖}𝑛| and

∀𝑖, 𝑗 𝐴𝑖 ⊂ 𝐴𝑗 ⇔ 𝐵𝑖 ⊂ 𝐵𝑗

Main Theorem 1 (Isomorphism): Let {(𝐻𝑖,
#»𝑟𝑖)}𝑛 be the (subspace, vector) embed-

dings assigned to relations {Ri}𝑛 by the Intersection Constraint and the Projection

Constraint ; 𝑃𝑖 the projection matrix of 𝐻𝑖. Then, ({𝑆𝑜𝑙(𝑃𝑖,
#»𝑟𝑖)}𝑛,⊂) is isomorphic

to ({Ri}𝑛,⊂).

proof) Since each 𝑆𝑜𝑙(𝑃𝑖,
#»𝑟𝑖) is distinct and each Ri is assigned exactly one 𝑆𝑜𝑙(𝑃𝑖,

#»𝑟𝑖),

|{𝑆𝑜𝑙(𝑃𝑖,
#»𝑟𝑖)}𝑛| = |{𝐼𝑖}𝑛|.1

Now, let’s show

∀𝑖, 𝑗, 𝑅𝑖 ⊂ 𝑅𝑗 ⇔ 𝑆𝑜𝑙(𝑃𝑖,
#»𝑟𝑖) ⊂ 𝑆𝑜𝑙(𝑃𝑗,

#»𝑟𝑗).

Because the ∀𝑖, 𝑗, intersection and projection constraints are true iff 𝑅𝑖 ⊂ 𝑅𝑗,

enough to show that the two constraints hold iff 𝑆𝑜𝑙(𝑃𝑖,
#»𝑟𝑖) ⊂ 𝑆𝑜𝑙(𝑃𝑗,

#»𝑟𝑗 .

First, let’s show Ri ⊂ Ri ⇒ 𝑆𝑜𝑙(𝑃𝑖,
#»𝑟𝑖) ⊂ 𝑆𝑜𝑙(𝑃𝑗,

#»𝑟𝑗). From the Intersection

Constraint, Ri ⊂ Ri ⇒ 𝐻𝑗 ⊂ 𝐻𝑖. By Lemma 5, 𝑆𝑜𝑙(𝑃𝑖,
#»𝑟𝑖) ⊂ 𝑆𝑜𝑙(𝑃𝑗, 𝑃𝑗

#»𝑟𝑖). From

the Projection Constraint, #»𝑟𝑗 = 𝑃𝑗
#»𝑟𝑖 . Thus, 𝑆𝑜𝑙(𝑃𝑖,

#»𝑟𝑖) ⊂ 𝑆𝑜𝑙(𝑃𝑗, 𝑃𝑗
#»𝑟𝑖) = 𝑆𝑜𝑙(𝑃𝑗,

#»𝑟𝑗).

· · · · ·· 2

Now, let’s show the converse; enough to show that if 𝑆𝑜𝑙(𝑃𝑖,
#»𝑟𝑖) ⊂ 𝑆𝑜𝑙(𝑃𝑗,

#»𝑟𝑗),
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then the intersection and projection constraints hold true.

𝑆𝑜𝑙(𝑃𝑖,
#»𝑟𝑖) ⊂ 𝑆𝑜𝑙(𝑃𝑗,

#»𝑟𝑗)

⇔ ∀ #»𝑥 , 𝑃𝑖
#»𝑥 = #»𝑟𝑖 ⇒ 𝑃𝑗

#»𝑥 = #»𝑟𝑗)

If 𝑃𝑖
#»𝑥 = #»𝑟𝑖 ,

∀ #»𝑥 , 𝑃𝑗𝑃𝑖
#»𝑥 = 𝑃𝑗

#»𝑟𝑖

∀ #»𝑥 , 𝑃𝑗
#»𝑥 = #»𝑟𝑗

both have to be true. For any #»𝑥 ∈ 𝐻𝑖, or equivalently, if #»𝑥 = 𝑃𝑖
#»𝑦 for some #»𝑦 , then

the second equation becomes ∀ #»𝑦 , 𝑃𝑗𝑃𝑖
#»𝑦 = #»𝑟𝑗 , which can be only compatible with

the first equation if #»𝑟𝑗 = 𝑃𝑗
#»𝑟𝑖 , since any vector’s projection onto a subspace is unique.

