
Planning and Control in Sto
hasti
 Domains withImperfe
t InformationbyMilos Hauskre
ht
MIT-LCS-TR-738This report is a modi�ed version of the thesis submitted to theDepartment of Ele
tri
al Engineering and Computer S
ien
e in August, 1997in partial ful�llment of the requirements for the degree of Do
tor of Philosophy

 Massa
husetts Institute of Te
hnology 1997. All rights reserved.





Planning and Control in Sto
hasti
 Domains with Imperfe
tInformationbyMilos Hauskre
htAbstra
tPartially observable Markov de
ision pro
esses (POMDPs) 
an be used to model 
omplex 
on-trol problems that in
lude both a
tion out
ome un
ertainty and imperfe
t observability. A
ontrol problem within the POMDP framework is expressed as a dynami
 optimization prob-lem with a value fun
tion that 
ombines 
osts or rewards from multiple steps. Although thePOMDP framework is more expressive than other simpler frameworks, like Markov de
isionpro
esses (MDP), its asso
iated optimization methods are more demanding 
omputationallyand only very small problems 
an be solved exa
tly in pra
ti
e. Our work fo
uses on twopossible approa
hes that 
an be used to solve larger problems: approximation methods andexploitation of additional problem stru
ture.First, a number of new eÆ
ient approximation methods and improvements of existing algo-rithms are proposed. These in
lude (1) the fast informed bound method based on approximatedynami
 programming updates that lead to pie
ewise linear and 
onvex value fun
tions with a
onstant number of linear ve
tors, (2) a grid-based point interpolation method that supportsvariable grids, (3) an in
remental version of the linear ve
tor method that updates value fun
-tion derivatives, as well as (4) various heuristi
s for sele
ting grid-points. The new and existingmethods are experimentally tested and 
ompared on a set of three in�nite dis
ounted horizonproblems of di�erent 
omplexity. The experimental results show that methods that preservethe shape of the value fun
tion over updates, su
h as the newly designed in
remental linearve
tor and fast informed bound methods, tend to outperform other methods on the 
ontrolperforman
e test.Se
ond, we present a number of te
hniques for exploiting additional stru
ture in the modelof 
omplex 
ontrol problems. These are studied as applied to a medi
al therapy planningproblem|the management of patients with 
hroni
 is
hemi
 heart disease. The new extensionsproposed in
lude fa
tored and hierar
hi
ally stru
tured models that 
ombine the advantages ofthe POMDP and MDP frameworks and 
ut down the size and 
omplexity of the informationstate spa
e.Keywords: Arti�
ial Intelligen
e, partially observable Markov de
ision pro
esses, planningand 
ontrol under un
ertainty, de
ision-theoreti
 planning, medi
al therapy planning, dynami
de
ision making, Bayesian belief networks. 3
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Chapter 1Introdu
tionThe 
onstru
tion of intelligent 
ontrol agents that fun
tion in the real world has be
ome a fo
usof interest for many resear
hers in the AI 
ommunity in re
ent years. This line of resear
h wastriggered by an attempt to bene�t from advan
es and results in the �elds of data interpretation,diagnosis, planning, 
ontrol, and learning, and 
ombine them into more sophisti
ated systems,
apable of solving more 
omplex problems.What do we expe
t from a 
ontrol agent?The agent is expe
ted to live in the world. It a

omplishes goals and ful�lls its intentions byobserving and a
tively 
hanging the world. In order to do so it must exploit a 
ombination ofper
eptual, a
ting, and reasoning 
apabilities. Examples of 
ontrol agents in
lude:� robot arm 
ontroller;� autopilot;� medi
al life support devi
e that monitors patient status and exe
utes appropriate a
tionswhen needed.Figure 1-1 shows the basi
 high level view of a 
ontrol agent and its relation to the externalenvironment. The agent intera
ts with the environment through a
tions and observations.A
tions allow the agent to 
hange the environment. On the other hand observations allow itto re
eive and 
olle
t the information about the environment. The 
ontrol agent is designed toa
hieve a goal. In order to a
hieve the goal it 
oordinates its per
eptual and a
ting 
apabilities:a
tions to 
hange the environment in the required dire
tion and observations to 
he
k the resultsof a
tion interventions.1.1 Two basi
 
ontrol agent designsIn the ideal 
ase the 
ontrol agent would perform the best possible sequen
e of a
tions leadingto the goal. In order to a
hieve the optimal or 
lose to optimal 
ontrol sequen
e the agent 
anbe designed to either:� follow hard 
oded and preprogrammed 
ontrol sequen
es;� use the agent's model of the world's behavior and the agent's goals and try to �gure out(
ompute) the appropriate 
ontrol autonomously.The two basi
 design alternatives are illustrated in �gure 1-2.11
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1.1.1 Asso
iative approa
hThe �rst design alternative is based on the simple idea of knowing dire
tly what to do or howto respond in every situation. The idea, although simple and \unintelligent," 
an be the basisof a high quality 
ontrol agent. The examples of this kind of 
ontrol system design in
ludetable-based, rule-based and proto
ol-based (guideline-based) ar
hite
tures.The major advantage of this approa
h is that it 
an provide rapid 
ontrol responses andthus may be suitable for time 
riti
al appli
ations. Its disadvantage stems from the fa
t thatit relies on the external 
ontrol plan sour
e, and responsibility for the quality of the 
ontrol isentirely on the shoulders of the 
ontrol plan provider. This means that the external provider(usually human) must do the hardest part and \solve" the problem of how to a
hieve thegoal by 
onsidering every situation and en
oding it into the 
ontrol plan. The other majordisadvantage of the approa
h is that both the goals the 
ontroller tries to pursue and thebehavior the 
ontrolled system exhibits are impli
it. This 
auses the following:� a 
ontrol agent has no or very limited explanation 
apability. It has no means to justifysele
ted 
ontrol responses with regard to goals. This feature may be very important insome appli
ation areas like medi
ine;� a spe
i�
 
ontrol agent 
an be hard to update and modify, when the obje
tives of the
ontroller or the des
ription of the behavior 
hanges.1.1.2 Model-based approa
hThe se
ond alternative assumes that 
ontrol is inferred by a 
ontrol agent autonomously fromthe des
ription of the environment behavior and the goals to be pursued. In this 
ase theresponsibility for the quality of 
ontrol is more on the side of the 
ontrol agent itself and ismostly dependent on the design of its inferen
e pro
edures, although providing wrong models
an 
ause suboptimal 
ontrol with regard to goals as well. The advantage of this approa
h is thatthe task of �nding and sele
ting optimal 
ontrol is performed by the 
ontroller autonomously andthe external provider is required to supply only the appropriate models of goals and behavior,a task that is usually simpler than providing 
omplete 
ontrol plans. Other advantages to workwith models of goals and behavior are:� the model 
an be used for other tasks as well, for example predi
tion, diagnosis or expla-nation;� the 
ontroller is easier to modify and update, that is, 
hanges in goals or behavioraldes
ription are relatively easy to in
orporate.An obvious disadvantage of the model-based approa
h is that the optimal 
ontrol responseto be used must be found, whi
h usually leads to longer rea
tion times, due to the 
omplexityof the underlying optimization problem.Compilation of 
ontrolThe 
omputation of optimal response, when done during the 
ontrol, 
an 
ause signi�
antdelays in response times. This may be una

eptable in some time 
riti
al appli
ations thatdo not tolerate large time delays. The problem with response delays due to 
omputation 
anbe partially or 
ompletely eliminated by performing some or all 
omputation beforehand andstoring 
omputed results to speed up the on-line 
ontrol. In the extreme 
ase this redu
es to13



the 
ompilation pro
ess that takes the model des
ription and outputs 
orresponding 
ontrolplans that in turn drive the operation of the 
ontrol agent. The 
ompilation module uses themodel des
ription to provide 
ontrol plans that are mu
h like 
ontrol plans designed by a humanexpert.1.1.3 Combination of approa
hesThe design of the real 
ontrol agent does not have to fall stri
tly into one of the above 
ategoriesand one 
an exploit advantages of both approa
hes. This 
an lead to the hybrid design wherea 
ontrol agent uses both 
ontrol plans as well as models of the environment and goals orsubgoals to perform the 
ontrol. The two approa
hes 
an be 
ombined easily by de
omposingthe original 
ontrol problem into smaller subproblems and building a hierar
hy of 
ontrol agents(or modules) along this de
omposition, where ea
h agent is reponsible for some 
ontrol taskand ea
h 
an be designed di�erently. The 
ontrol sequen
es performed by agents on the lowerlevel are then 
onsidered to be a
tions of the higher level 
ontrol agent.1.1.4 Approa
h pursued in this resear
hAlthough both approa
hes are equally important for solving 
omplex 
ontrol problems, in ourresear
h we fo
us on the model-based alternative and explore the problems related to modelingdynami
 sto
hasti
 systems and 
ontrol goals as well as to problems of 
omputing optimal
ontrol responses for su
h models.1.2 Partially observable Markov de
ision pro
essesModels of environments and goals 
an be of di�erent type and 
omplexity. The model of theenvironment 
an be deterministi
 or sto
hasti
, des
ribed using dis
rete or 
ontinuous states,dis
rete or 
ontinuous time, des
ribed by simple transition relations or by di�erential equations.The goal 
an be a simple state or it 
an be de�ned over some time horizon.The task of inferring the optimal 
ontrol from models is largely dependent on the sele
tedmodeling framework and its 
omplexity. The relation between the two is proportional: themore expressive the modeling framework, the more 
omplex the asso
iated 
omputation ofoptimal 
ontrol. Therefore one must often trade o� the bene�ts and 
osts of applying di�erentmodels. For example, sele
ting a simpler model usually leads not only to simpler 
omputationpro
edures for �nding optimal 
ontrol but also to a 
ruder approximation to reality, and loss ofpre
ision. On the other hand, a more 
omplex model and framework 
an approximate realitybetter, but �nding optimal 
ontrol solutions 
an be 
omputationaly very expensive or evenimpossible. Therefore while sele
ting the framework one must 
arefully de
ide whi
h featuresare less important and 
an be abstra
ted away and whi
h need to be 
onsidered.1.2.1 Partially observable Markov de
ision pro
essesThere are many reasonable modeling frameworks one 
an explore with regard to various 
ontrolproblems. In our work we study the framework of partially observable Markov de
ision pro
esses(POMDP) [Astrom 65℄ [Smallwood, Sondik 73℄ [Lovejoy 91a℄. A POMDP des
ribes 
ontrolledsto
hasti
 pro
ess with partially observable pro
ess states. It 
an be used to model dynami
environments (systems) and their partial observability by the 
ontrol agent. The frameworkhas been studied by resear
hers from di�erent areas, mostly in 
ontrol theory and operations14



resear
h and re
ently also by resear
hers in Arti�
ial Intelligen
e (AI) [Cassandra et al. 94℄,[Cassandra 94℄, [Littman et al. 95a℄, [Parr, Russell 95℄.The POMDP framework is 
losely related to the more 
ommon formalism of Markov de
i-sion pro
esses (MDP) [Bellman 57℄ [Howard 60℄ [Puterman 94℄. The main distin
tion is thatPOMDPs are more expressive and model partial observability of the 
ontrolled pro
ess, whileMDPs assume that pro
ess states are always perfe
tly observable. Thus POMDPs allow us torepresent two sour
es of un
ertainty: un
ertainty related to the behavior of the pro
ess underdi�erent interventions and un
ertainty related to imperfe
t observability of pro
ess states. Also,POMDPs 
an represent investigative (per
eptual) a
tions, that is a
tions that indu
e or triggerobservations.The main 
hara
teristi
s of the POMDP framework are:� the world (environment) is des
ribed using a �nite set of states, and the 
ontrol agent 
ana
tively 
hange them using a �nite set of a
tions;� the dynami
s of the world is des
ribed using sto
hasti
 transitions between states thato

ur in dis
rete time steps;� information about the a
tual world state is not available to the 
ontrol agent dire
tly butthrough a �nite set of observations;� the quality of 
ontrol is modeled by means of numeri
al quantities representing rewards(or 
osts) asso
iated with states or state transitions;� the 
ontrol goal is represented by an obje
tive fun
tion that 
ombines 
osts or rewardsobtained over multiple steps.Appli
ation areasThe main advantage of the POMDP framework is its ability to represent 
ontrol and planningproblems in sto
hasti
 and partially observable domains. Robot navigation [Littman et al. 95a℄[Cassandra et.al 96℄, medi
al therapy planning [Hauskre
ht 96a℄ [Hauskre
ht 97a℄, and ma
hinemaintainan
e and repla
ement [Smallwood, Sondik 73℄ [Lovejoy 91b℄ are typi
al appli
ationareas.In all these domains one fa
es two sour
es of un
ertainty: a
tion out
ome un
ertainty andimperfe
t observability. For example, with some probability a robot 
an move in the wrong(unintended) dire
tion, and the information it re
eives from its sensors is often unreliable andsubje
t to error. In the medi
al domain, a spe
i�
 therapy 
an lead to di�erent out
omes fora given disease, and symptoms for two or more diseases 
an overlap. In both examples theunderlying state (a lo
ation of the robot or the disease the patient su�ers from) is not knownwith 
ertainty and all possible states need to be 
onsidered during planning.The problem to solve in su
h domains is to determine the best sequen
e of a
tions (
ontrolplan, poli
y) with regard to the modeled 
ontrol obje
tives. The 
ontrol obje
tives to beoptimized are related to multiple steps, and may 
orrespond to the redu
tion of the number ofsteps needed to a
hieve the target lo
ation for the robot navigation task, or the in
rease in thequality and length of life of a patient su�ering from a disease.1.2.2 Solving POMDP problemsThe POMDP o�ers a powerful theoreti
al framework for modeling partially observable dynami

ontrolled pro
esses. However, the pri
e paid for the in
reased expressivity of the framework is15



that �nding optimal or near-optimal 
ontrol solutions for POMDP problems is 
omputationallyintra
table. This is unlike 
ontrol problems de�ned within the fully observable �nite-stateMDPs, be
ause they 
an be solved eÆ
iently [Puterman 94℄ [Bertsekas 95℄ [Littman et al. 95b℄.In prin
iple POMDP problems 
an be solved by 
onverting POMDPs to information-stateMDPs (see [Bertsekas 95℄), and by using standard solution strategies developed for MDPs, likedynami
 programming or value iteration. An information state summarizes all relevant infor-mation learned about the pro
ess and it is represented by a 
omplete history of all observationsand a
tions or by a quantity 
orresponding to a suÆ
ient statisti
 that preserves the Markovproperty of the information pro
ess. The problem with using information states is that a spa
eof all possible information states 
an be in�nite or of expanding dimension. This makes it hardto 
ompute 
omplete dynami
 programming and/or value iteration updates. Lu
kily, it 
anbe shown that 
omplete updates are 
omputable for a 
lass of POMDPs that 
an be redu
edto belief state MDPs (a belief state assigns probability to all underlying pro
ess states). Thisis mostly be
ause the obje
tive value fun
tion for a belief spa
e MDP is pie
ewise linear and
onvex [Smallwood, Sondik 73℄.Although dynami
 programming updates are 
omputable for belief state POMDPs, the
omplexity of the pie
ewise linear value fun
tion (number of linear ve
tors de�ning it) 
an growexponentialy in every update. This allows us to 
ompute optimal solutions only for POMDPswith small state, observation and a
tion spa
es in pra
ti
e. For example, no su

ess withexa
t methods has been reported for POMDPs with more than 10 pro
ess states and in�nitedis
ounted horizon 
riteria.Despite the modeling expressiveness, the problem of 
omputational eÆ
ien
y of exa
t meth-ods leaves open the question of pra
ti
al appli
ability of the POMDP framework, espe
ially insolving larger and more 
omplex 
ontrol problems. The main theme of our resear
h work was toexplore various ways and propose solutions that would help us to make the framework appli
ableto larger size domains.1.3 Solving 
ontrol problems for larger POMDPsThe problem of 
omputational 
omplexity of exa
t optimizationmethods prevents us from usingthem for solving more 
omplex POMDPs. In our work we fo
used on two solutions that allowus to atta
k larger problems:� approximation methods;� exploitation of the additional problem stru
ture.1.3.1 ApproximationsThe main idea behind approximations is to trade o� the pre
ision of the solution for speed.Thus, instead of 
omputing the optimal solution one attempts to 
ompute a good solution fast1.There are di�erent approximation methods that 
an be applied in the 
ontext of POMDPs.These fo
us on:� approximations of value fun
tions (poli
ies);� approximations (redu
tions) of information-state MDPs.1The term approximation as used in the MDP and POMDP literature and also here does not refer to theapproximation that is guaranteed to be within some fa
tor from the optimal solution.16



In the �rst 
ase the approximation targets the value fun
tion and uses a simpler valuefun
tion form and simpler dynami
 programming (value iteration) updates (see [Lovejoy 91b℄[Littman et al. 95a℄). In the se
ond 
ase the information-state MDP is redu
ed to simplermodel, for example through feature extra
tion mappings [Bertsekas 95℄ [Tsitsiklis, Van Roy 96℄or by using trun
ated histories [White, S
herer 94℄.Value fun
tion approximationsThere are several value fun
tion approximation methods resear
hers have developed to substi-tute hard to 
ompute exa
t methods. These in
lude methods that use MDP-based solutions (see[Lovejoy 93℄, [Littman et al. 95a℄), grid-based updates and nonparametri
 value fun
tion ap-proximations (see [Lovejoy 91b℄), grid-based updates of derivatives (see [Lovejoy 91b℄) and para-metri
 value fun
tions and least-squares te
hniques (see [Littman et al. 95a℄ [Parr, Russell 95℄).However the list of methods is far from being 
omplete and there is still a lot of room for im-provements.In our work we proposed and developed new methods and some extensions of the existingmethods. These are based on di�erent ideas and in
lude the fast informed bound method (se
-tion 4.4) based on approximate dynami
 programming updates that lead to pie
ewise linear and
onvex value fun
tions with 
onstant number of linear ve
tors (equals the number of a
tions),a new grid-based point interpolation method that supports variable grids (se
tion 4.7.3), anin
remental version of the linear ve
tor method that updates value fun
tion derivatives (se
tion4.8.2), as well as various heuristi
s for sele
ting grid-points (see se
tions 4.7.3 and 4.8.2).The la
k of experimental studiesAlthough there is a relatively large number of approximationmethods developed, there has beena la
k of studies that would 
ompare empiri
ally their performan
e and that would help us tounderstand better the advantages and disadvantages of di�erent approximation approa
hes.To address this problem, we sele
ted three POMDP problems of di�erent 
omplexities andused them to test several methods and their modi�
ations (Chapter 5). The main purposeof testing was to get an idea about how methods 
ompare to ea
h other, what things mattermore and whi
h one are less important, and identify methods or modi�
ations that are inferioror superior to others. The methods were tested from two perspe
tives: the quality of valuefun
tion bounds for methods that are guaranteed to provide them (se
tion 5.2) and the qualityof 
ontrol where methods were judged solely based on their 
ontrol performan
e (se
tion 5.3).1.3.2 Exploiting additional problem stru
tureA 
omplementary approa
h that helps us to atta
k larger size problems is based on the exploita-tion of additional problem stru
ture, i.e. stru
ture that 
annot be expressed in the 
lassi
alPOMDP framework. Stru
tural extensions and re�nements 
an be used to redu
e the 
omplex-ity of the information-state spa
e and value fun
tions one needs to work with and thus speed-upthe problem-solving routines.To study stru
tural extensions (Chapter 6) of the basi
 framework we used a medi
altheraphy planning problem | the management of patients with is
hemi
 heart disease (see[Wong et al. 90℄). The problem relies on both sour
es of un
ertainty (sto
hasti
 a
tion out-
omes and partial observability) and thus �ts well the POMDP framework.17



Combining MDP and POMDP frameworksThe basi
 POMDP framework assumes that pro
ess states are always hidden and informationabout the state 
an be a
quired only through observations. However this is not always true,and one often works with pro
ess states that 
onsist of both observable and hidden 
omponents.To address this issue we proposed new stru
tural extensions that 
ombine advantages ofMDP and POMDP frameworks (Chapter 6). This was a
hieved by using fa
tored pro
ess statemodels with both observable and hidden 
omponents (state variables), as well as a hierar
hyof state variables that dire
tly restri
ts 
ertain 
ombinations of state variable values (se
tion6.2.1). Both of the extensions redu
e signi�
antly the 
omplexity of the information-state spa
eand value fun
tion de�nitions for the is
hemi
 heart disease problem, 
ompared to the standardPOMDP approa
h (se
tion 6.4.1).Other model extensionsTo 
onstru
t the model for the is
hemi
 heart disease problem we had to deal also with issuesthat are not dire
tly relevant to the 
ontrol optimization problem but are very importantfrom the viewpoint of model building. The main issue here is the size and 
omplexity of themodel, namely the number of parameters one needs to estimate. To redu
e the 
omplexityof the model de�nition we use fa
tored transition and observation models represented usinghierar
hi
al version of the Bayesian belief network (se
tion 6.2.3), and a fa
tored 
ost model(se
tion 6.2.5). Su
h models expli
itly represent independen
ies and regularities that holdamong the model 
omponents and redu
e its 
omplexity (se
tion 6.3). On
e de�ned the model
an be 
ompiled and optimized for the purpose of planning (se
tion 6.4.2).1.4 Stru
ture of the textThe main obje
tive of our work is to explore, study and propose various ideas that help to makethe POMDP framework appli
able to larger size domains. To do this, we fo
used mostly on:� value fun
tion approximation methods;� extensions of the basi
 POMDP framework that exploit additional problem stru
ture;� improvements of exa
t methods.Closely related to approximations is an issue of experimental 
omparison of di�erent approxima-tion methods. These topi
s are 
entral to the thesis and a

ount for most of our 
ontributions.They are presented in separate 
hapters:� Chapter 3. POMDP framework and exa
t methods for solving 
ontrol problems withinit.� Chapter 4. Approximation methods.� Chapter 5. Experimental test, 
omparison and analysis of new and existing value fun
tionapproximation algorithms.� Chapter 6. Extensions of the basi
 framework, exploitation of the additional problemstru
ture. 18



1.5 Brief summary of 
haptersThe text 
overs most of the �eld of Partially observable Markov de
ision pro
esses. It isorganized in 
hapters that address di�erent topi
s related to the framework. An e�ort topresent new ideas and methods in relation to the previous work has been made. This is also thereason why 
ontributions are not presented on one pla
e but are rather s
attered throughoutthe thesis. However, they are pointed out and summarized at the end of ea
h 
hapter, and arereviewed again in the 
on
lusion.The following is a brief overview of every 
hapter that also in
ludes pointers to our 
ontri-butions:Chapter 2 des
ribes the basi
s of the framework of the Markov de
ision pro
ess (MDP)that models 
ontrolled sto
hasti
 pro
esses under the assumption of perfe
t observability and
ontrol problems one 
an solve within su
h a framework. The MDP framework is introdu
edmostly to simplify the explanation of more 
omplex POMDP framework that is 
entral to ourwork. The reason for this is that many of the solution methods developed for the MDP aredire
tly appli
able or very similar to methods used for POMDPs. The understanding of theMDP and POMDP frameworks, their di�eren
es and respe
tive advantages will be helpful for
hapter 6 in whi
h the framework that exploits the 
ombination of MDPs and POMDPs willbe introdu
ed.Chapter 3 introdu
es the framework of Partially observable Markov de
ision pro
esses anddes
ribes exa
t methods for 
omputing 
ontrol solutions within it. The POMDP extends theMDP framework by in
orporating features of partial observability and 
ontrol over observations.Our work in this 
hapter is 
entered mostly around the exploration and the developement of anumber speed-up te
hniques for exa
t optimization methods. These in
lude: new Gauss-Seidelversion of the value iteration algorithm that is based on the idea of in
remental lower boundsimprovements (se
tion 3.5.5); improvements of the basi
 Monahan's algorithm [Monahan 82℄[Cassandra et al. 97℄ that interleave generate and pruning phases of the value fun
tion 
onstru
-tion and prune partially 
onstru
ted value fun
tions a
ross di�erent a
tions (se
tion 3.5.2); thedesign of various forward de
ision methods that sele
t the best 
ontrol a
tion for a single initialstate (se
tion 3.6). Also studied are alternatives to the standard POMDP models that usedi�erent or more 
omplex observation-state dependen
ies in
luding for example a model withdelayed observations (se
tion 3.3).The problem of �nding the optimal 
ontrol within the POMDP is 
omputationally hard andexa
t methods are highly ineÆ
ient [Papadimitriou, Tsitsiklis 87℄. This naturally leads to theexploration of methods that 
an a
quire good solution faster, trading o� the a

ura
y of thesolution for speed. The exploration of su
h methods is the subje
t of Chapter 4. The 
hapterin
ludes the des
ription of a number of new and known approximation methods, and analyzesand 
ompares their theoreti
al properties. The new methods and novel improvements of existingmethods are: fast informed bound (se
tion 4.4), simple variable grid point-interpolation method(se
tion 4.7.3), in
remental linear ve
tor method (se
tion 4.8.2), and heuristi
 strategies forsele
ting grid points (se
tions 4.7.3 and 4.8.2).New and known value fun
tion approximationmethods were experimentally tested and theirresults 
ompared and analyzed in Chapter 5. The experiments were used to test two features ofapproximation methods and their solutions: the quality of bounds (se
tion 5.2) and the qualityof 
ontrol performan
e (se
tion 5.3). Tests were 
ondu
ted on the set of three POMDP 
ontrolproblems of di�erent 
omplexity that in
lude two robot navigation problems and the Shuttledo
king problem due to [Chrisman 92℄. 19



In Chapter 6 we propose and des
ribe various extension of the basi
 POMDP framework that
an represent additional problem stru
ture. The extensions of the framework were explored in
ontext of the appli
ation of the POMDP framework to medi
al therapy planning, more spe
if-i
ally on the problem of management of patients with is
hemi
 heart disease [Wong et al. 90℄.The new stru
tural features in
lude: a 
ombination of MDP and POMDP frameworks usingfa
tored pro
ess states with perfe
tly observable and hidden 
omponents; and hierar
hi
al statevariable spa
e that restri
ts possible state variable value 
ombinations (se
tion 6.2.1). The ad-ditional stru
ture makes it possible to 
ut down the 
omplexity of the information state (se
tion6.4.1) used to solve planning and 
ontrol problem and thus speed-up the problem solving rou-tines. Other new features that allowed us to 
onstru
t the prototype POMDP model for theis
hemi
 heart disease problem are: fa
tored transition and observation model represented usinghierar
hi
al version of the Bayesian belief network (se
tion 6.2.3), fa
tored 
ost model (se
tion6.2.5), a
tions with di�erent dis
ounts (se
tion 6.2.7).Chapter 7 summarizes the pre
eeding text, points out main issues related to POMDP frame-work, des
ribes the 
ontributions of our work, and dis
usses open problems, and future resear
hobje
tives.
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Chapter 2Markov de
ision pro
essesThe Markov de
ision pro
ess (MDP) [Bellman 57℄ [Howard 60℄ [Puterman 94℄ is a basi
 mod-elling framework often used in the area of planning in sto
hasti
 domains. A Markov de
isionpro
ess:� is a 
ontrolled sto
hasti
 pro
ess;� assumes that every pro
ess state depends only on the previous pro
ess state and not ahistory of previous states (Markov assumption);� assigns rewards (or 
osts) to state transitions.2.1 MDP model and MDP problemFormally the Markov de
ision pro
ess is a 4-tuple (S;A; T;R) where:� S is a �nite set of world states;� A is a �nite set of a
tion;� T : S � A � S ! [0; 1℄ de�nes the transition probability distribution P (sjs0; a) thatdes
ribes the e�e
t of a
tions on the world state;� R : S �A� S !R de�nes a reward model that des
ribes payo�s asso
iated with a statetransition under some a
tion.A Markov de
ision pro
ess (MDP) is a useful abstra
tion that represents the dynami
 be-havior of a pro
ess under di�erent a
tions. There are di�erent variants of the basi
 MDPpresented above. For example very often the model uses 
osts instead of rewards. In general
osts 
an be viewed as negative rewards. They measure negative aspe
ts of transitions.A Markov de
ision pro
ess 
an be represented graphi
ally using the in
uen
e diagram in�gure 2-1. In the in
uen
e diagrams ([Howard, Matheson 84℄ [S
ha
hter 86℄):� 
ir
les represent 
han
e nodes and 
orrespond to states of the 
ontrolled pro
ess in two
onse
utive time steps;� re
tangles stand for de
ision nodes that represent a
tion 
hoi
es;21



state t
state t−1

t−1
action value

t−1Figure 2-1: The in
uen
e diagram representing Markov de
ision pro
ess.� diamonds stand for value nodes representing reward asso
iated with transitions;� dire
ted links represent dependen
ies between individual 
omponents.An in
uen
e diagram that represents temporal dependen
ies is also often 
alled a dynami
in
uen
e diagram. It 
an be expanded over time by repli
ating its stru
ture and 
reating asequen
e (
hain) of states, a
tions and value nodes. This is shown in �gure 2-2.2.1.1 MDP problemA de
ision (
ontrol) problem within the MDP framework requires one to �nd an a
tion or asequen
e of a
tions for one or more states that optimizes some obje
tive reward (
ost) fun
tion.The obje
tive fun
tion represents 
ontrol obje
tives by 
ombining the rewards in
urred overtime into a single quantity using various kinds of models (represented by a global value nodein �gure 2-2). Typi
ally the obje
tive fun
tion is additive and is based on expe
tations. Theobje
tive of 
ontrol is then to �nd the rational 
hoi
e of 
ontrol a
tions, that is a
tions thatlead to the maximum expe
ted 
umulative reward.The most 
ommon kinds of models used in pra
ti
e to 
ombine rewards are:� �nite horizon models: maximize the expe
ted reward for the next n steps:maxE(n�1Xt=0 
trt)where rt represents a reward a
quired at time t and 
geq0 
orresponds to the multipli
a-tive fa
tor (dis
ount fa
tor) that s
ales rewards obtained in future;� in�nite horizon models:1. maximize expe
ted dis
ounted reward :maxE( 1Xt=0 
trt);22



time

overall reward

value Figure 2-2: Expanded in
uen
e diagram representing MDP. The global value node representsa reward model that 
ombines multiple one-step rewards.where 
 is a dis
ount fa
tor that satis�es: 0 � 
 < 1 1;2. maximize average expe
ted reward per transition:max limn!1 1n nXt=0 rt;� target state model: maximize expe
ted reward (minimize expe
ted 
ost) to some targetstate G.Naturally one 
an imagine a whole spe
trum of other models. For example one might wantthe 
ontrol to redu
e the risk of the transition to some state primarily and se
ondarily tode
rease its expe
ted dis
ounted 
ost. This may 
orrespond to the medi
al problem in whi
hthe state to be avoided is the death of the patient and where a
tions must be taken su
h that therisk of death is minimized in the �rst pla
e and the well-being of the patient (represented by alower 
ost) or e
onomi
al 
ost are se
ondary. However our work will 
onsider only two additivemodels: the n steps-to-go �nite horizon model and the in�nite dis
ounted horizon model.1A model very similar to the maximization of the expe
ted dis
ounted reward requires one to maximizeexpe
ted dis
ounted total reward, i.e. max limn!1 E(Pnt=0 
trt), where 0 � 
 < 1 is a dis
ount fa
tor. Notethat under some assumptions the limit and expe
tations 
an be ex
hanged and the result will be same for bothmodels. In the following we will assume this holds. However in general the total reward model does not have tobe solvable and also does not need to be equal to the expe
ted reward.23



tt−1 t+1 t+2
time

steps to go
i i−1 i−2i+1Figure 2-3: The relationship between the two s
hemes used to index 
ontrol poli
ies. The tindex follows the time 
ow, while the i index goes in the opposite dire
tion and represents stepsto go.2.1.2 Control fun
tions and poli
iesLet � denotes a 
ontrol fun
tion that maps states to a
tions (i.e. � : S ! A) and let � =f�0; �1; � � �g be a poli
y that 
orresponds to a sequen
e of 
ontrol fun
tions. A sequen
e of
ontrol fun
tions is also often referred to in the literature as a strategy or a 
ontrol plan.Control fun
tions and poli
ies in the MDP framework des
ribe a spe
i�
 rea
tive behavior ofthe agent in various 
ir
umstan
es. The poli
ies 
an be stored in tables that enumerate allpossible situations the agent 
an wind up in.Stationary and non-stationary poli
iesA poli
y � = f�; �; � � �g that has a �xed 
ontrol fun
tion over time is 
alled stationary. If
ontrol fun
tions within the poli
y � = f�0; �1; �2; � � � ; �t; � � �g are allowed to vary over timesteps, the poli
y is non-stationary. The optimal 
ontrol poli
y is (see [Puterman 94℄):� non-stationary for the �nite horizon model with n steps-to-go;� stationary for the in�nite dis
ounted horizon model.A 
ontrol strategy for the �nite horizon problem 
an be fully des
ribed by a �nite n-steppoli
y � = f�n; �n�1; � � � ; �i; � � � ; �1g, where �i represents the 
ontrol a
tion to use when i
ontrol steps remain to be done. Note that there are two indexing s
hemes one 
an use todes
ribe �nite horizon problem poli
ies: one that follows the time 
ow and indexes 
ontrolfun
tions starting from time 0 and one that indexes 
ontrol fun
tions by 
ounting steps to goand starts from n (steps to go). These two s
hemes are opposite of ea
h other and the 
hoi
e issimply a matter of 
onvenien
e. The relation between the time and 
ost-to-go indexes is shownin �gure 2-3. The basi
 relationship between the two is that if:�i = �t then �i�1 = �t+1:In order to avoid 
onfusion and di�erentiate between the two s
hemes we will always use t whenreferring to time indexing and use other indexes for the steps-to-go indexing.The optimal poli
y for the ini�nite horizon problem is stationary be
ause in any state atany point in time the 
ontrol agent fa
es an in�nite number of steps to go and thus the optimal
ontrol fun
tion must be the same for any state.24



Deterministi
 and sto
hasti
 poli
iesWe have assumed so far that 
ontrol fun
tions are of the form: � : S ! A, that is that theyassign a
tions to states deterministi
ally. When the poli
y 
onsists of su
h 
ontrol fun
tionsit is 
alled deterministi
. However, in general a 
ontrol fun
tion 
an assign a
tions to statesnondeterministi
ally a

ording to some probability distribution. In su
h a 
ase the poli
y is
alled sto
hasti
 and 
an be realized by a 
oin 
ipping ma
hine. Note that a deterministi
poli
y is a spe
ial 
ase of a sto
hasti
 one.In the following we will work only with deterministi
 poli
ies. In fa
t it is possible to showthat for dis
rete state MDPs with perfe
tly observable pro
ess states the optimal poli
y isalways deterministi
 (see [Puterman 94℄). This may not be the 
ase in situations when pro
essstates are only partially observable and poli
y is 
onstru
ted using observations or features thatare di�erent from pro
ess states (see [Singh et al. 94℄).2.1.3 Types of MDP problemsThe basi
 MDP 
ontrol problem requires one to determine the optimal poli
y. However, inmany 
ases we are not always interested in �nding the 
omplete des
ription of all optimalresponses for all possible 
ontingen
ies. Then, based on the s
ope and detail of the requiredsolution, the MDP problem 
an 
onsist of:� �nding the optimal 
ontrol poli
y for all possible states;� �nding the sequen
e of optimal 
ontrol fun
tions for a spe
i�
 initial state;� �nding the best 
ontrol a
tion (de
ision) for a spe
i�
 initial state.The problem formulation that requires one to �nd the optimal 
omplete poli
y 
an bevaluable in situations in whi
h a 
ontrol agent 
an be asked to solve the same problem with thesame obje
tive fun
tion repeatedly but from di�erent initial situations.On the other hand the problem that requires one to �nd the optimal 
ontrol sequen
e onlyfor a spe
i�
 initial state is important in 
ases in whi
h the agent always starts from the sameinitial state. The di�eren
e in this 
ase is that 
ontrol fun
tions in the optimal solution do notneed to be de�ned 
ompletely for every step. For example for the initial state sinit, ��n onlyneeds to 
ontain the mapping from the initial state sinit to the optimal a
tion a, ��n�1 onlyneeds mappings from states that 
an be rea
hed from the initial state by performing optimala
tion a in sinit , and ��i only needs mappings from states rea
hable from sinit through asequen
e of n � i optimal a
tions. This 
an in some 
ases signi�
antly redu
e the amount of
omputation needed to �nd the optimal 
ontrol.Both of the above more general problems subsume the problem in whi
h one is interestedin �nding the best 
ontrol response (de
ision) for a single initial state. Although �nding theoptimal a
tion may require the 
omplete plan to be found, it is often the 
ase that the de
isionabout the best a
tion 
an be made without evaluating all possible future situations and thus
arried out in a more eÆ
ient way.There are other variants of 
ontrol problems that 
an be solved within the MDP framework,for example �nding a partial k-step poli
y for some initial state. However the three types ofMDP problem listed above are used most often, so they will be also the fo
us of our attention.25



2.1.4 Real-time 
ontrolThe obje
tive of a 
ontrol agent that a
ts in the world des
ribed by some MDP model is torepeatedly 
hoose the a
tion that is expe
ted to result in the best overall performan
e, thatis the a
tion that maximizes the expe
ted overall reward. Su
h an agent 
an be implementedusing the de
ision problem solving pro
edure (�nds the optimal a
tion for a single state) overand over again. This approa
h has both its advantages and disadvantages. The main advantageof the approa
h is that it 
an be 
ombined with various routines for adapting the underlyingMDP model. Its disadvantage is that the time spent on 
omputing the optimal a
tion 
an leadto una

eptable delays, for example when the agent a
ts in some time 
riti
al environments.The natural solution for the time 
riti
al appli
ation is to avoid the expensive on-line 
ompu-tation of the optimal response and try to pre
ompute possible 
ontrol responses o�-line beforethey are used by a 
ontrol agent. The o�-line 
omputation �nds poli
ies for one or more states.On
e 
omputed these 
an be stored in various forms: as lookup tables, as proto
ol like stru
-tures with 
onditional a
tion sequen
es, or using various auxiliary stru
tures, for example onethat stores pre
omputed values of obje
tive fun
tions (so 
alled value fun
tions). In general theidea is that the pre
omputed result and the stru
ture used to represent the poli
y should allowthe agent to extra
t the 
ontrol response suÆ
iently qui
kly.In the following text we will fo
us our attention on issues related to the problem of �ndingoptimal 
ontrol solutions and we will not 
onsider te
hni
al issues related to the 
hoi
e of datastru
tures used to store poli
ies and the eÆ
ien
y of su
h representations. However, whenbuilding a real-time agent one must also 
onsider also the delays and the eÆ
ien
y due to thepoli
y representation.2.2 Solving the MDP problemThere are numerous methods one 
an apply to solve 
ontrol problems formulated within theMDP framework. The fo
us of the following is to des
ribe the basi
 methods for solving
omplete poli
y problem for both �nite and in�nite dis
ounted horizon 
riteria, and to exploresome of their extensions and modi�
ations. A good in-depth analysis of su
h methods 
an befound in [Puterman 94℄ or [Bertsekas 95℄. Later in the 
hapter, methods that 
ompute simpleror more restri
ted MDP problems more eÆ
iently will be dis
ussed.2.2.1 Finite horizon problemThe obje
tive of the n step horizon 
ontrol problem is to �nd a poli
y that optimizes theadditive reward model: maxE(Pn�1t=0 
trt). A ni
e property of the additive model is that theoverall expe
ted reward for some 
ontrol plan 
an be de
omposed into the expe
ted rewardasso
iated with the �rst 
ontrol step and the expe
ted reward for the remaining plan steps.Let V denote a value fun
tion V : S ! R representing the expe
ted reward of some 
ompletepoli
y. Then be
ause of the de
omposability of the value fun
tion for an n steps-to-go poli
y�n = f�n; �n�1; � � � ; �1g we 
an write:V �nn (s) = �(s; �n(s)) + 
 Xs02S P (s0js; �n(s))V �n�1n�1 (s0) (2.1)where �(s; �n(s)) 
orresponds to the expe
ted reward in
urred by performing �rst a
tion �n(s)of the plan �n in state s and V �n�1n�1 (s0) 
orresponds to the expe
ted reward asso
iated with the26



remaining (n� 1) steps of the plan �n. �(s; a) for a state s and an a
tion a is 
omputed as:�(s; a) = Xs02S P (s0js; a))R(s; a; s0):Our obje
tive is to �nd a poli
y that optimizes the overall expe
ted reward. This 
an bedone using Bellman's prin
iple of optimality [Bellman 57℄2. Using Bellman's prin
iple, theoptimal value fun
tion V � for an n steps-to-go plan starting at state s is:V �n (s) = maxa2A �(s; a) + 
 Xs02S P (s0js; a)V �n�1(s0) (2.2)where V �n�1(s0) is the optimal value fun
tion for the n� 1 step optimal plan. This implies thatthe optimal 
ontrol fun
tion ��n must be:��n(s) = argmaxa2A�(s; a) + 
 Xs02S P (s0js; a)V �n�1(s0): (2.3)Q fun
tionsThe optimality equations 
an also be written using a
tion-value fun
tions or so 
alled Q-fun
tions. The a
tion value fun
tion Q� : S�A !R represents the expe
ted reward asso
iatedwith taking a �xed a
tion from a spe
i�
 state �rst and pro
eeding optimally afterwards. Therelation between value and a
tion value fun
tions is:V �n (s) = maxa2A Q�n(s; a)Q�n(s; a) = �(s; a) + 
 Xs02S P (s0js; a)V �n�1(s0)where the last formula 
an be rewritten in pure Q form as:Q�n(s; a) = �(s; a) + 
 Xs02S P (s0js; a)maxa02AQ�n�1(s0; a0):The introdu
tion of an a
tion value fun
tion has no spe
ial meaning on this pla
e. Howeverit will be used in the up
oming se
tions in some of the algorithms and therefore it was introdu
edhere.H mappingsIn many 
ases it is easier to rewrite re
ursive equations 2.1 and 2.2 into a value fun
tion mappingform. Let B be a set of bounded real-valued fun
tions V on S, V : S ! R and let h be amapping h : S � A� B !R su
h that:h(s; a; V ) = �(s; a) + 
 Xs02S P (s0js; a)V (s0)2Bellman's prin
iple of optimality says that any tail subplan of the optimal plan must be also optimal. Theproof of this is straightforward and is based on the fa
t that a plan with a suboptimal tail subplan 
annot beoptimal. 27



Let � be an arbitrary 
ontrol fun
tion. Then we 
an de�ne a mapping H� : B ! B su
h that:H�V (s) = h(s; �(s); V );and a mapping H : B ! B su
h that:HV (s) = maxa2A h(s; a; V ):Then using the value fun
tion mappings one 
an represent equation 2.1 as:V �nn = H�nV �n�1n�1 ;and equation 2.2 as: V �n = HV �n�1:Finding the optimal n step poli
yThe n step 
ontrol plan 
an be 
omputed easily in a ba
kward fashion using the dynami
 pro-gramming approa
h. The dynami
 program 
omputes the optimal value and 
ontrol fun
tionsfor i steps-to-go from the optimal value fun
tion for i � 1 steps-to-go:V �i (s) = maxa2A �(s; a) + 
 Xs02S P (s0js; a)V �i�1(s0)��i (s) = argmaxa2A�(s; a) + 
 Xs02S P (s0js; a)V �i�1(s0):Using the above formulas repeatedly one 
an 
onstru
t the 
omplete solution poli
y ba
k-wards. That is, starting with a value fun
tion for 0 steps to go, one 
an 
ompute the optimalvalue and 
ontrol fun
tions for 1 step to go, and then the optimal fun
tions for 2 steps to go,and so on, up to n steps to go. The simple version of the dynami
 programming 
omputes a
omplete n steps-to-go poli
y in O(njAjjSj2) time.2.2.2 In�nite dis
ounted horizon problemThe obje
tive of the in�nite dis
ounted horizon problem is to �nd a stationary poli
y thatoptimizes maxE(P1t=0 
trt) with 
 being restri
ted to 0 � 
 < 1.The optimal value and 
ontrol fun
tion for an in�nite dis
ounted horizon must satisfy the�xed point equation:V �(s) = maxa2A Q�(s; a) = maxa2A �(s; a) + 
 Xs02S P (s0js; a)V �(s0): (2.4)The equation 
an also be written using H mapping as V � = HV �. On
e the optimal valuefun
tion is known the optimal 
ontrol (poli
y) 
an then be a
quired:��(s) = argmaxa2AQ�(s; a) = argmaxa2A�(s; a) + 
 Xs02S P (s0js; a)V �(s0): (2.5)There are three basi
 approa
hes to �nd the optimal fun
tion for the in�nite dis
ountedhorizon problems: 28



� value iteration� poli
y iteration� linear programmingThe �rst two methods are iterative. They allow one to approximate the 
ontrol poli
y. Theyalso guarantee 
onvergen
e to the optimal solution after a suÆ
ient number of iterations. Onthe other hand, the linear programming approa
h 
onverts the planning problem dire
tly to alinear programming optimization problem.Value iterationThe value iteration method [Bellman 57℄ �nds the optimal or �-optimal value fun
tion. Themethod builds on the fa
t that there is a unique �xed point value fun
tion V � satisfying Bell-man's equation: V �(s) = maxa2A �(s; a) + 
 Xs02S P (s0js; a)V �(s0)and that a simple value iteration method allows us to �nd it. Both of these results followdire
tly from properties of H mappings.Let B is a set of real valued bounded fun
tions on S, i.e. for V 2 B, V : S ! R. Letk V k= maxs2S jV (s)j be a max norm. Then B together with the max (supremum) norm isa 
omplete, normed linear spa
e or Bana
h spa
e (see [Puterman 94℄). Assuming the dis
ountfa
tor 0 � 
 < 1, value fun
tion mappings H and H� 
orrespond to isotone 
ontra
tionmappings on B with a 
ontra
tion fa
tor 
.De�nition 1 (
ontra
tion mapping) The mapping H : B ! B is a 
ontra
tion when for anytwo fun
tions U; V 2 B the following holds:k HV �HU k� � k V � U kwith 0 � � < 1 being the 
ontra
tion fa
tor.De�nition 2 (isotone mapping) The mapping H is isotone when for any two fun
tions U; V 2B that satisfy V (s) � U (s) for all s 2 S, denoted V � U , holds: HV � HU .The proof that H and H� are isotone 
ontra
tions is straightforward and 
an be found in[Puterman 94℄. Knowing that H and H� are 
ontra
tion mappings, one 
an dire
tly apply theresults of the Bana
h theorem.Theorem 1 (Bana
h theorem). Let B be a Bana
h spa
e, F : B ! B be a 
ontra
tion mappingand let (xk)k be a sequen
e with arbitrary initial point x0 2 B, su
h that xk = Fxk�1. Then:1. F has a unique �xed point solution x� su
h that Fx� = x�2. the sequen
e (xk)k 
onverges to x�3. for all k the following estimates hold:k xk � x� k� 
k1� 
 k x1 � x0 kk xk � x� k� 
1� 
 k xk � xk�1 kk xk � x� k�k xk�1� x� k29



The immediate 
onsequen
es of the Bana
h theorem for H are:� H has a unique �xed point value fun
tion solution, denoted V �, i.e. HV � = V �.� One 
an 
onstru
t a sequen
e of value fun
tions using a simple iteration method Vk =HVk�1 that starts from an arbitrary value fun
tion V0 and 
onverges to the �xed pointsolution V �.� The pre
ision of the value fun
tion approximation using the kth member of the sequen
eis given by simple error bounds provided by the theorem.The same holds for H� and V �.Therefore one 
an always guarantee the existen
e of the unique optimal value fun
tionsolution V � = HV � as well as the existen
e of a simple value iteration method that 
an be usedto �nd it. Based on the provided error bounds one 
an also 
ompute the minimum numberof iteration steps to make in order to guarantee the required pre
ision of the value fun
tionsolution.Theorem 2 Let M be the maximum per step 
ost, let 0 � 
 < 1 be the dis
ount fa
tor and let� be the required pre
ision. Then the simple value iteration method, starting from V0(s) = 0 isguaranteed to a
hieve required pre
ision � after k steps, where:k � ln �(1� 
) � lnMln 
 :Proof. The proof exploits the fa
t that under the max norm, two 
onse
utive value fun
tionsa
quired by the iteration method are guaranteed to be lower than M , that is:k xk � x� k� 
k1� 
 k x1 � x0 k� 
k1� 
MThen by setting: 
k1� 
M � �we 
an derive the minimum number of iterations needed to a
hieve the required pre
ision. 2The minimumnumber of iterations 
omputed using the above formula is usually very roughand not tight. In general 
ase � optimality 
an be rea
hed sooner by examining the di�eren
ebetween the value fun
tions 
omputed for two 
onse
utive steps. This is expressed in thefollowing Bellman error theorem (see [Puterman 94, Littman 96℄).Theorem 3 (Bellman error) Suppose Vk(s) and Vk�1(s) di�er by at most Æ for every s 2 S.Then Vk(s) never di�ers from V �(s) by more than Æ1�
 .The Bellman error theorem provides a ni
e stopping 
riterion that iterative algorithms 
anuse to 
ompute � optimal value fun
tion solutions. Su
h an algorithm is shown below. Itoutputs the value fun
tion V , su
h that:j V (s) � V �(s) j� �30



holds for every state s. An �-optimal value fun
tion 
an be then used to 
ompute 
ontrolfun
tion as: �(s) = argmaxa2A�(s; a) + 
 Xs02S P (s0js; a)V (s0):The error of the 
orresponding poli
y 
an be bounded by the Bellman error Æ and is � 2Æ
1�
(see [Puterman 94, Littman 96℄).Value iteration (MDP , 
, �)initialize V (s) for all s 2 S;repeat set V 0(s) V (s) for all s 2 S;set V (s)  maxa2A[�(s; a) + 
Ps02S P (s0js; a)V 0(s0)℄;until j V (s) � V 0(s) j� �(1�
)2
 for all s 2 Sreturn V;The value iteration algorithm 
an 
ome in di�erent 
avors. One obvious modi�
ation to thedes
ribed basi
 version is to update the value fun
tion used in the iteration immediately with anew result and not to wait until the value fun
tion for all states is available. This modi�
ationis often referred to as the Gauss-Seidel version of value iteration and usually leads to faster
onvergen
e of the algorithm.Poli
y iterationAn alternate approa
h to the 
omputation of the optimal poli
y for the in�nite dis
ountedhorizon problem is poli
y iteration. This method was suggested by Howard [Howard 60℄ and isbased on the two 
omputation steps performed iteratively:� value determination: 
omputes expe
ted return for 
urrent (initially random) �xed poli
y;� poli
y improvement: improves the 
urrent poli
y.The method relies on the fa
t that for a �xed stationary poli
y it is easy to:� 
ompute the value fun
tion 
orresponding to su
h a poli
y (simply by solving a set oflinear equations);� improve the poli
y if it is suboptimal;� de
ide if the poli
y is optimal.This is based on two theorems, whi
h are presented without proof (proofs 
an be found in[Bellman, Dreyfus 62℄).Theorem 4 (Improvement theorem) Let � and � be two 
ontrol fun
tions de�ning two station-ary poli
ies and let � be 
hosen su
h that:V�(s) � Q�(s; �(s)) for all s 2 S:Then it follows that � is uniformly better than �, i.e.V�(s) � V�(s) for all s 2 S:31



