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Planning and Control in Stohasti Domains with ImperfetInformationbyMilos HauskrehtAbstratPartially observable Markov deision proesses (POMDPs) an be used to model omplex on-trol problems that inlude both ation outome unertainty and imperfet observability. Aontrol problem within the POMDP framework is expressed as a dynami optimization prob-lem with a value funtion that ombines osts or rewards from multiple steps. Although thePOMDP framework is more expressive than other simpler frameworks, like Markov deisionproesses (MDP), its assoiated optimization methods are more demanding omputationallyand only very small problems an be solved exatly in pratie. Our work fouses on twopossible approahes that an be used to solve larger problems: approximation methods andexploitation of additional problem struture.First, a number of new eÆient approximation methods and improvements of existing algo-rithms are proposed. These inlude (1) the fast informed bound method based on approximatedynami programming updates that lead to pieewise linear and onvex value funtions with aonstant number of linear vetors, (2) a grid-based point interpolation method that supportsvariable grids, (3) an inremental version of the linear vetor method that updates value fun-tion derivatives, as well as (4) various heuristis for seleting grid-points. The new and existingmethods are experimentally tested and ompared on a set of three in�nite disounted horizonproblems of di�erent omplexity. The experimental results show that methods that preservethe shape of the value funtion over updates, suh as the newly designed inremental linearvetor and fast informed bound methods, tend to outperform other methods on the ontrolperformane test.Seond, we present a number of tehniques for exploiting additional struture in the modelof omplex ontrol problems. These are studied as applied to a medial therapy planningproblem|the management of patients with hroni ishemi heart disease. The new extensionsproposed inlude fatored and hierarhially strutured models that ombine the advantages ofthe POMDP and MDP frameworks and ut down the size and omplexity of the informationstate spae.Keywords: Arti�ial Intelligene, partially observable Markov deision proesses, planningand ontrol under unertainty, deision-theoreti planning, medial therapy planning, dynamideision making, Bayesian belief networks. 3
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Chapter 1IntrodutionThe onstrution of intelligent ontrol agents that funtion in the real world has beome a fousof interest for many researhers in the AI ommunity in reent years. This line of researh wastriggered by an attempt to bene�t from advanes and results in the �elds of data interpretation,diagnosis, planning, ontrol, and learning, and ombine them into more sophistiated systems,apable of solving more omplex problems.What do we expet from a ontrol agent?The agent is expeted to live in the world. It aomplishes goals and ful�lls its intentions byobserving and atively hanging the world. In order to do so it must exploit a ombination ofpereptual, ating, and reasoning apabilities. Examples of ontrol agents inlude:� robot arm ontroller;� autopilot;� medial life support devie that monitors patient status and exeutes appropriate ationswhen needed.Figure 1-1 shows the basi high level view of a ontrol agent and its relation to the externalenvironment. The agent interats with the environment through ations and observations.Ations allow the agent to hange the environment. On the other hand observations allow itto reeive and ollet the information about the environment. The ontrol agent is designed toahieve a goal. In order to ahieve the goal it oordinates its pereptual and ating apabilities:ations to hange the environment in the required diretion and observations to hek the resultsof ation interventions.1.1 Two basi ontrol agent designsIn the ideal ase the ontrol agent would perform the best possible sequene of ations leadingto the goal. In order to ahieve the optimal or lose to optimal ontrol sequene the agent anbe designed to either:� follow hard oded and preprogrammed ontrol sequenes;� use the agent's model of the world's behavior and the agent's goals and try to �gure out(ompute) the appropriate ontrol autonomously.The two basi design alternatives are illustrated in �gure 1-2.11
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1.1.1 Assoiative approahThe �rst design alternative is based on the simple idea of knowing diretly what to do or howto respond in every situation. The idea, although simple and \unintelligent," an be the basisof a high quality ontrol agent. The examples of this kind of ontrol system design inludetable-based, rule-based and protool-based (guideline-based) arhitetures.The major advantage of this approah is that it an provide rapid ontrol responses andthus may be suitable for time ritial appliations. Its disadvantage stems from the fat thatit relies on the external ontrol plan soure, and responsibility for the quality of the ontrol isentirely on the shoulders of the ontrol plan provider. This means that the external provider(usually human) must do the hardest part and \solve" the problem of how to ahieve thegoal by onsidering every situation and enoding it into the ontrol plan. The other majordisadvantage of the approah is that both the goals the ontroller tries to pursue and thebehavior the ontrolled system exhibits are impliit. This auses the following:� a ontrol agent has no or very limited explanation apability. It has no means to justifyseleted ontrol responses with regard to goals. This feature may be very important insome appliation areas like mediine;� a spei� ontrol agent an be hard to update and modify, when the objetives of theontroller or the desription of the behavior hanges.1.1.2 Model-based approahThe seond alternative assumes that ontrol is inferred by a ontrol agent autonomously fromthe desription of the environment behavior and the goals to be pursued. In this ase theresponsibility for the quality of ontrol is more on the side of the ontrol agent itself and ismostly dependent on the design of its inferene proedures, although providing wrong modelsan ause suboptimal ontrol with regard to goals as well. The advantage of this approah is thatthe task of �nding and seleting optimal ontrol is performed by the ontroller autonomously andthe external provider is required to supply only the appropriate models of goals and behavior,a task that is usually simpler than providing omplete ontrol plans. Other advantages to workwith models of goals and behavior are:� the model an be used for other tasks as well, for example predition, diagnosis or expla-nation;� the ontroller is easier to modify and update, that is, hanges in goals or behavioraldesription are relatively easy to inorporate.An obvious disadvantage of the model-based approah is that the optimal ontrol responseto be used must be found, whih usually leads to longer reation times, due to the omplexityof the underlying optimization problem.Compilation of ontrolThe omputation of optimal response, when done during the ontrol, an ause signi�antdelays in response times. This may be unaeptable in some time ritial appliations thatdo not tolerate large time delays. The problem with response delays due to omputation anbe partially or ompletely eliminated by performing some or all omputation beforehand andstoring omputed results to speed up the on-line ontrol. In the extreme ase this redues to13



the ompilation proess that takes the model desription and outputs orresponding ontrolplans that in turn drive the operation of the ontrol agent. The ompilation module uses themodel desription to provide ontrol plans that are muh like ontrol plans designed by a humanexpert.1.1.3 Combination of approahesThe design of the real ontrol agent does not have to fall stritly into one of the above ategoriesand one an exploit advantages of both approahes. This an lead to the hybrid design wherea ontrol agent uses both ontrol plans as well as models of the environment and goals orsubgoals to perform the ontrol. The two approahes an be ombined easily by deomposingthe original ontrol problem into smaller subproblems and building a hierarhy of ontrol agents(or modules) along this deomposition, where eah agent is reponsible for some ontrol taskand eah an be designed di�erently. The ontrol sequenes performed by agents on the lowerlevel are then onsidered to be ations of the higher level ontrol agent.1.1.4 Approah pursued in this researhAlthough both approahes are equally important for solving omplex ontrol problems, in ourresearh we fous on the model-based alternative and explore the problems related to modelingdynami stohasti systems and ontrol goals as well as to problems of omputing optimalontrol responses for suh models.1.2 Partially observable Markov deision proessesModels of environments and goals an be of di�erent type and omplexity. The model of theenvironment an be deterministi or stohasti, desribed using disrete or ontinuous states,disrete or ontinuous time, desribed by simple transition relations or by di�erential equations.The goal an be a simple state or it an be de�ned over some time horizon.The task of inferring the optimal ontrol from models is largely dependent on the seletedmodeling framework and its omplexity. The relation between the two is proportional: themore expressive the modeling framework, the more omplex the assoiated omputation ofoptimal ontrol. Therefore one must often trade o� the bene�ts and osts of applying di�erentmodels. For example, seleting a simpler model usually leads not only to simpler omputationproedures for �nding optimal ontrol but also to a ruder approximation to reality, and loss ofpreision. On the other hand, a more omplex model and framework an approximate realitybetter, but �nding optimal ontrol solutions an be omputationaly very expensive or evenimpossible. Therefore while seleting the framework one must arefully deide whih featuresare less important and an be abstrated away and whih need to be onsidered.1.2.1 Partially observable Markov deision proessesThere are many reasonable modeling frameworks one an explore with regard to various ontrolproblems. In our work we study the framework of partially observable Markov deision proesses(POMDP) [Astrom 65℄ [Smallwood, Sondik 73℄ [Lovejoy 91a℄. A POMDP desribes ontrolledstohasti proess with partially observable proess states. It an be used to model dynamienvironments (systems) and their partial observability by the ontrol agent. The frameworkhas been studied by researhers from di�erent areas, mostly in ontrol theory and operations14



researh and reently also by researhers in Arti�ial Intelligene (AI) [Cassandra et al. 94℄,[Cassandra 94℄, [Littman et al. 95a℄, [Parr, Russell 95℄.The POMDP framework is losely related to the more ommon formalism of Markov dei-sion proesses (MDP) [Bellman 57℄ [Howard 60℄ [Puterman 94℄. The main distintion is thatPOMDPs are more expressive and model partial observability of the ontrolled proess, whileMDPs assume that proess states are always perfetly observable. Thus POMDPs allow us torepresent two soures of unertainty: unertainty related to the behavior of the proess underdi�erent interventions and unertainty related to imperfet observability of proess states. Also,POMDPs an represent investigative (pereptual) ations, that is ations that indue or triggerobservations.The main harateristis of the POMDP framework are:� the world (environment) is desribed using a �nite set of states, and the ontrol agent anatively hange them using a �nite set of ations;� the dynamis of the world is desribed using stohasti transitions between states thatour in disrete time steps;� information about the atual world state is not available to the ontrol agent diretly butthrough a �nite set of observations;� the quality of ontrol is modeled by means of numerial quantities representing rewards(or osts) assoiated with states or state transitions;� the ontrol goal is represented by an objetive funtion that ombines osts or rewardsobtained over multiple steps.Appliation areasThe main advantage of the POMDP framework is its ability to represent ontrol and planningproblems in stohasti and partially observable domains. Robot navigation [Littman et al. 95a℄[Cassandra et.al 96℄, medial therapy planning [Hauskreht 96a℄ [Hauskreht 97a℄, and mahinemaintainane and replaement [Smallwood, Sondik 73℄ [Lovejoy 91b℄ are typial appliationareas.In all these domains one faes two soures of unertainty: ation outome unertainty andimperfet observability. For example, with some probability a robot an move in the wrong(unintended) diretion, and the information it reeives from its sensors is often unreliable andsubjet to error. In the medial domain, a spei� therapy an lead to di�erent outomes fora given disease, and symptoms for two or more diseases an overlap. In both examples theunderlying state (a loation of the robot or the disease the patient su�ers from) is not knownwith ertainty and all possible states need to be onsidered during planning.The problem to solve in suh domains is to determine the best sequene of ations (ontrolplan, poliy) with regard to the modeled ontrol objetives. The ontrol objetives to beoptimized are related to multiple steps, and may orrespond to the redution of the number ofsteps needed to ahieve the target loation for the robot navigation task, or the inrease in thequality and length of life of a patient su�ering from a disease.1.2.2 Solving POMDP problemsThe POMDP o�ers a powerful theoretial framework for modeling partially observable dynamiontrolled proesses. However, the prie paid for the inreased expressivity of the framework is15



that �nding optimal or near-optimal ontrol solutions for POMDP problems is omputationallyintratable. This is unlike ontrol problems de�ned within the fully observable �nite-stateMDPs, beause they an be solved eÆiently [Puterman 94℄ [Bertsekas 95℄ [Littman et al. 95b℄.In priniple POMDP problems an be solved by onverting POMDPs to information-stateMDPs (see [Bertsekas 95℄), and by using standard solution strategies developed for MDPs, likedynami programming or value iteration. An information state summarizes all relevant infor-mation learned about the proess and it is represented by a omplete history of all observationsand ations or by a quantity orresponding to a suÆient statisti that preserves the Markovproperty of the information proess. The problem with using information states is that a spaeof all possible information states an be in�nite or of expanding dimension. This makes it hardto ompute omplete dynami programming and/or value iteration updates. Lukily, it anbe shown that omplete updates are omputable for a lass of POMDPs that an be reduedto belief state MDPs (a belief state assigns probability to all underlying proess states). Thisis mostly beause the objetive value funtion for a belief spae MDP is pieewise linear andonvex [Smallwood, Sondik 73℄.Although dynami programming updates are omputable for belief state POMDPs, theomplexity of the pieewise linear value funtion (number of linear vetors de�ning it) an growexponentialy in every update. This allows us to ompute optimal solutions only for POMDPswith small state, observation and ation spaes in pratie. For example, no suess withexat methods has been reported for POMDPs with more than 10 proess states and in�nitedisounted horizon riteria.Despite the modeling expressiveness, the problem of omputational eÆieny of exat meth-ods leaves open the question of pratial appliability of the POMDP framework, espeially insolving larger and more omplex ontrol problems. The main theme of our researh work was toexplore various ways and propose solutions that would help us to make the framework appliableto larger size domains.1.3 Solving ontrol problems for larger POMDPsThe problem of omputational omplexity of exat optimizationmethods prevents us from usingthem for solving more omplex POMDPs. In our work we foused on two solutions that allowus to attak larger problems:� approximation methods;� exploitation of the additional problem struture.1.3.1 ApproximationsThe main idea behind approximations is to trade o� the preision of the solution for speed.Thus, instead of omputing the optimal solution one attempts to ompute a good solution fast1.There are di�erent approximation methods that an be applied in the ontext of POMDPs.These fous on:� approximations of value funtions (poliies);� approximations (redutions) of information-state MDPs.1The term approximation as used in the MDP and POMDP literature and also here does not refer to theapproximation that is guaranteed to be within some fator from the optimal solution.16



In the �rst ase the approximation targets the value funtion and uses a simpler valuefuntion form and simpler dynami programming (value iteration) updates (see [Lovejoy 91b℄[Littman et al. 95a℄). In the seond ase the information-state MDP is redued to simplermodel, for example through feature extration mappings [Bertsekas 95℄ [Tsitsiklis, Van Roy 96℄or by using trunated histories [White, Sherer 94℄.Value funtion approximationsThere are several value funtion approximation methods researhers have developed to substi-tute hard to ompute exat methods. These inlude methods that use MDP-based solutions (see[Lovejoy 93℄, [Littman et al. 95a℄), grid-based updates and nonparametri value funtion ap-proximations (see [Lovejoy 91b℄), grid-based updates of derivatives (see [Lovejoy 91b℄) and para-metri value funtions and least-squares tehniques (see [Littman et al. 95a℄ [Parr, Russell 95℄).However the list of methods is far from being omplete and there is still a lot of room for im-provements.In our work we proposed and developed new methods and some extensions of the existingmethods. These are based on di�erent ideas and inlude the fast informed bound method (se-tion 4.4) based on approximate dynami programming updates that lead to pieewise linear andonvex value funtions with onstant number of linear vetors (equals the number of ations),a new grid-based point interpolation method that supports variable grids (setion 4.7.3), aninremental version of the linear vetor method that updates value funtion derivatives (setion4.8.2), as well as various heuristis for seleting grid-points (see setions 4.7.3 and 4.8.2).The lak of experimental studiesAlthough there is a relatively large number of approximationmethods developed, there has beena lak of studies that would ompare empirially their performane and that would help us tounderstand better the advantages and disadvantages of di�erent approximation approahes.To address this problem, we seleted three POMDP problems of di�erent omplexities andused them to test several methods and their modi�ations (Chapter 5). The main purposeof testing was to get an idea about how methods ompare to eah other, what things mattermore and whih one are less important, and identify methods or modi�ations that are inferioror superior to others. The methods were tested from two perspetives: the quality of valuefuntion bounds for methods that are guaranteed to provide them (setion 5.2) and the qualityof ontrol where methods were judged solely based on their ontrol performane (setion 5.3).1.3.2 Exploiting additional problem strutureA omplementary approah that helps us to attak larger size problems is based on the exploita-tion of additional problem struture, i.e. struture that annot be expressed in the lassialPOMDP framework. Strutural extensions and re�nements an be used to redue the omplex-ity of the information-state spae and value funtions one needs to work with and thus speed-upthe problem-solving routines.To study strutural extensions (Chapter 6) of the basi framework we used a medialtheraphy planning problem | the management of patients with ishemi heart disease (see[Wong et al. 90℄). The problem relies on both soures of unertainty (stohasti ation out-omes and partial observability) and thus �ts well the POMDP framework.17



Combining MDP and POMDP frameworksThe basi POMDP framework assumes that proess states are always hidden and informationabout the state an be aquired only through observations. However this is not always true,and one often works with proess states that onsist of both observable and hidden omponents.To address this issue we proposed new strutural extensions that ombine advantages ofMDP and POMDP frameworks (Chapter 6). This was ahieved by using fatored proess statemodels with both observable and hidden omponents (state variables), as well as a hierarhyof state variables that diretly restrits ertain ombinations of state variable values (setion6.2.1). Both of the extensions redue signi�antly the omplexity of the information-state spaeand value funtion de�nitions for the ishemi heart disease problem, ompared to the standardPOMDP approah (setion 6.4.1).Other model extensionsTo onstrut the model for the ishemi heart disease problem we had to deal also with issuesthat are not diretly relevant to the ontrol optimization problem but are very importantfrom the viewpoint of model building. The main issue here is the size and omplexity of themodel, namely the number of parameters one needs to estimate. To redue the omplexityof the model de�nition we use fatored transition and observation models represented usinghierarhial version of the Bayesian belief network (setion 6.2.3), and a fatored ost model(setion 6.2.5). Suh models expliitly represent independenies and regularities that holdamong the model omponents and redue its omplexity (setion 6.3). One de�ned the modelan be ompiled and optimized for the purpose of planning (setion 6.4.2).1.4 Struture of the textThe main objetive of our work is to explore, study and propose various ideas that help to makethe POMDP framework appliable to larger size domains. To do this, we foused mostly on:� value funtion approximation methods;� extensions of the basi POMDP framework that exploit additional problem struture;� improvements of exat methods.Closely related to approximations is an issue of experimental omparison of di�erent approxima-tion methods. These topis are entral to the thesis and aount for most of our ontributions.They are presented in separate hapters:� Chapter 3. POMDP framework and exat methods for solving ontrol problems withinit.� Chapter 4. Approximation methods.� Chapter 5. Experimental test, omparison and analysis of new and existing value funtionapproximation algorithms.� Chapter 6. Extensions of the basi framework, exploitation of the additional problemstruture. 18



1.5 Brief summary of haptersThe text overs most of the �eld of Partially observable Markov deision proesses. It isorganized in hapters that address di�erent topis related to the framework. An e�ort topresent new ideas and methods in relation to the previous work has been made. This is also thereason why ontributions are not presented on one plae but are rather sattered throughoutthe thesis. However, they are pointed out and summarized at the end of eah hapter, and arereviewed again in the onlusion.The following is a brief overview of every hapter that also inludes pointers to our ontri-butions:Chapter 2 desribes the basis of the framework of the Markov deision proess (MDP)that models ontrolled stohasti proesses under the assumption of perfet observability andontrol problems one an solve within suh a framework. The MDP framework is introduedmostly to simplify the explanation of more omplex POMDP framework that is entral to ourwork. The reason for this is that many of the solution methods developed for the MDP arediretly appliable or very similar to methods used for POMDPs. The understanding of theMDP and POMDP frameworks, their di�erenes and respetive advantages will be helpful forhapter 6 in whih the framework that exploits the ombination of MDPs and POMDPs willbe introdued.Chapter 3 introdues the framework of Partially observable Markov deision proesses anddesribes exat methods for omputing ontrol solutions within it. The POMDP extends theMDP framework by inorporating features of partial observability and ontrol over observations.Our work in this hapter is entered mostly around the exploration and the developement of anumber speed-up tehniques for exat optimization methods. These inlude: new Gauss-Seidelversion of the value iteration algorithm that is based on the idea of inremental lower boundsimprovements (setion 3.5.5); improvements of the basi Monahan's algorithm [Monahan 82℄[Cassandra et al. 97℄ that interleave generate and pruning phases of the value funtion onstru-tion and prune partially onstruted value funtions aross di�erent ations (setion 3.5.2); thedesign of various forward deision methods that selet the best ontrol ation for a single initialstate (setion 3.6). Also studied are alternatives to the standard POMDP models that usedi�erent or more omplex observation-state dependenies inluding for example a model withdelayed observations (setion 3.3).The problem of �nding the optimal ontrol within the POMDP is omputationally hard andexat methods are highly ineÆient [Papadimitriou, Tsitsiklis 87℄. This naturally leads to theexploration of methods that an aquire good solution faster, trading o� the auray of thesolution for speed. The exploration of suh methods is the subjet of Chapter 4. The hapterinludes the desription of a number of new and known approximation methods, and analyzesand ompares their theoretial properties. The new methods and novel improvements of existingmethods are: fast informed bound (setion 4.4), simple variable grid point-interpolation method(setion 4.7.3), inremental linear vetor method (setion 4.8.2), and heuristi strategies forseleting grid points (setions 4.7.3 and 4.8.2).New and known value funtion approximationmethods were experimentally tested and theirresults ompared and analyzed in Chapter 5. The experiments were used to test two features ofapproximation methods and their solutions: the quality of bounds (setion 5.2) and the qualityof ontrol performane (setion 5.3). Tests were onduted on the set of three POMDP ontrolproblems of di�erent omplexity that inlude two robot navigation problems and the Shuttledoking problem due to [Chrisman 92℄. 19



In Chapter 6 we propose and desribe various extension of the basi POMDP framework thatan represent additional problem struture. The extensions of the framework were explored inontext of the appliation of the POMDP framework to medial therapy planning, more speif-ially on the problem of management of patients with ishemi heart disease [Wong et al. 90℄.The new strutural features inlude: a ombination of MDP and POMDP frameworks usingfatored proess states with perfetly observable and hidden omponents; and hierarhial statevariable spae that restrits possible state variable value ombinations (setion 6.2.1). The ad-ditional struture makes it possible to ut down the omplexity of the information state (setion6.4.1) used to solve planning and ontrol problem and thus speed-up the problem solving rou-tines. Other new features that allowed us to onstrut the prototype POMDP model for theishemi heart disease problem are: fatored transition and observation model represented usinghierarhial version of the Bayesian belief network (setion 6.2.3), fatored ost model (setion6.2.5), ations with di�erent disounts (setion 6.2.7).Chapter 7 summarizes the preeeding text, points out main issues related to POMDP frame-work, desribes the ontributions of our work, and disusses open problems, and future researhobjetives.
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Chapter 2Markov deision proessesThe Markov deision proess (MDP) [Bellman 57℄ [Howard 60℄ [Puterman 94℄ is a basi mod-elling framework often used in the area of planning in stohasti domains. A Markov deisionproess:� is a ontrolled stohasti proess;� assumes that every proess state depends only on the previous proess state and not ahistory of previous states (Markov assumption);� assigns rewards (or osts) to state transitions.2.1 MDP model and MDP problemFormally the Markov deision proess is a 4-tuple (S;A; T;R) where:� S is a �nite set of world states;� A is a �nite set of ation;� T : S � A � S ! [0; 1℄ de�nes the transition probability distribution P (sjs0; a) thatdesribes the e�et of ations on the world state;� R : S �A� S !R de�nes a reward model that desribes payo�s assoiated with a statetransition under some ation.A Markov deision proess (MDP) is a useful abstration that represents the dynami be-havior of a proess under di�erent ations. There are di�erent variants of the basi MDPpresented above. For example very often the model uses osts instead of rewards. In generalosts an be viewed as negative rewards. They measure negative aspets of transitions.A Markov deision proess an be represented graphially using the inuene diagram in�gure 2-1. In the inuene diagrams ([Howard, Matheson 84℄ [Shahter 86℄):� irles represent hane nodes and orrespond to states of the ontrolled proess in twoonseutive time steps;� retangles stand for deision nodes that represent ation hoies;21
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t−1Figure 2-1: The inuene diagram representing Markov deision proess.� diamonds stand for value nodes representing reward assoiated with transitions;� direted links represent dependenies between individual omponents.An inuene diagram that represents temporal dependenies is also often alled a dynamiinuene diagram. It an be expanded over time by repliating its struture and reating asequene (hain) of states, ations and value nodes. This is shown in �gure 2-2.2.1.1 MDP problemA deision (ontrol) problem within the MDP framework requires one to �nd an ation or asequene of ations for one or more states that optimizes some objetive reward (ost) funtion.The objetive funtion represents ontrol objetives by ombining the rewards inurred overtime into a single quantity using various kinds of models (represented by a global value nodein �gure 2-2). Typially the objetive funtion is additive and is based on expetations. Theobjetive of ontrol is then to �nd the rational hoie of ontrol ations, that is ations thatlead to the maximum expeted umulative reward.The most ommon kinds of models used in pratie to ombine rewards are:� �nite horizon models: maximize the expeted reward for the next n steps:maxE(n�1Xt=0 trt)where rt represents a reward aquired at time t and geq0 orresponds to the multiplia-tive fator (disount fator) that sales rewards obtained in future;� in�nite horizon models:1. maximize expeted disounted reward :maxE( 1Xt=0 trt);22
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value Figure 2-2: Expanded inuene diagram representing MDP. The global value node representsa reward model that ombines multiple one-step rewards.where  is a disount fator that satis�es: 0 �  < 1 1;2. maximize average expeted reward per transition:max limn!1 1n nXt=0 rt;� target state model: maximize expeted reward (minimize expeted ost) to some targetstate G.Naturally one an imagine a whole spetrum of other models. For example one might wantthe ontrol to redue the risk of the transition to some state primarily and seondarily toderease its expeted disounted ost. This may orrespond to the medial problem in whihthe state to be avoided is the death of the patient and where ations must be taken suh that therisk of death is minimized in the �rst plae and the well-being of the patient (represented by alower ost) or eonomial ost are seondary. However our work will onsider only two additivemodels: the n steps-to-go �nite horizon model and the in�nite disounted horizon model.1A model very similar to the maximization of the expeted disounted reward requires one to maximizeexpeted disounted total reward, i.e. max limn!1 E(Pnt=0 trt), where 0 �  < 1 is a disount fator. Notethat under some assumptions the limit and expetations an be exhanged and the result will be same for bothmodels. In the following we will assume this holds. However in general the total reward model does not have tobe solvable and also does not need to be equal to the expeted reward.23
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i i−1 i−2i+1Figure 2-3: The relationship between the two shemes used to index ontrol poliies. The tindex follows the time ow, while the i index goes in the opposite diretion and represents stepsto go.2.1.2 Control funtions and poliiesLet � denotes a ontrol funtion that maps states to ations (i.e. � : S ! A) and let � =f�0; �1; � � �g be a poliy that orresponds to a sequene of ontrol funtions. A sequene ofontrol funtions is also often referred to in the literature as a strategy or a ontrol plan.Control funtions and poliies in the MDP framework desribe a spei� reative behavior ofthe agent in various irumstanes. The poliies an be stored in tables that enumerate allpossible situations the agent an wind up in.Stationary and non-stationary poliiesA poliy � = f�; �; � � �g that has a �xed ontrol funtion over time is alled stationary. Ifontrol funtions within the poliy � = f�0; �1; �2; � � � ; �t; � � �g are allowed to vary over timesteps, the poliy is non-stationary. The optimal ontrol poliy is (see [Puterman 94℄):� non-stationary for the �nite horizon model with n steps-to-go;� stationary for the in�nite disounted horizon model.A ontrol strategy for the �nite horizon problem an be fully desribed by a �nite n-steppoliy � = f�n; �n�1; � � � ; �i; � � � ; �1g, where �i represents the ontrol ation to use when iontrol steps remain to be done. Note that there are two indexing shemes one an use todesribe �nite horizon problem poliies: one that follows the time ow and indexes ontrolfuntions starting from time 0 and one that indexes ontrol funtions by ounting steps to goand starts from n (steps to go). These two shemes are opposite of eah other and the hoie issimply a matter of onveniene. The relation between the time and ost-to-go indexes is shownin �gure 2-3. The basi relationship between the two is that if:�i = �t then �i�1 = �t+1:In order to avoid onfusion and di�erentiate between the two shemes we will always use t whenreferring to time indexing and use other indexes for the steps-to-go indexing.The optimal poliy for the ini�nite horizon problem is stationary beause in any state atany point in time the ontrol agent faes an in�nite number of steps to go and thus the optimalontrol funtion must be the same for any state.24



Deterministi and stohasti poliiesWe have assumed so far that ontrol funtions are of the form: � : S ! A, that is that theyassign ations to states deterministially. When the poliy onsists of suh ontrol funtionsit is alled deterministi. However, in general a ontrol funtion an assign ations to statesnondeterministially aording to some probability distribution. In suh a ase the poliy isalled stohasti and an be realized by a oin ipping mahine. Note that a deterministipoliy is a speial ase of a stohasti one.In the following we will work only with deterministi poliies. In fat it is possible to showthat for disrete state MDPs with perfetly observable proess states the optimal poliy isalways deterministi (see [Puterman 94℄). This may not be the ase in situations when proessstates are only partially observable and poliy is onstruted using observations or features thatare di�erent from proess states (see [Singh et al. 94℄).2.1.3 Types of MDP problemsThe basi MDP ontrol problem requires one to determine the optimal poliy. However, inmany ases we are not always interested in �nding the omplete desription of all optimalresponses for all possible ontingenies. Then, based on the sope and detail of the requiredsolution, the MDP problem an onsist of:� �nding the optimal ontrol poliy for all possible states;� �nding the sequene of optimal ontrol funtions for a spei� initial state;� �nding the best ontrol ation (deision) for a spei� initial state.The problem formulation that requires one to �nd the optimal omplete poliy an bevaluable in situations in whih a ontrol agent an be asked to solve the same problem with thesame objetive funtion repeatedly but from di�erent initial situations.On the other hand the problem that requires one to �nd the optimal ontrol sequene onlyfor a spei� initial state is important in ases in whih the agent always starts from the sameinitial state. The di�erene in this ase is that ontrol funtions in the optimal solution do notneed to be de�ned ompletely for every step. For example for the initial state sinit, ��n onlyneeds to ontain the mapping from the initial state sinit to the optimal ation a, ��n�1 onlyneeds mappings from states that an be reahed from the initial state by performing optimalation a in sinit , and ��i only needs mappings from states reahable from sinit through asequene of n � i optimal ations. This an in some ases signi�antly redue the amount ofomputation needed to �nd the optimal ontrol.Both of the above more general problems subsume the problem in whih one is interestedin �nding the best ontrol response (deision) for a single initial state. Although �nding theoptimal ation may require the omplete plan to be found, it is often the ase that the deisionabout the best ation an be made without evaluating all possible future situations and thusarried out in a more eÆient way.There are other variants of ontrol problems that an be solved within the MDP framework,for example �nding a partial k-step poliy for some initial state. However the three types ofMDP problem listed above are used most often, so they will be also the fous of our attention.25



2.1.4 Real-time ontrolThe objetive of a ontrol agent that ats in the world desribed by some MDP model is torepeatedly hoose the ation that is expeted to result in the best overall performane, thatis the ation that maximizes the expeted overall reward. Suh an agent an be implementedusing the deision problem solving proedure (�nds the optimal ation for a single state) overand over again. This approah has both its advantages and disadvantages. The main advantageof the approah is that it an be ombined with various routines for adapting the underlyingMDP model. Its disadvantage is that the time spent on omputing the optimal ation an leadto unaeptable delays, for example when the agent ats in some time ritial environments.The natural solution for the time ritial appliation is to avoid the expensive on-line ompu-tation of the optimal response and try to preompute possible ontrol responses o�-line beforethey are used by a ontrol agent. The o�-line omputation �nds poliies for one or more states.One omputed these an be stored in various forms: as lookup tables, as protool like stru-tures with onditional ation sequenes, or using various auxiliary strutures, for example onethat stores preomputed values of objetive funtions (so alled value funtions). In general theidea is that the preomputed result and the struture used to represent the poliy should allowthe agent to extrat the ontrol response suÆiently quikly.In the following text we will fous our attention on issues related to the problem of �ndingoptimal ontrol solutions and we will not onsider tehnial issues related to the hoie of datastrutures used to store poliies and the eÆieny of suh representations. However, whenbuilding a real-time agent one must also onsider also the delays and the eÆieny due to thepoliy representation.2.2 Solving the MDP problemThere are numerous methods one an apply to solve ontrol problems formulated within theMDP framework. The fous of the following is to desribe the basi methods for solvingomplete poliy problem for both �nite and in�nite disounted horizon riteria, and to exploresome of their extensions and modi�ations. A good in-depth analysis of suh methods an befound in [Puterman 94℄ or [Bertsekas 95℄. Later in the hapter, methods that ompute simpleror more restrited MDP problems more eÆiently will be disussed.2.2.1 Finite horizon problemThe objetive of the n step horizon ontrol problem is to �nd a poliy that optimizes theadditive reward model: maxE(Pn�1t=0 trt). A nie property of the additive model is that theoverall expeted reward for some ontrol plan an be deomposed into the expeted rewardassoiated with the �rst ontrol step and the expeted reward for the remaining plan steps.Let V denote a value funtion V : S ! R representing the expeted reward of some ompletepoliy. Then beause of the deomposability of the value funtion for an n steps-to-go poliy�n = f�n; �n�1; � � � ; �1g we an write:V �nn (s) = �(s; �n(s)) +  Xs02S P (s0js; �n(s))V �n�1n�1 (s0) (2.1)where �(s; �n(s)) orresponds to the expeted reward inurred by performing �rst ation �n(s)of the plan �n in state s and V �n�1n�1 (s0) orresponds to the expeted reward assoiated with the26



remaining (n� 1) steps of the plan �n. �(s; a) for a state s and an ation a is omputed as:�(s; a) = Xs02S P (s0js; a))R(s; a; s0):Our objetive is to �nd a poliy that optimizes the overall expeted reward. This an bedone using Bellman's priniple of optimality [Bellman 57℄2. Using Bellman's priniple, theoptimal value funtion V � for an n steps-to-go plan starting at state s is:V �n (s) = maxa2A �(s; a) +  Xs02S P (s0js; a)V �n�1(s0) (2.2)where V �n�1(s0) is the optimal value funtion for the n� 1 step optimal plan. This implies thatthe optimal ontrol funtion ��n must be:��n(s) = argmaxa2A�(s; a) +  Xs02S P (s0js; a)V �n�1(s0): (2.3)Q funtionsThe optimality equations an also be written using ation-value funtions or so alled Q-funtions. The ation value funtion Q� : S�A !R represents the expeted reward assoiatedwith taking a �xed ation from a spei� state �rst and proeeding optimally afterwards. Therelation between value and ation value funtions is:V �n (s) = maxa2A Q�n(s; a)Q�n(s; a) = �(s; a) +  Xs02S P (s0js; a)V �n�1(s0)where the last formula an be rewritten in pure Q form as:Q�n(s; a) = �(s; a) +  Xs02S P (s0js; a)maxa02AQ�n�1(s0; a0):The introdution of an ation value funtion has no speial meaning on this plae. Howeverit will be used in the upoming setions in some of the algorithms and therefore it was introduedhere.H mappingsIn many ases it is easier to rewrite reursive equations 2.1 and 2.2 into a value funtion mappingform. Let B be a set of bounded real-valued funtions V on S, V : S ! R and let h be amapping h : S � A� B !R suh that:h(s; a; V ) = �(s; a) +  Xs02S P (s0js; a)V (s0)2Bellman's priniple of optimality says that any tail subplan of the optimal plan must be also optimal. Theproof of this is straightforward and is based on the fat that a plan with a suboptimal tail subplan annot beoptimal. 27



Let � be an arbitrary ontrol funtion. Then we an de�ne a mapping H� : B ! B suh that:H�V (s) = h(s; �(s); V );and a mapping H : B ! B suh that:HV (s) = maxa2A h(s; a; V ):Then using the value funtion mappings one an represent equation 2.1 as:V �nn = H�nV �n�1n�1 ;and equation 2.2 as: V �n = HV �n�1:Finding the optimal n step poliyThe n step ontrol plan an be omputed easily in a bakward fashion using the dynami pro-gramming approah. The dynami program omputes the optimal value and ontrol funtionsfor i steps-to-go from the optimal value funtion for i � 1 steps-to-go:V �i (s) = maxa2A �(s; a) +  Xs02S P (s0js; a)V �i�1(s0)��i (s) = argmaxa2A�(s; a) +  Xs02S P (s0js; a)V �i�1(s0):Using the above formulas repeatedly one an onstrut the omplete solution poliy bak-wards. That is, starting with a value funtion for 0 steps to go, one an ompute the optimalvalue and ontrol funtions for 1 step to go, and then the optimal funtions for 2 steps to go,and so on, up to n steps to go. The simple version of the dynami programming omputes aomplete n steps-to-go poliy in O(njAjjSj2) time.2.2.2 In�nite disounted horizon problemThe objetive of the in�nite disounted horizon problem is to �nd a stationary poliy thatoptimizes maxE(P1t=0 trt) with  being restrited to 0 �  < 1.The optimal value and ontrol funtion for an in�nite disounted horizon must satisfy the�xed point equation:V �(s) = maxa2A Q�(s; a) = maxa2A �(s; a) +  Xs02S P (s0js; a)V �(s0): (2.4)The equation an also be written using H mapping as V � = HV �. One the optimal valuefuntion is known the optimal ontrol (poliy) an then be aquired:��(s) = argmaxa2AQ�(s; a) = argmaxa2A�(s; a) +  Xs02S P (s0js; a)V �(s0): (2.5)There are three basi approahes to �nd the optimal funtion for the in�nite disountedhorizon problems: 28



� value iteration� poliy iteration� linear programmingThe �rst two methods are iterative. They allow one to approximate the ontrol poliy. Theyalso guarantee onvergene to the optimal solution after a suÆient number of iterations. Onthe other hand, the linear programming approah onverts the planning problem diretly to alinear programming optimization problem.Value iterationThe value iteration method [Bellman 57℄ �nds the optimal or �-optimal value funtion. Themethod builds on the fat that there is a unique �xed point value funtion V � satisfying Bell-man's equation: V �(s) = maxa2A �(s; a) +  Xs02S P (s0js; a)V �(s0)and that a simple value iteration method allows us to �nd it. Both of these results followdiretly from properties of H mappings.Let B is a set of real valued bounded funtions on S, i.e. for V 2 B, V : S ! R. Letk V k= maxs2S jV (s)j be a max norm. Then B together with the max (supremum) norm isa omplete, normed linear spae or Banah spae (see [Puterman 94℄). Assuming the disountfator 0 �  < 1, value funtion mappings H and H� orrespond to isotone ontrationmappings on B with a ontration fator .De�nition 1 (ontration mapping) The mapping H : B ! B is a ontration when for anytwo funtions U; V 2 B the following holds:k HV �HU k� � k V � U kwith 0 � � < 1 being the ontration fator.De�nition 2 (isotone mapping) The mapping H is isotone when for any two funtions U; V 2B that satisfy V (s) � U (s) for all s 2 S, denoted V � U , holds: HV � HU .The proof that H and H� are isotone ontrations is straightforward and an be found in[Puterman 94℄. Knowing that H and H� are ontration mappings, one an diretly apply theresults of the Banah theorem.Theorem 1 (Banah theorem). Let B be a Banah spae, F : B ! B be a ontration mappingand let (xk)k be a sequene with arbitrary initial point x0 2 B, suh that xk = Fxk�1. Then:1. F has a unique �xed point solution x� suh that Fx� = x�2. the sequene (xk)k onverges to x�3. for all k the following estimates hold:k xk � x� k� k1�  k x1 � x0 kk xk � x� k� 1�  k xk � xk�1 kk xk � x� k�k xk�1� x� k29