(Projection Constraint)

Now that we know #»𝑟𝑗 = 𝑃𝑗
#»𝑟𝑖 , by Lemma 5, 𝐻𝑖 ⊂ 𝐻𝑗 (intersection constraint).· · ·

3 From 1, 2, 3, the two posets are isomorphic.

In actual implementation and training, TransINT requires something less strict

than 𝑃𝑖(
#       »

𝑡− ℎ) = #»𝑟𝑖 :

𝑃𝑖(
#       »

𝑡− ℎ)− #»𝑟𝑖 ≈
#»
0 ≡ ||𝑃𝑖(

#       »

𝑡− ℎ− #»𝑟𝑖)||2 < 𝜖,

for some non-negative and small 𝜖. This bounds
#       »

𝑡− ℎ− #»𝑟𝑖 to regions with thickness

2𝜖, centered around 𝑆𝑜𝑙(𝑃𝑖,
#»𝑟𝑖) (Figure 4). We prove that isomorphism still holds

with this weaker requirement.

Definition* (𝑆𝑜𝑙𝜖(𝑃, 𝑘)) : Given a projection matrix 𝑃 , we call the solution space

of ||𝑃 #»𝑥 − #»

𝑘 ||2 < 𝜖 as Sol𝜖(P,
#»

𝑘 ).

Main Theorem 2 (Margin-aware Isomorphism): For all non-negative scalars 𝜖,

({𝑆𝑜𝑙𝜖(𝑃𝑖,
#»𝑟𝑖)}𝑛,⊂) is isomorphic to ({Ri}𝑛,⊂).

proof) Enough to show that ({𝑆𝑜𝑙𝜖(𝑃𝑖,
#»𝑟𝑖)}𝑛,⊂) and ({𝑆𝑜𝑙(𝑃𝑖,

#»𝑟𝑖)}𝑛,⊂) are isomor-

phic for all 𝜖.
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First, let’s show

𝑆𝑜𝑙(𝑃𝑖,
#»𝑟𝑖) ⊂ 𝑆𝑜𝑙(𝑃𝑗,

#»𝑟𝑗) ⇒ 𝑆𝑜𝑙𝜖(𝑃𝑖,
#»𝑟𝑖) ⊂ 𝑆𝑜𝑙𝜖(𝑃𝑗,

#»𝑟𝑗).

By Main Theorem 1 and Lemma 4,

𝑆𝑜𝑙(𝑃𝑖,
#»𝑟𝑖) ⊂ 𝑆𝑜𝑙(𝑃𝑗,

#»𝑟𝑗) ⇔ #»𝑟𝑗 = 𝑃𝑗
#»𝑟𝑖 , 𝑃𝑗 = 𝑃𝑗𝑃𝑖.

Thus, for all vector
#»

𝑏 ,

𝑃𝑖(𝑥− #»𝑟𝑖) =
#»

𝑏

⇔ 𝑃𝑗𝑃𝑖(
#»𝑥 − #»𝑟𝑖) = 𝑃𝑗

#»

𝑏

⇔ 𝑃𝑗(
#»𝑥 − #»𝑟𝑖) = 𝑃𝑗

#»

𝑏 (Lemma 4)

⇔ 𝑃𝑗(
#»𝑥 − #»𝑟𝑗) = 𝑃𝑗

#»

𝑏 (𝑃𝑗
#»𝑟𝑗 =

#»𝑟𝑗 = 𝑃𝑗
#»𝑟𝑖)