Theorem 5 (Optimality theorem) Let � be a 
ontrol fun
tion (poli
y), with asso
iated valuefun
tion V�(s) and a
tion-value fun
tion Q�(s; a). If poli
y � 
annot be further improved usingthe poli
y improvement theorem, that is ifV�(s) = maxa2A Q�(s; a) for all s 2 S;then V�(s) and Q�(s; a) are unique optimal value and a
tion value fun
tions and � is an optimal
ontrol fun
tion de�ning the optimal stationary poli
y.An immediate 
onsequen
e of the improvement theorem is that a poli
y 
onstru
ted fromthe 
urrent poli
y by repla
ing all a
tions in the 
urrent poli
y with a
tions with better Q�(s; a)guarantees better results. This de�nes the improvement step. The 
onsequen
e of the optimalitytheorem is that if the poli
y 
annot be improved using the improvement step then it is optimal.This represents an optimality test. The following algorithm in
orporates these steps, andrepresents the poli
y iteration method.Poli
y iteration(MDP , 
)set � to be an arbitrary 
ontrol fun
tion de�ning poli
y �;repeat 
ompute value fun
tion V�(s);
ompute a
tion values Q�(s; a) for all s 2 S; a 2 A;set �(s) argmaxa2AQ�(s; a) for all s 2 S;until no 
hange in � is observedreturn 
ontrol fun
tion �;The value determination phase of the algorithm 
omputes the value fun
tion for a �xedstationary poli
y. The value fun
tion 
an be obtained by solving the set of linear equations ofthe form: V�(s) = �(s; �(s)) + 
 Xs02S P (s0js; �(s))V�(s0);whi
h 
an be solved by any of the available methods. The system of linear equations 
an be
ome
omputationally expensive for larger state spa
es. However, in order to improve the poli
y itis not ne
essary to 
ompute the exa
t value fun
tion, and the improvement 
an be made basedon a value fun
tion approximation. This idea is used in the version of the poli
y iterationpro
edure 
alled modi�ed poli
y iteration [Puterman 94℄. Modi�ed poli
y iteration uses valueiteration te
hniques to approximate the value fun
tion in the poli
y evaluation step. This 
anbe done be
ause H� for any � (that de�nes a poli
y) is a 
ontra
tion mapping as shown above.There are other possible modi�
ations of the basi
 poli
y iteration pro
edure, for examplepoli
y iteration that eliminates suboptimal a
tions 
onsidered during the poli
y improvementusing bounding te
hniques (see the dis
ussion later in the 
hapter). A ni
e survey of poli
yiteration algorithms 
an be found in [Puterman 94℄.Linear programmingThe problem of �nding the optimal 
ontrol value fun
tion 
an be also reformulated as a linearprogramming task. The linear program 
an be solved in time polynomial in the number ofvariables and 
onstraints (and pre
ision), using either ellipsoid or Karmarkar's algorithms (see[Strang 86℄). The basi
 linear program used in the in�nite dis
ounted horizon and the rewardmaximization is (see [Puterman 94℄ [Bertsekas 95℄):32



minimize: Xs2S vsunder the 
onstraint: vs � �(s; a) + 
 Xs02S P (s0js; a)vs0for all s 2 S and a 2 A. Similarly one 
an 
onstru
t the linear program for the problem withthe minimization of 
osts (see [Puterman 94℄ [Bertsekas 95℄).Variable(s) vs represent value fun
tion values asso
iated with pro
ess states and the linearprogram attempts to �nd their optimal values V �(s). This is be
ause: a value fun
tion for everystate is no smaller than the immediate one step expe
ted reward plus the expe
ted reward forany possible pro
ess state 
ontinuation; minimizing the sum of value fun
tions for all pro
essstates guarantees that values for the �xed point solution are found. On
e the optimal valuefun
tions are found the optimal poli
y 
an be easily 
omputed by sele
ting the a
tion thatminimizes the value fun
tion.The above linear program 
onsists of jSj variables and jSjjAj 
onstraints. It is also possibleto 
onstru
t a dual linear program that allows one to �nd the 
ontrol fun
tion and that 
onsistsof jSjjAj variables and jSj 
onstraints (see [Puterman 94℄ [Littman et al. 95b℄).2.3 Forward methods for solving MDP problemsMethods we have dis
ussed so far are suitable for 
omputing value fun
tions or 
ontrol poli
iesfor all states. However, when one only needs to �nd the optimal 
ontrol plan for a single initialstate or to sele
t the best 
ontrol a
tion for a single state, more eÆ
ient forward methods 
anoften be used.The main idea of forward methods is to identify states rea
hable from the initial stateby unwinding the optimality formula in the forward fashion �rst (identi�
ation phase) andperform the 
omputation ba
kwards using only states rea
hed in the identi�
ation phase. Thee�e
tiveness of forward methods depends mostly on the sparseness of the transition matri
es.Thus, the more sparse the transitions, the better the 
han
e forward methods improve theeÆ
ien
y.2.3.1 Computing optimal 
ontrol plans for the �nite horizon modelForward methods 
an be applied to 
ompute the n steps-to-go poli
y for a single initial state.In this 
ontext one 
an use an extension of the ba
kward dynami
 programming method, that:� identi�es all pro
ess states that need to be 
onsidered at every stage (forward phase);� 
omputes value and 
ontrol fun
tions ba
kward only for those states that were rea
hedin the forward phase.States that need to be 
onsidered 
an be found in the forward fashion by simply tra
king andmarking all states rea
hable from the initial state. Then the 
omputation of the optimal valueand 
ontrol fun
tions is performed only for these states, leaving all others unde�ned.The main advantage of the method is that it eliminates the 
omputation of value fun
tionsat states that 
annot be rea
hed. The savings from it might be signi�
ant when one deals witha large model with a large number of states and sparse transition matrix.33



2.3.2 Finding the optimal a
tion for a single initial stateThe de
ision problem, that seeks the optimal 
ontrol a
tion for a single initial state is theother problem for whi
h forward methods are suitable. The problem is simpler than the aboveproblem that requires us to �nd optimal 
hoi
es for all rea
heable states. This often allows usto 
onstru
t simpler and faster problem-solving methods that fo
us on �nding the single state
ontrol. The algorithms are best des
ribed using sto
hasti
 de
ision trees (see e.g. [Pearl 89℄).De
ision treeThe de
ision tree depi
ts in the 
hronologi
al order a
tions a 
ontrol agent 
an make andsubsequent out
omes of these a
tions that are governed by 
han
e. An example of a de
isiontree is in �gure 2-4. It 
onsists of two types of nodes:� de
ision nodes (re
tangles);� 
han
e nodes (
ir
les).In the de
ision tree, de
ision nodes stand for pro
ess states, bran
hes starting in de
isionnodes represent a
tions the agent might sele
t, 
han
e nodes represent states after the sele
tionand bran
hes emanating from the 
han
e nodes represents possible sto
hasti
 out
omes follow-ing the a
tion in the state. A 
omplete de
ision tree represents: states that are rea
heable fromthe initial state and a
tion 
hoi
es that lead to them. For MDPs, the de
ision tree stru
ture
an be used to 
ompute optimal value fun
tion for some state as des
ribed in the basi
 valuefun
tion formula:V �(st) = maxa2A Q�(st; a) = �(st; a) + 
 Xst+12S P (st+1jst; a)V �(st+1) (2.6)where V �(st) and Q�(st; a) are values that 
an be asso
iated with de
ison node st and 
han
enode [st; a℄ respe
tively. Thus the tree is best viewed as being 
onstru
ted by a repeatedunfolding of the value fun
tion formula.Note the di�eren
e between the two graphi
al representations: dynami
 in
uen
e diagramsand de
ision trees. The former serves to represent the model and its 
omponents, while thelatter one represents how the solution for some spe
i�
 state is 
omputed.The goal of the de
ision task is to sele
t the optimal 
ontrol a
tion for the initial state that
orresponds to the root of the tree. The best a
tion 
hoi
e is 
omputed simply as:argmaxa2AQ(s0; a):The problem with a de
ision tree method that blindly unfolds the re
ursive formula is thatthe size of the tree 
an grow exponentially. This 
an lead to a signi�
ant ineÆ
ien
y due torepeated or redundant 
omputation. Therefore one needs a me
hanism to restri
t the size ofthe tree. In the following we will present two me
hanisms that keep the size of the tree fromgrowing large.Using bounds for pruning suboptimal bran
hesThe idea of pruning is simple and is based on the ability to 
ompute bounds for the expe
tedreward of any en
ountered state of the partially 
onstru
ted de
ision tree. Then assuming thatbounds are known for the leaves of the partially 
onstru
ted de
ision tree, one 
an 
ompute34
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ision tree. De
ision nodes (re
tangles) 
orrespond to pro
essstates and 
han
e nodes (
ir
les) represent pro
ess states with �xed a
tion 
hoi
es and possiblesto
hasti
 out
omes. States are asso
iated with value fun
tions (V) and state-a
tion 
hoi
eswith a
tion-value fun
tions (Q).bounds for inner nodes of the de
ision tree simply by 
omputing the expe
ted reward for thebest and worst 
ase s
enarios. The bounds at leaves of the de
ision tree 
an be 
omputed easily.Assuming that: Mu = maxa2A maxs2S �(s; a)Ml = mina2Amins2S �(s; a)stand for the maximum and minimum expe
ted one step 
ost rewards respe
tively, bounds forthe in�nite dis
ounted horizon problem and for any state s are:ubound(s) = Mu1� 
 (2.7)lbound(s) = Ml1� 
 : (2.8)The 
omputation at every de
ision node assumes that the a
tion leading to the maximumexpe
ted reward is sele
ted. But this means that when 
omputed bounds for any two de
isionnodes do not overlap, one of them is guaranteed to be suboptimal and 
an be pruned from thede
ision tree. That is, whenever:lbound(st; a1) > ubound(st; a2)holds, we know that a2 leads to a suboptimal solution and 
an be pruned from the de
isiontree.The above 
riterion allows one to prune tree bran
hes that are 
learly suboptimal. However35



one 
an also develop soft 
riteria that allow one to prune the de
ision tree bran
hes based onthe pre
ision with whi
h the de
ision at 
ertain points needs to be made. The pruning rule inthis 
ase is :Let � be a pre
ision with whi
h the a
tion at state st needs to be sele
ted. Then whenever:lbound(st; a1) + � > ubound(st; a2)holds the de
ision tree bran
h 
orresponding to a
tion a2 
an be pruned. The major problemin applying the soft pruning method is in allo
ating a pre
ision fa
tor to di�erent bran
hes ofthe tree and allowing soft pruning throughout the de
ision tree. This is be
ause one is usuallygiven only the pre
ision error that is related to the de
ision at the root of the tree.Basi
 method for the dynami
 
onstru
tion of the de
ision treeIt has been shown how one 
an use bounds to prune suboptimal bran
hes of a de
ision treethat is only partially expanded. To exploit this feature, a strategy that in
rementally expandsa de
ision tree 
an be 
onstru
ted. The strategy starts with a small initial de
ision tree,whi
h is gradually expanded whenever the required de
ision 
annot be made. Su
h a strategyallows one to avoid the une
essary exploration of large parts of the de
ision tree, and to prunesuboptimal bran
hes as soon as possible. We will refer to this strategy and its modi�
ations asthe in
remental expansion strategy or in
remental de
ision tree strategy. The simple breadth�rst version of this strategy is shown in the following algorithm.In
remental expansion(MDP, 
, sI , �, VL, VU )initialize tree T with sI and ubound(sI); lbound(sI) using VL, VU ;repeat until (single a
tion remains for sI or ubound(sI)� lbound(sI) � �)
all Improve-tree(T;MDP; 
; VL; VU);return a
tion with greatest lower bound as a result;Improve tree(T;MDP; 
; VL; VU )if root(T ) is a leafthen expand root(T)set bounds lbound; ubound of new leaves using VL, VU ;else for all de
ision subtrees T 0 of Tdo 
all Improve-tree(T 0;MDP; 
; VL; VU );re
ompute bounds lbound(root(T )); ubound(root(T )) for root(T );when root(T ) is a de
ision nodeprune suboptimal a
tion bran
hes from T ;return;The algorithm takes an MDP model, a dis
ount fa
tor 
, an initial state sI , a pre
isionparameter � and value fun
tion bounds VL and VU used to initialize leaf nodes of the partiallybuilt de
ision tree. It returns an a
tion that is guaranteed to be �-optimal. The algorithmbuilds a de
ision tree T and improves bounds ubound; lbound asso
iated with nodes of thetree in
rementally by 
alling subroutine Improve tree. It stops when �-optimal a
tion 
an besele
ted. This is when the bound di�eren
e for the root of the tree is less than � or when onlysingle a
tion remains possible (all others were pruned). Bounds at leaves of the tree are alwaysinitialized using VL and VU that are 
omputed e.g. using equations 2.7 and 2.8 for the in�nitedis
ounted horizon problem. 36
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omputation by a result sharing.Computing de
isions using bound iterationAlthough pruning 
an help eliminate some parts of the de
ision tree, this usually does notprevent one from the exploration of a large part of a de
ision tree. The major sour
e ofineÆ
ien
y is that the same tree substru
ture 
an o

ur repeatedly in two or more de
isiontree bran
hes. The solution to this is to 
ompute the result on
e. The idea of result sharingfor the in�nite dis
ounted problem is shown on �gure 2-5. Here de
ision nodes asso
iated with
ommon pro
ess states (e.g. s1) share substru
tures.In the following we will des
ribe one method that eliminates redundant re
omputations.This method 
an be used to 
ompute de
isions for in�nite dis
ounted horizon problems. It isbased on the same idea as value iteration, and uses the in
remental expansion strategy withpruning. One di�eren
e between ordinary value iteration and this method is that the newmethod tries to iteratively improve value fun
tion bounds, and not the value fun
tion itself(hen
e bound iteration). Another di�eren
e is that value iteration works purely in a ba
kwardfashion for all possible states, while the de
ision tree method tries to iterate only over the statesthat are needed for the de
ision, that is, states rea
heable by forward expansion.The simplest version of bound iteration that uses a breadth-�rst expansion of the de
isiontree with pruning and repeated substru
ture elimination is des
ribed below.Bound iteration(MDP, 
, sI , �, VL, VU )initialize tree T with sI and ubound(sI); lbound(sI) using VL, VU ;repeat until (single a
tion remains for sI or ubound(sI)� lbound(sI) � �)set visited-set V S = f[sI; lbound; ubound℄g;
all Improve-tree(T; V S;MDP; 
; VL; VU );return a
tion with greatest lower bound as a result;Improve tree(T; V S;MDP; 
; VL; VU)
ase root(T ) 2 V S: set new bounds for root(T ) from values in V S;root(T ) is a leaf: expand root(T );set bounds lbound; ubound of new leaves to values from V Sor (if not there) from VL and VU ;37



otherwise: set V S  V S [ f[root(T ); lbound; ubound℄g;for all de
ision subtrees T 0 of Tdo 
all Improve-tree(T 0; V S;MDP; 
; VL; VU);re
ompute bounds lbound(root(T )); ubound(root(T )) for root(T );update re
ord for root(T ) in V S;prune suboptimal a
tion bran
hes from T ;return;The bound iteration algorithm implements a gradual breadth-�rst expansion of the de
isiontree, and reuses bound results for shared substru
tures using the data stru
ture visited-set V S.The way results are reused in this algorithm is illustrated in �gure 2-5, assuming that thebran
h 
orresponding to an a
tion a1 is expanded �rst. The algorithm stops when the solutionis guaranteed to be �-optimal or when the root of the de
ision tree has only one remaininga
tion (all others were pruned).2.4 Solving large MDP problemsWe have pointed out that one is able to solve the planning problems in time polynomial in thesize of the state spa
e jSj and a
tion spa
e jAj. This means that one 
an solve the planningproblems eÆ
iently with regard to the 
omponent spa
e sizes. However, for many real worldproblems the state spa
e size 
an be
ome very large, and is itself subje
t to exponential growth.The notion of state in many real world problems is de�ned usually through a set of statevariables, ea
h with a spe
i�
 number of values it 
an take. Using su
h fa
tored state repre-sentation, the total state spa
e 
onsists of all possible 
ombinations of assignments of values tostate variables and is exponential in the number of variables used. For example, for a simple
ase with n boolean state variables, the 
omplete state spa
e has 2n states. Similarly, whenan a
tion spa
e is de�ned through a set of m possible elementary a
tions that may or may notbe performed simultaneously by an agent, the total number of di�erent a
tions the agent 
anperform is 2m.Redu
ing the 
omplexity of MDP de�nitionsHaving large state and a
tion spa
es in
reases 
omputational time and for
es the designer ofthe model to provide huge transition matri
es and reward models (an entry is needed for everypossible 
ombination of two states and an a
tion). This problem is reminis
ent of the problemin the 70s, where methods for handling un
ertainty based on probabilities were 
onsideredinadequate be
ause one was expe
ted to de�ne huge probability tables.The 
omplexity of an MDP de�nition 
an be redu
ed by exploiting additional stru
ture,su
h as independen
e and 
onditional independen
e, or various regularities and restri
tionsthat hold among the 
omponents of a fa
tored MDP model. One might be able to de�ne largermodels using signi�
antly fewer parameters by using fa
tored model instead of a 
omplete one.Graphi
al models, like belief networks [Pearl 89℄ or dynami
 in
uen
e diagrams[S
ha
hter, Peot 92℄, let us represent dependen
ies between 
omponents of an MDP model inmore detail. A simple example is shown in �gure 2-6. Here a pro
ess state is represented usingstate variables A;B; and C and both transition and 
ost models are des
ribed in the fa
toredform.The dynami
 in
uen
e diagram example does not 
over all possible ways one might expressstru
tural properties and regularities of an MDP model. For example, parameters 
orresponding38
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uen
e diagram representing a fa
tored MDP. A;B and C 
orrespond tostate variables. Dependen
ies between two 
onse
utive states (statet�1 and statet) are nowdes
ribed using state variable dependen
ies.to transition probabilities in the fa
tored representaton 
an be expressed using de
ision treesor rules that map propositions 
onstru
ted from state variable values to state variable values(with asso
iated probabilities and possibly also 
osts). The advantage of su
h representationsis that they redu
e the size of the model des
ription by representing relevant dependen
ies andex
luding irrelevant ones. They 
an be viewed like 
ompression te
hniques for sparse or highregularity parameter matri
es.Solving problems with large MDPsThere are two approa
hes one 
an use to simplify the 
omputation of 
omplex MDP models:� exploitation of the additional model stru
ture that makes independen
es or regularitiesamong model 
omponents expli
it;� approximation of the model, where irrelevant features of the model are abstra
ted away.Solving problems by exploiting MDP stru
tureThe �rst approa
h is based on the exploitation of additional model stru
ture, for example agraphi
al model expli
itly represents dependen
ies and independen
es that hold among statevariables that des
ribe the pro
ess state. This approa
h does not 
hange the 
ontent of themodel, so the solution obtained is the same as one would a
hieve using the 
lassi
al MDPmodel with a 
at state spa
e. Moreover, the solution plan for a stru
tured model 
an often bedes
ribed in a more 
ompa
t way 
ompared to the 
omplete des
ription that enumerates allpossible state variable value 
ombinations.The solution poli
y for a fa
tored MDP 
an be represented more 
ompa
tly using a set of
ontrol rules. Every rule 
onsists of a proposition part that lists a set of state variable valuesand an a
tion part that spe
i�es a 
ontrol 
hoi
e to be performed whenever the proposition is39



satis�ed: �i = f< 'ki ! aki >gwhere 'ki stands for the rule proposition and aki is the a
tion asso
iated with it. The 
omplexityof the rule set de�nition 
an usually be redu
ed by representing them through 
lassi�
ation(de
ision) trees or de
ision lists with a
tions asso
iated with their leaves.Fa
tored MDPs with additional stru
ture 
an be solved using spe
ialized pro
edures thattake advantage of the stru
ture and output stru
tured poli
ies and/or value fun
tions (see[Puterman 94℄). A method for 
omputing in�nite horizon problems that uses stru
tured 
on-trol and value fun
tions is 
alled stru
tured poli
y iteration. This method was applied by[Boutillier et al. 95℄ for example. The main features of the approa
h are:� MDP model is represented in a fa
tored form and with additional stru
ture (indepen-den
es, regularities);� value and 
ontrol fun
tions are expressed 
ompa
tly using de
ision trees;� value determination and poli
y improvement stages work dire
tly with stru
tured poli
iesand stru
tured value fun
tions.Approximations using model simpli�
ationsOne 
an 
ompute 
ontrol poli
ies while avoiding the need to work with 
omplete state spa
e byexploiting regularities in the MDP de�nitions. Unfortunately, many problems do not exhibitperfe
t regularities that allow the problem to be solved and represented eÆ
iently. However, ina large number of 
ontrol problems, there are usually features that are less relevant, and thatdo not in
uen
e the quality of the �nal solution dramati
ally. Then, one would expe
t to get agood solution when su
h features are ignored and only relevant features are a

ounted for in the
omputation and in the resulting solution. This idea is the basis of approximation algorithms.In general there are two methods resear
hers suggest for the purpose of approximation:� model redu
tion (e.g. [Bertsekas 95℄, [Boutillier, Dearden 94℄);� de
omposition [Dean, Lin 95℄.The �rst approa
h is based on 
reating a new simpler MDP model that simpli�es the originalmodel by redu
ing the size of the state and/or a
tion spa
es. The redu
tion in the 
omplexityof the model then allows for faster approximate solutions by trading o� a

ura
y for speed.Alternatively, one 
an try to 
ombine 
omputation steps performed with 
omplete and redu
edmodels as suggested by [Bertsekas 95℄.The redu
ed MDP model 
an be supplied 
ompletely or partially by the designer of thesystem or 
an be 
omputed automati
ally by dropping the least relevant parts of the model.The MDP 
an be de�ned by the designer using feature or aggregate states and probability dis-tributions mapping the new aggregate states to original model states P (sjsAgg) [Bertsekas 95℄.Using the 
onditional probability one 
an 
ompute 
omponents of the new transition probabilitymatrix as: P (sAgg1 jsAgg2 ; a) =Xs2S P (sjsAgg2 ) Xs02sAgg1 P (s0js; a):Alternatively one might 
onstru
t a simpler MDP model with aggregate states that uses upperand lower bounds on transition probabilities and that does not require priors on states P (sjsAgg)40



to be de�ned. Su
h an approa
h was pursued by [Dean, Givan 97℄ [Dean et al. 97℄ who alsodevised te
hniques to extra
t simpler models for fa
tored MDPs.Note that the 
omputation of the new simpler model from the old one may require a signi�-
ant amount of time. If the model redu
tion is performed during problem-solving, the overheadtime spent on the redu
tion itself needs to be added to the overall running time. Then, if the
omplexity of the 
omputation asso
iated with the transformation of the model is 
omparableto the 
omputation of the 
omplete MDP the use of model redu
tion to solve the problem is
ompletely unjusti�ed.The approximation through de
ompositionmethod [Dean, Lin 95℄ divides the 
omplete statespa
e into a 
olle
tion of smaller state spa
e regions with stronger links between intraregionstates and weaker or limited links between interregion states. Regions are expe
ted to 
onsistof a small number of state variables that are assumed to be relevant only within the regionand 
an de�ne lo
al poli
ies. Di�erent regions are then treated as a states of the higher levelpro
ess, with a
tions 
orresponding to the lower level lo
al poli
ies. The approximate solutionis then a
quired by applying the divide and 
onquer strategy that breaks down the large MDPproblem to smaller problems on both higher and lower levels. These are subsequently solved,
ombined and iteratively improved.2.5 SummaryThe Markov de
ision pro
ess (MDP) framework is a framework 
ommonly used for represent-ing and modelling 
ontrol problems in sto
hasti
 dynami
 domains. The basi
 MDP modelassumes a pro
ess with a �nite state spa
e. Various problem-solving methods 
an be used toobtain optimal 
ontrol solutions for su
h a model. The problem solving methods are: dynami
programming for the �nite horizon 
ase; value iteration, poli
y iteration, and linear program-ming for the in�nite di
ounted horizon 
ase. Whenever the optimal de
ision for a single initialstate is sought and transitions in the MDP are sparse the problem-solving 
an often be spedup using forward de
ision tree methods.The main 
hallenge for future reasear
h in MDPs is to model and solve MDPs with largeor 
ontinuous state spa
es. The advan
es and new results in the neuro-dynami
 programming(see [Bertsekas, Tsitsiklis 96℄), and graphi
al modelling and asso
iated probabilisti
 reasoningmethods (see [Lauritzen 96℄) that take advantage of independen
es and regularities betweenmodel 
omponents are of high importan
e in this respe
t.The obje
tive of this 
hapter was to summarize the MDP framework, basi
 methods forsolving 
ontrol and de
ision problems within it. The MDP framework is introdu
ed mostly tosimplify the explanation of more 
omplex POMDPs that are the 
entral topi
, as many of thesolution methods developed for the MDP are dire
tly appli
able or very similar to methodsused to solve POMDP problems.
41
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Chapter 3Partially observable Markovde
ision pro
essThe Markov de
ision pro
ess framework models a 
ontrolled sto
hasti
 pro
ess with perfe
tlyobservable states. This represents the situation in whi
h a 
ontrol agent 
an be un
ertain aboutpossible out
omes of its a
tions, but still able to verify the resulting state on
e the a
tion is
ompleted. That is, there is no un
ertainty with regard to what state the agent 
urrently is,though there is an un
ertainty with regard to where it 
an be after the next a
tion is taken.One 
an easily imagine the situation in whi
h the agent 
annot observe the pro
ess statedire
tly, but only indire
tly through a set of noisy or imperfe
t observations. The feature ofpartial observability 
an be important in many real world problems. For example, a robotplanning its route or de
iding about what a
tion to take usually works with noisy sensoryinformation; in the medi
al area, the physi
ian often needs to de
ide about the treatmentbased on available �ndings and symptoms while being un
ertain about an underlying disease.In all su
h 
ases the per
eptual information need not align with and imply the a
tual worldstate with 
ertainty. Then the agent that a
ts in environments with imperfe
t state informationmay fa
e un
ertainty from the two sour
es:� un
ertainty about the a
tion out
ome;� un
ertainty about the world state due to imperfe
t (or partial) information.Observations may not be 
ostless. Often they 
an require a spe
ial a
tion to be taken beforethey are enabled and this a
tion might have both 
ost or transitional e�e
t. The a
tions thatenable observations are 
alled investigative a
tions. The main purpose of performing inves-tigative a
tions is to narrow the un
ertainty about the world state, for example by performinga spe
ial test revealing more information about the ongoing patient's disease pro
ess, or us-ing 
amera surveillan
e in order to dete
t the 
urrent position of the robot. Therefore whenmaking the de
ision about an investigative a
tion one needs to 
arefully 
onsider both bene�tsand 
osts asso
iated with performing it. For example, some investigative a
tions in medi
inealthough very helpful in diagnosing underlying problems 
an be very risky and 
ostly due totheir invasivenes.The presen
e of partial observability in the environment, as well as the 
apability of anagent to perform investigative a
tions have a major impa
t on how planning pro
edure mustwork. The reason for this is that: 43



� in order to �nd an optimal 
ontrol one should a

ount for imperfe
t observability nowand in future steps;� during planning, one must 
onsider the 
ost and bene�ts of both 
ontrol and investigativea
tions.In the following we will fo
us on the modelling framework that represents a
tion out
omenondeterminism, imperfe
t observability as well as investigative a
tions. The modelling frame-work is 
alled Partially observable Markov de
ison pro
ess (POMDP) [Astrom 65℄ and it is bestviewed as a further extension of the MDP framework.3.1 Partially observable Markov de
ision pro
essMore formally, partially observable Markov de
ision pro
ess is de�ned as (S;A;�; T;O;R)where:� S 
orresponds to a �nite set of world states;� A is a �nite set of a
tions;� � is a �nite set of observations;� T : S � A � S ! [0; 1℄ de�nes the transition probability distribution P (sjs0; a) thatdes
ribes the e�e
t of a
tions on the state of the world;� O : � � S � A ! [0; 1℄ de�nes the observation probability distribution P (ojs; a) thatmodels the e�e
t of a
tions and states on observations;� R 
orresponds to the reward model S�A�S !R that models payo�s in
urred by statetransitions under spe
i�
 a
tions (alternate formulationmay in
lude 
osts that 
orrespondto negative rewards).The in
uen
e diagram des
ribing the partially observable Markov de
ision pro
ess is shownin �gure 3-1. The main distin
tion between fully observable MDPs and POMDPs is in theinformation one uses to sele
t an a
tion. In the MDP 
ase a
tions are sele
ted using pro
essstates that are always known with 
ertainty, while for the POMDP, a
tions are based onlyon the available information that 
onsists of previous observations and a
tions. Note that theobservation model as de�ned makes it possible to 
ondition observations on both a
tions andpro
ess states. This allows one to model investigative a
tions in the same way as other 
ontrola
tions.The standard observation model (�gure 3-1) assumes that observations depend on a previousa
tion and a 
urrent pro
ess state, that is, O always de�nes P (otjst; at�1) relative to t. However,while modeling some de
ision and 
ontrol problems one often needs to use di�erent observationmodels that �t better the real world, for example one may need to model observation delays.These models 
an be very important in medi
al de
isions in whi
h test results are often notavailable immediately and are delayed (thus they refer to past patient states). One of the topi
sof our work is to explore some of these more 
omplex observation models.44
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Figure 3-1: In
uen
e diagram des
ribing the POMDP model.3.2 Control in partially observable domainsThe major di�eren
e between MDP and POMDP is that in the POMDP the underlying pro
essstate is not known with 
ertainty and 
an be only guessed based on past observations, a
tionsand any prior information available. Therefore we need to di�erentiate between the true pro
essstate and the information (or per
eived) state that 
aptures all things important and knownabout the pro
ess.3.2.1 Information stateAn information state represents all information available to the agent at the de
ision time thatis relevant for the sele
tion of the optimal a
tion. The information state 
onsists of either a
omplete history of a
tions and observations or 
orresponding suÆ
ient statisti
. A sequen
eof information states de�nes a Markov 
ontrolled pro
ess in whi
h every new information stateis 
omputed as a fun
tion of the previous information state, the previous step a
tion and newobservations seen: It = � (It�1; ot; at�1)where It and It�1 denote new and previous information states. The pro
ess de�ned overinformation states is also 
alled the information-state Markov de
ision pro
ess or information-state MDP. In pri
iple one 
an always redu
e the original POMDP into the information-stateMDP. The relation between the 
omponents of the POMDP model and its information stateas well as a redu
tion of the model to information-state MDP is shown in �gure 3-2.Complete information stateThe easiest way to represent an information state is to use all information available to theagent sin
e the beginning (time t = 0) as shown in �gure 3-1. Then information 
onsists of45
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Figure 3-2: In
uen
e diagram for the POMDP model with information states and 
orrespondinginformation-state MDP.a 
omplete history of a
tions and observations made; in other words it 
orresponds to the
omplete information state (ve
tor).De�nition 3 (Complete information state (ve
tor)) The information state It for time t is
alled 
omplete (denoted ICt ) when it 
onsists of all information available to the agent beforethe a
tion at time t is made. The 
omplete information state 
onsists of:� prior belief on states at time 0;� all observations available up to time t;� all a
tions performed before time t.Note that the 
omplete information state pro
ess satis�es trivially a Markov property. Thatis, any new information state 
an be expressed as a fun
tion of the previous information state,the previous a
tion and the new observation. The update fun
tion is then simply implementedby adding the a
tion and the new observation to the previous step information state.Representing information states with suÆ
ient statisti
sThe main problem with the 
omplete information state is that it is expanding its size withelapsed time. This may be a major drawba
k, espe
ially in the 
ase where we are interested in
omputing and representing solutions to in�nite horizon planning problems. A slightly di�erentproblem of 
ontrol solution representability using the 
omplete information ve
tor with regardto planning 
an be due to the existen
e of the in�nite size subspa
e 
orresponding to the priorbelief at time 0.The expanding dimension of 
omplete information ve
tors is one of the major hindran
es toboth the 
omputation of the value fun
tion as well as representation of 
ontrol plans (poli
ies).This problem 
an be resolved by repla
ing 
omplete information states with quantities thatrepresent suÆ
ient statisti
s with regard to 
ontrol (see for example [Bertsekas 95℄). Thesequantities satisfy the Markov property and preserve the information 
ontent of the 
ompletestate that is relevant for �nding the optimal 
ontrol.46



De�nition 4 (SuÆ
ient information state pro
ess) Let P = fI0; I1; � � � ; It; � � �g be a sequen
eof information ve
tors des
ribing the information pro
ess. Then P is a suÆ
ient informationpro
ess with regard to the optimal 
ontrol when for every 
omponent It in P holds:It = � (It�1; ot; at�1);P (stjICt ) = P (stjIt);P (otjICt�1; at�1) = P (otjIt�1; at�1)where It�1 and It are suÆ
ient information states, ICt and ICt�1 are 
omplete information states,ot is an observation that be
ame available at time t, and at�1 is an a
tion made at time t� 1.The main reason to use suÆ
ient information states is that they 
an be signi�
antly smallerand of non-expanding dimension and still allow one to 
ompute optimal value and 
ontrol fun
-tions. On the other hand the update of information states is usually more 
omplex 
omparedto the updating of 
omplete histories. The suÆ
ient information state 
an be used not onlyfor optimization but also to en
ode a 
ontrol plan (poli
y). Su
h a plan then requires the planexe
utor to update suÆ
ient statisti
s at every step, whi
h may 
ause a slight delay in theoverall response time 
ompared to the 
ase when one works with 
omplete histories, en
oded,for example, as 
ontrol trees [Cassandra 94℄ 1. However, in many appli
ations the delay due toinformation state update should not play a major role.Belief states as suÆ
ient information statesThe quantity often used as a suÆ
ient statisti
 for planning and 
ontrol in POMDPs is thebelief state (or belief ve
tor). The belief state assigns probability to every pro
ess state andre
e
ts the extent to whi
h states are believed to be present. The belief ve
tor bt at time t
orresponds to: bt(s) = P (sjICt )where ICt is a 
omplete information ve
tor at time t.Although one 
annot guarantee that a belief state 
orresponds to the suÆ
ient informationve
tor for an arbitrary POMDP model, a large number of POMDP models used in pra
ti
e(in
luding standard POMDPs) falls into the 
lass of belief spa
e POMDPs. The major advan-tages of a belief information state are that it is de�ned over a �nite number of pro
ess statesand that it is relatively easy to work with. This is mostly due to ni
e properties satis�ed byvalue fun
tions de�ned for belief state MDPs. We will be dis
uss them later in this 
hapter.3.2.2 Value fun
tions in POMDPValue fun
tion formulaswe derived for the fully observable Markov model 
an be applied dire
tlyto the information-state MDP. For example n steps-to-go value fun
tion for some �xed plan�n = f�n; �n�1; � � � ; �i; � � � ; �1g 
orresponds to:V �nn (In) = �(In; �n(In)) + 
 XIn�1 P (In�1jIn; �n(In))V �n�1n�1 (In�1) (3.1)1The 
ontrol (poli
y) tree [Cassandra 94℄ is best viewed as a 
ollapsed de
ision tree with �xed a
tion 
hoi
esthat the agent follows under di�erent observations. 47



where �n is a 
ontrol fun
tion de�ned over the 
omplete information ve
tor spa
e, In and In�1are information states for n and n� 1 steps-to-go, �(In; �n(In)) is an expe
ted one step rewardfrom performing a
tion �n(In) in In and V �n�1n�1 (In�1) is an expe
ted reward asso
iated withthe remaining steps of the plan. Expe
ted one step 
ost for an information state In and ana
tion a is equal to: �(In; a) =Xs2S �(s; a)P (sjIn):A next step information state In�1 is a
quired from the 
urrent state using the Markovupdate fun
tion � : In�1 = � (In; o; a):This means that there are at most j�j following information states for every a
tion and initialinformation state. The restri
ted number of observations allows us to rewrite the value fun
tionequation 3.1 more 
ompa
tly by summing over all possible observations:V �nn (In) =Xs2S �(s; �n(In))P (sjIn) + 
 Xo2�next P (ojIn; �n(In))V �n�1n�1 (� (In; o; �n)) (3.2)where �next stands for all possible observations following �n(In) in In. Note that for a generalPOMDP (whi
h 
an in
lude observation delays), �next represents a set of observations availableat n � 1 steps to go and does not need to 
orrespond to �. �next is thus best viewed as afun
tion of In and a: Next(In; a).Based on the �xed poli
y result, we 
an 
onstru
t the optimal value fun
tion for the �niten steps-to-go problem as:V �n (In) = maxa2A Xs2S �(s; a)P (sjIn) + 
 Xo2�next P (ojIn; a)V �n�1(� (In; o; a)): (3.3)That is, the maximum expe
ted reward for the information state In is 
omputed re
ursively bysumming an expe
ted one step reward and an expe
ted reward asso
iated with the rest of theplan. The optimal 
ontrol fun
tion �n is then:��n(In) = argmaxa2AXs2S �(s; a)P (sjIn) + 
 Xo2�next P (ojIn; a)V �n�1(� (In; o; a)):Similarly, the �xed point formula for the in�nite dis
ounted horizon problem is:V �(I) = maxa2A Xs2S �(s; a)P (sjI) + 
 Xo2�next P (ojI; a)V �(� (I; o; a)) (3.4)and the optimal 
ontrol fun
tion is:��(I) = argmaxa2AXs2S �(s; a)P (sjI) + 
 Xo2�next P (ojI; a)V �(� (I; o; a)):3.2.3 Value fun
tion mappingsBasi
 value fun
tion equations 
an be written also in the value fun
tion mapping form. Let Bbe a set of real valued bounded fun
tions V : I ! R de�ned on the information ve
tor spa
e48



I, and let h : I � A�B !R be de�ned as:h(I; a; V ) =Xs2S �(s; a)p(sjI) + 
 Xo2�next P (ojI; a)V (� (I; o; a)):Then we 
an de�ne the value fun
tion mapping H�i : B ! B su
h that:H�iV (I) = h(I; �i(I); V );and the value fun
tion mapping H su
h that:HV (I) = maxa2A h(I; a; V ):Equation 3.1 
an be expressed using the value fun
tion mapping as:V �nn = H�nV �n�1n�1and equations 3.3 and 3.4 as:V �n = HV �n�1 and V � = HV �:The important property of H and H� mappings is that they are isotone. That is, for anytwo fun
tions U; V satisfying V � U holds: HV � HU . For the in�nite dis
ounted horizon(dis
ount fa
tor 0 � 
 < 1) mappings H� and H are 
ontra
tion mappings under the max (orsupremum) norm k V k= maxI jV (I)j. More spe
i�
ally it holds that:k HV �HU k� 
 k V � U k :The proofs are shown below and are based on [Heyman, Sobel 84℄ and [Puterman 94℄.Theorem 6 (Isotoni
ity of H mapping) H mapping for 
 � 0 is isotone. That is for any twofun
tions U; V satisfying U � V holds: HU � HV .Proof. Let I be an arbitrary information state. Then we 
an write:HU (I) = maxa2A �(I; a) + 
 Xo2�next P (ojI; a)U (� (I; o; a))= �(I; a�) + 
 Xo2�next P (ojI; a�)U (� (I; o; a�))� �(I; a�) + 
 Xo2�next P (ojI; a�)V (� (I; o; a�))� maxa2A �(I; a) + 
 Xo2�next P (ojI; a)V (� (I; o; a))= HV (I):As the above inequality holds for any state I, HU � HV follows. 2Theorem 7 (Contra
tion property) H with a dis
ount fa
tor 0 � 
 < 1 is a 
ontra
tion underthe max norm. 49



Proof. Assume two value fun
tions U; V . Let I be an arbitrary information state, and assumethat HU (I) � HV (I) holds. Also assume that a� is an a
tion that optimizes HV (I), i.e.:a� = argmaxa2A�(I; a) + 
 Xo2�next P (ojI; a)V (� (I; o; a)):Then we 
an write:0 � HV (I) �HU (I)� �(I; a�) + 
 Xo2�next P (ojI; a�)V (� (I; o; a�)) � �(I; a�)� 
 Xo2�next P (ojI; a�)U (� (I; o; a�))= 
 Xo2�next P (ojI; a�)[V (� (I; o; a�)) � U (� (I; o; a�))℄� 
 Xo2�next P (ojI; a�) k V � U k= 
 k V � U k :As max norm is symmetri
al, the same result 
an be derived for the 
ase when HU (I) � HV (I).But then taking the maximum over all information states I we 
an write:k HV �HU k� 
 k V � U k;that is H is a 
ontra
tion mapping under the max norm. 2Isotoni
ity and 
ontra
tion will be extremely important for the design of exa
t and approxi-mation methods. For example, the 
ontra
tion property guarantees the unique optimal solution(�xed point) for in�nite dis
ounted horizon problem and 
onvergen
e of exa
t value iterationalgorithm to it.3.3 Constru
ting information state MDPs for di�erentPOMDP modelsA POMDP model 
an be 
onverted into an information state MDP. Information states 
an berepresented trivially by 
omplete histories or appropriate suÆ
ient statisti
s. The fo
us of thisse
tion is to explore how one 
an 
onstru
t appropriate suÆ
ient information states for di�erentobservations models.3.3.1 POMDP with standard (forward triggered) observationsAmodel used frequently in the POMDP literature (hen
e standard) assumes that an observationdepends solely on the 
urrent pro
ess state and the previous a
tion. This situation is illustratedin �gure 3-3. The observation model O then in fa
t des
ribes P (otjst; at�1) for time t. Sin
ean observation is related to the state that results from the a
tion that also triggered (indu
ed)the observation, we will refer to this model as to the model with forward triggered observations.The important feature of POMDPs with standard observation models is that informationstate MDP is suÆ
iently represented using belief states. The suÆ
ient information state pro
essby de�nition should satisfy the following:1. Belief states satisfy the Markov property, that is, the next belief state 
an be 
omputedfrom the previous belief, previous a
tion and new observation as bt = � (bt�1; ot; at�1):50
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Figure 3-3: POMDP with standard (forward triggered) observation model.2. An information state at time t should be suÆ
ient to 
ompute the belief state at time t,P (stjIt) = P (stjICt ) = bt(st):3. P (otjICt�1; at�1) = P (otjbt�1; at�1):The Markov property of the belief state pro
ess holds be
ause a belief state bt 
an be
omputed from the belief state bt�1, a
tion at�1 and observation ot. The belief update thatimplements the transition fun
tion � is:bt(s) = � (bt�1; ot; at�1)(s)= P (sjot; at�1; bt�1)= �P (otjs; at�1)P (sjat�1; bt�1)= �P (otjs; at�1)Xs02S P (sjat�1; s0)bt�1(s0) (3.5)where � is a normalizing 
onstant and is equal to:� = 1=P (otjat�1; bt�1) = 1=Xs2SP (otjs; at�1)Xs02S P (sjat�1; s0)bt�1(s0):The next 
onditions hold as well: P (stjICt ) = bt(st) trivially, and P (otjICt�1; at�1) =P (otjbt�1; at�1) follows be
ause observations made at time t depend solely on the pro
ess stateat time t and the a
tion at�1.This shows that belief states are suÆ
ient to represent information states for the standardPOMDP models. Thus standard POMDP models belong to the 
lass of belief spa
e POMDPs51



and the optimal value fun
tion equation 
an be dire
tly rewritten using belief states:V �n (bn) = maxa2A Xs2S �(s; a)bn(s) + 
 Xo2�next P (ojbn; a)V �n�1(� (bn; o; a)): (3.6)The 
omputation of a new belief state always depends on the pre
eeding belief state, newobservation and previous a
tion. To bottom out the updating ma
hinery we start with a priorbelief over all initial pro
ess states, that is, a probability distribution over pro
ess states at timet = 0. On
e we know the prior belief, we 
an 
ompute subsequent belief states easily using thebelief update formula.3.3.2 POMDP with ba
kward triggered observationsIn the standard (forward triggered) POMDP model (�gure 3-3) an observation at time t istriggered by an a
tion at�1 at time t � 1, and is related to the pro
ess state st at time t.However this model may not be the best for all real world domains and we 
an 
onsider otherobservation models as well.One possible model 
orresponds to the observation model in whi
h an a
tion at performedat time t 
auses an observation about the pro
ess state st to be made (see �gure 3-4). Thatis, the a
tion performed at time t enables the observation that refers to the \before a
tion"state. We will refer to su
h an observation model as to the model with ba
kward triggeredobservations. Although the model seems to defy laws of 
ausality and time, it may be moresuitable for some domains than the model with forward triggering. This is be
ause the forwardmodel may su�er from the 
omplementary problem: when a
tion is a
tually responsible for theobservation, then after the a
tion is �nished the observation made does not have to refer to the\after a
tion" state. The whole problem is 
aused by modelling 
ontinuous domains by timedis
retization. Then the 
hoi
e of the model boils down to the question of whi
h state is betterapproximated by a new observation: the state that o

ured after or before the a
tion.Assuming that a
tions always delimit dis
rete time steps, observations in the ba
kwardobservation model are always delayed one time step. Despite this feature that makes the modeldi�erent from the standard observation model, one 
an show that also now the informationstate MDP 
an be 
onstru
ted using belief information states.The belief update for an a
tion at�1 and an observation ott�1 that is related to the state attime t� 1 but observed (made available) at time t is:bt(s) = � Xs02S P (sjs0; at�1)P (ott�1js0; at�1)bt�1(s0)where � is a normalizing 
onstant and is equal to:� = 1=Xs02S P (ott�1js0; at�1)bt�1(s0):The other two prerequisites of the information state pro
ess are satis�ed as well. The se
ondone is trivial again and the third prerequsite (P (otjICt�1; at�1) = P (otjbt�1; at�1)) holds sin
ethe observation made at time t depends solely on the state at time t� 1 and an a
tion at�1.52
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Figure 3-4: POMDP with simple (ba
kward triggered) observation model.3.3.3 POMDP with the 
ombination of forward and ba
kward obser-vationsTwo previous models 
an be 
ombined into the POMDP with forward and ba
kward obser-vations. This model's basi
 stru
ture is shown in the �gure 3-5. The observation model doesnot 
onsist of one monolithi
 set of observations but rather of the two groups of observations.One group is triggered in the forward and the other in the ba
kward fashion. Using the similarnotation to that introdu
ed above, observations at time t are split into those related to the stateat time t, ott, and those related to the previous state, ott�1. Futher, we assume the observationsasso
iated with the same state are independent given that state.Interestingly, this model 
an be also 
onverted to the information state MDP with beliefstates. To show that a belief state at time t must be Markov updateable. Let bt�1 stand forthe belief state at time t � 1, at�1 be an a
tion performed at time t � 1, and ott�1 and ott beobservations made at time t that are related respe
tively to a state at t� 1 and t. Then a newbelief ve
tor bt at time t is 
omputed as:bt(s) = �P (ottjs; at�1)Xs02S P (ott�1js0; at�1)P (sjs0; at�1)bt�1(s0) (3.7)where � is a normalizing 
onstant equal to:� = 1=Xs2SP (ottjs; at�1)Xs02S P (ott�1js0; a)P (sjs0; at�1)bt�1(s0):The derivation of the update formula (not shown here) exploits the independen
e betweenforward and ba
kward observations given the underlying pro
ess state. Similar to both forwardand ba
kward observation models, the 
ombination of the two satis�es the third 
ondition as53
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Figure 3-5: POMDP model with the 
ombination of forward and ba
kward observations.observations made at time t depends either on the state at time t�1 or the state at time t, andan a
tion at�1. Therefore a POMDP model with the 
ombination of forward and ba
kwardtriggered observations falls also into the 
ategory of belief spa
e POMDPs.3.3.4 POMDP with delayed observationsThe 
lass of belief spa
e POMDP models 
overs only a small part of possible POMDP modelsused to represent real-world 
ontrol problems. The important feature of many domains is theneed to model time lags in the information (per
eption) and 
ontrol (a
tion) 
hannels. Ingeneral:� an a
tion issued by an agent at time t will be performed at time t+ k;� an observation made at time t will be
ome available to the agent at time t+ k.In this se
tion we will fo
us on a POMDP model with delayed observations. The modelwith delayed a
tions 
an be treated in a similar way.The basi
 motivation for introdu
ing the model with observation lags is that the time atwhi
h the observation is made and the time at whi
h it is seen by an agent 
an di�er. If timeis dis
retized the delay may span one or more time steps. The delayed model 
an be veryimportant, for example, in the medi
al domain in whi
h some test results are not availableimmediately, but only after some delay.In the following we will show how one 
an go about 
onstru
ting a suitable informationstate MDP for a k-step delayed observation model (see �gure 3-6). The important features ofthe model in �gure 3-6 are:� observations are triggered ba
kwards; 54
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essstate;� at every time t the agent 
an expe
t to re
eive results related to at most k past pro
essstates.An observation model with k step delays 
an be formalized as:O : S �A �� �D ! [0; 1℄where D = f0; 1; 2; � � �kg, denotes the delay with whi
h the observation be
omes available tothe agent.Based on di�erent time lags, observations in � 
an be distributed into groups: �0;�1; � � � ;�k,where members of every group are observed with the delay 
orresponding to the index. Then,one 
an des
ribe the observation model alternatively as:O : S � A� �0 ��1 � � � � ��k ! [0; 1℄or using independen
e between observations with di�erent lags as:O = fO0; O1; � � �Okg55



where Oi : S � A� �i ! [0; 1℄for all 0 � i � k.Contrary to other models, the 
omputation of a new belief state for the k-step delayed model
annot be done solely from the previous belief state, previous a
tion and new observations. Thisis be
ause delayed observations in
uen
e the belief about the past state, that in turn a�e
tsthe 
urrent belief. This violates the third prerequisite of the suÆ
ient information state pro
essand one 
annot use a belief state as a suÆ
ient repla
ement of the 
omplete information ve
tor.A suitable suÆ
ient information state pro
ess 
an be built using basi
 prin
iples of prob-abilisti
 inferen
e in graphi
al models (see [Pearl 89℄ [Jensen 96℄ [Castillo et al. 97℄): Let �tt�ibe a 
ontribution to the belief state at time t� i that 
omes from observations related to thatstate and that were made up to time t:�tt�i(s) = tYj=t�iP (ojt�ijs; at�i):Let us 
all � an observation ve
tor.Let !tt�i be a 
ontribution to the belief state at time t � i from all a
tions made prior tothat time, related observations made up to time t, and prior belief at time t = 0:!tt�i(s) = P (sjott�i�1; � � � ; ot�i�1t�i�1; � � � ; ot0; � � � ; o00; at�i�1; at�i�2; � � � ; a0; !00)where !00 stands for the prior belief at time t = 0. As !tt�i 
aptures the 
ontribution to the beliefstate from previous observations, we will 
all it the prior belief state (or ve
tor). Note, that !in fa
t 
orresponds to � messages in Markov trees in Pearl's notation [Pearl 89℄. However, wealready use the � symbol to denote a 
ontrol poli
y and thus in order to avoid the 
onfusionwe have 
hosen the new symbol !.The belief in state s at time t 
an be expressed Using � and ! ve
tors as:btt(s) = �!tt(s)�tt(s)where � is a normalizing 
onstant equal to:� = 1=Xs2S !tt(s)�tt(s):The value of a prior belief ve
tor !tt is 
omputed re
ursively from the past state 
ontributions:!tt�i(s) = � Xs02S P (sjs0; at�i)�tt�i�1(s)!tt�i�1(s)for 0 � i � k � 1, and !tt�i(s) = !t�1t�i (s)for k � i.This means that in order to 
ompute the new belief state properly one needs to know notonly new observations, but also observations related to the past k steps, past k a
tions andprior belief for pro
ess state k-steps in the past. Therefore, one 
an 
onstru
t an information56



state MDP using information states It:It = fat�1; � � � ; at�k; Ott; Ot�1t�1; � � � ; Ot�kt�k; !tt�kgwhere Oji stands for all observations related to time i and observed up to time j. It is easy toshow that It is suÆ
ient to 
ompute P (stjICt ). Similarly we 
an show that an information stateis Markov updateable and that it allows one to 
orre
tly 
ompute the probability of observationsseen in the next step. This 
an be seen sin
e we 
an always:� 
ompute a prior belief !tt�k at time t � k from observations related to the state at thattime and previous state prior belief ve
tor;� update observation sets, by ex
luding observations related to a state at time t�k�1 andin
luding all new observations;� 
ompute the probability P (otjICt ; at�1) using It as the maximum observation delay islimited to k steps.Therefore the original POMDP model with k-step delays 
an be 
onverted to the informationstate MDP with pro
ess states 
orresponding to It.3.4 Computing optimal 
ontrol poli
ies for POMDPSThe poli
y problem 
omputes optimal 
ontrol for all information states. This problem wasshown to be of polynomial 
omplexity for the MDP framework and for both �nite and in-�nite horizon problems (see Chapter 2). Unfortunately the 
omputation of optimal 
ontrolde
isions in the partially observable 
ase turns out to be far more 
omplex and 
omputa-tionally demanding. This is illustrated by the fa
t that a POMDP de
ision problem with asingle initial state, �nite horizon and no observation delays was shown to be PSPACE-hard[Papadimitriou, Tsitsiklis 87℄, thus making the planning problem intra
table and algorithmsproviding exa
t solutions ineÆ
ient.3.4.1 Computing optimal 
ontrol poli
yFinite horizon problemThe �nite horizon problem 
ould be solved theoreti
ally using the dynami
 programmingparadigm. That is, assuming we know the optimal value fun
tion for i � 1 steps-to-go we
an 
ompute the optimal value fun
tion for any information state with i steps-to-go as:V �i (Ii) = maxa2A Xs2S �(s; a)P (sjIi) + 
 Xo2�next P (ojIi; a)V �i�1(� (Ii; o; a));des
ribed also as V �i = HV �i�1. Then the optimal 
ontrol a
tion is:��i (Ii) = argmaxa2AXs2S �(s; a)P (sjIi) + 
 Xo2�next P (ojIi; a)V �i�1(� (Ii; o; a)):Then starting from the 0 steps-to-go value fun
tion (expressing the expe
ted 
ost asso
iatedwith information states at the end) one 
ould theoreti
ally 
ompute optimal value and 
ontrolfun
tions for all possible information states for 1 step to go, then use the 1 step-to-go optimal57



value fun
tion to 
ompute optimal a
tions and value fun
tions for all information states at 2steps-to-go and so on up to n steps-to-go.Computing � optimal 
ontrol for the in�nite dis
ounted horizonFinding an �-optimal value fun
tion for the in�nite dis
ounted horizon 
ould be approa
hedsimilarly using the value iteration strategy. Knowing that the value fun
tion mapping H is anisotone 
ontra
tion, we 
ould 
onstru
t a simple value iteration method with step:Vi+1 = HVithat 
onverges to the unique �xed point solution V � (using the result of the Bana
h theorem).Therefore, after a suÆ
ient number of iterations we 
ould obtain any �-optimal solution. Usingthe optimal or � optimal substitute, the optimal 
ontrol is:��(I) = argmaxa2AXs2S �(s; a)P (sjI) + 
 Xo2�next P (ojI; a)V �(� (I; o; a)):Note that the value iteration update step is equal to the dynami
 programming update step.3.4.2 Computability of the optimal or � optimal solutionsThere is a serious problem in applying both of the above 
omputational s
hemes in pra
ti
e.The problem stems from the fa
t that in the POMDP the information state spa
e is in�nite(for example, there is an in�nite number of belief states in the suÆ
ient belief state spa
e).Then having a 
ontinuous 
omponent in the state des
ription poses the following threats:� a value fun
tion for the 
omplete information state spa
e may not be representable by�nite means and/or 
omputable in a �nite number of steps;� a 
ontrol fun
tion that maps the information state spa
e may not be 
omputable in a�nite number of steps.Lu
kily the above threats do not always materialize and one 
an guarantee in some 
ases the
omputability of value and 
ontrol fun
tions using a �nite number of dynami
 programming orvalue iteration updates as well as the their �nite des
ription. In the following we will narrow ourattention to the problem of �nding optimal value fun
tions for a 
lass of belief spa
e POMDPs.This 
lass, as dis
ussed above, 
overs POMDPs with standard (forward triggered), ba
kwardtriggered observations models, as well as their 
ombinations.Computing optimal value fun
tions for belief spa
e POMDPsA ni
e and important feature of POMDP models with suÆ
ient belief states is that their optimalor �-optimal value fun
tions are pie
ewise linear and 
onvex. That is, V �i (Vi for the in�nitedis
ounted horizon) ) 
an be expressed as:V �i (b) = max�ki 2�iXs2S b(s)�ki (s)where b denotes a belief state and �i is a set of linear ve
tors �ki de�ning the value fun
tion. Apie
ewise linear and 
onvex value fun
tion for a two state POMDP is illustrated in �gure 3-7.58
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Vi
*(b)Figure 3-7: An example of a pie
ewise linear and 
onvex value fun
tion for a POMDP with twopro
ess states fs1; s2g. Note that for the 
omponents of the belief state hold: b(s1) = 1� b(s2).The pie
ewise linearity and 
onvexity of the value fun
tion will be shown in the followingtheorem. It is based on the theorem proven by Smallwood and Sondik for standard observationmodels [Smallwood, Sondik 73℄. The theorem presented here 
an be viewed as a generalizationof the result that 
overs a 
lass of belief spa
e POMDPs.Theorem 8 (Pie
ewise linear and 
onvex value fun
tions) Let Vinit be an initial value fun
tionthat is pie
ewise linear and 
onvex. Then a value fun
tion obtained after a �nite number ofupdate steps for a belief spa
e POMDP is also �nite, pie
ewise linear and 
onvex, that is,V �i (b) = max�ki 2�iXs2S b(s)�ki (s);where b and �ki are ve
tors of size jSj, and �i is a �nite set of linear �i ve
tors.Proof. In the proof a notation for the �nite horizon 
ase and the dynami
 programming updateis used. However, the proof holds also for the value iteration update and the in�nite dis
ountedhorizon 
riterion. Let us assume that the optimal value fun
tion for any bi�1 at i�1 steps-to-gois expressed using a �nite set of ve
tors �i�1 = f�0i�1; �1i�1; � � � ; �li�1g as:V �i�1(bi�1) = max�ki�12�i�1Xs2S bi�1(s)�ki�1(s):We will show that for i steps the optimal value fun
tion is also pie
ewise linear and 
onvex.Knowing that a belief state is a suÆ
ient information ve
tor, we 
an write the belief of beingin state s at i � 1 steps-to-go after performing a
tion a in the belief state bi and subsequentlyobserving o as: bi�1(s) = P (sjbi; a; o):Using this in the value fun
tion we get:V �i�1(bi�1) = max�ki�12�i�1Xs2S P (sjbi; a; o)�ki�1(s):59