The immediate onsequenes of the Banah theorem for H are:� H has a unique �xed point value funtion solution, denoted V �, i.e. HV � = V �.� One an onstrut a sequene of value funtions using a simple iteration method Vk =HVk�1 that starts from an arbitrary value funtion V0 and onverges to the �xed pointsolution V �.� The preision of the value funtion approximation using the kth member of the sequeneis given by simple error bounds provided by the theorem.The same holds for H� and V �.Therefore one an always guarantee the existene of the unique optimal value funtionsolution V � = HV � as well as the existene of a simple value iteration method that an be usedto �nd it. Based on the provided error bounds one an also ompute the minimum numberof iteration steps to make in order to guarantee the required preision of the value funtionsolution.Theorem 2 Let M be the maximum per step ost, let 0 �  < 1 be the disount fator and let� be the required preision. Then the simple value iteration method, starting from V0(s) = 0 isguaranteed to ahieve required preision � after k steps, where:k � ln �(1� ) � lnMln  :Proof. The proof exploits the fat that under the max norm, two onseutive value funtionsaquired by the iteration method are guaranteed to be lower than M , that is:k xk � x� k� k1�  k x1 � x0 k� k1� MThen by setting: k1� M � �we an derive the minimum number of iterations needed to ahieve the required preision. 2The minimumnumber of iterations omputed using the above formula is usually very roughand not tight. In general ase � optimality an be reahed sooner by examining the di�erenebetween the value funtions omputed for two onseutive steps. This is expressed in thefollowing Bellman error theorem (see [Puterman 94, Littman 96℄).Theorem 3 (Bellman error) Suppose Vk(s) and Vk�1(s) di�er by at most Æ for every s 2 S.Then Vk(s) never di�ers from V �(s) by more than Æ1� .The Bellman error theorem provides a nie stopping riterion that iterative algorithms anuse to ompute � optimal value funtion solutions. Suh an algorithm is shown below. Itoutputs the value funtion V , suh that:j V (s) � V �(s) j� �30



holds for every state s. An �-optimal value funtion an be then used to ompute ontrolfuntion as: �(s) = argmaxa2A�(s; a) +  Xs02S P (s0js; a)V (s0):The error of the orresponding poliy an be bounded by the Bellman error Æ and is � 2Æ1�(see [Puterman 94, Littman 96℄).Value iteration (MDP , , �)initialize V (s) for all s 2 S;repeat set V 0(s) V (s) for all s 2 S;set V (s)  maxa2A[�(s; a) + Ps02S P (s0js; a)V 0(s0)℄;until j V (s) � V 0(s) j� �(1�)2 for all s 2 Sreturn V;The value iteration algorithm an ome in di�erent avors. One obvious modi�ation to thedesribed basi version is to update the value funtion used in the iteration immediately with anew result and not to wait until the value funtion for all states is available. This modi�ationis often referred to as the Gauss-Seidel version of value iteration and usually leads to fasteronvergene of the algorithm.Poliy iterationAn alternate approah to the omputation of the optimal poliy for the in�nite disountedhorizon problem is poliy iteration. This method was suggested by Howard [Howard 60℄ and isbased on the two omputation steps performed iteratively:� value determination: omputes expeted return for urrent (initially random) �xed poliy;� poliy improvement: improves the urrent poliy.The method relies on the fat that for a �xed stationary poliy it is easy to:� ompute the value funtion orresponding to suh a poliy (simply by solving a set oflinear equations);� improve the poliy if it is suboptimal;� deide if the poliy is optimal.This is based on two theorems, whih are presented without proof (proofs an be found in[Bellman, Dreyfus 62℄).Theorem 4 (Improvement theorem) Let � and � be two ontrol funtions de�ning two station-ary poliies and let � be hosen suh that:V�(s) � Q�(s; �(s)) for all s 2 S:Then it follows that � is uniformly better than �, i.e.V�(s) � V�(s) for all s 2 S:31



Theorem 5 (Optimality theorem) Let � be a ontrol funtion (poliy), with assoiated valuefuntion V�(s) and ation-value funtion Q�(s; a). If poliy � annot be further improved usingthe poliy improvement theorem, that is ifV�(s) = maxa2A Q�(s; a) for all s 2 S;then V�(s) and Q�(s; a) are unique optimal value and ation value funtions and � is an optimalontrol funtion de�ning the optimal stationary poliy.An immediate onsequene of the improvement theorem is that a poliy onstruted fromthe urrent poliy by replaing all ations in the urrent poliy with ations with better Q�(s; a)guarantees better results. This de�nes the improvement step. The onsequene of the optimalitytheorem is that if the poliy annot be improved using the improvement step then it is optimal.This represents an optimality test. The following algorithm inorporates these steps, andrepresents the poliy iteration method.Poliy iteration(MDP , )set � to be an arbitrary ontrol funtion de�ning poliy �;repeat ompute value funtion V�(s);ompute ation values Q�(s; a) for all s 2 S; a 2 A;set �(s) argmaxa2AQ�(s; a) for all s 2 S;until no hange in � is observedreturn ontrol funtion �;The value determination phase of the algorithm omputes the value funtion for a �xedstationary poliy. The value funtion an be obtained by solving the set of linear equations ofthe form: V�(s) = �(s; �(s)) +  Xs02S P (s0js; �(s))V�(s0);whih an be solved by any of the available methods. The system of linear equations an beomeomputationally expensive for larger state spaes. However, in order to improve the poliy itis not neessary to ompute the exat value funtion, and the improvement an be made basedon a value funtion approximation. This idea is used in the version of the poliy iterationproedure alled modi�ed poliy iteration [Puterman 94℄. Modi�ed poliy iteration uses valueiteration tehniques to approximate the value funtion in the poliy evaluation step. This anbe done beause H� for any � (that de�nes a poliy) is a ontration mapping as shown above.There are other possible modi�ations of the basi poliy iteration proedure, for examplepoliy iteration that eliminates suboptimal ations onsidered during the poliy improvementusing bounding tehniques (see the disussion later in the hapter). A nie survey of poliyiteration algorithms an be found in [Puterman 94℄.Linear programmingThe problem of �nding the optimal ontrol value funtion an be also reformulated as a linearprogramming task. The linear program an be solved in time polynomial in the number ofvariables and onstraints (and preision), using either ellipsoid or Karmarkar's algorithms (see[Strang 86℄). The basi linear program used in the in�nite disounted horizon and the rewardmaximization is (see [Puterman 94℄ [Bertsekas 95℄):32



minimize: Xs2S vsunder the onstraint: vs � �(s; a) +  Xs02S P (s0js; a)vs0for all s 2 S and a 2 A. Similarly one an onstrut the linear program for the problem withthe minimization of osts (see [Puterman 94℄ [Bertsekas 95℄).Variable(s) vs represent value funtion values assoiated with proess states and the linearprogram attempts to �nd their optimal values V �(s). This is beause: a value funtion for everystate is no smaller than the immediate one step expeted reward plus the expeted reward forany possible proess state ontinuation; minimizing the sum of value funtions for all proessstates guarantees that values for the �xed point solution are found. One the optimal valuefuntions are found the optimal poliy an be easily omputed by seleting the ation thatminimizes the value funtion.The above linear program onsists of jSj variables and jSjjAj onstraints. It is also possibleto onstrut a dual linear program that allows one to �nd the ontrol funtion and that onsistsof jSjjAj variables and jSj onstraints (see [Puterman 94℄ [Littman et al. 95b℄).2.3 Forward methods for solving MDP problemsMethods we have disussed so far are suitable for omputing value funtions or ontrol poliiesfor all states. However, when one only needs to �nd the optimal ontrol plan for a single initialstate or to selet the best ontrol ation for a single state, more eÆient forward methods anoften be used.The main idea of forward methods is to identify states reahable from the initial stateby unwinding the optimality formula in the forward fashion �rst (identi�ation phase) andperform the omputation bakwards using only states reahed in the identi�ation phase. Thee�etiveness of forward methods depends mostly on the sparseness of the transition matries.Thus, the more sparse the transitions, the better the hane forward methods improve theeÆieny.2.3.1 Computing optimal ontrol plans for the �nite horizon modelForward methods an be applied to ompute the n steps-to-go poliy for a single initial state.In this ontext one an use an extension of the bakward dynami programming method, that:� identi�es all proess states that need to be onsidered at every stage (forward phase);� omputes value and ontrol funtions bakward only for those states that were reahedin the forward phase.States that need to be onsidered an be found in the forward fashion by simply traking andmarking all states reahable from the initial state. Then the omputation of the optimal valueand ontrol funtions is performed only for these states, leaving all others unde�ned.The main advantage of the method is that it eliminates the omputation of value funtionsat states that annot be reahed. The savings from it might be signi�ant when one deals witha large model with a large number of states and sparse transition matrix.33



2.3.2 Finding the optimal ation for a single initial stateThe deision problem, that seeks the optimal ontrol ation for a single initial state is theother problem for whih forward methods are suitable. The problem is simpler than the aboveproblem that requires us to �nd optimal hoies for all reaheable states. This often allows usto onstrut simpler and faster problem-solving methods that fous on �nding the single stateontrol. The algorithms are best desribed using stohasti deision trees (see e.g. [Pearl 89℄).Deision treeThe deision tree depits in the hronologial order ations a ontrol agent an make andsubsequent outomes of these ations that are governed by hane. An example of a deisiontree is in �gure 2-4. It onsists of two types of nodes:� deision nodes (retangles);� hane nodes (irles).In the deision tree, deision nodes stand for proess states, branhes starting in deisionnodes represent ations the agent might selet, hane nodes represent states after the seletionand branhes emanating from the hane nodes represents possible stohasti outomes follow-ing the ation in the state. A omplete deision tree represents: states that are reaheable fromthe initial state and ation hoies that lead to them. For MDPs, the deision tree struturean be used to ompute optimal value funtion for some state as desribed in the basi valuefuntion formula:V �(st) = maxa2A Q�(st; a) = �(st; a) +  Xst+12S P (st+1jst; a)V �(st+1) (2.6)where V �(st) and Q�(st; a) are values that an be assoiated with deison node st and hanenode [st; a℄ respetively. Thus the tree is best viewed as being onstruted by a repeatedunfolding of the value funtion formula.Note the di�erene between the two graphial representations: dynami inuene diagramsand deision trees. The former serves to represent the model and its omponents, while thelatter one represents how the solution for some spei� state is omputed.The goal of the deision task is to selet the optimal ontrol ation for the initial state thatorresponds to the root of the tree. The best ation hoie is omputed simply as:argmaxa2AQ(s0; a):The problem with a deision tree method that blindly unfolds the reursive formula is thatthe size of the tree an grow exponentially. This an lead to a signi�ant ineÆieny due torepeated or redundant omputation. Therefore one needs a mehanism to restrit the size ofthe tree. In the following we will present two mehanisms that keep the size of the tree fromgrowing large.Using bounds for pruning suboptimal branhesThe idea of pruning is simple and is based on the ability to ompute bounds for the expetedreward of any enountered state of the partially onstruted deision tree. Then assuming thatbounds are known for the leaves of the partially onstruted deision tree, one an ompute34
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one an also develop soft riteria that allow one to prune the deision tree branhes based onthe preision with whih the deision at ertain points needs to be made. The pruning rule inthis ase is :Let � be a preision with whih the ation at state st needs to be seleted. Then whenever:lbound(st; a1) + � > ubound(st; a2)holds the deision tree branh orresponding to ation a2 an be pruned. The major problemin applying the soft pruning method is in alloating a preision fator to di�erent branhes ofthe tree and allowing soft pruning throughout the deision tree. This is beause one is usuallygiven only the preision error that is related to the deision at the root of the tree.Basi method for the dynami onstrution of the deision treeIt has been shown how one an use bounds to prune suboptimal branhes of a deision treethat is only partially expanded. To exploit this feature, a strategy that inrementally expandsa deision tree an be onstruted. The strategy starts with a small initial deision tree,whih is gradually expanded whenever the required deision annot be made. Suh a strategyallows one to avoid the uneessary exploration of large parts of the deision tree, and to prunesuboptimal branhes as soon as possible. We will refer to this strategy and its modi�ations asthe inremental expansion strategy or inremental deision tree strategy. The simple breadth�rst version of this strategy is shown in the following algorithm.Inremental expansion(MDP, , sI , �, VL, VU )initialize tree T with sI and ubound(sI); lbound(sI) using VL, VU ;repeat until (single ation remains for sI or ubound(sI)� lbound(sI) � �)all Improve-tree(T;MDP; ; VL; VU);return ation with greatest lower bound as a result;Improve tree(T;MDP; ; VL; VU )if root(T ) is a leafthen expand root(T)set bounds lbound; ubound of new leaves using VL, VU ;else for all deision subtrees T 0 of Tdo all Improve-tree(T 0;MDP; ; VL; VU );reompute bounds lbound(root(T )); ubound(root(T )) for root(T );when root(T ) is a deision nodeprune suboptimal ation branhes from T ;return;The algorithm takes an MDP model, a disount fator , an initial state sI , a preisionparameter � and value funtion bounds VL and VU used to initialize leaf nodes of the partiallybuilt deision tree. It returns an ation that is guaranteed to be �-optimal. The algorithmbuilds a deision tree T and improves bounds ubound; lbound assoiated with nodes of thetree inrementally by alling subroutine Improve tree. It stops when �-optimal ation an beseleted. This is when the bound di�erene for the root of the tree is less than � or when onlysingle ation remains possible (all others were pruned). Bounds at leaves of the tree are alwaysinitialized using VL and VU that are omputed e.g. using equations 2.7 and 2.8 for the in�nitedisounted horizon problem. 36
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otherwise: set V S  V S [ f[root(T ); lbound; ubound℄g;for all deision subtrees T 0 of Tdo all Improve-tree(T 0; V S;MDP; ; VL; VU);reompute bounds lbound(root(T )); ubound(root(T )) for root(T );update reord for root(T ) in V S;prune suboptimal ation branhes from T ;return;The bound iteration algorithm implements a gradual breadth-�rst expansion of the deisiontree, and reuses bound results for shared substrutures using the data struture visited-set V S.The way results are reused in this algorithm is illustrated in �gure 2-5, assuming that thebranh orresponding to an ation a1 is expanded �rst. The algorithm stops when the solutionis guaranteed to be �-optimal or when the root of the deision tree has only one remainingation (all others were pruned).2.4 Solving large MDP problemsWe have pointed out that one is able to solve the planning problems in time polynomial in thesize of the state spae jSj and ation spae jAj. This means that one an solve the planningproblems eÆiently with regard to the omponent spae sizes. However, for many real worldproblems the state spae size an beome very large, and is itself subjet to exponential growth.The notion of state in many real world problems is de�ned usually through a set of statevariables, eah with a spei� number of values it an take. Using suh fatored state repre-sentation, the total state spae onsists of all possible ombinations of assignments of values tostate variables and is exponential in the number of variables used. For example, for a simplease with n boolean state variables, the omplete state spae has 2n states. Similarly, whenan ation spae is de�ned through a set of m possible elementary ations that may or may notbe performed simultaneously by an agent, the total number of di�erent ations the agent anperform is 2m.Reduing the omplexity of MDP de�nitionsHaving large state and ation spaes inreases omputational time and fores the designer ofthe model to provide huge transition matries and reward models (an entry is needed for everypossible ombination of two states and an ation). This problem is reminisent of the problemin the 70s, where methods for handling unertainty based on probabilities were onsideredinadequate beause one was expeted to de�ne huge probability tables.The omplexity of an MDP de�nition an be redued by exploiting additional struture,suh as independene and onditional independene, or various regularities and restritionsthat hold among the omponents of a fatored MDP model. One might be able to de�ne largermodels using signi�antly fewer parameters by using fatored model instead of a omplete one.Graphial models, like belief networks [Pearl 89℄ or dynami inuene diagrams[Shahter, Peot 92℄, let us represent dependenies between omponents of an MDP model inmore detail. A simple example is shown in �gure 2-6. Here a proess state is represented usingstate variables A;B; and C and both transition and ost models are desribed in the fatoredform.The dynami inuene diagram example does not over all possible ways one might expressstrutural properties and regularities of an MDP model. For example, parameters orresponding38
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satis�ed: �i = f< 'ki ! aki >gwhere 'ki stands for the rule proposition and aki is the ation assoiated with it. The omplexityof the rule set de�nition an usually be redued by representing them through lassi�ation(deision) trees or deision lists with ations assoiated with their leaves.Fatored MDPs with additional struture an be solved using speialized proedures thattake advantage of the struture and output strutured poliies and/or value funtions (see[Puterman 94℄). A method for omputing in�nite horizon problems that uses strutured on-trol and value funtions is alled strutured poliy iteration. This method was applied by[Boutillier et al. 95℄ for example. The main features of the approah are:� MDP model is represented in a fatored form and with additional struture (indepen-denes, regularities);� value and ontrol funtions are expressed ompatly using deision trees;� value determination and poliy improvement stages work diretly with strutured poliiesand strutured value funtions.Approximations using model simpli�ationsOne an ompute ontrol poliies while avoiding the need to work with omplete state spae byexploiting regularities in the MDP de�nitions. Unfortunately, many problems do not exhibitperfet regularities that allow the problem to be solved and represented eÆiently. However, ina large number of ontrol problems, there are usually features that are less relevant, and thatdo not inuene the quality of the �nal solution dramatially. Then, one would expet to get agood solution when suh features are ignored and only relevant features are aounted for in theomputation and in the resulting solution. This idea is the basis of approximation algorithms.In general there are two methods researhers suggest for the purpose of approximation:� model redution (e.g. [Bertsekas 95℄, [Boutillier, Dearden 94℄);� deomposition [Dean, Lin 95℄.The �rst approah is based on reating a new simpler MDP model that simpli�es the originalmodel by reduing the size of the state and/or ation spaes. The redution in the omplexityof the model then allows for faster approximate solutions by trading o� auray for speed.Alternatively, one an try to ombine omputation steps performed with omplete and reduedmodels as suggested by [Bertsekas 95℄.The redued MDP model an be supplied ompletely or partially by the designer of thesystem or an be omputed automatially by dropping the least relevant parts of the model.The MDP an be de�ned by the designer using feature or aggregate states and probability dis-tributions mapping the new aggregate states to original model states P (sjsAgg) [Bertsekas 95℄.Using the onditional probability one an ompute omponents of the new transition probabilitymatrix as: P (sAgg1 jsAgg2 ; a) =Xs2S P (sjsAgg2 ) Xs02sAgg1 P (s0js; a):Alternatively one might onstrut a simpler MDP model with aggregate states that uses upperand lower bounds on transition probabilities and that does not require priors on states P (sjsAgg)40



to be de�ned. Suh an approah was pursued by [Dean, Givan 97℄ [Dean et al. 97℄ who alsodevised tehniques to extrat simpler models for fatored MDPs.Note that the omputation of the new simpler model from the old one may require a signi�-ant amount of time. If the model redution is performed during problem-solving, the overheadtime spent on the redution itself needs to be added to the overall running time. Then, if theomplexity of the omputation assoiated with the transformation of the model is omparableto the omputation of the omplete MDP the use of model redution to solve the problem isompletely unjusti�ed.The approximation through deompositionmethod [Dean, Lin 95℄ divides the omplete statespae into a olletion of smaller state spae regions with stronger links between intraregionstates and weaker or limited links between interregion states. Regions are expeted to onsistof a small number of state variables that are assumed to be relevant only within the regionand an de�ne loal poliies. Di�erent regions are then treated as a states of the higher levelproess, with ations orresponding to the lower level loal poliies. The approximate solutionis then aquired by applying the divide and onquer strategy that breaks down the large MDPproblem to smaller problems on both higher and lower levels. These are subsequently solved,ombined and iteratively improved.2.5 SummaryThe Markov deision proess (MDP) framework is a framework ommonly used for represent-ing and modelling ontrol problems in stohasti dynami domains. The basi MDP modelassumes a proess with a �nite state spae. Various problem-solving methods an be used toobtain optimal ontrol solutions for suh a model. The problem solving methods are: dynamiprogramming for the �nite horizon ase; value iteration, poliy iteration, and linear program-ming for the in�nite diounted horizon ase. Whenever the optimal deision for a single initialstate is sought and transitions in the MDP are sparse the problem-solving an often be spedup using forward deision tree methods.The main hallenge for future reasearh in MDPs is to model and solve MDPs with largeor ontinuous state spaes. The advanes and new results in the neuro-dynami programming(see [Bertsekas, Tsitsiklis 96℄), and graphial modelling and assoiated probabilisti reasoningmethods (see [Lauritzen 96℄) that take advantage of independenes and regularities betweenmodel omponents are of high importane in this respet.The objetive of this hapter was to summarize the MDP framework, basi methods forsolving ontrol and deision problems within it. The MDP framework is introdued mostly tosimplify the explanation of more omplex POMDPs that are the entral topi, as many of thesolution methods developed for the MDP are diretly appliable or very similar to methodsused to solve POMDP problems.
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Chapter 3Partially observable Markovdeision proessThe Markov deision proess framework models a ontrolled stohasti proess with perfetlyobservable states. This represents the situation in whih a ontrol agent an be unertain aboutpossible outomes of its ations, but still able to verify the resulting state one the ation isompleted. That is, there is no unertainty with regard to what state the agent urrently is,though there is an unertainty with regard to where it an be after the next ation is taken.One an easily imagine the situation in whih the agent annot observe the proess statediretly, but only indiretly through a set of noisy or imperfet observations. The feature ofpartial observability an be important in many real world problems. For example, a robotplanning its route or deiding about what ation to take usually works with noisy sensoryinformation; in the medial area, the physiian often needs to deide about the treatmentbased on available �ndings and symptoms while being unertain about an underlying disease.In all suh ases the pereptual information need not align with and imply the atual worldstate with ertainty. Then the agent that ats in environments with imperfet state informationmay fae unertainty from the two soures:� unertainty about the ation outome;� unertainty about the world state due to imperfet (or partial) information.Observations may not be ostless. Often they an require a speial ation to be taken beforethey are enabled and this ation might have both ost or transitional e�et. The ations thatenable observations are alled investigative ations. The main purpose of performing inves-tigative ations is to narrow the unertainty about the world state, for example by performinga speial test revealing more information about the ongoing patient's disease proess, or us-ing amera surveillane in order to detet the urrent position of the robot. Therefore whenmaking the deision about an investigative ation one needs to arefully onsider both bene�tsand osts assoiated with performing it. For example, some investigative ations in mediinealthough very helpful in diagnosing underlying problems an be very risky and ostly due totheir invasivenes.The presene of partial observability in the environment, as well as the apability of anagent to perform investigative ations have a major impat on how planning proedure mustwork. The reason for this is that: 43



� in order to �nd an optimal ontrol one should aount for imperfet observability nowand in future steps;� during planning, one must onsider the ost and bene�ts of both ontrol and investigativeations.In the following we will fous on the modelling framework that represents ation outomenondeterminism, imperfet observability as well as investigative ations. The modelling frame-work is alled Partially observable Markov deison proess (POMDP) [Astrom 65℄ and it is bestviewed as a further extension of the MDP framework.3.1 Partially observable Markov deision proessMore formally, partially observable Markov deision proess is de�ned as (S;A;�; T;O;R)where:� S orresponds to a �nite set of world states;� A is a �nite set of ations;� � is a �nite set of observations;� T : S � A � S ! [0; 1℄ de�nes the transition probability distribution P (sjs0; a) thatdesribes the e�et of ations on the state of the world;� O : � � S � A ! [0; 1℄ de�nes the observation probability distribution P (ojs; a) thatmodels the e�et of ations and states on observations;� R orresponds to the reward model S�A�S !R that models payo�s inurred by statetransitions under spei� ations (alternate formulationmay inlude osts that orrespondto negative rewards).The inuene diagram desribing the partially observable Markov deision proess is shownin �gure 3-1. The main distintion between fully observable MDPs and POMDPs is in theinformation one uses to selet an ation. In the MDP ase ations are seleted using proessstates that are always known with ertainty, while for the POMDP, ations are based onlyon the available information that onsists of previous observations and ations. Note that theobservation model as de�ned makes it possible to ondition observations on both ations andproess states. This allows one to model investigative ations in the same way as other ontrolations.The standard observation model (�gure 3-1) assumes that observations depend on a previousation and a urrent proess state, that is, O always de�nes P (otjst; at�1) relative to t. However,while modeling some deision and ontrol problems one often needs to use di�erent observationmodels that �t better the real world, for example one may need to model observation delays.These models an be very important in medial deisions in whih test results are often notavailable immediately and are delayed (thus they refer to past patient states). One of the topisof our work is to explore some of these more omplex observation models.44
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Figure 3-1: Inuene diagram desribing the POMDP model.3.2 Control in partially observable domainsThe major di�erene between MDP and POMDP is that in the POMDP the underlying proessstate is not known with ertainty and an be only guessed based on past observations, ationsand any prior information available. Therefore we need to di�erentiate between the true proessstate and the information (or pereived) state that aptures all things important and knownabout the proess.3.2.1 Information stateAn information state represents all information available to the agent at the deision time thatis relevant for the seletion of the optimal ation. The information state onsists of either aomplete history of ations and observations or orresponding suÆient statisti. A sequeneof information states de�nes a Markov ontrolled proess in whih every new information stateis omputed as a funtion of the previous information state, the previous step ation and newobservations seen: It = � (It�1; ot; at�1)where It and It�1 denote new and previous information states. The proess de�ned overinformation states is also alled the information-state Markov deision proess or information-state MDP. In priiple one an always redue the original POMDP into the information-stateMDP. The relation between the omponents of the POMDP model and its information stateas well as a redution of the model to information-state MDP is shown in �gure 3-2.Complete information stateThe easiest way to represent an information state is to use all information available to theagent sine the beginning (time t = 0) as shown in �gure 3-1. Then information onsists of45
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Figure 3-2: Inuene diagram for the POMDP model with information states and orrespondinginformation-state MDP.a omplete history of ations and observations made; in other words it orresponds to theomplete information state (vetor).De�nition 3 (Complete information state (vetor)) The information state It for time t isalled omplete (denoted ICt ) when it onsists of all information available to the agent beforethe ation at time t is made. The omplete information state onsists of:� prior belief on states at time 0;� all observations available up to time t;� all ations performed before time t.Note that the omplete information state proess satis�es trivially a Markov property. Thatis, any new information state an be expressed as a funtion of the previous information state,the previous ation and the new observation. The update funtion is then simply implementedby adding the ation and the new observation to the previous step information state.Representing information states with suÆient statistisThe main problem with the omplete information state is that it is expanding its size withelapsed time. This may be a major drawbak, espeially in the ase where we are interested inomputing and representing solutions to in�nite horizon planning problems. A slightly di�erentproblem of ontrol solution representability using the omplete information vetor with regardto planning an be due to the existene of the in�nite size subspae orresponding to the priorbelief at time 0.The expanding dimension of omplete information vetors is one of the major hindranes toboth the omputation of the value funtion as well as representation of ontrol plans (poliies).This problem an be resolved by replaing omplete information states with quantities thatrepresent suÆient statistis with regard to ontrol (see for example [Bertsekas 95℄). Thesequantities satisfy the Markov property and preserve the information ontent of the ompletestate that is relevant for �nding the optimal ontrol.46



De�nition 4 (SuÆient information state proess) Let P = fI0; I1; � � � ; It; � � �g be a sequeneof information vetors desribing the information proess. Then P is a suÆient informationproess with regard to the optimal ontrol when for every omponent It in P holds:It = � (It�1; ot; at�1);P (stjICt ) = P (stjIt);P (otjICt�1; at�1) = P (otjIt�1; at�1)where It�1 and It are suÆient information states, ICt and ICt�1 are omplete information states,ot is an observation that beame available at time t, and at�1 is an ation made at time t� 1.The main reason to use suÆient information states is that they an be signi�antly smallerand of non-expanding dimension and still allow one to ompute optimal value and ontrol fun-tions. On the other hand the update of information states is usually more omplex omparedto the updating of omplete histories. The suÆient information state an be used not onlyfor optimization but also to enode a ontrol plan (poliy). Suh a plan then requires the planexeutor to update suÆient statistis at every step, whih may ause a slight delay in theoverall response time ompared to the ase when one works with omplete histories, enoded,for example, as ontrol trees [Cassandra 94℄ 1. However, in many appliations the delay due toinformation state update should not play a major role.Belief states as suÆient information statesThe quantity often used as a suÆient statisti for planning and ontrol in POMDPs is thebelief state (or belief vetor). The belief state assigns probability to every proess state andreets the extent to whih states are believed to be present. The belief vetor bt at time torresponds to: bt(s) = P (sjICt )where ICt is a omplete information vetor at time t.Although one annot guarantee that a belief state orresponds to the suÆient informationvetor for an arbitrary POMDP model, a large number of POMDP models used in pratie(inluding standard POMDPs) falls into the lass of belief spae POMDPs. The major advan-tages of a belief information state are that it is de�ned over a �nite number of proess statesand that it is relatively easy to work with. This is mostly due to nie properties satis�ed byvalue funtions de�ned for belief state MDPs. We will be disuss them later in this hapter.3.2.2 Value funtions in POMDPValue funtion formulaswe derived for the fully observable Markov model an be applied diretlyto the information-state MDP. For example n steps-to-go value funtion for some �xed plan�n = f�n; �n�1; � � � ; �i; � � � ; �1g orresponds to:V �nn (In) = �(In; �n(In)) +  XIn�1 P (In�1jIn; �n(In))V �n�1n�1 (In�1) (3.1)1The ontrol (poliy) tree [Cassandra 94℄ is best viewed as a ollapsed deision tree with �xed ation hoiesthat the agent follows under di�erent observations. 47



where �n is a ontrol funtion de�ned over the omplete information vetor spae, In and In�1are information states for n and n� 1 steps-to-go, �(In; �n(In)) is an expeted one step rewardfrom performing ation �n(In) in In and V �n�1n�1 (In�1) is an expeted reward assoiated withthe remaining steps of the plan. Expeted one step ost for an information state In and anation a is equal to: �(In; a) =Xs2S �(s; a)P (sjIn):A next step information state In�1 is aquired from the urrent state using the Markovupdate funtion � : In�1 = � (In; o; a):This means that there are at most j�j following information states for every ation and initialinformation state. The restrited number of observations allows us to rewrite the value funtionequation 3.1 more ompatly by summing over all possible observations:V �nn (In) =Xs2S �(s; �n(In))P (sjIn) +  Xo2�next P (ojIn; �n(In))V �n�1n�1 (� (In; o; �n)) (3.2)where �next stands for all possible observations following �n(In) in In. Note that for a generalPOMDP (whih an inlude observation delays), �next represents a set of observations availableat n � 1 steps to go and does not need to orrespond to �. �next is thus best viewed as afuntion of In and a: Next(In; a).Based on the �xed poliy result, we an onstrut the optimal value funtion for the �niten steps-to-go problem as:V �n (In) = maxa2A Xs2S �(s; a)P (sjIn) +  Xo2�next P (ojIn; a)V �n�1(� (In; o; a)): (3.3)That is, the maximum expeted reward for the information state In is omputed reursively bysumming an expeted one step reward and an expeted reward assoiated with the rest of theplan. The optimal ontrol funtion �n is then:��n(In) = argmaxa2AXs2S �(s; a)P (sjIn) +  Xo2�next P (ojIn; a)V �n�1(� (In; o; a)):Similarly, the �xed point formula for the in�nite disounted horizon problem is:V �(I) = maxa2A Xs2S �(s; a)P (sjI) +  Xo2�next P (ojI; a)V �(� (I; o; a)) (3.4)and the optimal ontrol funtion is:��(I) = argmaxa2AXs2S �(s; a)P (sjI) +  Xo2�next P (ojI; a)V �(� (I; o; a)):3.2.3 Value funtion mappingsBasi value funtion equations an be written also in the value funtion mapping form. Let Bbe a set of real valued bounded funtions V : I ! R de�ned on the information vetor spae48



I, and let h : I � A�B !R be de�ned as:h(I; a; V ) =Xs2S �(s; a)p(sjI) +  Xo2�next P (ojI; a)V (� (I; o; a)):Then we an de�ne the value funtion mapping H�i : B ! B suh that:H�iV (I) = h(I; �i(I); V );and the value funtion mapping H suh that:HV (I) = maxa2A h(I; a; V ):Equation 3.1 an be expressed using the value funtion mapping as:V �nn = H�nV �n�1n�1and equations 3.3 and 3.4 as:V �n = HV �n�1 and V � = HV �:The important property of H and H� mappings is that they are isotone. That is, for anytwo funtions U; V satisfying V � U holds: HV � HU . For the in�nite disounted horizon(disount fator 0 �  < 1) mappings H� and H are ontration mappings under the max (orsupremum) norm k V k= maxI jV (I)j. More spei�ally it holds that:k HV �HU k�  k V � U k :The proofs are shown below and are based on [Heyman, Sobel 84℄ and [Puterman 94℄.Theorem 6 (Isotoniity of H mapping) H mapping for  � 0 is isotone. That is for any twofuntions U; V satisfying U � V holds: HU � HV .Proof. Let I be an arbitrary information state. Then we an write:HU (I) = maxa2A �(I; a) +  Xo2�next P (ojI; a)U (� (I; o; a))= �(I; a�) +  Xo2�next P (ojI; a�)U (� (I; o; a�))� �(I; a�) +  Xo2�next P (ojI; a�)V (� (I; o; a�))� maxa2A �(I; a) +  Xo2�next P (ojI; a)V (� (I; o; a))= HV (I):As the above inequality holds for any state I, HU � HV follows. 2Theorem 7 (Contration property) H with a disount fator 0 �  < 1 is a ontration underthe max norm. 49



Proof. Assume two value funtions U; V . Let I be an arbitrary information state, and assumethat HU (I) � HV (I) holds. Also assume that a� is an ation that optimizes HV (I), i.e.:a� = argmaxa2A�(I; a) +  Xo2�next P (ojI; a)V (� (I; o; a)):Then we an write:0 � HV (I) �HU (I)� �(I; a�) +  Xo2�next P (ojI; a�)V (� (I; o; a�)) � �(I; a�)�  Xo2�next P (ojI; a�)U (� (I; o; a�))=  Xo2�next P (ojI; a�)[V (� (I; o; a�)) � U (� (I; o; a�))℄�  Xo2�next P (ojI; a�) k V � U k=  k V � U k :As max norm is symmetrial, the same result an be derived for the ase when HU (I) � HV (I).But then taking the maximum over all information states I we an write:k HV �HU k�  k V � U k;that is H is a ontration mapping under the max norm. 2Isotoniity and ontration will be extremely important for the design of exat and approxi-mation methods. For example, the ontration property guarantees the unique optimal solution(�xed point) for in�nite disounted horizon problem and onvergene of exat value iterationalgorithm to it.3.3 Construting information state MDPs for di�erentPOMDP modelsA POMDP model an be onverted into an information state MDP. Information states an berepresented trivially by omplete histories or appropriate suÆient statistis. The fous of thissetion is to explore how one an onstrut appropriate suÆient information states for di�erentobservations models.3.3.1 POMDP with standard (forward triggered) observationsAmodel used frequently in the POMDP literature (hene standard) assumes that an observationdepends solely on the urrent proess state and the previous ation. This situation is illustratedin �gure 3-3. The observation model O then in fat desribes P (otjst; at�1) for time t. Sinean observation is related to the state that results from the ation that also triggered (indued)the observation, we will refer to this model as to the model with forward triggered observations.The important feature of POMDPs with standard observation models is that informationstate MDP is suÆiently represented using belief states. The suÆient information state proessby de�nition should satisfy the following:1. Belief states satisfy the Markov property, that is, the next belief state an be omputedfrom the previous belief, previous ation and new observation as bt = � (bt�1; ot; at�1):50
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Figure 3-3: POMDP with standard (forward triggered) observation model.2. An information state at time t should be suÆient to ompute the belief state at time t,P (stjIt) = P (stjICt ) = bt(st):3. P (otjICt�1; at�1) = P (otjbt�1; at�1):The Markov property of the belief state proess holds beause a belief state bt an beomputed from the belief state bt�1, ation at�1 and observation ot. The belief update thatimplements the transition funtion � is:bt(s) = � (bt�1; ot; at�1)(s)= P (sjot; at�1; bt�1)= �P (otjs; at�1)P (sjat�1; bt�1)= �P (otjs; at�1)Xs02S P (sjat�1; s0)bt�1(s0) (3.5)where � is a normalizing onstant and is equal to:� = 1=P (otjat�1; bt�1) = 1=Xs2SP (otjs; at�1)Xs02S P (sjat�1; s0)bt�1(s0):The next onditions hold as well: P (stjICt ) = bt(st) trivially, and P (otjICt�1; at�1) =P (otjbt�1; at�1) follows beause observations made at time t depend solely on the proess stateat time t and the ation at�1.This shows that belief states are suÆient to represent information states for the standardPOMDP models. Thus standard POMDP models belong to the lass of belief spae POMDPs51



and the optimal value funtion equation an be diretly rewritten using belief states:V �n (bn) = maxa2A Xs2S �(s; a)bn(s) +  Xo2�next P (ojbn; a)V �n�1(� (bn; o; a)): (3.6)The omputation of a new belief state always depends on the preeeding belief state, newobservation and previous ation. To bottom out the updating mahinery we start with a priorbelief over all initial proess states, that is, a probability distribution over proess states at timet = 0. One we know the prior belief, we an ompute subsequent belief states easily using thebelief update formula.3.3.2 POMDP with bakward triggered observationsIn the standard (forward triggered) POMDP model (�gure 3-3) an observation at time t istriggered by an ation at�1 at time t � 1, and is related to the proess state st at time t.However this model may not be the best for all real world domains and we an onsider otherobservation models as well.One possible model orresponds to the observation model in whih an ation at performedat time t auses an observation about the proess state st to be made (see �gure 3-4). Thatis, the ation performed at time t enables the observation that refers to the \before ation"state. We will refer to suh an observation model as to the model with bakward triggeredobservations. Although the model seems to defy laws of ausality and time, it may be moresuitable for some domains than the model with forward triggering. This is beause the forwardmodel may su�er from the omplementary problem: when ation is atually responsible for theobservation, then after the ation is �nished the observation made does not have to refer to the\after ation" state. The whole problem is aused by modelling ontinuous domains by timedisretization. Then the hoie of the model boils down to the question of whih state is betterapproximated by a new observation: the state that oured after or before the ation.Assuming that ations always delimit disrete time steps, observations in the bakwardobservation model are always delayed one time step. Despite this feature that makes the modeldi�erent from the standard observation model, one an show that also now the informationstate MDP an be onstruted using belief information states.The belief update for an ation at�1 and an observation ott�1 that is related to the state attime t� 1 but observed (made available) at time t is:bt(s) = � Xs02S P (sjs0; at�1)P (ott�1js0; at�1)bt�1(s0)where � is a normalizing onstant and is equal to:� = 1=Xs02S P (ott�1js0; at�1)bt�1(s0):The other two prerequisites of the information state proess are satis�ed as well. The seondone is trivial again and the third prerequsite (P (otjICt�1; at�1) = P (otjbt�1; at�1)) holds sinethe observation made at time t depends solely on the state at time t� 1 and an ation at�1.52