Thus, if ||𝑃𝑖(
#»𝑥 − #»𝑟𝑖)|| < 𝜖, then ||𝑃𝑗(

#»𝑥 − #»𝑟𝑗)|| = ||𝑃𝑗(𝑃𝑖(
#»𝑥 − #»𝑟𝑖))|| < ||𝑃𝑗(𝑃𝑖(

#»𝑥 −
#»𝑟𝑖)) + (𝐼 − 𝑃 )(𝑃𝑖(

#»𝑥 − #»𝑟𝑖))|| = ||𝑃𝑖(
#»𝑥 − #»𝑟𝑖)|| < 𝜖. · · · 1

Now, let’s show the converse. Assume ||𝑃𝑖(
#»𝑥 − #»𝑟𝑖)|| < 𝜖 for some 𝑖. Then,

||𝑃𝑗(
#»𝑥 − #»𝑟𝑗)|| = ||𝑃𝑗(

#»𝑥 − #»𝑟𝑖) + 𝑃𝑗(
#»𝑟𝑖 − #»𝑟𝑗)||

= ||𝑃𝑗(𝑃𝑖(
#»𝑥 − #»𝑟𝑖) + (𝐼 − 𝑃𝑖)(

#»𝑥 − #»𝑟𝑖)) + 𝑃𝑗(
#»𝑟𝑖 − #»𝑟𝑗)||

= ||𝑃𝑗𝑃𝑖(
#»𝑥 − #»𝑟𝑖) + 𝑃𝑗(𝐼 − 𝑃𝑖)(

#»𝑥 − #»𝑟𝑖) + 𝑃𝑗(
#»𝑟𝑖 − #»𝑟𝑗)||

≤ ||𝑃𝑗𝑃𝑖(
#»𝑥 − #»𝑟𝑖)||+ ||𝑃𝑗(𝐼 − 𝑃𝑖)(

#»𝑥 − #»𝑟𝑖)||+ ||𝑃𝑗(
#»𝑟𝑖 − #»𝑟𝑗)||.

||𝑃𝑖(
#»𝑥 − #»𝑟𝑖)|| < 𝜖 bounds ||𝑃𝑗𝑃𝑖(

#»𝑥 − #»𝑟𝑖)|| to at most epsilon. However, because

𝑃 , (𝐼 − 𝑃 ) are orthogonal(Lemma 3) it tells nothing of ||(𝐼 − 𝑃𝑖)(
#»𝑥 − #»𝑟𝑖)|| < 𝜖, and

the second term is unbounded.(Figure 5) The third term ||𝑃𝑗(
#»𝑟𝑖 − #»𝑟𝑗)|| is unbounded

as well, since #»𝑟𝑗 can be anything.
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Thus, for ||𝑃𝑖(
#»𝑥 − #»𝑟𝑖)|| < 𝜖 to bound ||𝑃𝑗(

#»𝑥 − #»𝑟𝑗)|| at all for all #»𝑥 ,

𝑃𝑗(𝐼 − 𝑃𝑖) = 0, 𝑃𝑗(
#»𝑟𝑖 − #»𝑟𝑗) = 0

need to hold. By Lemma 4 and 5,

𝑃𝑗 = 𝑃𝑗𝑃𝑖 ⇔ 𝐻𝑗 ⊂ 𝐻𝑖

⇔ 𝑆𝑜𝑙(𝑃𝑖,
#»𝑟𝑖) ⊂ 𝑆𝑜𝑙(𝑃𝑗, 𝑃𝑗

#»𝑟𝑖) = 𝑆𝑜𝑙(𝑃𝑗,
#»𝑟𝑗) · ·2

|{𝑆𝑜𝑙𝜖(𝑃𝑖,
#»𝑟𝑖)}𝑛| = |{𝑆𝑜𝑙(𝑃𝑖,

#»𝑟𝑖)}𝑛| holds obviously; each 𝑆𝑜𝑙(𝑃𝑖,
#»𝑟𝑖) has a distinct

𝑆𝑜𝑙𝜖(𝑃𝑖,
#»𝑟𝑖) and each 𝑆𝑜𝑙𝜖(𝑃𝑖,

#»𝑟𝑖) also has a distinct “center" (𝑆𝑜𝑙(𝑃𝑖,
#»𝑟𝑖)) · · 3

From 1, 2, 3, the two sets are isomorphic.

A.2 Explanation on NELL Sport/ Location (section

5)

Here are the rules contained in NELL Sport/ Location, copied from [56] and [21].

Table A.1: Relations and Rules in Sport and Location datasets.