Substituting the value fun
tion in to the equation 3.3 we get:V �i (bi) = maxa2A Xs02S �(s0; a)bi(s0) + 
 Xo2�next P (ojbi; a) max�ki�12�i�1Xs2S P (sjbi; a; o)�ki�1(s)This 
an be further rewritten as:V �i (bi) == maxa2A Xs02S �(s0; a)bi(s0) + 
 Xo2�next P (ojbi; a) max�ki�12�i�1Xs2S P (sjbi; a; o)�ki�1(s)= maxa2A Xs02S �(s0; a)bi(s0) + 
 Xo2�next max�ki�12�i�1Xs2S P (ojbi; a)P (sjbi; a; o)�ki�1(s)= maxa2A Xs02S �(s0; a)bi(s0) + 
 Xo2�next max�ki�12�i�1Xs2S P (s; ojbi; a)�ki�1(s)= maxa2A Xs02S �(s0; a)bi(s0) + 
 Xo2�next max�ki�12�i�1Xs2S "Xs02S P (s; ojs0; a)bi(s0)#�ki�1(s):Let �b;a;oi�1 2 �i�1 denotes the optimal sele
tion of � (the one that maximizes the value fun
tion)for �xed b, a, o. Then we 
an write:V �i (bi) == maxa2A Xs02S �(s0; a)bi(s0) + 
 Xo2�nextXs2S "Xs02S P (s; ojs0; a)bi(s0)#�bi;a;oi�1 (s)= maxa2A Xs02S bi(s0)"�(s0; a) + 
 Xo2�nextXs2S P (s; ojs0; a)�bi;a;oi�1 (s)# :Assuming the 
omplete belief spa
e, the expression in bra
kets 
an evaluate to jAjj�i�1jj�nextjdi�erent ve
tors: one for every 
ombination of a
tions and permutations of �i�1 ve
tors of sizej�nextj. Assuming that ea
h ve
tor equals some �ki 2 �i, we 
an rewrite the V �i (bi) as:V �i (bi) = max�a;ji 2�iXs2S bi(s)�a;ji (s)where �a;ji (s0) = �(s0; a) + 
 Xo2�nextXs2SP (s; ojs0; a)�a;o;ji�1 (s)
orresponds to a linear ve
tor for an a
tion a and the j-th permutation of �i�1 ve
tors of sizej�nextj. But that means that V �i (bi) is also pie
ewise linear, 
onvex and is de�ned by a �nite
olle
tion of � ve
tors �i.As an initial fun
tion Vinit is pie
ewise linear and 
onvex, the value fun
tion a
quired after a�nite number of update steps must be also pie
ewise linear and 
onvex, whi
h 
on
ludes theproof. 2The major 
onsequen
es of the above theorem are that:� starting from a �nite, pie
ewise linear and 
onvex fun
tion one 
an always 
ompute thevalue fun
tion for a �nite number of update steps in �nite time;60



� the value fun
tion a
quired after a �nite number of update steps 
an be represented by�nite means, using a �nite number of linear � ve
tors;� the 
ontrol fun
tion is 
omputable.Useful linear � ve
torsA value fun
tion Vi 
onsists of a �nite number of linear segments (� ve
tors). This was shownin the theorem proof by 
onstru
ting a linear ve
tor set �i that 
onsisted of linear ve
tors
orresponding to all possible 
ombinations of a
tions and pairs of observations and �i�1 ve
tors.The total number of all possible linear ve
tors is jAjj�i�1jj�nextj. However, in pra
ti
e the
omplete set of linear ve
tors is rarely used. This is be
ause some of the linear ve
tors are
ompletely dominated by other ve
tors and their omission does not in
uen
e or 
hange theresulting pie
ewise linear and 
onvex fun
tion. A linear ve
tor that 
an be eliminated without
hanging the resulting value fun
tion solution is 
alled a redundant linear ve
tor. Conversely, alinear ve
tor that singlehandedly a
hieves optimal value for at least one point of the informationve
tor spa
e is 
alled a useful linear ve
tor2.For the sake of 
omputational eÆ
ien
y it is important to keep the size of the linear ve
torset as small as possible (keep only useful linear ve
tors) over dynami
 programming or valueiteration steps. This is be
ause �nding the value fun
tion V �i requires one to 
he
k and tryall linear ve
tors in �i�1 and in
luding redundant ones. The e�e
t of not removing redundantlinear ve
tors after every update would then lead to the growth of the number of redundantve
tors and 
an be a sour
e of major ineÆ
ien
y.Unfortunately, it has also turned out that the problem of �nding useful linear ve
tor sets
annot be solved eÆ
iently with regard to jSj; jAj; j�nextj; j�i�1j; j�ij. This was proved in[Littman et al. 95
℄, who showed that the problem 
an be solvable eÆ
iently only when RP =NP . This means that one does not only fa
e the potential exponential growth of the numberof useful linear ve
tors, but also ineÆ
ien
ies related to the identi�
ation of su
h ve
tors. Inthe following we will explore several methods for 
omputing value fun
tion updates that outputpie
ewise linear value fun
tions des
ribed only by useful linear ve
tors. Su
h updates are thenrepeatedly used within the main dynami
 programming or value iteration pro
edures.3.5 Algorithms for updating pie
ewise linear and 
onvexvalue fun
tionsIn the following we will brie
y review some of the existing algorithms for 
omputing pie
ewiselinear and 
onvex value fun
tion updates. Unfortunately, as mentioned above, neither thesenor other algorithms are guaranteed to run in time polynomial in jSj; jAj; j�nextj; j�i�1j; j�ij.The �rst group of methods fall into the 
ategory of generate and test algorithms. We startwith a simple generate and test algorithm, 
alled Monahan's algorithm [Monahan 82℄, and thenpro
eed with its more 
omplex extensions. These algorithms try to 
onstru
t a useful linearve
tor set by 
ombining linear ve
tors in �i�1 and testing them for redundan
y using eitherintermediate or �nal redundan
y tests.The alternate methods for 
omputing useful linear ve
tor updates are based on Sondik'sidea of 
omputing an optimizing linear ve
tor for a single belief point [Smallwood, Sondik 73℄.2In de�ning the redunant and useful linear ve
tors we assume that there are no linear ve
tor dupli
ates, i.e.only one 
opy of the same linear ve
tor is kept in the set �i.61



These methods try to lo
ate belief points that 
an seed new useful ve
tors. The sear
h for\seed" points must be 
omplete in the sense that belief points examined must guarantee thatnone of the useful ve
tors will be missed. We will des
ribe and analyze two algorithms fromthis group. The �rst is 
alled the linear support algorithm and is due to Cheng [Cheng 88℄ (seealso [Cassandra 94℄). The se
ond is the Wittness algorithm and is due to [Cassandra 94℄ and[Littman 94℄. Other methods that fall into this 
ategory are Sondik's method [Cassandra 94℄ orCheng's relaxed region algorithm[Cheng 88℄ [Cassandra 94℄. A ni
e des
ription of several exa
talgorithms is provided in [Cassandra 94℄.Finally, at the end we will propose a new Gauss-Seidel speedup of the value iteration methodfor in�nite dis
ounted horizon problems.3.5.1 Monahan's algorithmMonahan's algorithm uses a simple generate and test approa
h [Monahan 82℄ [Cassandra 94℄.The generation phase of the algorithm 
orresponds to the enumeration of a 
omplete andpossibly redundant set of �i ve
tors. Every �i ve
tor 
orresponds to one possible 
ombinationof an a
tion and a permutation of previous step ve
tors �i�1 of size j�nextj. A linear ve
torobtained for an a
tion a and j-th permutation of size j�nextj of ve
tors in �i�1 is 
omputed as:�a;ji (s0) = �(s0; a) + 
 Xo2�nextXs2S P (s; ojs0; a)�a;o;ji�1 (s):This gives a total of jAjj�i�1jj�nextj ve
tors �ki in �i.In the testing phase all redundant ve
tors in �i are tested and removed. A redundant ve
toris a ve
tor that does not singlehandedly optimize the value fun
tion on at least one point ofthe belief spa
e. Assuming that �ki is a ve
tor to be tested for redundan
y, the test 
an bea

omplished by setting up the following linear program (see [Monahan 82℄ or [Cassandra 94℄):maximize: Æusing the following 
onstraints:Xs2S b(s) h�ji (s) � �ki (s)i+ Æ � 0 for all �ji (s) 2 �i su
h that �ji (s) 6= �ki (s)Xs2S b(s) = 1b(s) � 0 for all s 2 S:The elements of b (b(s)) and a parameter Æ are treated as linear program variables. If it isfound that the maximum possible Æ is less than or equal to 0 (Æ � 0), it must be the 
ase that�ki is not singlehandedly best at some point of the belief spa
e. Then, it is either dominatedor 
overed by other � ve
tors. Therefore, testing the resulting Æ makes it possible to ex
lude aspe
i�
 redundant ve
tor from �i.In prin
iple one 
an test all possible ve
tors using the above linear program. However, this
an be quite expensive, espe
ially when large linear programs need to be solved. The testingpro
ess 
an be sped up to some extent by ex
luding some of the redundant �s through a 
heaperpure dominan
e test. In the pure dominan
e test, a ve
tor �ki 
an be ex
luded (is redundant)62



whenever there is a ve
tor �ji su
h that:for all s = 1 � � � jSj �ji (s) � �ki (s) holds:A simple dominan
e test 
an 
ut the size of the linear ve
tor set before more expensive linearprogramming test is used. This modi�
ation was suggested in [Eagle 84℄.3.5.2 Extensions of Monahan's algorithmThe main problem with Monahan's algorithm is that it tries to generate blindly all possibleve
tors �rst and only then to remove the redundant ones. However, it is also possible to test apartially built solution [Cassandra et al. 97℄ [Zhang, Liu 96℄. This feature makes it possible tointerleave the generate and test phases and save some time by re
ognizing and pruning partial
omponents that are suboptimal earlier. The idea of interleaving the generation and test phases
an be used to 
onstru
t new versions of Monahan's approa
h.Interleaving pro
esses of linear ve
tor generation and testingLet us assume that a set of observations �next is partitioned into M disjoint subsetsf�1next; � � ��knext � � ��Mnextg. Then we 
an rewrite the expression for 
omputing a new linear ve
torusing the partitioning as:�a;ji (s0) = �(s0; a) + 
 Xo2�nextXs2SP (s; ojs0; a)�a;o;ji�1 (s)= �(s0; a) + 
 Xo2�1nextXs2SP (s; ojs0; a)�a;o;ji�1 (s) + � � �++
 Xo2�knextXs2S P (s; ojs0; a)�a;o;ji�1 (s) + � � �++
 Xo2�MnextXs2S P (s; ojs0; a)�a;o;ji�1 (s):Now assume two ve
tors, �a;li and �a;mi , with identi
al a
tion a and with linear ve
tor 
hoi
es�a;o;ji�1 that di�er only in the partition �knext. But then, whenever:Xo2�knextXs2S P (s; ojs0; a)�a;o;li�1 (s) � Xo2�knextXs2S P (s; ojs0; a)�a;o;mi�1 (s) for all s0 2 S;the linear ve
tor �a;mi must be redundant and 
an be ex
luded from the useful ve
tor set. Thisrepresents a redundan
y test for two partially 
onstru
ted linear ve
tors and 
an be appliedwithin any partition. The test 
an be extended to handle a set of linear ve
tors by using thesame linear program as used for 
omplete linear ve
tor sets. The main advantage of the partialtest is that the number of linear ve
tors to be 
ompared and tested is usually smaller, andtherefore 
heaper.One 
an 
onstru
t various methods that employ di�erent partitioning s
hemes and generatelinear ve
tors from 
omponents that have passed partial (lower level) redundan
y tests. Forexample one 
an 
reate a hierar
hi
al s
heme that uses a �xed ordering of observations �nextand that 
onstru
ts the solution gradually by 
omputing and testing partial linear ve
tors for63



the �rst two observations, then partial linear ve
tors for the �rst three observations, and so on,up to all observations. The advantage of su
h an approa
h is that only partial linear ve
torsfound to be nonredundant on the lower level are 
ombined and used on the next level. Thisleads to the in
remental s
heme that interleaves generation and test phases. The in
rementalapproa
h was proposed and its performan
e tested in [Cassandra et al. 97℄. It 
an result insigni�
ant speedups for problems with a large number of redundant linear ve
tors.Pruning redundant partial linear ve
tors a
ross di�erent a
tionsThe idea of partitioning allows one to do early redundan
y tests and pruning for linear ve
tors
reated for the same a
tion. However, the question is whether we 
an apply early pruning anduse a similar approa
h also a

ross di�erent a
tions. The idea for doing this is proposed anddes
ribed below and is based on the upper bound linear ve
tor estimates.Let �Ami be a set of useful linear ve
tors built for a
tions Am � A. Let �a0;ji be a linearve
tor obtained for a
tion a0 62 Am and the j-th permutation of j�nextj linear ve
tors in �i�1.Let b�a0;ji be an upper bound estimate of �a0;ji . Then if b�a0;ji is found redundant with regard to�Ami then it must hold that �a0;ji is redundant as well and 
an be ex
luded.The question now is how to 
ompute an upper bound estimate of the 
omplete linear ve
torfor some partially built linear ve
tor. Let �a0;j;ki be a partial linear ve
tor built for the partition�knext: �a0;j;ki (s0) = Xo2�knextXs2S P (s; ojs0; a0)�a0;o;ji�1 (s):Then we 
an 
onstru
t an upper bound estimate b�a0;j;ki for it as:b�a0;j;ki (s0) = Xo2�knextXs2S P (s; ojs0; a0) max�i�12�i�1 �i�1(s);whi
h 
an be 
omputed very easily. Then 
ombining together either exa
t partial ve
tors ortheir upper bound estimates for di�erent partitions we 
an 
ompute an upper bound b�a0;ji . Forexample, using the exa
t partial solution for the �rst partition and upper bound estimates forall other partitions we get :b�a0;ji (s0) = �(s0; a0)+
 2424 Xo2�1nextXs2S P (s; ojs0; a0)�a0;o;ji�1 (s)35+ � � �+ b�a0;j;ki (s0) + � � �+ b�a0;j;Mi (s0)35 :The fa
t that one 
an relatively easily 
ompute the upper bound estimates of partial linearve
tors for every partition (one needs to 
ompute max�i�12�i�1 �i�1(s) only on
e) 
an be usedto do the redundan
y 
he
k of partially built linear ve
tors a
ross a
tions. This test 
an be
ombined with the redundan
y test for partial linear ve
tor sets and �xed a
tions, dis
ussedabove. In general the early elimination of redundant partial linear ve
tors 
an speed up the
onstru
tion of the useful linear ve
tor set �i and 
an be very useful in 
ases in whi
h thenumber of useful linear ve
tors is relatively small 
ompared to the size of the maximum linearve
tor set. 64



3.5.3 Cheng's linear support algorithmCheng's linear support approa
h [Cheng 88℄ [Cassandra 94℄ exploits pie
ewise linearity and
onvexity of the value fun
tion to 
onstru
t a set of useful linear ve
tors from s
rat
h. Thealgorithm is based on two key features:� It is possible to �nd a useful linear ve
tor(s) for any point of the belief spa
e (usingSondik's point update method [Smallwood, Sondik 73℄).� Any subset b�i of useful ve
tors �i de�nes a pie
ewise linear and 
onvex approximationthat is worst at interse
tions of ve
tors in b�i, and/or at interse
tions of su
h ve
tors withbelief spa
e boundaries [Cheng 88℄.The above two features give rise the following idea for �nding the useful ve
tor set: startingfrom the initial in
omplete useful set, �nd all useful ve
tors gradually by 
he
king points 
reatedby interse
tions of already known � ve
tors. This idea is embodied in the following algorithmwhi
h is the modi�ed version of Cheng's algorithm.Chengs's algorithm (�i�1)sele
t arbitrary point b of the belief spa
e;initialize b�i with a useful ve
tors built for b and mark them;while there exists a marked ve
tor in b�ido sele
t marked ve
tor � from b�i;�nd all extreme points of the region for whi
h � gives the optimal value(using other ve
tors in b�i and simplex 
onstraints);for ea
h extreme point b of region �
ompute useful ve
tor for b;if the new useful ve
tor is not in b�iadd it to b�i and mark it;otherwise ignore it;unmark �;return b�i as �i;The algorithm relies on the ability to 
ompute:� all extreme points of the belief spa
e region de�ned by some useful linear ve
tor �ki 2 b�i,i.e. �ki is optimal on the region;� useful ve
tors for an arbitrary belief state.Let us look more 
losely at these tasks.Computing all extreme points of the belief regionLet �ki be a useful ve
tor in b�i. Then a belief spa
e region for whi
h it is optimal satis�es thefollowing 
onstraints:Xs2S b(s) h�ji (s)� �ki (s)i � 0 for all �ji (s) 2 b�i su
h that �ji (s) 6= �ki (s)65
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Vi
*(b)Figure 3-8: A situation in whi
h a linear ve
tor that is optimal for some belief point 
an be
omeredundant. The ve
tor is dominated and fully 
overed by other linear ve
tors.Xs2S b(s) = 1b(s) � 0 for all s 2 SThe problem with 
omputing all extreme points for the �ki region is that the number ofdi�erent extreme points 
an be exponential in b�i or jSj. But this means that 
omputing and
he
king all extreme points of the �ki region 
an lead to ineÆ
ien
y, as in general there is noguarantee that every extreme vertex seeds a new useful � ve
tor. Ideally, what we would likeis to 
ompute and 
he
k only those verti
es of the region that seed new � ve
tors. This is the
ru
ial point of the approa
h and any eÆ
ient (polynomial time) solution to it will lead to theeÆ
ient running time of the overall algorithm.Computing useful ve
tors for a single belief pointThe other open spot in the algorithm des
ription is related to the task of �nding useful ve
torsfor a spe
i�
 belief point. The main problem here is that there 
an be an � ve
tor that isoptimal at some point but despite that it is redundant. This 
orresponds to the situation inwhi
h the ve
tor is 
overed and dominated by other linear ve
tors. The situation is illustratedin �gure 3-8. Therefore one 
annot simply sele
t a ve
tor that gives the optimal value for thetarget point without a guarantee that there is some belief point that is singlehandedly optimizedby the ve
tor. In the following it will be shown how su
h a ve
tor 
an be found eÆ
iently.Let us �rst 
onsider the problem of 
omputing the optimal value fun
tion for some beliefpoint b. This 
an be a
hieved using the value fun
tion equation:V �i (b) = maxa2A "Xs02S �(s0; a)b(s0) + 
 Xo2�next " max�ki�12�i�1Xs2S "Xs02S P (s; ojs0; a)b(s0)#�ki�1(s)## :Following the shown parenthesization we 
an 
ompute the optimal value fun
tion from insideout using the following steps: 66



1. For a �xed a and o try all �ki�1 and sele
t the result that maximizes:Xs2S "Xs02S P (s; ojs0; a)b(s0)#�ki�1(s):2. For a �xed a do step 1 for all possible o, and sum the maximal results.3. ComputePs02S �(s0; a)b(s0) and add it to the result a
hieved in step 2.4. For all possible a sele
t the best overall result.This task 
an be a

omplished in time O(jAjj�nextjj�i�1jjSj2).As seen above, the task of 
omputing the value fun
tion at point b is relatively easy. Howeverour task is to �nd a linear ve
tor that optimizes the value at b and is also useful.Sondik's linear ve
tor update methodThe optimal linear ve
tor for a belief point b and an a
tion a 
an be 
omputed using Sondik'sapproa
h [Smallwood, Sondik 73℄:�b;ai (s) = �(s; a) + 
 Xo2�next Xs02S P (s0; ojs; a)��(b;a;o)i�1 (s0) (3.8)where �(b; a; o) indexes a linear ve
tor �i�1 in a set of linear ve
tors �i�1 (de�nes Vi�1) thatmaximizes: Xs02S "Xs2S P (s0; ojs; a)b(s)#�i�1(s0)for a �xed 
ombination of b; a; o. The optimizing linear ve
tor for a point b is then obtained by
hoosing the one giving the best value fun
tion result from among 
andidate ve
tors 
omputedfor all a
tions. That is, assuming �bi is a set of all 
andidate ve
tors, the resulting ve
tor mustsatisfy: �bi = argmax�b;ai 2�bi Xs2S �b;ai (s)b(s):Sondik's method for 
omputing the linear ve
tor that optimizes the value fun
tion for pointb 
an be a

omplished also in O(jAjj�nextjj�i�1jjSj2) time. Unfortunately, there 
an be morethan one �bi ve
tor that optimizes Vi(b). Then the problem is to sele
t a linear ve
tor that isalso guaranteed to be useful.The existen
e of more linear ve
tors that optimize the value fun
tion at some point b 
anbe 
aused by having:� more than one linear ve
tor ��(b;a;o)i�1 (s0) that optimizesXs02S "Xs2S P (s0; ojs; a)b(s)#�i�1(s0);� more than one optimizing �b;ai .The problem of multiple 
hoi
es 
an be resolved by 
onstru
ting a linear ve
tor that isguaranteed to be useful. This 
an be a
hieved in both 
ases by using a pro
edure that sele
ts67



the optimizing ve
tor from among 
ontenders by 
omparing linear ve
tor values on a �xedsequen
e of 
riti
al belief points (dimensions). The pro
edure sele
ts �rst the ve
tor with thelargest 
omponent in the �rst dimension and in the 
ase of ties the ve
tor with the largest
omponent in the se
ond dimension and so on. Su
h a 
hoi
e guarantees that the sele
tedve
tor will lead to the optimal value not only for a belief point b but also for some beliefpoint in b's 
lose neighbourhood (see also [Littman 96℄). Moreover the ve
tor is guaranteedto singlehandedly a
hieve the optimal value for su
h a point. Therefore the sele
ted ve
tormust be useful. Note that in order to guarantee usefulness, a sequen
e of �xed belief points(dimensions) needs to be the same for both sets of linear ve
tors.3.5.4 Witness algorithmThe Witness algorithm [Cassandra 94℄ [Littman 94℄ adopts in prin
iple the same idea as Cheng'slinear support algorithm and tries to build the useful ve
tor set gradually by identifying pointsthat seed useful linear ve
tors. However, the major distin
tion between the two is that theWitness algorithm applies the idea to �nd useful � ve
tors �ai that des
ribe the a
tion-valuefun
tion Qi(:; a). The resulting value fun
tion is 
onstru
ted by 
ombining results for di�er-ent a
tion-value fun
tions using the redundan
y test from Monahan's pro
edure to enfor
eusefulness. Contrary to this, Cheng's algorithm builds the value fun
tion Vi dire
tly.The fa
t that the Witness algorithm identi�es a
tion-values �rst and only then it 
ombinesthem 
an be again a sour
e of major ineÆ
ien
y. This is be
ause the number of useful �ve
tors generated for some a
tion 
an be exponential with regard to the useful set of ve
torsof the resulting value fun
tion. However the main advantage and most important feature ofthe Witness algorithm is that it 
an 
onstru
t the a
tion value fun
tion eÆ
iently. Then theoverhead from �nding useful ve
tors that de�ne all a
tion-value fun
tions and their subsequent
ombinations is outweighed by the eÆ
ien
y of the pro
edure.The eÆ
ien
y of the a
tion-value 
omputation stems from the fa
t that for every useful �kive
tor in 
�ai (partially built linear ve
tor set) it is always possible to �nd a belief point (if itexists) for whi
h there is a di�erent optimal �ji not in
luded in 
�ai . Su
h a point is 
alled awitness point (hen
e Witness algorithm). This feature makes it di�erent formCheng's algorithmin whi
h for every new useful ve
tor found, the verti
es of the region asso
iated with it need tobe enumerated �rst and then 
he
ked, with no guarantee that they will seed new useful ve
tors.The blind enumeration of all possible verti
es is thus the major sour
e of ineÆ
ien
y, as thenumber of verti
es to be 
he
ked 
an be exponential in j�i�1j or jSj. The following is a basi
des
ription of the Witness algorithm.Witness (�i�1; a)sele
t arbitrary point b of the belief spa
e;initialize 
�ai using a useful ve
tor de�ning a
tion-value fun
tion for b and a, and mark it;while there exists a marked ve
tor in 
�aido sele
t marked ve
tor � from 
�ai ;while there is a witness point b� for � and 
�aido
ompute a useful ve
tor for b�, mark it and add it to 
�ai ;unmark �;return 
�ai as �ai ;The key part of the algorithm is the problem of �nding the witness point, that is a point of68



the belief spa
e that is optimized by �ki with regard to 
�ai , but not with regard to the 
ompleteset �ai . This problem 
an be solved by 
onstru
ting a spe
ial linear program for every possibleobservation o 2 �next and every ve
tor �li�1 2 �i�1 su
h that:�li�1 6= �k;a;oi�1where �k;a;oi�1 is an �i�1 ve
tor from �i�1 used to 
onstru
t �ki . The linear program then
orresponds to [Cassandra 94℄): maximize: Æusing the following 
onstraints:XsinS b(s) h�ji (s) � �ki (s)i � 0 for all �ji (s) 2 
�ai su
h that �ji (s) 6= �ki (s)Xs02SXs2S P (s; ojs0; a)b(s0) h�k;a;oi�1 (s) � �li�1(s)i+ Æ � 0Xs2S b(s) = 1b(s) � 0 for all s 2 S:Components of b as well as Æ represent linear program variables. Assume that �li�1 is abetter 
hoi
e than �k;a;oi�1 for at least one point within the region that is 
urrently optimizedby �k;ai . Then a variable Æ is larger than 0, Æ > 0, and 
omponents of b represent the pointfor whi
h there is an � ve
tor with better value. Thus solving the linear program for everypossible observation o 2 �next and ve
tor �ki�1 2 �i�1, and 
he
king the resulting Æ, allows oneto identify a witness point asso
iated with a useful ve
tor �i.3.5.5 Value iteration updatesAll of the dis
ussed methods 
an be without 
hange applied to 
ompute updates in the valueiteration method and in�nite dis
ounted horizon problem. The value iteration method runsuntil some required pre
ision of the solution value fun
tion is rea
hed. The pre
ision 
an beguaranteed using one of the two stopping 
riteria: absolute or relative (see se
tion 2.2.2). Theabsolute 
riterion uses a minimum number of value iterations one has to perform (they arederived dire
tly from the Bana
h theorem), while the relative stopping 
riterion is based onBellman's residuals.A slight problem with the relative stopping approa
h is that the value fun
tion is de�nedover an in�nite belief spa
e, 
ompared to the MDP 
ase that works with a �nite state spa
e.However, value fun
tions for belief state POMDP are pie
ewise linear and 
onvex, thus one isalways able to 
ompute the maximumdi�eren
e between two su
h fun
tions in a �nite numberof steps. Methods for doing this are dis
ussed for example in [Littman 94℄.In
remental (Gauss-Seidel) methodA simple value iteration method is rarely used in the Markov de
ision framework. Instead, aGauss-Seidel modi�
ation that in
orporates immediately any 
hange in value fun
tion values69



is 
ommonly used. This speeds up the 
onvergen
e rate and e�e
tively repla
es parallel valueupdates with a 
ontinuous update s
heme.The question is if it would be possible to 
onstru
t a Gauss-Seidel version of the valueiteration method also for POMDPs. The prerequisite to this is to �nd a method that allowsone to gradually 
hange the value fun
tion so that in the limit the optimal value fun
tion isrea
hed. The main idea that makes the 
onstru
tion of su
h a method possible is a new oneand is based on pie
ewise linear lower bounds [Hauskre
ht 96b℄ [Hauskre
ht 97b℄.Gauss-Seidel updatesLet Vi�1 be a pie
ewise linear lower bound on the optimal value fun
tion V � = HV � and let�i�1 be a set of linear ve
tors des
ribing it. Then a new linear ve
tor �i 
omputed for anarbitrary belief point b using Sondik's update formula satis�es:Xs2S�i(s)b(s) � max�i�12�i�1Xs2S �i�1(s)b(s):This inequality holds be
ause the update formula implements a value fun
tion mappingH andH is an isotone 
ontra
tion. But then we 
an 
onstru
t a new pie
ewise linear 
onvex fun
tionVi su
h that Vi�1 � Vi � V �, simply by updating a linear ve
tor set:�i = �i�1 [ �i:Note that by 
omputing new �i, some of the previously useful linear ve
tors 
an be
ome re-dundant. One 
an apply redundan
y tests dis
ussed above to elimate su
h ve
tors.The new update method updates and improves the lower bound value fun
tion gradually,point by point, and makes results of previous linear ve
tor updates immediately available. Ingeneral the update rule 
an be 
ombined with any point sele
tion strategy, that guaranteesthe 
onvergen
e to the optimal solution. That is the strategy is able to eventually lo
ate allne
essary points. Systemati
 and 
omplete point sele
tion strategies 
an be built by modifyingexa
t methods dis
ussed above, or using simple random strategy that 
onverges to the optimalsolution in the limit.Problem of pre
isionThe major problem with the in
remental update rule is that it makes impossible the determi-nation of the boundary of a value iteration step. That is, starting from an arbitrary pie
ewiselinear lower bound value fun
tion, one 
annot say or dete
t when the improvement worthy of atleast one parallel value iteration step has been made. Thus one 
an implement neither �xed stepnor Bellman residual stopping 
riteria to guarantee the required pre
ision of the a
tual solu-tion. Contrary to the in
remental Gauss-Seidel method, it is easy to dete
t the pre
ision of theobtained solution when parallel value fun
tion updates are used. Thus the di�eren
e betweenparallel and in
remental Gauss-Seidel methods boils down to the ability to 
he
k �-optimalityof the 
urrent solution versus speed and better 
onvergen
e. One promising avenue of resear
hwould be to explore the 
ombination of the two methods that exploits positives of ea
h one andthat interleaves exa
t value iteration steps with in
remental Gauss-Seidel updates. We believethat this will allow us to a
quire solutions with guaranteed pre
ision for more 
omplex problemsthan are solvable with 
urrently available exa
t methods.70



3.6 Forward de
isionmethods for �nding optimal or near-optimal POMDP 
ontrolA poli
y task that produ
es 
omplete optimal or �-optimal 
ontrol fun
tions is 
omputationallyvery expensive and very hard to a

omplish in pra
ti
e for POMDPs with larger state, a
tionand observation spa
es. However, when one expe
ts to �nd the optimal 
ontrol or value fun
tiononly for a single information state, forward de
ision methods often represent the best 
hoi
e.The most appealing property of forward methods is that after a �nite number of stepsthey 
an rea
h only a �nite number of information states. Information states that 
an berea
hed 
orrespond to di�erent a
tion-observation sequen
es one 
an generate from the initialinformation state. Forward methods and strategies used for POMDPs are similar to those forMDPs and are based on the forward de
ision tree expansion. However partial observabilityintrodu
es a new dimension of 
omplexity that makes the optimization task harder.The basi
 
omputational stru
ture used for �nding the best de
ision is a de
ision tree. Themain di�eren
e between MDPs and POMDPs is that in the POMDP framework the de
isionnodes are asso
iated with information states while in the MDP framework they are asso
iatedwith true pro
ess states. The fa
t that suÆ
ient information spa
e 
an be of in�nite size 
ausesan in�nite number of di�erent de
ision subtrees to be present for the in�nite horizon problem.This makes it impossible to:� bound the size of the tree needed for the exa
t 
omputation;� 
ut the 
omputational time through result sharing;as used in the MDP framework. However, we 
an still use pruning strategies and eliminate thosebran
hes of the tree that are provably suboptimal. Assuming we 
an show that a
tion-valuefun
tions for two a
tions a and a0 satisfy:lbound(Q(a; I)) � ubound(Q(a0; I))we 
an eliminate a
tion a0. The e�e
tiveness of pruning then depends strongly on the qualityof value fun
tion bounds provided.3.6.1 Computing value fun
tion boundsThe bounds 
an be 
omputed by using the minimum and maximum expe
ted one step rewards.Bounds for the n-step �nite horizon problem and information state In are:lbound(In) = �(
n+1 � 1)=(
 � 1)�Ml + 
nM0lubound(In) = �(
n+1 � 1)=(
 � 1)�Mu + 
nM0uwhereMl;Mu are the minimal and maximal expe
ted one step rewards andM0l ;M0u are minimaland maximal zero steps-to-go rewards. Bounds for the in�nite dis
ounted horizon problem are
omputed similarly: lbound(I) = Ml1� 
ubound(I) = Mu1� 
 :71



The above bounds are not very tight. In general far better bounds 
an be found using othermore 
omplex bound strategies. These will be proposed, des
ribed and analyzed in the Chapter4.3.6.2 In
remental forward methodsForward de
ision methods 
ompute the optimal 
ontrol by forward unfolding of the value fun
-tion equation. The unfolding steps 
orrespond to dynami
 programming updates (steps) forthe �nite horizon problem and to value iteration updates for the in�nite dis
ounted horizonproblem. The simplest de
ision methods 
an be based on the blind expansion of update for-mulas. This 
auses the de
ision tree to grow exponentially with the number of steps and it 
anbe
ome in�nite for the in�nite horizon problem. The basi
 idea of more intelligent methods isto eliminate the full expansion of the de
ision tree and still 
ompute the same 
ontrol response.This 
an be done by devising methods that interleave bound improvement and pruning stages.Improving internal node boundsBounds asso
iated with an internal node of the de
ision tree 
an be 
omputed from boundsprovided at leaves of the partially expanded tree by performing update ba
kups. This meansthat the quality of bound values at internal nodes depends both on the bound values suppliedto leaves of the partially expanded tree, as well as on the number of updates (ba
kups) onemust perform to propagate the bound e�e
t from leaves to the internal node. In other wordsthere are two possible strategies that 
an lead to the improvement of the bound at any internalde
ision tree node: either improve the leaf bound fun
tion or further expand the partially builttree.Any improvement in the bound used at leaves translates dire
tly to an improvement ofbounds at internal nodes. The reason for this is that H mapping is isotone and thus any
hange in leaf bounds propagates also to internal node bounds.The e�e
t of the number of update steps (ba
kups) on the quality of internal node bounds
an be dire
t or indire
t, depending on the reward model used. The e�e
t is dire
t for anin�nite dis
ounted horizon model, indire
t for the �nite horizon 
ase.Assume we have �xed an initial value fun
tion bound for a partial tree built for an in�nitedis
ounted horizon problem. By in
reasing the size of the tree the number of ba
kups in
reasesas well. Then using the same initial bound at new leaves translates to an improvement of thebound. This is be
ause H is an isotone 
ontra
tion and bounds are guaranteed to improve withmore ba
kup updates (
orrespond to iteration steps).A �nite horizon problem must use di�erent leaf bounds (value fun
tions) for de
ision treesof di�erent depths. This is be
ause nodes at di�erent levels are asso
iated with di�erent steps-to-go value fun
tions. Expanding the tree by one more level requires that a di�erent leaf valuefun
tion is used. However, it is often reasonable to assume that both the previous and the newleaf value fun
tion bounds are produ
ed by the same pro
edure that monotoni
ally degradesthe bound pre
ision for more steps to go, i.e. bounds for two 
onse
utive steps satisfy:jV �i � bVij � jH(V �i�1 � bVi�1)j;where V � stands for the optimal value fun
tion and bV stands for an upper or lower bound. The
ondition guarantees that the expansion of the de
ision tree by one level always leads to theimprovement of the internal node bounds. 72



3.6.3 In
remental breadth-�rst expansion strategyThe simplest in
remental de
ision tree method uses breadth-�rst expansion strategy. The ideaof the method is the following: If the de
ision about the optimal or �-optimal a
tion 
annot bemade based on the 
urrent tree and bounds, then the de
ision tree is expanded in a breadth-�rstmanner, that is, all leaf nodes are expanded one level and bounds for all nodes are updatedusing bounds at new leaves. The algorithm implementing breadth-�rst strategy is shown belowand it is a POMDP modi�
ation of the breadth-�rst algorithm we 
onstru
ted for the fullyobservable 
ase (see Chapter 2). The algorithm uses leaf value fun
tion bounds VL and VU andfor the initial information state I0 
omputes the a
tion that is guaranteed to be �-optimal.In
remental expansion - breadth-�rst(POMDP , 
, I0, �, VU , VL)initialize tree T with I0 and ubound(I0), lbound(I0) using VU ; VL;repeat until (single a
tion remains for I0 or ubound(I0) � lbound(I0) � �)
all Improve-tree(T , POMDP , 
, VU , VL );return an a
tion with the largest lower bound as a result;Improve-tree(T , POMDP , 
, VU , VL)if root(T ) is a leafthen expand root(T )and set bounds lbound; ubound of new leaves using VL; VU ;else for all de
ision subtrees T 0 of Tdo 
all Improve-tree(T 0, POMDP , 
, VU , VL);update bounds lbound(root(T )); ubound(root(T )) for root(T );when root(T ) is a de
ision nodeprune suboptimal a
tion bran
hes from T ;return;The major problem with the breadth-�rst approa
h is that it expands all leaf nodes aton
e. However, in pra
ti
e not all subtrees help to dis
riminate between a
tions evenly, thusthe re�nement of bounds is usually in
uen
ed more by some subtrees and less by the others.Breadth-�rst expansion strategy expands leaf nodes blindly and it results in expansions thatare unne

essary or not very helpful for the 
orre
t de
ision.3.6.4 Using heuristi
s to guide the de
ision tree expansionThe problem with the breadth-�rst expansion 
an be partially remedied by using various heuris-ti
s that try to lo
ate bran
hes with larger bound re�nement potential and to expand them �rst.A simple heuristi
 that seems to work quite well is to promote the expansion of the de
isiontree based on bound di�eren
es. The heuristi
 is based on the assumption that a larger boundspan has a larger potential to be improved (shrunk) and thus has a large 
han
e to result inpruning. The in
remental expansion algorithm shown below expands and subsequently re
om-putes (improves) the bran
h of the de
ision tree with the largest bound span. The bran
h tobe expanded (improved) is found in the top-down fashion using the following rules:� at the de
ision node 
orresponding to It, 
hoose a su

esor 
han
e node with the largestbound di�eren
e: ubound([It; a℄)� lbound([It; a℄);� at the 
han
e node 
orresponding to [It; a℄ 
hoose a su

essor de
ision node It+1 with thelargest weighted bound di�eren
e: P (ojIt; a)[ubound(It+1)� lbound(It+1)℄.73



In
remental expansion - heuristi
(POMDP , 
, I0, �, VU , VL)initialize tree T with I0 and ubound(I0), lbound(I0) using VU ; VL;repeat until (single a
tion remains for I0 or ubound(I0) � lbound(I0) � �)
all Improve-tree(T , POMDP , 
, VU , VL );return a
tion with the largest lower bound as a result;Improve-tree(T , POMDP , 
, VU , VL)
ase root (T ) is a leaf:expand root(T) and set bounds lbound; ubound of new leaves using VL; VU ;root(T ) is a de
ision node:sele
t subtree T 0 
orresponding to the 
han
enode with the largest bound span;
all Improve-tree(T 0, POMDP , 
, VU , VL);root(T ) is a 
han
e node:sele
t subtree T 0 
orresponding to the de
isionnode with the largest weighted bound span;
all Improve-tree(T 0, POMDP , 
, VU , VL);update bounds lbound(root(T )); ubound(root(T )) for root(T );when root(T ) is a de
ision nodeprune suboptimal a
tion bran
hes from T ;return;The main problem with the above algorithm is that it starts to perform ba
kups (updates)after a single leaf node is expanded. As one node expansion 
an often lead to a bound improve-ment that is small, frequent ba
kups with small 
hanges 
an 
ause a signi�
ant slowdown ofthe algorithm. This de�
ien
y may be remedied by expanding more then one su

essor node inone bound improvement 
y
le. In order to �nd a good 
ompromise between the slow one-nodeheuristi
 expansion and the large s
ale all node breadth-�rst expansion we propose a simplerandomized strategy that sele
ts bran
hes to be expanded in proportion to their bound di�er-en
e. The strategy 
an be implemented by modifying the breadth-�rst algorithm, su
h thatnodes 
orresponding to possible bran
hes are expanded with probability:exp[Mdiff�(ubound(x)�lbound(x))℄=Twhere Mdiff is the largest bound span from among the 
andidates and T is a temperature
onstant. The randomized strategy usually leads to the expansion of the de
ision tree at moreleaf nodes in one improvement 
y
le. Note that at least one bran
h of the tree is alwaysexpanded.3.6.5 Computing the de
ision in linear spa
eThough good heuristi
s 
an speed up the 
omputation, the optimal de
ision method still needsto explore trees of extreme sizes. Although time is almost always the issue in evaluating thede
ision pro
edures, the 
omputational pro
ess 
an be a�e
ted also by another limited resour
e:memory needed to store the de
ision tree. In the following we will fo
us on the memory issueand propose the algorithm that 
omputes the required de
ision in a linear spa
e. The methoddoes not have any immediate bene�t with regard to runtime eÆ
ien
y and in general makes74



the running time worse. Its only bene�t is in saving the memory needed to store the tree.The basi
 idea of the linear spa
e algorithm is to exploit the heuristi
 expansion strategywith the 
apability to 
ut o� and re
over bran
hes not 
urrently targeted by an expansionpro
ess. The method works in spa
e linear in jAj; j�j and d where d is the maximum depthof the de
ision tree that needs to be 
onstru
ted. The sele
tion of the node to be expanded isgoverned by the following rules:� at the de
ision node 
orresponding to It, 
hoose a su

essor 
han
e node with maximumubound([It; a℄);� at the 
han
e node 
orresponding to [It; a℄, sele
t a de
ision node It+1 with the largestbound di�eren
e: P (ojIt; a)[ubound(It+1)� lbound(It+1)℄.The linear spa
e algorithm is shown below. It dynami
ally 
uts and re
overs previously 
utde
ision tree bran
hes by repeated 
omputation, similar to the iterative deepening pro
edure(see [Korf 85℄). A bran
h expansion is done in two steps: re
overing of the best result �rst andimproving it afterwards. Only after this happens is 
ontrol returned to the prede
essor node.In
remental expansion - linear spa
e(POMDP , 
, I0, �, VU , VL)initialize tree T with I0 and ubound(I0), lbound(I0) using VU ; VL;set ubound0(I0) = ubound(I0) and lbound0(I0) = lbound(I0);repeat until (single a
tion remains for I0 or ubound0(I0)� lbound0(I0) � �)
all Improve-tree(T , POMDP , 
, VU , VL );return a
tion with the largest lower bound as a result;Improve-tree(T , POMDP , 
, VU , VL)set b root(T );when b has no su

essors (either leaf node or su

essors were 
ut):expand b;
ompute bounds ubound0; lbound0; ubound; lbound of new leaves from VU ; VL;re
ompute ubound(b); lbound(b) using ubound0; lbound0 bounds of its su

essors;while ubound(b)� lbound(b) > ubound0(b)� lbound0(b)
ase b is a de
ision node:sele
t su

essor 
 of b 
orresponding to 
han
e node with largest ubound0(
);prune subtrees of all other su

essors of b;
all Improve-tree(tree(
), POMDP , 
, VU , VL );b is a 
han
e node:sele
t su

essor d of b 
orresponding to a de
ision nodewith largest P (ojIt; a)[ubound0(
)� lbound0(
)℄;prune subtrees of all other su

essors of b;
all Improve-tree(tree(d), POMDP , 
, VU , VL);re
ompute ubound(b); lbound(b) using ubound0; lbound0 bounds of its su

essors;when b is a de
ision nodeprune suboptimal a
tions bran
hes from T ;set ubound0(b) = ubound(b); lbound0(b) = lbound(b)return;The algorithm works with two sets of bounds:� ubound; lbound that denote bounds 
omputed in the 
urrent improvement 
y
le;75