t−1 t t+1

t
n

t−1
s

t−1
a

t−1I

o t−1 to

ts

a
t

o t+1

s t+1

a
t+1

I t I t+1

Figure 3-4: POMDP with simple (bakward triggered) observation model.3.3.3 POMDP with the ombination of forward and bakward obser-vationsTwo previous models an be ombined into the POMDP with forward and bakward obser-vations. This model's basi struture is shown in the �gure 3-5. The observation model doesnot onsist of one monolithi set of observations but rather of the two groups of observations.One group is triggered in the forward and the other in the bakward fashion. Using the similarnotation to that introdued above, observations at time t are split into those related to the stateat time t, ott, and those related to the previous state, ott�1. Futher, we assume the observationsassoiated with the same state are independent given that state.Interestingly, this model an be also onverted to the information state MDP with beliefstates. To show that a belief state at time t must be Markov updateable. Let bt�1 stand forthe belief state at time t � 1, at�1 be an ation performed at time t � 1, and ott�1 and ott beobservations made at time t that are related respetively to a state at t� 1 and t. Then a newbelief vetor bt at time t is omputed as:bt(s) = �P (ottjs; at�1)Xs02S P (ott�1js0; at�1)P (sjs0; at�1)bt�1(s0) (3.7)where � is a normalizing onstant equal to:� = 1=Xs2SP (ottjs; at�1)Xs02S P (ott�1js0; a)P (sjs0; at�1)bt�1(s0):The derivation of the update formula (not shown here) exploits the independene betweenforward and bakward observations given the underlying proess state. Similar to both forwardand bakward observation models, the ombination of the two satis�es the third ondition as53
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where Oi : S � A� �i ! [0; 1℄for all 0 � i � k.Contrary to other models, the omputation of a new belief state for the k-step delayed modelannot be done solely from the previous belief state, previous ation and new observations. Thisis beause delayed observations inuene the belief about the past state, that in turn a�etsthe urrent belief. This violates the third prerequisite of the suÆient information state proessand one annot use a belief state as a suÆient replaement of the omplete information vetor.A suitable suÆient information state proess an be built using basi priniples of prob-abilisti inferene in graphial models (see [Pearl 89℄ [Jensen 96℄ [Castillo et al. 97℄): Let �tt�ibe a ontribution to the belief state at time t� i that omes from observations related to thatstate and that were made up to time t:�tt�i(s) = tYj=t�iP (ojt�ijs; at�i):Let us all � an observation vetor.Let !tt�i be a ontribution to the belief state at time t � i from all ations made prior tothat time, related observations made up to time t, and prior belief at time t = 0:!tt�i(s) = P (sjott�i�1; � � � ; ot�i�1t�i�1; � � � ; ot0; � � � ; o00; at�i�1; at�i�2; � � � ; a0; !00)where !00 stands for the prior belief at time t = 0. As !tt�i aptures the ontribution to the beliefstate from previous observations, we will all it the prior belief state (or vetor). Note, that !in fat orresponds to � messages in Markov trees in Pearl's notation [Pearl 89℄. However, wealready use the � symbol to denote a ontrol poliy and thus in order to avoid the onfusionwe have hosen the new symbol !.The belief in state s at time t an be expressed Using � and ! vetors as:btt(s) = �!tt(s)�tt(s)where � is a normalizing onstant equal to:� = 1=Xs2S !tt(s)�tt(s):The value of a prior belief vetor !tt is omputed reursively from the past state ontributions:!tt�i(s) = � Xs02S P (sjs0; at�i)�tt�i�1(s)!tt�i�1(s)for 0 � i � k � 1, and !tt�i(s) = !t�1t�i (s)for k � i.This means that in order to ompute the new belief state properly one needs to know notonly new observations, but also observations related to the past k steps, past k ations andprior belief for proess state k-steps in the past. Therefore, one an onstrut an information56



state MDP using information states It:It = fat�1; � � � ; at�k; Ott; Ot�1t�1; � � � ; Ot�kt�k; !tt�kgwhere Oji stands for all observations related to time i and observed up to time j. It is easy toshow that It is suÆient to ompute P (stjICt ). Similarly we an show that an information stateis Markov updateable and that it allows one to orretly ompute the probability of observationsseen in the next step. This an be seen sine we an always:� ompute a prior belief !tt�k at time t � k from observations related to the state at thattime and previous state prior belief vetor;� update observation sets, by exluding observations related to a state at time t�k�1 andinluding all new observations;� ompute the probability P (otjICt ; at�1) using It as the maximum observation delay islimited to k steps.Therefore the original POMDP model with k-step delays an be onverted to the informationstate MDP with proess states orresponding to It.3.4 Computing optimal ontrol poliies for POMDPSThe poliy problem omputes optimal ontrol for all information states. This problem wasshown to be of polynomial omplexity for the MDP framework and for both �nite and in-�nite horizon problems (see Chapter 2). Unfortunately the omputation of optimal ontroldeisions in the partially observable ase turns out to be far more omplex and omputa-tionally demanding. This is illustrated by the fat that a POMDP deision problem with asingle initial state, �nite horizon and no observation delays was shown to be PSPACE-hard[Papadimitriou, Tsitsiklis 87℄, thus making the planning problem intratable and algorithmsproviding exat solutions ineÆient.3.4.1 Computing optimal ontrol poliyFinite horizon problemThe �nite horizon problem ould be solved theoretially using the dynami programmingparadigm. That is, assuming we know the optimal value funtion for i � 1 steps-to-go wean ompute the optimal value funtion for any information state with i steps-to-go as:V �i (Ii) = maxa2A Xs2S �(s; a)P (sjIi) +  Xo2�next P (ojIi; a)V �i�1(� (Ii; o; a));desribed also as V �i = HV �i�1. Then the optimal ontrol ation is:��i (Ii) = argmaxa2AXs2S �(s; a)P (sjIi) +  Xo2�next P (ojIi; a)V �i�1(� (Ii; o; a)):Then starting from the 0 steps-to-go value funtion (expressing the expeted ost assoiatedwith information states at the end) one ould theoretially ompute optimal value and ontrolfuntions for all possible information states for 1 step to go, then use the 1 step-to-go optimal57



value funtion to ompute optimal ations and value funtions for all information states at 2steps-to-go and so on up to n steps-to-go.Computing � optimal ontrol for the in�nite disounted horizonFinding an �-optimal value funtion for the in�nite disounted horizon ould be approahedsimilarly using the value iteration strategy. Knowing that the value funtion mapping H is anisotone ontration, we ould onstrut a simple value iteration method with step:Vi+1 = HVithat onverges to the unique �xed point solution V � (using the result of the Banah theorem).Therefore, after a suÆient number of iterations we ould obtain any �-optimal solution. Usingthe optimal or � optimal substitute, the optimal ontrol is:��(I) = argmaxa2AXs2S �(s; a)P (sjI) +  Xo2�next P (ojI; a)V �(� (I; o; a)):Note that the value iteration update step is equal to the dynami programming update step.3.4.2 Computability of the optimal or � optimal solutionsThere is a serious problem in applying both of the above omputational shemes in pratie.The problem stems from the fat that in the POMDP the information state spae is in�nite(for example, there is an in�nite number of belief states in the suÆient belief state spae).Then having a ontinuous omponent in the state desription poses the following threats:� a value funtion for the omplete information state spae may not be representable by�nite means and/or omputable in a �nite number of steps;� a ontrol funtion that maps the information state spae may not be omputable in a�nite number of steps.Lukily the above threats do not always materialize and one an guarantee in some ases theomputability of value and ontrol funtions using a �nite number of dynami programming orvalue iteration updates as well as the their �nite desription. In the following we will narrow ourattention to the problem of �nding optimal value funtions for a lass of belief spae POMDPs.This lass, as disussed above, overs POMDPs with standard (forward triggered), bakwardtriggered observations models, as well as their ombinations.Computing optimal value funtions for belief spae POMDPsA nie and important feature of POMDP models with suÆient belief states is that their optimalor �-optimal value funtions are pieewise linear and onvex. That is, V �i (Vi for the in�nitedisounted horizon) ) an be expressed as:V �i (b) = max�ki 2�iXs2S b(s)�ki (s)where b denotes a belief state and �i is a set of linear vetors �ki de�ning the value funtion. Apieewise linear and onvex value funtion for a two state POMDP is illustrated in �gure 3-7.58
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*(b)Figure 3-7: An example of a pieewise linear and onvex value funtion for a POMDP with twoproess states fs1; s2g. Note that for the omponents of the belief state hold: b(s1) = 1� b(s2).The pieewise linearity and onvexity of the value funtion will be shown in the followingtheorem. It is based on the theorem proven by Smallwood and Sondik for standard observationmodels [Smallwood, Sondik 73℄. The theorem presented here an be viewed as a generalizationof the result that overs a lass of belief spae POMDPs.Theorem 8 (Pieewise linear and onvex value funtions) Let Vinit be an initial value funtionthat is pieewise linear and onvex. Then a value funtion obtained after a �nite number ofupdate steps for a belief spae POMDP is also �nite, pieewise linear and onvex, that is,V �i (b) = max�ki 2�iXs2S b(s)�ki (s);where b and �ki are vetors of size jSj, and �i is a �nite set of linear �i vetors.Proof. In the proof a notation for the �nite horizon ase and the dynami programming updateis used. However, the proof holds also for the value iteration update and the in�nite disountedhorizon riterion. Let us assume that the optimal value funtion for any bi�1 at i�1 steps-to-gois expressed using a �nite set of vetors �i�1 = f�0i�1; �1i�1; � � � ; �li�1g as:V �i�1(bi�1) = max�ki�12�i�1Xs2S bi�1(s)�ki�1(s):We will show that for i steps the optimal value funtion is also pieewise linear and onvex.Knowing that a belief state is a suÆient information vetor, we an write the belief of beingin state s at i � 1 steps-to-go after performing ation a in the belief state bi and subsequentlyobserving o as: bi�1(s) = P (sjbi; a; o):Using this in the value funtion we get:V �i�1(bi�1) = max�ki�12�i�1Xs2S P (sjbi; a; o)�ki�1(s):59



Substituting the value funtion in to the equation 3.3 we get:V �i (bi) = maxa2A Xs02S �(s0; a)bi(s0) +  Xo2�next P (ojbi; a) max�ki�12�i�1Xs2S P (sjbi; a; o)�ki�1(s)This an be further rewritten as:V �i (bi) == maxa2A Xs02S �(s0; a)bi(s0) +  Xo2�next P (ojbi; a) max�ki�12�i�1Xs2S P (sjbi; a; o)�ki�1(s)= maxa2A Xs02S �(s0; a)bi(s0) +  Xo2�next max�ki�12�i�1Xs2S P (ojbi; a)P (sjbi; a; o)�ki�1(s)= maxa2A Xs02S �(s0; a)bi(s0) +  Xo2�next max�ki�12�i�1Xs2S P (s; ojbi; a)�ki�1(s)= maxa2A Xs02S �(s0; a)bi(s0) +  Xo2�next max�ki�12�i�1Xs2S "Xs02S P (s; ojs0; a)bi(s0)#�ki�1(s):Let �b;a;oi�1 2 �i�1 denotes the optimal seletion of � (the one that maximizes the value funtion)for �xed b, a, o. Then we an write:V �i (bi) == maxa2A Xs02S �(s0; a)bi(s0) +  Xo2�nextXs2S "Xs02S P (s; ojs0; a)bi(s0)#�bi;a;oi�1 (s)= maxa2A Xs02S bi(s0)"�(s0; a) +  Xo2�nextXs2S P (s; ojs0; a)�bi;a;oi�1 (s)# :Assuming the omplete belief spae, the expression in brakets an evaluate to jAjj�i�1jj�nextjdi�erent vetors: one for every ombination of ations and permutations of �i�1 vetors of sizej�nextj. Assuming that eah vetor equals some �ki 2 �i, we an rewrite the V �i (bi) as:V �i (bi) = max�a;ji 2�iXs2S bi(s)�a;ji (s)where �a;ji (s0) = �(s0; a) +  Xo2�nextXs2SP (s; ojs0; a)�a;o;ji�1 (s)orresponds to a linear vetor for an ation a and the j-th permutation of �i�1 vetors of sizej�nextj. But that means that V �i (bi) is also pieewise linear, onvex and is de�ned by a �niteolletion of � vetors �i.As an initial funtion Vinit is pieewise linear and onvex, the value funtion aquired after a�nite number of update steps must be also pieewise linear and onvex, whih onludes theproof. 2The major onsequenes of the above theorem are that:� starting from a �nite, pieewise linear and onvex funtion one an always ompute thevalue funtion for a �nite number of update steps in �nite time;60



� the value funtion aquired after a �nite number of update steps an be represented by�nite means, using a �nite number of linear � vetors;� the ontrol funtion is omputable.Useful linear � vetorsA value funtion Vi onsists of a �nite number of linear segments (� vetors). This was shownin the theorem proof by onstruting a linear vetor set �i that onsisted of linear vetorsorresponding to all possible ombinations of ations and pairs of observations and �i�1 vetors.The total number of all possible linear vetors is jAjj�i�1jj�nextj. However, in pratie theomplete set of linear vetors is rarely used. This is beause some of the linear vetors areompletely dominated by other vetors and their omission does not inuene or hange theresulting pieewise linear and onvex funtion. A linear vetor that an be eliminated withouthanging the resulting value funtion solution is alled a redundant linear vetor. Conversely, alinear vetor that singlehandedly ahieves optimal value for at least one point of the informationvetor spae is alled a useful linear vetor2.For the sake of omputational eÆieny it is important to keep the size of the linear vetorset as small as possible (keep only useful linear vetors) over dynami programming or valueiteration steps. This is beause �nding the value funtion V �i requires one to hek and tryall linear vetors in �i�1 and inluding redundant ones. The e�et of not removing redundantlinear vetors after every update would then lead to the growth of the number of redundantvetors and an be a soure of major ineÆieny.Unfortunately, it has also turned out that the problem of �nding useful linear vetor setsannot be solved eÆiently with regard to jSj; jAj; j�nextj; j�i�1j; j�ij. This was proved in[Littman et al. 95℄, who showed that the problem an be solvable eÆiently only when RP =NP . This means that one does not only fae the potential exponential growth of the numberof useful linear vetors, but also ineÆienies related to the identi�ation of suh vetors. Inthe following we will explore several methods for omputing value funtion updates that outputpieewise linear value funtions desribed only by useful linear vetors. Suh updates are thenrepeatedly used within the main dynami programming or value iteration proedures.3.5 Algorithms for updating pieewise linear and onvexvalue funtionsIn the following we will briey review some of the existing algorithms for omputing pieewiselinear and onvex value funtion updates. Unfortunately, as mentioned above, neither thesenor other algorithms are guaranteed to run in time polynomial in jSj; jAj; j�nextj; j�i�1j; j�ij.The �rst group of methods fall into the ategory of generate and test algorithms. We startwith a simple generate and test algorithm, alled Monahan's algorithm [Monahan 82℄, and thenproeed with its more omplex extensions. These algorithms try to onstrut a useful linearvetor set by ombining linear vetors in �i�1 and testing them for redundany using eitherintermediate or �nal redundany tests.The alternate methods for omputing useful linear vetor updates are based on Sondik'sidea of omputing an optimizing linear vetor for a single belief point [Smallwood, Sondik 73℄.2In de�ning the redunant and useful linear vetors we assume that there are no linear vetor dupliates, i.e.only one opy of the same linear vetor is kept in the set �i.61



These methods try to loate belief points that an seed new useful vetors. The searh for\seed" points must be omplete in the sense that belief points examined must guarantee thatnone of the useful vetors will be missed. We will desribe and analyze two algorithms fromthis group. The �rst is alled the linear support algorithm and is due to Cheng [Cheng 88℄ (seealso [Cassandra 94℄). The seond is the Wittness algorithm and is due to [Cassandra 94℄ and[Littman 94℄. Other methods that fall into this ategory are Sondik's method [Cassandra 94℄ orCheng's relaxed region algorithm[Cheng 88℄ [Cassandra 94℄. A nie desription of several exatalgorithms is provided in [Cassandra 94℄.Finally, at the end we will propose a new Gauss-Seidel speedup of the value iteration methodfor in�nite disounted horizon problems.3.5.1 Monahan's algorithmMonahan's algorithm uses a simple generate and test approah [Monahan 82℄ [Cassandra 94℄.The generation phase of the algorithm orresponds to the enumeration of a omplete andpossibly redundant set of �i vetors. Every �i vetor orresponds to one possible ombinationof an ation and a permutation of previous step vetors �i�1 of size j�nextj. A linear vetorobtained for an ation a and j-th permutation of size j�nextj of vetors in �i�1 is omputed as:�a;ji (s0) = �(s0; a) +  Xo2�nextXs2S P (s; ojs0; a)�a;o;ji�1 (s):This gives a total of jAjj�i�1jj�nextj vetors �ki in �i.In the testing phase all redundant vetors in �i are tested and removed. A redundant vetoris a vetor that does not singlehandedly optimize the value funtion on at least one point ofthe belief spae. Assuming that �ki is a vetor to be tested for redundany, the test an beaomplished by setting up the following linear program (see [Monahan 82℄ or [Cassandra 94℄):maximize: Æusing the following onstraints:Xs2S b(s) h�ji (s) � �ki (s)i+ Æ � 0 for all �ji (s) 2 �i suh that �ji (s) 6= �ki (s)Xs2S b(s) = 1b(s) � 0 for all s 2 S:The elements of b (b(s)) and a parameter Æ are treated as linear program variables. If it isfound that the maximum possible Æ is less than or equal to 0 (Æ � 0), it must be the ase that�ki is not singlehandedly best at some point of the belief spae. Then, it is either dominatedor overed by other � vetors. Therefore, testing the resulting Æ makes it possible to exlude aspei� redundant vetor from �i.In priniple one an test all possible vetors using the above linear program. However, thisan be quite expensive, espeially when large linear programs need to be solved. The testingproess an be sped up to some extent by exluding some of the redundant �s through a heaperpure dominane test. In the pure dominane test, a vetor �ki an be exluded (is redundant)62



whenever there is a vetor �ji suh that:for all s = 1 � � � jSj �ji (s) � �ki (s) holds:A simple dominane test an ut the size of the linear vetor set before more expensive linearprogramming test is used. This modi�ation was suggested in [Eagle 84℄.3.5.2 Extensions of Monahan's algorithmThe main problem with Monahan's algorithm is that it tries to generate blindly all possiblevetors �rst and only then to remove the redundant ones. However, it is also possible to test apartially built solution [Cassandra et al. 97℄ [Zhang, Liu 96℄. This feature makes it possible tointerleave the generate and test phases and save some time by reognizing and pruning partialomponents that are suboptimal earlier. The idea of interleaving the generation and test phasesan be used to onstrut new versions of Monahan's approah.Interleaving proesses of linear vetor generation and testingLet us assume that a set of observations �next is partitioned into M disjoint subsetsf�1next; � � ��knext � � ��Mnextg. Then we an rewrite the expression for omputing a new linear vetorusing the partitioning as:�a;ji (s0) = �(s0; a) +  Xo2�nextXs2SP (s; ojs0; a)�a;o;ji�1 (s)= �(s0; a) +  Xo2�1nextXs2SP (s; ojs0; a)�a;o;ji�1 (s) + � � �++ Xo2�knextXs2S P (s; ojs0; a)�a;o;ji�1 (s) + � � �++ Xo2�MnextXs2S P (s; ojs0; a)�a;o;ji�1 (s):Now assume two vetors, �a;li and �a;mi , with idential ation a and with linear vetor hoies�a;o;ji�1 that di�er only in the partition �knext. But then, whenever:Xo2�knextXs2S P (s; ojs0; a)�a;o;li�1 (s) � Xo2�knextXs2S P (s; ojs0; a)�a;o;mi�1 (s) for all s0 2 S;the linear vetor �a;mi must be redundant and an be exluded from the useful vetor set. Thisrepresents a redundany test for two partially onstruted linear vetors and an be appliedwithin any partition. The test an be extended to handle a set of linear vetors by using thesame linear program as used for omplete linear vetor sets. The main advantage of the partialtest is that the number of linear vetors to be ompared and tested is usually smaller, andtherefore heaper.One an onstrut various methods that employ di�erent partitioning shemes and generatelinear vetors from omponents that have passed partial (lower level) redundany tests. Forexample one an reate a hierarhial sheme that uses a �xed ordering of observations �nextand that onstruts the solution gradually by omputing and testing partial linear vetors for63



the �rst two observations, then partial linear vetors for the �rst three observations, and so on,up to all observations. The advantage of suh an approah is that only partial linear vetorsfound to be nonredundant on the lower level are ombined and used on the next level. Thisleads to the inremental sheme that interleaves generation and test phases. The inrementalapproah was proposed and its performane tested in [Cassandra et al. 97℄. It an result insigni�ant speedups for problems with a large number of redundant linear vetors.Pruning redundant partial linear vetors aross di�erent ationsThe idea of partitioning allows one to do early redundany tests and pruning for linear vetorsreated for the same ation. However, the question is whether we an apply early pruning anduse a similar approah also aross di�erent ations. The idea for doing this is proposed anddesribed below and is based on the upper bound linear vetor estimates.Let �Ami be a set of useful linear vetors built for ations Am � A. Let �a0;ji be a linearvetor obtained for ation a0 62 Am and the j-th permutation of j�nextj linear vetors in �i�1.Let b�a0;ji be an upper bound estimate of �a0;ji . Then if b�a0;ji is found redundant with regard to�Ami then it must hold that �a0;ji is redundant as well and an be exluded.The question now is how to ompute an upper bound estimate of the omplete linear vetorfor some partially built linear vetor. Let �a0;j;ki be a partial linear vetor built for the partition�knext: �a0;j;ki (s0) = Xo2�knextXs2S P (s; ojs0; a0)�a0;o;ji�1 (s):Then we an onstrut an upper bound estimate b�a0;j;ki for it as:b�a0;j;ki (s0) = Xo2�knextXs2S P (s; ojs0; a0) max�i�12�i�1 �i�1(s);whih an be omputed very easily. Then ombining together either exat partial vetors ortheir upper bound estimates for di�erent partitions we an ompute an upper bound b�a0;ji . Forexample, using the exat partial solution for the �rst partition and upper bound estimates forall other partitions we get :b�a0;ji (s0) = �(s0; a0)+ 2424 Xo2�1nextXs2S P (s; ojs0; a0)�a0;o;ji�1 (s)35+ � � �+ b�a0;j;ki (s0) + � � �+ b�a0;j;Mi (s0)35 :The fat that one an relatively easily ompute the upper bound estimates of partial linearvetors for every partition (one needs to ompute max�i�12�i�1 �i�1(s) only one) an be usedto do the redundany hek of partially built linear vetors aross ations. This test an beombined with the redundany test for partial linear vetor sets and �xed ations, disussedabove. In general the early elimination of redundant partial linear vetors an speed up theonstrution of the useful linear vetor set �i and an be very useful in ases in whih thenumber of useful linear vetors is relatively small ompared to the size of the maximum linearvetor set. 64



3.5.3 Cheng's linear support algorithmCheng's linear support approah [Cheng 88℄ [Cassandra 94℄ exploits pieewise linearity andonvexity of the value funtion to onstrut a set of useful linear vetors from srath. Thealgorithm is based on two key features:� It is possible to �nd a useful linear vetor(s) for any point of the belief spae (usingSondik's point update method [Smallwood, Sondik 73℄).� Any subset b�i of useful vetors �i de�nes a pieewise linear and onvex approximationthat is worst at intersetions of vetors in b�i, and/or at intersetions of suh vetors withbelief spae boundaries [Cheng 88℄.The above two features give rise the following idea for �nding the useful vetor set: startingfrom the initial inomplete useful set, �nd all useful vetors gradually by heking points reatedby intersetions of already known � vetors. This idea is embodied in the following algorithmwhih is the modi�ed version of Cheng's algorithm.Chengs's algorithm (�i�1)selet arbitrary point b of the belief spae;initialize b�i with a useful vetors built for b and mark them;while there exists a marked vetor in b�ido selet marked vetor � from b�i;�nd all extreme points of the region for whih � gives the optimal value(using other vetors in b�i and simplex onstraints);for eah extreme point b of region �ompute useful vetor for b;if the new useful vetor is not in b�iadd it to b�i and mark it;otherwise ignore it;unmark �;return b�i as �i;The algorithm relies on the ability to ompute:� all extreme points of the belief spae region de�ned by some useful linear vetor �ki 2 b�i,i.e. �ki is optimal on the region;� useful vetors for an arbitrary belief state.Let us look more losely at these tasks.Computing all extreme points of the belief regionLet �ki be a useful vetor in b�i. Then a belief spae region for whih it is optimal satis�es thefollowing onstraints:Xs2S b(s) h�ji (s)� �ki (s)i � 0 for all �ji (s) 2 b�i suh that �ji (s) 6= �ki (s)65
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1. For a �xed a and o try all �ki�1 and selet the result that maximizes:Xs2S "Xs02S P (s; ojs0; a)b(s0)#�ki�1(s):2. For a �xed a do step 1 for all possible o, and sum the maximal results.3. ComputePs02S �(s0; a)b(s0) and add it to the result ahieved in step 2.4. For all possible a selet the best overall result.This task an be aomplished in time O(jAjj�nextjj�i�1jjSj2).As seen above, the task of omputing the value funtion at point b is relatively easy. Howeverour task is to �nd a linear vetor that optimizes the value at b and is also useful.Sondik's linear vetor update methodThe optimal linear vetor for a belief point b and an ation a an be omputed using Sondik'sapproah [Smallwood, Sondik 73℄:�b;ai (s) = �(s; a) +  Xo2�next Xs02S P (s0; ojs; a)��(b;a;o)i�1 (s0) (3.8)where �(b; a; o) indexes a linear vetor �i�1 in a set of linear vetors �i�1 (de�nes Vi�1) thatmaximizes: Xs02S "Xs2S P (s0; ojs; a)b(s)#�i�1(s0)for a �xed ombination of b; a; o. The optimizing linear vetor for a point b is then obtained byhoosing the one giving the best value funtion result from among andidate vetors omputedfor all ations. That is, assuming �bi is a set of all andidate vetors, the resulting vetor mustsatisfy: �bi = argmax�b;ai 2�bi Xs2S �b;ai (s)b(s):Sondik's method for omputing the linear vetor that optimizes the value funtion for pointb an be aomplished also in O(jAjj�nextjj�i�1jjSj2) time. Unfortunately, there an be morethan one �bi vetor that optimizes Vi(b). Then the problem is to selet a linear vetor that isalso guaranteed to be useful.The existene of more linear vetors that optimize the value funtion at some point b anbe aused by having:� more than one linear vetor ��(b;a;o)i�1 (s0) that optimizesXs02S "Xs2S P (s0; ojs; a)b(s)#�i�1(s0);� more than one optimizing �b;ai .The problem of multiple hoies an be resolved by onstruting a linear vetor that isguaranteed to be useful. This an be ahieved in both ases by using a proedure that selets67



the optimizing vetor from among ontenders by omparing linear vetor values on a �xedsequene of ritial belief points (dimensions). The proedure selets �rst the vetor with thelargest omponent in the �rst dimension and in the ase of ties the vetor with the largestomponent in the seond dimension and so on. Suh a hoie guarantees that the seletedvetor will lead to the optimal value not only for a belief point b but also for some beliefpoint in b's lose neighbourhood (see also [Littman 96℄). Moreover the vetor is guaranteedto singlehandedly ahieve the optimal value for suh a point. Therefore the seleted vetormust be useful. Note that in order to guarantee usefulness, a sequene of �xed belief points(dimensions) needs to be the same for both sets of linear vetors.3.5.4 Witness algorithmThe Witness algorithm [Cassandra 94℄ [Littman 94℄ adopts in priniple the same idea as Cheng'slinear support algorithm and tries to build the useful vetor set gradually by identifying pointsthat seed useful linear vetors. However, the major distintion between the two is that theWitness algorithm applies the idea to �nd useful � vetors �ai that desribe the ation-valuefuntion Qi(:; a). The resulting value funtion is onstruted by ombining results for di�er-ent ation-value funtions using the redundany test from Monahan's proedure to enforeusefulness. Contrary to this, Cheng's algorithm builds the value funtion Vi diretly.The fat that the Witness algorithm identi�es ation-values �rst and only then it ombinesthem an be again a soure of major ineÆieny. This is beause the number of useful �vetors generated for some ation an be exponential with regard to the useful set of vetorsof the resulting value funtion. However the main advantage and most important feature ofthe Witness algorithm is that it an onstrut the ation value funtion eÆiently. Then theoverhead from �nding useful vetors that de�ne all ation-value funtions and their subsequentombinations is outweighed by the eÆieny of the proedure.The eÆieny of the ation-value omputation stems from the fat that for every useful �kivetor in �ai (partially built linear vetor set) it is always possible to �nd a belief point (if itexists) for whih there is a di�erent optimal �ji not inluded in �ai . Suh a point is alled awitness point (hene Witness algorithm). This feature makes it di�erent formCheng's algorithmin whih for every new useful vetor found, the verties of the region assoiated with it need tobe enumerated �rst and then heked, with no guarantee that they will seed new useful vetors.The blind enumeration of all possible verties is thus the major soure of ineÆieny, as thenumber of verties to be heked an be exponential in j�i�1j or jSj. The following is a basidesription of the Witness algorithm.Witness (�i�1; a)selet arbitrary point b of the belief spae;initialize �ai using a useful vetor de�ning ation-value funtion for b and a, and mark it;while there exists a marked vetor in �aido selet marked vetor � from �ai ;while there is a witness point b� for � and �aidoompute a useful vetor for b�, mark it and add it to �ai ;unmark �;return �ai as �ai ;The key part of the algorithm is the problem of �nding the witness point, that is a point of68



the belief spae that is optimized by �ki with regard to �ai , but not with regard to the ompleteset �ai . This problem an be solved by onstruting a speial linear program for every possibleobservation o 2 �next and every vetor �li�1 2 �i�1 suh that:�li�1 6= �k;a;oi�1where �k;a;oi�1 is an �i�1 vetor from �i�1 used to onstrut �ki . The linear program thenorresponds to [Cassandra 94℄): maximize: Æusing the following onstraints:XsinS b(s) h�ji (s) � �ki (s)i � 0 for all �ji (s) 2 �ai suh that �ji (s) 6= �ki (s)Xs02SXs2S P (s; ojs0; a)b(s0) h�k;a;oi�1 (s) � �li�1(s)i+ Æ � 0Xs2S b(s) = 1b(s) � 0 for all s 2 S:Components of b as well as Æ represent linear program variables. Assume that �li�1 is abetter hoie than �k;a;oi�1 for at least one point within the region that is urrently optimizedby �k;ai . Then a variable Æ is larger than 0, Æ > 0, and omponents of b represent the pointfor whih there is an � vetor with better value. Thus solving the linear program for everypossible observation o 2 �next and vetor �ki�1 2 �i�1, and heking the resulting Æ, allows oneto identify a witness point assoiated with a useful vetor �i.3.5.5 Value iteration updatesAll of the disussed methods an be without hange applied to ompute updates in the valueiteration method and in�nite disounted horizon problem. The value iteration method runsuntil some required preision of the solution value funtion is reahed. The preision an beguaranteed using one of the two stopping riteria: absolute or relative (see setion 2.2.2). Theabsolute riterion uses a minimum number of value iterations one has to perform (they arederived diretly from the Banah theorem), while the relative stopping riterion is based onBellman's residuals.A slight problem with the relative stopping approah is that the value funtion is de�nedover an in�nite belief spae, ompared to the MDP ase that works with a �nite state spae.However, value funtions for belief state POMDP are pieewise linear and onvex, thus one isalways able to ompute the maximumdi�erene between two suh funtions in a �nite numberof steps. Methods for doing this are disussed for example in [Littman 94℄.Inremental (Gauss-Seidel) methodA simple value iteration method is rarely used in the Markov deision framework. Instead, aGauss-Seidel modi�ation that inorporates immediately any hange in value funtion values69



is ommonly used. This speeds up the onvergene rate and e�etively replaes parallel valueupdates with a ontinuous update sheme.The question is if it would be possible to onstrut a Gauss-Seidel version of the valueiteration method also for POMDPs. The prerequisite to this is to �nd a method that allowsone to gradually hange the value funtion so that in the limit the optimal value funtion isreahed. The main idea that makes the onstrution of suh a method possible is a new oneand is based on pieewise linear lower bounds [Hauskreht 96b℄ [Hauskreht 97b℄.Gauss-Seidel updatesLet Vi�1 be a pieewise linear lower bound on the optimal value funtion V � = HV � and let�i�1 be a set of linear vetors desribing it. Then a new linear vetor �i omputed for anarbitrary belief point b using Sondik's update formula satis�es:Xs2S�i(s)b(s) � max�i�12�i�1Xs2S �i�1(s)b(s):This inequality holds beause the update formula implements a value funtion mappingH andH is an isotone ontration. But then we an onstrut a new pieewise linear onvex funtionVi suh that Vi�1 � Vi � V �, simply by updating a linear vetor set:�i = �i�1 [ �i:Note that by omputing new �i, some of the previously useful linear vetors an beome re-dundant. One an apply redundany tests disussed above to elimate suh vetors.The new update method updates and improves the lower bound value funtion gradually,point by point, and makes results of previous linear vetor updates immediately available. Ingeneral the update rule an be ombined with any point seletion strategy, that guaranteesthe onvergene to the optimal solution. That is the strategy is able to eventually loate allneessary points. Systemati and omplete point seletion strategies an be built by modifyingexat methods disussed above, or using simple random strategy that onverges to the optimalsolution in the limit.Problem of preisionThe major problem with the inremental update rule is that it makes impossible the determi-nation of the boundary of a value iteration step. That is, starting from an arbitrary pieewiselinear lower bound value funtion, one annot say or detet when the improvement worthy of atleast one parallel value iteration step has been made. Thus one an implement neither �xed stepnor Bellman residual stopping riteria to guarantee the required preision of the atual solu-tion. Contrary to the inremental Gauss-Seidel method, it is easy to detet the preision of theobtained solution when parallel value funtion updates are used. Thus the di�erene betweenparallel and inremental Gauss-Seidel methods boils down to the ability to hek �-optimalityof the urrent solution versus speed and better onvergene. One promising avenue of researhwould be to explore the ombination of the two methods that exploits positives of eah one andthat interleaves exat value iteration steps with inremental Gauss-Seidel updates. We believethat this will allow us to aquire solutions with guaranteed preision for more omplex problemsthan are solvable with urrently available exat methods.70



3.6 Forward deisionmethods for �nding optimal or near-optimal POMDP ontrolA poliy task that produes omplete optimal or �-optimal ontrol funtions is omputationallyvery expensive and very hard to aomplish in pratie for POMDPs with larger state, ationand observation spaes. However, when one expets to �nd the optimal ontrol or value funtiononly for a single information state, forward deision methods often represent the best hoie.The most appealing property of forward methods is that after a �nite number of stepsthey an reah only a �nite number of information states. Information states that an bereahed orrespond to di�erent ation-observation sequenes one an generate from the initialinformation state. Forward methods and strategies used for POMDPs are similar to those forMDPs and are based on the forward deision tree expansion. However partial observabilityintrodues a new dimension of omplexity that makes the optimization task harder.The basi omputational struture used for �nding the best deision is a deision tree. Themain di�erene between MDPs and POMDPs is that in the POMDP framework the deisionnodes are assoiated with information states while in the MDP framework they are assoiatedwith true proess states. The fat that suÆient information spae an be of in�nite size ausesan in�nite number of di�erent deision subtrees to be present for the in�nite horizon problem.This makes it impossible to:� bound the size of the tree needed for the exat omputation;� ut the omputational time through result sharing;as used in the MDP framework. However, we an still use pruning strategies and eliminate thosebranhes of the tree that are provably suboptimal. Assuming we an show that ation-valuefuntions for two ations a and a0 satisfy:lbound(Q(a; I)) � ubound(Q(a0; I))we an eliminate ation a0. The e�etiveness of pruning then depends strongly on the qualityof value funtion bounds provided.3.6.1 Computing value funtion boundsThe bounds an be omputed by using the minimum and maximum expeted one step rewards.Bounds for the n-step �nite horizon problem and information state In are:lbound(In) = �(n+1 � 1)=( � 1)�Ml + nM0lubound(In) = �(n+1 � 1)=( � 1)�Mu + nM0uwhereMl;Mu are the minimal and maximal expeted one step rewards andM0l ;M0u are minimaland maximal zero steps-to-go rewards. Bounds for the in�nite disounted horizon problem areomputed similarly: lbound(I) = Ml1� ubound(I) = Mu1�  :71



The above bounds are not very tight. In general far better bounds an be found using othermore omplex bound strategies. These will be proposed, desribed and analyzed in the Chapter4.3.6.2 Inremental forward methodsForward deision methods ompute the optimal ontrol by forward unfolding of the value fun-tion equation. The unfolding steps orrespond to dynami programming updates (steps) forthe �nite horizon problem and to value iteration updates for the in�nite disounted horizonproblem. The simplest deision methods an be based on the blind expansion of update for-mulas. This auses the deision tree to grow exponentially with the number of steps and it anbeome in�nite for the in�nite horizon problem. The basi idea of more intelligent methods isto eliminate the full expansion of the deision tree and still ompute the same ontrol response.This an be done by devising methods that interleave bound improvement and pruning stages.Improving internal node boundsBounds assoiated with an internal node of the deision tree an be omputed from boundsprovided at leaves of the partially expanded tree by performing update bakups. This meansthat the quality of bound values at internal nodes depends both on the bound values suppliedto leaves of the partially expanded tree, as well as on the number of updates (bakups) onemust perform to propagate the bound e�et from leaves to the internal node. In other wordsthere are two possible strategies that an lead to the improvement of the bound at any internaldeision tree node: either improve the leaf bound funtion or further expand the partially builttree.Any improvement in the bound used at leaves translates diretly to an improvement ofbounds at internal nodes. The reason for this is that H mapping is isotone and thus anyhange in leaf bounds propagates also to internal node bounds.The e�et of the number of update steps (bakups) on the quality of internal node boundsan be diret or indiret, depending on the reward model used. The e�et is diret for anin�nite disounted horizon model, indiret for the �nite horizon ase.Assume we have �xed an initial value funtion bound for a partial tree built for an in�nitedisounted horizon problem. By inreasing the size of the tree the number of bakups inreasesas well. Then using the same initial bound at new leaves translates to an improvement of thebound. This is beause H is an isotone ontration and bounds are guaranteed to improve withmore bakup updates (orrespond to iteration steps).A �nite horizon problem must use di�erent leaf bounds (value funtions) for deision treesof di�erent depths. This is beause nodes at di�erent levels are assoiated with di�erent steps-to-go value funtions. Expanding the tree by one more level requires that a di�erent leaf valuefuntion is used. However, it is often reasonable to assume that both the previous and the newleaf value funtion bounds are produed by the same proedure that monotonially degradesthe bound preision for more steps to go, i.e. bounds for two onseutive steps satisfy:jV �i � bVij � jH(V �i�1 � bVi�1)j;where V � stands for the optimal value funtion and bV stands for an upper or lower bound. Theondition guarantees that the expansion of the deision tree by one level always leads to theimprovement of the internal node bounds. 72



3.6.3 Inremental breadth-�rst expansion strategyThe simplest inremental deision tree method uses breadth-�rst expansion strategy. The ideaof the method is the following: If the deision about the optimal or �-optimal ation annot bemade based on the urrent tree and bounds, then the deision tree is expanded in a breadth-�rstmanner, that is, all leaf nodes are expanded one level and bounds for all nodes are updatedusing bounds at new leaves. The algorithm implementing breadth-�rst strategy is shown belowand it is a POMDP modi�ation of the breadth-�rst algorithm we onstruted for the fullyobservable ase (see Chapter 2). The algorithm uses leaf value funtion bounds VL and VU andfor the initial information state I0 omputes the ation that is guaranteed to be �-optimal.Inremental expansion - breadth-�rst(POMDP , , I0, �, VU , VL)initialize tree T with I0 and ubound(I0), lbound(I0) using VU ; VL;repeat until (single ation remains for I0 or ubound(I0) � lbound(I0) � �)all Improve-tree(T , POMDP , , VU , VL );return an ation with the largest lower bound as a result;Improve-tree(T , POMDP , , VU , VL)if root(T ) is a leafthen expand root(T )and set bounds lbound; ubound of new leaves using VL; VU ;else for all deision subtrees T 0 of Tdo all Improve-tree(T 0, POMDP , , VU , VL);update bounds lbound(root(T )); ubound(root(T )) for root(T );when root(T ) is a deision nodeprune suboptimal ation branhes from T ;return;The major problem with the breadth-�rst approah is that it expands all leaf nodes atone. However, in pratie not all subtrees help to disriminate between ations evenly, thusthe re�nement of bounds is usually inuened more by some subtrees and less by the others.Breadth-�rst expansion strategy expands leaf nodes blindly and it results in expansions thatare unneessary or not very helpful for the orret deision.3.6.4 Using heuristis to guide the deision tree expansionThe problem with the breadth-�rst expansion an be partially remedied by using various heuris-tis that try to loate branhes with larger bound re�nement potential and to expand them �rst.A simple heuristi that seems to work quite well is to promote the expansion of the deisiontree based on bound di�erenes. The heuristi is based on the assumption that a larger boundspan has a larger potential to be improved (shrunk) and thus has a large hane to result inpruning. The inremental expansion algorithm shown below expands and subsequently reom-putes (improves) the branh of the deision tree with the largest bound span. The branh tobe expanded (improved) is found in the top-down fashion using the following rules:� at the deision node orresponding to It, hoose a suesor hane node with the largestbound di�erene: ubound([It; a℄)� lbound([It; a℄);� at the hane node orresponding to [It; a℄ hoose a suessor deision node It+1 with thelargest weighted bound di�erene: P (ojIt; a)[ubound(It+1)� lbound(It+1)℄.73