Relations Rules

Sport

AthleteLedSportsTeam (𝑥,𝐴𝑡ℎ𝑒𝑙𝑒𝐿𝑒𝑑𝑆𝑝𝑜𝑟𝑡𝑠𝑇𝑒𝑎𝑚, 𝑦) → (𝑥,𝐴𝑡ℎ𝑙𝑒𝑡𝑒𝑃 𝑙𝑎𝑦𝑠𝐹𝑜𝑟𝑇𝑒𝑎𝑚, 𝑦)
AthletePlaysForTeam (𝑥,𝐴𝑡ℎ𝑙𝑒𝑡𝑒𝑃 𝑙𝑎𝑦𝑠𝐹𝑜𝑟𝑇𝑒𝑎𝑚, 𝑦) → (𝑥, 𝑃𝑒𝑟𝑠𝑜𝑛𝐵𝑒𝑙𝑜𝑛𝑔𝑠𝑇𝑜𝑂𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛, 𝑦)
CoachesTeam (𝑥,𝐶𝑜𝑎𝑐ℎ𝑒𝑠𝑇𝑒𝑎𝑚, 𝑦) → (𝑥, 𝑃𝑒𝑟𝑠𝑜𝑛𝐵𝑒𝑙𝑜𝑛𝑔𝑠𝑇𝑜𝑂𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛, 𝑦)
OrganizationHiredPerson (𝑥,𝑂𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝐻𝑖𝑟𝑒𝑑𝑃𝑒𝑟𝑠𝑜𝑛, 𝑦) → (𝑦, 𝑃𝑒𝑟𝑠𝑜𝑛𝐵𝑒𝑙𝑜𝑛𝑔𝑠𝑇𝑜𝑂𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛, 𝑥)
PersonBelongsToOrganization (𝑥, 𝑃𝑒𝑟𝑠𝑜𝑛𝐵𝑒𝑙𝑜𝑛𝑔𝑠𝑇𝑜𝑂𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛, 𝑦) → (𝑦,𝑂𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝐻𝑖𝑟𝑒𝑑𝑃𝑒𝑟𝑠𝑜𝑛, 𝑥)

Location

CapitalCityOfCountry
CityLocatedInCountry (𝑥,𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝐶𝑖𝑡𝑦𝑂𝑓𝐶𝑜𝑢𝑛𝑡𝑟𝑦, 𝑦) → (𝑥,𝐶𝑖𝑡𝑦𝐿𝑜𝑐𝑎𝑡𝑒𝑑𝐼𝑛𝐶𝑜𝑢𝑛𝑡𝑟𝑦, 𝑦)
CityLocatedInState (𝑥, 𝑆𝑡𝑎𝑡𝑒𝐻𝑎𝑠𝐶𝑎𝑝𝑖𝑡𝑎𝑙, 𝑦) → (𝑦, 𝐶𝑖𝑡𝑦𝐿𝑜𝑐𝑎𝑡𝑒𝑑𝐼𝑛𝑆𝑡𝑎𝑡𝑒, 𝑥)
StateHasCapital
StateLocatedInCountry
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Appendix B

Appendix for Chapter 3

B.0.1 Fine-tuning BERT for Paraphrase Detection

We chose learning rate among {2𝑒 − 5, 3𝑒 − 5, 5𝑒 − 5}, and trained for 5 epochs,

stopping early at the highest validation accuracy.

B.0.2 Hyperparameter Selection

Hyperparameters consist of learning rate and 𝛼, 𝛽 from Section 5. They were grid-

searched iteratively; first, learning rate for the baseline model was grid-searched, and

then 𝛼, 𝛽 for each of the proposed models were grid-searched, with the learning rate

fixed to what was found for the baseline. Finally, each of the proposed models’ learn-

ing rates were grid-searched, with 𝛼, 𝛽 fixed. emrQA’s hyperparmeters were selected

among 𝛼 ∈ {1, 0.1, 0.01}, 𝛽 ∈ {1.25, 1, 0.75, 0.5}, learning rate ∈ {5𝑒−4, 1𝑒−3, 1.5𝑒−

3}; Overnight’s hyperparameters among 𝛼 ∈ {1, 0.1, 0.01}, 𝛽 ∈ {1.25, 1, 0.75, 0.5},

learning rate ∈ {1𝑒 − 4, 3𝑒 − 4, 5𝑒 − 4}; Finally, CzEng 1.6’s were among 𝛼 ∈

{1, 0.1, 0.01}, 𝛽 ∈ {1.25, 1, 0.75, 0.5}, learning rate ∈ {1𝑒− 4, 3𝑒− 4, 5𝑒− 4, 7.5𝑒− 4}.

We also note that for each of emrQA, Overnight, and CzEng 1.6, models were

trained up to 20, 50, and 100 epochs with early stopping at the epoch that returns

best validation accuracy.
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