� ubound0; lbound0 that refer to bounds 
omputed in the previous improvement 
y
les.ubound0; lbound0 thus refer to the bounds 
omputed before the 
urrent improvement 
y
le wasinitiated, and allow us to test if improvement in the 
omputed bounds was a
hieved. Theimprovement is guaranteed when:ubound(b)� lbound(b) < ubound0(b)� lbound0(b)holds, as ubound; lbound are bound values 
omputed in the 
urrent 
y
le.Note also that the a
tive de
ision tree at any node allows only one su

essor node to beexpanded to the depth of more than 1. All other bran
hes are temporarily pruned and arerebuilt whenever needed. Every temporarily pruned bran
h has the next node that stores theubound0; lbound0 values it 
an a
hieve. This means that for any de
ision node there are atmost jAj su

essor 
han
e nodes and only one of them 
an be expanded to the greater depth.Similarly every 
han
e node has at most j�j su

essors with at most one su

essor expanded toa depth of more than 1. As the maximumdepth of the tree explored is d, the number of nodesone needs to keep is linear in d; jAj; j�j.3.6.6 Combining bound improvement strategiesForward methods, as dis
ussed so far, assume that the value fun
tion bounds used to prune thede
ision tree are improved only through the de
ision tree expansion. That is, initial boundsused at leaves are given a priori and are �xed during the problem solving. However, we havealready pointed out that a 
hange in the leaf bounds 
an improve internal node bounds as well.Therefore we may also 
onstru
t methods that improve in
rementally the value fun
tion boundat leaves and keep the size of the de
ision tree �xed. In
remental methods 
apable to improvebound value fun
tions are dis
ussed in more detail in the next 
hapter.The two improvement strategies 
an also be 
ombined. The basi
 problem we fa
e is thefollowing: There are two methods to improve bounds. These have di�erent time 
omplexity andimprove di�erent things. The point is to �nd an appropriate 
ost-bene�t tradeo� between thetwo and answer the question of when one method is better then the other. Costs are asso
iatedwith the 
omputation time and bene�ts are asso
iated with bound improvements.The de
ision tree method is usually better for smaller size de
ision trees. The reason forthis is that it does not require too mu
h e�ort to expand the tree and ba
kup the solution. Onthe other hand, when a de
ision tree be
omes very large, the 
omputation of improved boundsusing the de
ision tree 
an be
ome very expensive. Also, for the in�nite dis
ounted problem,the potential of a large step improvement in bounds diminishes with the depth of the de
isiontree (due to dis
ounting), thus lowering the 
han
e of rea
hing the required bound pre
ision.When one fa
es a large de
ision tree the improvement of the leaf bound value fun
tionsoften be
omes more appropriate. This is be
ause an improvement of the 
omplete bound 
anbe
ome 
omputationally 
heaper than any improvement a

omplished through the expansionand ba
kups. Methods 
apable of improving the value fun
tion bounds in
rementally for the
omplete information ve
tor spa
e will be des
ribed in the next 
hapter.A strategy that 
ombines advantages of both methods 
an be 
onstru
ted using a metalevelde
ision pro
edure that sele
ts the most promising improvement pro
edure to be tried nextbased on available 
ost-bene�t pro�les. The pro�les 
an be either stati
 and provided at thebeginning or 
an 
hange (adapt) with regard to the a
tual 
ost-bene�t results a
quired for theproblem. An adaptive pro
edure then monitors 
osts and bene�ts of a de
ision tree expansionand leaf bound improvement, and adjusts the pro�le a

ordingly.76



3.7 SummaryThe framework of partially observable Markov de
ision pro
esses (POMDPs) models two sour
esof un
ertainty: a
tion out
ome un
ertainty and partial observability. To �nd the optimal 
on-trol the POMDP is 
onverted to an information-state MDP, that uses information states 
or-responding to 
omplete histories of a
tions and observations or appropriate suÆ
ient statisti
sthat preserve the Markov property of the information pro
ess. The 
ommon problem withinformation state MDPs is that they use states that are 
ontinuous or states that expand thedimension with elapsed time. This feature makes the 
omputation of optimal value fun
tionsand optimal 
ontrol poli
ies very hard. In fa
t, optimal or �-optimal solutions are possible onlyfor a 
lass of POMDPs that 
an be 
onverted into belief-state MDPs. These are solved usingdynami
 programming or value iteration methods and rely on pie
ewise-linearity and 
onvexityof value fun
tions [Smallwood, Sondik 73℄. Alternatively, when the optimal de
ision for a singleinitial state is sought, forward de
ision tree methods based on bounds 
an be applied.ContributionsThe 
hapter des
ribes the POMDP framework, and summarizes exa
t methods for solving
ontrol problems within the framework. New 
ontributions presented in this 
hapter are relatedto various improvements and speed-ups of exa
t methods. These in
lude:� A speed-up of the in
remental version of the Monahan's algorithm. The in
remental ver-sion interleaves generate and test phases of the basi
 Monahan's algorithm [Monahan 82℄,and is based on early pruning of redundant partially built linear ve
tors. The pruningfor Q-fun
tions has been investigated and proposed in [Cassandra et al. 97℄. We haveproposed a modi�
ation that allows to do early pruning of partially built linear ve
torsalso a

ross di�erent a
tions, based on upper bound estimates.� New Gauss-Seidel improvement of the exa
t value iteration algorithm for the in�nitedis
ounted horizon problems. The method improves in
rementally a pie
ewise linear and
onvex lower bound fun
tion by 
omputing new linear ve
tors for sele
ted points of thebelief spa
e and adding them to the previous step fun
tion. Thus a new linear ve
torobtained 
an be immediately used to 
ompute next updates. This makes it possible topropagate improvementsmore rapidly. Also, it is not ne
essary to re
ompute the 
ompletevalue fun
tion from s
rat
h for every update step.� Forward de
ision methods that �nd optimal or � optimal 
ontrol for a single initial in-formation state. The methods work with bounds and in
rementally expand and prunethe de
ision tree. The methods proposed here in
lude: breadth-�rst, bound-span heuris-ti
, randomized heuristi
 and linear spa
e algorithms. Also suggested is a new methodthat 
ombines in
remental de
ision tree expansion and in
remental bounds improvementstrategies using a metalevel de
ision pro
edure.We have also explored and studied modi�
ations of the standard POMDP model that usedi�erent state-observation dependen
ies. We have showed that some of the models (modelswith ba
kward triggered observations and 
ombination of ba
kward and standard models) 
anbe 
onverted to belief-state MDPs with pie
ewise-linear and 
onvex value fun
tions that are
omputable, similarly to the standard model. Unfortunately, this no longer holds for modelswith observation delays. 77
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Chapter 4Approximation methods forsolving POMDP problemsThe major problem with the optimal and �-optimal POMDP 
ontrol solutions is that pro
eduresfor �nding them are 
omputationally very expensive. This makes exa
t methods pra
ti
al onlyfor POMDP models of very small size. A typi
al approa
h to su
h a problem is to relax therequirement of the solution a

ura
y and a

ept a \good" solution whenever it 
an be a
quiredfast. This re
e
ts the 
ommon tradeo� between a

ura
y and speed. The exploration of moreeÆ
ent approximation methods for POMDPs is the fo
us of this 
hapter.4.1 Types of approximation methodsApproximation strategies for POMDPs in
lude:� approximations of value fun
tions and poli
ies;� approximations (redu
tions) of the information-state MDP.4.1.1 Approximations of value fun
tions and poli
iesThe main idea of the �rst approa
h is to approximate optimal value or 
ontrol fun
tions usingsimpler fun
tions bV : I ! R or b� : I ! A. These fun
tions are de�ned over the sameinformation spa
e, and are 
omputed using simpler update rules.The output of methods 
an be either a value fun
tion approximation or an approximation ofthe optimal poli
y. In the �rst 
ase, the target approximate 
ontrol is obtained from the approx-imate value fun
tions in a standard way. For example, the 
ontrol for the in�nite dis
ountedhorizon is 
omputed as:b�(I) = argmaxa2AXs2S �(s; a)P (sjI) + 
 Xo2�next P (ojI; a)bV (� (I; o; a)):In the se
ond 
ase, the 
ontrol poli
y is returned dire
tly by an approximation routine. Both
ases are usually 
losely related, and the 
omputation of an approximate 
ontrol poli
y oftenbuilds on approximate value fun
tion solutions.79



4.1.2 Approximation (redu
tion) of the modelThe se
ond approa
h redu
es the information-state MDP 
onstru
ted for the POMDP model.The primary target of redu
tion strategies is the information state spa
e. The informationspa
e is approximated by a feature spa
e bI, whi
h is usually of smaller size and summarizes theimportant 
hara
teristi
s of the state with regard to 
ontrol. The resulting approximate modelis then used to 
ompute value or 
ontrol fun
tions de�ned over the feature spa
e bV : bI ! R andb� : bI ! A. The approximate value and/or 
ontrol fun
tions for the original information spa
eare then 
omputed by mapping the information state to a feature state and using asso
iatedfeature-based value and 
ontrol fun
tions.4.1.3 The 
ombination of the two approa
hesThe two approximation approa
hes are not ex
lusive and 
an be 
ombined when needed. Thisleads to the approximation on the level of the model, as well as on the level of fun
tions de�nedover the new feature spa
e.4.1.4 The stru
ture of the 
hapterThe obje
tive of this 
hapter is to des
ribe and analyze various new and known approximationmethods. The primary fo
us will be on methods that approximate optimal value fun
tions.These are based on approximate versions of exa
t dynami
 programming (value iteration) up-dates des
ribed in the previous 
hapter. Su
h updates 
an then be applied to 
ompute both�nite and in�nite dis
ounted horizon problems. At the end of the 
hapter the main ideas ofalternative approximation strategies that in
lude poli
y approximation (se
tion 4.9) and modelredu
tion (se
tion 4.10) will be des
ribed.All methods designed and des
ribed here 
an be applied to belief spa
e POMDP modelswith suÆ
ient belief information spa
e. However, some of them are more general and suitablefor other POMDP models as well, for example models with time lags. The des
ription ofvalue fun
tion approximation methods in
ludes also proofs of their properties, namely boundand 
onvergen
e properties. Some of the proofs are new, but some are originally due to otherresear
hers and are reproved here. The reason for doing this is to provide a uniform view inwhi
h methods and their properties are des
ribed with regard to the approximate updates theyimplement. This in turn simpli�es their theoreti
al 
omparison. The performan
e of the valuefun
tion approximation methods dis
ussed in this 
hapter will be experimentally tested and
ompared in the Chapter 5.4.2 Value fun
tion approximations4.2.1 Using approximate value fun
tions to 
ompute 
ontrol responseLet bV and bQ denote approximations of value and a
tion value fun
tions and let b� stand forthe approximate 
ontrol fun
tion resulting from it. Then the 
ontrol fun
tion b� for the in�nitedis
ounted horizon problem and a belief spa
e POMDP 
an be de�ned using the approximatevalue fun
tion as:b�(b) = argmaxa2AXs2S �(s; a)b(s) + 
 Xo2�next P (ojb; a)bV (� (b; o; a))80
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ontrol response using a
tion-value and value fun
tion approximations.or using bQ fun
tion as: b�(b) = argmaxa2A bQ(b; a):Similar formulas 
an be written and used for the �nite horizon 
ase.The 
omputation asso
iated with sele
ting the 
ontrol a
tion is best viewed as the one step(partial or 
omplete) expansion of the de
ision tree with an approximate value fun
tion used atthe leaves of the de
ision tree. The 
omplete one step expansion o

urs when the approximationof the value fun
tion bV is used, while a partial one step de
ision tree expansion 
orrespondsto the approximation with bQ fun
tions. This is illustrated in �gure 4-1. Assuming that the
omputation of a value for value and a
tion value fun
tions is 
omparable, the 
ontrol responsewith a
tion-value approximation should be faster. This is be
ause we need to work with a treewith jAj leaves, 
ompared to the tree with jAjj�nextj leaves. On the other hand one 
an expe
tthat the memory requirement for storing jAj approximate a
tion-value fun
tions will ex
eedrequirements for remembering single value fun
tion. This is just another example of how speed
an be traded for memory.The idea of sele
ting a 
ontrol a
tion through a one step de
ision tree expansion 
an bepushed further. A 
ontrol a
tion 
an be sele
ted using a larger size de
ision tree, with moreexpanded levels and an approximate value fun
tion used at its leaves. The reason for anexpansion of the de
ision tree to more levels is similar to that in the exa
t forward methods,and one expe
ts the value fun
tion to improve more with more expanded steps. Howeverexa
t forward methods use and 
ompute bounds, while in this 
ase an arbitrary value fun
tionapproximation 
an be plugged in.4.2.2 In
remental methodsThe value fun
tion approximation 
an be used by a 
ontrol agent to sele
t a
tion responsesin the on-line mode. When time permits, the 
ontrol response 
an be further improved intwo ways: using a larger de
ision tree, assuming that the larger tree (whi
h represents moreiterations or re
ursions) makes it possible to obtain a better value fun
tion at the root of thetree; or dire
tly by improving the value fun
tion bV that is used at the leaves of the tree.The sele
tion of the 
ontrol response 
an be implemented using simple or more 
omplexanytime algorithms. The algorithm performs the de
ision tree expansion, and subsequent 
on-trol de
ision improvement, 
ontinuously up to the o

uren
e of some 
riti
al event. Similarly81



the algorithm 
an be designed to in
rementally improve the approximate value fun
tion it uses,or 
ombine both improvement strategies.4.2.3 The role of value fun
tion boundsThe 
omplete optimal or �-optimal value fun
tion is hard to 
ompute. However, one 
an oftenbene�t from knowing the approximate range in whi
h the optimal value fun
tion 
an be found.Su
h a range 
an be identi�ed using various approximate methods that are guaranteed toprodu
e upper and lower bounds of the optimal value fun
tion.Bound methods 
an be used within the POMDP framework in several ways. They 
anprovide a good initial value fun
tion for the exa
t version of the value iteration algorithm, or
an be 
ombined and interleaved with steps of exa
t methods. For example bounds 
an be usedto prune early suboptimal a
tions and thus redu
e the 
omplexity of the exa
t problem solvingroutines. The important thing in this 
ontext is that bounds 
an often be improved and furthertightened with exa
t iteration (dynami
 programming) steps. For the value iteration 
ase, thisis be
ause the mapping H is an isotone 
ontra
tion, and an exa
t update step applied to abound always preserves the bound and tends to improve the approximation.4.2.4 Convergen
e and stability of iterative methodsApproximation methods for the in�nite dis
ounted horizon problem are usually built on theidea of approximate value iteration. These try to repli
ate exa
t value iteration using itsapproximate form: bVi+1 = bH bViwhere bV stands for approximate value fun
tions of various forms and bH de�nes a fun
tionmapping derived in some way from H that is used to 
ompute updates of approximate valuefun
tions. The �xed point solution 
V � = bH bV � or its 
lose approximation would then representthe intended output of the approximation routine.The main problem with the iteration method is that in general it 
an 
onverge to uniqueor multiple solutions, diverge or os
illate depending on the fun
tion form, value fun
tion map-ping and initial values. Therefore, unique 
onvergen
e 
annot be guaranteed for an arbitrarymapping bH. The 
onvergen
e of a spe
i�
 approximation method needs to be proved.4.2.5 Des
ribed value fun
tion approximation methodsValue fun
tion approximations that will be des
ribed and dis
ussed in the following in
lude:� MDP-based approximation (se
tion 4.3);� fast-informed bound method (se
tion 4.4);� blind (�xed) poli
y approximations (se
tion 4.5);� 
urve �tting methods (least square error) (se
tion 4.6);� grid-based interpolation-extrapolation methods (se
tion 4.7);� grid-based linear ve
tor methods with Sondik's updates (se
tion 4.8).82



0 1 b(s1)

V(b)

V*(b)

V(b)

V
MDP

(s
2
)

V
MDP

(s
1
)Figure 4-2: MDP-based approximation. Values at 
riti
al points of the belief spa
e are obtainedfrom the optimal MDP solution.4.3 MDP-based approximationsThe optimal value fun
tion V � for both in�nite dis
ounted and �nite horizon problems 
anbe approximated by the MDP-based approximation method [Lovejoy 93℄ [Littman et al. 95a℄.The method approximates the optimal value fun
tion for the POMDP using the optimal valuefun
tion V �MDP for the fully observable 
ase:bV (b) =Xs2S b(s)V �MDP (s)The basi
 idea of the MDP-based approximation is illustrated in �gure 4-2. The approximatevalue fun
tion is des
ribed by a single linear fun
tion that is fully de�ned by values at 
riti
alpoints of the belief spa
e. These 
orrespond to optimal MDP values.An MDP-based method 
an be des
ribed also by means of the value fun
tion updates thatone would repeatedly apply over multiple steps of dynami
 programming or value iterationpro
edures. Expresing the method using value fun
tion updates often simpli�es the 
omparisonof approximation and exa
t methods.Let bVi be a value fun
tion des
ribed by a single linear ve
tor �MDPi = VMDPi . Then a newvalue fun
tion bVi+1 that is obtained through MDP-based update is:bVi+1(b) = Xs02S b(s0)maxa2A [�(s; a) + 
 Xs02S p(sjs0; a)VMDPi (s)℄= HMDP bVi(b):bVi+1 is des
ribed by a single linear ve
tor with 
omponents:VMDPi+1 (s) = �(s; a) + 
 Xs02S p(sjs0; a)VMDPi (s)whi
h mat
hes exa
tly the update rule for the perfe
tly observable MDP. Therefore the MDP-based update always leads to the value fun
tion bVi+1 that is desribed by a single linear ve
tor.83



4.3.1 Upper bound propertyThe important property of this update rule is that it upper bounds the exa
t update rule. Thatis, H bVi � HMDP bVi holds. This property is trivial and follows from the fa
t that one 
annotget a better solution with less information. The proof is shown bellow.Theorem 9 (Upper bound property of the MDP based update rule) Let bVi be a value fun
tiondes
ribed by a single linear ve
tor �MDPi = VMDPi . Then it holds that H bVi � HMDP bVi.Proof. H bVi(b) = maxa2A Xs02S �(s0; a)b(s0) + 
 Xo2�nextXs2S Xs02S P (s; ojs0; a)b(s0)�MDPi (s)= maxa2A Xs02S b(s0)[�(s0; a) + 
Xs2S P (sjs0; a)bVMDPi (s)℄� Xs02S b(s0)maxa2A [�(s0; a) + 
Xs2S P (sjs0; a)bVMDPi (s)℄= HMDP bVi(b)24.3.2 In�nite horizon solutionFor the in�nite dis
ounted horizon 
ase, the value fun
tion mapping HMDP is an isotone 
on-tra
tion. Thus it leads to the unique �xed point solution bV � = HMDP bV �. Su
h a solutionupper-bounds the optimal value fun
tion.Theorem 10 Let V �MDP be an optimal value fun
tion for the asso
iated fully observable MDPproblem. Then bV �(b) = Ps2S b(s)V �MDP (s) is an upper bound on the optimal value fun
tionV �, that is V � � bV �.Proof. The proof is based on showing that H bV � � bV � holds. Let V �MDP be an optimal solutionto the perfe
tly observable 
ase. Then it holds that:V �MDP (s0) = maxa2A �(s0; a) + 
Xs2S p(sjs0; a)V �MDP (s)Then for any b it holds that:H bV �(b) = maxa2A Xs02S �(s0; a)b(s0) + 
 Xo2�nextXs2S Xs02S P (s; ojs0; a)b(s0)V �MDP (s)= maxa2A Xs02S �(s0; a)b(s0) + 
Xs2S Xs02S P (sjs0; a)b(s0)V �MDP (s)= maxa2A Xs02S b(s0)[�(s0; a) + 
Xs2S P (sjs0; a)V �MDP (s)℄� Xs02S b(s0)[maxa2A �(s0; a) + 
Xs2S P (sjs0; a)V �MDP (s)℄= Xs02S b(s0)V �MDP (s) = bV �(b)84



Knowing that H is isotone and that H bV � � bV � holds it follows that H2 bV � � H bV � � bV �must be satis�ed as well. Using the isotoni
ity argument re
ursively, V � = HV � � � � �H2bV � �H bV � � bV � must also hold. But this means that V � � bV � is true, whi
h 
on
ludes the proof.24.3.3 Summary of the methodThe main advantage of this method is that it is fast, as the MDP problem 
an be solved in timepolynomial in the number of states and a
tions (see Chapter 2). As the MDP solution assumesperfe
t observability, the resulting value fun
tion is overly optimisti
, and provides an upperbound on the optimal value fun
tion. The important property of the MDP-based solution isthat it 
an be used to 
ompute upper bounds also for POMDP models with observation delays.The idea here is the following: an upper bound on the value fun
tion for a model with noobservation delays (standard model) should upper-bound also the value fun
tion 
onstru
tedfor the delayed model. Or in other words, one 
annot do worse with information that is revealedahead of time, than without it.A disadvantage of the MDP based method is that it tends to ignore \investigative" a
tions,that is a
tions that 
an help to narrow the un
ertainty about the true state of the pro
ess byenabling observations. This 
auses the QMDP based 
ontrol to never 
hoose su
h an a
tion.This feature was noti
ed and pointed out by [Littman et al. 95a℄. However, this does not hold,when 
ontrol a
tions are sele
ted based on value fun
tion VMDP .4.4 Fast informed bound methodThe approximation obtained by the MDP-based approa
h 
an be improved by a new method{ the fast informed bound method. The method uses a newly designed update rule that upperbounds the exa
t update rule similarly to the MDP-based method.Let bVi be a pie
ewise linear and 
onvex value fun
tion represented by a set of linear ve
tors�i. Then the new fast informed update rule 
orresponds to:bVi+1(b) = maxa2A Xs02S �(s0; a)b(s0) + 
 Xo2�next Xs02S max�ki 2�iXs2S P (s; ojs0; a)b(s0)�ki (s)= maxa2A Xs02S b(s0)"�(s0; a) + 
 Xo2�next max�ki 2�iXs2S P (s; ojs0; a)�ki (s)#= bHFIB bVi(b)4.4.1 Complexity of a new update ruleAn important feature of the new method is that it preserves pie
ewise linearity and 
onvexnessof the value fun
tion. That is, a new value fun
tion obtained from a pie
ewise linear and 
onvexfun
tion is again pie
ewise linear and 
onvex. Moreover, the resulting value fun
tion 
onsistsof at most jAj di�erent linear ve
tors, ea
h 
orresponding to one a
tion. This 
an be seen fromthe update formula, where a linear ve
tor for an a
tion a 
orresponds to:�ai+1(s0) = �(s0; a) + 
 Xo2�next max�ki 2�iXs2S P (s; ojs0; a)�ki (s)85



That is, there are at most jAj di�erent �ai+1s we 
an derive using the fast informed updaterule. This property makes the rule very appealing as it guarantees not to grow the size of theset of linear ve
tors over value iteration (dynami
 programming) steps. Thus the update isalways eÆ
ient with regard to jSj; jAj, and j�j. This is unlike the exa
t update that may leadto a fun
tion that 
onsists of jAjj�ijj�next j linear ve
tors, whi
h is exponential in the numberof observations.4.4.2 Bound property of the new update strategyThe important property of the new fast informed update rule is that it upper bounds the exa
tupdate rule. This is proven in the following theorem. In fa
t the steps of the proof wereoriginally used to derive the rule.Theorem 11 (Upper bound property of the fast informed update rule) Let bVi 
orresponds to apie
ewise linear 
onvex value fun
tion:Vi(b) = max�ki 2�iXs2S �ki (s)b(s):Then it holds: H bVi � HFIB bVi:Proof. For the exa
t update rule, HVi(b), we 
an write:HVi(b) = maxa2A Xs02S �(s0; a)b(s0) + 
 Xo2�next max�ki 2�iXs2S Xs02S P (s; ojs0; a)b(s0)�ki (s)� maxa2A Xs02S �(s0; a)b(s0) + 
 Xo2�next Xs02S max�ki 2�iXs2S P (s; ojs0; a)b(s0)�ki (s)= maxa2A Xs02S b(s0)"�(s0; a) + 
 Xo2�next max�ki 2�iXs2S P (s; ojs0; a)�ki (s)#= maxa2A Xs02S b(s0)�ai+1(s0)= bHFIBVi(b)2 The tri
k in deriving the new update rule is to ex
hange the sum and max operators inthe exa
t update formula. This will e�e
tively allow one to 
hoose an optimizing (maximizing)linear ve
tor for every observation and 
urrent state dimension independently. Contrary to this,in the exa
t method a single optimizing linear ve
tor for every observation and all 
urrent statedimensions is sele
ted.4.4.3 In�nite dis
ounted horizon 
asebHFIB is a 
ontra
tion mapping under the max norm, mu
h like H, with a �xed point solutionbV � � V �. The fa
t that HFIB is a 
ontra
tion mapping 
an be shown by using the proof intheorem 7 in se
tion 3.2.3 (similarly we 
an show that HFIB is isotone by following the steps86



of the proof of theorem 6). In the following we will show that the �xed point solution bV � is anupper bound on the optimal value fun
tion.Theorem 12 Let V � be an optimal value fun
tion and bV � be a �xed point solution 
omputedby the fast informed bound method. Then it holds that bV � � V �.Proof Let bVi 
orrespond to a pie
ewise linear fun
tion that upper bounds the optimal valuefun
tion, that is: V � � bVi. Using the theorem 11 and the fa
t that H is isotone we 
an write:V �(b) � H bVi(b) � HFIB bVi(b) = bVi+1(b)Therefore for any bVi+1 it must hold bVi+1 � V �. As bVi+1 is again a pie
ewise linear upper bound(the initial 
ondition), by extending this result to an in�nite number of steps, bV � � V � follows.24.4.4 Extensions of the fast informed bound method.The main idea of the fast informed bound method is to sele
t the optimizing linear ve
tor forevery observation and 
urrent state dimension separately. This is unlike the exa
t 
ase whenwe seek a linear ve
tor that gives the best result for every observation and a 
ombination ofall 
urrent state dimensions. However, there is a lot of middle ground in between the twoextremes. One 
an, for example, design an update rule that tries to 
hoose optimal (maximal)linear ve
tors for every observation and for every set of disjoint pairs of 
urrent state dimensions.Of 
ourse, one 
an pro
eed further and try to 
hoose linear ve
tors that optimize the expressionfor three dimensions, or in general for any disjoint partitioning of the state spa
e dimensions.Let S = fS1; S2; � � � ; Smg be a partitioning of the state spa
e S. Then one 
an 
ostru
t thefollowing approximate update rule:bVi+1(b) = maxa2A Xs02S �(s0; a)b(s0) + 
 Xo2�next[ max�ki 2�i Xs02S1Xs2S P (s; ojs0; a)b(s0)�ki (s) ++ max�ki 2�i Xs02S2Xs2S P (s; ojs0; a)b(s0)�ki (s) + � � �++ max�ki 2�i Xs02SmXs2S P (s; ojs0; a)b(s0)�ki (s)℄For all possible partitionings, the result a
quired by su
h an update is guaranteed to 
onvergeto the upper bound on the optimal value fun
tion (the proof is exa
tly the same as for the simplefast update rule). A single partitioning obviously leads to the exa
t update rule. The promising
an be the exploration of heuristi
 partitioning s
hemes that would 
ombine and optimize overstates \
loser" to ea
h other.4.4.5 Summary of the fast informed bound methodThe idea of the fast informed update rule and its extension to arbitrary partitioning is a newone, and was reported for the �rst time in [Hauskre
ht 97b℄. The main advantage of the fastinformed update rule is that the number of linear ve
tors a
quired after the update is boundedby the number of a
tions. This makes the method very suitable for 
omputing a good upper87



bound fast. Our experien
e with using the method for approximate 
ontrol is very good, andwill be dis
ussed in the next 
hapter.4.5 Blind poli
y approximationsThe MDP approximation method gives us a value fun
tion that upper-bounds the optimalvalue fun
tion. It is a
quired relatively easily by solving the fully observable MDP problem.A similar approa
h that minimizes expe
ted rewards in a fully observable MDP, as opposed tomaximizing them, 
an be used to 
ompute a lower bound of the optimal value fun
tion. Thebound property follows from the fa
t that under partial observability, one 
annot do worse thanby minimizing rewards under perfe
t observability. However, it is possible to 
ome up with farbetter lower bounds. The method we propose here is based on the idea of blind 
ontrol poli
ies.4.5.1 Blind poli
yDe�nition 5 (Blind 
ontrol poli
y) Let � = f�1; �2; � � � ; �i; � � �g be a 
ontrol poli
y with 
ontrolfun
tions �i : I ! A, where I denotes information ve
tor spa
e. The poli
y is 
alled blind when
ontrol fun
tions �i 2 � map all information states to a single 
ontrol a
tion, that is all �i areof the form �i : I ! faig with ai 2 A denoting a single a
tion.The main feature of a blind 
ontrol poli
y is that it ignores all observations. The valuefun
tion 
orresponding to the blind poli
y � is 
omputed within the fully observable Markovpro
ess model as: bV (b) =Xs2S b(s)VMDP;�(s):The blind poli
y method 
an be des
ribed by means of value fun
tion updates, similarly toother methods. Let �1 denotes the �rst element (a
tion) of the poli
y �, and �+1 denote itsremainder, that is, poli
y � without its �rst element. Let bVi be a single linear ve
tor �i = V �+1ithat 
orresponds to the remainder of the blind poli
y. Then:bV �i+1(b) = Xs02S b(s0)maxa2A "�(s; a) + 
 Xs02S p(sjs0; a)V �+1i (s)#= H�1 bV �+1i (b)The fa
t that a blind 
ontrol poli
y ignores all observations means that it should not providebetter 
ontrol than the optimal poli
y that utilizes all available information. Thus a blind poli
yupdate should always lower bound the exa
t value fun
tion update.Theorem 13 (Lower bound property of a blind poli
y update) Let � be an arbitrary blind poli
y,�1 be its �rst element and �+1 its remainder. Let bV �+1i be a value fun
tion 
orresponding to�+1 that 
onsists of a single linear ve
tor �i = V �+1i . Then it holds:bV �i+1 = H�1 bV �+1i � H bV �+1i :88



Proof. Knowing that bV �+1i (b) =Ps2S b(s)V �+1i (s) holds, we 
an write:H bV �+1i (b) = maxa2A �(b; a) + 
 Xo2�next P (ojb; a)bV �+1i (� (b; o; a))= maxa2A �(b; a) + 
 Xo2�next P (ojb; a)Xs2S p(sjb; o; a)V �+1i (s)= maxa2A �(b; a) + 
 Xo2�nextXs2S p(s; ojb; a)V �+1i (s)= maxa2A �(b; a) + 
Xs2S p(sjb; a)V �+1i (s)= maxa2A Xs02S �(s; a)b(s0) + 
 Xs02SXs2S p(sjs0; a)b(s0)V �+1i (s)= maxa2A Xs02S b(s0)"�(s0; a) + 
Xs2S p(sjs0; a)V �+1i (s0)#� Xs02S b(s0)"�(s0; �1) + 
Xs2S p(sjs0; �1)V �+1i (s)#= H�1 bV �+1i (b) = bV �i+1(b)2 The fa
t that a blind poli
y update always lower-bounds the exa
t update 
an be used to
onstru
t a lower bound approximation of the optimal value fun
tion by taking an arbitraryblind poli
y and 
omputing its 
orresponding value fun
tion. The important thing is that theblind poli
y value fun
tion 
onsists of a single linear ve
tor that is 
omputable within the fullyobservable framework. Moreover, every su
h linear ve
tor 
an be dire
tly 
ombined with linearve
tors obtained for other blind poli
ies.Combining value fun
tions for more blind poli
iesA set of lower bound linear ve
tors 
omputed for a set of blind poli
ies 
an be 
ombined intoa pie
ewise linear and 
onvex bound. Let �� denote a value fun
tion a
quired for some blindpoli
y, that is �� = V�, and let � be a 
olle
tion of su
h fun
tions. Then the pie
ewise linearand 
onvex fun
tion: bV (b) = max�2� Xs2S b(s)�(s)is a lower bound of the optimal value fun
tion V �(b). The idea of 
ombining linear ve
torbounds is illustrated in �gure 4-3. Here two linear ve
tors 
orresponding to two di�erent blindpoli
ies are 
ombined into a pie
ewise linear and 
onvex lower bound.4.5.2 Constru
ting a 
omplete blind update ruleWe have des
ribed how to 
ombine solutions for a set of blind poli
ies in order to provide apie
ewise linear lower bound value fun
tion. This in prin
iple allows one to 
ompute a lowerbound value fun
tion that 
ombines results for all possible blind poli
ies, by simply �ndinga value fun
tion for every poli
y and then 
ombining the a
quired linear fun
tions into theresulting lower bound. Unfortunately the problem with su
h an approa
h is that the number of89
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V(b)Figure 4-3: A two dimensional illustration of a pie
ewise linear and 
onvex value fun
tionobtained by 
ombining linear value fun
tions for two blind poli
ies �1; �2.all possible blind poli
ies 
an grow exponentially for n steps-to-go problem and it is in�nite forthe in�nite dis
outed horizon problem. The reason for this is that for every blind poli
y thereare jAj new poli
ies that start with some of the a
tions and 
ontinue with the previous poli
yafterwards.The problem with the above approa
h is that it �nds value fun
tions also for poli
ies thatare 
learly suboptimal, that is they are worse than other poli
ies. This 
an be remedied by 
on-stru
ting a new update rule, the so-
alled 
omplete blind update rule that e�e
tively interleavesthe enumeration of all blind poli
ies and 
omputation of their value fun
tions.Let bVi be a pie
ewise linear 
onvex fun
tion and �i a set of linear ve
tors used to de-s
ribe it. Now assume that every linear ve
tor in �i 
orresponds to some poli
y, that is�i = f��1i ; ��2i ; � � � ; ��mi g where Pi = f�1; �2; � � ��mg denotes a set of poli
ies. Then everypoli
y in Pi 
an be extended in jAj possible ways by sele
ting one of the a
tions. The valuefun
tion update for all possible a
tions and a poli
y �j is:bV i+1�j (b) = maxa2A Xs02S �(s0; a)b(s0) + 
 Xs02SXs2S P (sjs0; a)b(s0)��ji (s):The optimal lower bound value fun
tion bV i+1 for all poli
ies f�1; �2; � � � ; �mg is then ob-tained by 
ombining results for all bV i+1�j :bV i+1(b) = max�j2Pi bV i+1�j= max�j2Pimaxa2A Xs02S �(s0; a)b(s0) + 
 Xs02SXs2S P (sjs0; a)b(s0)��ji (s)= maxa2A Xs02S �(s0; a)b(s0) + max�j2Pi 
 Xs02SXs2S P (sjs0; a)b(s0)��ji (s)= maxa2A Xs02S �(s0; a)b(s0) + max�ki 2�i 
 Xs02SXs2S P (sjs0; a)b(s0)�ki (s):90



The blind update rule thus 
orresponds to:bV i+1(b) = maxa2A Xs02S �(s0; a)b(s0) + max�ki2�i 
 Xs02SXs2S P (sjs0; a)b(s0)�ki (s) (4.1)= HBU bVi:Alternative derivation of the 
omplete blind update ruleInterestingly one 
an arrive at the blind update rule in a slightly di�erent way by trying toapproximate the exa
t value fun
tion update. The idea of this derivation is shown below.Let �i be a set of linear ve
tors des
ribing an arbitrary pie
ewise linear 
onvex fun
tion bVi.Then the exa
t value fun
tion update 
an be approximated as:H bVi(b) = maxa2A Xs02S �(s0; a)b(s0) + 
 Xo2�next max�ki 2�iXs2S Xs02S P (s; ojs0; a)b(s0)�ki (s)� maxa2A Xs02S �(s0; a)b(s0) + 
 max�ki 2�i Xo2�next Xs02SXs2S P (s; ojs0; a)b(s0)�ki (s)= maxa2A Xs02S �(s0; a)b(s0) + 
 max�ki 2�i Xs02SXs2S P (sjs0; a)b(s0)�ki (s)= HBU bVi(b)Thus the main di�eren
e between the exa
t and blind update rules is that the max andthe sum over next step observations are ex
hanged. This 
auses a 
hoi
e of � ve
tors in theblind update rule to be
ome independent of observations (on
e sum and max operations areex
hanged, observations 
an be marginalized out). This is unlike the exa
t 
ase in whi
h �ve
tors are 
hosen separately for every observation.Complexity of the blind update ruleAssume the 
omplete blind update rule from the equation 4.1. Let ��(b;a)i be a linear ve
torthat optimizes: max�ki 2�i Xs02SXs2S P (sjs0; a)b(s0)�ki (s)for the �xed a and b. Then we 
an write:HBUVi(b) = maxa2A Xs02S �(s0; a)b(s0) + 
 max�ki 2�i Xs02SXs2S P (sjs0; a)b(s0)�ki (s)= maxa2A Xs02S �(s0; a)b(s0) + 
 Xs02SXs2S P (sjs0; a)b(s0)��(b;a)i (s)= maxa2A Xs02S b(s0)"�(s0; a) + 
Xs2S P (sjs0; a)��(b;a)i (s)#= maxa2A Xs02S b(s0)�b;ai+1(s0)where: 91



�b;ai+1(s0) = �(s0; a) + 
 Xo2�nextXs2S P (s; ojs0; a)��(b;a)i (s):The 
omplete blind update rule sele
ts an optimizing alpha ve
tor ��(b;a)i for any b inde-pendently of observations. This results in having at most j�ijjAj possible linear ve
tors afterupdate in bVi+1. This is in 
ontrast to the exa
t update, where the number of possible ve
torsin the next step 
an grow exponentially with regard to the number of observations, and leadsto jAjj�ijj�next j possible ve
tors. In this 
ontext, the blind update rule is best viewed as anapproximation of the exa
t update rule (similarly to the fast informed bound).In�nite horizon 
aseFor the in�nite dis
ounted horizon problem the 
omplete blind value fun
tion update HBU isan isotone 
ontra
tion, similarly to H. This 
an be shown by using same proofs as in theorems6 and 7 in se
tion 3.2.3. The 
ontra
tion property implies that there is a unique �xed pointsolution and that the value iteration method based on the blind update rule 
onverges to. It iseasy to show that the value fun
tion 
orresponding to the �xed point solution is a lower boundof the optimal value fun
tion. The proof is shown below and it is identi
al to the one providedfor the fast informed bound.Theorem 14 Let V � be an optimal value fun
tion and bV � be a �xed point solution 
omputedby the 
omplete blind update method. Then it holds that bV � � V �.Proof. Let bVi 
orrespond to a pie
ewise linear lower bound of the optimal value fun
tion, thatis: bVi � V �. Using isotoni
ity of H and the fa
t that the blind poli
y update always lowerbounds the exa
t update we 
an write:bVi+1(b) = HBU bVi(b) � H bVi(b) � V �(b):Therefore bVi+1 sati�es bVi+1 � V �. As bVi+1 is also pie
ewise linear lower bound (same as theinitial 
ondition), we 
an extend the result to an in�nite number of steps, and bV � � V � mustfollow. 24.5.3 EÆ
ient blind poli
y methodsAs shown above, one 
an 
ompute the optimal lower bound (or its � pre
ision approximation)for all blind poli
ies using the derived blind update rule. However the problem is that the valuefun
tion may similarly to the exa
t update, grow with every iteration, 
ausing an exponentialin
rease in the size of the linear ve
tor set. Thus, when we need the lower bound fast, theoptimal bound might not be the best solution.The easiest way to 
ompute a good lower bound is to use a �xed set of blind poli
ies. Thebound value fun
tion for su
h a set is obtained by 
ombining value fun
tions 
omputed withinthe perfe
tly observable framework for every poli
y in the set (see above). Note that valuefun
tions for a �xed set of blind poli
ies 
an be 
omputed eÆ
iently both for the �nite as wellas in�nite dis
ounted horizon 
ases.There are various strategies one 
an use to 
onstru
t a set of �xed blind poli
ies to be
ombined into the lower bound value fun
tion approximation. These may range from randomto various heuristi
 strategies. For example in our work, when we need to 
onstru
t a lowerbound value fun
tion for the in�nite dis
ounted horizon problem fast, we use simple one-a
tion92



poli
ies. The advantage of this sele
tion is that respe
tive value fun
tions are found simply bysolving jAj sets of linear equations:V a(s) = �(s; a) + 
 Xs02S P (s0js; a)V a(s0)where a denotes the a
tion used by the one-a
tion poli
y.4.5.4 Extensions to the �xed poli
y methodThe idea of �xed blind poli
ies 
an be further extended into the �xed poli
y approa
h. The�xed poli
y method permits poli
ies that 
ondition a
tions on observations. This is unlikethe blind poli
y where a
tions are sequen
ed un
onditionally. The �xed poli
y approa
h hasbeen suggested and used by Anthony Cassandra (personal 
ommuni
ation) and 
an be ni
elyrepresented using poli
y graphs [Cassandra 94℄.The sample �xed poli
y for the in�nite dis
ounted problem is illustrated in �gure 4-4.The arrow points to the initial a
tion, that is, an a
tion that is exe
uted by the poli
y �rst.Subsequent a
tions in the poli
y depend on the results of observations. The important propertyof this approa
h is that the value fun
tion for an arbitrary �xed poli
y is 
omputable eÆ
ientlywithin the fully observable Markov model (eÆ
iently with regard to the size of the poli
y graph).For example, assuming a state spa
e S = fs1; s2g, the value fun
tion for the poli
y on �gure4-4 is obtained by solving the set of linear equations:V (x1; s1) = �(s1; a
tion(x1)) + 
 Xo2�nextXs2S p(o; sjs1; a
tion(x1)V (next(x1; o); s)V (x1; s2) = �(s2; a
tion(x1)) + 
 Xo2�nextXs2S p(o; sjs2; a
tion(x1)V (next(x1; o); s)V (x2; s1) = �(s1; a
tion(x2)) + 
 Xo2�nextXs2S p(o; sjs1; a
tion(x2)V (next(x2; o); s)V (x2; s2) = �(s2; a
tion(x2)) + 
 Xo2�nextXs2S p(o; sjs2; a
tion(x2)V (next(x2; o); s)� � �V (x4; s1) = �(s1; a
tion(x4)) + 
 Xo2�nextXs2S p(o; sjs1; a
tion(x4)V (next(x4; o); s)V (x4; s2) = �(s2; a
tion(x4)) + 
 Xo2�nextXs2S p(o; sjs2; a
tion(x4)V (next(x4; o); s)where a
tion(x) 
orresponds to the a
tion asso
iated with node x of the poli
y graph, next(x; o)represents a node one gets to after being in node x and seeing the observation o.On
e the system is solved, a value fun
tion 
orresponding to the poli
y � that starts at nodex1 is 
omputed as: bV� =Xs2S b(s)V (x1; s):Note that by solving the above system of equations one e�e
tively a
quires solutions notonly for the poli
y that starts at node x1, but also solutions for poli
ies that start at x2, x3and x4. 93



a1

a1

a2

a2

1o

2o

1o

2o 1o

2o

1o

2o
X1

X 2

X3

X 4Figure 4-4: An example of a �xed poli
y. A
tions in the poli
y 
an be 
onditioned on observa-tions.Properties of �xed poli
iesA value fun
tion 
orresponding to a �xed poli
y provides a lower bound of the optimal valuefun
tion, similarly to the blind poli
y 
ase. This is be
ause any �xed poli
y is at most equivalentto the optimal poli
y, and thus it 
annot improve on the optimal value fun
tion.As every �xed poli
y is represented by a single linear ve
tor that lower bounds the optimalvalue fun
tion, a 
onvex 
ombination of results for more �xed poli
ies is possible and preservesthe lower bound. That leads to a value fun
tion:bV (b) = max�2� Xs2S b(s)�(s)that 
onsists of a set of linear ve
tors �, ea
h 
orresponding to one �xed poli
y. Then bV (b)provides a lower bound of the optimal value fun
tion: bV � V �.4.5.5 A summary of a blind poli
y methodThe blind poli
y approa
h provides means for 
omputing value fun
tions that lower bound theoptimal value fun
tion. There are various versions of the method that work either with a �xedset of blind poli
ies, or try to 
ompute optimal lower bound that 
orrespond to all possibleblind poli
ies, thus making methods more or less eÆ
ient. Although su
h bounds are often notvery tight, they very often provide a very good start for exa
t methods or other approximationmethods that are able to tighten the bound more. The important property of the blind poli
ymethod is that it 
an be applied to lower-bound exa
t value fun
tion updates for an arbitraryPOMDP model 1.The idea of blind poli
ies 
an be extended to a more general �xed poli
y approa
h that
omputes lower bound value fun
tions based on more 
omplex poli
es that permit 
onditioningof a
tions using observations. Unfortunately, the �xed poli
y approa
h leads to a lower bound1This 
an be shown using minor modi�
ation of the proof of the theorem 13.94



only for belief spa
e POMDPs; thus it is not as widely appli
able as the blind poli
y approa
h.4.6 Approximation of a value fun
tion using 
urve �tting(least-squares �t)A 
ommon way to approximate a fun
tion over 
ontinuous spa
e is to use 
urve �tting te
h-niques. This approa
h uses a prede�ned parametri
 model of the fun
tion and values asso
iatedwith a �nite set of points. The strategy then seeks the best possible mat
h between model pa-rameters and observed point values. The best mat
h 
an be de�ned using various 
riteria, mostoften the least-squaress �t 
riterion. In this method parameters of the model fun
tion are �tto redu
e the squared errors for all sample points, that is to redu
e:Error(f) = 12Xj [yj � f(bj)℄2where bj and yj 
orrespond to the belief point and its asso
iated value. The index j rangesover all points of the sample set.The ni
e feature of the least-squares �t method is that it 
an be implemented in variousforms, for example, using an exa
t or sto
hasti
 version of the gradient des
ent method.4.6.1 Versions of least-squares �tLet f denote a parametri
 value fun
tion over the belief spa
e with adjustable weights w =fw1; w2; � � � ; wkg. Then the least-squares �t method 
an be implemented using any of thesuitable optimization pro
edures, e.g.:� A dedi
ated pro
edure that sele
ts least-squares error weights w for f based on all samplepoints and their asso
iated values;� A gradient des
ent method that adjusts weights gradually in the error-redu
ing dire
tion.The on-line (or instan
e based) version of the least-squares error 
orresponds to the well-known delta rule (see e.g. [Rumelhart et.al 86℄). The delta rule allows for the gradual adjust-ment of the fun
tion parameters for every new sample seen. Let f be a fun
tion with parameters(weights) w = (w1; w2; � � � ; wk). Then the delta update rule for a weight wi 
orresponds to:wi  wi � �i(f(bj )� yj) �f�wi jbjwhere �i is a learning 
onstant, and bj and yj 
orrespond to the last seen point and its value.The gradient des
ent method requires the fun
tion to be di�erentiable with regard to ad-justable weights. This means that one needs to use smooth approximations of the value fun
tionand this also in the 
ase when the optimal value fun
tion is nondi�erentiable (for example pie
e-wise linear).4.6.2 Combining value iteration and least-squares �tThe least-squares �t 
an be used to 
onstru
t an approximate value iteration (dynami
 program-ming) algorithm with a step: bVi+1 = HLSF bVi. In the 
ontext of POMDPs, this approa
h was95



used in the work of [Littman et al. 95a℄ and [Parr, Russell 95℄, where they used reinfor
ementlearning updates to speed up the parameter learning pro
ess.The major drawba
k of value iteration methods with the least-squares �t is that their stabil-ity is not guaranteed and that they 
an also diverge. This was shown in [Tsitsiklis, Van Roy 96℄,[Baird 95℄. In general, this makes it impossible to guarantee that the least-squares approxima-tion of the optimal value fun
tion or a reasonably 
lose substitute will be found via valueiteration. However, the behavior of the least-squares strategy 
ombined with value iteration isnot understood very well and it is still possible that under a suitable sele
tion of a value fun
-tion model, sampling points and initial value fun
tion one 
an guarantee the result to stabilizein some bounded region around the optimal least-squares 
hoi
e.Unfortunately issues of divergen
e and stability have not been 
onsidered and investigatedto suÆ
ient depth in AI and more work needs to be done in this area. The intuition behindthe threat of divergen
e 
an be illustrated in the following. Assume that the target fun
tion insome belief spa
e region is approximated by a value fun
tion that assigns larger values to pointsin the region (
ompared to a
tual values). Further, assume that su
h a region is a
tively used inthe 
omputation of new value fun
tion updates for a set of sample points in the iteration step,thus produ
ing values that are larger than the true target values. Fitting su
h points and newvalues using the least-squares approa
h 
an then translate into an in
rease in the error in thebadly estimated region. In general su
h an error 
an grow larger with more iterations, leadingpossibly to the ampli�
ation of the error (a kind of positive feedba
k) and to divergen
e.Parallel and Gauss-Seidel value iteration algorithmsValue iteration, powered with a sto
hasti
 on-line version of a least-squares �t, 
an use eitherparallel or in
remental (Gauss-Seidel) updates. In the �rst 
ase, the value fun
tion from theprevious step is �xed, and a new value fun
tion is 
omputed from s
rat
h using a set of beliefpoint samples and values 
omputed through one step expansion. On
e the parameters arestabilized (by attenuating learning rates) the newly a
quired fun
tion is �xed, and the pro
esspro
eeds with another iteration. In the in
remental (Gauss-Seidel) version, there is a singlevalue fun
tion model that is both updated and used to 
ompute new values at sampled points.Note that both versions are subje
t to the instability and the divergen
e threat, as des
ribedabove.4.6.3 Parametri
 fun
tion modelsAs pointed out earlier, the on-line version of the least-squares �t method requires a fun
tionmodel that is di�erentiable. The typi
al 
hoi
e of a 
onvex fun
tion is simple, and usually
orresponds to linear bV , linear bQ [Littman et al. 95a℄, or a quadrati
 fun
tion.One interesting and relatively simple least-squares method is based on the least-squaresapproximation of linear a
tion-value fun
tions (Q-fun
tions) [Littman et al. 95a℄. Here thevalue fun
tion bVi+1 is approximated as a pie
ewise linear and 
onvex 
ombination of bQi+1fun
tions: bVi+1(b) = maxa2A bQi+1(b; a)where: bQi+1(b; a) = �(b; a) + 
 Xo2�next p(ojb; a)bVi(� (b; o; a)):The least-squares �t approa
h is applied to approximate every linear Q-fun
tion. This leadsto the approximation with jAj linear ve
tors. Note that least-squares Q-fun
tion method is96



di�erent from the fast informed bound method that also works with jAj linear ve
tors. The maindi�eren
es are that the fast informed bound updates linear ve
tors dire
tly, and it guaranteesan upper bound and unique 
onvergen
e, while Q-fun
tion least-squares relies on updates atsome number of sample points, and does not guarantee neither bound nor unique 
onvergen
e.More sophisti
ated parametri
 fun
tion models are possible as well. For example one 
onvexparametri
 fun
tion model suggested in the literature is [Parr, Russell 95℄:bV (b) = 24X�2�"Xs2S �(s)b(s)#k35 1kwhere � stands for the set of linear ve
tors � with adaptive parameters to �t and k is a \temper-ature" parameter that provides a better �t to the underlying pie
ewise linear 
onvex fun
tionfor larger values. The fun
tion represents a soft approximation of a pie
ewise linear 
onvexfun
tion, with the parameter k smoothing more or less the pie
ewise linear approximation.4.6.4 Summary of least-squares �tThe main advantage of least-squares error methods is that they implement a relatively simpleupdate rule that needs to 
ompute new updates of values only for a �nite set of sample points.The typi
al 
hoi
e of a fun
tion used in approximations is simple, and usually relies on linearmodels. The advantage of su
h fun
tions is that they redu
e to relatively simple weight up-date rules. However, in prin
iple one 
an use the outlined methods, also with more 
omplexparameter fun
tions that try to �t better the optimal value fun
tion (see e.g. [Parr, Russell 95℄).On the other hand, the quality of methods based on least-squares error depends stronglyon a given fun
tion model, initial parameter values, as well as a 
hoi
e of belief points used inthe least-squares. Devising suitable fun
tion models as well as proper initial values is in many
ases like providing information that we do not know and need to 
ompute, for example thenumber of linear regions needed to approximate the resulting fun
tion. Another troublesomething is its 
ombination with the value iteration pro
edure. In general su
h a 
ombination
annot guarantee the stability and 
onvergen
e to the best possible approximation. Anotherdisadvantage of methods based on least-squares �t is that the resulting approximation doesnot provide a bound, and therefore does not provide any 
lue or suggestion about the optimalsolution.4.7 Grid-based interpolation-extrapolation strategiesA value fun
tion over the 
ontinuous belief spa
e 
an be approximated nonparametri
ally by aset of grid points, their asso
iated values and an interpolation-extrapolation rule that is usedto estimate values at non-grid points. The main advantage of su
h a value fun
tion model isthat it 
an be updated easily by 
omputing new values only for a �nite set of grid points.De�nition 6 (Interpolation-extrapolation rule) Let f : I ! R be a real valued fun
tion de�nedover the information spa
e, G = fbG1 ; bG2 ; � � �bGk g be a set of grid points and 	G =f(bG1 ; f(bG1 )); (bG2 ; f(bG2 )); � � � ; (bGk ; f(bGk ))g be a set of point-value pairs. Then RG : I�	G !Rthat estimates a fun
tion value f for any point of the information spa
e I using only valuesasso
iated with grid points is 
alled an interpolation-extrapolation ruleUsing the interpolation-extrapolation rule, the 
omplete value fun
tion is updated easily by97




omputing updates only for a sele
ted set of grid points. Let bVi be an arbitrary value fun
-tion. Then new updated fun
tion bVi+1 is 
omputed using grid-based interpolation-extrapolationupdate as: bVi+1(b) = RG(b;	Gi+1)where values asso
iated with every grid point bGj in 	Gi+1 are 
omputed as:bVi+1(bGj ) = maxa2A �(b; a) + 
 Xo2�next P (ojb; a)bVi(� (bGj ; o; a)):The grid-based value fun
tion update 
an be des
ribed also using a value fun
tion mappingHG as: bVi+1 = HGbVi.A family of 
onvex rulesA set of all possible interpolation-extrapolation rules is enormous. In our work we will fo
uson a set of 
onvex rules that represents a relatively small but but very important subset ofinterpolation-extrapolation rules.De�nition 7 (Convex rule) Let f be some fun
tion de�ned over the information spa
e, G =fbG1 ; bG2 ; � � �bGk g be a set of grid points, and 	G = f(bG1 ; f(bG1 )); (bG2 ; f(bG2 )); � � � ; (bGk ; f(bGk ))g bea set of point-value pairs. The rule RG for estimating f using values f(bG1 ); f(bG2 ); � � �f(bGk ) is
alled 
onvex when for every information state b the value bf(b) is 
omputed as:bf (b) = RG(b;	G) = jGjXj=1 �bjf(bj )su
h that 0 � �bj � 1 for every j = 1; � � � ; jGj and PjGjj=1 �bj = 1.A 
onvex fun
tion-approximation rule is a spe
ial 
ase of the averager approximation s
hemedes
ribed by Gordon [Gordon 95a℄. The slight di�eren
e is that Gordon's model allows one toexpress a bias that is independend of the sample (values at grid points). The family of 
onvexrules in
ludes rules very 
ommon in pra
ti
e, like: nearest neighbor, kernel regression, and pointinterpolation.Nearest neighborIn the nearest nearest neighbor the value fun
tion for some point b is estimated using the valueat the 
losest grid point, where 
losest is de�ned with regard to some metri
 over the informationstate spa
e. Then for every information state b there is exa
ly one nonzero parameter �bj = 1and all other �bs are zero. That is:bf (b) = RG(b;	G) = f(bGj )where k b � bGj kM�k b � bGi kM holds for all i = 1; 2; � � � ; k. M represents a distan
e metri
de�ned on the information spa
e.The nearest neighbor rule 
omputes a value fun
tion using a single grid point. This leadsto a pie
ewise 
onstant fun
tion where regions with equal values 
orrespond to regions with a
ommon nearest grid point. 98