Inremental expansion - heuristi(POMDP , , I0, �, VU , VL)initialize tree T with I0 and ubound(I0), lbound(I0) using VU ; VL;repeat until (single ation remains for I0 or ubound(I0) � lbound(I0) � �)all Improve-tree(T , POMDP , , VU , VL );return ation with the largest lower bound as a result;Improve-tree(T , POMDP , , VU , VL)ase root (T ) is a leaf:expand root(T) and set bounds lbound; ubound of new leaves using VL; VU ;root(T ) is a deision node:selet subtree T 0 orresponding to the hanenode with the largest bound span;all Improve-tree(T 0, POMDP , , VU , VL);root(T ) is a hane node:selet subtree T 0 orresponding to the deisionnode with the largest weighted bound span;all Improve-tree(T 0, POMDP , , VU , VL);update bounds lbound(root(T )); ubound(root(T )) for root(T );when root(T ) is a deision nodeprune suboptimal ation branhes from T ;return;The main problem with the above algorithm is that it starts to perform bakups (updates)after a single leaf node is expanded. As one node expansion an often lead to a bound improve-ment that is small, frequent bakups with small hanges an ause a signi�ant slowdown ofthe algorithm. This de�ieny may be remedied by expanding more then one suessor node inone bound improvement yle. In order to �nd a good ompromise between the slow one-nodeheuristi expansion and the large sale all node breadth-�rst expansion we propose a simplerandomized strategy that selets branhes to be expanded in proportion to their bound di�er-ene. The strategy an be implemented by modifying the breadth-�rst algorithm, suh thatnodes orresponding to possible branhes are expanded with probability:exp[Mdiff�(ubound(x)�lbound(x))℄=Twhere Mdiff is the largest bound span from among the andidates and T is a temperatureonstant. The randomized strategy usually leads to the expansion of the deision tree at moreleaf nodes in one improvement yle. Note that at least one branh of the tree is alwaysexpanded.3.6.5 Computing the deision in linear spaeThough good heuristis an speed up the omputation, the optimal deision method still needsto explore trees of extreme sizes. Although time is almost always the issue in evaluating thedeision proedures, the omputational proess an be a�eted also by another limited resoure:memory needed to store the deision tree. In the following we will fous on the memory issueand propose the algorithm that omputes the required deision in a linear spae. The methoddoes not have any immediate bene�t with regard to runtime eÆieny and in general makes74



the running time worse. Its only bene�t is in saving the memory needed to store the tree.The basi idea of the linear spae algorithm is to exploit the heuristi expansion strategywith the apability to ut o� and reover branhes not urrently targeted by an expansionproess. The method works in spae linear in jAj; j�j and d where d is the maximum depthof the deision tree that needs to be onstruted. The seletion of the node to be expanded isgoverned by the following rules:� at the deision node orresponding to It, hoose a suessor hane node with maximumubound([It; a℄);� at the hane node orresponding to [It; a℄, selet a deision node It+1 with the largestbound di�erene: P (ojIt; a)[ubound(It+1)� lbound(It+1)℄.The linear spae algorithm is shown below. It dynamially uts and reovers previously utdeision tree branhes by repeated omputation, similar to the iterative deepening proedure(see [Korf 85℄). A branh expansion is done in two steps: reovering of the best result �rst andimproving it afterwards. Only after this happens is ontrol returned to the predeessor node.Inremental expansion - linear spae(POMDP , , I0, �, VU , VL)initialize tree T with I0 and ubound(I0), lbound(I0) using VU ; VL;set ubound0(I0) = ubound(I0) and lbound0(I0) = lbound(I0);repeat until (single ation remains for I0 or ubound0(I0)� lbound0(I0) � �)all Improve-tree(T , POMDP , , VU , VL );return ation with the largest lower bound as a result;Improve-tree(T , POMDP , , VU , VL)set b root(T );when b has no suessors (either leaf node or suessors were ut):expand b;ompute bounds ubound0; lbound0; ubound; lbound of new leaves from VU ; VL;reompute ubound(b); lbound(b) using ubound0; lbound0 bounds of its suessors;while ubound(b)� lbound(b) > ubound0(b)� lbound0(b)ase b is a deision node:selet suessor  of b orresponding to hane node with largest ubound0();prune subtrees of all other suessors of b;all Improve-tree(tree(), POMDP , , VU , VL );b is a hane node:selet suessor d of b orresponding to a deision nodewith largest P (ojIt; a)[ubound0()� lbound0()℄;prune subtrees of all other suessors of b;all Improve-tree(tree(d), POMDP , , VU , VL);reompute ubound(b); lbound(b) using ubound0; lbound0 bounds of its suessors;when b is a deision nodeprune suboptimal ations branhes from T ;set ubound0(b) = ubound(b); lbound0(b) = lbound(b)return;The algorithm works with two sets of bounds:� ubound; lbound that denote bounds omputed in the urrent improvement yle;75



� ubound0; lbound0 that refer to bounds omputed in the previous improvement yles.ubound0; lbound0 thus refer to the bounds omputed before the urrent improvement yle wasinitiated, and allow us to test if improvement in the omputed bounds was ahieved. Theimprovement is guaranteed when:ubound(b)� lbound(b) < ubound0(b)� lbound0(b)holds, as ubound; lbound are bound values omputed in the urrent yle.Note also that the ative deision tree at any node allows only one suessor node to beexpanded to the depth of more than 1. All other branhes are temporarily pruned and arerebuilt whenever needed. Every temporarily pruned branh has the next node that stores theubound0; lbound0 values it an ahieve. This means that for any deision node there are atmost jAj suessor hane nodes and only one of them an be expanded to the greater depth.Similarly every hane node has at most j�j suessors with at most one suessor expanded toa depth of more than 1. As the maximumdepth of the tree explored is d, the number of nodesone needs to keep is linear in d; jAj; j�j.3.6.6 Combining bound improvement strategiesForward methods, as disussed so far, assume that the value funtion bounds used to prune thedeision tree are improved only through the deision tree expansion. That is, initial boundsused at leaves are given a priori and are �xed during the problem solving. However, we havealready pointed out that a hange in the leaf bounds an improve internal node bounds as well.Therefore we may also onstrut methods that improve inrementally the value funtion boundat leaves and keep the size of the deision tree �xed. Inremental methods apable to improvebound value funtions are disussed in more detail in the next hapter.The two improvement strategies an also be ombined. The basi problem we fae is thefollowing: There are two methods to improve bounds. These have di�erent time omplexity andimprove di�erent things. The point is to �nd an appropriate ost-bene�t tradeo� between thetwo and answer the question of when one method is better then the other. Costs are assoiatedwith the omputation time and bene�ts are assoiated with bound improvements.The deision tree method is usually better for smaller size deision trees. The reason forthis is that it does not require too muh e�ort to expand the tree and bakup the solution. Onthe other hand, when a deision tree beomes very large, the omputation of improved boundsusing the deision tree an beome very expensive. Also, for the in�nite disounted problem,the potential of a large step improvement in bounds diminishes with the depth of the deisiontree (due to disounting), thus lowering the hane of reahing the required bound preision.When one faes a large deision tree the improvement of the leaf bound value funtionsoften beomes more appropriate. This is beause an improvement of the omplete bound anbeome omputationally heaper than any improvement aomplished through the expansionand bakups. Methods apable of improving the value funtion bounds inrementally for theomplete information vetor spae will be desribed in the next hapter.A strategy that ombines advantages of both methods an be onstruted using a metaleveldeision proedure that selets the most promising improvement proedure to be tried nextbased on available ost-bene�t pro�les. The pro�les an be either stati and provided at thebeginning or an hange (adapt) with regard to the atual ost-bene�t results aquired for theproblem. An adaptive proedure then monitors osts and bene�ts of a deision tree expansionand leaf bound improvement, and adjusts the pro�le aordingly.76



3.7 SummaryThe framework of partially observable Markov deision proesses (POMDPs) models two souresof unertainty: ation outome unertainty and partial observability. To �nd the optimal on-trol the POMDP is onverted to an information-state MDP, that uses information states or-responding to omplete histories of ations and observations or appropriate suÆient statististhat preserve the Markov property of the information proess. The ommon problem withinformation state MDPs is that they use states that are ontinuous or states that expand thedimension with elapsed time. This feature makes the omputation of optimal value funtionsand optimal ontrol poliies very hard. In fat, optimal or �-optimal solutions are possible onlyfor a lass of POMDPs that an be onverted into belief-state MDPs. These are solved usingdynami programming or value iteration methods and rely on pieewise-linearity and onvexityof value funtions [Smallwood, Sondik 73℄. Alternatively, when the optimal deision for a singleinitial state is sought, forward deision tree methods based on bounds an be applied.ContributionsThe hapter desribes the POMDP framework, and summarizes exat methods for solvingontrol problems within the framework. New ontributions presented in this hapter are relatedto various improvements and speed-ups of exat methods. These inlude:� A speed-up of the inremental version of the Monahan's algorithm. The inremental ver-sion interleaves generate and test phases of the basi Monahan's algorithm [Monahan 82℄,and is based on early pruning of redundant partially built linear vetors. The pruningfor Q-funtions has been investigated and proposed in [Cassandra et al. 97℄. We haveproposed a modi�ation that allows to do early pruning of partially built linear vetorsalso aross di�erent ations, based on upper bound estimates.� New Gauss-Seidel improvement of the exat value iteration algorithm for the in�nitedisounted horizon problems. The method improves inrementally a pieewise linear andonvex lower bound funtion by omputing new linear vetors for seleted points of thebelief spae and adding them to the previous step funtion. Thus a new linear vetorobtained an be immediately used to ompute next updates. This makes it possible topropagate improvementsmore rapidly. Also, it is not neessary to reompute the ompletevalue funtion from srath for every update step.� Forward deision methods that �nd optimal or � optimal ontrol for a single initial in-formation state. The methods work with bounds and inrementally expand and prunethe deision tree. The methods proposed here inlude: breadth-�rst, bound-span heuris-ti, randomized heuristi and linear spae algorithms. Also suggested is a new methodthat ombines inremental deision tree expansion and inremental bounds improvementstrategies using a metalevel deision proedure.We have also explored and studied modi�ations of the standard POMDP model that usedi�erent state-observation dependenies. We have showed that some of the models (modelswith bakward triggered observations and ombination of bakward and standard models) anbe onverted to belief-state MDPs with pieewise-linear and onvex value funtions that areomputable, similarly to the standard model. Unfortunately, this no longer holds for modelswith observation delays. 77
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Chapter 4Approximation methods forsolving POMDP problemsThe major problem with the optimal and �-optimal POMDP ontrol solutions is that proeduresfor �nding them are omputationally very expensive. This makes exat methods pratial onlyfor POMDP models of very small size. A typial approah to suh a problem is to relax therequirement of the solution auray and aept a \good" solution whenever it an be aquiredfast. This reets the ommon tradeo� between auray and speed. The exploration of moreeÆent approximation methods for POMDPs is the fous of this hapter.4.1 Types of approximation methodsApproximation strategies for POMDPs inlude:� approximations of value funtions and poliies;� approximations (redutions) of the information-state MDP.4.1.1 Approximations of value funtions and poliiesThe main idea of the �rst approah is to approximate optimal value or ontrol funtions usingsimpler funtions bV : I ! R or b� : I ! A. These funtions are de�ned over the sameinformation spae, and are omputed using simpler update rules.The output of methods an be either a value funtion approximation or an approximation ofthe optimal poliy. In the �rst ase, the target approximate ontrol is obtained from the approx-imate value funtions in a standard way. For example, the ontrol for the in�nite disountedhorizon is omputed as:b�(I) = argmaxa2AXs2S �(s; a)P (sjI) +  Xo2�next P (ojI; a)bV (� (I; o; a)):In the seond ase, the ontrol poliy is returned diretly by an approximation routine. Bothases are usually losely related, and the omputation of an approximate ontrol poliy oftenbuilds on approximate value funtion solutions.79



4.1.2 Approximation (redution) of the modelThe seond approah redues the information-state MDP onstruted for the POMDP model.The primary target of redution strategies is the information state spae. The informationspae is approximated by a feature spae bI, whih is usually of smaller size and summarizes theimportant harateristis of the state with regard to ontrol. The resulting approximate modelis then used to ompute value or ontrol funtions de�ned over the feature spae bV : bI ! R andb� : bI ! A. The approximate value and/or ontrol funtions for the original information spaeare then omputed by mapping the information state to a feature state and using assoiatedfeature-based value and ontrol funtions.4.1.3 The ombination of the two approahesThe two approximation approahes are not exlusive and an be ombined when needed. Thisleads to the approximation on the level of the model, as well as on the level of funtions de�nedover the new feature spae.4.1.4 The struture of the hapterThe objetive of this hapter is to desribe and analyze various new and known approximationmethods. The primary fous will be on methods that approximate optimal value funtions.These are based on approximate versions of exat dynami programming (value iteration) up-dates desribed in the previous hapter. Suh updates an then be applied to ompute both�nite and in�nite disounted horizon problems. At the end of the hapter the main ideas ofalternative approximation strategies that inlude poliy approximation (setion 4.9) and modelredution (setion 4.10) will be desribed.All methods designed and desribed here an be applied to belief spae POMDP modelswith suÆient belief information spae. However, some of them are more general and suitablefor other POMDP models as well, for example models with time lags. The desription ofvalue funtion approximation methods inludes also proofs of their properties, namely boundand onvergene properties. Some of the proofs are new, but some are originally due to otherresearhers and are reproved here. The reason for doing this is to provide a uniform view inwhih methods and their properties are desribed with regard to the approximate updates theyimplement. This in turn simpli�es their theoretial omparison. The performane of the valuefuntion approximation methods disussed in this hapter will be experimentally tested andompared in the Chapter 5.4.2 Value funtion approximations4.2.1 Using approximate value funtions to ompute ontrol responseLet bV and bQ denote approximations of value and ation value funtions and let b� stand forthe approximate ontrol funtion resulting from it. Then the ontrol funtion b� for the in�nitedisounted horizon problem and a belief spae POMDP an be de�ned using the approximatevalue funtion as:b�(b) = argmaxa2AXs2S �(s; a)b(s) +  Xo2�next P (ojb; a)bV (� (b; o; a))80
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the algorithm an be designed to inrementally improve the approximate value funtion it uses,or ombine both improvement strategies.4.2.3 The role of value funtion boundsThe omplete optimal or �-optimal value funtion is hard to ompute. However, one an oftenbene�t from knowing the approximate range in whih the optimal value funtion an be found.Suh a range an be identi�ed using various approximate methods that are guaranteed toprodue upper and lower bounds of the optimal value funtion.Bound methods an be used within the POMDP framework in several ways. They anprovide a good initial value funtion for the exat version of the value iteration algorithm, oran be ombined and interleaved with steps of exat methods. For example bounds an be usedto prune early suboptimal ations and thus redue the omplexity of the exat problem solvingroutines. The important thing in this ontext is that bounds an often be improved and furthertightened with exat iteration (dynami programming) steps. For the value iteration ase, thisis beause the mapping H is an isotone ontration, and an exat update step applied to abound always preserves the bound and tends to improve the approximation.4.2.4 Convergene and stability of iterative methodsApproximation methods for the in�nite disounted horizon problem are usually built on theidea of approximate value iteration. These try to repliate exat value iteration using itsapproximate form: bVi+1 = bH bViwhere bV stands for approximate value funtions of various forms and bH de�nes a funtionmapping derived in some way from H that is used to ompute updates of approximate valuefuntions. The �xed point solution V � = bH bV � or its lose approximation would then representthe intended output of the approximation routine.The main problem with the iteration method is that in general it an onverge to uniqueor multiple solutions, diverge or osillate depending on the funtion form, value funtion map-ping and initial values. Therefore, unique onvergene annot be guaranteed for an arbitrarymapping bH. The onvergene of a spei� approximation method needs to be proved.4.2.5 Desribed value funtion approximation methodsValue funtion approximations that will be desribed and disussed in the following inlude:� MDP-based approximation (setion 4.3);� fast-informed bound method (setion 4.4);� blind (�xed) poliy approximations (setion 4.5);� urve �tting methods (least square error) (setion 4.6);� grid-based interpolation-extrapolation methods (setion 4.7);� grid-based linear vetor methods with Sondik's updates (setion 4.8).82
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4.3.1 Upper bound propertyThe important property of this update rule is that it upper bounds the exat update rule. Thatis, H bVi � HMDP bVi holds. This property is trivial and follows from the fat that one annotget a better solution with less information. The proof is shown bellow.Theorem 9 (Upper bound property of the MDP based update rule) Let bVi be a value funtiondesribed by a single linear vetor �MDPi = VMDPi . Then it holds that H bVi � HMDP bVi.Proof. H bVi(b) = maxa2A Xs02S �(s0; a)b(s0) +  Xo2�nextXs2S Xs02S P (s; ojs0; a)b(s0)�MDPi (s)= maxa2A Xs02S b(s0)[�(s0; a) + Xs2S P (sjs0; a)bVMDPi (s)℄� Xs02S b(s0)maxa2A [�(s0; a) + Xs2S P (sjs0; a)bVMDPi (s)℄= HMDP bVi(b)24.3.2 In�nite horizon solutionFor the in�nite disounted horizon ase, the value funtion mapping HMDP is an isotone on-tration. Thus it leads to the unique �xed point solution bV � = HMDP bV �. Suh a solutionupper-bounds the optimal value funtion.Theorem 10 Let V �MDP be an optimal value funtion for the assoiated fully observable MDPproblem. Then bV �(b) = Ps2S b(s)V �MDP (s) is an upper bound on the optimal value funtionV �, that is V � � bV �.Proof. The proof is based on showing that H bV � � bV � holds. Let V �MDP be an optimal solutionto the perfetly observable ase. Then it holds that:V �MDP (s0) = maxa2A �(s0; a) + Xs2S p(sjs0; a)V �MDP (s)Then for any b it holds that:H bV �(b) = maxa2A Xs02S �(s0; a)b(s0) +  Xo2�nextXs2S Xs02S P (s; ojs0; a)b(s0)V �MDP (s)= maxa2A Xs02S �(s0; a)b(s0) + Xs2S Xs02S P (sjs0; a)b(s0)V �MDP (s)= maxa2A Xs02S b(s0)[�(s0; a) + Xs2S P (sjs0; a)V �MDP (s)℄� Xs02S b(s0)[maxa2A �(s0; a) + Xs2S P (sjs0; a)V �MDP (s)℄= Xs02S b(s0)V �MDP (s) = bV �(b)84



Knowing that H is isotone and that H bV � � bV � holds it follows that H2 bV � � H bV � � bV �must be satis�ed as well. Using the isotoniity argument reursively, V � = HV � � � � �H2bV � �H bV � � bV � must also hold. But this means that V � � bV � is true, whih onludes the proof.24.3.3 Summary of the methodThe main advantage of this method is that it is fast, as the MDP problem an be solved in timepolynomial in the number of states and ations (see Chapter 2). As the MDP solution assumesperfet observability, the resulting value funtion is overly optimisti, and provides an upperbound on the optimal value funtion. The important property of the MDP-based solution isthat it an be used to ompute upper bounds also for POMDP models with observation delays.The idea here is the following: an upper bound on the value funtion for a model with noobservation delays (standard model) should upper-bound also the value funtion onstrutedfor the delayed model. Or in other words, one annot do worse with information that is revealedahead of time, than without it.A disadvantage of the MDP based method is that it tends to ignore \investigative" ations,that is ations that an help to narrow the unertainty about the true state of the proess byenabling observations. This auses the QMDP based ontrol to never hoose suh an ation.This feature was notied and pointed out by [Littman et al. 95a℄. However, this does not hold,when ontrol ations are seleted based on value funtion VMDP .4.4 Fast informed bound methodThe approximation obtained by the MDP-based approah an be improved by a new method{ the fast informed bound method. The method uses a newly designed update rule that upperbounds the exat update rule similarly to the MDP-based method.Let bVi be a pieewise linear and onvex value funtion represented by a set of linear vetors�i. Then the new fast informed update rule orresponds to:bVi+1(b) = maxa2A Xs02S �(s0; a)b(s0) +  Xo2�next Xs02S max�ki 2�iXs2S P (s; ojs0; a)b(s0)�ki (s)= maxa2A Xs02S b(s0)"�(s0; a) +  Xo2�next max�ki 2�iXs2S P (s; ojs0; a)�ki (s)#= bHFIB bVi(b)4.4.1 Complexity of a new update ruleAn important feature of the new method is that it preserves pieewise linearity and onvexnessof the value funtion. That is, a new value funtion obtained from a pieewise linear and onvexfuntion is again pieewise linear and onvex. Moreover, the resulting value funtion onsistsof at most jAj di�erent linear vetors, eah orresponding to one ation. This an be seen fromthe update formula, where a linear vetor for an ation a orresponds to:�ai+1(s0) = �(s0; a) +  Xo2�next max�ki 2�iXs2S P (s; ojs0; a)�ki (s)85



That is, there are at most jAj di�erent �ai+1s we an derive using the fast informed updaterule. This property makes the rule very appealing as it guarantees not to grow the size of theset of linear vetors over value iteration (dynami programming) steps. Thus the update isalways eÆient with regard to jSj; jAj, and j�j. This is unlike the exat update that may leadto a funtion that onsists of jAjj�ijj�next j linear vetors, whih is exponential in the numberof observations.4.4.2 Bound property of the new update strategyThe important property of the new fast informed update rule is that it upper bounds the exatupdate rule. This is proven in the following theorem. In fat the steps of the proof wereoriginally used to derive the rule.Theorem 11 (Upper bound property of the fast informed update rule) Let bVi orresponds to apieewise linear onvex value funtion:Vi(b) = max�ki 2�iXs2S �ki (s)b(s):Then it holds: H bVi � HFIB bVi:Proof. For the exat update rule, HVi(b), we an write:HVi(b) = maxa2A Xs02S �(s0; a)b(s0) +  Xo2�next max�ki 2�iXs2S Xs02S P (s; ojs0; a)b(s0)�ki (s)� maxa2A Xs02S �(s0; a)b(s0) +  Xo2�next Xs02S max�ki 2�iXs2S P (s; ojs0; a)b(s0)�ki (s)= maxa2A Xs02S b(s0)"�(s0; a) +  Xo2�next max�ki 2�iXs2S P (s; ojs0; a)�ki (s)#= maxa2A Xs02S b(s0)�ai+1(s0)= bHFIBVi(b)2 The trik in deriving the new update rule is to exhange the sum and max operators inthe exat update formula. This will e�etively allow one to hoose an optimizing (maximizing)linear vetor for every observation and urrent state dimension independently. Contrary to this,in the exat method a single optimizing linear vetor for every observation and all urrent statedimensions is seleted.4.4.3 In�nite disounted horizon asebHFIB is a ontration mapping under the max norm, muh like H, with a �xed point solutionbV � � V �. The fat that HFIB is a ontration mapping an be shown by using the proof intheorem 7 in setion 3.2.3 (similarly we an show that HFIB is isotone by following the steps86



of the proof of theorem 6). In the following we will show that the �xed point solution bV � is anupper bound on the optimal value funtion.Theorem 12 Let V � be an optimal value funtion and bV � be a �xed point solution omputedby the fast informed bound method. Then it holds that bV � � V �.Proof Let bVi orrespond to a pieewise linear funtion that upper bounds the optimal valuefuntion, that is: V � � bVi. Using the theorem 11 and the fat that H is isotone we an write:V �(b) � H bVi(b) � HFIB bVi(b) = bVi+1(b)Therefore for any bVi+1 it must hold bVi+1 � V �. As bVi+1 is again a pieewise linear upper bound(the initial ondition), by extending this result to an in�nite number of steps, bV � � V � follows.24.4.4 Extensions of the fast informed bound method.The main idea of the fast informed bound method is to selet the optimizing linear vetor forevery observation and urrent state dimension separately. This is unlike the exat ase whenwe seek a linear vetor that gives the best result for every observation and a ombination ofall urrent state dimensions. However, there is a lot of middle ground in between the twoextremes. One an, for example, design an update rule that tries to hoose optimal (maximal)linear vetors for every observation and for every set of disjoint pairs of urrent state dimensions.Of ourse, one an proeed further and try to hoose linear vetors that optimize the expressionfor three dimensions, or in general for any disjoint partitioning of the state spae dimensions.Let S = fS1; S2; � � � ; Smg be a partitioning of the state spae S. Then one an ostrut thefollowing approximate update rule:bVi+1(b) = maxa2A Xs02S �(s0; a)b(s0) +  Xo2�next[ max�ki 2�i Xs02S1Xs2S P (s; ojs0; a)b(s0)�ki (s) ++ max�ki 2�i Xs02S2Xs2S P (s; ojs0; a)b(s0)�ki (s) + � � �++ max�ki 2�i Xs02SmXs2S P (s; ojs0; a)b(s0)�ki (s)℄For all possible partitionings, the result aquired by suh an update is guaranteed to onvergeto the upper bound on the optimal value funtion (the proof is exatly the same as for the simplefast update rule). A single partitioning obviously leads to the exat update rule. The promisingan be the exploration of heuristi partitioning shemes that would ombine and optimize overstates \loser" to eah other.4.4.5 Summary of the fast informed bound methodThe idea of the fast informed update rule and its extension to arbitrary partitioning is a newone, and was reported for the �rst time in [Hauskreht 97b℄. The main advantage of the fastinformed update rule is that the number of linear vetors aquired after the update is boundedby the number of ations. This makes the method very suitable for omputing a good upper87



bound fast. Our experiene with using the method for approximate ontrol is very good, andwill be disussed in the next hapter.4.5 Blind poliy approximationsThe MDP approximation method gives us a value funtion that upper-bounds the optimalvalue funtion. It is aquired relatively easily by solving the fully observable MDP problem.A similar approah that minimizes expeted rewards in a fully observable MDP, as opposed tomaximizing them, an be used to ompute a lower bound of the optimal value funtion. Thebound property follows from the fat that under partial observability, one annot do worse thanby minimizing rewards under perfet observability. However, it is possible to ome up with farbetter lower bounds. The method we propose here is based on the idea of blind ontrol poliies.4.5.1 Blind poliyDe�nition 5 (Blind ontrol poliy) Let � = f�1; �2; � � � ; �i; � � �g be a ontrol poliy with ontrolfuntions �i : I ! A, where I denotes information vetor spae. The poliy is alled blind whenontrol funtions �i 2 � map all information states to a single ontrol ation, that is all �i areof the form �i : I ! faig with ai 2 A denoting a single ation.The main feature of a blind ontrol poliy is that it ignores all observations. The valuefuntion orresponding to the blind poliy � is omputed within the fully observable Markovproess model as: bV (b) =Xs2S b(s)VMDP;�(s):The blind poliy method an be desribed by means of value funtion updates, similarly toother methods. Let �1 denotes the �rst element (ation) of the poliy �, and �+1 denote itsremainder, that is, poliy � without its �rst element. Let bVi be a single linear vetor �i = V �+1ithat orresponds to the remainder of the blind poliy. Then:bV �i+1(b) = Xs02S b(s0)maxa2A "�(s; a) +  Xs02S p(sjs0; a)V �+1i (s)#= H�1 bV �+1i (b)The fat that a blind ontrol poliy ignores all observations means that it should not providebetter ontrol than the optimal poliy that utilizes all available information. Thus a blind poliyupdate should always lower bound the exat value funtion update.Theorem 13 (Lower bound property of a blind poliy update) Let � be an arbitrary blind poliy,�1 be its �rst element and �+1 its remainder. Let bV �+1i be a value funtion orresponding to�+1 that onsists of a single linear vetor �i = V �+1i . Then it holds:bV �i+1 = H�1 bV �+1i � H bV �+1i :88



Proof. Knowing that bV �+1i (b) =Ps2S b(s)V �+1i (s) holds, we an write:H bV �+1i (b) = maxa2A �(b; a) +  Xo2�next P (ojb; a)bV �+1i (� (b; o; a))= maxa2A �(b; a) +  Xo2�next P (ojb; a)Xs2S p(sjb; o; a)V �+1i (s)= maxa2A �(b; a) +  Xo2�nextXs2S p(s; ojb; a)V �+1i (s)= maxa2A �(b; a) + Xs2S p(sjb; a)V �+1i (s)= maxa2A Xs02S �(s; a)b(s0) +  Xs02SXs2S p(sjs0; a)b(s0)V �+1i (s)= maxa2A Xs02S b(s0)"�(s0; a) + Xs2S p(sjs0; a)V �+1i (s0)#� Xs02S b(s0)"�(s0; �1) + Xs2S p(sjs0; �1)V �+1i (s)#= H�1 bV �+1i (b) = bV �i+1(b)2 The fat that a blind poliy update always lower-bounds the exat update an be used toonstrut a lower bound approximation of the optimal value funtion by taking an arbitraryblind poliy and omputing its orresponding value funtion. The important thing is that theblind poliy value funtion onsists of a single linear vetor that is omputable within the fullyobservable framework. Moreover, every suh linear vetor an be diretly ombined with linearvetors obtained for other blind poliies.Combining value funtions for more blind poliiesA set of lower bound linear vetors omputed for a set of blind poliies an be ombined intoa pieewise linear and onvex bound. Let �� denote a value funtion aquired for some blindpoliy, that is �� = V�, and let � be a olletion of suh funtions. Then the pieewise linearand onvex funtion: bV (b) = max�2� Xs2S b(s)�(s)is a lower bound of the optimal value funtion V �(b). The idea of ombining linear vetorbounds is illustrated in �gure 4-3. Here two linear vetors orresponding to two di�erent blindpoliies are ombined into a pieewise linear and onvex lower bound.4.5.2 Construting a omplete blind update ruleWe have desribed how to ombine solutions for a set of blind poliies in order to provide apieewise linear lower bound value funtion. This in priniple allows one to ompute a lowerbound value funtion that ombines results for all possible blind poliies, by simply �ndinga value funtion for every poliy and then ombining the aquired linear funtions into theresulting lower bound. Unfortunately the problem with suh an approah is that the number of89
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V(b)Figure 4-3: A two dimensional illustration of a pieewise linear and onvex value funtionobtained by ombining linear value funtions for two blind poliies �1; �2.all possible blind poliies an grow exponentially for n steps-to-go problem and it is in�nite forthe in�nite disouted horizon problem. The reason for this is that for every blind poliy thereare jAj new poliies that start with some of the ations and ontinue with the previous poliyafterwards.The problem with the above approah is that it �nds value funtions also for poliies thatare learly suboptimal, that is they are worse than other poliies. This an be remedied by on-struting a new update rule, the so-alled omplete blind update rule that e�etively interleavesthe enumeration of all blind poliies and omputation of their value funtions.Let bVi be a pieewise linear onvex funtion and �i a set of linear vetors used to de-sribe it. Now assume that every linear vetor in �i orresponds to some poliy, that is�i = f��1i ; ��2i ; � � � ; ��mi g where Pi = f�1; �2; � � ��mg denotes a set of poliies. Then everypoliy in Pi an be extended in jAj possible ways by seleting one of the ations. The valuefuntion update for all possible ations and a poliy �j is:bV i+1�j (b) = maxa2A Xs02S �(s0; a)b(s0) +  Xs02SXs2S P (sjs0; a)b(s0)��ji (s):The optimal lower bound value funtion bV i+1 for all poliies f�1; �2; � � � ; �mg is then ob-tained by ombining results for all bV i+1�j :bV i+1(b) = max�j2Pi bV i+1�j= max�j2Pimaxa2A Xs02S �(s0; a)b(s0) +  Xs02SXs2S P (sjs0; a)b(s0)��ji (s)= maxa2A Xs02S �(s0; a)b(s0) + max�j2Pi  Xs02SXs2S P (sjs0; a)b(s0)��ji (s)= maxa2A Xs02S �(s0; a)b(s0) + max�ki 2�i  Xs02SXs2S P (sjs0; a)b(s0)�ki (s):90



The blind update rule thus orresponds to:bV i+1(b) = maxa2A Xs02S �(s0; a)b(s0) + max�ki2�i  Xs02SXs2S P (sjs0; a)b(s0)�ki (s) (4.1)= HBU bVi:Alternative derivation of the omplete blind update ruleInterestingly one an arrive at the blind update rule in a slightly di�erent way by trying toapproximate the exat value funtion update. The idea of this derivation is shown below.Let �i be a set of linear vetors desribing an arbitrary pieewise linear onvex funtion bVi.Then the exat value funtion update an be approximated as:H bVi(b) = maxa2A Xs02S �(s0; a)b(s0) +  Xo2�next max�ki 2�iXs2S Xs02S P (s; ojs0; a)b(s0)�ki (s)� maxa2A Xs02S �(s0; a)b(s0) +  max�ki 2�i Xo2�next Xs02SXs2S P (s; ojs0; a)b(s0)�ki (s)= maxa2A Xs02S �(s0; a)b(s0) +  max�ki 2�i Xs02SXs2S P (sjs0; a)b(s0)�ki (s)= HBU bVi(b)Thus the main di�erene between the exat and blind update rules is that the max andthe sum over next step observations are exhanged. This auses a hoie of � vetors in theblind update rule to beome independent of observations (one sum and max operations areexhanged, observations an be marginalized out). This is unlike the exat ase in whih �vetors are hosen separately for every observation.Complexity of the blind update ruleAssume the omplete blind update rule from the equation 4.1. Let ��(b;a)i be a linear vetorthat optimizes: max�ki 2�i Xs02SXs2S P (sjs0; a)b(s0)�ki (s)for the �xed a and b. Then we an write:HBUVi(b) = maxa2A Xs02S �(s0; a)b(s0) +  max�ki 2�i Xs02SXs2S P (sjs0; a)b(s0)�ki (s)= maxa2A Xs02S �(s0; a)b(s0) +  Xs02SXs2S P (sjs0; a)b(s0)��(b;a)i (s)= maxa2A Xs02S b(s0)"�(s0; a) + Xs2S P (sjs0; a)��(b;a)i (s)#= maxa2A Xs02S b(s0)�b;ai+1(s0)where: 91



�b;ai+1(s0) = �(s0; a) +  Xo2�nextXs2S P (s; ojs0; a)��(b;a)i (s):The omplete blind update rule selets an optimizing alpha vetor ��(b;a)i for any b inde-pendently of observations. This results in having at most j�ijjAj possible linear vetors afterupdate in bVi+1. This is in ontrast to the exat update, where the number of possible vetorsin the next step an grow exponentially with regard to the number of observations, and leadsto jAjj�ijj�next j possible vetors. In this ontext, the blind update rule is best viewed as anapproximation of the exat update rule (similarly to the fast informed bound).In�nite horizon aseFor the in�nite disounted horizon problem the omplete blind value funtion update HBU isan isotone ontration, similarly to H. This an be shown by using same proofs as in theorems6 and 7 in setion 3.2.3. The ontration property implies that there is a unique �xed pointsolution and that the value iteration method based on the blind update rule onverges to. It iseasy to show that the value funtion orresponding to the �xed point solution is a lower boundof the optimal value funtion. The proof is shown below and it is idential to the one providedfor the fast informed bound.Theorem 14 Let V � be an optimal value funtion and bV � be a �xed point solution omputedby the omplete blind update method. Then it holds that bV � � V �.Proof. Let bVi orrespond to a pieewise linear lower bound of the optimal value funtion, thatis: bVi � V �. Using isotoniity of H and the fat that the blind poliy update always lowerbounds the exat update we an write:bVi+1(b) = HBU bVi(b) � H bVi(b) � V �(b):Therefore bVi+1 sati�es bVi+1 � V �. As bVi+1 is also pieewise linear lower bound (same as theinitial ondition), we an extend the result to an in�nite number of steps, and bV � � V � mustfollow. 24.5.3 EÆient blind poliy methodsAs shown above, one an ompute the optimal lower bound (or its � preision approximation)for all blind poliies using the derived blind update rule. However the problem is that the valuefuntion may similarly to the exat update, grow with every iteration, ausing an exponentialinrease in the size of the linear vetor set. Thus, when we need the lower bound fast, theoptimal bound might not be the best solution.The easiest way to ompute a good lower bound is to use a �xed set of blind poliies. Thebound value funtion for suh a set is obtained by ombining value funtions omputed withinthe perfetly observable framework for every poliy in the set (see above). Note that valuefuntions for a �xed set of blind poliies an be omputed eÆiently both for the �nite as wellas in�nite disounted horizon ases.There are various strategies one an use to onstrut a set of �xed blind poliies to beombined into the lower bound value funtion approximation. These may range from randomto various heuristi strategies. For example in our work, when we need to onstrut a lowerbound value funtion for the in�nite disounted horizon problem fast, we use simple one-ation92



poliies. The advantage of this seletion is that respetive value funtions are found simply bysolving jAj sets of linear equations:V a(s) = �(s; a) +  Xs02S P (s0js; a)V a(s0)where a denotes the ation used by the one-ation poliy.4.5.4 Extensions to the �xed poliy methodThe idea of �xed blind poliies an be further extended into the �xed poliy approah. The�xed poliy method permits poliies that ondition ations on observations. This is unlikethe blind poliy where ations are sequened unonditionally. The �xed poliy approah hasbeen suggested and used by Anthony Cassandra (personal ommuniation) and an be nielyrepresented using poliy graphs [Cassandra 94℄.The sample �xed poliy for the in�nite disounted problem is illustrated in �gure 4-4.The arrow points to the initial ation, that is, an ation that is exeuted by the poliy �rst.Subsequent ations in the poliy depend on the results of observations. The important propertyof this approah is that the value funtion for an arbitrary �xed poliy is omputable eÆientlywithin the fully observable Markov model (eÆiently with regard to the size of the poliy graph).For example, assuming a state spae S = fs1; s2g, the value funtion for the poliy on �gure4-4 is obtained by solving the set of linear equations:V (x1; s1) = �(s1; ation(x1)) +  Xo2�nextXs2S p(o; sjs1; ation(x1)V (next(x1; o); s)V (x1; s2) = �(s2; ation(x1)) +  Xo2�nextXs2S p(o; sjs2; ation(x1)V (next(x1; o); s)V (x2; s1) = �(s1; ation(x2)) +  Xo2�nextXs2S p(o; sjs1; ation(x2)V (next(x2; o); s)V (x2; s2) = �(s2; ation(x2)) +  Xo2�nextXs2S p(o; sjs2; ation(x2)V (next(x2; o); s)� � �V (x4; s1) = �(s1; ation(x4)) +  Xo2�nextXs2S p(o; sjs1; ation(x4)V (next(x4; o); s)V (x4; s2) = �(s2; ation(x4)) +  Xo2�nextXs2S p(o; sjs2; ation(x4)V (next(x4; o); s)where ation(x) orresponds to the ation assoiated with node x of the poliy graph, next(x; o)represents a node one gets to after being in node x and seeing the observation o.One the system is solved, a value funtion orresponding to the poliy � that starts at nodex1 is omputed as: bV� =Xs2S b(s)V (x1; s):Note that by solving the above system of equations one e�etively aquires solutions notonly for the poliy that starts at node x1, but also solutions for poliies that start at x2, x3and x4. 93
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only for belief spae POMDPs; thus it is not as widely appliable as the blind poliy approah.4.6 Approximation of a value funtion using urve �tting(least-squares �t)A ommon way to approximate a funtion over ontinuous spae is to use urve �tting teh-niques. This approah uses a prede�ned parametri model of the funtion and values assoiatedwith a �nite set of points. The strategy then seeks the best possible math between model pa-rameters and observed point values. The best math an be de�ned using various riteria, mostoften the least-squaress �t riterion. In this method parameters of the model funtion are �tto redue the squared errors for all sample points, that is to redue:Error(f) = 12Xj [yj � f(bj)℄2where bj and yj orrespond to the belief point and its assoiated value. The index j rangesover all points of the sample set.The nie feature of the least-squares �t method is that it an be implemented in variousforms, for example, using an exat or stohasti version of the gradient desent method.4.6.1 Versions of least-squares �tLet f denote a parametri value funtion over the belief spae with adjustable weights w =fw1; w2; � � � ; wkg. Then the least-squares �t method an be implemented using any of thesuitable optimization proedures, e.g.:� A dediated proedure that selets least-squares error weights w for f based on all samplepoints and their assoiated values;� A gradient desent method that adjusts weights gradually in the error-reduing diretion.The on-line (or instane based) version of the least-squares error orresponds to the well-known delta rule (see e.g. [Rumelhart et.al 86℄). The delta rule allows for the gradual adjust-ment of the funtion parameters for every new sample seen. Let f be a funtion with parameters(weights) w = (w1; w2; � � � ; wk). Then the delta update rule for a weight wi orresponds to:wi  wi � �i(f(bj )� yj) �f�wi jbjwhere �i is a learning onstant, and bj and yj orrespond to the last seen point and its value.The gradient desent method requires the funtion to be di�erentiable with regard to ad-justable weights. This means that one needs to use smooth approximations of the value funtionand this also in the ase when the optimal value funtion is nondi�erentiable (for example piee-wise linear).4.6.2 Combining value iteration and least-squares �tThe least-squares �t an be used to onstrut an approximate value iteration (dynami program-ming) algorithm with a step: bVi+1 = HLSF bVi. In the ontext of POMDPs, this approah was95



used in the work of [Littman et al. 95a℄ and [Parr, Russell 95℄, where they used reinforementlearning updates to speed up the parameter learning proess.The major drawbak of value iteration methods with the least-squares �t is that their stabil-ity is not guaranteed and that they an also diverge. This was shown in [Tsitsiklis, Van Roy 96℄,[Baird 95℄. In general, this makes it impossible to guarantee that the least-squares approxima-tion of the optimal value funtion or a reasonably lose substitute will be found via valueiteration. However, the behavior of the least-squares strategy ombined with value iteration isnot understood very well and it is still possible that under a suitable seletion of a value fun-tion model, sampling points and initial value funtion one an guarantee the result to stabilizein some bounded region around the optimal least-squares hoie.Unfortunately issues of divergene and stability have not been onsidered and investigatedto suÆient depth in AI and more work needs to be done in this area. The intuition behindthe threat of divergene an be illustrated in the following. Assume that the target funtion insome belief spae region is approximated by a value funtion that assigns larger values to pointsin the region (ompared to atual values). Further, assume that suh a region is atively used inthe omputation of new value funtion updates for a set of sample points in the iteration step,thus produing values that are larger than the true target values. Fitting suh points and newvalues using the least-squares approah an then translate into an inrease in the error in thebadly estimated region. In general suh an error an grow larger with more iterations, leadingpossibly to the ampli�ation of the error (a kind of positive feedbak) and to divergene.Parallel and Gauss-Seidel value iteration algorithmsValue iteration, powered with a stohasti on-line version of a least-squares �t, an use eitherparallel or inremental (Gauss-Seidel) updates. In the �rst ase, the value funtion from theprevious step is �xed, and a new value funtion is omputed from srath using a set of beliefpoint samples and values omputed through one step expansion. One the parameters arestabilized (by attenuating learning rates) the newly aquired funtion is �xed, and the proessproeeds with another iteration. In the inremental (Gauss-Seidel) version, there is a singlevalue funtion model that is both updated and used to ompute new values at sampled points.Note that both versions are subjet to the instability and the divergene threat, as desribedabove.4.6.3 Parametri funtion modelsAs pointed out earlier, the on-line version of the least-squares �t method requires a funtionmodel that is di�erentiable. The typial hoie of a onvex funtion is simple, and usuallyorresponds to linear bV , linear bQ [Littman et al. 95a℄, or a quadrati funtion.One interesting and relatively simple least-squares method is based on the least-squaresapproximation of linear ation-value funtions (Q-funtions) [Littman et al. 95a℄. Here thevalue funtion bVi+1 is approximated as a pieewise linear and onvex ombination of bQi+1funtions: bVi+1(b) = maxa2A bQi+1(b; a)where: bQi+1(b; a) = �(b; a) +  Xo2�next p(ojb; a)bVi(� (b; o; a)):The least-squares �t approah is applied to approximate every linear Q-funtion. This leadsto the approximation with jAj linear vetors. Note that least-squares Q-funtion method is96



di�erent from the fast informed bound method that also works with jAj linear vetors. The maindi�erenes are that the fast informed bound updates linear vetors diretly, and it guaranteesan upper bound and unique onvergene, while Q-funtion least-squares relies on updates atsome number of sample points, and does not guarantee neither bound nor unique onvergene.More sophistiated parametri funtion models are possible as well. For example one onvexparametri funtion model suggested in the literature is [Parr, Russell 95℄:bV (b) = 24X�2�"Xs2S �(s)b(s)#k35 1kwhere � stands for the set of linear vetors � with adaptive parameters to �t and k is a \temper-ature" parameter that provides a better �t to the underlying pieewise linear onvex funtionfor larger values. The funtion represents a soft approximation of a pieewise linear onvexfuntion, with the parameter k smoothing more or less the pieewise linear approximation.4.6.4 Summary of least-squares �tThe main advantage of least-squares error methods is that they implement a relatively simpleupdate rule that needs to ompute new updates of values only for a �nite set of sample points.The typial hoie of a funtion used in approximations is simple, and usually relies on linearmodels. The advantage of suh funtions is that they redue to relatively simple weight up-date rules. However, in priniple one an use the outlined methods, also with more omplexparameter funtions that try to �t better the optimal value funtion (see e.g. [Parr, Russell 95℄).On the other hand, the quality of methods based on least-squares error depends stronglyon a given funtion model, initial parameter values, as well as a hoie of belief points used inthe least-squares. Devising suitable funtion models as well as proper initial values is in manyases like providing information that we do not know and need to ompute, for example thenumber of linear regions needed to approximate the resulting funtion. Another troublesomething is its ombination with the value iteration proedure. In general suh a ombinationannot guarantee the stability and onvergene to the best possible approximation. Anotherdisadvantage of methods based on least-squares �t is that the resulting approximation doesnot provide a bound, and therefore does not provide any lue or suggestion about the optimalsolution.4.7 Grid-based interpolation-extrapolation strategiesA value funtion over the ontinuous belief spae an be approximated nonparametrially by aset of grid points, their assoiated values and an interpolation-extrapolation rule that is usedto estimate values at non-grid points. The main advantage of suh a value funtion model isthat it an be updated easily by omputing new values only for a �nite set of grid points.De�nition 6 (Interpolation-extrapolation rule) Let f : I ! R be a real valued funtion de�nedover the information spae, G = fbG1 ; bG2 ; � � �bGk g be a set of grid points and 	G =f(bG1 ; f(bG1 )); (bG2 ; f(bG2 )); � � � ; (bGk ; f(bGk ))g be a set of point-value pairs. Then RG : I�	G !Rthat estimates a funtion value f for any point of the information spae I using only valuesassoiated with grid points is alled an interpolation-extrapolation ruleUsing the interpolation-extrapolation rule, the omplete value funtion is updated easily by97



omputing updates only for a seleted set of grid points. Let bVi be an arbitrary value fun-tion. Then new updated funtion bVi+1 is omputed using grid-based interpolation-extrapolationupdate as: bVi+1(b) = RG(b;	Gi+1)where values assoiated with every grid point bGj in 	Gi+1 are omputed as:bVi+1(bGj ) = maxa2A �(b; a) +  Xo2�next P (ojb; a)bVi(� (bGj ; o; a)):The grid-based value funtion update an be desribed also using a value funtion mappingHG as: bVi+1 = HGbVi.A family of onvex rulesA set of all possible interpolation-extrapolation rules is enormous. In our work we will fouson a set of onvex rules that represents a relatively small but but very important subset ofinterpolation-extrapolation rules.De�nition 7 (Convex rule) Let f be some funtion de�ned over the information spae, G =fbG1 ; bG2 ; � � �bGk g be a set of grid points, and 	G = f(bG1 ; f(bG1 )); (bG2 ; f(bG2 )); � � � ; (bGk ; f(bGk ))g bea set of point-value pairs. The rule RG for estimating f using values f(bG1 ); f(bG2 ); � � �f(bGk ) isalled onvex when for every information state b the value bf(b) is omputed as:bf (b) = RG(b;	G) = jGjXj=1 �bjf(bj )suh that 0 � �bj � 1 for every j = 1; � � � ; jGj and PjGjj=1 �bj = 1.A onvex funtion-approximation rule is a speial ase of the averager approximation shemedesribed by Gordon [Gordon 95a℄. The slight di�erene is that Gordon's model allows one toexpress a bias that is independend of the sample (values at grid points). The family of onvexrules inludes rules very ommon in pratie, like: nearest neighbor, kernel regression, and pointinterpolation.Nearest neighborIn the nearest nearest neighbor the value funtion for some point b is estimated using the valueat the losest grid point, where losest is de�ned with regard to some metri over the informationstate spae. Then for every information state b there is exaly one nonzero parameter �bj = 1and all other �bs are zero. That is:bf (b) = RG(b;	G) = f(bGj )where k b � bGj kM�k b � bGi kM holds for all i = 1; 2; � � � ; k. M represents a distane metride�ned on the information spae.The nearest neighbor rule omputes a value funtion using a single grid point. This leadsto a pieewise onstant funtion where regions with equal values orrespond to regions with aommon nearest grid point. 98



Kernel regressionThe value omputed by a nearest neighbour rule depends on a single grid point. This ausesit to absorb all the biases introdued by suh a point. In order to remedy this problem,one an ompute the approximation using more grid points in its neighborhood. A funtionapproximation rule that takes into an aount more grid points and their assoiated values iskernel regression.In kernel regression, �s represent normalized weights assoiated with grid points that arederived using some distane metri M . The approximate funtion bf (b) for an arbitrary infor-mation state b is omputed as: bf (b) = RG(b;	G) = kXj=1�bjf(bGj )where �bj = � exp�kb�bGj k2M=2�2with � being a normalizing onstant equal to:� = kXj=1 exp�kb�bGj k2M=2�2 ;and where � is a parameter that attens or narrows weight funtions. The important propertyof a kernel regression rule is that it omputes a smooth approximation of the funtion, unlikethe nearest neighbor rule.Point interpolationThe point interpolation rule not only presribes, how values at grid points are ombined, butalso imposes an additional onstraint that expliitly relates the grid points and � oeÆientsused.In the point interpolation, the approximate funtion bf (b) for an arbitrary information stateb is omputed as: bf (b) = RG(b;	G) = jGjXj=1�bjf(bGj )suh that all additional onstraints hold: b = jGjXj=1�bjbGj0 � �j � 1 for every j = 1; � � � ; jGjjGjXj=1 �bj = 1The fat that grid points used to ompute funtion approximation must always interpolatethe unknown point will help us to show the upper bound property for belief state POMDPs.This topi will be disussed later in the setion.99



4.7.1 Properties of onvex rulesA set of onvex rules di�ers from other interpolation-extrapolation rules in many respets. Inthe following we will examine two properties of high importane for the omputation of valuefuntion approximations. These are: isotoniity of the value funtion mapping HG and theontration property of HG for the in�nite disounted horizon.Isotoniity of a value funtion mapping based on a onvex ruleIt is well known that the exat value funtion mapping H is isotone (see [Heyman, Sobel 84℄).However we are interested in learning if the isotoniity of H is preserved in HG. Althoughisotoniity is not guaranteed to be preserved for an arbitrary interpolation-extrapolation ruleit an be shown that it is satis�ed for every onvex rule. That is: U � V imples HGU � HGV .Theorem 15 (isotone mapping) A value funtion mapping based on onvex rule HG is isotone.Proof. The proof of isotoniity is simple and diretly follows from the isotoniity of the originalexat mapping H (see also [Lovejoy 93℄). The isotoniity of value funtion mapping H impliesthat when V � U then HV � HU must hold. As grid-based value funtion mapping with aonvex rule allows only nonnegative oeÆients � then HG derived from H must be isotone aswell. 2Convergene of value iteration with a onvex ruleIn general the mapping HG for the in�nite disounted horizon problem may not lead to theonvergene of the value iteration method. However it is possible to show that it onvergesuniquely for all onvex rules.The proof of the onvergene of the approximate value iteration with a onvex rule is basedon the redution of the problem to the MDP problem with the same disount fator. Notethat the onvergene result is independent of the form of the optimal value funtion, and thusan be used not only for the standard POMDP models but also for models with observationhannel lags or ontinuous state MDPs. For an alternative proof of onvergene that uses theontration property see [Gordon 95a℄.Theorem 16 Let bV G be a grid-based value funtion approximation de�ned by a �nite set Gof grid points, their assoiated values fbV (bGj ) : bGj 2 Gg and a onvex rule RG. Then a valueiteration method with an update step: bV Gi+1 = HG bV Gionverges to a unique �xed point solution bV �G.Proof. The main idea is to onvert the problem of a grid-based update to an MDP update.For any grid point bGj we an write:bVi+1(bGj ) = maxa2A �(bGj ; a) + Xo2�P (ojbGj ; a)bV Gi (� (bGj ; a; o))= maxa2A �(bGj ; a) + Xo2�P (ojbGj ; a)24Ko;aj + jGjXk=1�o;aj;k bV Gi (bGk )35100



= maxa2A "�(bGj ; a) + Xo2� P (ojbGj ; a)Ko;aj #+  jGjXk=1 bV Gi (bGk )"Xo2�P (ojbGj ; a)�o;aj;k#Now denoting �(bGj ; a) + Po2� P (ojbGj ; a)Ko;aj as �0(bGj ; a) and [Po2� P (ojbj; a)G�o;aj;k ℄ asP (bGk jbGj ; a), the whole problem an be redued to the MDP problem with the idential disountfator , and with states orresponding to grid points:bVi+1(bGj ) = maxa2A �0(bGj ; a) +  jGjXk=1P (bGk jbGj ; a)bV Gi (bGk ):The prerequisite 0 � �bj � 1 for every j = 1; � � � ; jGj and PjGjj=1 �bj = 1 guarantees thatP (bGk jbGj ; a) an be interpreted as true probabilities.It is well known (see e.g.[Puterman 94℄) that the mappingH with a disount fator 0 �  < 1for the MDP is a ontration mapping, and that the value iteration method based on it onvergesto a unique �xed point solution. Therefore the approximate value iteration method onvergesto the unique solution as well. 2Note that both the isotoniity and onvergene proofs apply for any POMDP model, notonly belief spae POMDPs. Therefore by using any of the onvex rules, we always guaranteethe onvergene of the grid based update for any POMDP, and this also despite the fat thatwe have no idea about the shape of their value funtions.Grid-based approximate value iteration algorithmA onvex rule an be used to onstrut a simple grid-based approximate value iteration al-gorithm. Suh an algorithm is illustrated below. The algorithm starts from the initial valuefuntion bVinit and stops when a relative stopping riterion de�ned for grid point hanges issatis�ed. The algorithm implements a Gauss-Seidel version of the value iteration in whih eahnewly obtained grid point value is used immediately to update values for other grid points.Approximate value iteration (bVinit; jGj)selet a set of grid of points G of size jGjfor every point b 2 Gompute bVinit(b) and store it in the bV G de�nitionrepeat until the relative stopping riterion is metfor every point b in Gompute new update bV (b) andupdate the value in bV Greturn bV G4.7.2 Construting gridsA problem that has been left open is related to the grid point seletion. There are variousmethods to selet grid points that inlude:� regular grids;� random grids; 101



� heuristi grids.Regular grids [Lovejoy 91b℄ partition (triangulate) the belief spae evenly to equal sizeregions. This is basially the same idea that is used to partition evenly the n-dimensionalsubspae of Rn. In fat there is an aÆne transform that allows us to map isomorphially gridpoints in the belief spae to grid points in the n-dimensional spae (see [Lovejoy 91b℄ for thedisussion).In ontrast to regular grids, random and heuristi grids do not provide any regular parti-tioning of the belief spae. In the �rst ase grids are seleted randomly using samplingmethods,in the seond ase various heuristis that bias the seletion of points are employed.The advantage of nonregular grids (sometimes alled variable grids) is that any inreasein the resultion of the grid an be ahieved by simply addding new belief points. On theother hand, regular grids are restrited to a spei� number of points, and any inrease inthe resolution of a grid is paid for by an exponential inrease in the grid size. For example asequene of regular grids for a 20-dimensional belief spae (orresponds to a POMDP with 20states) onsists of 20, 210, 1540, 8855, 42504, � � � grid points2. This prevents one from usingthe method with higher grid resolutions for problems with larger state spaes.Neessary ondition for the point interpolation gridsThe nearest neighbor and kernel regression rules do not impose any speial requirement onwhat the grid must look like or what points must be present. However, one an easily notiethat the point interpolation grid must always inlude ritial points of the belief simplex. Thereason for this is that in order to make interpolation work for any point of the belief spae,ritial points must be present. Otherwise, one would not be able to interpolate missing ritialbelief points or any points in their neighborhood.4.7.3 Bound property of the point-interpolation ruleThe isotoniity and onvergene properties of grid-based methods with onvex rules have beenshown regardless of the form and shape of the optimal value funtion. But the fat that theoptimal value funtion V � is onvex (holds for belief spae POMDPs) allows one to say moreabout properties of a resulting approximate value funtion. More spei�ally it is possible toshow that the value funtion omputed by the grid-based update ombined with point interpo-lation always upper-bounds the value funtion omputed by an exat update (see [Lovejoy 91b℄,[Lovejoy 93℄)Theorem 17 (Upper bound property of a grid-based point interpolation update) Let bVi be apieewise linear and onvex value funtion. Then it holds: H bVi � HG bVi.Proof. The proof is based on Jensen's inequality. Let bVi be a pieewise linear onvex funtionand G = fbG1 ; bG2 ; � � �bGk g be set of grid points used in the point interpolation update. Let b bea belief point suh that b =Pkj=1 �bjbGj and suh that 0 � �bj � 1 and Pkj=1 �bj = 1 hold.2The number of points in the regular grid sequene an be omputed as [Lovejoy 91b℄:jGj = (M + jSj � 1)!M !(jSj � 1)!where M = 1; 2; � � � is a grid re�nement parameter. 102



As an exat update for a belief spae POMDP preserves pieewise linearity and onvexness,we know that H bVi is pieewise linear and onvex. Then for a belief point b we an write:H bVi(b) = H bVi( kXj=1 �bjbGj )� kXj=1 �bj hH bVi(bGj )i = HGbVi(b)where the upper bound follows from Jensen's inequality. 2In�nite disounted horizon solutionA value funtion mappingHG implementing a onvex rule has been shown to satisfy the isotoneontration property for the in�nite disouted horizon problem. That means, there is a �xedpoint solution bV � = HG bV � the value iteration method will onverge to. The fat that thegrid-based point interpolation update upper bounds the exat update an be used to show thatthe approximate value iteration method onverges to the value funtion that upper bounds theoptimal value funtion for belief state POMDPs, that is: bV � � V � [Lovejoy 91b, Lovejoy 93℄.Theorem 18 (Upper bound property of a �xed point solution) Let H be a value funtion map-ping for the POMDP problem with a suÆient belief information spae and HG be a valuefuntion mapping onstruted from it using a grid-based point interpolation rule. Then the �xedpoint solution bV � = bHG bV � is an upper bound on the optimal value funtion V �, i.e. V � � bV �.Proof. Let bVi orrespond to a pieewise linear funtion that upper bounds the optimal valuefuntion, V � � bVi. Then using the result of the previous theorem and the fat that H is isotone,we an write: V �(b) � H bVi(b) � bVi(b)and V �(b) � H bVi(b) � HGbVi(b)As H bVi(b) is a pieewise linear and onvex funtion (initial assumption) and both H and HGare isotone we an write: V �(b) � H2 bVi(b) � HGH bVi(b) � H2G bVi(b)Knowing that both H and HG are ontrations and onverge to their respetive �xed pointsolutions, then applying the previous step repeatedly in�nitely many times the following mustbe satis�ed: V �(b) = HV �(b) � HGbV � = bV �2 This means that the approximate value iteration method with a grid-based point interpo-lation rule omputes upper bound value funtions. Note that neither the kernel regression northe nearest neighbor an guarantee any bound property.103
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Figure 4-5: A two dimensional illustration of the simple linear point interpolation rule. Theandidate interpolating set is restrited to a single internal point of the belief spae.Construting the interpolation ruleThe eÆieny of the grid-based point interpolation update depends strongly on the eÆienyof the implentation of suh an interpolation rule. The interpolation rule must �rst selet aset of points from the grid G suitable for interpolation, that onsists of at least jSj linearlyindependent belief points for any nonboundary point of a belief simplex. In general there anbe �jSjjGj� possible minimal sets, and �nding the best interpolating set an be time-onsuming(requires to solve a linear programming problem). One possible solution to this is to use regulargrids (see above) that evenly partition the belief spae and allow one to hoose an interpolatingset eÆiently. However suh grids must use a spei� number of points and any inrease in theresolution of a grid is paid for by an exponential inrease in the grid size. This prevents onefrom using the method with higher grid resolutions for problems with larger state spaes.To provide for more exibility of the method, we have proposed a new point interpolationmethod that an use arbitrary grids and is guaranteed to run in time linear in the size ofthe grid [Hauskreht 97b℄. The rule builds on the fat that any point b of the belief spae ofdimension jSj an be easily interpolated with a set of grid points that onsists of an arbitarypoint b0 2 G and jSj � 1 ritial points of the belief simplex (ritial points orrespond to(1; 0; 0; � � �); (0; 1; 0; � � �), et.). That is, for any grid point b0 2 G there is a simple interpolatingset that allows one to ompute a linear interpolation bV b0i (b) at an arbitrary point b. As for anyonvex funtion the interpolation guarantees an upper bound, the tightest possible bound valueahieved for a set of grid points an be hosen:bVi(b) = minb02G bV b0i (b):The value funtion approximation orresponding to the desribed point interpolation rule isillustrated in �gure 4-5. The approximation is haraterized by its \saw" shape, whih isinuened by the hoie of the interpolating points.The proposed interpolation rule an be omputed in O(jGjjSj) time, whih is linear in thesize of the grid. This makes it a good andidate to use for a larger number of grid points.Also, any inrease in the grid resolution is very easy, as one simply needs to add new pointsto the previous ones. The simpliity of grid extension allows one to implement relatively easilyvarious eÆient inremental strategies that improve the upper bound for the in�nite disounted104



horizon problem.Inremental grid based methodsA simple inremental improvement algorithm for the in�nite disounted horizon problem isillustrated below. The algorithm starts from the initial upper bound bVinit, expands the gridgradually in k point inrements, and uses Gauss-Seidel updates for points in the ative grid.As the grid size is bounded by linear growth, the algorithm is guaranteed to run eÆiently fora �xed number of iterations.Inremental upper bound (k; bVinit)selet an initial set of grid points Gfor every point b 2 Gompute bVinit(b) and store it in bV G de�nitionrepeat until the stopping riterion is satis�edrepeat until the grid expansion riterion is metfor every point b in Gompute new update bV (b) andupdate the value in bV Gselet a set of k points GEXP to expand Gfor every b 2 GEXPadd b to G and bV (b) to bV Greturn bV GAn initial bound bVinit an be omputed using either MDP-based approximation or the fastinformed bound method presented earlier. Note that MDP-based approximation orrespondsexatly to the solution obtained by the approximate value iteration with the point interpolationrule and with the grid that onsists solely of ritial belief points.Construting a heuristi point interpolation gridIn general the quality of bounds produed by the grid-based point interpolation method isstrongly inuened by a grid seletion strategy. The advantage of our simple interpolation ruleis that it does not enfore a spei� grid (like regular grids). Thus it an be easily ombinedwith an arbitrary seletion method, whih may inlude various heuristis.A heuristi method for seleting grid points that we have designed, implemented and testedattempts to maximize improvements in bound values using stohasti simulations. The methodbuilds on the fat that every grid suitable for interpolation must inlude ritial points (other-wise the interpolation annot be guaranteed). A value at any grid point b improves more whenmore preise values are used for its suessor belief states, i.e. belief states that orrespond to� (b; a; o) for an optimizing ation a and an observation o. Inorporating suh points into thegrid would then inrease the hane of larger improvement of values assoiated with ritialpoints. Naturally one an proeed with seletion further, by inorporating suesor points forthe �rst level suessors into the grid set as well, and so on.The stohasti simulation method samples likely suessor belief points in the followingsteps:1. selet an ation a that is optimal for b given the urrent upper bound value funtion;105



2. selet the next observation randomly aording to the probability distribution p(ojb; a)3. ompute the next belief point b+ = � (b; o; a).Similar stohasti simulation methods within the POMDP framework were used for example in[Parr, Russell 95℄ [Littman et al. 95a℄. Note that other approahes for onstruting heuristigrids for the point interpolation strategy are possible. One suh approah has been proposedreently in [Brafman 97℄ and it re�nes the grid by examining di�erenes in value funtion valuesat urrent grid points.4.7.4 Extensions of the simple interpolation ruleThe idea behind the simple interpolation rule an be extended further to improve the seletionof interpolating sets used. For example, one an try to selet interpolating sets that onsist oftwo arbitrary belief points and jSj � 2 ritial points, three belief points and jSj � 3 ritialpoints, and so on, up to jSj arbitrary belief points. However, these improvements are mostlypaid for by an inreased omputational omplexity asssoiated with enumerating all plausibleombinations. Note that the proess of seleting points to be ombined does not have to bedone blindly and smart heuristis for fousing on suitable ombinations an be utilized.4.7.5 Summary of grid-based interpolation-extrapolation methodsThe exat value funtion update an be approximated using a grid-based update rule. The ruleomputes value funtion updates for a �nite set of information states (grid points) and usesinterpolation-extrapolation tehniques to derive new value funtion values for all other states.This makes it possible to eÆiently derive a new value funtion.There are numerous interpolation-extrapolation strategies. However most suitable and fre-quently applied interpolation-extrapolation rules belong to the family of onvex rules. Updatesbased on onvex rules are isotone and are guaranteed to onverge for the in�nite disountedhorizon problem. The important thing is that this holds for any infomation state spae andthus it overs an arbitrary POMDP model.The fat that for belief spae POMDPs the value funtion is known to be pieewise linearand onvex an be used to show that any approximate update based on point interpolationupper bounds the exat update. Thus, it an be used to ompute an upper bound of theoptimal value funtion and this both for �nite and in�nite horizons.4.8 Grid-based linear vetor method (grid-based Sondik'smethod)An alternate value funtion approximationmethod an be onstruted by applying Sondik's ap-proah for updating linear vetors (derivatives) to a grid of points [Lovejoy 93℄ [Hauskreht 97b℄.Let bVi be a pieewise linear onvex funtion desribed by a set of linear vetors �i. Thena new andidate linear vetor for a belief point b and ation a an be omputed eÆiently as[Smallwood, Sondik 73℄:�b;ai+1(s) = �(s; a) +  Xo2�next Xs02S P (s0; ojs; a)��(b;a;o)i (s0) (4.2)106



where �(b; a; o) indexes a linear vetor �i in a set of linear vetors �i (de�ning bVi) that maximizesthe expression: Xs02S "Xs2S P (s0; ojs; a)b(s)#�i(s0)for a �xed ombination of b; a; o. The optimizing linear vetor for a point b is then aquiredby hoosing the vetor with the best overall value from vetors omputed for all ations. Thatis, assuming �bi+1 is a set of all andidate vetors, the resulting vetor must satisfy:�b;�i+1 = argmax�bi+12�bi+1 Xs2S �bi+1(s)b(s):The point based linear vetor update is a basis of a number of exat algorithms (Sondik's,Cheng's) that update value funtion over iteration or dynami programming steps. Howeverexat methods require one to always �nd a omplete set of points that seed new linear vetorsand thus guarantee the omplete update. Unfortunately the searh for a omplete set of pointsan also turn out to be a soure of major ineÆieny. In ontrast to this approah a lassof approximation methods an be based on inomplete sets of points that are easy to loate(via random, or eÆient heuristi seletion). Let HGL denote a value funtion mapping thatrestrits linear vetor updates to a set of arbitrary, and thus often inomplete, grid points G.4.8.1 Lower bound property of the grid-based Sondik's updateIn both exat and grid based updates one omputes a set of linear vetors that de�ne newpieewise linear and onvex value funtions. However if an inomplete set of points is used forthe update, the resulting value funtion lower bounds the value funtion one aquires using theomplete exat update rule. The proof of this is shown bellow.Theorem 19 (Lower bound property of the grid-based linear vetor update). Let bVi be a piee-wise linear value funtion and G a set of grid points one uses to ompute linear vetor updates.Then it holds: HGLbVi � H bVi.Proof. The proof is trivial and is based on a ompleteness argument. Let �i+1 be a set ofoptimizing linear vetors omputed for a grid set G and bVi. As points used for a grid-basedupdate may be inomplete, the resulting value funtion de�ned by �i+1 may lak useful linearvetors that optimize (maximize) a value funtion for some region of the belief spae. ThusHGLbVi � H bVi must hold. 24.8.2 In�nite horizon aseThe grid-based linear vetor update method uses an inomplete set of points. Beause of this,a value funtion mapping HGL for the in�nite disounted horizon ase does not have to satisfya ontration property and a value iteration method based on suh a mapping does not have toonverge. The grid-based update rule with an inomplete set of grid points an lead to variousbehaviors over value iteration steps, most often osillations.In order to guarantee the stability and onvergene of the value iteration method whenworking with an inomplete set of points, we propose the following inremental method thatgradually improves the pieewise linear and onvex lower bound value funtions.107
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vetor set. Various modi�ations of the above inremental lower bound algorithm are possible,e.g. one an use a �xed set of grid points to be updated repeatedly, or one an selet the pointsto be updated using some heuristis.Heuristi point seletion strategiesThe update phase of the inremental lower bound method is not limited to a spei� pointhoie. Thus one may ombine it with arbitrary point seletion strategies. The strategies anbe based on simple random seletion of grid points, or more sophistiated strategies basedon various heuristis. Random grid seletion strategies an be then used to benhmark theimprovement from heuristi strategies.With an objetive to speed up the improvement of the bound, we have designed and imple-mented two relatively simple heuristi strategies that try to optimize updates of a bound valuefuntion.The �rst strategy attempts to optimize updates only at ritial points by ordering themappropriately. It builds on the fat that states with higher expeted rewards (e.g. some desig-nated goal states) bakpropagate their e�ets loally. Therefore it is desirable that states in theneighborhood of the highest reward state are updated �rst, and distant ones later. The strat-egy for ordering ritial points uses the urrent value funtion to identify the highest expetedreward states, and the POMDP model to determine loal dependenies and order neighboringstates.The seond strategy uses the idea of stohasti simulation, similar to the one used in theupper bound method. The strategy generates a sequene of belief points that an result froman (initial) belief point through simulation, suh that a sequene of belief points with higherprobablity are more likely to be generated. The points of the sequene are then used in reverseorder to update the urrent value funtion.The two heuristi strategies an be ombined into one two-tier strategy, in whih the toplevel strategy orders ritial belief points, and the lower level strategy uses stohasti simulationto generate a sequene of belief points that are likely to result from a given ritial point.4.8.3 Summary of the grid based linear vetor methodThe grid-based linear vetor method represents a re�nement of the Sondik's method to arbitrarygrids. The grid-based update leads to a pieewise linear onvex funtion that is de�ned using asmaller number of linear vetors and that lower bounds the exat update. The main advantageof the grid-based method ompared to the exat update is that it an ompute a value funtionapproximation fast, not wasting time by trying to loate all belief points that would guaranteethe exat update.The grid-based linear update rule an be turned into a new inremental linear update rulefor the in�nite disounted horizon problem. The rule gradually improves a pieewise linear andonvex lower bound. It uses the Gauss-Seidel style of updates and avoids the need to reomputethe value funtion from srath for every iteration step.4.9 Approximation of poliiesAlthough a ontrol response an be always omputed from the value funtion approximationthrough one step deision tree expansion, it is also possible to ompute the poliy diretly. Thisapproah requires ontrol funtions that are de�ned over possibly in�nite information spae in109



some exible and �nite form. In the following we will briey desribe a method that uses poliygraphs (trees) [Cassandra 94℄ [Littman 94℄.4.9.1 Representing ontrol using poliy (ontrol) treesA poliy for the belief spae POMDP framework and for both �nite and in�nite horizon prob-lems an be represented using a poliy tree [Cassandra 94℄ [Littman 94℄. The poliy tree onsistsof nodes that are assoiated with ation hoies and links that represent onditional ontinua-tions of ontrol hoies based on observations. The poliy tree an be also viewed as a ollapseddeision tree in whih deision nodes are substituted with a �xed ation hoie. For the in�nitedisounted horizon problems poliy trees an be represented using poliy graphs with yles(wrap-around trees). An example of a poliy graph for the in�nite horizon problem was shownin �gure 4-4 in setion 4.5.4.A poliy graph an be used to represent any ontrol poliy, inluding the optimal one. Infat there is a strong orrelation between poliy tree representation and the struture of valuefuntion for belief information spaes, and one an onstrut a solution poliy tree using a slightmodi�ation of the exat update value funtion [Littman 94℄. In priniple, every region of thebelief spae that is represented by a linear vetor orresponds to a node in the poliy tree, andlinks between poliy tree nodes represent optimal hoies of linear vetors used in update steps.Construting approximate poliies using poliy treesEvery node in the poliy tree orresponds to a linear vetor that desribes a pieewise linearand onvex value funtion orresponding to suh a poliy. The interesting thing is that we anompute the linear vetor for any node and any �xed poliy simply by solving a set of linearequations. This has been shown and desribed in setion 4.5.4. That reets the fat that itis relatively easy to ompute a value funtion for a �xed poliy, although one must not forgetthat the poliy itself an be quite omplex.The fat that we know how to ompute the value funtion for any �xed poliy tree an beused to onstrut a poliy approximation algorithm that starts from an initial poliy tree, andby performing strutural or ation hanges, gradually produes a better poliy approximation.Note that the improvement would be relatively easy to hek as any �xed poliy lower boundsthe value funtion for the optimal poliy. Suh an approah an employ various heurististrategies for making strutural hanges that are likely to further improve the quality of apoliy.The poliy approximation approah outlined above has not been investigated to our knowl-edge, and thus o�ers a promising alternative to various value funtion approximation methods.The advantage of the approah is that optimal poliies have less struture than optimal valuefuntions, and therefore are representable more ompatly.4.9.2 Other poliy approximation methodsAlternatively, a ontrol funtion for a belief information spae an be represented using a �niteset of grid points, their assoiated ations, and a rule that de�nes how to determine an ationfor a nongrid point. Nearest neighbor is a simple rule hoie and the ation for any belief pointis an ation assoiated with the grid point losest to it. More omplex rules, that selet anation for a non-grid target belief point using ations assoiated with more than one grid pointsin its neighborhood an be also reated. However, in suh ases, one must provide a strategyfor resolving onits when di�erent ations are suggested by several relevant grid points.110



An approximate poliy an be onstruted by omputing ontrol responses for all grid pointsfrom the value funtion approximation. This is a diret approah and works �ne for both �niteas well as in�nite disounted horizon ases. But, when one needs to ompute the approximatepoliy for the in�nite disounted horizon ase, it is possible take advantage of the form ofthe ontrol funtion that needs to be found. Then it is possible to adapt the poliy iterationmethod, desribed for the fully observable MDP, also to belief state MDPs. Suh a methodis also refered to as approximate poliy iteration method[Bertsekas 95℄. The method startsfrom some �xed poliy, omputes its value funtion approximation using an arbitrary method(omputing a value funtion for a �xed poliy is easier). Then, every ation assoiated with agrid point representing a ontrol funtion is heked to see if it improves the value funtion forsuh a point. If yes the hange is made and proess ontinues.The main problem with approximate poliy iteration is that it does not have to onverge,and an osillate among a set of poliies. This is beause of approximations, as it an happenthat value funtion values for the \improved" poliy may turn out to be worse than valuefuntion values for the previous poliy.4.10 Model based approximationsThe main idea behind value funtion approximation methods was to replae the exat updaterule with a more eÆient approximation. In all ases the resulting value funtion was de�nedusing the original information state spae I.A omplementary approah to the value funtion approximation is based on the approx-imation (redution) of the information-state MDP. The redution an target omponents ofthe information-state MDP or omponents of the underlying POMDP model (states, ations,observations, transitions, observation and ost models). The most typial approximations arethose that in some way transform or redue the suÆient information state spae.4.10.1 Approximation of the information state spaeThe approximation of the information-state spae ould be ahieved by substituting more om-plex information spae with a simpler feature state spae [Bertsekas 95℄ [Tsitsiklis, Van Roy 96℄.The feature spae is usually of smaller size, summarizes the important harateristis of theinformation state with regard to the ontrol, and is easier to manipulate and work with. Featurestates (vetors) an be often viewed as abstrations or aggregations of suÆient informationstates.The relation between the information and feature vetors is aptured by a feature extrationmapping F , that maps information states to feature states:F : I ! bI:Then, assuming the feature-based value and ontrol funtions:bVF : bI ! Rb�F : bI ! Aare known, one an express approximate value or ontrol funtions for the information state Ias: bV (I) = bVF (F(I))111
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Construting feature state spaeA feature state spae and assoiated feature extration mapping introdue a bias telling whatfeatures of the problem need to be onsidered and what an be abstrated out. Note thatthe feature spae together with the mapping in fat represents partitioning of the originalinformation spae, with information states in the same partition being mapped to the samefeature state. Information states in the same partition are treated as a single aggregate stateon the feature level, leading to the loss of preision and approximation.For the purpose of ontrol one would like to use features that redue the omplexity of thestate spae and have the smallest possible e�et on the quality of ontrol. The feature spaeand related mapping an be either:� de�ned by the designer or expert in the domain of interest;� automatially inferred from the original model.The �rst approah an be used to redue the omplexity of the original problem in areaswhere an expert is able to de�ne the most important redutions. The feature spae and arelated mapping then inorporate knowledge reeting the expert's intuition or experiene aboutthe ontrol domain and about the importane of various problem harateristis to ahievebetter ontrol. This approah an be very valueable espeially for problems with large state orobservation spaes.In the seond ase the feature spae and the feature mapping is inferred from the originalmore omplex model. Usually the goal here is to ome up with the feature spae and themapping that uts down the omplexity of the original information state as muh as possibleand that has also minimal possible e�et on the quality of ontrol that would result from theapproximation. Suh an approah is ruial for solving ontrol problems for whih an expert'sknowledge is not available, or where one must work with large and omplex models. Thisproblem has not been suÆiently investigated, and remains open.In the following we will disuss two representatives of feature-based approximations. Theseare based on:� trunated histories;� POMDP model redutions.Other information-state redution methods are possible as well. For example, [D'Ambrosio 96℄proposed and tested redutions in whih ontinuous belief spae was transformed to its quali-tative abstration using �-alulus [Goldszmidt 95℄.4.10.2 Trunated historyOne approah to information-state redutions is based on trunated histories [White, Sherer 94℄[Platzman 77℄. The approah builds on the heuristi saying that the deision about the ontrolan be done reasonably well using only a set of reent ations and observations. The approahthus seeks the replaement of the omplete information vetor in both �nite and in�nite dis-ounted horizon update formulas:V (It) = maxa2A Xs2S �(s; a)P (sjIt) +  Xo2�next P (ojIt; a)V (� (It; o; a)) (4.3)113



with trunated information states:bIMt = fat�M ; ot�M+1; at�M+1; � � � ; at�1; otgthat reet only the reent M step proess history.Note that by using the trunated histories, the problem of expanding dimension that madethe omplete information vetor (orresponds to a omplete history of all ations and obser-vations) unsuitable for the omputation has been eliminated. The feature vetor spae basedon trunated histories onsists of a disrete set of reent history vetors that replae in�niteinformation spae. However, the feature vetor spae based on trunated histories an still beexponential in the number of history items used. For example for the POMDP model with a-tion and observation spaes A;� the full M step trunated history spae onsists of jAjM j�jMfeature vetors. When onsidering also ases in whih history length is shorter than M the sizeof the feature vetor spae is jAjM+1j�jM+1�1jAjj�j�1 [White, Sherer 94℄.Computing a value funtion for a feature spaeFeature vetor spae redues the omplexity of the suÆient information state spae. Thisleads to a loss of detail and preision as more than one suÆient information states are mappedto one feature vetor. This opens the problem of how to ompute the optimal value funtion(maximum expeted reward) for an aggregate feature state. In general, one an think aboutde�ning or omputing a onditional probability distribution of being in some information stategiven a feature vetor and using this distribution to ompute aggregate value funtion for thefeature vetor as a weighted average of value funtions for all orresponding information vetors.However, it is often easier to hoose simpler aggregation method. The obvious hoie is to seleta lower (upper) bound aggregate value funtion that assigns a value to a feature vetor basedon the minimum (maximum) value funtion value of its omponents.For an M -step trunated history the hoie of minimum or maximum values leads to thefollowing upper and lower bound aggregate value funtions (see [White, Sherer 94℄):VL(IMt ) = maxa2A mins�t�M2S�Xs2S �(s; a)P (sjIMt ; s�t�M) +  Xo2�next P (oja; IMt ; s�t�M)VL(� (IMt ; o; a))VU (IMt ) = maxa2A maxs�t�M2S�Xs2S �(s; a)p(sjIMt ; s�t�M) +  Xo2�next P (oja; IMt ; s�t�M )VU (� (IMt ; o; a));where VL and VU stand for upper and lower bound funtions, state s�t�M represents a proessstate at time t �M , that is the state just before the history information was taken. Takingthe worst and best hoie of a state s�t�M we get upper and lower bounds on the optimal valuefuntion. Note that whenever the spei� observation and ation sequene annot be reahedfrom st�M , that is when P (IMt jst�M) = 0, st�M should not be onsidered as a hoie. Thisan happen in situations in whih transitions or observation matries ontain zeros and someombinations of ation-observation sequenes are not possible. Thus S� in the equations standsfor a set of states that are onsistent with the observed history.114