Kernel regressionThe value 
omputed by a nearest neighbour rule depends on a single grid point. This 
ausesit to absorb all the biases introdu
ed by su
h a point. In order to remedy this problem,one 
an 
ompute the approximation using more grid points in its neighborhood. A fun
tionapproximation rule that takes into an a

ount more grid points and their asso
iated values iskernel regression.In kernel regression, �s represent normalized weights asso
iated with grid points that arederived using some distan
e metri
 M . The approximate fun
tion bf (b) for an arbitrary infor-mation state b is 
omputed as: bf (b) = RG(b;	G) = kXj=1�bjf(bGj )where �bj = � exp�kb�bGj k2M=2�2with � being a normalizing 
onstant equal to:� = kXj=1 exp�kb�bGj k2M=2�2 ;and where � is a parameter that 
attens or narrows weight fun
tions. The important propertyof a kernel regression rule is that it 
omputes a smooth approximation of the fun
tion, unlikethe nearest neighbor rule.Point interpolationThe point interpolation rule not only pres
ribes, how values at grid points are 
ombined, butalso imposes an additional 
onstraint that expli
itly relates the grid points and � 
oeÆ
ientsused.In the point interpolation, the approximate fun
tion bf (b) for an arbitrary information stateb is 
omputed as: bf (b) = RG(b;	G) = jGjXj=1�bjf(bGj )su
h that all additional 
onstraints hold: b = jGjXj=1�bjbGj0 � �j � 1 for every j = 1; � � � ; jGjjGjXj=1 �bj = 1The fa
t that grid points used to 
ompute fun
tion approximation must always interpolatethe unknown point will help us to show the upper bound property for belief state POMDPs.This topi
 will be dis
ussed later in the se
tion.99



4.7.1 Properties of 
onvex rulesA set of 
onvex rules di�ers from other interpolation-extrapolation rules in many respe
ts. Inthe following we will examine two properties of high importan
e for the 
omputation of valuefun
tion approximations. These are: isotoni
ity of the value fun
tion mapping HG and the
ontra
tion property of HG for the in�nite dis
ounted horizon.Isotoni
ity of a value fun
tion mapping based on a 
onvex ruleIt is well known that the exa
t value fun
tion mapping H is isotone (see [Heyman, Sobel 84℄).However we are interested in learning if the isotoni
ity of H is preserved in HG. Althoughisotoni
ity is not guaranteed to be preserved for an arbitrary interpolation-extrapolation ruleit 
an be shown that it is satis�ed for every 
onvex rule. That is: U � V imples HGU � HGV .Theorem 15 (isotone mapping) A value fun
tion mapping based on 
onvex rule HG is isotone.Proof. The proof of isotoni
ity is simple and dire
tly follows from the isotoni
ity of the originalexa
t mapping H (see also [Lovejoy 93℄). The isotoni
ity of value fun
tion mapping H impliesthat when V � U then HV � HU must hold. As grid-based value fun
tion mapping with a
onvex rule allows only nonnegative 
oeÆ
ients � then HG derived from H must be isotone aswell. 2Convergen
e of value iteration with a 
onvex ruleIn general the mapping HG for the in�nite dis
ounted horizon problem may not lead to the
onvergen
e of the value iteration method. However it is possible to show that it 
onvergesuniquely for all 
onvex rules.The proof of the 
onvergen
e of the approximate value iteration with a 
onvex rule is basedon the redu
tion of the problem to the MDP problem with the same dis
ount fa
tor. Notethat the 
onvergen
e result is independent of the form of the optimal value fun
tion, and thus
an be used not only for the standard POMDP models but also for models with observation
hannel lags or 
ontinuous state MDPs. For an alternative proof of 
onvergen
e that uses the
ontra
tion property see [Gordon 95a℄.Theorem 16 Let bV G be a grid-based value fun
tion approximation de�ned by a �nite set Gof grid points, their asso
iated values fbV (bGj ) : bGj 2 Gg and a 
onvex rule RG. Then a valueiteration method with an update step: bV Gi+1 = HG bV Gi
onverges to a unique �xed point solution bV �G.Proof. The main idea is to 
onvert the problem of a grid-based update to an MDP update.For any grid point bGj we 
an write:bVi+1(bGj ) = maxa2A �(bGj ; a) + 
Xo2�P (ojbGj ; a)bV Gi (� (bGj ; a; o))= maxa2A �(bGj ; a) + 
Xo2�P (ojbGj ; a)24Ko;aj + jGjXk=1�o;aj;k bV Gi (bGk )35100



= maxa2A "�(bGj ; a) + 
Xo2� P (ojbGj ; a)Ko;aj #+ 
 jGjXk=1 bV Gi (bGk )"Xo2�P (ojbGj ; a)�o;aj;k#Now denoting �(bGj ; a) + 
Po2� P (ojbGj ; a)Ko;aj as �0(bGj ; a) and [Po2� P (ojbj; a)G�o;aj;k ℄ asP (bGk jbGj ; a), the whole problem 
an be redu
ed to the MDP problem with the identi
al dis
ountfa
tor 
, and with states 
orresponding to grid points:bVi+1(bGj ) = maxa2A �0(bGj ; a) + 
 jGjXk=1P (bGk jbGj ; a)bV Gi (bGk ):The prerequisite 0 � �bj � 1 for every j = 1; � � � ; jGj and PjGjj=1 �bj = 1 guarantees thatP (bGk jbGj ; a) 
an be interpreted as true probabilities.It is well known (see e.g.[Puterman 94℄) that the mappingH with a dis
ount fa
tor 0 � 
 < 1for the MDP is a 
ontra
tion mapping, and that the value iteration method based on it 
onvergesto a unique �xed point solution. Therefore the approximate value iteration method 
onvergesto the unique solution as well. 2Note that both the isotoni
ity and 
onvergen
e proofs apply for any POMDP model, notonly belief spa
e POMDPs. Therefore by using any of the 
onvex rules, we always guaranteethe 
onvergen
e of the grid based update for any POMDP, and this also despite the fa
t thatwe have no idea about the shape of their value fun
tions.Grid-based approximate value iteration algorithmA 
onvex rule 
an be used to 
onstru
t a simple grid-based approximate value iteration al-gorithm. Su
h an algorithm is illustrated below. The algorithm starts from the initial valuefun
tion bVinit and stops when a relative stopping 
riterion de�ned for grid point 
hanges issatis�ed. The algorithm implements a Gauss-Seidel version of the value iteration in whi
h ea
hnewly obtained grid point value is used immediately to update values for other grid points.Approximate value iteration (bVinit; jGj)sele
t a set of grid of points G of size jGjfor every point b 2 G
ompute bVinit(b) and store it in the bV G de�nitionrepeat until the relative stopping 
riterion is metfor every point b in G
ompute new update bV (b) andupdate the value in bV Greturn bV G4.7.2 Constru
ting gridsA problem that has been left open is related to the grid point sele
tion. There are variousmethods to sele
t grid points that in
lude:� regular grids;� random grids; 101



� heuristi
 grids.Regular grids [Lovejoy 91b℄ partition (triangulate) the belief spa
e evenly to equal sizeregions. This is basi
ally the same idea that is used to partition evenly the n-dimensionalsubspa
e of Rn. In fa
t there is an aÆne transform that allows us to map isomorphi
ally gridpoints in the belief spa
e to grid points in the n-dimensional spa
e (see [Lovejoy 91b℄ for thedis
ussion).In 
ontrast to regular grids, random and heuristi
 grids do not provide any regular parti-tioning of the belief spa
e. In the �rst 
ase grids are sele
ted randomly using samplingmethods,in the se
ond 
ase various heuristi
s that bias the sele
tion of points are employed.The advantage of nonregular grids (sometimes 
alled variable grids) is that any in
reasein the resultion of the grid 
an be a
hieved by simply addding new belief points. On theother hand, regular grids are restri
ted to a spe
i�
 number of points, and any in
rease inthe resolution of a grid is paid for by an exponential in
rease in the grid size. For example asequen
e of regular grids for a 20-dimensional belief spa
e (
orresponds to a POMDP with 20states) 
onsists of 20, 210, 1540, 8855, 42504, � � � grid points2. This prevents one from usingthe method with higher grid resolutions for problems with larger state spa
es.Ne

essary 
ondition for the point interpolation gridsThe nearest neighbor and kernel regression rules do not impose any spe
ial requirement onwhat the grid must look like or what points must be present. However, one 
an easily noti
ethat the point interpolation grid must always in
lude 
riti
al points of the belief simplex. Thereason for this is that in order to make interpolation work for any point of the belief spa
e,
riti
al points must be present. Otherwise, one would not be able to interpolate missing 
riti
albelief points or any points in their neighborhood.4.7.3 Bound property of the point-interpolation ruleThe isotoni
ity and 
onvergen
e properties of grid-based methods with 
onvex rules have beenshown regardless of the form and shape of the optimal value fun
tion. But the fa
t that theoptimal value fun
tion V � is 
onvex (holds for belief spa
e POMDPs) allows one to say moreabout properties of a resulting approximate value fun
tion. More spe
i�
ally it is possible toshow that the value fun
tion 
omputed by the grid-based update 
ombined with point interpo-lation always upper-bounds the value fun
tion 
omputed by an exa
t update (see [Lovejoy 91b℄,[Lovejoy 93℄)Theorem 17 (Upper bound property of a grid-based point interpolation update) Let bVi be apie
ewise linear and 
onvex value fun
tion. Then it holds: H bVi � HG bVi.Proof. The proof is based on Jensen's inequality. Let bVi be a pie
ewise linear 
onvex fun
tionand G = fbG1 ; bG2 ; � � �bGk g be set of grid points used in the point interpolation update. Let b bea belief point su
h that b =Pkj=1 �bjbGj and su
h that 0 � �bj � 1 and Pkj=1 �bj = 1 hold.2The number of points in the regular grid sequen
e 
an be 
omputed as [Lovejoy 91b℄:jGj = (M + jSj � 1)!M !(jSj � 1)!where M = 1; 2; � � � is a grid re�nement parameter. 102



As an exa
t update for a belief spa
e POMDP preserves pie
ewise linearity and 
onvexness,we know that H bVi is pie
ewise linear and 
onvex. Then for a belief point b we 
an write:H bVi(b) = H bVi( kXj=1 �bjbGj )� kXj=1 �bj hH bVi(bGj )i = HGbVi(b)where the upper bound follows from Jensen's inequality. 2In�nite dis
ounted horizon solutionA value fun
tion mappingHG implementing a 
onvex rule has been shown to satisfy the isotone
ontra
tion property for the in�nite dis
outed horizon problem. That means, there is a �xedpoint solution bV � = HG bV � the value iteration method will 
onverge to. The fa
t that thegrid-based point interpolation update upper bounds the exa
t update 
an be used to show thatthe approximate value iteration method 
onverges to the value fun
tion that upper bounds theoptimal value fun
tion for belief state POMDPs, that is: bV � � V � [Lovejoy 91b, Lovejoy 93℄.Theorem 18 (Upper bound property of a �xed point solution) Let H be a value fun
tion map-ping for the POMDP problem with a suÆ
ient belief information spa
e and HG be a valuefun
tion mapping 
onstru
ted from it using a grid-based point interpolation rule. Then the �xedpoint solution bV � = bHG bV � is an upper bound on the optimal value fun
tion V �, i.e. V � � bV �.Proof. Let bVi 
orrespond to a pie
ewise linear fun
tion that upper bounds the optimal valuefun
tion, V � � bVi. Then using the result of the previous theorem and the fa
t that H is isotone,we 
an write: V �(b) � H bVi(b) � bVi(b)and V �(b) � H bVi(b) � HGbVi(b)As H bVi(b) is a pie
ewise linear and 
onvex fun
tion (initial assumption) and both H and HGare isotone we 
an write: V �(b) � H2 bVi(b) � HGH bVi(b) � H2G bVi(b)Knowing that both H and HG are 
ontra
tions and 
onverge to their respe
tive �xed pointsolutions, then applying the previous step repeatedly in�nitely many times the following mustbe satis�ed: V �(b) = HV �(b) � HGbV � = bV �2 This means that the approximate value iteration method with a grid-based point interpo-lation rule 
omputes upper bound value fun
tions. Note that neither the kernel regression northe nearest neighbor 
an guarantee any bound property.103
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Figure 4-5: A two dimensional illustration of the simple linear point interpolation rule. The
andidate interpolating set is restri
ted to a single internal point of the belief spa
e.Constru
ting the interpolation ruleThe eÆ
ien
y of the grid-based point interpolation update depends strongly on the eÆ
ien
yof the implentation of su
h an interpolation rule. The interpolation rule must �rst sele
t aset of points from the grid G suitable for interpolation, that 
onsists of at least jSj linearlyindependent belief points for any nonboundary point of a belief simplex. In general there 
anbe �jSjjGj� possible minimal sets, and �nding the best interpolating set 
an be time-
onsuming(requires to solve a linear programming problem). One possible solution to this is to use regulargrids (see above) that evenly partition the belief spa
e and allow one to 
hoose an interpolatingset eÆ
iently. However su
h grids must use a spe
i�
 number of points and any in
rease in theresolution of a grid is paid for by an exponential in
rease in the grid size. This prevents onefrom using the method with higher grid resolutions for problems with larger state spa
es.To provide for more 
exibility of the method, we have proposed a new point interpolationmethod that 
an use arbitrary grids and is guaranteed to run in time linear in the size ofthe grid [Hauskre
ht 97b℄. The rule builds on the fa
t that any point b of the belief spa
e ofdimension jSj 
an be easily interpolated with a set of grid points that 
onsists of an arbitarypoint b0 2 G and jSj � 1 
riti
al points of the belief simplex (
riti
al points 
orrespond to(1; 0; 0; � � �); (0; 1; 0; � � �), et
.). That is, for any grid point b0 2 G there is a simple interpolatingset that allows one to 
ompute a linear interpolation bV b0i (b) at an arbitrary point b. As for any
onvex fun
tion the interpolation guarantees an upper bound, the tightest possible bound valuea
hieved for a set of grid points 
an be 
hosen:bVi(b) = minb02G bV b0i (b):The value fun
tion approximation 
orresponding to the des
ribed point interpolation rule isillustrated in �gure 4-5. The approximation is 
hara
terized by its \saw" shape, whi
h isin
uen
ed by the 
hoi
e of the interpolating points.The proposed interpolation rule 
an be 
omputed in O(jGjjSj) time, whi
h is linear in thesize of the grid. This makes it a good 
andidate to use for a larger number of grid points.Also, any in
rease in the grid resolution is very easy, as one simply needs to add new pointsto the previous ones. The simpli
ity of grid extension allows one to implement relatively easilyvarious eÆ
ient in
remental strategies that improve the upper bound for the in�nite dis
ounted104



horizon problem.In
remental grid based methodsA simple in
remental improvement algorithm for the in�nite dis
ounted horizon problem isillustrated below. The algorithm starts from the initial upper bound bVinit, expands the gridgradually in k point in
rements, and uses Gauss-Seidel updates for points in the a
tive grid.As the grid size is bounded by linear growth, the algorithm is guaranteed to run eÆ
iently fora �xed number of iterations.In
remental upper bound (k; bVinit)sele
t an initial set of grid points Gfor every point b 2 G
ompute bVinit(b) and store it in bV G de�nitionrepeat until the stopping 
riterion is satis�edrepeat until the grid expansion 
riterion is metfor every point b in G
ompute new update bV (b) andupdate the value in bV Gsele
t a set of k points GEXP to expand Gfor every b 2 GEXPadd b to G and bV (b) to bV Greturn bV GAn initial bound bVinit 
an be 
omputed using either MDP-based approximation or the fastinformed bound method presented earlier. Note that MDP-based approximation 
orrespondsexa
tly to the solution obtained by the approximate value iteration with the point interpolationrule and with the grid that 
onsists solely of 
riti
al belief points.Constru
ting a heuristi
 point interpolation gridIn general the quality of bounds produ
ed by the grid-based point interpolation method isstrongly in
uen
ed by a grid sele
tion strategy. The advantage of our simple interpolation ruleis that it does not enfor
e a spe
i�
 grid (like regular grids). Thus it 
an be easily 
ombinedwith an arbitrary sele
tion method, whi
h may in
lude various heuristi
s.A heuristi
 method for sele
ting grid points that we have designed, implemented and testedattempts to maximize improvements in bound values using sto
hasti
 simulations. The methodbuilds on the fa
t that every grid suitable for interpolation must in
lude 
riti
al points (other-wise the interpolation 
annot be guaranteed). A value at any grid point b improves more whenmore pre
ise values are used for its su

essor belief states, i.e. belief states that 
orrespond to� (b; a; o) for an optimizing a
tion a and an observation o. In
orporating su
h points into thegrid would then in
rease the 
han
e of larger improvement of values asso
iated with 
riti
alpoints. Naturally one 
an pro
eed with sele
tion further, by in
orporating su

esor points forthe �rst level su

essors into the grid set as well, and so on.The sto
hasti
 simulation method samples likely su

essor belief points in the followingsteps:1. sele
t an a
tion a that is optimal for b given the 
urrent upper bound value fun
tion;105



2. sele
t the next observation randomly a

ording to the probability distribution p(ojb; a)3. 
ompute the next belief point b+ = � (b; o; a).Similar sto
hasti
 simulation methods within the POMDP framework were used for example in[Parr, Russell 95℄ [Littman et al. 95a℄. Note that other approa
hes for 
onstru
ting heuristi
grids for the point interpolation strategy are possible. One su
h approa
h has been proposedre
ently in [Brafman 97℄ and it re�nes the grid by examining di�eren
es in value fun
tion valuesat 
urrent grid points.4.7.4 Extensions of the simple interpolation ruleThe idea behind the simple interpolation rule 
an be extended further to improve the sele
tionof interpolating sets used. For example, one 
an try to sele
t interpolating sets that 
onsist oftwo arbitrary belief points and jSj � 2 
riti
al points, three belief points and jSj � 3 
riti
alpoints, and so on, up to jSj arbitrary belief points. However, these improvements are mostlypaid for by an in
reased 
omputational 
omplexity assso
iated with enumerating all plausible
ombinations. Note that the pro
ess of sele
ting points to be 
ombined does not have to bedone blindly and smart heuristi
s for fo
using on suitable 
ombinations 
an be utilized.4.7.5 Summary of grid-based interpolation-extrapolation methodsThe exa
t value fun
tion update 
an be approximated using a grid-based update rule. The rule
omputes value fun
tion updates for a �nite set of information states (grid points) and usesinterpolation-extrapolation te
hniques to derive new value fun
tion values for all other states.This makes it possible to eÆ
iently derive a new value fun
tion.There are numerous interpolation-extrapolation strategies. However most suitable and fre-quently applied interpolation-extrapolation rules belong to the family of 
onvex rules. Updatesbased on 
onvex rules are isotone and are guaranteed to 
onverge for the in�nite dis
ountedhorizon problem. The important thing is that this holds for any infomation state spa
e andthus it 
overs an arbitrary POMDP model.The fa
t that for belief spa
e POMDPs the value fun
tion is known to be pie
ewise linearand 
onvex 
an be used to show that any approximate update based on point interpolationupper bounds the exa
t update. Thus, it 
an be used to 
ompute an upper bound of theoptimal value fun
tion and this both for �nite and in�nite horizons.4.8 Grid-based linear ve
tor method (grid-based Sondik'smethod)An alternate value fun
tion approximationmethod 
an be 
onstru
ted by applying Sondik's ap-proa
h for updating linear ve
tors (derivatives) to a grid of points [Lovejoy 93℄ [Hauskre
ht 97b℄.Let bVi be a pie
ewise linear 
onvex fun
tion des
ribed by a set of linear ve
tors �i. Thena new 
andidate linear ve
tor for a belief point b and a
tion a 
an be 
omputed eÆ
iently as[Smallwood, Sondik 73℄:�b;ai+1(s) = �(s; a) + 
 Xo2�next Xs02S P (s0; ojs; a)��(b;a;o)i (s0) (4.2)106



where �(b; a; o) indexes a linear ve
tor �i in a set of linear ve
tors �i (de�ning bVi) that maximizesthe expression: Xs02S "Xs2S P (s0; ojs; a)b(s)#�i(s0)for a �xed 
ombination of b; a; o. The optimizing linear ve
tor for a point b is then a
quiredby 
hoosing the ve
tor with the best overall value from ve
tors 
omputed for all a
tions. Thatis, assuming �bi+1 is a set of all 
andidate ve
tors, the resulting ve
tor must satisfy:�b;�i+1 = argmax�bi+12�bi+1 Xs2S �bi+1(s)b(s):The point based linear ve
tor update is a basis of a number of exa
t algorithms (Sondik's,Cheng's) that update value fun
tion over iteration or dynami
 programming steps. Howeverexa
t methods require one to always �nd a 
omplete set of points that seed new linear ve
torsand thus guarantee the 
omplete update. Unfortunately the sear
h for a 
omplete set of points
an also turn out to be a sour
e of major ineÆ
ien
y. In 
ontrast to this approa
h a 
lassof approximation methods 
an be based on in
omplete sets of points that are easy to lo
ate(via random, or eÆ
ient heuristi
 sele
tion). Let HGL denote a value fun
tion mapping thatrestri
ts linear ve
tor updates to a set of arbitrary, and thus often in
omplete, grid points G.4.8.1 Lower bound property of the grid-based Sondik's updateIn both exa
t and grid based updates one 
omputes a set of linear ve
tors that de�ne newpie
ewise linear and 
onvex value fun
tions. However if an in
omplete set of points is used forthe update, the resulting value fun
tion lower bounds the value fun
tion one a
quires using the
omplete exa
t update rule. The proof of this is shown bellow.Theorem 19 (Lower bound property of the grid-based linear ve
tor update). Let bVi be a pie
e-wise linear value fun
tion and G a set of grid points one uses to 
ompute linear ve
tor updates.Then it holds: HGLbVi � H bVi.Proof. The proof is trivial and is based on a 
ompleteness argument. Let �i+1 be a set ofoptimizing linear ve
tors 
omputed for a grid set G and bVi. As points used for a grid-basedupdate may be in
omplete, the resulting value fun
tion de�ned by �i+1 may la
k useful linearve
tors that optimize (maximize) a value fun
tion for some region of the belief spa
e. ThusHGLbVi � H bVi must hold. 24.8.2 In�nite horizon 
aseThe grid-based linear ve
tor update method uses an in
omplete set of points. Be
ause of this,a value fun
tion mapping HGL for the in�nite dis
ounted horizon 
ase does not have to satisfya 
ontra
tion property and a value iteration method based on su
h a mapping does not have to
onverge. The grid-based update rule with an in
omplete set of grid points 
an lead to variousbehaviors over value iteration steps, most often os
illations.In order to guarantee the stability and 
onvergen
e of the value iteration method whenworking with an in
omplete set of points, we propose the following in
remental method thatgradually improves the pie
ewise linear and 
onvex lower bound value fun
tions.107



0 1 b(s1)

V(b)

b

new linear
vector

V*(b)

V(b)Figure 4-6: An in
remental linear ve
tor method. The lower bound pie
ewise linear fun
tion isimproved by a new linear ve
tor 
omputed for a belief point b using Sondik's method.In
remental lower bound methodAssume that bVi � V � is a 
onvex pie
ewise linear lower bound on the optimal value fun
tion,de�ned by a linear ve
tor set �i, and let �b be a linear ve
tor for a point b that is 
omputedfrom bVi by the Sondik's method. As it holds that bVi(b) � Ps b(s)�b(s) � V �(b) (from theisotoni
ity of H) one 
an 
onstru
t a new improved value fun
tion bVi+1 � bVi by simply addingnew linear ve
tor �b to �i [Hauskre
ht 97b℄. That is: �i+1 = �i [ �b.The idea of the new update rule is illustrated in �gure 4-6. Note that the rule 
an beeasily extended to handle a set of grid points G. In su
h a 
ase the new linear ve
tor set is:�i+1 = �i [ �Gi+1 where �Gi+1 
onsists of new linear ve
tors 
omputed for grid points from �i.However, it is advantageous to perform updates of grid points one by one, as this allows oneto implement a mu
h faster Gauss-Seidel approa
h. Note also that after adding one or morenew linear ve
tors to �i, some of the previous linear ve
tors 
an be
ome redundant and 
anbe removed from the 
onvex value fun
tion de�nition. Various ways to do this are dis
ussed in[Monahan 82℄ [Eagle 84℄ [Cassandra 94℄.A simple in
remental lower bound algorithm is shown below. The algorithm starts from theinitial lower bound bVinit (with a linear ve
tor set �init), sele
ts a belief point and updates theexisting lower bound with a new linear ve
tor. An initial bound is 
omputed using for examplethe blind or �xed poli
y approa
h dis
ussed earlier.In
remental lower bound (bVinit)set � de�ning 
urrent bound bV to �initrepeat until the stopping 
riterion is metsele
t a belief point b
ompute new update �b for badd the �b to �return bVThe above Gauss-Seidel style algorithm tends to grow the size of the linear ve
tor set b�i withevery iteration. However, this growth is only linear 
ompared to the potentially exponentialgrowth of exa
t methods. The major advantage of the method is that it gives room for anappli
ation of various point sele
tion heuristi
s that 
an lead to a better and tighter linear108



ve
tor set. Various modi�
ations of the above in
remental lower bound algorithm are possible,e.g. one 
an use a �xed set of grid points to be updated repeatedly, or one 
an sele
t the pointsto be updated using some heuristi
s.Heuristi
 point sele
tion strategiesThe update phase of the in
remental lower bound method is not limited to a spe
i�
 point
hoi
e. Thus one may 
ombine it with arbitrary point sele
tion strategies. The strategies 
anbe based on simple random sele
tion of grid points, or more sophisti
ated strategies basedon various heuristi
s. Random grid sele
tion strategies 
an be then used to ben
hmark theimprovement from heuristi
 strategies.With an obje
tive to speed up the improvement of the bound, we have designed and imple-mented two relatively simple heuristi
 strategies that try to optimize updates of a bound valuefun
tion.The �rst strategy attempts to optimize updates only at 
riti
al points by ordering themappropriately. It builds on the fa
t that states with higher expe
ted rewards (e.g. some desig-nated goal states) ba
kpropagate their e�e
ts lo
ally. Therefore it is desirable that states in theneighborhood of the highest reward state are updated �rst, and distant ones later. The strat-egy for ordering 
riti
al points uses the 
urrent value fun
tion to identify the highest expe
tedreward states, and the POMDP model to determine lo
al dependen
ies and order neighboringstates.The se
ond strategy uses the idea of sto
hasti
 simulation, similar to the one used in theupper bound method. The strategy generates a sequen
e of belief points that 
an result froman (initial) belief point through simulation, su
h that a sequen
e of belief points with higherprobablity are more likely to be generated. The points of the sequen
e are then used in reverseorder to update the 
urrent value fun
tion.The two heuristi
 strategies 
an be 
ombined into one two-tier strategy, in whi
h the toplevel strategy orders 
riti
al belief points, and the lower level strategy uses sto
hasti
 simulationto generate a sequen
e of belief points that are likely to result from a given 
riti
al point.4.8.3 Summary of the grid based linear ve
tor methodThe grid-based linear ve
tor method represents a re�nement of the Sondik's method to arbitrarygrids. The grid-based update leads to a pie
ewise linear 
onvex fun
tion that is de�ned using asmaller number of linear ve
tors and that lower bounds the exa
t update. The main advantageof the grid-based method 
ompared to the exa
t update is that it 
an 
ompute a value fun
tionapproximation fast, not wasting time by trying to lo
ate all belief points that would guaranteethe exa
t update.The grid-based linear update rule 
an be turned into a new in
remental linear update rulefor the in�nite dis
ounted horizon problem. The rule gradually improves a pie
ewise linear and
onvex lower bound. It uses the Gauss-Seidel style of updates and avoids the need to re
omputethe value fun
tion from s
rat
h for every iteration step.4.9 Approximation of poli
iesAlthough a 
ontrol response 
an be always 
omputed from the value fun
tion approximationthrough one step de
ision tree expansion, it is also possible to 
ompute the poli
y dire
tly. Thisapproa
h requires 
ontrol fun
tions that are de�ned over possibly in�nite information spa
e in109



some 
exible and �nite form. In the following we will brie
y des
ribe a method that uses poli
ygraphs (trees) [Cassandra 94℄ [Littman 94℄.4.9.1 Representing 
ontrol using poli
y (
ontrol) treesA poli
y for the belief spa
e POMDP framework and for both �nite and in�nite horizon prob-lems 
an be represented using a poli
y tree [Cassandra 94℄ [Littman 94℄. The poli
y tree 
onsistsof nodes that are asso
iated with a
tion 
hoi
es and links that represent 
onditional 
ontinua-tions of 
ontrol 
hoi
es based on observations. The poli
y tree 
an be also viewed as a 
ollapsedde
ision tree in whi
h de
ision nodes are substituted with a �xed a
tion 
hoi
e. For the in�nitedis
ounted horizon problems poli
y trees 
an be represented using poli
y graphs with 
y
les(wrap-around trees). An example of a poli
y graph for the in�nite horizon problem was shownin �gure 4-4 in se
tion 4.5.4.A poli
y graph 
an be used to represent any 
ontrol poli
y, in
luding the optimal one. Infa
t there is a strong 
orrelation between poli
y tree representation and the stru
ture of valuefun
tion for belief information spa
es, and one 
an 
onstru
t a solution poli
y tree using a slightmodi�
ation of the exa
t update value fun
tion [Littman 94℄. In prin
iple, every region of thebelief spa
e that is represented by a linear ve
tor 
orresponds to a node in the poli
y tree, andlinks between poli
y tree nodes represent optimal 
hoi
es of linear ve
tors used in update steps.Constru
ting approximate poli
ies using poli
y treesEvery node in the poli
y tree 
orresponds to a linear ve
tor that des
ribes a pie
ewise linearand 
onvex value fun
tion 
orresponding to su
h a poli
y. The interesting thing is that we 
an
ompute the linear ve
tor for any node and any �xed poli
y simply by solving a set of linearequations. This has been shown and des
ribed in se
tion 4.5.4. That re
e
ts the fa
t that itis relatively easy to 
ompute a value fun
tion for a �xed poli
y, although one must not forgetthat the poli
y itself 
an be quite 
omplex.The fa
t that we know how to 
ompute the value fun
tion for any �xed poli
y tree 
an beused to 
onstru
t a poli
y approximation algorithm that starts from an initial poli
y tree, andby performing stru
tural or a
tion 
hanges, gradually produ
es a better poli
y approximation.Note that the improvement would be relatively easy to 
he
k as any �xed poli
y lower boundsthe value fun
tion for the optimal poli
y. Su
h an approa
h 
an employ various heuristi
strategies for making stru
tural 
hanges that are likely to further improve the quality of apoli
y.The poli
y approximation approa
h outlined above has not been investigated to our knowl-edge, and thus o�ers a promising alternative to various value fun
tion approximation methods.The advantage of the approa
h is that optimal poli
ies have less stru
ture than optimal valuefun
tions, and therefore are representable more 
ompa
tly.4.9.2 Other poli
y approximation methodsAlternatively, a 
ontrol fun
tion for a belief information spa
e 
an be represented using a �niteset of grid points, their asso
iated a
tions, and a rule that de�nes how to determine an a
tionfor a nongrid point. Nearest neighbor is a simple rule 
hoi
e and the a
tion for any belief pointis an a
tion asso
iated with the grid point 
losest to it. More 
omplex rules, that sele
t ana
tion for a non-grid target belief point using a
tions asso
iated with more than one grid pointsin its neighborhood 
an be also 
reated. However, in su
h 
ases, one must provide a strategyfor resolving 
on
i
ts when di�erent a
tions are suggested by several relevant grid points.110



An approximate poli
y 
an be 
onstru
ted by 
omputing 
ontrol responses for all grid pointsfrom the value fun
tion approximation. This is a dire
t approa
h and works �ne for both �niteas well as in�nite dis
ounted horizon 
ases. But, when one needs to 
ompute the approximatepoli
y for the in�nite dis
ounted horizon 
ase, it is possible take advantage of the form ofthe 
ontrol fun
tion that needs to be found. Then it is possible to adapt the poli
y iterationmethod, des
ribed for the fully observable MDP, also to belief state MDPs. Su
h a methodis also refered to as approximate poli
y iteration method[Bertsekas 95℄. The method startsfrom some �xed poli
y, 
omputes its value fun
tion approximation using an arbitrary method(
omputing a value fun
tion for a �xed poli
y is easier). Then, every a
tion asso
iated with agrid point representing a 
ontrol fun
tion is 
he
ked to see if it improves the value fun
tion forsu
h a point. If yes the 
hange is made and pro
ess 
ontinues.The main problem with approximate poli
y iteration is that it does not have to 
onverge,and 
an os
illate among a set of poli
ies. This is be
ause of approximations, as it 
an happenthat value fun
tion values for the \improved" poli
y may turn out to be worse than valuefun
tion values for the previous poli
y.4.10 Model based approximationsThe main idea behind value fun
tion approximation methods was to repla
e the exa
t updaterule with a more eÆ
ient approximation. In all 
ases the resulting value fun
tion was de�nedusing the original information state spa
e I.A 
omplementary approa
h to the value fun
tion approximation is based on the approx-imation (redu
tion) of the information-state MDP. The redu
tion 
an target 
omponents ofthe information-state MDP or 
omponents of the underlying POMDP model (states, a
tions,observations, transitions, observation and 
ost models). The most typi
al approximations arethose that in some way transform or redu
e the suÆ
ient information state spa
e.4.10.1 Approximation of the information state spa
eThe approximation of the information-state spa
e 
ould be a
hieved by substituting more 
om-plex information spa
e with a simpler feature state spa
e [Bertsekas 95℄ [Tsitsiklis, Van Roy 96℄.The feature spa
e is usually of smaller size, summarizes the important 
hara
teristi
s of theinformation state with regard to the 
ontrol, and is easier to manipulate and work with. Featurestates (ve
tors) 
an be often viewed as abstra
tions or aggregations of suÆ
ient informationstates.The relation between the information and feature ve
tors is 
aptured by a feature extra
tionmapping F , that maps information states to feature states:F : I ! bI:Then, assuming the feature-based value and 
ontrol fun
tions:bVF : bI ! Rb�F : bI ! Aare known, one 
an express approximate value or 
ontrol fun
tions for the information state Ias: bV (I) = bVF (F(I))111
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(2)Figure 4-7: Two di�erent models for updating feature states: 1. through feature extra
tionmapping from the underlying information state; 2. using a spe
ial feature-based update pro
e-dure that is independent of the information state update.b�(I) = b�F(F(I)):Note that while the optimal poli
ies for the original information-state MDP are deter-ministi
, the optimal feature-based poli
ies for the same problem 
an be sto
hasti
 (see e.g.[Singh et al. 94℄). However sto
hasti
 poli
ies are harder to 
ompute and deterministi
 feature-based poli
ies are often assumed.Feature ve
tor updatesA feature ve
tor bIt at time t 
an be obtained in two di�erent ways (see �gure 4-7):1. from the original information ve
tor It, i.e. bIt = F(It);2. from the previous step feature ve
tor bIt�1, a
tion at�1 and observation ot, i.e.bIt = �F (bIt�1; ot; at�1).In the �rst 
ase the feature pro
ess is always asso
iated with the underlying suÆ
ient infor-mation pro
ess, and every information state is always mapped to the same feature state. Onthe other hand, when the feature pro
ess is de�ned as a separate pro
ess (
an be des
ribed bya separate MDP) there is a potential for a 
ontinuous loss of information 
ontent due to theapproximation of the information spa
e. This may lead to the situation in whi
h informationand feature state pro
esses are not tightly mapped (aligned) and a single information state 
ano

ur together with more than one feature state. This is also the reason why optimal poli
iesfor redu
ed models may be sto
hasti
. 112



Constru
ting feature state spa
eA feature state spa
e and asso
iated feature extra
tion mapping introdu
e a bias telling whatfeatures of the problem need to be 
onsidered and what 
an be abstra
ted out. Note thatthe feature spa
e together with the mapping in fa
t represents partitioning of the originalinformation spa
e, with information states in the same partition being mapped to the samefeature state. Information states in the same partition are treated as a single aggregate stateon the feature level, leading to the loss of pre
ision and approximation.For the purpose of 
ontrol one would like to use features that redu
e the 
omplexity of thestate spa
e and have the smallest possible e�e
t on the quality of 
ontrol. The feature spa
eand related mapping 
an be either:� de�ned by the designer or expert in the domain of interest;� automati
ally inferred from the original model.The �rst approa
h 
an be used to redu
e the 
omplexity of the original problem in areaswhere an expert is able to de�ne the most important redu
tions. The feature spa
e and arelated mapping then in
orporate knowledge re
e
ting the expert's intuition or experien
e aboutthe 
ontrol domain and about the importan
e of various problem 
hara
teristi
s to a
hievebetter 
ontrol. This approa
h 
an be very valueable espe
ially for problems with large state orobservation spa
es.In the se
ond 
ase the feature spa
e and the feature mapping is inferred from the originalmore 
omplex model. Usually the goal here is to 
ome up with the feature spa
e and themapping that 
uts down the 
omplexity of the original information state as mu
h as possibleand that has also minimal possible e�e
t on the quality of 
ontrol that would result from theapproximation. Su
h an approa
h is 
ru
ial for solving 
ontrol problems for whi
h an expert'sknowledge is not available, or where one must work with large and 
omplex models. Thisproblem has not been suÆ
iently investigated, and remains open.In the following we will dis
uss two representatives of feature-based approximations. Theseare based on:� trun
ated histories;� POMDP model redu
tions.Other information-state redu
tion methods are possible as well. For example, [D'Ambrosio 96℄proposed and tested redu
tions in whi
h 
ontinuous belief spa
e was transformed to its quali-tative abstra
tion using �-
al
ulus [Goldszmidt 95℄.4.10.2 Trun
ated historyOne approa
h to information-state redu
tions is based on trun
ated histories [White, S
herer 94℄[Platzman 77℄. The approa
h builds on the heuristi
 saying that the de
ision about the 
ontrol
an be done reasonably well using only a set of re
ent a
tions and observations. The approa
hthus seeks the repla
ement of the 
omplete information ve
tor in both �nite and in�nite dis-
ounted horizon update formulas:V (It) = maxa2A Xs2S �(s; a)P (sjIt) + 
 Xo2�next P (ojIt; a)V (� (It; o; a)) (4.3)113



with trun
ated information states:bIMt = fat�M ; ot�M+1; at�M+1; � � � ; at�1; otgthat re
e
t only the re
ent M step pro
ess history.Note that by using the trun
ated histories, the problem of expanding dimension that madethe 
omplete information ve
tor (
orresponds to a 
omplete history of all a
tions and obser-vations) unsuitable for the 
omputation has been eliminated. The feature ve
tor spa
e basedon trun
ated histories 
onsists of a dis
rete set of re
ent history ve
tors that repla
e in�niteinformation spa
e. However, the feature ve
tor spa
e based on trun
ated histories 
an still beexponential in the number of history items used. For example for the POMDP model with a
-tion and observation spa
es A;� the full M step trun
ated history spa
e 
onsists of jAjM j�jMfeature ve
tors. When 
onsidering also 
ases in whi
h history length is shorter than M the sizeof the feature ve
tor spa
e is jAjM+1j�jM+1�1jAjj�j�1 [White, S
herer 94℄.Computing a value fun
tion for a feature spa
eFeature ve
tor spa
e redu
es the 
omplexity of the suÆ
ient information state spa
e. Thisleads to a loss of detail and pre
ision as more than one suÆ
ient information states are mappedto one feature ve
tor. This opens the problem of how to 
ompute the optimal value fun
tion(maximum expe
ted reward) for an aggregate feature state. In general, one 
an think aboutde�ning or 
omputing a 
onditional probability distribution of being in some information stategiven a feature ve
tor and using this distribution to 
ompute aggregate value fun
tion for thefeature ve
tor as a weighted average of value fun
tions for all 
orresponding information ve
tors.However, it is often easier to 
hoose simpler aggregation method. The obvious 
hoi
e is to sele
ta lower (upper) bound aggregate value fun
tion that assigns a value to a feature ve
tor basedon the minimum (maximum) value fun
tion value of its 
omponents.For an M -step trun
ated history the 
hoi
e of minimum or maximum values leads to thefollowing upper and lower bound aggregate value fun
tions (see [White, S
herer 94℄):VL(IMt ) = maxa2A mins�t�M2S�Xs2S �(s; a)P (sjIMt ; s�t�M) + 
 Xo2�next P (oja; IMt ; s�t�M)VL(� (IMt ; o; a))VU (IMt ) = maxa2A maxs�t�M2S�Xs2S �(s; a)p(sjIMt ; s�t�M) + 
 Xo2�next P (oja; IMt ; s�t�M )VU (� (IMt ; o; a));where VL and VU stand for upper and lower bound fun
tions, state s�t�M represents a pro
essstate at time t �M , that is the state just before the history information was taken. Takingthe worst and best 
hoi
e of a state s�t�M we get upper and lower bounds on the optimal valuefun
tion. Note that whenever the spe
i�
 observation and a
tion sequen
e 
annot be rea
hedfrom st�M , that is when P (IMt jst�M) = 0, st�M should not be 
onsidered as a 
hoi
e. This
an happen in situations in whi
h transitions or observation matri
es 
ontain zeros and some
ombinations of a
tion-observation sequen
es are not possible. Thus S� in the equations standsfor a set of states that are 
onsistent with the observed history.114



Computing value fun
tion bounds for a �nite horizon problemValue fun
tion approximations based on a trun
ated history 
an be 
omputed using dynami
programming. In order to a

ount for all possible states, equations des
ribed above must bemodi�ed to re
e
t the fa
t that a trun
ated history at the beginning 
an be shorter than themaximum trun
ated length M . Assuming an n steps-to-go problem, a value fun
tion for a stepi � n is 
omputed as:VL(Iki ) = maxa2A mins�i+k2S�Xs2S �(s; a)p(sjIki ; s�i+k) + 
 Xo2�next P (oja; Iki ; s�i+k)VL(� (Iki ; o; a))where k = min(n � i;M ).Computing value fun
tion bounds for the in�nite dis
ounted horizon problemSimilarly to the optimal value fun
tion one 
an 
ompute the value fun
tion using the valueiteration method. However, the major question is whether the method 
onverges to the uniquesolution for every posible initial value fun
tion. This property follows whenever the new valuefun
tion mapping HTH de�ned for trun
ated histories satis�es the 
ontra
tion property. The
ontra
tion property of HTH has been proved for example in [White, S
herer 94℄, and thus avalue iteration method with HTH 
onverges to a unique �xed point solution. Moreover, theresult also preserves the bound. Therefore one is able to use both HTH mappings to 
omputethe optimal value fun
tion bounds for the in�nite dis
ounted horizon 
ase.Redu
ing a set of possible trun
ated historiesThe major problem with the approximation that uses an M step trun
ated history is that thestate spa
e size 
an be exponential in M . There 
an be jAjM+1j�jM+1�1jAjj�j�1 possible histories oneneeds to work with in the worst 
ase. This 
auses the major slowdown whenever the trun
atedhistory length M is large.The size of the spa
e of trun
ated histories 
an be in many 
ases redu
ed dire
tly by ex
lud-ing suboptimal a
tions or impossible observations. Various tri
ks to eliminate su
h elementsfrom the spa
e of histories are dis
ussed in [Platzman 77℄. Alternatively one 
an in
lude in thefeature spa
e only those items from the history that are most relevant and in
uen
e the qualityof the 
ontrol more. Deriving autonomously whi
h items in the history are more relevant andneed to be in
luded would help to redu
e the growth of the feature spa
e as well.4.10.3 POMDP model redu
tionAn alternate approa
h to redu
e the 
omplexity of the information state MDP, and by thismeans all asso
iated 
omputations, is to redu
e the 
omplexity of the underlying POMDPmodel. This is most often done by redu
ing the number of pro
ess states and substituting themwith aggregate pro
ess states. Note that this is slightly di�erent from simpli�ng informationstates, although 
hanges in the pro
ess state will show up in the information state as well.The 
omponents of the new POMDP model 
an be built using state spa
e redu
tion te
h-niques similar to the model redu
tion te
hniques des
ribed in the MDP 
hapter. For examplethe transition probabilities for the new POMDP model 
an be 
omputed from the originalPOMDP model using a new aggregate state spa
e SAgg and a 
onditional probability of beingin some state s 2 S given an aggregate state sAgg 2 SAgg : P (sjsAgg). Knowing this probability115



distribution one 
an easily 
ompute the new transition probability matrix:P (sAgg1 jsAgg2 ; a) =Xs2S P (sjsAgg2 ) Xs02sAgg1 P (s0js; a)where s0 ranges over all states 
overed by an aggregate state sAgg1 .The major problem with this approa
h is related to the sele
tion of the aggregate statespa
e and the probability P (sjsAgg). In the ideal 
ase, one would like to sele
t these su
hthat aggregate Markov 
hain re
e
ts the properties of the original 
hain and expe
ted rewardsasso
iated with new aggregate states are good approximations of expe
ted rewards de�ned overthe original state spa
e. The problem with this is that it would require one to aggregate togetherstates with similar value fun
tion values. This is an open area of resear
h, and methods thatutilize a priori expert knowledge or derive appropriate aggregations autonomously 
an be usedfor this task.The POMDP redu
tion method dis
ussed above assumed that the relation between theoriginal model and aggregate state model 
an be 
ompletely de�ned through relations betweenaggregate and original states. However there is always a possiblity that one 
an de�ne a new(abstra
ted) POMDP model dire
tly by providing all the ne

essary information about its
omponents and the relations between the original and new state spa
es.4.11 SummaryThe problem of 
omputational 
omplexity of exa
t methods 
an be resolved by using approx-imation methods that trade o� a

ura
y and pre
ision of the solutions for speed. There arenumerous methods one 
an use to 
ompute approximate solutions for the POMDP poli
y prob-lem. These are mostly based on value fun
tion approximations that attempt to approximateoptimal value fun
tions, using more eÆ
ient dynami
 programming and value iteration updates.Bound and 
onvergen
e properties of approximation methodsThe methods and their solutions 
an be analyzed and 
ompared theoreti
ally along variousproperties. The two that are most important are bound, and 
onvergen
e for in�nite dis
ountedhorizon problems. The table 4-1 summarizes bound and 
onvergen
e properties of several valuefun
tion approximation methods and their solutions.ContributionsThe main 
ontributions of our work in this 
hapter are:� Summary of approximationmethods for solving 
omplex POMDP problems, analysis andproofs of their properties. Some of the proofs are based on the work of other resear
hersbut some are new and are presented here for the �rst time. We have tried to present allmethods in a uniform way, that is every method was des
ribed by means of an updaterule it implements. This in turn makes easier their 
omparison with the exa
t and otherapproximate update rules.� New fast informed bound method, that uses a simple and eÆ
ient update approximations
heme and upper bounds the exa
t update rule. The rule approximates value fun
tionusing at most jAj linear ve
tors. 116



method bound 
onvergen
eMDP-approximation upper yesBlind-poli
y (�xed poli
y) method lower yesFast-informed bound upper yesCurve �tting (least-squares �t) no noGeneral grid-based interpolation-extrapolation no noGrid-based linear interpolation upper yesGrid-based nearest neighbor no yesGrid-based kernel-regression no yesGrid-based in
remental linear ve
tor method lower yesTable 4-1: Bound and 
onvergen
e properties of value fun
tion approximation methods.� Blind poli
y method that uses a set of blind poli
ies to 
ompute 
omponents of thepie
ewise linear lower bound of the optimal value fun
tion.� New grid-based point interpolation rule that supports arbitrary (variable) grids, andthus arbitrary grid sele
tion strategies. This is unlike regular grid methods that evenlypartition the belief spa
e and use �xed sets of grid points� New heuristi
 approa
h for 
onstru
ting point interpolation grids. The method usessto
hasti
 simulations and attempts to improve the value fun
tion value for 
riti
al be-lief points. The method 
an be 
ombined also with other grid-based interpolation-extrapolation strategies, for example nearest neighbor.� New in
remental linear ve
tor method for in�nite dis
ounted horizon problems that isbased on Sondik's linear ve
tor updates. The method 
omputes and in
rementally im-proves a pie
ewise linear and 
onvex lower bound of the optimal value fun
tion overiterations steps. The method 
an use arbitrary set of grid points (in
luding heuristi
ones) and is also a basis of the Gauss-Seidel speedup te
hnique for exa
t value iteration.
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Chapter 5Value fun
tion approximationmethods: an experimental studyThe obje
tive of this 
hapter is to empiri
ally 
ompare the performan
e of several value fun
tionapproximation methods and their solutions on 
omplex POMDP 
ontrol problems. It naturally
omplements the previous 
hapter, whi
h was more formal and fo
used on the des
riptionof approximation methods, their properties, and relations. In the following, approximationmethods will be evaluated using two 
riteria:� the quality of value fun
tion bounds;� their 
ontrol performan
e.In the �rst part of the experiment, approximation methods that provide upper and lowerbounds on the optimal value fun
tions will be tested. In the se
ond part, several value fun
tionapproximation methods will be 
ompared dire
tly on the 
ontrol task and will be judged solelybased on their 
ontrol performan
e.The role of empiri
al resear
h in s
ienti�
 exploration is enormous. It helps us 
on�rm orrefute our expe
tations and guides our exploration of the �eld by giving us a better under-standing of features that had not been shown theoreti
ally. Unfortunately the area of POMDPapproximations la
ks large s
ale experimental work. Thus our primary mission is to take asmall step in this dire
tion and provide a 
omparison of methods and their extensions. Wewill 
ompare both new and known approximation methods, in
luding simple approximationsbased on perfe
t observability, the 
urve �tting approa
h based on least-squares �t and moresophisti
ated heuristi
 grid-based methods.In the following, we will �rst des
ribe a set of three 
ontrol problems we used in the exper-iments. After that, upper and lower bound value fun
tion approximations will be 
ompared.Finally the 
ontrol performan
e of various approximations will be examined and analysed.5.1 Test problemsWe tested value fun
tion solutions using a set of three in�nite dis
ounted horizon POMDPproblems of di�erent 
omplexity. The problems tested are:� The Maze20 maze navigation problem [Hauskre
ht 97b℄;119



Moves SensorsFigure 5-1: The robot navigation problem: Maze20� The Maze20B maze navigation problem with a zero 
ost absorbing state� The Shuttle do
king problem [Chrisman 92℄The Maze20 navigation problem was designed to provide the hardest problem, with investigativea
tions being of high importan
e for the optimization of the obje
tive fun
tion. This wasa
hieved by providing a highly stru
tured and narrow maze, with many obsta
les that 
ouldlead to a high s
ore loss. The Maze20B problem uses a slightly less stru
tured maze, and
ost-reward model that penalizes blind maneuvering less 
ompared to the Maze20 problem.Thus, it is less dependent on investigative a
tions. Shuttle do
king is a problem with lowun
ertainty in both transition and observation models. This signi�
antly redu
es the impa
tof partial observability on the problem and solution. In the following we only give a briefdes
ription of ea
h problem. All three problems are des
ribed fully in appendix A (they 
an bealso downloaded on-line at: \http://www.medg.l
s.mit.edu/people/milos/thesis/").Test problem 1: Maze20Maze20 [Hauskre
ht 97b℄ is a maze navigation problem with 20 states, 6 a
tions and 8 obser-vations. The maze (�gure 5-1) 
onsists of 20 partially 
onne
ted rooms (states) in whi
h arobot fun
tions and 
olle
ts rewards. The robot 
an move in 4 dire
tions (North, South, Eastand West) and 
an 
he
k for the presen
e of walls using its sensors. Neither \move" a
tionsnor sensor inputs are perfe
t and the robot 
an wind up moving in unintended dire
tions. Therobot moves in an unintended dire
tion with probability of 0.3 (0.15 for ea
h of the neighboringdire
tions). A move into the wall keeps the robot in the same position. Investigative a
tionshelp the robot to navigate by a
tivating sensor inputs. There are 2 investigative a
tions that al-low the robot to 
he
k inputs (presen
e of a wall) in the North-South and East-West dire
tions.Sensor a

ura
y in dete
ting walls is 0.75 for a two wall 
ase (e.g. both north and south wall),0.8 for a one wall 
ase (north or south) and 0.89 for a no wall 
ase, with smaller probabilitiesfor wrong per
eptions.The 
ontrol obje
tive is to maximize the expe
ted dis
ounted rewards with a dis
ount fa
torof 0.9. A small reward is given for every a
tion not leading to bumping into the wall (4 pointsfor a move and 2 points for an investigative a
tion), and one big reward (150 points) is givenfor a
hieving the spe
ial target room (shown as a 
ir
le on the �gure) and re
ognizing it byperforming one of the move a
tions. After doing that and 
olle
ting the reward, the robot ispla
ed with some probability into one of the `initial" rooms.120