Computing value funtion bounds for a �nite horizon problemValue funtion approximations based on a trunated history an be omputed using dynamiprogramming. In order to aount for all possible states, equations desribed above must bemodi�ed to reet the fat that a trunated history at the beginning an be shorter than themaximum trunated length M . Assuming an n steps-to-go problem, a value funtion for a stepi � n is omputed as:VL(Iki ) = maxa2A mins�i+k2S�Xs2S �(s; a)p(sjIki ; s�i+k) +  Xo2�next P (oja; Iki ; s�i+k)VL(� (Iki ; o; a))where k = min(n � i;M ).Computing value funtion bounds for the in�nite disounted horizon problemSimilarly to the optimal value funtion one an ompute the value funtion using the valueiteration method. However, the major question is whether the method onverges to the uniquesolution for every posible initial value funtion. This property follows whenever the new valuefuntion mapping HTH de�ned for trunated histories satis�es the ontration property. Theontration property of HTH has been proved for example in [White, Sherer 94℄, and thus avalue iteration method with HTH onverges to a unique �xed point solution. Moreover, theresult also preserves the bound. Therefore one is able to use both HTH mappings to omputethe optimal value funtion bounds for the in�nite disounted horizon ase.Reduing a set of possible trunated historiesThe major problem with the approximation that uses an M step trunated history is that thestate spae size an be exponential in M . There an be jAjM+1j�jM+1�1jAjj�j�1 possible histories oneneeds to work with in the worst ase. This auses the major slowdown whenever the trunatedhistory length M is large.The size of the spae of trunated histories an be in many ases redued diretly by exlud-ing suboptimal ations or impossible observations. Various triks to eliminate suh elementsfrom the spae of histories are disussed in [Platzman 77℄. Alternatively one an inlude in thefeature spae only those items from the history that are most relevant and inuene the qualityof the ontrol more. Deriving autonomously whih items in the history are more relevant andneed to be inluded would help to redue the growth of the feature spae as well.4.10.3 POMDP model redutionAn alternate approah to redue the omplexity of the information state MDP, and by thismeans all assoiated omputations, is to redue the omplexity of the underlying POMDPmodel. This is most often done by reduing the number of proess states and substituting themwith aggregate proess states. Note that this is slightly di�erent from simpli�ng informationstates, although hanges in the proess state will show up in the information state as well.The omponents of the new POMDP model an be built using state spae redution teh-niques similar to the model redution tehniques desribed in the MDP hapter. For examplethe transition probabilities for the new POMDP model an be omputed from the originalPOMDP model using a new aggregate state spae SAgg and a onditional probability of beingin some state s 2 S given an aggregate state sAgg 2 SAgg : P (sjsAgg). Knowing this probability115



distribution one an easily ompute the new transition probability matrix:P (sAgg1 jsAgg2 ; a) =Xs2S P (sjsAgg2 ) Xs02sAgg1 P (s0js; a)where s0 ranges over all states overed by an aggregate state sAgg1 .The major problem with this approah is related to the seletion of the aggregate statespae and the probability P (sjsAgg). In the ideal ase, one would like to selet these suhthat aggregate Markov hain reets the properties of the original hain and expeted rewardsassoiated with new aggregate states are good approximations of expeted rewards de�ned overthe original state spae. The problem with this is that it would require one to aggregate togetherstates with similar value funtion values. This is an open area of researh, and methods thatutilize a priori expert knowledge or derive appropriate aggregations autonomously an be usedfor this task.The POMDP redution method disussed above assumed that the relation between theoriginal model and aggregate state model an be ompletely de�ned through relations betweenaggregate and original states. However there is always a possiblity that one an de�ne a new(abstrated) POMDP model diretly by providing all the neessary information about itsomponents and the relations between the original and new state spaes.4.11 SummaryThe problem of omputational omplexity of exat methods an be resolved by using approx-imation methods that trade o� auray and preision of the solutions for speed. There arenumerous methods one an use to ompute approximate solutions for the POMDP poliy prob-lem. These are mostly based on value funtion approximations that attempt to approximateoptimal value funtions, using more eÆient dynami programming and value iteration updates.Bound and onvergene properties of approximation methodsThe methods and their solutions an be analyzed and ompared theoretially along variousproperties. The two that are most important are bound, and onvergene for in�nite disountedhorizon problems. The table 4-1 summarizes bound and onvergene properties of several valuefuntion approximation methods and their solutions.ContributionsThe main ontributions of our work in this hapter are:� Summary of approximationmethods for solving omplex POMDP problems, analysis andproofs of their properties. Some of the proofs are based on the work of other researhersbut some are new and are presented here for the �rst time. We have tried to present allmethods in a uniform way, that is every method was desribed by means of an updaterule it implements. This in turn makes easier their omparison with the exat and otherapproximate update rules.� New fast informed bound method, that uses a simple and eÆient update approximationsheme and upper bounds the exat update rule. The rule approximates value funtionusing at most jAj linear vetors. 116



method bound onvergeneMDP-approximation upper yesBlind-poliy (�xed poliy) method lower yesFast-informed bound upper yesCurve �tting (least-squares �t) no noGeneral grid-based interpolation-extrapolation no noGrid-based linear interpolation upper yesGrid-based nearest neighbor no yesGrid-based kernel-regression no yesGrid-based inremental linear vetor method lower yesTable 4-1: Bound and onvergene properties of value funtion approximation methods.� Blind poliy method that uses a set of blind poliies to ompute omponents of thepieewise linear lower bound of the optimal value funtion.� New grid-based point interpolation rule that supports arbitrary (variable) grids, andthus arbitrary grid seletion strategies. This is unlike regular grid methods that evenlypartition the belief spae and use �xed sets of grid points� New heuristi approah for onstruting point interpolation grids. The method usesstohasti simulations and attempts to improve the value funtion value for ritial be-lief points. The method an be ombined also with other grid-based interpolation-extrapolation strategies, for example nearest neighbor.� New inremental linear vetor method for in�nite disounted horizon problems that isbased on Sondik's linear vetor updates. The method omputes and inrementally im-proves a pieewise linear and onvex lower bound of the optimal value funtion overiterations steps. The method an use arbitrary set of grid points (inluding heuristiones) and is also a basis of the Gauss-Seidel speedup tehnique for exat value iteration.
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Chapter 5Value funtion approximationmethods: an experimental studyThe objetive of this hapter is to empirially ompare the performane of several value funtionapproximation methods and their solutions on omplex POMDP ontrol problems. It naturallyomplements the previous hapter, whih was more formal and foused on the desriptionof approximation methods, their properties, and relations. In the following, approximationmethods will be evaluated using two riteria:� the quality of value funtion bounds;� their ontrol performane.In the �rst part of the experiment, approximation methods that provide upper and lowerbounds on the optimal value funtions will be tested. In the seond part, several value funtionapproximation methods will be ompared diretly on the ontrol task and will be judged solelybased on their ontrol performane.The role of empirial researh in sienti� exploration is enormous. It helps us on�rm orrefute our expetations and guides our exploration of the �eld by giving us a better under-standing of features that had not been shown theoretially. Unfortunately the area of POMDPapproximations laks large sale experimental work. Thus our primary mission is to take asmall step in this diretion and provide a omparison of methods and their extensions. Wewill ompare both new and known approximation methods, inluding simple approximationsbased on perfet observability, the urve �tting approah based on least-squares �t and moresophistiated heuristi grid-based methods.In the following, we will �rst desribe a set of three ontrol problems we used in the exper-iments. After that, upper and lower bound value funtion approximations will be ompared.Finally the ontrol performane of various approximations will be examined and analysed.5.1 Test problemsWe tested value funtion solutions using a set of three in�nite disounted horizon POMDPproblems of di�erent omplexity. The problems tested are:� The Maze20 maze navigation problem [Hauskreht 97b℄;119



Moves SensorsFigure 5-1: The robot navigation problem: Maze20� The Maze20B maze navigation problem with a zero ost absorbing state� The Shuttle doking problem [Chrisman 92℄The Maze20 navigation problem was designed to provide the hardest problem, with investigativeations being of high importane for the optimization of the objetive funtion. This wasahieved by providing a highly strutured and narrow maze, with many obstales that ouldlead to a high sore loss. The Maze20B problem uses a slightly less strutured maze, andost-reward model that penalizes blind maneuvering less ompared to the Maze20 problem.Thus, it is less dependent on investigative ations. Shuttle doking is a problem with lowunertainty in both transition and observation models. This signi�antly redues the impatof partial observability on the problem and solution. In the following we only give a briefdesription of eah problem. All three problems are desribed fully in appendix A (they an bealso downloaded on-line at: \http://www.medg.ls.mit.edu/people/milos/thesis/").Test problem 1: Maze20Maze20 [Hauskreht 97b℄ is a maze navigation problem with 20 states, 6 ations and 8 obser-vations. The maze (�gure 5-1) onsists of 20 partially onneted rooms (states) in whih arobot funtions and ollets rewards. The robot an move in 4 diretions (North, South, Eastand West) and an hek for the presene of walls using its sensors. Neither \move" ationsnor sensor inputs are perfet and the robot an wind up moving in unintended diretions. Therobot moves in an unintended diretion with probability of 0.3 (0.15 for eah of the neighboringdiretions). A move into the wall keeps the robot in the same position. Investigative ationshelp the robot to navigate by ativating sensor inputs. There are 2 investigative ations that al-low the robot to hek inputs (presene of a wall) in the North-South and East-West diretions.Sensor auray in deteting walls is 0.75 for a two wall ase (e.g. both north and south wall),0.8 for a one wall ase (north or south) and 0.89 for a no wall ase, with smaller probabilitiesfor wrong pereptions.The ontrol objetive is to maximize the expeted disounted rewards with a disount fatorof 0.9. A small reward is given for every ation not leading to bumping into the wall (4 pointsfor a move and 2 points for an investigative ation), and one big reward (150 points) is givenfor ahieving the speial target room (shown as a irle on the �gure) and reognizing it byperforming one of the move ations. After doing that and olleting the reward, the robot isplaed with some probability into one of the `initial" rooms.120



Moves SensorsFigure 5-2: The robot navigation problem: Maze20BTest problem 2: Maze20BThe Maze20B problem (see �gure 5-2) is similar to Maze20. The two problems use di�erentmaze topologies. However, the unertainty assoiated with the outomes of \move" ations andthe quality of pereptual information is the same as for Maze20.The other major di�erene between the two maze problems is in the payo� model: Maze20Buses osts instead of rewards. Costs are assigned in the following way: 20 points for every ationthat does not ause the robot to rash into the wall, 30 points for any ation (move) that bumpsthe robot against the wall and 0 points for any ation in the goal state (represented by a irle).Note that the osts of various ations and their outomes favor more move ations omparedto the Maze20 problem.The goal state is a zero ost absorbing state (sink). The objetive is to optimize ontrol forthe in�nite disounted horizon, with a disount fator of 0.95.Test problem 3: Shuttle dokingThe Shuttle doking problem [Chrisman 92℄ onsists of 8 states, 3 ations and 5 observations.The states onsists of the position of the shuttle relating to the most and least reently visitedspae station. The objetive is to ontinuously move and dok the shuttle at the least reentlyvisited spae station, whih is rewarded with 10 points. The disount fator used is 0.95.The major di�erene between the Shuttle problem and the maze problems is that it doesnot have investigative ations. The observations used are onsidered to be free (no ost) andalways available. Also unertainties assoiated with either transitions or observations are notas bad as in the ase of the maze problems, and in many ases, the relations are deterministi.The Shuttle problem has features that make a ontrol problem easier to solve (small amount ofpartial observability, no investigative ations, a lot of determinism in ation outomes).5.2 Comparing quality of bounds5.2.1 Methods testedWe tested the bounds on value funtions produed by several methods that were disussed inthe previous hapter and that were proved to have upper or lower bound properties. However,we note that there are other methods one an use to ompute upper or lower bounds that wedid not test, for example model redution methods based on trunated histories disussed in121



setion 4.10.2.Upper bound methodsWe tested and ompared the following upper bound methods:� MDP-based approximation;� Fast informed bound method;� Grid-based point interpolation with regular, random and heuristi grids.The MDP based approximation is a basi method for omputing an upper bound. Thesolution it produes onsists of a single linear vetor, and is often used to initialize other, moreomplex upper bound methods. Thus, the quality of the MDP-based bound will provide thesore against whih the improvements of other methods an be measured and ompared.The fast informed bound method improves the MDP-based bound using a pieewise linearand onvex value funtion that onsists of jAj linear vetors.The MDP-based bound an be improved futher by using the grid-based point interpolationmethod. Grid-based point interpolation an be implemented using di�erent types of gridsinluding regular, random and heuristi grids. We have tried and tested all three types of grids.Regular grids were ombined with the eÆient point interpolation strategy due to [Lovejoy 91b℄that always interpolates a target point using the grid-points that are losest to it. In addition,both random and heuristi grids were implemented with a new point interpolation methoddesribed in setion 4.7.3. The heuristi approah implemented a new strategy proposed in4.7.3. Di�erent types of grids have been tried for di�erent grid resolutions. We used grids of 40points up to 440 grid points (in 40 point inrements). The heuristi grids for larger resolutionswere onstruted inrementally using previous step solutions. The regular grid method wastested only on regular grids that fell in the tested range. These inluded a grid of 210 pointsfor both maze problems, and grids of 36, 120, and 330 points for the smaller Shuttle problem.Lower bound methodsWe tested the following lower bound methods:� Simple blind poliy method;� Inremental linear vetor method with various point seletion strategies.The simple blind poliy method (setion 4.5.3) omputes a pieewise linear and onvex valuefuntion that onsists of jAj linear vetors, one for every blind one-ation poliy. The solutionlower bounds the optimal value funtion and an be used to initialize inremental linear vetormethods.The inremental linear vetor method (setion 4.8.2) is designed to gradually improve apieewise linear and onvex lower bound. It an be ombined with various strategies for seletingpoints for updates. We tested four di�erent point seletion strategies. These were evaluatedusing 40 point update yles for up to 440 point updates. The strategies we ompared are:� A �xed grid strategy with a �xed set of 40 belief points that are used repeatedly. The gridpoints onsist of all ritial belief points, and the remaining points are seleted randomly.� A random grid strategy that selets every belief point to be updated randomly;122



� An order heuristi strategy (see setion 4.8.2) that repeatedly piks 40 belief points,inluding all ritial points. The ritial points are ordered to maximize the updatee�et.� A two tier heuristi strategy (see setion 4.8.2) that ombines the heuristi ordering strat-egy with a forward simulation strategy. Every ritial point (ordered) is simulated forwardfor 5 steps, and a sequene of points obtained is updated in reverse order.5.2.2 Experimental designValue funtion solutions are de�ned over the ontinuous belief spae. This makes it impossibleto ompare bound results for every possible belief state. In order to ompare the quality ofbounds obtained by di�erent methods we use a single sore that measures the average valueobtained for a �xed set of 2500 randomly generated belief points together with all of the ritialpoints of the belief simplex.5.2.3 Test resultsThe result sores ahieved for both bounds are listed in: �gures 5-3 and 5-4 for the Maze20problem; �gures 5-5 and 5-6 for the Maze20B; and 5-7 and 5-8 for the Shuttle doking problem.Note that the Maze20B problem minimizes osts, and therefore the upper and lower boundmethods are exhanged ompared to the problems that maximize rewards.5.2.4 Evaluation of resultsUpper boundThe worst results were ahieved by the grid-based point interpolation method with randomgrids. This is mostly beause transitions in all models are loal and sparse. This means thatfrom any ritial point one an only get to belief states that lie on the boundary of the beliefsimplex, that is, those belief points that ontain a lot of zeros. In ontrast to this, randomsampling is more likely to produe a belief point with nonzero probabilities. Sine any boundarypoint an be interpolated using only points on the same boundary, the internal points of thebelief simplex have no e�et on their interpolation, and thus there is a very slim hane thatritial points will get updated by randomly generated grids.Regular grids with small resolution have a signi�antly better bound sore beause theyonsist only of points on the belief simplex boundaries.Overall, the best results were ahieved by the heuristi grid method with forward pointsimulations. The method was signi�antly better than random and regular grids for bothMaze20 problems, and was beaten by a low margin by a regular grid method only on theShuttle problem. We believe that the main reason for this is that the heuristi grid methoduses a simple point interpolation rule that does not searh for the best interpolating set, whilethe regular grid method uses a minimum distane point interpolation rule.The other ontender { the newly designed fast informed bound method performed very wellon all test problems and was able to beat the grid based methods with lower grid resolutions.The main advantage of the method is that it is easy and fast to ompute, thus it is able to giveus a good upper bound in relatively short time.123
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Maze20: lower bound
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Maze20B: upper bound
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Shuttle: upper bound
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Shuttle: lower bound
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Lower boundThe experiments showed that there is no lear winning point seletion strategy for the inre-mental linear vetor method. The di�erenes among the strategies were very small. Also, ondi�erent problems, di�erent strategies performed best. A surprise was a relatively bad showingof the two-tier heuristi strategy on the Maze20B problem (minimization) where the qualityof its solutions fell behind all other methods. We believe that the reason for this is that thestrategy sampled the same set of belief points repeatedly with small potential for improvements.Thus, the method would probably be better if it swithed and interleaved heuristi seletionswith some random seletion strategy.In general, the reason for small di�erenes in the lower bound quality ould be explainedby updating linear vetors (derivatives) for belief points. In suh a ase the new linear vetorinuenes a larger portion of the belief spae and thus it is less sensitive to a spei� pointseletion strategy. Also possible is the explanation that we did not use a very good heuristi,and better heuristis or their ombinations an be onstruted.Bound results summaryBoth upper and lower bound inremental methods were ombined with various heuristi meth-ods for loating new grid points. The heuristi grid approah for the grid-based point in-terpolation based on forward simulations seems to be justi�ed and was able to outperformsigni�antly both random and regular grids most of the time. The results suggest that thepoint-interpolation method is sensitive to a seletion of grid points. Interestingly, we were notable to get any signi�ant improvement from any of the heuristi approahes for the inrementallower bound method. Moreover both random point seletion and �xed random strategies areproduing similar results. This suggest that the inremental linear vetor is less sensitive tothe seletion of the grid points used for updates.Overall, upper and lower inremental bound methods (heuristi grid assumed for the point-interpolation bound) were able to improve signi�antly on the initial bounds provided by theMDP-based method and the simple blind poliy methods. However, despite this, the ombina-tion of upper and lower bound methods did not ahieve very tight bound spans for the testedrange, exept on the Shuttle doking problem with 8 states, 3 ations and 5 observations. Webelieve we did not get very tight bounds on maze problems beause one needs to use moregrid-points or updates for more omplex problems (with larger state and observation spaes)in order to get loser to the optimal solution. The tested ranges of grid sizes and updates weresimply not suÆient for the two more omplex problems.5.3 Testing ontrol performane of approximation meth-odsThere are many approximation methods that have been proposed to ompute POMDP ontroleÆiently (see [Lovejoy 91b℄ [Littman et al. 95a℄ [Parr, Russell 95℄). However, the omparisonsof these methods were either insuÆient or did not inlude problems of larger omplexity. Forexample, omparison studies that appeared in the AI literature have foused mostly on theappliation of least-squares �t strategies, and have not tried grid based approahes even thoughthey are ommon in operations researh. Therefore a primary fous of our work in this is setionis to ompare a spetrum of value funtion approximation approahes and their solutions onthe set of in�nite disounted horizon problems.130



5.3.1 Methods testedWe tested all of the value funtion approximation methods desribed in the previous hapter:MDP-based approximation, the blind poliy method, the fast informed bound method, theleast-square �t approah, linear interpolation-extrapolation rules and inremental lower boundmethod with Sondik's updates. Some methods were represented by multiple entries beausethey used di�erent grids or di�erent heuristis. The purpose of this variation was to show howspei� triks or heuristis inuene the approximation.Optimal solutionsThe results obtained for di�erent approximation methods were ompared to the results onewould ahieve with the optimal solution for the perfetly observable Markov proess (whereproess states are assumed to be perfetly observable), and for the Shuttle doking problem,they were also ompared to results for the optimal POMDP solution with 10�5 preision1. Theoptimal solution for both maze problems was too hard to ompute to any reasonable preisiondue to the huge inrease in the size of the linear vetor set. The objetive of the omparisonof the perfetly and partially observable ases was to provide some idea about how hard theontrol task under imperfet observability really is. Note that in the perfetly observable asethe investigative ations usually beome suboptimal.Methods with multiple entriesDespite the threat of instability we omputed and tested value funtions obtained by valueiteration with a least-squares �t. We tried two funtion models: a linear Q-funtion model[Littman et al. 95a℄ and a softmax model [Parr, Russell 95℄. They were desribed in setion4.6.3. Q-funtions were updated in parallel for a �xed set of 100 points that inluded all theritial points of the belief simplex. The least-squares �ts were omputed at every step usinggradient parameter learning tehniques. The initial set of Q-funtions was based on solutionsaquired for the orresponding blind one-ation poliies. The least-squares funtion was testedafter 10, 20 and 30 iterations. Softmax funtion model was only used on the Maze20 problem.Solutions with 10 and 15 linear vetors were aquired after 10 and 20 iteration steps. Thefuntions were updated in parallel for a �xed set of 50 and 100 points respetively that inludedall ritial points of the belief simplex. In both ases models were initialized with the solutionaquired by the simple blind poliy method.Grid-based interpolation-extrapolation methods were tested using nearest-neighbor andpoint interpolation rules, for grid sizes of 40, 200 and 400 belief points. The interpolationrule has been implemented by a simple interpolation method proposed in setion 4.7.3 that�ts onvex and pieewise linear value funtions with a \saw"-shaped funtion. Both nearest-neighbor and point interpolation were tried on both random and heuristi grids. Heuristi gridswere generated using model-based sampling as desribed in the previous hapter (setion 4.7.3).The point interpolation method was also tested on regular grids using the eÆient interpolationstrategy proposed in [Lovejoy 91b℄.The ontrol performane of the inremental linear vetor method with Sondik's updates wastested for solutions aquired after 40, 200, and 400 point updates. We used the same strategiesto selet the belief points that were used for the bound experiments (setion 5.2).1The solution for the Shuttle doking problem with the 10�5 preision was kindly provided by AnthonyCassandra. It onsists of 208 linear vetors. 131



5.3.2 Experimental designThe quality of eah method's performane was tested using simulations for di�erent sets ofinitial belief points. The simulation runs for eah initial belief state were 60 steps long. In eahrun, the atual disounted reward or ost obtained by a ontrol agent powered with a spei�value funtion approximation were olleted. This gave us an approximation of the disountedsore the agent would ahieve if it were to run forever. Beyond the overall reward (ost) sore,the other statistis were olleted, suh as the number of times a goal state was reahed andthe number of observations in the run. Methods and their solutions were tested on two testsets that onsisted of:� 2000 randomly generated belief points (arbitrary points);� 1500 randomly generated ritial belief points.The Shuttle doking problem has not been tested on a set of random belief points. The reasonfor this is that in the Shuttle problem, observations are very good indiators of the underlyingstate and thus it is always possible to exlude the majority of underlying proess states (onlybelief states with few nonzero states are possible). Therefore a test on the set with randomlygenerated belief points does not make muh sense.5.3.3 Test resultsSimulation results obtained for various methods and test sets are presented both in tables andgraphially (using bar diagrams) in the following way :� Maze20 in tables 5-1, 5-2 and �gures 5-9, 5-10;� Maze20B in tables 5-3, 5-4 and �gures 5-11, 5-12;� Shuttle in table 5-5 and �gure 5-12.The simulation results listed in the tables inlude: the average of disounted rewards (osts)ahieved for all simulation runs (ahieved sore), the perentage of times the \goal" statewas reahed in 60 steps, the average of expeted disounted rewards (osts) predited by anapproximate value funtion for all simulation runs (expeted sore), and the average numberof investigative ations per simulation run (60 steps). The ahieved sore (average reward)is the primary riterion to evaluate the performane of the method. The other statistis areinformative and tend to reveal more about the nature and the behavior of the methods.Testing methods di�erenesThe overall ahieved sore (average reward or average ost sore) for a given test set quanti�esthe quality of ontrol. However the average sore itself does not tell us if two methods withdi�erent average sores are also statistially signi�antly di�erent. The reason for this is thattwo methods an produe di�erent average sores simply as a result of some underlying randomproess. Thus to validate that the sores obtained are not the result of randomness we needto show that the methods are in fat signi�antly di�erent. We do this by omparing not onlytheir average performane, but by omparing their performane on many individual simulationruns.All methods were run and tested on the same set of belief points. We also assured that thesimulator was always initialized from the same proess state. This means that sample rewards132



Maze20: ontrol performane, Test set: 2000 random belief points
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Figure 5-9: Maze20 omparison of ontrol performane. The ahieved sore represents theaverage reward on the set of 2000 random belief points.Maze20: ontrol performane, Test set: 1500 ritial belief points
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Maze20: ontrol performane, Test set: 2000 random belief pointsmethod method ahieved perent expeted averageparameters sore of goal sore observ.MDP (observable) - 131.16 100 129.76 0MDP-approximation - 38.24 34.25 129.75 0.01Fast informed bound - 54.73 80.20 102.05 10.54Simple blind poliy - 50.18 42.75 32.60 10.28least square �t points: 100, iter: 10 56.70 78.40 54.13 10.91with Q-funtions points: 100, iter: 20 56.59 79.30 61.54 10.80points: 100, iter: 30 54.73 78.50 64.14 10.97least square �t vetors:10, points:50, iter:10 45.94 62.45 48.32 37.83method with vetors:10, points:50, iter:20 45.68 55.55 50.81 39.34softmax funtion vetors:15, points:100, iter:10 49.10 67.90 60.84 34.68vetors:15, points:100, iter:20 51.43 72.15 58.74 32.95Grid based regular grid (210 points) 44.60 39.35 98.47 0.00point interpolation random grid (40 points) 40.08 62.75 129.35 7.24method random grid (200 points) 40.45 67.15 128.91 10.39random grid (400 points) 41.37 69.40 128.78 9.70heuristi grid (40 points) 41.13 38.25 110.57 0.27heuristi grid (200 points) 46.08 67.95 83.48 19.18heuristi grid (400 points) 48.37 70.60 80.61 19.49Grid based random grid (40 points) 31.49 16 294.69 33.70nearest neighbor random grid (200 points) 33.87 17.10 176.73 33.37method random grid (400 points) 35.38 17.45 161.56 37.93heuristi grid (40 points) 32.43 33.70 114.58 30.36heuristi grid (200 points) 36.33 22.50 129.10 17.54heuristi grid (400 points) 38.75 29.70 96.43 22.19Inremental linear �xed (40 updates) 56.16 62.95 43.19 16.87vetor method �xed (200 updates) 60.18 90.35 47.68 24.05�xed (400 updates) 60.62 89.50 49.08 24.27random (40 updates) 56.82 75.95 43.96 18.26random (200 updates) 60.45 86.75 49.88 21.51random (400 updates) 60.98 88 52.31 21.81order heuristi (40 updates) 59.18 86.35 44.39 23.36order heuristi (200 updates) 61.01 90.40 51.03 23.22order heuristi (400 updates) 62.41 90.30 52.25 23.172-tier heuristi (40 updates) 58.63 86.65 44.52 23.792-tier heuristi (200 updates) 59.47 90.35 52.07 21.562-tier heuristi (400 updates) 61.72 88.05 53.55 23.37Table 5-1: Simulation results for the Maze20 problem and 2000 random belief points. Thetable inludes results for the perfetly observable MDP ontrol (for the purpose of omparison),MDP-based approximation, fast informed bound method, simple blind poliy, least square �tmethod with Q-funtion and softmax funtions - tested for di�erent number of iteration steps(10, 20, 30) and di�erent numbers of sample points (softmax also for 10 or 15 linear vetors),grid-based point interpolation strategy with regular, random and heuristi grids (for variousgrid sizes), grid-based nearest neighbor with random and heuristi grid (for various grid sizes),and inremental linear vetor method for �xed random, dynami random, order heuristi andtwo-tier heuristi point seletion strategies (for di�erent number of updates).134



Maze20: ontrol performane, Test set: 1500 ritial belief pointsmethod method ahieved perent expeted averageparameters sore of goal sore observ.MDP (observable) - 130.21 100 129.83 0MDP-approximation - 55.51 44.67 129.81 0.11Fast informed bound - 68.46 82.80 107.70 9.73Simple blind poliy - 60.16 47.47 38.72 8.72least square �t points: 100, iter: 10 67.61 80.33 59.83 9.91with Q-funtions points: 100, iter: 20 68.94 81.40 67.22 9.90points: 100, iter: 30 70.43 82.33 69.87 10.14least square �t vetors:10, points:50, iter:10 57.05 71.47 61.81 36.06method with vetors:10, points:50, iter:20 56.36 62.73 64.66 37.32softmax funtion vetors:15, points:100, iter:10 63.73 81.67 73.81 29.81vetors:15, points:100, iter:20 63.77 78.93 71.63 30.05Grid based regular grid (210 points) 61.76 52.60 102.30 0.06point interpolation random grid (40 points) 57.18 67 129.81 6.47method random grid (200 points) 58.86 72.80 129.81 9.69random grid (400 points) 58.92 72.73 129.81 9.33heuristi grid (40 points) 58.76 51.20 111.13 0.28heuristi grid (200 points) 65.83 77.73 85.05 17.43heuristi grid (400 points) 65.80 77.20 82.36 17.29Grid based random grid (40 points) 37.22 14.40 286.94 39.29nearest neighbor random grid (200 points) 39.29 17.67 175.51 29.80method random grid (400 points) 47.33 26.13 157.28 38.74heuristi grid (40 points) 44.00 49.27 124.22 30.03heuristi grid (200 points) 55.89 40.93 123.07 20.69heuristi grid (400 points) 55.28 42.47 99.44 17.67Inremental linear �xed (40 updates) 65.12 62.80 52.22 14.99vetor method �xed (200 updates) 73.10 93.40 62.52 22.63�xed (400 updates) 70.37 92.40 64.02 22.98random (40 updates) 70.08 76.67 52.94 16.20random (200 updates) 73.08 90.33 62.03 20.19random (400 updates) 71.33 90 64.81 20.35order heuristi (40 updates) 69.81 88.53 57.73 22.08order heuristi (200 updates) 70.96 91.67 65.31 21.91order heuristi (400 updates) 71.62 90.73 66.82 21.842-tier heuristi (40 updates) 71.79 90.13 58.70 22.312-tier heuristi (200 updates) 73.82 92.33 69.04 19.922-tier heuristi (400 updates) 72.90 91.20 71.17 22.02Table 5-2: Simulation results for the Maze20 problem and the set of 1500 ritial belief points.The table inludes results for the perfetly observable MDP ontrol (for the purpose of om-parison), MDP-based approximation, fast informed bound method, simple blind poliy, leastsquare �t method with Q-funtion and softmax funtions - tested for di�erent number of itera-tion steps (10, 20, 30) and di�erent numbers of sample points (softmax also for 10 or 15 linearvetors), grid-based point interpolation strategy with regular, random and heuristi grids (forvarious grid sizes), grid-based nearest neighbor with random and heuristi grid (for various gridsizes), and inremental linear vetor method for �xed random, dynami random, order heuristiand two-tier heuristi point seletion strategies (for di�erent number of updates).135



Maze20B (osts): ontrol performane, Test set: 2000 random belief points
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Maze20B (osts): ontrol performane, Test set: 2000 random belief pointsmethod method ahieved perent expeted averageparameters sore of goal sore observ.MDP (observable) - 133.37 100 134.23 0MDP-approximation - 245.06 90.40 134.23 6.28Fast informed bound - 230.48 91.25 166.80 7.36Simple blind poliy - 264.74 64.10 341.50 20.26least square �t points: 100, iter: 10 225.08 94.90 262.13 35.78with Q-funtions points: 100, iter: 20 224.47 95.25 241.48 35.98points: 100, iter: 30 225.43 95.30 238.52 35.80Grid based regular grid (210 points) 254.68 70.75 159.06 12.38point interpolation random grid (40 points) 236.63 92.35 134.67 5.70method random grid (200 points) 239.75 90.55 135.18 6.53random grid (400 points) 236.94 92.25 135.38 6.34heuristi grid (40 points) 250.88 78.30 153.90 12.83heuristi grid (200 points) 240.74 82.35 181.55 12.89heuristi grid (400 points) 241.33 80.95 184.56 13.37Grid based random grid (40 points) 342.41 17.55 156.59 45.25nearest neighbor random grid (200 points) 345.23 26.50 175.10 31.12method random grid (400 points) 338.30 28.20 164.11 30.14heuristi grid (40 points) 331.55 42.35 107.85 12.53heuristi grid (200 points) 339.35 35.65 116.19 15.47heuristi grid (400 points) 315.97 50.50 154.04 14.52Inremental linear �xed (40 updates) 230.96 79.60 297.99 14.68vetor method �xed (200 updates) 221.28 96.70 271.04 9.32�xed (400 updates) 217.14 98.35 254.15 7.77random (40 updates) 226.41 90.90 296.96 9.55random (200 updates) 219.34 97.70 259.19 6.67random (400 updates) 218.13 98.50 247.66 7.07order heuristi (40 updates) 226.56 84.15 304.39 12.52order heuristi (200 updates) 219.16 97.60 269.01 8.33order heuristi (400 updates) 217.13 98.15 254.70 7.852-tier heuristi (40 updates) 230.57 83 319.81 15.402-tier heuristi (200 updates) 220.73 98.30 283.65 8.402-tier heuristi (400 updates) 222.05 98.05 274.17 8.90Table 5-3: Simulation results for the Maze20B problem (ost minimization) and 2000 randombelief points. The table inludes results for the perfetly observable MDP ontrol (for thepurpose of omparison), MDP-based approximation, fast informed bound method, simple blindpoliy, least square �t method with Q-funtion funtions - tested for di�erent number of iterationsteps (10, 20, 30), grid-based point interpolation strategy with regular, random and heuristigrids (for various grid sizes), grid-based nearest neighbor with random and heuristi grid (forvarious grid sizes), and inremental linear vetor method for �xed random, dynami random,order heuristi and two-tier heuristi point seletion strategies (for di�erent number of updates).137



Maze20B (osts): ontrol performane, Test set: 1500 ritial belief pointsmethod method ahieved perent expeted averageparameters sore of goal sore observ.MDP (observable) - 134.05 100 134.71 0MDP-approximation - 214.95 93.40 134.71 3.66Fast informed bound - 201.65 96.20 159.77 3.68Simple blind poliy - 255.99 55.47 313.66 26.03least square �t points: 100, iter: 10 199.10 96.20 251.20 28.59with Q-funtions points: 100, iter: 20 203.45 97.40 232.97 28.05points: 100, iter: 30 204.12 97.27 230.70 28.01Grid based regular grid (210 points) 216.94 81.53 155.84 7.82point interpolation random grid (40 points) 214.21 94 134.71 3.25method random grid (200 points) 212.58 94.33 134.71 3.42random grid (400 points) 217.45 93.67 134.71 3.83heuristi grid (40 points) 213.69 90.27 153.85 5.36heuristi grid (200 points) 208.27 93.13 180.48 6.23heuristi grid (400 points) 206.31 94.13 183.24 5.93Grid based random grid (40 points) 314.28 24.60 124.17 42.40nearest neighbor random grid (200 points) 311.56 36 165.94 25.18method random grid (400 points) 320.59 26 158.72 38.53heuristi grid (40 points) 283.83 53.20 112.14 13.40heuristi grid (200 points) 304.31 45.67 131.24 13.09heuristi grid (400 points) 264.74 60.40 161.78 11.01Inremental linear �xed (40 updates) 211.00 80.87 271.25 13.07vetor method �xed (200 updates) 199.73 92.73 234.44 8.89�xed (400 updates) 199.03 97.60 221.44 5.81random (40 updates) 208.35 87.47 270.61 9.90random (200 updates) 196.38 98.27 234.11 4.65random (400 updates) 197.21 98.07 222.03 4.98order heuristi (40 updates) 212.51 81.33 271.44 13.28order heuristi (200 updates) 202.78 93.87 232.51 8.43order heuristi (400 updates) 196.46 98.87 221.32 5.432-tier heuristi (40 updates) 213.77 81.20 263.59 14.692-tier heuristi (200 updates) 197.63 98.60 224.56 5.982-tier heuristi (400 updates) 199.44 98.80 211.61 6.28Table 5-4: Simulation results for the Maze20B problem (ost minimization) and 1500 randomritial belief points. The table inludes results for the perfetly observable MDP ontrol (forthe purpose of omparison), MDP-based approximation, fast informed bound method, simpleblind poliy, least square �t method with Q-funtion funtions - tested for di�erent number ofiteration steps (10, 20, 30), grid-based point interpolation strategy with regular, random andheuristi grids (for various grid sizes), grid-based nearest neighbor with random and heuristigrid (for various grid sizes), and inremental linear vetor method for �xed random, dynamirandom, order heuristi and two-tier heuristi point seletion strategies (for di�erent numberof updates). 138