Moves SensorsFigure 5-2: The robot navigation problem: Maze20BTest problem 2: Maze20BThe Maze20B problem (see �gure 5-2) is similar to Maze20. The two problems use di�erentmaze topologies. However, the un
ertainty asso
iated with the out
omes of \move" a
tions andthe quality of per
eptual information is the same as for Maze20.The other major di�eren
e between the two maze problems is in the payo� model: Maze20Buses 
osts instead of rewards. Costs are assigned in the following way: 20 points for every a
tionthat does not 
ause the robot to 
rash into the wall, 30 points for any a
tion (move) that bumpsthe robot against the wall and 0 points for any a
tion in the goal state (represented by a 
ir
le).Note that the 
osts of various a
tions and their out
omes favor more move a
tions 
omparedto the Maze20 problem.The goal state is a zero 
ost absorbing state (sink). The obje
tive is to optimize 
ontrol forthe in�nite dis
ounted horizon, with a dis
ount fa
tor of 0.95.Test problem 3: Shuttle do
kingThe Shuttle do
king problem [Chrisman 92℄ 
onsists of 8 states, 3 a
tions and 5 observations.The states 
onsists of the position of the shuttle relating to the most and least re
ently visitedspa
e station. The obje
tive is to 
ontinuously move and do
k the shuttle at the least re
entlyvisited spa
e station, whi
h is rewarded with 10 points. The dis
ount fa
tor used is 0.95.The major di�eren
e between the Shuttle problem and the maze problems is that it doesnot have investigative a
tions. The observations used are 
onsidered to be free (no 
ost) andalways available. Also un
ertainties asso
iated with either transitions or observations are notas bad as in the 
ase of the maze problems, and in many 
ases, the relations are deterministi
.The Shuttle problem has features that make a 
ontrol problem easier to solve (small amount ofpartial observability, no investigative a
tions, a lot of determinism in a
tion out
omes).5.2 Comparing quality of bounds5.2.1 Methods testedWe tested the bounds on value fun
tions produ
ed by several methods that were dis
ussed inthe previous 
hapter and that were proved to have upper or lower bound properties. However,we note that there are other methods one 
an use to 
ompute upper or lower bounds that wedid not test, for example model redu
tion methods based on trun
ated histories dis
ussed in121



se
tion 4.10.2.Upper bound methodsWe tested and 
ompared the following upper bound methods:� MDP-based approximation;� Fast informed bound method;� Grid-based point interpolation with regular, random and heuristi
 grids.The MDP based approximation is a basi
 method for 
omputing an upper bound. Thesolution it produ
es 
onsists of a single linear ve
tor, and is often used to initialize other, more
omplex upper bound methods. Thus, the quality of the MDP-based bound will provide thes
ore against whi
h the improvements of other methods 
an be measured and 
ompared.The fast informed bound method improves the MDP-based bound using a pie
ewise linearand 
onvex value fun
tion that 
onsists of jAj linear ve
tors.The MDP-based bound 
an be improved futher by using the grid-based point interpolationmethod. Grid-based point interpolation 
an be implemented using di�erent types of gridsin
luding regular, random and heuristi
 grids. We have tried and tested all three types of grids.Regular grids were 
ombined with the eÆ
ient point interpolation strategy due to [Lovejoy 91b℄that always interpolates a target point using the grid-points that are 
losest to it. In addition,both random and heuristi
 grids were implemented with a new point interpolation methoddes
ribed in se
tion 4.7.3. The heuristi
 approa
h implemented a new strategy proposed in4.7.3. Di�erent types of grids have been tried for di�erent grid resolutions. We used grids of 40points up to 440 grid points (in 40 point in
rements). The heuristi
 grids for larger resolutionswere 
onstru
ted in
rementally using previous step solutions. The regular grid method wastested only on regular grids that fell in the tested range. These in
luded a grid of 210 pointsfor both maze problems, and grids of 36, 120, and 330 points for the smaller Shuttle problem.Lower bound methodsWe tested the following lower bound methods:� Simple blind poli
y method;� In
remental linear ve
tor method with various point sele
tion strategies.The simple blind poli
y method (se
tion 4.5.3) 
omputes a pie
ewise linear and 
onvex valuefun
tion that 
onsists of jAj linear ve
tors, one for every blind one-a
tion poli
y. The solutionlower bounds the optimal value fun
tion and 
an be used to initialize in
remental linear ve
tormethods.The in
remental linear ve
tor method (se
tion 4.8.2) is designed to gradually improve apie
ewise linear and 
onvex lower bound. It 
an be 
ombined with various strategies for sele
tingpoints for updates. We tested four di�erent point sele
tion strategies. These were evaluatedusing 40 point update 
y
les for up to 440 point updates. The strategies we 
ompared are:� A �xed grid strategy with a �xed set of 40 belief points that are used repeatedly. The gridpoints 
onsist of all 
riti
al belief points, and the remaining points are sele
ted randomly.� A random grid strategy that sele
ts every belief point to be updated randomly;122



� An order heuristi
 strategy (see se
tion 4.8.2) that repeatedly pi
ks 40 belief points,in
luding all 
riti
al points. The 
riti
al points are ordered to maximize the updatee�e
t.� A two tier heuristi
 strategy (see se
tion 4.8.2) that 
ombines the heuristi
 ordering strat-egy with a forward simulation strategy. Every 
riti
al point (ordered) is simulated forwardfor 5 steps, and a sequen
e of points obtained is updated in reverse order.5.2.2 Experimental designValue fun
tion solutions are de�ned over the 
ontinuous belief spa
e. This makes it impossibleto 
ompare bound results for every possible belief state. In order to 
ompare the quality ofbounds obtained by di�erent methods we use a single s
ore that measures the average valueobtained for a �xed set of 2500 randomly generated belief points together with all of the 
riti
alpoints of the belief simplex.5.2.3 Test resultsThe result s
ores a
hieved for both bounds are listed in: �gures 5-3 and 5-4 for the Maze20problem; �gures 5-5 and 5-6 for the Maze20B; and 5-7 and 5-8 for the Shuttle do
king problem.Note that the Maze20B problem minimizes 
osts, and therefore the upper and lower boundmethods are ex
hanged 
ompared to the problems that maximize rewards.5.2.4 Evaluation of resultsUpper boundThe worst results were a
hieved by the grid-based point interpolation method with randomgrids. This is mostly be
ause transitions in all models are lo
al and sparse. This means thatfrom any 
riti
al point one 
an only get to belief states that lie on the boundary of the beliefsimplex, that is, those belief points that 
ontain a lot of zeros. In 
ontrast to this, randomsampling is more likely to produ
e a belief point with nonzero probabilities. Sin
e any boundarypoint 
an be interpolated using only points on the same boundary, the internal points of thebelief simplex have no e�e
t on their interpolation, and thus there is a very slim 
han
e that
riti
al points will get updated by randomly generated grids.Regular grids with small resolution have a signi�
antly better bound s
ore be
ause they
onsist only of points on the belief simplex boundaries.Overall, the best results were a
hieved by the heuristi
 grid method with forward pointsimulations. The method was signi�
antly better than random and regular grids for bothMaze20 problems, and was beaten by a low margin by a regular grid method only on theShuttle problem. We believe that the main reason for this is that the heuristi
 grid methoduses a simple point interpolation rule that does not sear
h for the best interpolating set, whilethe regular grid method uses a minimum distan
e point interpolation rule.The other 
ontender { the newly designed fast informed bound method performed very wellon all test problems and was able to beat the grid based methods with lower grid resolutions.The main advantage of the method is that it is easy and fast to 
ompute, thus it is able to giveus a good upper bound in relatively short time.123



Maze20: upper bound
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ores obtainedby an MDP-based approximation, the fast informed bound method, and point interpolationmethods with three types of grids: regular, random and heuristi
. The grid-based point inter-polation methods were tested using di�erent resolutions (grid sizes) starting from MDP-basedapproximations. The sequen
e of possible regular grids is sparse and the only grid (ex
ludingthe initial one) that was within the tested range used 210 grid points (s
ore is labeled with anasterisk in the table). The other grid resolutions did not work and therefore they were not ableto improve the bound s
ore. 124



Maze20: lower bound
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tion strategyupdates �xed random order heuristi
 2-tier heuristi
initial (blind poli
y) 33.10 33.10 33.10 33.1040 43.80 44.65 44.96 45.1680 46.20 47.93 48.27 48.17120 47.10 49.28 49.18 49.60160 47.89 50.12 51.24 51.19200 48.23 50.43 51.56 52.64240 48.60 50.70 51.79 53.04280 48.89 51.18 52.29 53.58320 49.06 52.02 52.46 53.88360 49.38 52.40 52.65 53.96400 49.67 52.84 52.76 54.13440 49.86 53.09 52.89 54.17Figure 5-4: Maze20: quality of lower bounds. The table and graph show bound s
ores obtainedby the in
remental linear ve
tor method and four di�erent point sele
tion strategies. They weretested and 
ompared after every 40 point updates. The initial value fun
tion was obtained usinga simple blind poli
y method that 
ombines all one a
tion poli
ies.125



Maze20B: upper bound
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ost minimization): quality of upper bounds. The table and graphshow bound s
ores obtained by the in
remental linear ve
tor method and four di�erent pointsele
tion strategies. They were tested and 
ompared after every 40 point updates. The initialvalue fun
tion was obtained using a simple blind poli
y method that 
ombines all one a
tionpoli
ies. 126



Maze20B: lower bound
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ost minimization): quality of lower bounds. The table and graph showbound s
ores obtained by an MDP-based approximation, the fast informed bound method, andpoint interpolation methods with three types of grids: regular, random, and heuristi
. The grid-based point interpolation methods were tested using di�erent resolutions (grid sizes) startingfrom MDP-based approximations. The only regular grid that was within the tested range used210 grid points (the s
ore is labeled with an asterisk in the table). The other grid resolutionsdid not work and therefore they were not able to improve the bound s
ore.127



Shuttle: upper bound
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king problem: quality of upper bounds. The table and graph showresults obtained by an MDP-based approximation, the fast informed bound method, and pointinterpolation methods with three types of grids: regular, random and heuristi
. The grid-basedpoint interpolation methods were tested using di�erent resolutions (grid sizes) starting fromMDP-based approximations. The regular grids that were within the tested range used 36, 120,and 330 grid points (their s
ores are labeled with asterisks). The other grid resolutions did notwork and therefore they were not able to improve the bound s
ore.128



Shuttle: lower bound
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ompared after every 40 point updates. The initial valuefun
tion was obtained using a simple blind poli
y method that 
ombines all one a
tion poli
ies.129



Lower boundThe experiments showed that there is no 
lear winning point sele
tion strategy for the in
re-mental linear ve
tor method. The di�eren
es among the strategies were very small. Also, ondi�erent problems, di�erent strategies performed best. A surprise was a relatively bad showingof the two-tier heuristi
 strategy on the Maze20B problem (minimization) where the qualityof its solutions fell behind all other methods. We believe that the reason for this is that thestrategy sampled the same set of belief points repeatedly with small potential for improvements.Thus, the method would probably be better if it swit
hed and interleaved heuristi
 sele
tionswith some random sele
tion strategy.In general, the reason for small di�eren
es in the lower bound quality 
ould be explainedby updating linear ve
tors (derivatives) for belief points. In su
h a 
ase the new linear ve
torin
uen
es a larger portion of the belief spa
e and thus it is less sensitive to a spe
i�
 pointsele
tion strategy. Also possible is the explanation that we did not use a very good heuristi
,and better heuristi
s or their 
ombinations 
an be 
onstru
ted.Bound results summaryBoth upper and lower bound in
remental methods were 
ombined with various heuristi
 meth-ods for lo
ating new grid points. The heuristi
 grid approa
h for the grid-based point in-terpolation based on forward simulations seems to be justi�ed and was able to outperformsigni�
antly both random and regular grids most of the time. The results suggest that thepoint-interpolation method is sensitive to a sele
tion of grid points. Interestingly, we were notable to get any signi�
ant improvement from any of the heuristi
 approa
hes for the in
rementallower bound method. Moreover both random point sele
tion and �xed random strategies areprodu
ing similar results. This suggest that the in
remental linear ve
tor is less sensitive tothe sele
tion of the grid points used for updates.Overall, upper and lower in
remental bound methods (heuristi
 grid assumed for the point-interpolation bound) were able to improve signi�
antly on the initial bounds provided by theMDP-based method and the simple blind poli
y methods. However, despite this, the 
ombina-tion of upper and lower bound methods did not a
hieve very tight bound spans for the testedrange, ex
ept on the Shuttle do
king problem with 8 states, 3 a
tions and 5 observations. Webelieve we did not get very tight bounds on maze problems be
ause one needs to use moregrid-points or updates for more 
omplex problems (with larger state and observation spa
es)in order to get 
loser to the optimal solution. The tested ranges of grid sizes and updates weresimply not suÆ
ient for the two more 
omplex problems.5.3 Testing 
ontrol performan
e of approximation meth-odsThere are many approximation methods that have been proposed to 
ompute POMDP 
ontroleÆ
iently (see [Lovejoy 91b℄ [Littman et al. 95a℄ [Parr, Russell 95℄). However, the 
omparisonsof these methods were either insuÆ
ient or did not in
lude problems of larger 
omplexity. Forexample, 
omparison studies that appeared in the AI literature have fo
used mostly on theappli
ation of least-squares �t strategies, and have not tried grid based approa
hes even thoughthey are 
ommon in operations resear
h. Therefore a primary fo
us of our work in this is se
tionis to 
ompare a spe
trum of value fun
tion approximation approa
hes and their solutions onthe set of in�nite dis
ounted horizon problems.130



5.3.1 Methods testedWe tested all of the value fun
tion approximation methods des
ribed in the previous 
hapter:MDP-based approximation, the blind poli
y method, the fast informed bound method, theleast-square �t approa
h, linear interpolation-extrapolation rules and in
remental lower boundmethod with Sondik's updates. Some methods were represented by multiple entries be
ausethey used di�erent grids or di�erent heuristi
s. The purpose of this variation was to show howspe
i�
 tri
ks or heuristi
s in
uen
e the approximation.Optimal solutionsThe results obtained for di�erent approximation methods were 
ompared to the results onewould a
hieve with the optimal solution for the perfe
tly observable Markov pro
ess (wherepro
ess states are assumed to be perfe
tly observable), and for the Shuttle do
king problem,they were also 
ompared to results for the optimal POMDP solution with 10�5 pre
ision1. Theoptimal solution for both maze problems was too hard to 
ompute to any reasonable pre
isiondue to the huge in
rease in the size of the linear ve
tor set. The obje
tive of the 
omparisonof the perfe
tly and partially observable 
ases was to provide some idea about how hard the
ontrol task under imperfe
t observability really is. Note that in the perfe
tly observable 
asethe investigative a
tions usually be
ome suboptimal.Methods with multiple entriesDespite the threat of instability we 
omputed and tested value fun
tions obtained by valueiteration with a least-squares �t. We tried two fun
tion models: a linear Q-fun
tion model[Littman et al. 95a℄ and a softmax model [Parr, Russell 95℄. They were des
ribed in se
tion4.6.3. Q-fun
tions were updated in parallel for a �xed set of 100 points that in
luded all the
riti
al points of the belief simplex. The least-squares �ts were 
omputed at every step usinggradient parameter learning te
hniques. The initial set of Q-fun
tions was based on solutionsa
quired for the 
orresponding blind one-a
tion poli
ies. The least-squares fun
tion was testedafter 10, 20 and 30 iterations. Softmax fun
tion model was only used on the Maze20 problem.Solutions with 10 and 15 linear ve
tors were a
quired after 10 and 20 iteration steps. Thefun
tions were updated in parallel for a �xed set of 50 and 100 points respe
tively that in
ludedall 
riti
al points of the belief simplex. In both 
ases models were initialized with the solutiona
quired by the simple blind poli
y method.Grid-based interpolation-extrapolation methods were tested using nearest-neighbor andpoint interpolation rules, for grid sizes of 40, 200 and 400 belief points. The interpolationrule has been implemented by a simple interpolation method proposed in se
tion 4.7.3 that�ts 
onvex and pie
ewise linear value fun
tions with a \saw"-shaped fun
tion. Both nearest-neighbor and point interpolation were tried on both random and heuristi
 grids. Heuristi
 gridswere generated using model-based sampling as des
ribed in the previous 
hapter (se
tion 4.7.3).The point interpolation method was also tested on regular grids using the eÆ
ient interpolationstrategy proposed in [Lovejoy 91b℄.The 
ontrol performan
e of the in
remental linear ve
tor method with Sondik's updates wastested for solutions a
quired after 40, 200, and 400 point updates. We used the same strategiesto sele
t the belief points that were used for the bound experiments (se
tion 5.2).1The solution for the Shuttle do
king problem with the 10�5 pre
ision was kindly provided by AnthonyCassandra. It 
onsists of 208 linear ve
tors. 131



5.3.2 Experimental designThe quality of ea
h method's performan
e was tested using simulations for di�erent sets ofinitial belief points. The simulation runs for ea
h initial belief state were 60 steps long. In ea
hrun, the a
tual dis
ounted reward or 
ost obtained by a 
ontrol agent powered with a spe
i�
value fun
tion approximation were 
olle
ted. This gave us an approximation of the dis
ounteds
ore the agent would a
hieve if it were to run forever. Beyond the overall reward (
ost) s
ore,the other statisti
s were 
olle
ted, su
h as the number of times a goal state was rea
hed andthe number of observations in the run. Methods and their solutions were tested on two testsets that 
onsisted of:� 2000 randomly generated belief points (arbitrary points);� 1500 randomly generated 
riti
al belief points.The Shuttle do
king problem has not been tested on a set of random belief points. The reasonfor this is that in the Shuttle problem, observations are very good indi
ators of the underlyingstate and thus it is always possible to ex
lude the majority of underlying pro
ess states (onlybelief states with few nonzero states are possible). Therefore a test on the set with randomlygenerated belief points does not make mu
h sense.5.3.3 Test resultsSimulation results obtained for various methods and test sets are presented both in tables andgraphi
ally (using bar diagrams) in the following way :� Maze20 in tables 5-1, 5-2 and �gures 5-9, 5-10;� Maze20B in tables 5-3, 5-4 and �gures 5-11, 5-12;� Shuttle in table 5-5 and �gure 5-12.The simulation results listed in the tables in
lude: the average of dis
ounted rewards (
osts)a
hieved for all simulation runs (a
hieved s
ore), the per
entage of times the \goal" statewas rea
hed in 60 steps, the average of expe
ted dis
ounted rewards (
osts) predi
ted by anapproximate value fun
tion for all simulation runs (expe
ted s
ore), and the average numberof investigative a
tions per simulation run (60 steps). The a
hieved s
ore (average reward)is the primary 
riterion to evaluate the performan
e of the method. The other statisti
s areinformative and tend to reveal more about the nature and the behavior of the methods.Testing methods di�eren
esThe overall a
hieved s
ore (average reward or average 
ost s
ore) for a given test set quanti�esthe quality of 
ontrol. However the average s
ore itself does not tell us if two methods withdi�erent average s
ores are also statisti
ally signi�
antly di�erent. The reason for this is thattwo methods 
an produ
e di�erent average s
ores simply as a result of some underlying randompro
ess. Thus to validate that the s
ores obtained are not the result of randomness we needto show that the methods are in fa
t signi�
antly di�erent. We do this by 
omparing not onlytheir average performan
e, but by 
omparing their performan
e on many individual simulationruns.All methods were run and tested on the same set of belief points. We also assured that thesimulator was always initialized from the same pro
ess state. This means that sample rewards132
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Maze20: 
ontrol performan
e, Test set: 2000 random belief pointsmethod method a
hieved per
ent expe
ted averageparameters s
ore of goal s
ore observ.MDP (observable) - 131.16 100 129.76 0MDP-approximation - 38.24 34.25 129.75 0.01Fast informed bound - 54.73 80.20 102.05 10.54Simple blind poli
y - 50.18 42.75 32.60 10.28least square �t points: 100, iter: 10 56.70 78.40 54.13 10.91with Q-fun
tions points: 100, iter: 20 56.59 79.30 61.54 10.80points: 100, iter: 30 54.73 78.50 64.14 10.97least square �t ve
tors:10, points:50, iter:10 45.94 62.45 48.32 37.83method with ve
tors:10, points:50, iter:20 45.68 55.55 50.81 39.34softmax fun
tion ve
tors:15, points:100, iter:10 49.10 67.90 60.84 34.68ve
tors:15, points:100, iter:20 51.43 72.15 58.74 32.95Grid based regular grid (210 points) 44.60 39.35 98.47 0.00point interpolation random grid (40 points) 40.08 62.75 129.35 7.24method random grid (200 points) 40.45 67.15 128.91 10.39random grid (400 points) 41.37 69.40 128.78 9.70heuristi
 grid (40 points) 41.13 38.25 110.57 0.27heuristi
 grid (200 points) 46.08 67.95 83.48 19.18heuristi
 grid (400 points) 48.37 70.60 80.61 19.49Grid based random grid (40 points) 31.49 16 294.69 33.70nearest neighbor random grid (200 points) 33.87 17.10 176.73 33.37method random grid (400 points) 35.38 17.45 161.56 37.93heuristi
 grid (40 points) 32.43 33.70 114.58 30.36heuristi
 grid (200 points) 36.33 22.50 129.10 17.54heuristi
 grid (400 points) 38.75 29.70 96.43 22.19In
remental linear �xed (40 updates) 56.16 62.95 43.19 16.87ve
tor method �xed (200 updates) 60.18 90.35 47.68 24.05�xed (400 updates) 60.62 89.50 49.08 24.27random (40 updates) 56.82 75.95 43.96 18.26random (200 updates) 60.45 86.75 49.88 21.51random (400 updates) 60.98 88 52.31 21.81order heuristi
 (40 updates) 59.18 86.35 44.39 23.36order heuristi
 (200 updates) 61.01 90.40 51.03 23.22order heuristi
 (400 updates) 62.41 90.30 52.25 23.172-tier heuristi
 (40 updates) 58.63 86.65 44.52 23.792-tier heuristi
 (200 updates) 59.47 90.35 52.07 21.562-tier heuristi
 (400 updates) 61.72 88.05 53.55 23.37Table 5-1: Simulation results for the Maze20 problem and 2000 random belief points. Thetable in
ludes results for the perfe
tly observable MDP 
ontrol (for the purpose of 
omparison),MDP-based approximation, fast informed bound method, simple blind poli
y, least square �tmethod with Q-fun
tion and softmax fun
tions - tested for di�erent number of iteration steps(10, 20, 30) and di�erent numbers of sample points (softmax also for 10 or 15 linear ve
tors),grid-based point interpolation strategy with regular, random and heuristi
 grids (for variousgrid sizes), grid-based nearest neighbor with random and heuristi
 grid (for various grid sizes),and in
remental linear ve
tor method for �xed random, dynami
 random, order heuristi
 andtwo-tier heuristi
 point sele
tion strategies (for di�erent number of updates).134



Maze20: 
ontrol performan
e, Test set: 1500 
riti
al belief pointsmethod method a
hieved per
ent expe
ted averageparameters s
ore of goal s
ore observ.MDP (observable) - 130.21 100 129.83 0MDP-approximation - 55.51 44.67 129.81 0.11Fast informed bound - 68.46 82.80 107.70 9.73Simple blind poli
y - 60.16 47.47 38.72 8.72least square �t points: 100, iter: 10 67.61 80.33 59.83 9.91with Q-fun
tions points: 100, iter: 20 68.94 81.40 67.22 9.90points: 100, iter: 30 70.43 82.33 69.87 10.14least square �t ve
tors:10, points:50, iter:10 57.05 71.47 61.81 36.06method with ve
tors:10, points:50, iter:20 56.36 62.73 64.66 37.32softmax fun
tion ve
tors:15, points:100, iter:10 63.73 81.67 73.81 29.81ve
tors:15, points:100, iter:20 63.77 78.93 71.63 30.05Grid based regular grid (210 points) 61.76 52.60 102.30 0.06point interpolation random grid (40 points) 57.18 67 129.81 6.47method random grid (200 points) 58.86 72.80 129.81 9.69random grid (400 points) 58.92 72.73 129.81 9.33heuristi
 grid (40 points) 58.76 51.20 111.13 0.28heuristi
 grid (200 points) 65.83 77.73 85.05 17.43heuristi
 grid (400 points) 65.80 77.20 82.36 17.29Grid based random grid (40 points) 37.22 14.40 286.94 39.29nearest neighbor random grid (200 points) 39.29 17.67 175.51 29.80method random grid (400 points) 47.33 26.13 157.28 38.74heuristi
 grid (40 points) 44.00 49.27 124.22 30.03heuristi
 grid (200 points) 55.89 40.93 123.07 20.69heuristi
 grid (400 points) 55.28 42.47 99.44 17.67In
remental linear �xed (40 updates) 65.12 62.80 52.22 14.99ve
tor method �xed (200 updates) 73.10 93.40 62.52 22.63�xed (400 updates) 70.37 92.40 64.02 22.98random (40 updates) 70.08 76.67 52.94 16.20random (200 updates) 73.08 90.33 62.03 20.19random (400 updates) 71.33 90 64.81 20.35order heuristi
 (40 updates) 69.81 88.53 57.73 22.08order heuristi
 (200 updates) 70.96 91.67 65.31 21.91order heuristi
 (400 updates) 71.62 90.73 66.82 21.842-tier heuristi
 (40 updates) 71.79 90.13 58.70 22.312-tier heuristi
 (200 updates) 73.82 92.33 69.04 19.922-tier heuristi
 (400 updates) 72.90 91.20 71.17 22.02Table 5-2: Simulation results for the Maze20 problem and the set of 1500 
riti
al belief points.The table in
ludes results for the perfe
tly observable MDP 
ontrol (for the purpose of 
om-parison), MDP-based approximation, fast informed bound method, simple blind poli
y, leastsquare �t method with Q-fun
tion and softmax fun
tions - tested for di�erent number of itera-tion steps (10, 20, 30) and di�erent numbers of sample points (softmax also for 10 or 15 linearve
tors), grid-based point interpolation strategy with regular, random and heuristi
 grids (forvarious grid sizes), grid-based nearest neighbor with random and heuristi
 grid (for various gridsizes), and in
remental linear ve
tor method for �xed random, dynami
 random, order heuristi
and two-tier heuristi
 point sele
tion strategies (for di�erent number of updates).135
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ontrol performan
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Maze20B (
osts): 
ontrol performan
e, Test set: 2000 random belief pointsmethod method a
hieved per
ent expe
ted averageparameters s
ore of goal s
ore observ.MDP (observable) - 133.37 100 134.23 0MDP-approximation - 245.06 90.40 134.23 6.28Fast informed bound - 230.48 91.25 166.80 7.36Simple blind poli
y - 264.74 64.10 341.50 20.26least square �t points: 100, iter: 10 225.08 94.90 262.13 35.78with Q-fun
tions points: 100, iter: 20 224.47 95.25 241.48 35.98points: 100, iter: 30 225.43 95.30 238.52 35.80Grid based regular grid (210 points) 254.68 70.75 159.06 12.38point interpolation random grid (40 points) 236.63 92.35 134.67 5.70method random grid (200 points) 239.75 90.55 135.18 6.53random grid (400 points) 236.94 92.25 135.38 6.34heuristi
 grid (40 points) 250.88 78.30 153.90 12.83heuristi
 grid (200 points) 240.74 82.35 181.55 12.89heuristi
 grid (400 points) 241.33 80.95 184.56 13.37Grid based random grid (40 points) 342.41 17.55 156.59 45.25nearest neighbor random grid (200 points) 345.23 26.50 175.10 31.12method random grid (400 points) 338.30 28.20 164.11 30.14heuristi
 grid (40 points) 331.55 42.35 107.85 12.53heuristi
 grid (200 points) 339.35 35.65 116.19 15.47heuristi
 grid (400 points) 315.97 50.50 154.04 14.52In
remental linear �xed (40 updates) 230.96 79.60 297.99 14.68ve
tor method �xed (200 updates) 221.28 96.70 271.04 9.32�xed (400 updates) 217.14 98.35 254.15 7.77random (40 updates) 226.41 90.90 296.96 9.55random (200 updates) 219.34 97.70 259.19 6.67random (400 updates) 218.13 98.50 247.66 7.07order heuristi
 (40 updates) 226.56 84.15 304.39 12.52order heuristi
 (200 updates) 219.16 97.60 269.01 8.33order heuristi
 (400 updates) 217.13 98.15 254.70 7.852-tier heuristi
 (40 updates) 230.57 83 319.81 15.402-tier heuristi
 (200 updates) 220.73 98.30 283.65 8.402-tier heuristi
 (400 updates) 222.05 98.05 274.17 8.90Table 5-3: Simulation results for the Maze20B problem (
ost minimization) and 2000 randombelief points. The table in
ludes results for the perfe
tly observable MDP 
ontrol (for thepurpose of 
omparison), MDP-based approximation, fast informed bound method, simple blindpoli
y, least square �t method with Q-fun
tion fun
tions - tested for di�erent number of iterationsteps (10, 20, 30), grid-based point interpolation strategy with regular, random and heuristi
grids (for various grid sizes), grid-based nearest neighbor with random and heuristi
 grid (forvarious grid sizes), and in
remental linear ve
tor method for �xed random, dynami
 random,order heuristi
 and two-tier heuristi
 point sele
tion strategies (for di�erent number of updates).137



Maze20B (
osts): 
ontrol performan
e, Test set: 1500 
riti
al belief pointsmethod method a
hieved per
ent expe
ted averageparameters s
ore of goal s
ore observ.MDP (observable) - 134.05 100 134.71 0MDP-approximation - 214.95 93.40 134.71 3.66Fast informed bound - 201.65 96.20 159.77 3.68Simple blind poli
y - 255.99 55.47 313.66 26.03least square �t points: 100, iter: 10 199.10 96.20 251.20 28.59with Q-fun
tions points: 100, iter: 20 203.45 97.40 232.97 28.05points: 100, iter: 30 204.12 97.27 230.70 28.01Grid based regular grid (210 points) 216.94 81.53 155.84 7.82point interpolation random grid (40 points) 214.21 94 134.71 3.25method random grid (200 points) 212.58 94.33 134.71 3.42random grid (400 points) 217.45 93.67 134.71 3.83heuristi
 grid (40 points) 213.69 90.27 153.85 5.36heuristi
 grid (200 points) 208.27 93.13 180.48 6.23heuristi
 grid (400 points) 206.31 94.13 183.24 5.93Grid based random grid (40 points) 314.28 24.60 124.17 42.40nearest neighbor random grid (200 points) 311.56 36 165.94 25.18method random grid (400 points) 320.59 26 158.72 38.53heuristi
 grid (40 points) 283.83 53.20 112.14 13.40heuristi
 grid (200 points) 304.31 45.67 131.24 13.09heuristi
 grid (400 points) 264.74 60.40 161.78 11.01In
remental linear �xed (40 updates) 211.00 80.87 271.25 13.07ve
tor method �xed (200 updates) 199.73 92.73 234.44 8.89�xed (400 updates) 199.03 97.60 221.44 5.81random (40 updates) 208.35 87.47 270.61 9.90random (200 updates) 196.38 98.27 234.11 4.65random (400 updates) 197.21 98.07 222.03 4.98order heuristi
 (40 updates) 212.51 81.33 271.44 13.28order heuristi
 (200 updates) 202.78 93.87 232.51 8.43order heuristi
 (400 updates) 196.46 98.87 221.32 5.432-tier heuristi
 (40 updates) 213.77 81.20 263.59 14.692-tier heuristi
 (200 updates) 197.63 98.60 224.56 5.982-tier heuristi
 (400 updates) 199.44 98.80 211.61 6.28Table 5-4: Simulation results for the Maze20B problem (
ost minimization) and 1500 random
riti
al belief points. The table in
ludes results for the perfe
tly observable MDP 
ontrol (forthe purpose of 
omparison), MDP-based approximation, fast informed bound method, simpleblind poli
y, least square �t method with Q-fun
tion fun
tions - tested for di�erent number ofiteration steps (10, 20, 30), grid-based point interpolation strategy with regular, random andheuristi
 grids (for various grid sizes), grid-based nearest neighbor with random and heuristi
grid (for various grid sizes), and in
remental linear ve
tor method for �xed random, dynami
random, order heuristi
 and two-tier heuristi
 point sele
tion strategies (for di�erent numberof updates). 138



Shuttle: 
ontrol performan
e, Test set: 1500 
riti
al belief pointsmethod method a
hieved per
ent expe
ted averageparameters s
ore of goal s
ore observ.MDP (observable) - 34.17 100 35.79 0POMDP optimal 10�5 pre
ision 33.99 100 35.71 0MDP-approximation - 34.00 100 35.77 0Fast informed bound - 34.13 100 35.71 0Simple blind poli
y - 22.03 100 3.26 0least square �t points: 100, iter: 10 33.89 100 15.09 0with Q-fun
tions points: 100, iter: 20 33.98 100 21.50 0points: 100, iter: 30 33.99 100 25.31 0Grid-based regular grid (36 points) 33.95 100 35.71 0point interpolation regular grid (120 points) 34.01 100 35.71 0method regular-grid (330 points) 34.17 100 35.71 0random grid (40 points) 33.94 100 35.77 0random grid (200 points) 33.96 100 35.77 0random grid (400 points) 33.86 100 35.77 0heuristi
 grid (40 points) 34.08 100 35.71 0heuristi
 grid (200 points) 34.11 100 35.71 0heuristi
 grid (400 points) 34.04 100 35.71 0Grid-based random grid (40 points) 33.96 100 35.81 0nearest neighbor random grid (200 points) 33.94 100 35.72 0method random grid (400 points) 34.07 100 35.72 0heuristi
 grid (40 points) 34.01 100 35.71 0heuristi
 grid (200 points) 34.00 100 35.71 0heuristi
 grid (400 points) 33.98 100 35.71 0In
remental linear �xed (40 updates) 34.04 100 19.98 0ve
tor method �xed (200 updates) 34.09 100 33.44 0�xed (400 updates) 34.08 100 35.16 0random (40 updates) 25.86 100 21.04 0random (200 updates) 34.06 100 33.17 0random (400 updates) 34.05 100 34.81 0order heuristi
 (40 updates) 34.02 100 22.50 0order heuristi
 (200 updates) 33.99 100 34.26 0order heuristi
 (400 updates) 34.04 100 35.36 02-tier heuristi
 (40 updates) 25.58 100 20.50 02-tier heuristi
 (200 updates) 33.94 100 34.95 02-tier heuristi
 (400 updates) 34.00 100 35.70 0Table 5-5: Simulation results for the Shuttle problem and 1500 random 
riti
al belief points.The table in
ludes results for the perfe
tly observable MDP 
ontrol (for the purpose of 
om-parison), POMDP optimal solution (10�5 pre
ision), MDP-based approximation, fast informedbound method, simple blind poli
y, least square �t method with Q-fun
tion fun
tions - testedfor di�erent number of iteration steps (10, 20, 30), grid-based point interpolation strategy withregular, random and heuristi
 grids (for various grid sizes), grid-based nearest neighbor withrandom and heuristi
 grid (for various grid sizes), and in
remental linear ve
tor method for�xed random, dynami
 random, order heuristi
 and two-tier heuristi
 point sele
tion strategies(for di�erent number of updates). 139
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Figure 5-13: Shuttle problem: 
omparison of 
ontrol performan
e. The a
hieved s
ore repre-sents the average reward on the set of 1500 randomly sele
ted 
riti
al belief points.for the same initial belief point and for any two methods were dependent, that is samples were
onne
ted (paired) [Sa
hs 84℄. Then to determine that two methods are di�erent we:� 
omputed their sample s
ore di�eren
es (di�eren
es in rewards for all simulation runs);� tested the null hypothesis that the mean (median) of the di�eren
es is zero.Reje
ting the null hypothesis at some signi�
an
e level then 
orresponds to the situation inwhi
h two methods 
ompared are di�erent.To 
he
k mutual di�eren
es of all methods we applied the above di�eren
e test pairwise.As sample di�eren
es turned out to be nonnormally distributed, we applied the nonparametri
Wil
oxon mat
hed pair signed-rank test to test the null hypothesis for every pair of methods(see [Sa
hs 84℄).The methods were tested pairwise and 
ompared using three signi�
an
e levels 0:05; 0:01 and0:001. Thus it might be the 
ase that the null hypothesis (two methods are equal) is reje
tedat a higher signi�
an
e level (say 0.05) but not at the lower level (e.g. 0.01). We performedpairwise signi�
an
e tests on all problems, using a set of 2000 random belief points for mazeproblems and a set of 1500 random 
riti
al belief points for the Shuttle problem. The 
ompleteresults of pairwise tests for Maze20 and Maze20B problems, signi�
an
e level 0:05 and a setof 2000 random belief points are summarized in tables 5-7 and 5-8. The pairwise signi�
an
eresults for the Shuttle problem are simpler. This is be
ause there are only three groups ofmethods, su
h that methods from di�erent groups are signi�
antly di�erent, while methodswithin groups are not signi�
antly di�erent from ea
h other. The �rst group 
onsists of theblind poli
y method only; the se
ond from solutions for in
remental linear ve
tor method with140



problem test set worst 
ase di�eren
e at signi�
an
e level0.05 0.01 0.001Maze20 2000 random 3.13 3.13 3.29Maze20B 2000 random 29.25 29.25 29.25Maze20B w/o nearest-neighbor 2000 random 10.05 13.86 14.92Shuttle 1500 
riti
al 0.27 0.30 0.30Table 5-6: The table lists worst 
ase di�eren
es in a
hieved s
ores for all pairs of methods thatare not statisti
ally di�erent at signi�
an
e levels 0.05, 0.01, and 0.00140 update steps and random and two-tier heuristi
 strategies; and third group 
orresponds to allother methods. Note that these groups mimi
 ni
ely the di�eren
es in average s
ores a
hieved.For the set of test results obtained, when two methods are shown to be statisti
ally sig-ni�
antly di�erent at some level of signi�
an
e, we would like to know whether and how thatdi�eren
e shows up in their average s
ore. To get an estimate of this, we performed the follow-ing:For ea
h problem, and for ea
h pair of methods that failed to be signi�
antly di�erent (ata given signi�
an
e level), we re
orded the di�eren
e in average s
ores registered by the twomethods. To present these data in a simpli�ed form, we show the maximum of these di�eren
esin Table 5-6. Any s
ore di�eren
es larger than these numbers 
orrespond, in our experiments,with pairs of methods that are indeed signi�
antly di�erent from ea
h other.Worst-
ase di�eren
e quantities for the Maze20B problem turned out to be in
uen
ed mostlyby grid-based nearest-neighbor methods 
ombinations (with bad performan
e, relatively larges
ore spans and no signi�
ant statisti
al di�eren
e). Be
ause of that we also 
omputed worst-
ase di�eren
es without nearest-neighbor entries and in
luded them in the table 5-6. Notethat the listed quantities do not mean that a new method with a larger s
ore di�eren
e isautomati
ally di�erent at the given signi�
an
e level nor that two methods with smaller averages
ore span 
annot be signi�
antly di�erent. This is simply be
ause the test used relies on 2000or 1500 mat
hed pairs of results and not the average s
ore. Note also that di�eren
e quantitiesshould not be 
ompared a
ross problems.Overall the signi�
an
e test showed that methods with larger a
hieved s
ore di�eren
es areindeed statisti
ally di�erent. This means that observed di�eren
es are highly likely not to besimply the result of randomness and 
omparison of the methods along a
hieved average s
oresis justi�ed.5.3.4 Evaluation of resultsMDP based approximationThe MDP based approximation method 
onstru
ts a value fun
tion using a solution for aperfe
tly observable 
ase, that is one in whi
h no partial observability and no investigativea
tions need to be 
onsidered. Therefore, the solution is likely to approximate the optimalvalue fun
tion better for problems with less un
ertainty and partial observability. This was
on�rmed also in our experiments, in whi
h MDP-based approximation posted poor results forthe Maze20 problem, good results for the Maze20B problem and ex
ellent s
ores for the Shuttledo
king problem. 141



Maze20: pairwise signi�
an
e test, Test set: 2000 random belief pointsmethod method ref. a
hieved methods not di�erent atparameters num. s
ore signi�
an
e level 0.05MDP (observable) - 1 131.16MDP-approximation - 2 38.24 13, 14, 15Fast informed bound - 3 54.73 5, 6, 7, 25Simple blind poli
ies - 4 50.18 10, 18Least square method points: 100, iter: 10 5 56.7 3, 6, 25, 28with Q-fun
tions points: 100, iter: 20 6 56.59 3, 5, 25, 28points: 100, iter: 30 7 54.73 3, 25Least square ve
tors:10, points:50, iter:10 8 45.94 17method with ve
tors:10, points:50, iter:20 9 45.68 17softmax fun
tion ve
tors:15, points:100, iter:10 10 49.1 4, 18ve
tors:15, points:100, iter:20 11 51.43Grid based regular grid 12 44.6point interpolation random grid (40 points) 13 40.08 2, 14, 15, 16method random grid (200 points) 14 40.45 2, 13, 15, 16random grid (400 points) 15 41.37 2, 13, 14heuristi
 grid (40 points) 16 41.13 13, 14heuristi
 grid (200 points) 17 46.08 8, 9heuristi
 grid (400 points) 18 48.37 4, 10Grid based random grid (40 points) 19 31.49nearest neighbor random grid (200 points) 20 33.87 21, 23method random grid (400 points) 21 35.38 20, 23heuristi
 grid (40 points) 22 32.43heuristi
 grid (200 points) 23 36.33 20, 21heuristi
 grid (400 points) 24 38.75In
remental linear �xed (40 updates) 25 56.16 3, 5, 6, 7, 28ve
tor method �xed (200 updates) 26 60.18 27, 29, 30, 32, 35, 36�xed (400 updates) 27 60.62 26, 29, 30, 32, 33, 35, 36random (40 updates) 28 56.82 5, 6, 25random (200 updates) 29 60.45 26, 27, 30, 31, 32, 35, 36random (400 updates) 30 60.98 26, 27, 29, 32, 33, 35, 36order heuristi
 (40 updates) 31 59.18 29, 34, 35order heuristi
 (200 updates) 32 61.01 26, 27, 29, 30, 35, 36order heuristi
 (400 updates) 33 62.41 27, 30, 36heuristi
 2-tier (40 updates) 34 58.63 31, 35heuristi
 2-tier (200 updates) 35 59.47 26, 27, 29, 30, 31, 32, 34heuristi
-2-tier (400 updates) 36 61.72 26, 27, 29, 30, 32, 33Table 5-7: The results of the pairwise signi�
an
e tests for the Maze20 problem and a set of 2000randomly sele
ted belief points. The 
ombinations of methods for whi
h the null hypothesis(two methods are same) 
annot be reje
ted at signi�
an
e level 0.05 are listed. Every pair ofmethods was tested using nonparametri
 Wil
oxon mat
hed pair signed-rank test.142



Maze20B (
osts): pairwise signi�
an
e test, Test set: 2000 random belief pointsmethod method ref. a
hieved methods not di�erent atparameters num. s
ore signi�
an
e level 0.05MDP (observable) - 1 133.37MDP-approximation - 2 245.06 10, 13, 14Fast informed bound - 3 230.48 7, 11, 21, 24, 27, 30, 32Simple blind poli
ies - 4 264.74 8Least square method points: 100, iter: 10 5 225.08 6, 7, 22, 24, 25, 27, 28,31, 32with Q-fun
tions points: 100, iter: 20 6 224.47 5, 7, 22, 24, 25, 26, 28,31, 32points: 100, iter: 30 7 225.43 3, 5, 6, 22, 24, 27, 28, 31,32Grid based regular grid 8 254.68 4point interpolation random grid (40 points) 9 236.63 10, 11, 13, 14, 21, 30method random grid (200 points) 10 239.75 2, 9, 11, 13, 14, 21random grid (400 points) 11 236.94 3, 9, 10, 13, 14, 21, 30heuristi
 grid (40 points) 12 250.88heuristi
 grid (200 points) 13 240.74 2, 9, 10, 11, 14heuristi
 grid (400 points) 14 241.33 2, 9, 10, 11, 13Grid based random grid (40 points) 15 342.41nearest neighbor random grid (200 points) 16 345.23 20method random grid (400 points) 17 338.3 20heuristi
 grid (40 points) 18 331.55 19, 20heuristi
 grid (200 points) 19 339.35 18heuristi
 grid (400 points) 20 315.97 16, 17, 18In
remental linear �xed (40 updates) 21 230.96 3, 9, 10, 11, 24, 30ve
tor method �xed (200 updates) 22 221.28 5, 6, 7, 24, 25, 26, 27, 28,29, 31, 32�xed (400 updates) 23 217.14 25, 26, 28, 29random (40 updates) 24 226.41 3, 5, 6, 7, 21, 22, 27, 30,31, 32random (200 updates) 25 219.34 5, 6, 22, 23, 26, 28, 29,31, 32random (400 updates) 26 218.13 6, 22, 23, 25, 28, 29, 31,32order heuristi
 (40 updates) 27 226.56 3, 5, 7, 22, 24, 30, 31, 32order heuristi
 (200 updates) 28 219.16 5, 6, 7, 22, 23, 25, 26, 29,31, 32order heuristi
 (400 updates) 29 217.13 22, 23, 25, 26, 28heuristi
 2-tier (40 updates) 30 230.57 3, 9, 11, 21, 24, 27heuristi
 2-tier (200 updates) 31 220.73 5, 6, 7, 22, 24, 25, 26, 27,28, 32heuristi
-2-tier (400 updates) 32 222.05 3, 5, 6, 7, 22, 24, 25, 26,27, 28, 31Table 5-8: The results of the pairwise signi�
an
e tests for the Maze20B problem and a set of2000 random belief points. The 
ombinations of methods for whi
h the null hypothesis (twomethods are same) 
annot be reje
ted at signi�
an
e level 0.05 are listed. Every pair of methodswas tested using nonparametri
 Wil
oxon mat
hed pair signed-rank test.143



Blind poli
y methodThe simple blind poli
y method produ
es a solution that 
ombines the behaviors of blind(no-information) agents. This means that the performan
e of su
h a solution should performbadly when observations are very informative and 
an help signi�
antly redu
e the un
ertaintyabout the underlying pro
ess state. On the other hand, the solution should be better whenobservations are very noisy and are impre
ise indi
ators of the underlying pro
ess state. Insu
h a 
ase, a
ting blindly should yield results 
loser to results from informed but very weakinformation sour
e. Again, we were able to see su
h a behavior on our test problems in whi
ha relatively good performan
e was a
hieved on the Maze20 problem and worse results for theMaze20B and Shuttle do
king problems.Fast informed bound methodWe were surprised by the very good performan
e of the newly designed fast informed boundmethod. Interestingly, this method uses only jAj linear ve
tors (equals the number of a
tions).Very good results on all test problem 
an be attributed mostly to the update strategy themethod employs. It is best viewed as an approximation of the Sondik's update rule. It lookslike that this strategy produ
ed a relatively good approximation of the shape of the \exa
t"value fun
tion for all of the tested POMDP problems. However, the fa
t that our problems hadsparse transition matri
es and single \goal" state might have been an important fa
tor in thisrespe
t.Least-squares �tThe approximate value iteration method with the least-squares �t approa
h was tested witha linear Q-fun
tions model and for the Maze20 also with a softmax fun
tion model. The Q-fun
tion method a
hieved very good simulation results on all three problems. Interestingly, forMaze20, a simpler Q-fun
tion model a
hieved better results than more 
omplex softmax modelwith 10 and 15 linear ve
tors. Despite the threat of instability, the fun
tions seemed to stabilizeafter about 15 iterations and did not 
hange dramati
ally afterwards. For the softmax modelwe also tried to start the approximate value iteration using di�erent initial fun
tions and thesame set of grid points. The value fun
tion seemed to stabilize again but in a di�erent region.This behavior 
an be attributed to the method's problems with unique 
onvergen
e.In general, the high performan
e of the least-squares �t 
an be attributed to the 
hoi
e ofa fun
tion model that allowed us to mat
h the optimal value fun
tion reasonably well be
auseof its the 
onvex and pie
ewise linear shape.Grid-based interpolation-extrapolation methodsThe grid-based interpolation-extrapolation methods represented by the point interpolation andnearest-neighbor approa
hes posted di�erent results on di�erent problems. The results di�eredalso for random and heuristi
 grid-point sele
tion strategies.The results show that for the point interpolation entries the s
ores a
hieved and their qualityare 
losely related to and depend on the performan
e of the MDP-approximation. That is, aperforman
e of MDP-approximation solution is 
orrelated with a performan
e of point interpo-lation methods. Although methods with point interpolation rules improved on the MDP-basedapproximation, espe
ially for problems in whi
h MDP-based approximation performed poorly(Maze20, Maze20B), we did not see a dramati
 di�eren
e (even for larger grid sizes), and othermethods (e.g. fast informed bound and in
remental linear ve
tor method) were usually more144



su

essful. Heuristi
 grids tended to improve the performan
e most of the time, espe
ially forproblems in whi
h MDP-based approximation method performed badly (Maze20 problem).The nearest neighbor approa
h delivered the worst performan
e on both maze problems,although the performan
e was usually boosted by heuristi
 grids. The only problem where near-est neighbor a
hieved results 
omparable to other methods was the Shuttle do
king problem.We believe that main reasons for this are: the optimal value fun
tion for the Shuttle do
kingproblem is relatively 
at; the di�eren
es in values for all 
riti
al points of the belief spa
e arenot very big; and the grid sizes we tested were suÆ
ient to sample enough of the relevant beliefspa
e (8 states). On the other hand, a poor showing of the method on both maze problems fortested grid sizes 
an be attributed to the inability of the method to approximate the shape ofthe optimal value fun
tion properly.We believe that the main reason for the poor performan
e of nearest neighbor and not very
onvin
ing results for point interpolation rules on both maze problems was that they were notable to �t the shape of the optimal pie
ewise linear and 
onvex value fun
tion properly. Theshape of the value fun
tion for the grid-based point interpolation-extrapolation te
hniques isin
uen
ed strongly by the sele
tion of grid points and an interpolation-extrapolation rule usedto estimate nongrid points. Then poor 
hoi
es of grid points and interpolation-extrapolationrules lead to poor shape approximations (e.g. the 
hoi
e of nearest neighbour rule leads topie
ewise 
onstant fun
tion).In
remental linear ve
tor methodsThe best performan
e was obtained by the in
remental linear ve
tor method with Sondik'supdates. The method was tested using multiple point sele
tion strategies that in
luded �xed,random, and heuristi
 approa
hes. In all 
ases the method was started from the initial simpleblind poli
y solution. Interestingly, the di�eren
es between various point sele
tion strategiesturned out to be very small, and we did not observe any signi�
ant improvement using any ofthe methods. The slim di�eren
es 
an be explained by:� The e�e
t of a derivative (linear ve
tor) update is that it approximates well also points inthe neighborhood of the belief point that seeded the update. This redu
es the sensitivityof the method to a spe
i�
 point sele
tion strategy.� The shape of the optimal solution over the belief spa
e is approximated well in all 
asesusing a relatively small number of in
remental updates. This is also supported by the fa
tthat no or small improvements in performan
e for value fun
tions were seen for solutionsontained after 200 and 400 updates.� The heuristi
s used are not very good and better point sele
tion strategies 
an be devised.The method was able to eliminate relatively rapidly the dependen
e and disadvantage fromthe initial value fun
tion 
hoi
e (simple blind poli
y solutions) on all three test problems. Thisis do
umented by a signi�
ant improvement of performan
e of the method (after more updates)for 
ases in whi
h blind poli
y solution performed poorly, like the Maze20B and the Shuttledo
king problem. Overall we believe that the high performan
e of the method is mainly due toits ability to approximate the shape of the optimal value fun
tion well.145