Shuttle: ontrol performane, Test set: 1500 ritial belief pointsmethod method ahieved perent expeted averageparameters sore of goal sore observ.MDP (observable) - 34.17 100 35.79 0POMDP optimal 10�5 preision 33.99 100 35.71 0MDP-approximation - 34.00 100 35.77 0Fast informed bound - 34.13 100 35.71 0Simple blind poliy - 22.03 100 3.26 0least square �t points: 100, iter: 10 33.89 100 15.09 0with Q-funtions points: 100, iter: 20 33.98 100 21.50 0points: 100, iter: 30 33.99 100 25.31 0Grid-based regular grid (36 points) 33.95 100 35.71 0point interpolation regular grid (120 points) 34.01 100 35.71 0method regular-grid (330 points) 34.17 100 35.71 0random grid (40 points) 33.94 100 35.77 0random grid (200 points) 33.96 100 35.77 0random grid (400 points) 33.86 100 35.77 0heuristi grid (40 points) 34.08 100 35.71 0heuristi grid (200 points) 34.11 100 35.71 0heuristi grid (400 points) 34.04 100 35.71 0Grid-based random grid (40 points) 33.96 100 35.81 0nearest neighbor random grid (200 points) 33.94 100 35.72 0method random grid (400 points) 34.07 100 35.72 0heuristi grid (40 points) 34.01 100 35.71 0heuristi grid (200 points) 34.00 100 35.71 0heuristi grid (400 points) 33.98 100 35.71 0Inremental linear �xed (40 updates) 34.04 100 19.98 0vetor method �xed (200 updates) 34.09 100 33.44 0�xed (400 updates) 34.08 100 35.16 0random (40 updates) 25.86 100 21.04 0random (200 updates) 34.06 100 33.17 0random (400 updates) 34.05 100 34.81 0order heuristi (40 updates) 34.02 100 22.50 0order heuristi (200 updates) 33.99 100 34.26 0order heuristi (400 updates) 34.04 100 35.36 02-tier heuristi (40 updates) 25.58 100 20.50 02-tier heuristi (200 updates) 33.94 100 34.95 02-tier heuristi (400 updates) 34.00 100 35.70 0Table 5-5: Simulation results for the Shuttle problem and 1500 random ritial belief points.The table inludes results for the perfetly observable MDP ontrol (for the purpose of om-parison), POMDP optimal solution (10�5 preision), MDP-based approximation, fast informedbound method, simple blind poliy, least square �t method with Q-funtion funtions - testedfor di�erent number of iteration steps (10, 20, 30), grid-based point interpolation strategy withregular, random and heuristi grids (for various grid sizes), grid-based nearest neighbor withrandom and heuristi grid (for various grid sizes), and inremental linear vetor method for�xed random, dynami random, order heuristi and two-tier heuristi point seletion strategies(for di�erent number of updates). 139



Shuttle: ontrol performane, Test set: 1500 ritial belief points
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Figure 5-13: Shuttle problem: omparison of ontrol performane. The ahieved sore repre-sents the average reward on the set of 1500 randomly seleted ritial belief points.for the same initial belief point and for any two methods were dependent, that is samples wereonneted (paired) [Sahs 84℄. Then to determine that two methods are di�erent we:� omputed their sample sore di�erenes (di�erenes in rewards for all simulation runs);� tested the null hypothesis that the mean (median) of the di�erenes is zero.Rejeting the null hypothesis at some signi�ane level then orresponds to the situation inwhih two methods ompared are di�erent.To hek mutual di�erenes of all methods we applied the above di�erene test pairwise.As sample di�erenes turned out to be nonnormally distributed, we applied the nonparametriWiloxon mathed pair signed-rank test to test the null hypothesis for every pair of methods(see [Sahs 84℄).The methods were tested pairwise and ompared using three signi�ane levels 0:05; 0:01 and0:001. Thus it might be the ase that the null hypothesis (two methods are equal) is rejetedat a higher signi�ane level (say 0.05) but not at the lower level (e.g. 0.01). We performedpairwise signi�ane tests on all problems, using a set of 2000 random belief points for mazeproblems and a set of 1500 random ritial belief points for the Shuttle problem. The ompleteresults of pairwise tests for Maze20 and Maze20B problems, signi�ane level 0:05 and a setof 2000 random belief points are summarized in tables 5-7 and 5-8. The pairwise signi�aneresults for the Shuttle problem are simpler. This is beause there are only three groups ofmethods, suh that methods from di�erent groups are signi�antly di�erent, while methodswithin groups are not signi�antly di�erent from eah other. The �rst group onsists of theblind poliy method only; the seond from solutions for inremental linear vetor method with140



problem test set worst ase di�erene at signi�ane level0.05 0.01 0.001Maze20 2000 random 3.13 3.13 3.29Maze20B 2000 random 29.25 29.25 29.25Maze20B w/o nearest-neighbor 2000 random 10.05 13.86 14.92Shuttle 1500 ritial 0.27 0.30 0.30Table 5-6: The table lists worst ase di�erenes in ahieved sores for all pairs of methods thatare not statistially di�erent at signi�ane levels 0.05, 0.01, and 0.00140 update steps and random and two-tier heuristi strategies; and third group orresponds to allother methods. Note that these groups mimi niely the di�erenes in average sores ahieved.For the set of test results obtained, when two methods are shown to be statistially sig-ni�antly di�erent at some level of signi�ane, we would like to know whether and how thatdi�erene shows up in their average sore. To get an estimate of this, we performed the follow-ing:For eah problem, and for eah pair of methods that failed to be signi�antly di�erent (ata given signi�ane level), we reorded the di�erene in average sores registered by the twomethods. To present these data in a simpli�ed form, we show the maximum of these di�erenesin Table 5-6. Any sore di�erenes larger than these numbers orrespond, in our experiments,with pairs of methods that are indeed signi�antly di�erent from eah other.Worst-ase di�erene quantities for the Maze20B problem turned out to be inuened mostlyby grid-based nearest-neighbor methods ombinations (with bad performane, relatively largesore spans and no signi�ant statistial di�erene). Beause of that we also omputed worst-ase di�erenes without nearest-neighbor entries and inluded them in the table 5-6. Notethat the listed quantities do not mean that a new method with a larger sore di�erene isautomatially di�erent at the given signi�ane level nor that two methods with smaller averagesore span annot be signi�antly di�erent. This is simply beause the test used relies on 2000or 1500 mathed pairs of results and not the average sore. Note also that di�erene quantitiesshould not be ompared aross problems.Overall the signi�ane test showed that methods with larger ahieved sore di�erenes areindeed statistially di�erent. This means that observed di�erenes are highly likely not to besimply the result of randomness and omparison of the methods along ahieved average soresis justi�ed.5.3.4 Evaluation of resultsMDP based approximationThe MDP based approximation method onstruts a value funtion using a solution for aperfetly observable ase, that is one in whih no partial observability and no investigativeations need to be onsidered. Therefore, the solution is likely to approximate the optimalvalue funtion better for problems with less unertainty and partial observability. This wason�rmed also in our experiments, in whih MDP-based approximation posted poor results forthe Maze20 problem, good results for the Maze20B problem and exellent sores for the Shuttledoking problem. 141



Maze20: pairwise signi�ane test, Test set: 2000 random belief pointsmethod method ref. ahieved methods not di�erent atparameters num. sore signi�ane level 0.05MDP (observable) - 1 131.16MDP-approximation - 2 38.24 13, 14, 15Fast informed bound - 3 54.73 5, 6, 7, 25Simple blind poliies - 4 50.18 10, 18Least square method points: 100, iter: 10 5 56.7 3, 6, 25, 28with Q-funtions points: 100, iter: 20 6 56.59 3, 5, 25, 28points: 100, iter: 30 7 54.73 3, 25Least square vetors:10, points:50, iter:10 8 45.94 17method with vetors:10, points:50, iter:20 9 45.68 17softmax funtion vetors:15, points:100, iter:10 10 49.1 4, 18vetors:15, points:100, iter:20 11 51.43Grid based regular grid 12 44.6point interpolation random grid (40 points) 13 40.08 2, 14, 15, 16method random grid (200 points) 14 40.45 2, 13, 15, 16random grid (400 points) 15 41.37 2, 13, 14heuristi grid (40 points) 16 41.13 13, 14heuristi grid (200 points) 17 46.08 8, 9heuristi grid (400 points) 18 48.37 4, 10Grid based random grid (40 points) 19 31.49nearest neighbor random grid (200 points) 20 33.87 21, 23method random grid (400 points) 21 35.38 20, 23heuristi grid (40 points) 22 32.43heuristi grid (200 points) 23 36.33 20, 21heuristi grid (400 points) 24 38.75Inremental linear �xed (40 updates) 25 56.16 3, 5, 6, 7, 28vetor method �xed (200 updates) 26 60.18 27, 29, 30, 32, 35, 36�xed (400 updates) 27 60.62 26, 29, 30, 32, 33, 35, 36random (40 updates) 28 56.82 5, 6, 25random (200 updates) 29 60.45 26, 27, 30, 31, 32, 35, 36random (400 updates) 30 60.98 26, 27, 29, 32, 33, 35, 36order heuristi (40 updates) 31 59.18 29, 34, 35order heuristi (200 updates) 32 61.01 26, 27, 29, 30, 35, 36order heuristi (400 updates) 33 62.41 27, 30, 36heuristi 2-tier (40 updates) 34 58.63 31, 35heuristi 2-tier (200 updates) 35 59.47 26, 27, 29, 30, 31, 32, 34heuristi-2-tier (400 updates) 36 61.72 26, 27, 29, 30, 32, 33Table 5-7: The results of the pairwise signi�ane tests for the Maze20 problem and a set of 2000randomly seleted belief points. The ombinations of methods for whih the null hypothesis(two methods are same) annot be rejeted at signi�ane level 0.05 are listed. Every pair ofmethods was tested using nonparametri Wiloxon mathed pair signed-rank test.142



Maze20B (osts): pairwise signi�ane test, Test set: 2000 random belief pointsmethod method ref. ahieved methods not di�erent atparameters num. sore signi�ane level 0.05MDP (observable) - 1 133.37MDP-approximation - 2 245.06 10, 13, 14Fast informed bound - 3 230.48 7, 11, 21, 24, 27, 30, 32Simple blind poliies - 4 264.74 8Least square method points: 100, iter: 10 5 225.08 6, 7, 22, 24, 25, 27, 28,31, 32with Q-funtions points: 100, iter: 20 6 224.47 5, 7, 22, 24, 25, 26, 28,31, 32points: 100, iter: 30 7 225.43 3, 5, 6, 22, 24, 27, 28, 31,32Grid based regular grid 8 254.68 4point interpolation random grid (40 points) 9 236.63 10, 11, 13, 14, 21, 30method random grid (200 points) 10 239.75 2, 9, 11, 13, 14, 21random grid (400 points) 11 236.94 3, 9, 10, 13, 14, 21, 30heuristi grid (40 points) 12 250.88heuristi grid (200 points) 13 240.74 2, 9, 10, 11, 14heuristi grid (400 points) 14 241.33 2, 9, 10, 11, 13Grid based random grid (40 points) 15 342.41nearest neighbor random grid (200 points) 16 345.23 20method random grid (400 points) 17 338.3 20heuristi grid (40 points) 18 331.55 19, 20heuristi grid (200 points) 19 339.35 18heuristi grid (400 points) 20 315.97 16, 17, 18Inremental linear �xed (40 updates) 21 230.96 3, 9, 10, 11, 24, 30vetor method �xed (200 updates) 22 221.28 5, 6, 7, 24, 25, 26, 27, 28,29, 31, 32�xed (400 updates) 23 217.14 25, 26, 28, 29random (40 updates) 24 226.41 3, 5, 6, 7, 21, 22, 27, 30,31, 32random (200 updates) 25 219.34 5, 6, 22, 23, 26, 28, 29,31, 32random (400 updates) 26 218.13 6, 22, 23, 25, 28, 29, 31,32order heuristi (40 updates) 27 226.56 3, 5, 7, 22, 24, 30, 31, 32order heuristi (200 updates) 28 219.16 5, 6, 7, 22, 23, 25, 26, 29,31, 32order heuristi (400 updates) 29 217.13 22, 23, 25, 26, 28heuristi 2-tier (40 updates) 30 230.57 3, 9, 11, 21, 24, 27heuristi 2-tier (200 updates) 31 220.73 5, 6, 7, 22, 24, 25, 26, 27,28, 32heuristi-2-tier (400 updates) 32 222.05 3, 5, 6, 7, 22, 24, 25, 26,27, 28, 31Table 5-8: The results of the pairwise signi�ane tests for the Maze20B problem and a set of2000 random belief points. The ombinations of methods for whih the null hypothesis (twomethods are same) annot be rejeted at signi�ane level 0.05 are listed. Every pair of methodswas tested using nonparametri Wiloxon mathed pair signed-rank test.143



Blind poliy methodThe simple blind poliy method produes a solution that ombines the behaviors of blind(no-information) agents. This means that the performane of suh a solution should performbadly when observations are very informative and an help signi�antly redue the unertaintyabout the underlying proess state. On the other hand, the solution should be better whenobservations are very noisy and are impreise indiators of the underlying proess state. Insuh a ase, ating blindly should yield results loser to results from informed but very weakinformation soure. Again, we were able to see suh a behavior on our test problems in whiha relatively good performane was ahieved on the Maze20 problem and worse results for theMaze20B and Shuttle doking problems.Fast informed bound methodWe were surprised by the very good performane of the newly designed fast informed boundmethod. Interestingly, this method uses only jAj linear vetors (equals the number of ations).Very good results on all test problem an be attributed mostly to the update strategy themethod employs. It is best viewed as an approximation of the Sondik's update rule. It lookslike that this strategy produed a relatively good approximation of the shape of the \exat"value funtion for all of the tested POMDP problems. However, the fat that our problems hadsparse transition matries and single \goal" state might have been an important fator in thisrespet.Least-squares �tThe approximate value iteration method with the least-squares �t approah was tested witha linear Q-funtions model and for the Maze20 also with a softmax funtion model. The Q-funtion method ahieved very good simulation results on all three problems. Interestingly, forMaze20, a simpler Q-funtion model ahieved better results than more omplex softmax modelwith 10 and 15 linear vetors. Despite the threat of instability, the funtions seemed to stabilizeafter about 15 iterations and did not hange dramatially afterwards. For the softmax modelwe also tried to start the approximate value iteration using di�erent initial funtions and thesame set of grid points. The value funtion seemed to stabilize again but in a di�erent region.This behavior an be attributed to the method's problems with unique onvergene.In general, the high performane of the least-squares �t an be attributed to the hoie ofa funtion model that allowed us to math the optimal value funtion reasonably well beauseof its the onvex and pieewise linear shape.Grid-based interpolation-extrapolation methodsThe grid-based interpolation-extrapolation methods represented by the point interpolation andnearest-neighbor approahes posted di�erent results on di�erent problems. The results di�eredalso for random and heuristi grid-point seletion strategies.The results show that for the point interpolation entries the sores ahieved and their qualityare losely related to and depend on the performane of the MDP-approximation. That is, aperformane of MDP-approximation solution is orrelated with a performane of point interpo-lation methods. Although methods with point interpolation rules improved on the MDP-basedapproximation, espeially for problems in whih MDP-based approximation performed poorly(Maze20, Maze20B), we did not see a dramati di�erene (even for larger grid sizes), and othermethods (e.g. fast informed bound and inremental linear vetor method) were usually more144



suessful. Heuristi grids tended to improve the performane most of the time, espeially forproblems in whih MDP-based approximation method performed badly (Maze20 problem).The nearest neighbor approah delivered the worst performane on both maze problems,although the performane was usually boosted by heuristi grids. The only problem where near-est neighbor ahieved results omparable to other methods was the Shuttle doking problem.We believe that main reasons for this are: the optimal value funtion for the Shuttle dokingproblem is relatively at; the di�erenes in values for all ritial points of the belief spae arenot very big; and the grid sizes we tested were suÆient to sample enough of the relevant beliefspae (8 states). On the other hand, a poor showing of the method on both maze problems fortested grid sizes an be attributed to the inability of the method to approximate the shape ofthe optimal value funtion properly.We believe that the main reason for the poor performane of nearest neighbor and not veryonvining results for point interpolation rules on both maze problems was that they were notable to �t the shape of the optimal pieewise linear and onvex value funtion properly. Theshape of the value funtion for the grid-based point interpolation-extrapolation tehniques isinuened strongly by the seletion of grid points and an interpolation-extrapolation rule usedto estimate nongrid points. Then poor hoies of grid points and interpolation-extrapolationrules lead to poor shape approximations (e.g. the hoie of nearest neighbour rule leads topieewise onstant funtion).Inremental linear vetor methodsThe best performane was obtained by the inremental linear vetor method with Sondik'supdates. The method was tested using multiple point seletion strategies that inluded �xed,random, and heuristi approahes. In all ases the method was started from the initial simpleblind poliy solution. Interestingly, the di�erenes between various point seletion strategiesturned out to be very small, and we did not observe any signi�ant improvement using any ofthe methods. The slim di�erenes an be explained by:� The e�et of a derivative (linear vetor) update is that it approximates well also points inthe neighborhood of the belief point that seeded the update. This redues the sensitivityof the method to a spei� point seletion strategy.� The shape of the optimal solution over the belief spae is approximated well in all asesusing a relatively small number of inremental updates. This is also supported by the fatthat no or small improvements in performane for value funtions were seen for solutionsontained after 200 and 400 updates.� The heuristis used are not very good and better point seletion strategies an be devised.The method was able to eliminate relatively rapidly the dependene and disadvantage fromthe initial value funtion hoie (simple blind poliy solutions) on all three test problems. Thisis doumented by a signi�ant improvement of performane of the method (after more updates)for ases in whih blind poliy solution performed poorly, like the Maze20B and the Shuttledoking problem. Overall we believe that the high performane of the method is mainly due toits ability to approximate the shape of the optimal value funtion well.145



5.3.5 Summary of test resultsTop performersOverall, the best ontrol performane was obtained by the new inremental linear vetor methodwith Sondik's updates. It ahieved the best or lose to best results on all three test problems.The seond best performer was the least-squares method with linear Q-funtions. The thirdbest performer was the newly proposed fast informed bound method. Interestingly all threemethods delivered top results on all three test problems; their performane was not test spei�.Also signi�ane tests for the Maze20 and Maze20B problems on�rmed that these methodsindeed di�er from the others. For the Maze20 problem the linear vetor methods (with moreupdates) turned out also to be signi�antly di�erent from the other two top performers.The unifying fator of the three best performing methods is that all of them try to approx-imate the shape of the value funtion over iteration steps. This is done: in the ase of linearvetor method by updating derivatives (linear vetors) using exat Sondik's update rule, forthe fast bound method by using a simple update rule that approximates the derivatives of thevalue funtion, and for the least-squares �t by providing suitable pieewise linear and onvexparametri models. The value iteration proedure that tries to preserve the shape over iterationsteps also tends to approximate the shape of the optimal value funtion better. This is veryimportant for the ontrol problem, where we would like to guess the right relative (rather thanabsolute) value funtion values for di�erent belief points.The top three methods have quite di�erent properties. The inremental linear vetor methodgradually improves the pieewise linear funtion. Under the appropriate point seletion strategyis guaranteed to onverge to the optimal solution. Unfortunately, the prie paid for this is thatthe omplexity of the value funtion grows with every iteration although this growth is at mostlinear (in ontrast to the potential exponential growth for the exat method). On the otherhand, both the Q-funtion least-squares �t method and the fast informed bound method workwith restrited value funtions that onsist of jAj linear vetors. This keeps the omplexityof their updates onstant over iteration steps. The main di�erene between the two methodsis that the fast informed bound method omputes new updates diretly (whih an be donequikly). It upper bounds the exat update and it is guaranteed to onverge uniquely. On theother hand, the Q-funtion least-squares �t needs to sample and update a set of belief points�rst, does not provide bounds and is not guaranteed to onverge uniquely.Worst performing methodsAll of the other methods tested had results that were more problem sensitive. We believe thatthe main fator in all ases was the shape of the value funtion used, whih an be more or lesssuitable for the problem at hand.The simulation results showed that the grid-based nearest neighbor method performs worst.Espeially bad were the results it obtained on maze problems, where it was outperformed byall other methods (even by simple blind poliy and MDP approximations) by a large margin.This is both for heuristi and for random grids. The signi�ane tests for maze problemsshowed that results ahieved by grid-based nearest neighbor methods are not a onsequene ofrandomness and that they di�er signi�antly from all other ontenders. The main reason forits poor performane was the usage of the pieewise onstant value funtions that do not �t theunderlying pieewise linear and onvex value funtions for smaller grid resolutions very well.This makes the nearest neighbor method unsuitable for larger belief spae POMDP problems,and even in a ase when the grid resolution is suÆient, there are always more eÆient andbetter methods available. 146



method runtime (se)MDP-based approximation 2Simple blind poliy 7Fast-informed bound 95Least-squares �t with Q-funtions (100 sample points), 10 parallel updates 299Grid-based point interpolation with the 210 point regular grid 736Table 5-9: Exeution times of some of the implemented algorithms on Maze20 problem. Thealgorithms were implemented in Luid Common Lisp and were run on a Sun MirosystemsSPARC-10. All methods exept least-squares �t were implemented using value iteration strate-gies and relative stopping riterion with a preision parameter 0.1. Least-squares �t methodwith linear Q-funtions used 100 sample points and parallel updates. Time it took the methodto ompute 10 iterations is listed. Also grid-based point interpolation method with the regulargrid of size 210 points is used.5.4 Runtimes of methodsValue funtion approximation methods were implemented in Luid Common Lisp and wererun on a Sun Mirosystems SPARC-10. Times to ompute results for di�erent methods variedon di�erent test problems, point seletion strategies and/or hoie of other parameters (likepreision parameters for the value iteration strategy). Also various methods presented here havebeen implemented with di�erent degrees of e�ort devoted to optimization of the alulations.Therefore, di�erenes in exeution time should not be a basis for relative omparison of themethods. The runtime results are presented here for informational purposes only.Tables 5-9 and 5-10 show runtimes of some of the implemented algorithms for the Maze20problem in seonds. Table 5-10 is used for inremental methods and lists times needed toahieve the improvement for a new grid-size or new set of updates. To illustrate the strongdependene of methods on parameters, assume that we hange the preision parameter for thegrid-based point interpolation method with the regular grid in table 5-9 from 0.1 to 0.4. Thenthe exeution time of the method drops from 736 seonds to 256 seonds.The running times for the Maze20B problem were not very far from those for the Maze20.On the other hand, solutions for the simpler Shuttle problem were aquired very quikly, forexample a solution for the fast informed bound method (with preision 0.1) was omputed inless than 1 seond, and all 400 inremental linear vetor method updates took about 30 seonds.5.5 Experimental biasesAlthough we have tried to over a spetrum of POMDP problems of di�erent omplexity inour experiment, it is our obligation to point out known de�ienies and possible gaps in ourapproah. The main problem we urrently see is related to the seletion of test problems usedfor our experiments.In general all of the test problems have relatively small transition and observation omplex-ity, for example there are at most four possible adjaent rooms the robot an move into fromany spei� room. Beause of this the transition and observation matries are sparse with a lotof zeros. Thus the simulation results and the evaluation of methods are biased towards prob-lems with suh loal harateristis. Although this bias may be justi�ed for many real-world147



method init. runtime (se) for inremental improvementstime 40 80 120 160 200 240 280 320 360 400grid-based pointinterpolation 2 24 135 162 288 395 502 778 881 818 1402grid-basednearest-neighbor 2 70 642 1213 1318 1387 2304 2934 5938 7237 3731inremental linearvetor method 7 129 397 652 932 1168 1328 1455 1593 1772 1933Table 5-10: Exeution times of some inremental algorithms for the Maze20 problem. Grid-based point interpolation method uses the interpolation strategy and the the heuristi gridexpansions proposed in setion 4.7.3. For every grid re�nement (inrease of a grid by 40 points)the method is iterated until the preision of 0.4 reahed. Time it takes the method to obtainthe solution for a new grid is measured and listed. Grid based nearest-neighbor works with thesame heuristi grid seletion strategy and relative stopping riterion. Inremental linear vetormethod uses a �xed set of 40 points that are repeatedly updated (using Sondik's linear vetorupdates). The method is initiated with a simple blind poliy solution and times to exeute 40update inrements are listed.problems (with natural loal harateristis) to make the experiment better we also need totest problems with high onnetivity.5.6 SummaryTest onlusionsIn the �rst part of the experiment we tested bounds produed by several di�erent value funtionmethods using various grid sizes and number of updates. Although we were able to obtain sig-ni�ant improvements in the bound quality for both initial bounds (MDP-based approximationand simple blind poliy method), we were not able to ahieve very tight bound di�erenes forthe Maze20 problems for the tested range of grids and updates. This suggests that high qualitybounds are very likely hard to obtain for larger and more omplex POMDP problems. Thus,in general, one annot expet to get very good bounds for omplex problems for free and oneneeds to pay the toll for eah improvement.In the seond part of the experiment we tested the ontrol performane of several valuefuntion approximations. All tested methods were evaluated using a sore representing averageahieved reward (ost) for a set of simulation runs for two sets of belief points. To make surethat sores obtained are not a result of randomness (a sensible onern when dealing withstohastiity) we performed pairwise statistial signi�ane tests for all methods. These testsshowed that methods with larger ahieved sore di�erenes indeed di�er signi�antly and thusevaluation along average sores for tested methods is justi�ed.The ontrol performane ahieved by di�erent methods seems to be ompletely unrelated tothe quality of the bounds. This on�rms that for the purpose of ontrol, it is not absolute butrelative values, that is the shape of the value funtion that matters. This also gives us hopethat there are fast and eÆient methods that an lead to good ontrol performane for moreomplex POMDP problems. This is not true when the riterion used to judge the method isthe quality of the bounds in absolute terms. 148



Methods that ahieved the best simulation results used pieewise linear and onvex repre-sentations of value funtions, and attempted to approximate the shape of the value funtionover update steps. The lear winner for all three problems was the new inremental linearvetor method that omputes linear vetors (derivatives) for seleted points and inrementallyupdates the existing pieewise linear and onvex approximation with new vetors. The advan-tage of the inremental linear vetor method is that it an ontinue to improve the aquiredsolution with more time. In the limit, under a suitable point seletion strategy, it onvergesto the optimal value funtion. The other top performers were the least-squares method withQ-funtion model and the fast informed bound method (also a new one). They use a restritednumber of jAj linear vetors over all iteration steps. This is unlike the inremental linear vetormethod whih an grow the size of the linear vetor set with every iteration. Of the two, onlythe fast informed bound method is guaranteed to onverge; the least-squares �t an su�er fromthe problem of instability and divergene.The worst ontrol performane was ahieved by the grid-based nearest-neighbor method,whih approximates the optimal pieewise linear and onvex value funtion with a pieewiseonstant funtion. The results suggests that nearest-neighbor is not suitable for the purpose ofontrol for large belief spae POMDPs and that far better alternatives are available.ContributionsThis hapter presents and analyzes experiments we have performed on a set of three in�nitedisounted horizon problems of di�erent omplexity using a large variety of di�erent approxi-mation and bound methods. The need of large sale experiments in the POMDP domain forthe future exploration and understanding of the domain is enormous. Thus, the main on-tribution of our work is in the large experimental study, providing ahieved results and theirinterpretation.In our work we have experimentally tested various new and existing value funtion approx-imation methods, their extensions and modi�ations. The results presented showed that thereare various eÆient alternatives to the least-squares �t approah that seemed to dominate theAI literature. These are based on grid-based or other alternative approahes, like fast informedbound. Their main advantage is that they do not su�er from the threat of potential instabilitywhen ombined with the value iteration method to solve in�nite disounted horizon problems.Also results they ahieve are often superior or omparable to those by the least-squares method.
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Chapter 6Extending POMDP framework:Management of ishemi heartdiseaseThe main advantage of the POMDP framework is its ability to model two soures of unertaintythat stem from ation outome and imperfet observability. This does not mean that the basiframework an be applied to any domain without hanges or that the framework an aptureall important features of any domain. When dealing with real-world problems we must often\adapt" the formalism to �t the domain. Extensions an be made in both diretions. Someextensions make the problem more omplex but are required to solve the problem, e.g. modelsin whih observations are delayed. Other extensions take advantage of domain spei� features,model more of the underlying problem struture and make it possible to speed-up problem-solving routines.In the following we will explore and propose various new strutural extensions to the ba-si POMDP framework. These exploit additional problem struture and help us to reduethe omplexity of problem-solving methods. The extensions are studied in the ontext ofa real-world problem from the area of medial therapy planning { the problem of manage-ment of patients with ishemi heart disease(IHD) [Wong et al. 90℄ [Leong 94℄ [Hauskreht 96a℄[Hauskreht 97a℄.6.1 Modeling diagnosti and therapeutial proesses us-ing POMDPsThroughout the history of AI in mediine, a large amount of researh work has been devotedto the development of methods and tehniques apable of modeling the deision proess of aphysiian under unertainty. The fous of work in this area has gradually shifted from problemswith stati features to ones that emphasize the dynami aspet of the deision proess. Whilemost of the work on dynami deision making addresses the issue of ation outome unertainty,the feature of partial observability is often irrelevant or is abstrated out. Researh work thatassumes perfet observability inludes the management of hroni heart disease [Leong 94℄ anddiabetes therapy planning [Hovorka et al. 92℄.The assumption of perfet observability may not work well for problems in whih observa-151



tions are impreise indiators of the patient state (as is often the ase in assessing underlyingdisease) and when investigative ations have signi�ant ost (suh as invasiveness and eonomiexpense). In suh ases, areful evaluation of the osts and bene�ts assoiated with both treat-ment and investigative ations with regard to global objetives is neessary and therapeutialand investigative ations are often interleaved over the ourse of the treatement. A formalismthat allows us to apture the omplexity of suh a proess is the POMDP framework, whihmodels both soures of unertainty, various investigative and treatment hoies, and osts andbene�ts assoiated with suh interventions and their outomes.6.1.1 Chroni ishemi heart diseaseAn example of a therapy planning problem that requires one to onsider two soures of uner-tainty is the management of hroni ishemi heart disease (IHD) [Wong et al. 90℄ [Leong 94℄[Hauskreht 96a℄ [Hauskreht 97a℄.Ishemi heart disease is a ondition that is aused by an imbalane between the supplyof available oxygen and the demand for oxygen by heart musle. This imbalane an auseardia disfuntion and subsequent impairment to blood irulation. The most ommon auseof ishemia is oronary artery disease, whih orresponds to the narrowing of oronary vesselsthat redues the perfusion of heart musle most ommonly due to atherosleroti hanges.Coronary artery disease is a progressive disease with aggrevating symptomatology and ardiaimpairment. The leading symptom of ishemi heart disease is hest pain (angina). Coronaryartery disease an also be aompanied by various ompliations, for example aute myoardialinfartion (MI).Treatment of oronary artery disease an be onservative, using mediations like Beta blok-ers, or more invasive, using surgery that attempts to repair obstruted oronary arteries. Thereare two ommonly used surgial proedures: perutaneous transluminal oronary angioplasty(PTCA) and oronary artery bypass graft surgery (CABG). Both proedures arry an inreasedrisk of death, a risk of perioperative MI and ause a lot of pain and disomfort for the patient.One problem with assessing the status of oronary artery disease involves its ability tohange over time. In general, it is not possible to state the urrent status of patient's oronaryarteries, or identify the level of the patient's ishemia (O2 demand-suppply mismath). Howeverthere are investigative proedures that an reveal more about the underlying disease, suh asan angiogram or a stress test. Unfortunately these proedures are also invasive and/or arryinreased risks of MI and death.Investigative and treatment ations an be repeated or hanged over time depending onthe progression of the disease. For example, a patient an have several PTCA's over a spanof a few years to lear oronary arteries, improve perfusion and relieve hest pain symptoms,or a patient might undergo several stress tests. The objetive of the problem is to determinethe best possible treatment step or sequene of steps with regard to various treatment goals orobjetives. These inlude the following qualitative goals:� inrease in the quality of life (e.g. relieve hest pain symptoms)� derease the hane of aute episodes (MI)� inrease length of life� derease the invasiveness of proedures� derease the eonomial ost of assoiated proedures152



In order to optimize suh objetives one needs to onsider various treatment alternatives nowand in future, their possible outomes, and bene�ts and risks of suh hoies with regard toglobally pursued goals.6.1.2 A typial deision senarioWhile doing routine medial sreening, it is disovered that a patient shows signs of ishemiaon a resting EKG. No other observations (hest pain, et.) are positive. Possible ations forthe physiian are:� Do nothing and observe the patient. However, this leaves the patient at a higher risk ofMI or possible death.� Administer mediation, that tends to redue the risk of MI (e.g. Beta bloker, aspirin).� Request an angiogram, that reveals the preise status of the oronary arteries, and helpsdetermine whether the patient is in a higher risk group. Unfortunately, the angiogram hasan additional expense inluding patient disomfort, and risks of MI or death.One a deision has been made, suh as presribing the mediation, the same deision proessmust be repeated again after some time period. The result an be the same or an alternativehoie based on new observed symptoms and �ndings at that time. For example, worsening ofthe symptoms would ause one to onsider an angiogram possibly followed by angioplasty orbypass surgery. At eah time point, the atual deision must take into aount future progressof the disease, as well as future treatment and investigative hoies.6.2 Using POMDP to model IHDThe management of ishemi heart disease embodies harateristis that math well manyfeatures of the POMDP formalism. The major problem faed when applying the POMDPframework to the management of IHD is the size and omplexity of the IHD model. Its om-plexity is far beyond urrent limits of exat POMDP problem solving proedures. In order tooverome this hurdle we foused on two omplementary solutions:� redution of the omplexity of the POMDP model by representing underlying struture;� substitution of exat solution methods with approximate ones.The objetive of the �rst approah is to apture and represent more features and struture ofthe underlying domain model, as ompared to the diret appliation of the POMDP formalism,and thus hope to redue signi�antly state and observation spae sizes one needs to work with.This work led to a model with fatored states onsisting of both observable and partially observ-able state variables. The seond approah is typial when applying the POMDP methodologyto more omplex problems and was the enter of our disussion in previous hapters.In the following we will desribe the omponents of the POMDP model proposed and de-signed for the ishemi heart disease domain.6.2.1 Representing statesThe state of a patient at any instane of time an be desribed using a �nite set of randomstate variables. State variables used in the IHD problem and their possible values are shown153
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coronary artery disease visualFigure 6-1: Ishemi heart disease model: state variables representing proess states and ob-servations.in �gure 6-1. In general every possible assignment of values to state variables desribes oneunique patient state. However, the set of state variables we used for the ishemi heart disease(IHD) problem is not homogenous and expliitly restrits ertain ombinations of variable valuesusing hierarhial (onditional) subsumption. The hierarhial onstraints represent situationsin whih some ombinations of variables and their values are either impossible or are irrelevantfor the problem at hand. For example for the state variable, status, with possible values ofdead and alive, values assoiated with aute-MI, oronary artery disease or hest pain eitherdo not make sense or are irrelevant when the patient is dead. Using hierarhial subsumption,state variables are \enabled" only when \status" is set to an appropriate value. Hierarhialsubsumption is also useful for desribing a state using di�erent levels of detail, i.e. statevariables an desribe both higher level abstrated state omponents as well as their lower levelelaboration. The state variable struture for the IHD problem is represented in �gure 6-1; lowerlevel state variables are enlosed in the retangle.State variables in the model an be used to desribe the dynamis of a disease proess overtime. These variables are alled proess state variables. A set of proess state variables for theIHD problem is shown in �gure 6-2. Notie that for example state variable hest pain is nota proess state variable. This is beause it is assumed not to inuene diretly the dynamibehavior of the disease proess.State variables an be observable, that is they orrespond to variables that an be seendiretly at any point in time. On the other hand, variables that annot be observed diretlyorrespond to hidden variables. The set of observable variables for the IHD problem is listed in�gure 6-2. Notie that a state variable an be both a proess state variable and an observablevariable (e.g. dereased ventriular funtion). This aptures the fat that not all proess statevariables in a POMDP need to be represented and treated as hidden (or partially observable)variables. This is also one of the major deviations from the ordinary POMDP model thatassumes that only partially observable proess states exist. Expliit representation of bothobservable and hidden proess state variables allows us to ombine the advantages of MDP andPOMDP formalisms. It leads to speed-ups in manipulation, inferene and planning routines bymeans of reduing the omplexity of the information state spae. This issue will be disussedlater.Our POMDP model for the IHD is designed to evaluate and reason about the onsequenes154
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in turn an be suggestive of some internal states. An example is an angiogram investigation orstress test. The transition e�et of the ation is represented by its ability to hange the internalstate of the patient: for example PTCA an lead to the reopening of the blood supply in themain vessels. The third e�et of ations is their ost whih an be measured in terms of patientsu�ering, patient disomfort and/or �nanial ost. Ations that have only an exploratorye�et and are neither assoiated with a ost nor a�et the state transition are not expliitlyrepresented in the ation set.6.2.3 Representing stohasti transition and observation modelsRepresenting states in a fatored form is very useful for representing various independeniesand regularites that enrih the stohasti relation between states and ations over time. In thetraditional POMDP model, stohasti relations between Markov proess states over time onone side and proess states and observations on the other, are represented using transition andobservation matries. These de�ne probability distributions for the patient state hanges underspei� interventions, reeting for example the fat that the patient with oronary disease aneither die, su�er MI, or reeive oronary artery repair as a result of PTCA or CABG, withsome probability or that severe ishemia an, to various degrees, lead to mild, severe or evenno hest pain.Graphial modelsProbabilisti independenes and regularities between variables in fatored form an be oftenrepresented using graphial models, e.g. a Bayesian network. Figure 6-4 illustrates the tran-sition and observation model built for the ishemi heart disease problem using a Bayesiannetwork approah. In this �gure, random (hane) variables are represented by irles, andations as retangles. Patterned irles orrespond to observable variables, that is variablesfor whih values are assumed to be known at every time step. The graphial model shown inthe �gure does not orrespond to a typial Bayesian network but to its hierarhial extension,where sets of random variables an be hierarhially subsumed by other variables. This ex-tension allows us to represent types of independenes that otherwise ould not be representedwhen a at variable set is used.The advantage of the hierarhial Bayesian network is illustrated on our IHD model. Thetransition probabilities between previous state (at time t-1) and a state where the patient isalive and su�ers from oronary artery disease of some severity are represented using two prob-ability distributions, eah exploiting di�erent independenes. The �rst probability distributiononerns the variable status and represents the distribution of a patient being alive or dead as aresult of some proedure performed in the previous state. This distribution depends on valuesof state variables in the previous time step. The seond distribution represents a onditionaldistribution of oronary artery disease given a previous state, an ation and patient being alive.Suh a distribution an exploit a di�erent set of independenes, i.e. the value of the oronaryartery disease variable being independent of some previous state variables when the patient isalive. In general the hierarhial subsumption may apture di�erent sets of independenes fordi�erent levels of detail. This leads to a simpler representation of the onditional distributionfor a patient being alive and su�ering from oronary artery disease of ertain severity, beausethe onditional distribution an niely deouple along di�erent levels of detail.156
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Figure 6-4: Ishemi heart disease: transition and observation model.
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Representing additional relations and onstraintsOrdinary Bayesian networks an represent onditional or marginal independenes that holdbetween variables. However, there are other relations that often hold and an be useful forboth making the probabilisti model more ompat and for planning. These may inludepartial onditional independene (the independene relation does not hold for all possible valuesof onditioning variables but for a subset of values) or various deterministi relations andonstraints (some value assignments are impossible beause values of two or more variables areinompatible).For the IHD problem we foused on the problem of modeling additional deterministi on-straints. Constraints are expressed by means of rules that restrit some ombinations of thevariable values. For example the variable history PTCA in the transition model an hangefrom false to true only when ation PTCA has been hosen in the previous step. Similarly, thesame variable one it is true remains true forever. The deterministi onstrains are representedby a set of rules, suh as:Rule 5: If (PAST (history-PTCA true))then (history-PTCA true)Deterministi onstraints an be useful in speeding up probabilisti omputation and so weused them heavily to onstrut ompiled POMDP model, whih we disuss later.6.2.4 Initial state modelOne the transition and observation model is de�ned, we an expand the above belief networkmodel as many time steps as needed. This allows us to ompute various probabilisti querieswith regard to variables over di�erent time instanes. However, before we an answer suhqueries we need to know prior probabilities for the initial proess state variables, that is priorsfor the proess state variables at time t = 0.For our IHD model and related omputations, it is neessary to ompute initial probablitiesfor all hidden proess state variables (namely oronary artery disease, ishemia). All otherproess state variables are assumed to be observable and are therefore diretly available. Theset of initial probabilities an be omputed using the prior model in �gure 6-5. The prior modeloverlaps with the transition and observation model and adds a new variable of prior oronaryartery disease that inuenes the hidden variable oronary artery disease and models expliitlythe prior knowledge about the distibution of oronary disease severities. The distribution anbe either provided diretly or omputed using additional ontext information not expliitlyonsidered in the transition and observation model. The ontext variables, suh as age, sex, orsmoking history are used to estimate prior distributions more aurately.One the prior model is de�ned we an ompute the initial probability of a patient havingoronary artery disease and ishemia of various severities, based on initial �ndings, observationsand relevant prior information. This in turn allows us to ompute and answer other probablistiqueries, and to predit the next patient state for a spei� intervention.In the urrent version of the IHD model we assume that the probability distribution for theprior oronary artery disease variable is given diretly and no ontext information is assumed.However this is relatively easy to hange and one an use some simple model to ompute newpriors, e.g. a logisti regression model from [Anderson et al. 90℄.158
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6.2.5 Cost modelThe ost model in a POMDP desribes payo�s assoiated with possible state transitions. Forexample in managing ishemi heart disease we assoiate the highest ost with transitions tothe dead state, smaller but still substantial ost with ourrenes of MI, and severe hest pain.In a POMDP osts and rewards are assoiated with possible transitions and di�erent ostsan be de�ned for every transition between any two states and an ation. However, it is oftenreasonable to assume the ost model has more struture. In the IHD problem we propose aost model that onsists of two omponents:� a ost assoiated only with the resulting state. This ost is independent of the initialstate as well as any ation performed in that state, for example there is a ost assoiatedwith a live patient that is su�ering from severe hest pain and has experiened an auteMI.� a ost assoiated with an ation, regardless of initial and resulting states. For examplethere is a ost assoiated with performing oronary bypass surgery that inludes theeonomi ost, patient's su�ering, disomfort, and so forth.In suh a ase the transition ost from state s to state s0 given ation a an be expressed as:�(s; a; s0) = �(s0) + �(a)The ost assoiated with a state that results from a transition an be further broken downinto omponent state variable osts using an assumption of ost independene. A ost assoiatedwith a ompound state of being alive, having an aute MI, su�ering from severe hest pain andhaving moderate oronary artery disease, an be expressed using a ost model that adds upost ontributions from severe hest pain, aute MI, moderate oronary artery disease and theother state variables. This an be determined as follows:�(s) =Xi �(si):where si is the state variable assignment to variable i.The fat that the ost model deomposes into atomi osts assoiated with state variablesand ations signi�antly redues the number of parameters we need to de�ne. This in turnsimpli�es the stage of building a POMDP model in whih quantitative ost estimates need tobe found and assesed. One these estimates are olleted we use a transition model to omputethe expeted one step ost assoiated with ation a and a state on�guration s as:�(s; a) =Xs0 p(s0js; a)�(s; a; s0) = �(a) +Xs0 p(s0js; a)�(s0)6.2.6 Disretizing timeThe POMDP framework, like many other frameworks, models ontinuous time through dis-retization. In the IHD problem it is assumed that every ation is assoiated with a �xed timeduration and that any hange in state ours between the disretized time points. The hosenduration of transitions strongly inuenes transition probabilities. For example, the probabilitythat a patient will die as a onsequene of not treating severe oronary obstrution is higherfor a one year period than for a three month period.160