5.3.5 Summary of test resultsTop performersOverall, the best 
ontrol performan
e was obtained by the new in
remental linear ve
tor methodwith Sondik's updates. It a
hieved the best or 
lose to best results on all three test problems.The se
ond best performer was the least-squares method with linear Q-fun
tions. The thirdbest performer was the newly proposed fast informed bound method. Interestingly all threemethods delivered top results on all three test problems; their performan
e was not test spe
i�
.Also signi�
an
e tests for the Maze20 and Maze20B problems 
on�rmed that these methodsindeed di�er from the others. For the Maze20 problem the linear ve
tor methods (with moreupdates) turned out also to be signi�
antly di�erent from the other two top performers.The unifying fa
tor of the three best performing methods is that all of them try to approx-imate the shape of the value fun
tion over iteration steps. This is done: in the 
ase of linearve
tor method by updating derivatives (linear ve
tors) using exa
t Sondik's update rule, forthe fast bound method by using a simple update rule that approximates the derivatives of thevalue fun
tion, and for the least-squares �t by providing suitable pie
ewise linear and 
onvexparametri
 models. The value iteration pro
edure that tries to preserve the shape over iterationsteps also tends to approximate the shape of the optimal value fun
tion better. This is veryimportant for the 
ontrol problem, where we would like to guess the right relative (rather thanabsolute) value fun
tion values for di�erent belief points.The top three methods have quite di�erent properties. The in
remental linear ve
tor methodgradually improves the pie
ewise linear fun
tion. Under the appropriate point sele
tion strategyis guaranteed to 
onverge to the optimal solution. Unfortunately, the pri
e paid for this is thatthe 
omplexity of the value fun
tion grows with every iteration although this growth is at mostlinear (in 
ontrast to the potential exponential growth for the exa
t method). On the otherhand, both the Q-fun
tion least-squares �t method and the fast informed bound method workwith restri
ted value fun
tions that 
onsist of jAj linear ve
tors. This keeps the 
omplexityof their updates 
onstant over iteration steps. The main di�eren
e between the two methodsis that the fast informed bound method 
omputes new updates dire
tly (whi
h 
an be donequi
kly). It upper bounds the exa
t update and it is guaranteed to 
onverge uniquely. On theother hand, the Q-fun
tion least-squares �t needs to sample and update a set of belief points�rst, does not provide bounds and is not guaranteed to 
onverge uniquely.Worst performing methodsAll of the other methods tested had results that were more problem sensitive. We believe thatthe main fa
tor in all 
ases was the shape of the value fun
tion used, whi
h 
an be more or lesssuitable for the problem at hand.The simulation results showed that the grid-based nearest neighbor method performs worst.Espe
ially bad were the results it obtained on maze problems, where it was outperformed byall other methods (even by simple blind poli
y and MDP approximations) by a large margin.This is both for heuristi
 and for random grids. The signi�
an
e tests for maze problemsshowed that results a
hieved by grid-based nearest neighbor methods are not a 
onsequen
e ofrandomness and that they di�er signi�
antly from all other 
ontenders. The main reason forits poor performan
e was the usage of the pie
ewise 
onstant value fun
tions that do not �t theunderlying pie
ewise linear and 
onvex value fun
tions for smaller grid resolutions very well.This makes the nearest neighbor method unsuitable for larger belief spa
e POMDP problems,and even in a 
ase when the grid resolution is suÆ
ient, there are always more eÆ
ient andbetter methods available. 146



method runtime (se
)MDP-based approximation 2Simple blind poli
y 7Fast-informed bound 95Least-squares �t with Q-fun
tions (100 sample points), 10 parallel updates 299Grid-based point interpolation with the 210 point regular grid 736Table 5-9: Exe
ution times of some of the implemented algorithms on Maze20 problem. Thealgorithms were implemented in Lu
id Common Lisp and were run on a Sun Mi
rosystemsSPARC-10. All methods ex
ept least-squares �t were implemented using value iteration strate-gies and relative stopping 
riterion with a pre
ision parameter 0.1. Least-squares �t methodwith linear Q-fun
tions used 100 sample points and parallel updates. Time it took the methodto 
ompute 10 iterations is listed. Also grid-based point interpolation method with the regulargrid of size 210 points is used.5.4 Runtimes of methodsValue fun
tion approximation methods were implemented in Lu
id Common Lisp and wererun on a Sun Mi
rosystems SPARC-10. Times to 
ompute results for di�erent methods variedon di�erent test problems, point sele
tion strategies and/or 
hoi
e of other parameters (likepre
ision parameters for the value iteration strategy). Also various methods presented here havebeen implemented with di�erent degrees of e�ort devoted to optimization of the 
al
ulations.Therefore, di�eren
es in exe
ution time should not be a basis for relative 
omparison of themethods. The runtime results are presented here for informational purposes only.Tables 5-9 and 5-10 show runtimes of some of the implemented algorithms for the Maze20problem in se
onds. Table 5-10 is used for in
remental methods and lists times needed toa
hieve the improvement for a new grid-size or new set of updates. To illustrate the strongdependen
e of methods on parameters, assume that we 
hange the pre
ision parameter for thegrid-based point interpolation method with the regular grid in table 5-9 from 0.1 to 0.4. Thenthe exe
ution time of the method drops from 736 se
onds to 256 se
onds.The running times for the Maze20B problem were not very far from those for the Maze20.On the other hand, solutions for the simpler Shuttle problem were a
quired very qui
kly, forexample a solution for the fast informed bound method (with pre
ision 0.1) was 
omputed inless than 1 se
ond, and all 400 in
remental linear ve
tor method updates took about 30 se
onds.5.5 Experimental biasesAlthough we have tried to 
over a spe
trum of POMDP problems of di�erent 
omplexity inour experiment, it is our obligation to point out known de�
ien
ies and possible gaps in ourapproa
h. The main problem we 
urrently see is related to the sele
tion of test problems usedfor our experiments.In general all of the test problems have relatively small transition and observation 
omplex-ity, for example there are at most four possible adja
ent rooms the robot 
an move into fromany spe
i�
 room. Be
ause of this the transition and observation matri
es are sparse with a lotof zeros. Thus the simulation results and the evaluation of methods are biased towards prob-lems with su
h lo
al 
hara
teristi
s. Although this bias may be justi�ed for many real-world147



method init. runtime (se
) for in
remental improvementstime 40 80 120 160 200 240 280 320 360 400grid-based pointinterpolation 2 24 135 162 288 395 502 778 881 818 1402grid-basednearest-neighbor 2 70 642 1213 1318 1387 2304 2934 5938 7237 3731in
remental linearve
tor method 7 129 397 652 932 1168 1328 1455 1593 1772 1933Table 5-10: Exe
ution times of some in
remental algorithms for the Maze20 problem. Grid-based point interpolation method uses the interpolation strategy and the the heuristi
 gridexpansions proposed in se
tion 4.7.3. For every grid re�nement (in
rease of a grid by 40 points)the method is iterated until the pre
ision of 0.4 rea
hed. Time it takes the method to obtainthe solution for a new grid is measured and listed. Grid based nearest-neighbor works with thesame heuristi
 grid sele
tion strategy and relative stopping 
riterion. In
remental linear ve
tormethod uses a �xed set of 40 points that are repeatedly updated (using Sondik's linear ve
torupdates). The method is initiated with a simple blind poli
y solution and times to exe
ute 40update in
rements are listed.problems (with natural lo
al 
hara
teristi
s) to make the experiment better we also need totest problems with high 
onne
tivity.5.6 SummaryTest 
on
lusionsIn the �rst part of the experiment we tested bounds produ
ed by several di�erent value fun
tionmethods using various grid sizes and number of updates. Although we were able to obtain sig-ni�
ant improvements in the bound quality for both initial bounds (MDP-based approximationand simple blind poli
y method), we were not able to a
hieve very tight bound di�eren
es forthe Maze20 problems for the tested range of grids and updates. This suggests that high qualitybounds are very likely hard to obtain for larger and more 
omplex POMDP problems. Thus,in general, one 
annot expe
t to get very good bounds for 
omplex problems for free and oneneeds to pay the toll for ea
h improvement.In the se
ond part of the experiment we tested the 
ontrol performan
e of several valuefun
tion approximations. All tested methods were evaluated using a s
ore representing averagea
hieved reward (
ost) for a set of simulation runs for two sets of belief points. To make surethat s
ores obtained are not a result of randomness (a sensible 
on
ern when dealing withsto
hasti
ity) we performed pairwise statisti
al signi�
an
e tests for all methods. These testsshowed that methods with larger a
hieved s
ore di�eren
es indeed di�er signi�
antly and thusevaluation along average s
ores for tested methods is justi�ed.The 
ontrol performan
e a
hieved by di�erent methods seems to be 
ompletely unrelated tothe quality of the bounds. This 
on�rms that for the purpose of 
ontrol, it is not absolute butrelative values, that is the shape of the value fun
tion that matters. This also gives us hopethat there are fast and eÆ
ient methods that 
an lead to good 
ontrol performan
e for more
omplex POMDP problems. This is not true when the 
riterion used to judge the method isthe quality of the bounds in absolute terms. 148



Methods that a
hieved the best simulation results used pie
ewise linear and 
onvex repre-sentations of value fun
tions, and attempted to approximate the shape of the value fun
tionover update steps. The 
lear winner for all three problems was the new in
remental linearve
tor method that 
omputes linear ve
tors (derivatives) for sele
ted points and in
rementallyupdates the existing pie
ewise linear and 
onvex approximation with new ve
tors. The advan-tage of the in
remental linear ve
tor method is that it 
an 
ontinue to improve the a
quiredsolution with more time. In the limit, under a suitable point sele
tion strategy, it 
onvergesto the optimal value fun
tion. The other top performers were the least-squares method withQ-fun
tion model and the fast informed bound method (also a new one). They use a restri
tednumber of jAj linear ve
tors over all iteration steps. This is unlike the in
remental linear ve
tormethod whi
h 
an grow the size of the linear ve
tor set with every iteration. Of the two, onlythe fast informed bound method is guaranteed to 
onverge; the least-squares �t 
an su�er fromthe problem of instability and divergen
e.The worst 
ontrol performan
e was a
hieved by the grid-based nearest-neighbor method,whi
h approximates the optimal pie
ewise linear and 
onvex value fun
tion with a pie
ewise
onstant fun
tion. The results suggests that nearest-neighbor is not suitable for the purpose of
ontrol for large belief spa
e POMDPs and that far better alternatives are available.ContributionsThis 
hapter presents and analyzes experiments we have performed on a set of three in�nitedis
ounted horizon problems of di�erent 
omplexity using a large variety of di�erent approxi-mation and bound methods. The need of large s
ale experiments in the POMDP domain forthe future exploration and understanding of the domain is enormous. Thus, the main 
on-tribution of our work is in the large experimental study, providing a
hieved results and theirinterpretation.In our work we have experimentally tested various new and existing value fun
tion approx-imation methods, their extensions and modi�
ations. The results presented showed that thereare various eÆ
ient alternatives to the least-squares �t approa
h that seemed to dominate theAI literature. These are based on grid-based or other alternative approa
hes, like fast informedbound. Their main advantage is that they do not su�er from the threat of potential instabilitywhen 
ombined with the value iteration method to solve in�nite dis
ounted horizon problems.Also results they a
hieve are often superior or 
omparable to those by the least-squares method.
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Chapter 6Extending POMDP framework:Management of is
hemi
 heartdiseaseThe main advantage of the POMDP framework is its ability to model two sour
es of un
ertaintythat stem from a
tion out
ome and imperfe
t observability. This does not mean that the basi
framework 
an be applied to any domain without 
hanges or that the framework 
an 
aptureall important features of any domain. When dealing with real-world problems we must often\adapt" the formalism to �t the domain. Extensions 
an be made in both dire
tions. Someextensions make the problem more 
omplex but are required to solve the problem, e.g. modelsin whi
h observations are delayed. Other extensions take advantage of domain spe
i�
 features,model more of the underlying problem stru
ture and make it possible to speed-up problem-solving routines.In the following we will explore and propose various new stru
tural extensions to the ba-si
 POMDP framework. These exploit additional problem stru
ture and help us to redu
ethe 
omplexity of problem-solving methods. The extensions are studied in the 
ontext ofa real-world problem from the area of medi
al therapy planning { the problem of manage-ment of patients with is
hemi
 heart disease(IHD) [Wong et al. 90℄ [Leong 94℄ [Hauskre
ht 96a℄[Hauskre
ht 97a℄.6.1 Modeling diagnosti
 and therapeuti
al pro
esses us-ing POMDPsThroughout the history of AI in medi
ine, a large amount of resear
h work has been devotedto the development of methods and te
hniques 
apable of modeling the de
ision pro
ess of aphysi
ian under un
ertainty. The fo
us of work in this area has gradually shifted from problemswith stati
 features to ones that emphasize the dynami
 aspe
t of the de
ision pro
ess. Whilemost of the work on dynami
 de
ision making addresses the issue of a
tion out
ome un
ertainty,the feature of partial observability is often irrelevant or is abstra
ted out. Resear
h work thatassumes perfe
t observability in
ludes the management of 
hroni
 heart disease [Leong 94℄ anddiabetes therapy planning [Hovorka et al. 92℄.The assumption of perfe
t observability may not work well for problems in whi
h observa-151



tions are impre
ise indi
ators of the patient state (as is often the 
ase in assessing underlyingdisease) and when investigative a
tions have signi�
ant 
ost (su
h as invasiveness and e
onomi
expense). In su
h 
ases, 
areful evaluation of the 
osts and bene�ts asso
iated with both treat-ment and investigative a
tions with regard to global obje
tives is ne
essary and therapeuti
aland investigative a
tions are often interleaved over the 
ourse of the treatement. A formalismthat allows us to 
apture the 
omplexity of su
h a pro
ess is the POMDP framework, whi
hmodels both sour
es of un
ertainty, various investigative and treatment 
hoi
es, and 
osts andbene�ts asso
iated with su
h interventions and their out
omes.6.1.1 Chroni
 is
hemi
 heart diseaseAn example of a therapy planning problem that requires one to 
onsider two sour
es of un
er-tainty is the management of 
hroni
 is
hemi
 heart disease (IHD) [Wong et al. 90℄ [Leong 94℄[Hauskre
ht 96a℄ [Hauskre
ht 97a℄.Is
hemi
 heart disease is a 
ondition that is 
aused by an imbalan
e between the supplyof available oxygen and the demand for oxygen by heart mus
le. This imbalan
e 
an 
ause
ardia
 disfun
tion and subsequent impairment to blood 
ir
ulation. The most 
ommon 
auseof is
hemia is 
oronary artery disease, whi
h 
orresponds to the narrowing of 
oronary vesselsthat redu
es the perfusion of heart mus
le most 
ommonly due to atheros
leroti
 
hanges.Coronary artery disease is a progressive disease with aggrevating symptomatology and 
ardia
impairment. The leading symptom of is
hemi
 heart disease is 
hest pain (angina). Coronaryartery disease 
an also be a

ompanied by various 
ompli
ations, for example a
ute myo
ardialinfar
tion (MI).Treatment of 
oronary artery disease 
an be 
onservative, using medi
ations like Beta blo
k-ers, or more invasive, using surgery that attempts to repair obstru
ted 
oronary arteries. Thereare two 
ommonly used surgi
al pro
edures: per
utaneous transluminal 
oronary angioplasty(PTCA) and 
oronary artery bypass graft surgery (CABG). Both pro
edures 
arry an in
reasedrisk of death, a risk of perioperative MI and 
ause a lot of pain and dis
omfort for the patient.One problem with assessing the status of 
oronary artery disease involves its ability to
hange over time. In general, it is not possible to state the 
urrent status of patient's 
oronaryarteries, or identify the level of the patient's is
hemia (O2 demand-suppply mismat
h). Howeverthere are investigative pro
edures that 
an reveal more about the underlying disease, su
h asan angiogram or a stress test. Unfortunately these pro
edures are also invasive and/or 
arryin
reased risks of MI and death.Investigative and treatment a
tions 
an be repeated or 
hanged over time depending onthe progression of the disease. For example, a patient 
an have several PTCA's over a spanof a few years to 
lear 
oronary arteries, improve perfusion and relieve 
hest pain symptoms,or a patient might undergo several stress tests. The obje
tive of the problem is to determinethe best possible treatment step or sequen
e of steps with regard to various treatment goals orobje
tives. These in
lude the following qualitative goals:� in
rease in the quality of life (e.g. relieve 
hest pain symptoms)� de
rease the 
han
e of a
ute episodes (MI)� in
rease length of life� de
rease the invasiveness of pro
edures� de
rease the e
onomi
al 
ost of asso
iated pro
edures152



In order to optimize su
h obje
tives one needs to 
onsider various treatment alternatives nowand in future, their possible out
omes, and bene�ts and risks of su
h 
hoi
es with regard toglobally pursued goals.6.1.2 A typi
al de
ision s
enarioWhile doing routine medi
al s
reening, it is dis
overed that a patient shows signs of is
hemiaon a resting EKG. No other observations (
hest pain, et
.) are positive. Possible a
tions forthe physi
ian are:� Do nothing and observe the patient. However, this leaves the patient at a higher risk ofMI or possible death.� Administer medi
ation, that tends to redu
e the risk of MI (e.g. Beta blo
ker, aspirin).� Request an angiogram, that reveals the pre
ise status of the 
oronary arteries, and helpsdetermine whether the patient is in a higher risk group. Unfortunately, the angiogram hasan additional expense in
luding patient dis
omfort, and risks of MI or death.On
e a de
ision has been made, su
h as pres
ribing the medi
ation, the same de
ision pro
essmust be repeated again after some time period. The result 
an be the same or an alternative
hoi
e based on new observed symptoms and �ndings at that time. For example, worsening ofthe symptoms would 
ause one to 
onsider an angiogram possibly followed by angioplasty orbypass surgery. At ea
h time point, the a
tual de
ision must take into a

ount future progressof the disease, as well as future treatment and investigative 
hoi
es.6.2 Using POMDP to model IHDThe management of is
hemi
 heart disease embodies 
hara
teristi
s that mat
h well manyfeatures of the POMDP formalism. The major problem fa
ed when applying the POMDPframework to the management of IHD is the size and 
omplexity of the IHD model. Its 
om-plexity is far beyond 
urrent limits of exa
t POMDP problem solving pro
edures. In order toover
ome this hurdle we fo
used on two 
omplementary solutions:� redu
tion of the 
omplexity of the POMDP model by representing underlying stru
ture;� substitution of exa
t solution methods with approximate ones.The obje
tive of the �rst approa
h is to 
apture and represent more features and stru
ture ofthe underlying domain model, as 
ompared to the dire
t appli
ation of the POMDP formalism,and thus hope to redu
e signi�
antly state and observation spa
e sizes one needs to work with.This work led to a model with fa
tored states 
onsisting of both observable and partially observ-able state variables. The se
ond approa
h is typi
al when applying the POMDP methodologyto more 
omplex problems and was the 
enter of our dis
ussion in previous 
hapters.In the following we will des
ribe the 
omponents of the POMDP model proposed and de-signed for the is
hemi
 heart disease domain.6.2.1 Representing statesThe state of a patient at any instan
e of time 
an be des
ribed using a �nite set of randomstate variables. State variables used in the IHD problem and their possible values are shown153
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coronary artery disease visualFigure 6-1: Is
hemi
 heart disease model: state variables representing pro
ess states and ob-servations.in �gure 6-1. In general every possible assignment of values to state variables des
ribes oneunique patient state. However, the set of state variables we used for the is
hemi
 heart disease(IHD) problem is not homogenous and expli
itly restri
ts 
ertain 
ombinations of variable valuesusing hierar
hi
al (
onditional) subsumption. The hierar
hi
al 
onstraints represent situationsin whi
h some 
ombinations of variables and their values are either impossible or are irrelevantfor the problem at hand. For example for the state variable, status, with possible values ofdead and alive, values asso
iated with a
ute-MI, 
oronary artery disease or 
hest pain eitherdo not make sense or are irrelevant when the patient is dead. Using hierar
hi
al subsumption,state variables are \enabled" only when \status" is set to an appropriate value. Hierar
hi
alsubsumption is also useful for des
ribing a state using di�erent levels of detail, i.e. statevariables 
an des
ribe both higher level abstra
ted state 
omponents as well as their lower levelelaboration. The state variable stru
ture for the IHD problem is represented in �gure 6-1; lowerlevel state variables are en
losed in the re
tangle.State variables in the model 
an be used to des
ribe the dynami
s of a disease pro
ess overtime. These variables are 
alled pro
ess state variables. A set of pro
ess state variables for theIHD problem is shown in �gure 6-2. Noti
e that for example state variable 
hest pain is nota pro
ess state variable. This is be
ause it is assumed not to in
uen
e dire
tly the dynami
behavior of the disease pro
ess.State variables 
an be observable, that is they 
orrespond to variables that 
an be seendire
tly at any point in time. On the other hand, variables that 
annot be observed dire
tly
orrespond to hidden variables. The set of observable variables for the IHD problem is listed in�gure 6-2. Noti
e that a state variable 
an be both a pro
ess state variable and an observablevariable (e.g. de
reased ventri
ular fun
tion). This 
aptures the fa
t that not all pro
ess statevariables in a POMDP need to be represented and treated as hidden (or partially observable)variables. This is also one of the major deviations from the ordinary POMDP model thatassumes that only partially observable pro
ess states exist. Expli
it representation of bothobservable and hidden pro
ess state variables allows us to 
ombine the advantages of MDP andPOMDP formalisms. It leads to speed-ups in manipulation, inferen
e and planning routines bymeans of redu
ing the 
omplexity of the information state spa
e. This issue will be dis
ussedlater.Our POMDP model for the IHD is designed to evaluate and reason about the 
onsequen
es154
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coronary artery bypass
graft surgery (CABG)Figure 6-3: Is
hemi
 heart disease model: a
tions.of long term treatment. The model omits many short term de
isions, e.g. those that are relatedto the management of a
ute 
hest pain. Also some state variables like a
ute MI are 
onsideredto be observed dire
tly. The state des
ription also in
ludes state variables re
e
ting the historyof angiopasty (history PTCA) and the history of bypass surgery (history CABG). The reasonfor in
luding these is that pro
ess states need to satisfy the Markov property and the transitionfun
tion that maps previous to next state is believed to be in
uen
ed strongly (at least in someinstan
es) by past PTCA or CABG pro
edures.6.2.2 A
tionsA
tions 
orrespond to treatment or investigative pro
edures (see �gure 6-3). no-a
tion 
or-responds to the 
hoi
e in whi
h no treatment or investigative a
tion has been sele
ted. Ingeneral, treatment a
tions a
tively 
hange the state of the patient to more appropriate state.Investigative a
tions explore the state of the patient, espe
ially the related hidden pro
ess statevariables. However investigative a
tions may not only reveal more about the underlying patientstate but 
an also lead to a 
hange in the state (e.g. patient 
an die or get a
ute MI as a resultof an angiogram pro
edure).In general a set of a
tions in the POMDP model 
an have exploratory, transitional and 
oste�e
ts. The exploratory e�e
t of a
tions is based on their ability to indu
e observations that155



in turn 
an be suggestive of some internal states. An example is an angiogram investigation orstress test. The transition e�e
t of the a
tion is represented by its ability to 
hange the internalstate of the patient: for example PTCA 
an lead to the reopening of the blood supply in themain vessels. The third e�e
t of a
tions is their 
ost whi
h 
an be measured in terms of patientsu�ering, patient dis
omfort and/or �nan
ial 
ost. A
tions that have only an exploratorye�e
t and are neither asso
iated with a 
ost nor a�e
t the state transition are not expli
itlyrepresented in the a
tion set.6.2.3 Representing sto
hasti
 transition and observation modelsRepresenting states in a fa
tored form is very useful for representing various independen
iesand regularites that enri
h the sto
hasti
 relation between states and a
tions over time. In thetraditional POMDP model, sto
hasti
 relations between Markov pro
ess states over time onone side and pro
ess states and observations on the other, are represented using transition andobservation matri
es. These de�ne probability distributions for the patient state 
hanges underspe
i�
 interventions, re
e
ting for example the fa
t that the patient with 
oronary disease 
aneither die, su�er MI, or re
eive 
oronary artery repair as a result of PTCA or CABG, withsome probability or that severe is
hemia 
an, to various degrees, lead to mild, severe or evenno 
hest pain.Graphi
al modelsProbabilisti
 independen
es and regularities between variables in fa
tored form 
an be oftenrepresented using graphi
al models, e.g. a Bayesian network. Figure 6-4 illustrates the tran-sition and observation model built for the is
hemi
 heart disease problem using a Bayesiannetwork approa
h. In this �gure, random (
han
e) variables are represented by 
ir
les, anda
tions as re
tangles. Patterned 
ir
les 
orrespond to observable variables, that is variablesfor whi
h values are assumed to be known at every time step. The graphi
al model shown inthe �gure does not 
orrespond to a typi
al Bayesian network but to its hierar
hi
al extension,where sets of random variables 
an be hierar
hi
ally subsumed by other variables. This ex-tension allows us to represent types of independen
es that otherwise 
ould not be representedwhen a 
at variable set is used.The advantage of the hierar
hi
al Bayesian network is illustrated on our IHD model. Thetransition probabilities between previous state (at time t-1) and a state where the patient isalive and su�ers from 
oronary artery disease of some severity are represented using two prob-ability distributions, ea
h exploiting di�erent independen
es. The �rst probability distribution
on
erns the variable status and represents the distribution of a patient being alive or dead as aresult of some pro
edure performed in the previous state. This distribution depends on valuesof state variables in the previous time step. The se
ond distribution represents a 
onditionaldistribution of 
oronary artery disease given a previous state, an a
tion and patient being alive.Su
h a distribution 
an exploit a di�erent set of independen
es, i.e. the value of the 
oronaryartery disease variable being independent of some previous state variables when the patient isalive. In general the hierar
hi
al subsumption may 
apture di�erent sets of independen
es fordi�erent levels of detail. This leads to a simpler representation of the 
onditional distributionfor a patient being alive and su�ering from 
oronary artery disease of 
ertain severity, be
ausethe 
onditional distribution 
an ni
ely de
ouple along di�erent levels of detail.156
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 heart disease: transition and observation model.
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Representing additional relations and 
onstraintsOrdinary Bayesian networks 
an represent 
onditional or marginal independen
es that holdbetween variables. However, there are other relations that often hold and 
an be useful forboth making the probabilisti
 model more 
ompa
t and for planning. These may in
ludepartial 
onditional independen
e (the independen
e relation does not hold for all possible valuesof 
onditioning variables but for a subset of values) or various deterministi
 relations and
onstraints (some value assignments are impossible be
ause values of two or more variables arein
ompatible).For the IHD problem we fo
used on the problem of modeling additional deterministi
 
on-straints. Constraints are expressed by means of rules that restri
t some 
ombinations of thevariable values. For example the variable history PTCA in the transition model 
an 
hangefrom false to true only when a
tion PTCA has been 
hosen in the previous step. Similarly, thesame variable on
e it is true remains true forever. The deterministi
 
onstrains are representedby a set of rules, su
h as:Rule 5: If (PAST (history-PTCA true))then (history-PTCA true)Deterministi
 
onstraints 
an be useful in speeding up probabilisti
 
omputation and so weused them heavily to 
onstru
t 
ompiled POMDP model, whi
h we dis
uss later.6.2.4 Initial state modelOn
e the transition and observation model is de�ned, we 
an expand the above belief networkmodel as many time steps as needed. This allows us to 
ompute various probabilisti
 querieswith regard to variables over di�erent time instan
es. However, before we 
an answer su
hqueries we need to know prior probabilities for the initial pro
ess state variables, that is priorsfor the pro
ess state variables at time t = 0.For our IHD model and related 
omputations, it is ne

essary to 
ompute initial probablitiesfor all hidden pro
ess state variables (namely 
oronary artery disease, is
hemia). All otherpro
ess state variables are assumed to be observable and are therefore dire
tly available. Theset of initial probabilities 
an be 
omputed using the prior model in �gure 6-5. The prior modeloverlaps with the transition and observation model and adds a new variable of prior 
oronaryartery disease that in
uen
es the hidden variable 
oronary artery disease and models expli
itlythe prior knowledge about the distibution of 
oronary disease severities. The distribution 
anbe either provided dire
tly or 
omputed using additional 
ontext information not expli
itly
onsidered in the transition and observation model. The 
ontext variables, su
h as age, sex, orsmoking history are used to estimate prior distributions more a

urately.On
e the prior model is de�ned we 
an 
ompute the initial probability of a patient having
oronary artery disease and is
hemia of various severities, based on initial �ndings, observationsand relevant prior information. This in turn allows us to 
ompute and answer other probablisti
queries, and to predi
t the next patient state for a spe
i�
 intervention.In the 
urrent version of the IHD model we assume that the probability distribution for theprior 
oronary artery disease variable is given dire
tly and no 
ontext information is assumed.However this is relatively easy to 
hange and one 
an use some simple model to 
ompute newpriors, e.g. a logisti
 regression model from [Anderson et al. 90℄.158



stress test
result

chest pain
acute MI

alive

dead

patient
status

coronary
artery disease

history CABG

rest EKG
ischemia

ischemia

age

gender

smoking
history

history PTCA

descreased
ventricular
function

prior coronary
artery disease

cornary artery
disease visual

Figure 6-5: Is
hemi
 heart disease: prior model.In
onsisten
y of prior and transition modelsThe prior model makes it possible to 
ompute the probability distribution for hidden statesgiven all 
urrent observations as well as all prior information. In prin
iple one 
ould applythe same prior model to determine the probability distribution for the next state. Howeverthis approa
h di�ers signi�
antly from what we do when we update the 
urrent state using thetransition model.Changing models in this way introdu
es the tri
ky issue of model 
onsisten
y. Assume apatient with spe
i�
 
ontext information and an initial set of observations is given no treatmentand at the follow-up visit the patient has the same set of observations and 
ontext. Naturally ifwe use the same prior model we will get the same answer for all hidden variables. However if weuse the prior model for the initial state and the transition model subsequently for the followingsteps, the resulting probability distribution will usually di�er. This 
auses us to question the
onsisten
y of these two approa
hes and whether our belief about the patient's state should bethe same in both the initial state and at the next sequential state.The answer is straightforward. Using the prior model sequentially over and over againignores the information obtained in previous steps that 
onsist of a history of observations anda
tions (or 
omplete information state). A better approa
h employs the transition model andtakes into a

ount all available information. Thus information available initially is 
onsidereddi�erent from information used later and so, we do not get the same answer for initial andsequential sitations despite the fa
t that all 
ontext and 
urrent information may be the same.This also means that no 
onsisten
y enfor
ement between the prior and transition models shouldbe done. 159



6.2.5 Cost modelThe 
ost model in a POMDP des
ribes payo�s asso
iated with possible state transitions. Forexample in managing is
hemi
 heart disease we asso
iate the highest 
ost with transitions tothe dead state, smaller but still substantial 
ost with o

urren
es of MI, and severe 
hest pain.In a POMDP 
osts and rewards are asso
iated with possible transitions and di�erent 
osts
an be de�ned for every transition between any two states and an a
tion. However, it is oftenreasonable to assume the 
ost model has more stru
ture. In the IHD problem we propose a
ost model that 
onsists of two 
omponents:� a 
ost asso
iated only with the resulting state. This 
ost is independent of the initialstate as well as any a
tion performed in that state, for example there is a 
ost asso
iatedwith a live patient that is su�ering from severe 
hest pain and has experien
ed an a
uteMI.� a 
ost asso
iated with an a
tion, regardless of initial and resulting states. For examplethere is a 
ost asso
iated with performing 
oronary bypass surgery that in
ludes thee
onomi
 
ost, patient's su�ering, dis
omfort, and so forth.In su
h a 
ase the transition 
ost from state s to state s0 given a
tion a 
an be expressed as:�(s; a; s0) = �(s0) + �(a)The 
ost asso
iated with a state that results from a transition 
an be further broken downinto 
omponent state variable 
osts using an assumption of 
ost independen
e. A 
ost asso
iatedwith a 
ompound state of being alive, having an a
ute MI, su�ering from severe 
hest pain andhaving moderate 
oronary artery disease, 
an be expressed using a 
ost model that adds up
ost 
ontributions from severe 
hest pain, a
ute MI, moderate 
oronary artery disease and theother state variables. This 
an be determined as follows:�(s) =Xi �(si):where si is the state variable assignment to variable i.The fa
t that the 
ost model de
omposes into atomi
 
osts asso
iated with state variablesand a
tions signi�
antly redu
es the number of parameters we need to de�ne. This in turnsimpli�es the stage of building a POMDP model in whi
h quantitative 
ost estimates need tobe found and assesed. On
e these estimates are 
olle
ted we use a transition model to 
omputethe expe
ted one step 
ost asso
iated with a
tion a and a state 
on�guration s as:�(s; a) =Xs0 p(s0js; a)�(s; a; s0) = �(a) +Xs0 p(s0js; a)�(s0)6.2.6 Dis
retizing timeThe POMDP framework, like many other frameworks, models 
ontinuous time through dis-
retization. In the IHD problem it is assumed that every a
tion is asso
iated with a �xed timeduration and that any 
hange in state o

urs between the dis
retized time points. The 
hosenduration of transitions strongly in
uen
es transition probabilities. For example, the probabilitythat a patient will die as a 
onsequen
e of not treating severe 
oronary obstru
tion is higherfor a one year period than for a three month period.160



In our IHD model we assume that transitions asso
iated with invasive a
tions o

ur withina day, and transitions asso
iated with non-invasive a
tions (su
h as no-a
tion and medi
ationtreatment) are within 3 months. These durations are also re
e
ted in the transition probabilitiesrepresenting rates of state variable 
hanges.6.2.7 Modeling the obje
tive fun
tionThe treatment obje
tive is to �nd the a
tion or the sequen
e of a
tions that minimize theexpe
ted 
ost with regard to the 
hosen de
ision model. The typi
al de
ision models one
an use in the IHD 
ase in
lude both the �nite horizon 
riterion in whi
h one optimizes thetreatment with regard to the next n time steps, and the in�nite dis
ounted horizon 
riterionwhi
h 
ombines 
osts over an in�nite number of time steps, with heavier dis
ounting on themore distant future.In our work we use the in�nite dis
ounted horizon model. This allows us to express longerterm goals and not restri
t the de
ision horizon to a �nite number of steps. An interestingfeature of this model is that we use dis
ounting (
 = 0:95) only for long-term a
tions (no-a
tionand medi
ation). All other short-term a
tions are undis
ounted and their 
osts are added fullywithin the model. Using two di�erent dis
ounts a

ounts for di�erent a
tion durations.The important issue from the point of view of a
tion sele
tion is that the information-stateat any point in time 
an be suÆ
iently modeled by a belief state that assigns a probability toevery possible pro
ess state. The importan
e of this stems from the fa
t that the solution inthis 
ase is known to satisfy some ni
e properties, namely the value fun
tion is pie
ewise linearand 
on
ave. This knowledge allowed us to use better exa
t and approximation methods.6.3 A
quisition of model parametersOne of the important problems asso
iated with the is
hemi
 heart disease model is to obtaina set of appropriate model parameters. The parameters de�ne either probabilities or 
ostsasso
iated with state out
omes and a
tions. In general these 
an be obtained by:� a
quiring them dire
tly from the domain expert or from the literature;� infering them from the available data;� or by using the 
ombination of these two methods.Although there are some studies with possibly useful datasets we were not able to obtainthem for various proprietary and te
hni
al reasons. This left us with the 
hoi
e of de�ning theparameters by hand using the published results or utilizing the experien
e of a 
ardiologist.We primarily relied on Wong [Wong et al. 90℄ that summarizes various studies in the area of
hroni
 is
hemi
 heart disease and 
ompares out
omes for various interventions. In addition,one of our 
ollegues, Dr. Hamish Fraser, helped us to interpret some of the available data.6.3.1 A
quisition of transition and observation probabilitiesTo populate probabilisti
 transition and observation models we had to a
quire parameters for all
onditional distributions de�ned by parents-
hild variable 
ombinations in the Bayesian networkin �gure 6-4. The total number of parameters one has to de�ne for the model is 1171 (re
allthat some parameters 
an be infered be
ause probability of all possible instan
es should sumto 1). This is signi�
antly less 
ompared to the 
ase with 
at state and observation spa
es and161




omplete transition and observation matri
es with 1127520 parameters (the number assumesthat the pro
ess state spa
e and the observation spa
e are separate). Note that the numberof parameters 
an be de
reased by taking into a

ount further stru
tural features (e.g. partial
onditional independen
ies).The 
onditional probabilities for transitions 
an be obtained or infered from the results of
lini
al studies. For example the probability of the patient staying alive or dying as a resultof a surgi
al intervention 
an be estimated from mortality rates for a spe
i�
 treatment andspe
i�
 patient 
ondition. Similarly one 
an obtain numbers for other parameters. For example,numbers re
e
ting the rate of 
hange of the 
oronary disease under di�erent interventions
an be obtained from the published su

ess rates of revas
ularization for PTCA and CABG.Unfortunately, in many 
ases the results of studies are presented independently for one or a few
onditioning variables, leaving open the problem of how to deal with various 
ombinations. Insu
h 
ases we either assumed independen
e, when it seemed reasonable, or adjusted probabilitiesby 
onsulting Dr. Fraser. In general the pro
ess of de�ning probability parameters turned outto be very tedious and time 
onsuming. We believe that the availability of datasets wouldsimplify the a
quisition pro
ess and would lead to more a

urate parameter estimates.Table 6-1 shows the parameters of the lo
al probability table used to de�ne the distributionof the 
oronary artery disease in the IHD model. The parameters represent transition ratesfor a 3 month period for no-a
tion and medi
ation 
hoi
es. The parameters for other a
tionsre
e
t the su

ess rate of 
oronary artery disease repair. The probablity parameters shownwere obtained and modi�ed for our model based on results and su

ess rates published in[Wong et al. 90℄. The model at this stage does not distinguish between left main stem andmultiple vessel 
oronary artery disease and 
ombines them into the severe 
oronary arterydisease 
ategory. This leads to similar su

ess rates for CABG and PTCA pro
edures forsevere 
oronary artery disease.6.3.2 A
quiring 
ost model parametersWhile probabilities 
an in prin
iple be learned from an available dataset, 
osts re
e
t a 
ombi-nation of preferen
es of a physi
ian, patient et
. This makes them more subje
tive and usuallynot mineable in the datasets. In order to a
quire 
osts for the is
hemi
 heart disease model wehave designed an a
quistion method based on the 
ost distribution model. The method 
an beapplied dire
tly to the hierar
hi
ally stru
tured state variable set in the IHD model.The main idea of the approa
h is to des
ribe the distribution of 
osts among hierar
hi
allystru
tured 
omponents of the IHD model (like state variables, state variable values and a
tions).The 
ost model uses a lo
al weighting s
heme that des
ribes the amount of 
ost a lower level
omponent a
quires from the higher level 
omponent. The 
ost asso
iated with a lower level
omponent is 
omputed as: Costi = wiCost;where Cost represents a 
ost quantity to be distributed and wi is a weight asso
iated with alower level 
omponent that satis�es 0 � wi � 1 and that des
ribes a share of the 
ost inheritedby the 
omponent. There are two types of lo
al models, that either restri
t or do not restri
tvalues of the 
omponent weights wi:� and model, where weights asso
iated with lower level 
omponents (
orresponding to thesame higher level 
omponent) are 
omplementary and must satisfy: Piwi = 1, where iranges over all lower level 
omponents.� xor model, where weights asso
iated with lower level 
omponents are unrestri
ted and
omponents are treated independently. 162



a
tion history of previous 
oronary 
oronary artery diseasepro
edures artery disease normal mild-moderate severeno a
tion PTCA normal 0.945 0.047 0.008any CABG mild-moderate 0.001 0.944 0.055severe 0.0 0.001 0.999CABG normal 0.955 0.037 0.008no PTCA mild-moderate 0.001 0.957 0.042severe 0.0 0.001 0.999no CABG normal 0.99 0.0085 0.0015no PTCA mild-moderate 0.0001 0.9799 0.02severe 0.0 0.002 0.998medi
ation PTCA normal 0.945 0.047 0.008any CABG mild-moderate 0.001 0.944 0.055severe 0.0 0.001 0.999CABG normal 0.955 0.037 0.008no PTCA mild-moderate 0.001 0.957 0.042severe 0.0 0.001 0.999no CABG normal 0.99 0.0085 0.0015no PTCA mild-moderate 0.0001 0.9799 0.02severe 0.0 0.002 0.998angiogram - normal 1 0 0mild-moderate 0 1 0severe 0 0 1stress test - normal 1 0 0mild-moderate 0 1 0severe 0 0 1PTCA - normal 1 0 0mild-moderate 0.87 0.13 0severe 0.74 0.15 0.11CABG - normal 0.9 0.05 0.05mild-moderate 0.82 0.12 0.06severe 0.75 0.15 0.1Table 6-1: Lo
al probability table for the severity of the 
oronary artery disease, given thea
tion, history of previous pro
edures and severity of the 
oronary artery disease in the previoustime step. The transition probabilities for long-term a
tions (no-a
tion, medi
ation) are de�nedfor a 3 month period. 163
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Figure 6-6: Model used for the a
qusition of 
osts for the is
hemi
 heart disease model. Linkswith ar
s represent the and 
ost distribution model, links without ar
s represent the xor model.Numbers represent weights assigned to the lower level 
omponents.A graph representing a part of the 
ost distribution model for the IHD problem is shown in�gure 6-6. The and model is represented by a parent-
hildren 
ombinations with an ar
 on theoutgoing links and is used to distribute 
osts among 
omplementary 
omponents. For examplestatus alive is elaborated as lower level 
omponents 
hest pain, a
ute-MI, history-CABG, andso on, that are 
omplementary and ea
h is assigned a portion of the 
ost a

ounted for bystatus alive. On the other hand the xor model is represented by a parent-
hildren subgraphwithout an ar
 and is used to distribute 
osts to 
omponents that are ex
lusive. For example,the patient's status 
an be either dead or alive and the 
ost model de�nes how mu
h of theoverall 
ost assigned to the patient state is a

ounted for by ea
h alternative.The advantage of the 
ost de�nition model is that it requires the physi
ian to de�ne onlylo
al 
ost distributions (weights). This simpli�es signi�
antly the whole a
quisition pro
ess.For example we 
an ask the expert to quantify the 
ost asso
iated with di�erent severities of
hest pain on s
ale [0; 1℄ (or any s
ale as we 
an always renormalize the input), or ask the expertto quantify the importan
e of 
hest pain, a
ute MI, de
reased ventri
ular fun
tion and so onwith regard to the 
ost. The numbers shown in graph 6-6 
orresponds to the weights we usefor the IHD problem.On
e the 
ost distribution model is 
ompletely de�ned, we 
an 
ompute the 
ost asso
iatedwith a spe
i�
 low level 
omponent. This is done by multiplying weights asso
iated with thelinks one needs to traverse to get from the root of the distibution stru
ture to the parti
ularleaf node. For example, the 
ost for the severe 
hest pain is 
omputed as:Cost
hest-pain-severe = Costinitial �wstatus � walive �w
hest-pain �w
hest-pain-severewhere Costinitial is the 
ost we expe
t to distribute and the ws stand for weights asso
iatedwith di�erent links. The Costinitial value was set to 100 
ost units for the IHD problem.164



6.4 Finding 
ontrol poli
y for the IHD domain6.4.1 Representing information stateFor the standard POMDP models, the information state spa
e 
orresponds to the belief spa
ethat assigns the probability to every possible pro
ess state. However, this assumes that thepro
ess state is always hidden (partially observable). Contrary to this, the proposed IHDmodel uses pro
ess states that are heterogeneous and 
an have both perfe
tly and partiallyobservable 
omponents (state variables). In fa
t the presen
e of perfe
tly observable pro
essstate variables simpli�es the problem, as one 
an dire
tly in
orporate the observed state variablevalues into the information state. This redu
es the size of the information belief spa
e one needsto represent as it is de�ned only over all possible 
ombinations of hidden variable values. Thusan information state for the fa
tored state model with both perfe
tly and partially observablepro
ess variables 
an be represented using:� a set of observable pro
ess state variable values;� a belief over the 
ombination of all hidden variable values.The information state for the IHD problem 
onsists of an assignment of values to observablepro
ess state variables, for example status alive, a
ute-MI true, history-CABG false, history-PTCA false, and a belief over all possible 
ombinations of values for is
hemia and 
oronaryartery disease. Note that the information state for the 
ase when the patient is dead is des
ribedonly as status dead.The information state spa
e for the IHD model 
an be represented using a tree stru
ture in�gure 6-7. Internal nodes 
orrespond to observable variables, subtrees of an internal node toassignments of values to the asso
iated observable variable and leaf nodes to belief spa
e overhidden variable values. Then, every bran
h of the tree represents one possible assignement ofvalues to observable variables. Note the asymmetry due to hierar
hi
al state variable spa
e.Savings from the additional stru
tureThe information state spa
e for the stru
tured IHD model uses 17 possible 
ombinations ofobservable variable values: one for status dead and 16 for the alive state (four binary variables).All status alive 
ombinations require an additional 9-dimensional belief spa
e (all possible 
om-binations of values for 
oronary artery disease and is
hemia variables).The proposed fa
tored and hierar
hi
ally stru
tured IHD model redu
es the 
omplexity ofthe information state one needs to work with. To illustrate this, let us assume a 
at pro
ess statespa
e. Su
h a spa
e does not allow to 
ombine observable and hidden 
omponents and 
onsistsof 145 states (this �gure 
ounts only state variable 
ombinations that are possible). As statesare now assumed to be hidden, the information state spa
e 
orresponds to a 145-dimensionalbelief spa
e. The in
orporation of observable variables thus redu
es the 
omplexity of the highdimensional belief state spa
e to a set of belief spa
es of small dimension. The overall numberof observations is 1153 (all possible 
ombinations of observable variable values) and it is samefor both 
ases.The above analysis illustrates savings from the model fa
torization and 
ombination ofobservable and hidden pro
ess state variables. However, there are also savings that 
an beattributed to a hierar
hy of state variables. Assume we use the 
at state variable spa
e, thatis values for every state variable 
an be 
ombined without restri
tions. This would lead to theinformation state spa
e with 32 
ombinations of observable variable values, 
ompared to thehierar
hi
al state variable spa
e that allows only 17 di�erent 
ombinations.165
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false false falseFigure 6-7: Information state spa
e for the IHD problem represented by a tree stru
ture.Internal nodes 
orrespond to pro
ess state observables and leaf nodes to beliefs over all possibleassignments to hidden pro
ess state variables.6.4.2 Compilation of the modelAlthough the graphi
al model represenation in �gure 6-4 allows us to represent the IHD modelmore 
ompa
tly, it is not always useful when 
ertain queries need to be 
omputed repeatedly.Thus, instead of working with the original model we have de
ided to 
ompile the model sothat repeated queries 
an be obtained fast. The 
ompiled model is represented as a de
isiontree with internal nodes 
orresponding to observable state variables or a
tions and leaf nodes
ontaining 
onditional probability distributions over hidden variables. The 
onstru
ted tree isoptimized also by pruning bran
hes 
orresponding to 0 probability situations. Su
h a de
isiontree model is then used to 
ompute all probabilisti
 queries ne

essary for the planning and
ontrol tasks.6.4.3 Solving 
ontrol problemThe obje
tive of the 
ontrol problem is to �nd the optimal poli
y over the information spa
e.As this problem is often hard to 
ompute one 
an turn to approximations that 
an produ
egood solutions with less 
omputation. These were presented in previous 
hapters and 
an bemodi�ed and reimplemented to handle a hybrid two-
omponent information state spa
e.From the methods we have implemented and tested on maze and the Shuttle do
king prob-lems we have reimplemented four value fun
tion approximation methods: MDP-based approxi-mation, blind-poli
y method, the in
remental linear ve
tor method and the fast informed boundmethod. In
remental linear ve
tor method and fast informed bound methods were also amongthe top three performers on the test problem set from the previous 
hapter.New versions of approximationmethods use 
ompiled transition and observation models and166



work with value fun
tions that are de�ned over the hybrid information spa
e. A value fun
tion
onsists of dis
rete and belief spa
e 
omponents and 
an be represented using the same treestru
ture as shown in �gure 6-7. The value fun
tion for ea
h belief spa
e 
omponent (one forea
h 
ombination of the observable state variable values) is represented by a pie
ewise linearand 
on
ave fun
tion (
on
aveness is due to minimization). In other words the value fun
tions
onsist of a set of pie
ewise linear and 
on
ave value fun
tions (de�ned over belief spa
es) that
over all possible 
ombinations of observable pro
ess state variable values.All methods des
ribed and tested for the standard POMDP 
an be modi�ed with more orless e�ort to handle new information state spa
e. To illustrate the idea of su
h modi�
ationsthe new version of the in
remental linear ve
tor method will be presented and des
ribed next.In
remental linear ve
tor methodThe in
remental linear ve
tor method from se
tion 4.8.2 
an be reimplemented for the newinformation state spa
e using the following update pro
edure.In
remental linear ve
tor update (bV ; k)for every 
ombination o of observable pro
ess state variable valuesdo if no hidden variables are asso
iated with o in the information state spa
ethen update value fun
tion bV for o using standard value fun
tion value update;else let Bo be a belief spa
e asso
iated with observable 
omponent o and�o be a set of linear ve
tors de�ning bV for Bo;sele
t [k dim(Bo)℄ belief points G from Bo;for every belief point b 2 G
ompute new linear ve
tor �b for b using Sondik's update;add �b to �o in bV ;return bV ;Assuming that we want to solve the 
ost minimization problem, the pro
edure takes anupper bound value fun
tion bV de�ned over the hybrid information state spa
e and parameter kthat allows us to vary the number of belief points to be updated with Sondik's method in every
omponent belief spa
e. The pro
edure returns a new improved upper bound value fun
tionand thus 
an be repeatedly applied to tighten the upper bound.We assume that dim(Bo) de�nes the dimension of the belief spa
e Bo 
orresponding to the
ombination of observable pro
ess state variable values o. Then the number of belief pointsfrom Bo updated by the above pro
edure is kdim(Bo). Of 
ourse, other strategies to 
ontrolthe number of belief points updated in every belief spa
e are possible as well.Belief points to be updated 
an be sele
ted using arbitrary point sele
tion strategies, simi-larly to the standard POMDP 
ase. Note that when a 
ombination of observables o does notpermit any hidden variables (e.g. for the status dead) the value fun
tion is updated for a given
ombination of pro
ess state observables o dire
tly and only on
e.Solutions used for testing the modelFor the testing (see next se
tion) we used solutions obtained by the in
remental linear ve
tormethod and the fast informed bound method. The in
remental linear ve
tor method used 15in
remental linear ve
tor updates (see above pro
edure) with parameter k = 2. A set of beliefpoints updated in every belief spa
e 
onsisted of all 
riti
al points and the rest of points was167



sele
ted randomly. The 
omputation took about 30 minutes on SPARC-10 in Lu
id CommonLisp. The solution for the fast informed bound method was obtained in about 3 minutes.6.5 Evaluating the modelIn our work we 
onstru
ted a prototype IHD model of signi�
ant 
omplexity. Interestingly,despite model simpli�
ations and the need to estimate a large number of parameters we wereable to a
hieve the behavior that was for many 
ases 
lini
ally reasonable and justi�able. Thisis very promising for the future work and further extension and re�nement of the model.6.5.1 Testing obtained poli
y for the patient follow-up 
aseThe 
onstru
tion of 
omplex models is usually not a one shot a
tivity and requires few itera-tions to 
lear various bugs and bad parameter assignments. However, we were surprised thatwe were able to a
quire many 
lini
ally a

urate re
ommendations for the approximate solutionpra
ti
ally from the beginning. Thus, after a few iterations we were able to observe the rea-sonable de
ision behavior of the model in many instan
es for both initial and patient follow-upsituations.Table 6-2 illustrates a sequen
e of re
ommendations obtained for a single patient 
ase (in-
luding follow-ups). The value fun
tion used to 
ompute re
ommendations has been obtainedby the in
remental linear ve
tor method (see previous se
tion). For every stage, the table showsa list of a
tions, ordered with regard to the obtained 
ost s
ore. The top (lowest 
ost) a
tion isexe
uted at ea
h step. The se
ond s
ore represents a lower bound on the optimal expe
ted 
ost
omputed by the fast informed bound method. Interestingly, if we use the se
ond s
ore as abasis for the re
ommendation the 
hoi
es will be exa
tly the same. This is enouraging be
ausethese are methods that a
hieved the best 
ontrol performan
e in the experiments presented inthe previous 
hapter.6.5.2 Alternative de
ision 
hoi
esMore important than the simple ordering of a
tions based on absolute values is often a relative
omparison of alternatives with regard to the leading 
hoi
e. These di�eren
es turned out tobe relatively small for the evaluated patient 
ase, with the ex
eption of both PTCA 
hoi
es.However, 
omparing all 
andidate 
hoi
es, it is 
lear that 
hoi
es with similar s
ores are oftennot very far apart in terms of 
osts or similar e�e
ts. Thus, the a
tion list does not look badfrom the point of relative s
ores. The only a
tion that is 
learly suboptimal is the 
oronarybypass surgery (CABG).Sensitivity of the model to parameter 
hoi
esThe 
omparison of relative s
ores and small s
ore di�eren
es between a
tions also opens thequestion of model sensitivity to parameter 
hanges. It is 
lear that for some of the instan
esone should be able to 
ause the 
hange of leading a
tions relatively easily by 
hanging someof the 
ost or probabilisti
 parameters. Thus the model and poli
y for the tested region aresensitive to these parameters. 168



step 
urrent a
tions used 
ost s
ore 
ost s
orepatient status (upper bound) (lower bound)0 
hest pain: mild-moderate stress-test 285.22 248.53rest EKG is
hemia: negative no a
tion 285.62 249.82de
reased ventr. fun
.: false medi
ation 286.75 250.98a
ute MI: false PTCA 288.75 252.36
oronary artery visual: not available angiogram 292.92 256.68stress test results: not available CABG 491.94 427.77history CABG: falsehistory PTCA: false1 
hest pain: mild-moderate PTCA 298.47 262.54rest EKG is
hemia: negative stress test 316.39 280.33de
reased ventr. fun
.: false no a
tion 321.92 288.24a
ute MI: false medi
ation 322.72 289.12
oronary artery visual: not-available angiogram 323.79 287.91stress test results: positive CABG 503.73 440.77history CABG: falsehistory PTCA: false2 
hest pain: no 
hest pain no a
tion 259.07 226.23rest EKG is
hemia: negative medi
ation 260.62 227.78de
reased ventr. fun
.: false stress test 264.35 229.87a
ute MI: false angiogram 273.34 239.16
oronary artery visual: normal PTCA 276.98 243.24stress test results: not available CABG 481.36 417.28history CABG: falsehistory PTCA: true3 
hest pain: mild-moderate medi
ation 451.50 418.07rest EKG is
hemia: negative no a
tion 452.81 419.47de
reased ventr. fun
.: false PTCA 464.58 429.87a
ute MI: true angiogram 470.62 435.62
oronary artery visual: not available stress-test 479.68 445.22stress test results: not available CABG 657.77 608.11history CABG: falsehistory PTCA: true4 
hest pain: mild-moderate PTCA 471.16 433.98rest EKG is
hemia: negative medi
ation 483.11 447.85de
reased ventr. fun
.: true no a
tion 485.15 450.04a
ute MI: false stress-test 486.32 448.75
oronary artery visual: not available angiogram 496.38 458.87stress test results: not available CABG 661.98 610.81history CABG: falsehistory PTCA: trueTable 6-2: Patient 
ase with followup. Re
ommendations are based on the value fun
tionapproximation 
omputed by the in
remental linear ve
tor method (upper bound). The lowerbound 
ost s
ore is obtained using the fast informed bound method.169



6.5.3 Problems with the 
urrent modelThe 
onstru
ted is
hemi
 heart disease model and 
omputed poli
y solution demonstrated thatthey 
an be a sour
e of 
lini
ally a

eptable de
isions for many situations. However, there werealso situations in whi
h de
isions proposed seem to be unreasonable and did not mat
h thestandard 
lini
al pra
ti
e. These are mostly due to:� model simpli�
ations;� subje
tive parameter estimates.Model simpli�
ationsAn example of the situation when model is not suÆ
ient is the following s
enario:� The patient presents with a mild-moderate 
hest pain. No other tests are positive. There
ommended a
tion is a stress test that is expe
ted to produ
e more information aboutthe underlying status of patient's 
oronary arteries.� Unfortunately one of the out
omes of the stress test is non diagnosti
. This 
orrespondsto the situation when the patient fails the test due to his/her poor physi
al 
ondition (thea
hieved level of exer
ise is not suÆ
ient to make the positive or negative 
on
lusion).Assuming that the patient failed the test the belief about the underlying 
oronary arterydisease and is
hemia level will not 
hange very mu
h.� The a
tion 
hosen is stress test again.This is 
learly an example of a 
ase in whi
h the model is oversimpli�ed, as it is very likelythat the patient will fail the test again. The problem is that the model does not represent anddi�erentiate between 
ir
umstan
es when patient is more likely to pass or fail the test. Thede
ision to re
ommend stress test again is based on the available sto
hasti
 model that modelsdi�erent test out
omes randomly with higher probability being assigned (based on populationstudy) to the diagnosti
 out
ome. Thus the repeated de
ision 
hoi
e simply re
e
ts the fa
tthat it is worthwhile to 
ip the 
oin with larger probability of su

essful out
ome again.The simplest �x to the above problem is to add a new state variable physi
al state thatwould represent the physi
al state of the patient. The patient with a poor physi
al state is thenlikely to fail the stress test. The failure of the test in the �rst trial will lead to the assessmentof the patient's poor physi
al state and prevents the stress test from being sele
ted again in thenext step.Many 
urrent model simpli�
ations 
ould be �xed by adding new state variables and thususing more detailed pro
ess states. Unfortunately su
h 
hanges make the model more 
omplexand harder to solve. Therefore one needs to 
arefully de
ide how to re�ne the model and whatdetails to elaborate more. It is also likely that in order to maintain pra
ti
al solvability ofthe problem larger model re�nements that represent more of the domain detail will requirenew approximation te
hniques (e.g. based on abstra
tions) and/or further exploitation of theunderlying stru
ture. We believe that with the 
urrent te
hniques we will be able to handle rea-sonably well the model with two or three additional observable state variables (binary variables)or one hidden pro
ess state variable (with two or three values).Subje
tive parameter estimatesThe other problem that 
ompli
ates the matter in the is
hemi
 heart disease domain is theproblem of subje
tive 
ost estimates, that re
e
t the preferen
es of the physi
ian and the170



patient. In many 
ases it is really hard to say how to penalize e.g. death and how this
ompares to the heart atta
k in terms of the 
ost s
ore. This un
ertainty in preferen
es 
anlead to situations where 
ost quantities assigned to some s
enario, although reasonable andjusti�able on paper, do not lead to de
isions seen in pra
ti
e. This do
uments how hard it isto assign subje
tive preferen
es 
orre
tly.On the other hand this may also mean that people in their de
isions may be driven byobserving spe
i�
 patterns and applying learned (asso
iated) a
tions rather than evaluatingpossible 
hoi
es and their 
onsequen
es appropriately. This 
an even lead to situations inwhi
h suboptimal de
isions are 
onsidered to be standard. The use of de
ision analyti
 modelsand te
hniques that are based on well de�ned 
lini
al studies 
ould help us to a
quire newinsights and 
ould potentially lead to 
hange in standards.6.6 SummaryPOMDPs provide a suitable modelling framework for representing and solving 
omplex treat-ment planning and de
ision problems in medi
ine. However, the appli
ation of the frameworkto medi
al or other real world appli
ations also 
arries additional 
hallenges one does not haveto 
onsider while solving toy world planning and 
ontrol problems. These are related to:� the representation of the model stru
ture;� the a
quisition of model parameters (probabilities and 
osts)� handling a
tions with di�erent time durations.ContributionsThe major 
ontribution of our work is in extending basi
 POMDP framework to model andexploit additional domain stru
ture. The main new ideas in
lude:� 
ombination of MDP and POMDP models (pro
ess state is des
ribed using both perfe
tlyand partially observable 
omponents);� hierar
hi
al state variables spa
e (
uts down the size of the pro
ess state spa
e by ex
lud-ing redundant or impossible state variable value 
ombinations)These extensions allow us to redu
e the 
omplexity of the information state spa
e we use in
omputing the 
ontrol task. The redu
tions are a
hieved by using a simpler two-
omponentinformation state that 
onsists of an assignment of values to observable pro
ess state variablesand a belief over all possible assignments to hidden state variables. The information states 
anbe heterogeneous, that is the size and the 
ontent of the information state 
an vary.Other new ideas presented in this 
hapter in
lude:� Hierar
hi
al Bayesian belief networks for representing transition and observation models.These 
apture more of the stru
ture of the model, redu
e the number of parameters themodel uses and thus simplify their de�nition.� Fa
tored 
ost model that divides a 
ost into 
omponents: a 
ost asso
iated with an a
tionand a 
ost asso
iated with state variable values that result from the a
tion. Su
h a modelrequires fewer parameters to be de�ned. The de�nition of 
ost parameters was furthersimpli�ed using the proposed 
ost distribution model.171



� A
tions of di�erent durations with di�erent dis
ount fa
tors.� Compilation of the transition and observation model that speeds up probabilisti
 queriesand eliminates zero probability transitions.Using all new features dis
ussed above we were able to de�ne an IHD model of signi�
ant
omplexity and 
ompute value fun
tion approximations for the treatment poli
y problem inreasonable time. These fun
tions were in turn used to obtain treatment 
hoi
es for di�erentpatient s
enarios and follow-up situations. Although the model used needs to be further im-proved and re�ned, it demonstrated the 
apability to 
ompute 
lini
ally 
orre
t 
hoi
es in manysituations. This helped us establish the link between models of system (disease) dynami
s andgoal preferen
es, and 
lini
ally 
orre
t de
isions.The 
urrent IHDmodel needs to be improved and re�ned in many pla
es. It is also likely thatin order to maintain pra
ti
al solvability of the problem larger model 
hanges and re�nementsthat represent more of the domain detail will require alternative approximation te
hniques (e.g.based on model redu
tions) and/or further exploitation of the underlying stru
ture.
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Chapter 7Con
lusionThe POMDP framework is suitable for modelling dynami
 de
ision or 
ontrol pro
eses withsto
hasti
 behavior and with partial (imperfe
t) information about the underlying pro
ess state.The framework o�ers in
reased expressivity 
ompared to the MDP that assumes perfe
t observ-ability of the pro
ess state. Thus the main distinguishing features of the POMDP frameworkare: pro
ess states are observed indire
tly through a set of observations, and observations 
anbe 
onditioned on investigative a
tions.7.1 Solving the POMDP problemThe pri
e paid for the in
reased modelling power of POMDP framework is high, and 
auses thesigni�
ant in
rease in the 
omputational 
omplexity of exa
t algorithms produ
ing optimal ornear optimal solutions. This makes the framework and asso
iated algorithms often pra
ti
allyappli
able only in domains with a relatively small number of states, a
tions and observations.7.1.1 POMDP exa
t methodsThe partial observability hits poli
y problems, that require one to �nd the 
ontrol for all pos-sible information state espe
ially hard. Problem solving methods are based on the dynami
programming or value iteration but are subje
t to the exponential growth of the value fun
tiondes
ription. Moreover existing algorithms are ineÆ
ient also with regard to the 
omputationof the value fun
tion update. This 
auses only problems of small 
omplexity, that in
lude notmore than 10 states, to be pra
ti
ally solvable. Moreover all of the known optimization algo-rithms exploit the feature of pie
ewise linearity and 
onvexness of the value fun
tion that holdsonly for belief spa
e POMDPs and thus we do not know how to 
ompute exa
tly the poli
yproblem for more 
omplex POMDP models, e.g. with delayed observations.Relatively faster, but still subje
t to the exponential growth are algorithms that generateoptimal or near-optimal response for the 
urrent information state in the forward fashion us-ing de
ision trees. As the de
ision tree needed to make the de
ision 
an grow large (in�nitefor in�nite horizon problems) \intelligent" methods that attempt to build (expand) the treegradually and prune suboptimal bran
hes whenever possible 
an be designed. The pruning 
anbe performed based on value fun
tion bounds. The advantage of the de
ision tree method isthat it 
an be applied also for �nding the best a
tion not only for belief spa
e POMDPs butalso for POMDPs with delayed observations. In
remental forward methods for �nding optimal173



or near-optimal de
isions 
an be turned into anytime pro
edures generating 
ontrol responsesthat improve gradually over time.7.1.2 POMDP approximationsThe natural solution for the problem of 
omputational 
omplexity is to trade o� the solution a
-
ura
y for the speed. This leads to methods that try to 
ome up with a good solution eÆ
iently.Most of the approximationmethods are based on the approximation of value fun
tions or modelredu
tion te
hniques. Possible value fun
tion approximation methods are: the MDP based ap-proximation, blind poli
ies, fast informed bound update, grid-based interpolation-extrapolation,grid-based linear ve
tor method, 
urve �tting. On the other hand model redu
tion te
hniquesare based mostly on the feature-based approa
hes that redu
e the information-state MDP 
or-responding to the POMDP.Although there is a relatively large spe
trum of approximation methods that alllow us tosolve the optimization problem eÆ
iently, there is not a very good understanding of what makesvarious approximation methods better or helps us determine what methods are more promisingand what are inferior. This is 
aused to a great extent by the la
k of larger s
ale experimentalstudies that would give us a ground for the larger evaluation and 
omparison.7.1.3 Extensions of the POMDP frameworkThe main advantage of the POMDP framework over alternatives is in its 
apability to modelsto
hasti
 partially observable 
ontrol pro
esses. However this does not mean that we will beable to 
apture all features of real-world domains using the basi
 POMDP formalism. In fa
t,dealing with real world domains, one 
an often take advantage of additional problem stru
turethat is not expressed in the basi
 POMDP model and use it to speed-up the problem-solvingroutines. Thus, the exploitation of the additional problem stru
ture o�ers another solutionfor the problem of 
omputational 
omplexity of the exa
t POMDP methods. For example,dynami
 pro
esses are not often 
ompletely hidden and what o

urs is usually a 
ombinationof perfe
tly and partially observable state 
omponents. Then a framework that 
ombines andexploits advanatges of both MDPs and POMDPs o�ers better solution. This was shown forexample on the is
hemi
 heart disease problem in the previous 
hapter.7.2 ContributionsOur resear
h work has fo
used on the following goals:� the design of new exa
t and approximation methods;� the 
omparison, test and analysis of value fun
tion approximation methods;� extensions of the basi
 POMDP framework, exploitation of the additional problem stru
-ture.Although the main 
ontributions of our work fall into the above 
ategories, we believe thatthe text as a whole 
an serve as a good referen
e for people exploring the area of planningunder un
ertainty. Also the work des
ribes some of the new and promising ideas we were notable to pursue or des
ribe in depth due to time 
onstraints, and thus it provides a sour
e forinteresting resear
h topi
s. In the following we will summarize the 
ontributions of the thesisalong the outlined main obje
tives. 174



7.2.1 Exa
t POMDP methodsBelief spa
e POMDPsThe standard POMDP model assumes that observations always depend on the a
tual pro
essstates and previous a
tions. Su
h a model 
an be 
onverted to information-state MDP withsuÆ
ient information states that 
orrespond to belief states, and with value fun
tions thathave been shown to be pie
ewise linear and 
onvex [Smallwood, Sondik 73℄. However, there areother models (e.g. model with ba
kward triggered observations or 
ombination of ba
kwardand forward triggered observations) that 
an be 
onverted to information-state MDPs withbelief states. We have shown that the Sondik's result of pie
ewise linearity and 
onvexness notonly applies to the standard model but 
an be extended to the set of belief spa
e POMDPs.This allows us to use exa
t algorithms developed for the standard model for any belief spa
ePOMDP.Gauss-Seidel speedup of value iterationProbably the most important 
ontribution of our work for exa
t methods is the idea of Gauss-Seidel speedups of the value iteration algorithm for the belief spa
e POMDPs and in�nitedis
ounted horizon problems. The method uses lower bound pie
ewise linear value fun
tions andimproves value fun
tion in
rementally by 
omputing and adding new linear ve
tors obtainedfor points of the belief spa
e to the previous solution. Every new linear ve
tor obtained isimmediately used to 
ompute further updates. The main advantage of the in
remental s
hemeis that it avoids the re
omputation of the 
omplete value fun
tion from s
rat
h.Speedups of exa
t updatesAnother interesting part, is the work on the improvement of exa
t Monahan's algorithm usingin
remental s
hemes that enable us to interleave the 
onstru
tion and test phases of the usefullinear ve
tor set and employ an early pruning of redundant partially built linear ve
tors. Thistopi
 has been investigated re
ently by [Cassandra et al. 97℄. However, the methods developedthere 
an be applied to build a
tion-value fun
tions (Q-fun
tions) and do not allow one to doearly pruning a

ross a
tions. We have suggested an extension that makes it possible to applythe idea of early pruning a
ross a
tions as well. The extension is based on 
omputing bounds.Forward de
ision methodsMost of the attention of resear
hers in the area has been devoted to the problem of �nding theoptimal poli
y. However, in many 
ases a far simpler de
ision problem that tries to sele
t a
ontrol response for a single initial state 
an be suÆ
ient for implementing the 
ontrol agent.Su
h problems 
an be solved in the forward fashion by a pro
ess that in
rementally expands thede
ision tree. In our work we have proposed, designed and implemented various in
rementalalgorithms for solving su
h problems: breadth �rst, bound span heuristi
, randomized heuristi
,and linear spa
e. These methods redu
e the growth of the de
ision tree via pruning based onvalue fun
tion bounds.In general the quality of bounds 
omputed by the in
remental forward algorithms dependboth on the depth of the de
ision tree and on the quality of value fun
tion bounds used at theleaves of the tree. Thus one 
an tighten the bounds by either further expansion of the tree orby the improvement of bounds used at leaves. We have suggested a new de
ision method that175




ombines advantages of both forward de
ision methods and bound improvement steps using ametalevel de
ision pro
edure.7.2.2 POMDP approximation methodsThe fa
t that POMDP problems 
annot be solved eÆ
iently naturally leads to the usage ofvarious approximation methods, that trade o� pre
ision for speed. Although many of theapproximation methods have been known for some time, it is still possible to �nd new ones orsuggest promising modi�
ations of the existing ones. In our work we have suggested a few ofthese.Fast informed boundThe fast informed bound method is a newly-designed method, that uses an eÆ
ient updates
heme and upper bounds the exa
t update rule. The rule approximates a value fun
tionusing pie
ewise linear and 
onvex approximation with at most jAj linear ve
tors. The mainadvantages of the method are its simpli
ity (it updates linear ve
tors dire
tly), bound propertyand 
onvergen
e. This is unlike the Q-fun
tion least square �t method that also uses jAj linearve
tors, but must update the value fun
tion at some number of sample belief points �rst; itdoes not bound the exa
t update, and it is not guaranteed to 
onverge.Variable grid point interpolation s
hemeOne of the existing methods for approximating value fun
tions uses a grid of points, their valuesand the interpolation-extrapolation rule for approximating values at nongrid points. Interestinginterpolation-extrapolation rules are based on point interpolation te
hniques. These lead tosolutions that guarantee the upper bound as well as 
onvergen
e for the belief state MDPs.The main problem with point interpolation rules is the sele
tion of grid points relevant forinterpolation. The te
hniques used to deal with this are based on regular grids that uniquelypartition a belief spa
e. In our work we propose a simple and eÆ
ient point interpolation s
hemethat 
an use aribtrary (variable) grids and preserves the upper bound property. This 
exibilitymakes it possible to 
ombine the method with various grid sele
tion strategies, in
luding variousheuristi
s.In 
onne
tion with a new point interpolation method we have also proposed a new heuristi
approa
h for 
onstru
ting grids. The method uses a sto
hasti
 simulation idea to �nd grid pointsthat are likely to maximize the improvement of the upper bound. Versions of the same method
an also be applied together with other grid-based interpolation-extrapolation strategies, e.g.the nearest neighbor approa
h.In
remental linear ve
tor methodYet another method for the value fun
tion approximation uses the re�nement of the exa
tpoint-based linear ve
tor updates to grids. The method 
omputes a lower bound value fun
tionupdate, but does not guarantee the 
onvergen
e. In our work we have proposed a new in
re-mental linear ve
tor method that updates linear ve
tors for a set of grid points and guaranteesthe 
onvergen
e. The method starts from the initial pie
ewise linear and 
onvex lower boundand gradually adds new linear ve
tors found for the grid points to the original fun
tion. Themethods avoids 
ostly rebuilding of the 
omplete value fun
tion for every update and 
an beused to speed up the exa
t value iteration (see above).176



7.2.3 Comparison and tests of approximations methodsThere is a spe
trum of approximations methods resear
hers have developed over the years.However, these were very often left un
ompared and there is a la
k of understanding of howvarious methods 
ompare to ea
h other and/or how various modi�
ations 
an help to improvethe basi
 methods. The methods 
an be 
ompared theoreti
ally and one 
an in many instan
esshow that some value fun
tion method gives a better bound result than the other method,or that the method 
onverges for the in�nite dis
ounted horizon 
ase. However, it is veryhard to say in general what the impa
t is of various heuristi
 improvements or how variousapproximation methods will perform with regard to 
ontrol. These properties often need to beexplored experimentally, and the la
k of experimental studies that 
ompare performan
es of alarge number methods does not help in further endeavour.Experimental studyNew and existing value fun
tion approximationmethods were tested and their results were 
om-pared using a set of three di�erent in�nite dis
ounted horizon problems of various 
omplexities.The experiments 
overed a large spe
trum of possible value fun
tion approximation methodsand their modi�
ations that ranged from simple MDP-based approximations to least square �tmethods and heuristi
 grid-based linear ve
tor methods. The results thus provide the groundfor their 
omparison and evaluation.The experiments were 
ondu
ted to explore the quality of value fun
tion bounds that areguaranteed by some of the methods, and the quality of 
ontrol, where methods were judgedsolely based on the 
ontrol performan
e on test problems. The results 
on�rmed that for thepurpose of 
ontrol the best performan
e was a
hieved by methods that tend to approximatebetter the shape of the optimal value fun
tion. The best methods update value fun
tion deriva-tives and attempt to preserve the shape of the fun
tions over many updates. Contrary to this,methods that used value fun
tions that deviated from the pie
ewise linear and 
onvex shape,like the grid-based nearest neighbour method, a
hieved inferior results and thus their usage isnot warranted for the belief spa
e POMDPs.7.2.4 Extensions of the basi
 POMDP frameworkThe basi
 POMDP framework 
an be extended in many ways to better �t the features of thereal world domains. For example the basi
 framework 
an be extended to deal with observationdelays that are very important in modelling time 
riti
al 
ontrol problems. Unfortunately inthis 
ase the original POMDP does not redu
e to the belief state MDP and thus it remains
losed to various exa
t and approximation methods that assume belief information states.Although in some 
ases the extensions 
an make the 
ontrol problem more 
omplex, thebasi
 framework 
an be modi�ed and extended to take advantage of the additional problemstru
ture and to use it to improve the problem solving routines. We have explored these ideasin 
onne
tion with the POMDP appli
ation to the management of a patient with is
hemi
 heartdisease (IHD). The work on the IHD model lead to many new and very interesting extensionsof the basi
 framework and we plan to explore them further in the future.Combining MDPs and POMDPs using fa
tored modelsThe basi
 POMDP framework assumes that pro
ess states are always hidden and informationabout the state 
an be a
quired only through observations. However this is not always true, andone often works with pro
ess states that 
onsist of both observable and hidden 
omponents. In177



order to deal with this issue we propose to represent the POMDP model in the fa
tored formwith pro
ess states and observations represented using a set of state variables. Su
h variables
an then be modelled as either observable or hidden. Moreover, probabilisti
 relations (tran-sition and observation probabilities) 
an be expressed with regard to variables using graphi
almodels and thus take advantage of independen
ies (
onditional or un
onditional) that holdamong them. The fa
tored model representation e�e
tively allows us to 
ombine MDP andPOMDP formalisms into one frame work, and take advantage of both of them.The fa
tored model, with both observable and hidden pro
ess states, 
an be 
onverted intothe information spa
e MDP, with information states that are 
omposed of two 
omponents:a set of value assignements to observable state variables, and a belief state over all possible
ombinations of hidden state variable values. The usage and idea of two 
omponent informationstates that 
ombine MDP and POMDPs frameworks is new and it has not been reported in theliterature.Heterogeneous information spa
eAlthough fa
tored models 
an help to simplify the information state des
ription, the informationspa
e they de�ne 
an in
lude information states that 
annot o

ur in pra
ti
e (
ontradi
toryvariable value 
ombinations, et
.). In order to redu
e the 
omplexity of the information stateas mu
h as possible, we have proposed the hierar
hi
al version of the fa
tored model in whi
hsome of the state variable values des
ribe higher level 
on
epts (abstra
tions) and subsume setsof other lower level state variables. The stru
turing allows one to des
ribe possible states usingdes
riptions of di�erent 
omplexity and size. Moreover the idea of hierar
hi
al subsumption
an be used to simplify the de�nition of the probabilisti
 relations by exploiting independen
iesthat emerge on di�erent levels of abstra
tion. With a hierar
hi
al model, information states 
anbe des
ribed using varying size 
omponents and thus information state spa
e is heterogeneous.The idea of hiera
hi
al state spa
es is also new and has not been used in the POMDP literature.Other model improvements and extensionsFa
tored and hierar
hi
ally stru
tured transition and observation models allow us to redu
e thenumber of parameters de�ning the POMDP model. This is very important for the pro
ess ofa
quisition of the parameters both from the human expert or from the avaliable datasets usingma
hine learning te
hniques. Similarly we proposed and used the fa
tored 
ost model that iseasy to de�ne and uses small number of parameters.Other model extensions and improvements we have proposed and used in our work in
lude:handling a
tions with di�erent time durations using di�erent dis
ount fa
tors and 
ompilation ofthe transition and observation models. The purpose of 
ompilation was to a
quire a model thatwould allow us to 
ompute relevant probabilisti
 queries faster. To do this we have 
onverted themodel to the de
ision tree stru
ture with internal nodes 
orresponding to observable variablesand leaves 
orresponding to probabilities over hidden variables. Su
h a de
ision stru
ture wasfurther optimized by ex
luding zero probability 
ontingen
ies.7.2.5 Appli
ation of the POMDP frameworkThe newly extended POMDP framework has been applied to the problem of management ofpatients with 
hroni
 is
hemi
 heart disease. The parameters of the underlying model werea
quired based on published study results and subje
tive estimates. The model and solutionshave been tested on few inital and follow-up s
enarios. Despite some of the de�
ien
ies (mostly178



due to the model simpli�
ations) we were able to observe reasonable therapeuti
al 
hoi
es inmany instan
es and these were in 
on
ordan
e with 
lini
al pra
ti
e.The a
quired result is important both from the perspe
tive of the appli
ation area, andthe framework. In the �rst 
ase it gives us hope that we might be able to solve and analyse
omplex medi
al de
ision problems. In the se
ond 
ase it represents an example of a real-worldappli
ation domain and thus helps to prove the relevan
e and pla
e of the methodology insolving real-world problems.7.3 Challenges and further resear
h dire
tionsThere are many interesting problems that are 
ru
ial for further developments in POMDPsand their appli
ations. Two of the most important are related to appli
ations of the POMDPframework to large size domains and to learning of POMDP models from temporal datasets.7.3.1 Atta
king large problem domainsDespite eÆ
ient value fun
tion approximations, the standard POMDP framework (with hiddenpro
ess states) is still suitable to handle problems of relatively small size (our best guess onthe size of the problems would be around 100 states, but this 
an also vary with appli
ationsand their spe
i�
ities). The problem of having large pro
ess states 
an be resolved when theunderlying pro
ess state spa
e 
onsists of both observable and hidden 
omponents. Then newideas and te
hniques developed in Chapter 6 that 
ombine MDPs and POMDPs frameworksand use two 
omponent information states 
an be applied. However these te
hniques does nothelp to redu
e the 
omplexity introdu
ed by hidden 
omponents (e.g. one still needs to workwith belief states over all possible 
ombinations of hidden variable values). Thus solutions forredu
ing the 
omplexity asso
iated with hidden pro
ess states are of our main interest.Limitations of fa
tored POMDPsOne of the approa
hes suggested for dealing with large models in the fully observable MDPframework was to rely more on the stru
ture of the model. The approa
h works with a fa
toredMDP model that 
aptures independen
ies and regularities that hold among model 
omponents(represented using graphi
al models) and use these dire
tly to �nd optimal or approximatesolutions. Unfortunately, the planning methods that exploit fa
tored models and underlyingstru
tural dependen
ies work �ne for the MDP 
ase mostly thanks to perfe
t observability. Thisis be
ause all pro
ess state variables, on
e observed, make all past and future states independentof ea
h other. Contrary to this in the POMDP 
ase one works with information states, that arehard to break along the fa
tored 
omponents. This is illustrated in the following: Assumingthat all state variable values at 
urrent time are given (MDP 
ase), all future instan
es of statevariables (and their values) be
ome independent of past state variables instan
es and theirvalues. In graphi
al models language all future state variable values are d-separated from paststate variables. However, not knowing values of the 
urrent state variables with 
ertainty, futureand past state variables are not independent of ea
h other. Then for example, two observationvariables in the future 
an be
ome dependent, whenever both of them share a 
ommon hiddenstate variable in the past. Or in other words two observation variables that are d-separated bysome hidden state variables of the Markov 
hain in the past 
an be dependent.The major 
onsequen
e of this is that the Markov property of information state pro
ess
an be violated when one would use \fa
tored" information states that are blindly related to179



the underlying fa
tored state representation. Of 
ourse, one 
an always apply the idea to theobservable 
omponent of the pro
ess state whenever two 
omponent information states are used.Model redu
tion te
hniquesThe approa
h well suited for atta
king large size POMDPs is based on model redu
tion te
h-niques. We des
ribed it in se
tion 4.10 but we did not explore it to the depth. The model redu
-tion methods 
an target either information state MDPs or dire
tly original POMDP models.The main idea is to merge states, observations or a
tions to aggregate entities and work withsu
h aggregates. The typi
al representatives of su
h an approa
h are various feature extra
tionmappings [Tsitsiklis, Van Roy 96℄, or methods that work with trun
ated information histories[White, S
herer 94℄. In the ideal 
ase one would like to have te
hniques that 
an automati-
ally sele
t 
omponents of the model that 
an be aggregated and in
uen
e the solution to thesmallest extent.Open and 
hallenging problems related to the model redu
tion idea in
lude:� te
hniques for �nding appropriate aggregation methods (or feature extra
tion mappings)with the smallest e�e
t on the resulting approximate 
ontrol;� the exploration of relations between redu
tions of the original POMDP model and anasso
iated information-state MDP;� the trado� between model approximation and value fun
tion approximation approa
hess.Speeding up high dimensional belief state updatesThere are other approa
hes that 
an be used to speedup 
omputations for the large POMDPproblems. The fa
t that one needs to work with POMDPs with a large number of partiallyobservable states 
auses a signi�
ant slow down of information state updates. This is alsobe
ause one needs to work with high dimensional belief states that need to be updated of-ten. One approa
h aimed to redu
e the 
omputational and spa
e 
omplexity asso
iated withbelief state updates is based on the idea of sto
hasti
 simulation (see [S
ha
hter, Peot 89℄[Kanazawa et al. 95℄). The idea of the method is: assuming that one knows the 
urrent be-lief state then the next belief state approximation under a
tion a and observation o 
an be
omputed using the following steps:1. sele
t k random world states based on the 
urrent belief state distribution;2. simulate the transition for the sele
ted state, a
tion a and observation o via Monte Carlomethod;3. merge simulated results (from frequen
y 
ount) and produ
e a new belief state.The approximation of a belief state update is suitable when there is a small number ofregions with higher probability (weight). Then one 
an approximate the probability distributionover belief spa
e by 
onsidering and remembering only higher probability regions. There areother options for making the simulation work. In the outlined approa
h one needs to 
omputeP (s0js; o; a) for all possible s0 �rst, then to sele
t next state via Monte Carlo simulation andafter that to 
ompute frequen
ies for all out
omes. However it is possible also to use the fa
tthat P (s0js; o; a) = P (s0js; a)P (ojs0; a). Then one 
an sele
t s0 from P (s0ja; s) by the simulation,give it weight of P (ojs0; a), and sum all results for the same s0 to a
quire the overall weight fors0 (after normalization). 180



7.3.2 Learning in partially observable sto
hasti
 
ontrol domainsMost of the dis
ussion related to the 
ontrol in partially observable sto
hasti
 domains assumedthat a POMDP model was always available, so the 
ontrol agent or 
ompiler 
ould use it to
ompute the optimal or approximate 
ontrol. This 
ompletely ignores problems asso
iated withthe a
quisition of POMDP models, that 
an turn out to be hard task itself. For example theassignment of rewards or other parameters of the model must be done 
onsistently and re
e
tintended preferen
es and/or obje
tive frequen
ies. Therefore the possibility of learning under-lying 
ontroller knowledge dire
tly from observed 
ontrol sequen
es and/or temporal datasetsis often of high importan
e. In the following we will brie
y go over the main ideas one 
anpursue to a
hieve these obje
tives. However there are still many opened problems that need tobe investigated.The basi
 learning s
enario in the 
ontrol domain is that the learner observes sequen
esof 
ontrol a
tions, observations and reinfor
ements. Reinfor
ements represent either 
osts orrewards and quantify the goodness of the transitions that o

urred with regard to the 
ontrolgoal. The learner 
an either be 
ombined with the 
ontroller with the 
apability to performa
tions or it may be only a passive observer. Using a
tive learning 
an often lead to shorterlearning times due to the fa
t that the 
ontroller 
an explore those 
ontrol sequen
es it 
onsidersmore relevant. On the other hand passive learning assumes that the learner is given informationabout a 
ontrol 
ase without any a
tive intervention, whi
h 
an be 
ru
ial in some domains likemedi
ine.In general, depending on what we want to learn, we 
an speak about two main learningapproa
hes in 
ontrol domains :� learning of POMDP models� learning of 
ontrol poli
iesLearning of the modelThe �rst approa
h is trying to learn the underlying domain model from observed data andreinfor
ements. Su
h a model is then used to 
ompute the optimal or approximate 
ontrolin the obvious way. Learning of the model 
an 
onsist of learning the 
omplete model (bothstru
ture and parameters) or learning model parameters only. The problem of learning modelparameters is far easier and methods for learning parameters of probabilisti
 networks withhidden variables, like EM [Rabiner, Juang 86℄ [Spiegelhalter et al. 93℄[Lauritzen 94℄ or gradientdes
ent methods [Russell et al. 95℄, 
an be applied.The agent with a built-in parameter learning me
hanism 
an be the basis of an adaptive
ontrol agent that adapts its behavior with regard to spe
i�
ities of the 
ontrol 
ases that havebeen solved. The adaptation of the model parameters 
an be important, e.g., when there is anatural variation in 
ases the 
ontrol agent repeatedly solves, and when one 
an in
orporate inthe model initially only population estimates.The learning of a 
omplete POMDP model is a far harder task, as one is supposed to go be-yond learning of parameter values and also derive the underlying hidden stru
ture. The learningof POMDP models has not been explored to a suÆ
ient depth so far and mu
h work need tobe done here. Two approa
hes published are the predi
tive distin
tion approa
h [Chrisman 92℄and the utile distin
tion approa
h [M
Callum 93℄. Both of these operate under various simpli-fying assumptions (restri
ted value fun
tion form) and gradually in
rease the number of statesneeded to �t the observed 
ontrol data. 181



Learning of 
ontrol poli
iesThe se
ond approa
h is based on the assumption that one 
an build a good 
ontroller withoutthe detailed underlying model by building 
ontrol poli
ies dire
tly based on a
tion-observationsequen
es. This is in many respe
ts related to the approa
h of feature-based approximationwith trun
ated histories [Platzman 77℄ [White, S
herer 94℄. Control poli
ies that use trun
atedhistories 
an be learned, e.g., using reinfor
ement learning te
hniques (see, e.g., [Watkins 89℄,[Barto et al. 91℄, [Hauskre
ht 94℄, [Kaelbling et al. 96℄). The problems with this are that thenumber of items in the history is not known in advan
e, and that not all observations and a
tionsare equally relevant to 
ontrol. An approa
h that attempts to dynami
ally identify the relevanthistory items to be used in the 
ontrol poli
y de�nition was presented in [M
Callum 95℄.
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Appendix ATest problemsA.1 Maze20 problemProblem: in�nite dis
ounted horizonOptimization: MAXDis
ount: 0.9States 
orrespond to rooms in the maze. They are numbered from 0 to 19 (see �gure A-1).A
tions: numbered from 0 to 5.0 move north; 3 move west;1 move south; 4 make observation (north-south);2 move east; 5 make observation (east-west).Observations: numbered from 0 to 7.0 no-observation (unknown); 4 both north and south walls;1 no wall; 5 east wall;2 north wall; 6 west wall;3 south wall; 7 both east and west walls.
Moves Sensors

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19Figure A-1: Maze20 robot navigation problem.183



Transition model (a
tion, previous state, next state)A
tion: 00.15 0.15 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 00.15 0.7 0.15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0.15 0.7 0.15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0.15 0 0.15 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 00 0 0 0.15 0.85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0.15 0.15 0 0 0 0.7 0 0 0 0 0 0 0 0 00 0 0 0 0 0.15 0.15 0 0 0 0 0.7 0 0 0 0 0 0 0 00.3 0 0 0 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.40 0 0 0 0 0 0 0 0.85 0.15 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0.15 0.15 0 0 0 0 0.7 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0.15 0.15 0 0 0 0.7 0 0 0 00 0 0 0 0 0 0 0 0 0 0.15 0.85 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0.3 0 0 0 0 0.7 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0.15 0 0 0 0.7 00 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0.85 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.85 0.15 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0.7 0.15 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0.7 0.15 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0.7 0.150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0.85A
tion: 10.85 0.15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00.15 0.7 0.15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0.15 0.7 0.15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0.15 0.7 0.15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0.15 0.85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00.7 0 0 0 0 0.15 0.15 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0.15 0.85 0 0 0 0 0 0 0 0 0 0 0 0 00.3 0 0 0 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.40 0 0 0.7 0 0 0 0 0.15 0.15 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0.15 0.85 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0.7 0 0 0 0 0.15 0.15 0 0 0 0 0 0 0 00 0 0 0 0 0 0.7 0 0 0 0.15 0.15 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0.7 0 0 0 0 0.3 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0.85 0.15 0 0 0 0 00 0 0 0 0 0 0 0 0 0.7 0 0 0 0.15 0.15 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0.15 0.15 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0.7 0.15 0 00 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0.15 0 0.15 00 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0.15 0 0.150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0.85A
tion: 20.15 0.7 0 0 0 0.15 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0.3 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0.3 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0.15 0.7 0 0 0 0.15 0 0 0 0 0 0 0 0 0 0 00 0 0 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00.15 0 0 0 0 0 0.7 0 0 0 0.15 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0.85 0 0 0 0 0.15 0 0 0 0 0 0 0 00.3 0 0 0 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.40 0 0 0.15 0 0 0 0 0.15 0.7 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0.85 0 0 0 0 0.15 0 0 0 0 00 0 0 0 0 0.15 0 0 0 0 0 0.7 0 0 0 0.15 0 0 0 00 0 0 0 0 0 0.15 0 0 0 0 0.85 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0.15 0 0 0 0 0.7 0 0 0 0 0.15 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0.7 0 0 0 0.15 00 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0.85 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0.15 0.7 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0.7 0 00 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0.15 0.7 00 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0.15 0.70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0A
tion: 30.85 0 0 0 0 0.15 0 0 0 0 0 0 0 0 0 0 0 0 0 00.7 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0.7 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0.7 0.15 0 0 0 0 0.15 0 0 0 0 0 0 0 0 0 0 00 0 0 0.7 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00.15 0 0 0 0 0.7 0 0 0 0 0.15 0 0 0 0 0 0 0 0 00 0 0 0 0 0.7 0.15 0 0 0 0 0.15 0 0 0 0 0 0 0 00.3 0 0 0 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.40 0 0 0.15 0 0 0 0 0.85 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0.7 0.15 0 0 0 0 0.15 0 0 0 0 00 0 0 0 0 0.15 0 0 0 0 0.7 0 0 0 0 0.15 0 0 0 00 0 0 0 0 0 0.15 0 0 0 0.7 0.15 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0.15 0 0 0 0 0.7 0 0 0 0 0.15 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0.85 0 0 0 0 0.15 00 0 0 0 0 0 0 0 0 0.15 0 0 0 0.7 0.15 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0.85 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0.3 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0.7 0.15 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0.7 0.15 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0.3184



A
tion: 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1A
tion: 51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1Observation model (a
tion, state, observation)A
tion: 0 A
tion: 11 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0A
tion: 2 A
tion: 31 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0185



Moves Sensors

0 1 2 3 4

5 6 7 8 9 10

11 12 13 14 15

16 17 18 19Figure A-2: Maze20B problemA
tion: 4 A
tion: 50 0.14 0.01 0.8 0.05 0 0 0 0 0.14 0 0 0 0.01 0.8 0.050 0.05 0.1 0.1 0.75 0 0 0 0 0.89 0 0 0 0.05 0.05 0.010 0.05 0.1 0.1 0.75 0 0 0 0 0.89 0 0 0 0.05 0.05 0.010 0.14 0.01 0.8 0.05 0 0 0 0 0.89 0 0 0 0.05 0.05 0.010 0.05 0.1 0.1 0.75 0 0 0 0 0.14 0 0 0 0.8 0.01 0.050 0.89 0.05 0.05 0.01 0 0 0 0 0.14 0 0 0 0.01 0.8 0.050 0.14 0.01 0.8 0.05 0 0 0 0 0.14 0 0 0 0.8 0.01 0.050 0.14 0.01 0.8 0.05 0 0 0 0 0.05 0 0 0 0.1 0.1 0.750 0.14 0.8 0.01 0.05 0 0 0 0 0.14 0 0 0 0.01 0.8 0.050 0.14 0.01 0.8 0.05 0 0 0 0 0.14 0 0 0 0.8 0.01 0.050 0.89 0.05 0.05 0.01 0 0 0 0 0.14 0 0 0 0.01 0.8 0.050 0.14 0.8 0.01 0.05 0 0 0 0 0.14 0 0 0 0.8 0.01 0.050 0.89 0.05 0.05 0.01 0 0 0 0 0.05 0 0 0 0.1 0.1 0.750 0.14 0.01 0.8 0.05 0 0 0 0 0.14 0 0 0 0.01 0.8 0.050 0.14 0.8 0.01 0.05 0 0 0 0 0.14 0 0 0 0.8 0.01 0.050 0.14 0.8 0.01 0.05 0 0 0 0 0.14 0 0 0 0.01 0.8 0.050 0.05 0.1 0.1 0.75 0 0 0 0 0.89 0 0 0 0.05 0.05 0.010 0.14 0.8 0.01 0.05 0 0 0 0 0.89 0 0 0 0.05 0.05 0.010 0.14 0.8 0.01 0.05 0 0 0 0 0.89 0 0 0 0.05 0.05 0.010 0.05 0.1 0.1 0.75 0 0 0 0 0.14 0 0 0 0.8 0.01 0.05Expe
ted one step reward (a
tion, state)3.4 1.2 1.2 4.0 0.6 3.4 3.4 150.0 0.6 3.4 3.4 0.6 2.8 3.4 0.6 0.6 1.2 1.2 1.2 0.60.6 1.2 1.2 1.2 0.6 3.4 0.6 150.0 3.4 0.6 3.4 3.4 2.8 0.6 3.4 3.4 1.2 4.0 4.0 0.63.4 2.8 2.8 3.4 0.0 4.0 0.6 150.0 3.4 0.6 4.0 0.6 1.2 3.4 0.6 3.4 2.8 3.4 3.4 0.00.6 2.8 2.8 3.4 2.8 1.2 3.4 150.0 0.6 3.4 1.2 3.4 1.2 0.6 3.4 0.6 2.8 3.4 3.4 2.82 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2A.2 Maze20B problemProblem: in�nite dis
ounted horizonOptimization: MINDis
ount: 0.95States: rooms in the maze, numbered from 0 to 19 (see �gure A-2).A
tions and observations: same as for the Maze20 problem.186



Transition model (a
tion, previous state, next state)A
tion: 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00.15 0.15 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0.3 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 00 0 0 0.15 0.15 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0 00 0 0 0.15 0.15 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0 00 0 0 0 0 0.85 0.15 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0.15 0.7 0.15 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0.15 0 0.15 0 0 0 0 0.7 0 0 0 0 0 00 0 0 0 0 0 0 0.15 0 0.15 0 0 0 0 0.7 0 0 0 0 00 0 0 0 0 0 0 0 0.15 0.15 0 0 0 0 0 0.7 0 0 0 00 0 0 0 0 0 0 0 0 0 1.0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0.15 0.15 0 0 0 0.7 0 0 00 0 0 0 0 0 0 0 0 0 0 0.15 0.7 0.15 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0.15 0.7 0.15 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0.15 0 0 0 0.7 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0 0 0 0.70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.85 0.15 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0.85 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.85 0.150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0.85A
tion: 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00.15 0.85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0.85 0.15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0.15 0.85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00.7 0 0 0 0 0.15 0.15 0 0 0 0 0 0 0 0 0 0 0 0 00 0.7 0 0 0 0.15 0 0.15 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0.15 0.7 0.15 0 0 0 0 0 0 0 0 0 0 00 0 0.7 0 0 0 0 0.15 0 0.15 0 0 0 0 0 0 0 0 0 00 0 0 0.7 0 0 0 0 0.15 0.15 0 0 0 0 0 0 0 0 0 00 0 0 0 0.7 0 0 0 0 0 0.3 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0.85 0.15 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0.15 0.7 0.15 0 0 0 0 0 00 0 0 0 0 0 0 0.7 0 0 0 0 0.15 0 0.15 0 0 0 0 00 0 0 0 0 0 0 0 0.7 0 0 0 0 0.15 0.15 0 0 0 0 00 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0.3 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0.15 0.15 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0.85 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0.15 0.150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0.15 0.15A
tion: 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0.85 0 0 0 0 0.15 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0.85 0 0 0 0 0 0.15 0 0 0 0 0 0 0 0 0 0 00 0 0 0.15 0.7 0 0 0 0 0.15 0 0 0 0 0 0 0 0 0 00 0 0 0 0.85 0 0 0 0 0 0.15 0 0 0 0 0 0 0 0 00.15 0 0 0 0 0.15 0.7 0 0 0 0 0 0 0 0 0 0 0 0 00 0.15 0 0 0 0 0.15 0.7 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0.15 0.7 0 0 0 0 0.15 0 0 0 0 0 00 0 0.15 0 0 0 0 0 0 0.7 0 0 0 0 0.15 0 0 0 0 00 0 0 0.15 0 0 0 0 0 0.7 0 0 0 0 0 0.15 0 0 0 00 0 0 0 0.15 0 0 0 0 0 0.85 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0.15 0.7 0 0 0 0.15 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0.3 0.7 0 0 0 0 0 00 0 0 0 0 0 0 0.15 0 0 0 0 0 0.15 0.7 0 0 0 0 00 0 0 0 0 0 0 0 0.15 0 0 0 0 0 0.7 0 0 0 0.15 00 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0 0.7 0 0 0 0.150 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0.15 0.7 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0.15 0.70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0.85A
tion: 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00.7 0.15 0 0 0 0 0.15 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0.85 0 0 0 0 0 0.15 0 0 0 0 0 0 0 0 0 0 00 0 0 0.85 0 0 0 0 0 0.15 0 0 0 0 0 0 0 0 0 00 0 0 0.7 0.15 0 0 0 0 0 0.15 0 0 0 0 0 0 0 0 00.15 0 0 0 0 0.85 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0.15 0 0 0 0.7 0.15 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0.7 0.15 0 0 0 0 0 0.15 0 0 0 0 0 00 0 0.15 0 0 0 0 0.7 0 0 0 0 0 0 0.15 0 0 0 0 00 0 0 0.15 0 0 0 0 0.7 0 0 0 0 0 0 0.15 0 0 0 00 0 0 0 0.15 0 0 0 0 0 0.85 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0.85 0 0 0 0 0.15 0 0 00 0 0 0 0 0 0 0 0 0 0 0.7 0.3 0 0 0 0 0 0 00 0 0 0 0 0 0 0.15 0 0 0 0 0.7 0.15 0 0 0 0 0 00 0 0 0 0 0 0 0 0.15 0 0 0 0 0.7 0 0 0 0 0.15 00 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0 0.7 0 0 0 0.150 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0.85 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0.3 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0.85 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0.7 0.15187



A
tion: 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1A
tion: 51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1Observation model (a
tion, state, observation)A
tion: 0 A
tion: 11 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0A
tion: 2 A
tion: 31 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0188



A
tion: 4 A
tion: 50 0.14 0.01 0.8 0.05 0 0 0 0 0.14 0 0 0 0.01 0.8 0.050 0.14 0.01 0.8 0.05 0 0 0 0 0.14 0 0 0 0.8 0.01 0.050 0.14 0.01 0.8 0.05 0 0 0 0 0.05 0 0 0 0.1 0.1 0.750 0.14 0.01 0.8 0.05 0 0 0 0 0.14 0 0 0 0.01 0.8 0.050 0.14 0.01 0.8 0.05 0 0 0 0 0.14 0 0 0 0.8 0.01 0.050 0.14 0.8 0.01 0.05 0 0 0 0 0.14 0 0 0 0.01 0.8 0.050 0.14 0.8 0.01 0.05 0 0 0 0 0.89 0 0 0 0.05 0.05 0.010 0.14 0.01 0.8 0.05 0 0 0 0 0.89 0 0 0 0.05 0.05 0.010 0.89 0.05 0.05 0.01 0 0 0 0 0.89 0 0 0 0.05 0.05 0.010 0.89 0.05 0.05 0.01 0 0 0 0 0.14 0 0 0 0.8 0.01 0.050 0.14 0.8 0.01 0.05 0 0 0 0 0.05 0 0 0 0.1 0.1 0.750 0.14 0.01 0.8 0.05 0 0 0 0 0.14 0 0 0 0.01 0.8 0.050 0.05 0.1 0.1 0.75 0 0 0 0 0.89 0 0 0 0.05 0.05 0.010 0.14 0.8 0.01 0.05 0 0 0 0 0.89 0 0 0 0.05 0.05 0.010 0.89 0.05 0.05 0.01 0 0 0 0 0.14 0 0 0 0.8 0.01 0.050 0.89 0.05 0.05 0.01 0 0 0 0 0.05 0 0 0 0.1 0.1 0.750 0.14 0.8 0.01 0.05 0 0 0 0 0.14 0 0 0 0.01 0.8 0.050 0.05 0.1 0.1 0.75 0 0 0 0 0.14 0 0 0 0.8 0.01 0.050 0.14 0.8 0.01 0.05 0 0 0 0 0.14 0 0 0 0.01 0.8 0.050 0.14 0.8 0.01 0.05 0 0 0 0 0.14 0 0 0 0.8 0.01 0.05Expe
ted one step 
ost (a
tion, state)0 21.5 23.0 21.5 21.5 28.5 27.0 20.0 20.0 21.5 30.0 21.5 27.0 27.0 21.5 23.0 28.5 28.5 28.5 28.50 28.5 30.0 28.5 28.5 21.5 20.0 27.0 20.0 21.5 23.0 28.5 27.0 20.0 21.5 23.0 21.5 28.5 21.5 21.50 28.5 28.5 21.5 28.5 21.5 21.5 21.5 20.0 27.0 28.5 21.5 23.0 21.5 27.0 27.0 21.5 30.0 21.5 28.50 21.5 28.5 28.5 21.5 28.5 21.5 21.5 20.0 20.0 28.5 28.5 23.0 21.5 20.0 27.0 28.5 23.0 28.5 21.50 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 200 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20A.3 Shuttle do
king problemDue to Chrisman [Chrisman 92℄.Problem: in�nite dis
ounted horizonOptimization: MAXDis
ount: 0.95States: numbered from 0 to 7. Represent positions of the Shuttle with regard to the leastre
ently visited (LRV) and the most re
ently visited (MRV) station.0 Do
ked in LRV; 4 Just outside spa
e station MRV,ba
k of ship fa
ing station;1 Just outside spa
e station MRV,front of ship fa
ing station; 5 Spa
e fa
ing LRV;2 Spa
e fa
ing MRV; 6 Just outside spa
e station LRV,front of ship fa
ing station;3 Just outside spa
e station LRV,ba
k of ship fa
ing station; 7 Do
ked in MRV.A
tions: numbered from 0 to 2.0 TurnAround; 1 GoForward; 2 Ba
kup.Observations: numbered from 0 to 4.0 see LRV forward; 3 see nothing;1 see MRV forward; 4 do
ked at LRV.2 do
ked at MRV; 189



Transition model (a
tion, previous state, next state)A
tion: 0 A
tion: 1 A
tion: 20.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.00.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.3 0.0 0.3 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.8 0.0 0.0 0.1 0.00.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.3 0.0 0.0 0.0 0.00.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.70.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.1 0.0 0.0 0.8 0.1 0.0 0.00.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.3 0.0 0.3 0.4 0.00.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0Observation model (a
tion, state, observation)A
tion: 0, 1, 20.0 0.0 0.0 0.0 1.00.0 1.0 0.0 0.0 0.00.0 0.7 0.0 0.3 0.00.0 0.0 0.0 1.0 0.00.0 0.0 0.0 1.0 0.00.7 0.0 0.0 0.3 0.01.0 0.0 0.0 0.0 0.00.0 0.0 1.0 0.0 0.0Expe
ted one step reward (a
tion, state)0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 -3.0 0.0 0.0 0.0 0.0 -3.0 0.00.0 0.0 0.0 7.0 0.0 0.0 0.0 0.0
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