In our IHD model we assume that transitions assoiated with invasive ations our withina day, and transitions assoiated with non-invasive ations (suh as no-ation and mediationtreatment) are within 3 months. These durations are also reeted in the transition probabilitiesrepresenting rates of state variable hanges.6.2.7 Modeling the objetive funtionThe treatment objetive is to �nd the ation or the sequene of ations that minimize theexpeted ost with regard to the hosen deision model. The typial deision models onean use in the IHD ase inlude both the �nite horizon riterion in whih one optimizes thetreatment with regard to the next n time steps, and the in�nite disounted horizon riterionwhih ombines osts over an in�nite number of time steps, with heavier disounting on themore distant future.In our work we use the in�nite disounted horizon model. This allows us to express longerterm goals and not restrit the deision horizon to a �nite number of steps. An interestingfeature of this model is that we use disounting ( = 0:95) only for long-term ations (no-ationand mediation). All other short-term ations are undisounted and their osts are added fullywithin the model. Using two di�erent disounts aounts for di�erent ation durations.The important issue from the point of view of ation seletion is that the information-stateat any point in time an be suÆiently modeled by a belief state that assigns a probability toevery possible proess state. The importane of this stems from the fat that the solution inthis ase is known to satisfy some nie properties, namely the value funtion is pieewise linearand onave. This knowledge allowed us to use better exat and approximation methods.6.3 Aquisition of model parametersOne of the important problems assoiated with the ishemi heart disease model is to obtaina set of appropriate model parameters. The parameters de�ne either probabilities or ostsassoiated with state outomes and ations. In general these an be obtained by:� aquiring them diretly from the domain expert or from the literature;� infering them from the available data;� or by using the ombination of these two methods.Although there are some studies with possibly useful datasets we were not able to obtainthem for various proprietary and tehnial reasons. This left us with the hoie of de�ning theparameters by hand using the published results or utilizing the experiene of a ardiologist.We primarily relied on Wong [Wong et al. 90℄ that summarizes various studies in the area ofhroni ishemi heart disease and ompares outomes for various interventions. In addition,one of our ollegues, Dr. Hamish Fraser, helped us to interpret some of the available data.6.3.1 Aquisition of transition and observation probabilitiesTo populate probabilisti transition and observation models we had to aquire parameters for allonditional distributions de�ned by parents-hild variable ombinations in the Bayesian networkin �gure 6-4. The total number of parameters one has to de�ne for the model is 1171 (reallthat some parameters an be infered beause probability of all possible instanes should sumto 1). This is signi�antly less ompared to the ase with at state and observation spaes and161



omplete transition and observation matries with 1127520 parameters (the number assumesthat the proess state spae and the observation spae are separate). Note that the numberof parameters an be dereased by taking into aount further strutural features (e.g. partialonditional independenies).The onditional probabilities for transitions an be obtained or infered from the results oflinial studies. For example the probability of the patient staying alive or dying as a resultof a surgial intervention an be estimated from mortality rates for a spei� treatment andspei� patient ondition. Similarly one an obtain numbers for other parameters. For example,numbers reeting the rate of hange of the oronary disease under di�erent interventionsan be obtained from the published suess rates of revasularization for PTCA and CABG.Unfortunately, in many ases the results of studies are presented independently for one or a fewonditioning variables, leaving open the problem of how to deal with various ombinations. Insuh ases we either assumed independene, when it seemed reasonable, or adjusted probabilitiesby onsulting Dr. Fraser. In general the proess of de�ning probability parameters turned outto be very tedious and time onsuming. We believe that the availability of datasets wouldsimplify the aquisition proess and would lead to more aurate parameter estimates.Table 6-1 shows the parameters of the loal probability table used to de�ne the distributionof the oronary artery disease in the IHD model. The parameters represent transition ratesfor a 3 month period for no-ation and mediation hoies. The parameters for other ationsreet the suess rate of oronary artery disease repair. The probablity parameters shownwere obtained and modi�ed for our model based on results and suess rates published in[Wong et al. 90℄. The model at this stage does not distinguish between left main stem andmultiple vessel oronary artery disease and ombines them into the severe oronary arterydisease ategory. This leads to similar suess rates for CABG and PTCA proedures forsevere oronary artery disease.6.3.2 Aquiring ost model parametersWhile probabilities an in priniple be learned from an available dataset, osts reet a ombi-nation of preferenes of a physiian, patient et. This makes them more subjetive and usuallynot mineable in the datasets. In order to aquire osts for the ishemi heart disease model wehave designed an aquistion method based on the ost distribution model. The method an beapplied diretly to the hierarhially strutured state variable set in the IHD model.The main idea of the approah is to desribe the distribution of osts among hierarhiallystrutured omponents of the IHD model (like state variables, state variable values and ations).The ost model uses a loal weighting sheme that desribes the amount of ost a lower levelomponent aquires from the higher level omponent. The ost assoiated with a lower levelomponent is omputed as: Costi = wiCost;where Cost represents a ost quantity to be distributed and wi is a weight assoiated with alower level omponent that satis�es 0 � wi � 1 and that desribes a share of the ost inheritedby the omponent. There are two types of loal models, that either restrit or do not restritvalues of the omponent weights wi:� and model, where weights assoiated with lower level omponents (orresponding to thesame higher level omponent) are omplementary and must satisfy: Piwi = 1, where iranges over all lower level omponents.� xor model, where weights assoiated with lower level omponents are unrestrited andomponents are treated independently. 162



ation history of previous oronary oronary artery diseaseproedures artery disease normal mild-moderate severeno ation PTCA normal 0.945 0.047 0.008any CABG mild-moderate 0.001 0.944 0.055severe 0.0 0.001 0.999CABG normal 0.955 0.037 0.008no PTCA mild-moderate 0.001 0.957 0.042severe 0.0 0.001 0.999no CABG normal 0.99 0.0085 0.0015no PTCA mild-moderate 0.0001 0.9799 0.02severe 0.0 0.002 0.998mediation PTCA normal 0.945 0.047 0.008any CABG mild-moderate 0.001 0.944 0.055severe 0.0 0.001 0.999CABG normal 0.955 0.037 0.008no PTCA mild-moderate 0.001 0.957 0.042severe 0.0 0.001 0.999no CABG normal 0.99 0.0085 0.0015no PTCA mild-moderate 0.0001 0.9799 0.02severe 0.0 0.002 0.998angiogram - normal 1 0 0mild-moderate 0 1 0severe 0 0 1stress test - normal 1 0 0mild-moderate 0 1 0severe 0 0 1PTCA - normal 1 0 0mild-moderate 0.87 0.13 0severe 0.74 0.15 0.11CABG - normal 0.9 0.05 0.05mild-moderate 0.82 0.12 0.06severe 0.75 0.15 0.1Table 6-1: Loal probability table for the severity of the oronary artery disease, given theation, history of previous proedures and severity of the oronary artery disease in the previoustime step. The transition probabilities for long-term ations (no-ation, mediation) are de�nedfor a 3 month period. 163
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6.4 Finding ontrol poliy for the IHD domain6.4.1 Representing information stateFor the standard POMDP models, the information state spae orresponds to the belief spaethat assigns the probability to every possible proess state. However, this assumes that theproess state is always hidden (partially observable). Contrary to this, the proposed IHDmodel uses proess states that are heterogeneous and an have both perfetly and partiallyobservable omponents (state variables). In fat the presene of perfetly observable proessstate variables simpli�es the problem, as one an diretly inorporate the observed state variablevalues into the information state. This redues the size of the information belief spae one needsto represent as it is de�ned only over all possible ombinations of hidden variable values. Thusan information state for the fatored state model with both perfetly and partially observableproess variables an be represented using:� a set of observable proess state variable values;� a belief over the ombination of all hidden variable values.The information state for the IHD problem onsists of an assignment of values to observableproess state variables, for example status alive, aute-MI true, history-CABG false, history-PTCA false, and a belief over all possible ombinations of values for ishemia and oronaryartery disease. Note that the information state for the ase when the patient is dead is desribedonly as status dead.The information state spae for the IHD model an be represented using a tree struture in�gure 6-7. Internal nodes orrespond to observable variables, subtrees of an internal node toassignments of values to the assoiated observable variable and leaf nodes to belief spae overhidden variable values. Then, every branh of the tree represents one possible assignement ofvalues to observable variables. Note the asymmetry due to hierarhial state variable spae.Savings from the additional strutureThe information state spae for the strutured IHD model uses 17 possible ombinations ofobservable variable values: one for status dead and 16 for the alive state (four binary variables).All status alive ombinations require an additional 9-dimensional belief spae (all possible om-binations of values for oronary artery disease and ishemia variables).The proposed fatored and hierarhially strutured IHD model redues the omplexity ofthe information state one needs to work with. To illustrate this, let us assume a at proess statespae. Suh a spae does not allow to ombine observable and hidden omponents and onsistsof 145 states (this �gure ounts only state variable ombinations that are possible). As statesare now assumed to be hidden, the information state spae orresponds to a 145-dimensionalbelief spae. The inorporation of observable variables thus redues the omplexity of the highdimensional belief state spae to a set of belief spaes of small dimension. The overall numberof observations is 1153 (all possible ombinations of observable variable values) and it is samefor both ases.The above analysis illustrates savings from the model fatorization and ombination ofobservable and hidden proess state variables. However, there are also savings that an beattributed to a hierarhy of state variables. Assume we use the at state variable spae, thatis values for every state variable an be ombined without restritions. This would lead to theinformation state spae with 32 ombinations of observable variable values, ompared to thehierarhial state variable spae that allows only 17 di�erent ombinations.165
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work with value funtions that are de�ned over the hybrid information spae. A value funtiononsists of disrete and belief spae omponents and an be represented using the same treestruture as shown in �gure 6-7. The value funtion for eah belief spae omponent (one foreah ombination of the observable state variable values) is represented by a pieewise linearand onave funtion (onaveness is due to minimization). In other words the value funtionsonsist of a set of pieewise linear and onave value funtions (de�ned over belief spaes) thatover all possible ombinations of observable proess state variable values.All methods desribed and tested for the standard POMDP an be modi�ed with more orless e�ort to handle new information state spae. To illustrate the idea of suh modi�ationsthe new version of the inremental linear vetor method will be presented and desribed next.Inremental linear vetor methodThe inremental linear vetor method from setion 4.8.2 an be reimplemented for the newinformation state spae using the following update proedure.Inremental linear vetor update (bV ; k)for every ombination o of observable proess state variable valuesdo if no hidden variables are assoiated with o in the information state spaethen update value funtion bV for o using standard value funtion value update;else let Bo be a belief spae assoiated with observable omponent o and�o be a set of linear vetors de�ning bV for Bo;selet [k dim(Bo)℄ belief points G from Bo;for every belief point b 2 Gompute new linear vetor �b for b using Sondik's update;add �b to �o in bV ;return bV ;Assuming that we want to solve the ost minimization problem, the proedure takes anupper bound value funtion bV de�ned over the hybrid information state spae and parameter kthat allows us to vary the number of belief points to be updated with Sondik's method in everyomponent belief spae. The proedure returns a new improved upper bound value funtionand thus an be repeatedly applied to tighten the upper bound.We assume that dim(Bo) de�nes the dimension of the belief spae Bo orresponding to theombination of observable proess state variable values o. Then the number of belief pointsfrom Bo updated by the above proedure is kdim(Bo). Of ourse, other strategies to ontrolthe number of belief points updated in every belief spae are possible as well.Belief points to be updated an be seleted using arbitrary point seletion strategies, simi-larly to the standard POMDP ase. Note that when a ombination of observables o does notpermit any hidden variables (e.g. for the status dead) the value funtion is updated for a givenombination of proess state observables o diretly and only one.Solutions used for testing the modelFor the testing (see next setion) we used solutions obtained by the inremental linear vetormethod and the fast informed bound method. The inremental linear vetor method used 15inremental linear vetor updates (see above proedure) with parameter k = 2. A set of beliefpoints updated in every belief spae onsisted of all ritial points and the rest of points was167



seleted randomly. The omputation took about 30 minutes on SPARC-10 in Luid CommonLisp. The solution for the fast informed bound method was obtained in about 3 minutes.6.5 Evaluating the modelIn our work we onstruted a prototype IHD model of signi�ant omplexity. Interestingly,despite model simpli�ations and the need to estimate a large number of parameters we wereable to ahieve the behavior that was for many ases linially reasonable and justi�able. Thisis very promising for the future work and further extension and re�nement of the model.6.5.1 Testing obtained poliy for the patient follow-up aseThe onstrution of omplex models is usually not a one shot ativity and requires few itera-tions to lear various bugs and bad parameter assignments. However, we were surprised thatwe were able to aquire many linially aurate reommendations for the approximate solutionpratially from the beginning. Thus, after a few iterations we were able to observe the rea-sonable deision behavior of the model in many instanes for both initial and patient follow-upsituations.Table 6-2 illustrates a sequene of reommendations obtained for a single patient ase (in-luding follow-ups). The value funtion used to ompute reommendations has been obtainedby the inremental linear vetor method (see previous setion). For every stage, the table showsa list of ations, ordered with regard to the obtained ost sore. The top (lowest ost) ation isexeuted at eah step. The seond sore represents a lower bound on the optimal expeted ostomputed by the fast informed bound method. Interestingly, if we use the seond sore as abasis for the reommendation the hoies will be exatly the same. This is enouraging beausethese are methods that ahieved the best ontrol performane in the experiments presented inthe previous hapter.6.5.2 Alternative deision hoiesMore important than the simple ordering of ations based on absolute values is often a relativeomparison of alternatives with regard to the leading hoie. These di�erenes turned out tobe relatively small for the evaluated patient ase, with the exeption of both PTCA hoies.However, omparing all andidate hoies, it is lear that hoies with similar sores are oftennot very far apart in terms of osts or similar e�ets. Thus, the ation list does not look badfrom the point of relative sores. The only ation that is learly suboptimal is the oronarybypass surgery (CABG).Sensitivity of the model to parameter hoiesThe omparison of relative sores and small sore di�erenes between ations also opens thequestion of model sensitivity to parameter hanges. It is lear that for some of the instanesone should be able to ause the hange of leading ations relatively easily by hanging someof the ost or probabilisti parameters. Thus the model and poliy for the tested region aresensitive to these parameters. 168



step urrent ations used ost sore ost sorepatient status (upper bound) (lower bound)0 hest pain: mild-moderate stress-test 285.22 248.53rest EKG ishemia: negative no ation 285.62 249.82dereased ventr. fun.: false mediation 286.75 250.98aute MI: false PTCA 288.75 252.36oronary artery visual: not available angiogram 292.92 256.68stress test results: not available CABG 491.94 427.77history CABG: falsehistory PTCA: false1 hest pain: mild-moderate PTCA 298.47 262.54rest EKG ishemia: negative stress test 316.39 280.33dereased ventr. fun.: false no ation 321.92 288.24aute MI: false mediation 322.72 289.12oronary artery visual: not-available angiogram 323.79 287.91stress test results: positive CABG 503.73 440.77history CABG: falsehistory PTCA: false2 hest pain: no hest pain no ation 259.07 226.23rest EKG ishemia: negative mediation 260.62 227.78dereased ventr. fun.: false stress test 264.35 229.87aute MI: false angiogram 273.34 239.16oronary artery visual: normal PTCA 276.98 243.24stress test results: not available CABG 481.36 417.28history CABG: falsehistory PTCA: true3 hest pain: mild-moderate mediation 451.50 418.07rest EKG ishemia: negative no ation 452.81 419.47dereased ventr. fun.: false PTCA 464.58 429.87aute MI: true angiogram 470.62 435.62oronary artery visual: not available stress-test 479.68 445.22stress test results: not available CABG 657.77 608.11history CABG: falsehistory PTCA: true4 hest pain: mild-moderate PTCA 471.16 433.98rest EKG ishemia: negative mediation 483.11 447.85dereased ventr. fun.: true no ation 485.15 450.04aute MI: false stress-test 486.32 448.75oronary artery visual: not available angiogram 496.38 458.87stress test results: not available CABG 661.98 610.81history CABG: falsehistory PTCA: trueTable 6-2: Patient ase with followup. Reommendations are based on the value funtionapproximation omputed by the inremental linear vetor method (upper bound). The lowerbound ost sore is obtained using the fast informed bound method.169



6.5.3 Problems with the urrent modelThe onstruted ishemi heart disease model and omputed poliy solution demonstrated thatthey an be a soure of linially aeptable deisions for many situations. However, there werealso situations in whih deisions proposed seem to be unreasonable and did not math thestandard linial pratie. These are mostly due to:� model simpli�ations;� subjetive parameter estimates.Model simpli�ationsAn example of the situation when model is not suÆient is the following senario:� The patient presents with a mild-moderate hest pain. No other tests are positive. Thereommended ation is a stress test that is expeted to produe more information aboutthe underlying status of patient's oronary arteries.� Unfortunately one of the outomes of the stress test is non diagnosti. This orrespondsto the situation when the patient fails the test due to his/her poor physial ondition (theahieved level of exerise is not suÆient to make the positive or negative onlusion).Assuming that the patient failed the test the belief about the underlying oronary arterydisease and ishemia level will not hange very muh.� The ation hosen is stress test again.This is learly an example of a ase in whih the model is oversimpli�ed, as it is very likelythat the patient will fail the test again. The problem is that the model does not represent anddi�erentiate between irumstanes when patient is more likely to pass or fail the test. Thedeision to reommend stress test again is based on the available stohasti model that modelsdi�erent test outomes randomly with higher probability being assigned (based on populationstudy) to the diagnosti outome. Thus the repeated deision hoie simply reets the fatthat it is worthwhile to ip the oin with larger probability of suessful outome again.The simplest �x to the above problem is to add a new state variable physial state thatwould represent the physial state of the patient. The patient with a poor physial state is thenlikely to fail the stress test. The failure of the test in the �rst trial will lead to the assessmentof the patient's poor physial state and prevents the stress test from being seleted again in thenext step.Many urrent model simpli�ations ould be �xed by adding new state variables and thususing more detailed proess states. Unfortunately suh hanges make the model more omplexand harder to solve. Therefore one needs to arefully deide how to re�ne the model and whatdetails to elaborate more. It is also likely that in order to maintain pratial solvability ofthe problem larger model re�nements that represent more of the domain detail will requirenew approximation tehniques (e.g. based on abstrations) and/or further exploitation of theunderlying struture. We believe that with the urrent tehniques we will be able to handle rea-sonably well the model with two or three additional observable state variables (binary variables)or one hidden proess state variable (with two or three values).Subjetive parameter estimatesThe other problem that ompliates the matter in the ishemi heart disease domain is theproblem of subjetive ost estimates, that reet the preferenes of the physiian and the170



patient. In many ases it is really hard to say how to penalize e.g. death and how thisompares to the heart attak in terms of the ost sore. This unertainty in preferenes anlead to situations where ost quantities assigned to some senario, although reasonable andjusti�able on paper, do not lead to deisions seen in pratie. This douments how hard it isto assign subjetive preferenes orretly.On the other hand this may also mean that people in their deisions may be driven byobserving spei� patterns and applying learned (assoiated) ations rather than evaluatingpossible hoies and their onsequenes appropriately. This an even lead to situations inwhih suboptimal deisions are onsidered to be standard. The use of deision analyti modelsand tehniques that are based on well de�ned linial studies ould help us to aquire newinsights and ould potentially lead to hange in standards.6.6 SummaryPOMDPs provide a suitable modelling framework for representing and solving omplex treat-ment planning and deision problems in mediine. However, the appliation of the frameworkto medial or other real world appliations also arries additional hallenges one does not haveto onsider while solving toy world planning and ontrol problems. These are related to:� the representation of the model struture;� the aquisition of model parameters (probabilities and osts)� handling ations with di�erent time durations.ContributionsThe major ontribution of our work is in extending basi POMDP framework to model andexploit additional domain struture. The main new ideas inlude:� ombination of MDP and POMDP models (proess state is desribed using both perfetlyand partially observable omponents);� hierarhial state variables spae (uts down the size of the proess state spae by exlud-ing redundant or impossible state variable value ombinations)These extensions allow us to redue the omplexity of the information state spae we use inomputing the ontrol task. The redutions are ahieved by using a simpler two-omponentinformation state that onsists of an assignment of values to observable proess state variablesand a belief over all possible assignments to hidden state variables. The information states anbe heterogeneous, that is the size and the ontent of the information state an vary.Other new ideas presented in this hapter inlude:� Hierarhial Bayesian belief networks for representing transition and observation models.These apture more of the struture of the model, redue the number of parameters themodel uses and thus simplify their de�nition.� Fatored ost model that divides a ost into omponents: a ost assoiated with an ationand a ost assoiated with state variable values that result from the ation. Suh a modelrequires fewer parameters to be de�ned. The de�nition of ost parameters was furthersimpli�ed using the proposed ost distribution model.171



� Ations of di�erent durations with di�erent disount fators.� Compilation of the transition and observation model that speeds up probabilisti queriesand eliminates zero probability transitions.Using all new features disussed above we were able to de�ne an IHD model of signi�antomplexity and ompute value funtion approximations for the treatment poliy problem inreasonable time. These funtions were in turn used to obtain treatment hoies for di�erentpatient senarios and follow-up situations. Although the model used needs to be further im-proved and re�ned, it demonstrated the apability to ompute linially orret hoies in manysituations. This helped us establish the link between models of system (disease) dynamis andgoal preferenes, and linially orret deisions.The urrent IHDmodel needs to be improved and re�ned in many plaes. It is also likely thatin order to maintain pratial solvability of the problem larger model hanges and re�nementsthat represent more of the domain detail will require alternative approximation tehniques (e.g.based on model redutions) and/or further exploitation of the underlying struture.
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Chapter 7ConlusionThe POMDP framework is suitable for modelling dynami deision or ontrol proeses withstohasti behavior and with partial (imperfet) information about the underlying proess state.The framework o�ers inreased expressivity ompared to the MDP that assumes perfet observ-ability of the proess state. Thus the main distinguishing features of the POMDP frameworkare: proess states are observed indiretly through a set of observations, and observations anbe onditioned on investigative ations.7.1 Solving the POMDP problemThe prie paid for the inreased modelling power of POMDP framework is high, and auses thesigni�ant inrease in the omputational omplexity of exat algorithms produing optimal ornear optimal solutions. This makes the framework and assoiated algorithms often pratiallyappliable only in domains with a relatively small number of states, ations and observations.7.1.1 POMDP exat methodsThe partial observability hits poliy problems, that require one to �nd the ontrol for all pos-sible information state espeially hard. Problem solving methods are based on the dynamiprogramming or value iteration but are subjet to the exponential growth of the value funtiondesription. Moreover existing algorithms are ineÆient also with regard to the omputationof the value funtion update. This auses only problems of small omplexity, that inlude notmore than 10 states, to be pratially solvable. Moreover all of the known optimization algo-rithms exploit the feature of pieewise linearity and onvexness of the value funtion that holdsonly for belief spae POMDPs and thus we do not know how to ompute exatly the poliyproblem for more omplex POMDP models, e.g. with delayed observations.Relatively faster, but still subjet to the exponential growth are algorithms that generateoptimal or near-optimal response for the urrent information state in the forward fashion us-ing deision trees. As the deision tree needed to make the deision an grow large (in�nitefor in�nite horizon problems) \intelligent" methods that attempt to build (expand) the treegradually and prune suboptimal branhes whenever possible an be designed. The pruning anbe performed based on value funtion bounds. The advantage of the deision tree method isthat it an be applied also for �nding the best ation not only for belief spae POMDPs butalso for POMDPs with delayed observations. Inremental forward methods for �nding optimal173



or near-optimal deisions an be turned into anytime proedures generating ontrol responsesthat improve gradually over time.7.1.2 POMDP approximationsThe natural solution for the problem of omputational omplexity is to trade o� the solution a-uray for the speed. This leads to methods that try to ome up with a good solution eÆiently.Most of the approximationmethods are based on the approximation of value funtions or modelredution tehniques. Possible value funtion approximation methods are: the MDP based ap-proximation, blind poliies, fast informed bound update, grid-based interpolation-extrapolation,grid-based linear vetor method, urve �tting. On the other hand model redution tehniquesare based mostly on the feature-based approahes that redue the information-state MDP or-responding to the POMDP.Although there is a relatively large spetrum of approximation methods that alllow us tosolve the optimization problem eÆiently, there is not a very good understanding of what makesvarious approximation methods better or helps us determine what methods are more promisingand what are inferior. This is aused to a great extent by the lak of larger sale experimentalstudies that would give us a ground for the larger evaluation and omparison.7.1.3 Extensions of the POMDP frameworkThe main advantage of the POMDP framework over alternatives is in its apability to modelstohasti partially observable ontrol proesses. However this does not mean that we will beable to apture all features of real-world domains using the basi POMDP formalism. In fat,dealing with real world domains, one an often take advantage of additional problem struturethat is not expressed in the basi POMDP model and use it to speed-up the problem-solvingroutines. Thus, the exploitation of the additional problem struture o�ers another solutionfor the problem of omputational omplexity of the exat POMDP methods. For example,dynami proesses are not often ompletely hidden and what ours is usually a ombinationof perfetly and partially observable state omponents. Then a framework that ombines andexploits advanatges of both MDPs and POMDPs o�ers better solution. This was shown forexample on the ishemi heart disease problem in the previous hapter.7.2 ContributionsOur researh work has foused on the following goals:� the design of new exat and approximation methods;� the omparison, test and analysis of value funtion approximation methods;� extensions of the basi POMDP framework, exploitation of the additional problem stru-ture.Although the main ontributions of our work fall into the above ategories, we believe thatthe text as a whole an serve as a good referene for people exploring the area of planningunder unertainty. Also the work desribes some of the new and promising ideas we were notable to pursue or desribe in depth due to time onstraints, and thus it provides a soure forinteresting researh topis. In the following we will summarize the ontributions of the thesisalong the outlined main objetives. 174



7.2.1 Exat POMDP methodsBelief spae POMDPsThe standard POMDP model assumes that observations always depend on the atual proessstates and previous ations. Suh a model an be onverted to information-state MDP withsuÆient information states that orrespond to belief states, and with value funtions thathave been shown to be pieewise linear and onvex [Smallwood, Sondik 73℄. However, there areother models (e.g. model with bakward triggered observations or ombination of bakwardand forward triggered observations) that an be onverted to information-state MDPs withbelief states. We have shown that the Sondik's result of pieewise linearity and onvexness notonly applies to the standard model but an be extended to the set of belief spae POMDPs.This allows us to use exat algorithms developed for the standard model for any belief spaePOMDP.Gauss-Seidel speedup of value iterationProbably the most important ontribution of our work for exat methods is the idea of Gauss-Seidel speedups of the value iteration algorithm for the belief spae POMDPs and in�nitedisounted horizon problems. The method uses lower bound pieewise linear value funtions andimproves value funtion inrementally by omputing and adding new linear vetors obtainedfor points of the belief spae to the previous solution. Every new linear vetor obtained isimmediately used to ompute further updates. The main advantage of the inremental shemeis that it avoids the reomputation of the omplete value funtion from srath.Speedups of exat updatesAnother interesting part, is the work on the improvement of exat Monahan's algorithm usinginremental shemes that enable us to interleave the onstrution and test phases of the usefullinear vetor set and employ an early pruning of redundant partially built linear vetors. Thistopi has been investigated reently by [Cassandra et al. 97℄. However, the methods developedthere an be applied to build ation-value funtions (Q-funtions) and do not allow one to doearly pruning aross ations. We have suggested an extension that makes it possible to applythe idea of early pruning aross ations as well. The extension is based on omputing bounds.Forward deision methodsMost of the attention of researhers in the area has been devoted to the problem of �nding theoptimal poliy. However, in many ases a far simpler deision problem that tries to selet aontrol response for a single initial state an be suÆient for implementing the ontrol agent.Suh problems an be solved in the forward fashion by a proess that inrementally expands thedeision tree. In our work we have proposed, designed and implemented various inrementalalgorithms for solving suh problems: breadth �rst, bound span heuristi, randomized heuristi,and linear spae. These methods redue the growth of the deision tree via pruning based onvalue funtion bounds.In general the quality of bounds omputed by the inremental forward algorithms dependboth on the depth of the deision tree and on the quality of value funtion bounds used at theleaves of the tree. Thus one an tighten the bounds by either further expansion of the tree orby the improvement of bounds used at leaves. We have suggested a new deision method that175



ombines advantages of both forward deision methods and bound improvement steps using ametalevel deision proedure.7.2.2 POMDP approximation methodsThe fat that POMDP problems annot be solved eÆiently naturally leads to the usage ofvarious approximation methods, that trade o� preision for speed. Although many of theapproximation methods have been known for some time, it is still possible to �nd new ones orsuggest promising modi�ations of the existing ones. In our work we have suggested a few ofthese.Fast informed boundThe fast informed bound method is a newly-designed method, that uses an eÆient updatesheme and upper bounds the exat update rule. The rule approximates a value funtionusing pieewise linear and onvex approximation with at most jAj linear vetors. The mainadvantages of the method are its simpliity (it updates linear vetors diretly), bound propertyand onvergene. This is unlike the Q-funtion least square �t method that also uses jAj linearvetors, but must update the value funtion at some number of sample belief points �rst; itdoes not bound the exat update, and it is not guaranteed to onverge.Variable grid point interpolation shemeOne of the existing methods for approximating value funtions uses a grid of points, their valuesand the interpolation-extrapolation rule for approximating values at nongrid points. Interestinginterpolation-extrapolation rules are based on point interpolation tehniques. These lead tosolutions that guarantee the upper bound as well as onvergene for the belief state MDPs.The main problem with point interpolation rules is the seletion of grid points relevant forinterpolation. The tehniques used to deal with this are based on regular grids that uniquelypartition a belief spae. In our work we propose a simple and eÆient point interpolation shemethat an use aribtrary (variable) grids and preserves the upper bound property. This exibilitymakes it possible to ombine the method with various grid seletion strategies, inluding variousheuristis.In onnetion with a new point interpolation method we have also proposed a new heuristiapproah for onstruting grids. The method uses a stohasti simulation idea to �nd grid pointsthat are likely to maximize the improvement of the upper bound. Versions of the same methodan also be applied together with other grid-based interpolation-extrapolation strategies, e.g.the nearest neighbor approah.Inremental linear vetor methodYet another method for the value funtion approximation uses the re�nement of the exatpoint-based linear vetor updates to grids. The method omputes a lower bound value funtionupdate, but does not guarantee the onvergene. In our work we have proposed a new inre-mental linear vetor method that updates linear vetors for a set of grid points and guaranteesthe onvergene. The method starts from the initial pieewise linear and onvex lower boundand gradually adds new linear vetors found for the grid points to the original funtion. Themethods avoids ostly rebuilding of the omplete value funtion for every update and an beused to speed up the exat value iteration (see above).176



7.2.3 Comparison and tests of approximations methodsThere is a spetrum of approximations methods researhers have developed over the years.However, these were very often left unompared and there is a lak of understanding of howvarious methods ompare to eah other and/or how various modi�ations an help to improvethe basi methods. The methods an be ompared theoretially and one an in many instanesshow that some value funtion method gives a better bound result than the other method,or that the method onverges for the in�nite disounted horizon ase. However, it is veryhard to say in general what the impat is of various heuristi improvements or how variousapproximation methods will perform with regard to ontrol. These properties often need to beexplored experimentally, and the lak of experimental studies that ompare performanes of alarge number methods does not help in further endeavour.Experimental studyNew and existing value funtion approximationmethods were tested and their results were om-pared using a set of three di�erent in�nite disounted horizon problems of various omplexities.The experiments overed a large spetrum of possible value funtion approximation methodsand their modi�ations that ranged from simple MDP-based approximations to least square �tmethods and heuristi grid-based linear vetor methods. The results thus provide the groundfor their omparison and evaluation.The experiments were onduted to explore the quality of value funtion bounds that areguaranteed by some of the methods, and the quality of ontrol, where methods were judgedsolely based on the ontrol performane on test problems. The results on�rmed that for thepurpose of ontrol the best performane was ahieved by methods that tend to approximatebetter the shape of the optimal value funtion. The best methods update value funtion deriva-tives and attempt to preserve the shape of the funtions over many updates. Contrary to this,methods that used value funtions that deviated from the pieewise linear and onvex shape,like the grid-based nearest neighbour method, ahieved inferior results and thus their usage isnot warranted for the belief spae POMDPs.7.2.4 Extensions of the basi POMDP frameworkThe basi POMDP framework an be extended in many ways to better �t the features of thereal world domains. For example the basi framework an be extended to deal with observationdelays that are very important in modelling time ritial ontrol problems. Unfortunately inthis ase the original POMDP does not redue to the belief state MDP and thus it remainslosed to various exat and approximation methods that assume belief information states.Although in some ases the extensions an make the ontrol problem more omplex, thebasi framework an be modi�ed and extended to take advantage of the additional problemstruture and to use it to improve the problem solving routines. We have explored these ideasin onnetion with the POMDP appliation to the management of a patient with ishemi heartdisease (IHD). The work on the IHD model lead to many new and very interesting extensionsof the basi framework and we plan to explore them further in the future.Combining MDPs and POMDPs using fatored modelsThe basi POMDP framework assumes that proess states are always hidden and informationabout the state an be aquired only through observations. However this is not always true, andone often works with proess states that onsist of both observable and hidden omponents. In177



order to deal with this issue we propose to represent the POMDP model in the fatored formwith proess states and observations represented using a set of state variables. Suh variablesan then be modelled as either observable or hidden. Moreover, probabilisti relations (tran-sition and observation probabilities) an be expressed with regard to variables using graphialmodels and thus take advantage of independenies (onditional or unonditional) that holdamong them. The fatored model representation e�etively allows us to ombine MDP andPOMDP formalisms into one frame work, and take advantage of both of them.The fatored model, with both observable and hidden proess states, an be onverted intothe information spae MDP, with information states that are omposed of two omponents:a set of value assignements to observable state variables, and a belief state over all possibleombinations of hidden state variable values. The usage and idea of two omponent informationstates that ombine MDP and POMDPs frameworks is new and it has not been reported in theliterature.Heterogeneous information spaeAlthough fatored models an help to simplify the information state desription, the informationspae they de�ne an inlude information states that annot our in pratie (ontraditoryvariable value ombinations, et.). In order to redue the omplexity of the information stateas muh as possible, we have proposed the hierarhial version of the fatored model in whihsome of the state variable values desribe higher level onepts (abstrations) and subsume setsof other lower level state variables. The struturing allows one to desribe possible states usingdesriptions of di�erent omplexity and size. Moreover the idea of hierarhial subsumptionan be used to simplify the de�nition of the probabilisti relations by exploiting independeniesthat emerge on di�erent levels of abstration. With a hierarhial model, information states anbe desribed using varying size omponents and thus information state spae is heterogeneous.The idea of hierahial state spaes is also new and has not been used in the POMDP literature.Other model improvements and extensionsFatored and hierarhially strutured transition and observation models allow us to redue thenumber of parameters de�ning the POMDP model. This is very important for the proess ofaquisition of the parameters both from the human expert or from the avaliable datasets usingmahine learning tehniques. Similarly we proposed and used the fatored ost model that iseasy to de�ne and uses small number of parameters.Other model extensions and improvements we have proposed and used in our work inlude:handling ations with di�erent time durations using di�erent disount fators and ompilation ofthe transition and observation models. The purpose of ompilation was to aquire a model thatwould allow us to ompute relevant probabilisti queries faster. To do this we have onverted themodel to the deision tree struture with internal nodes orresponding to observable variablesand leaves orresponding to probabilities over hidden variables. Suh a deision struture wasfurther optimized by exluding zero probability ontingenies.7.2.5 Appliation of the POMDP frameworkThe newly extended POMDP framework has been applied to the problem of management ofpatients with hroni ishemi heart disease. The parameters of the underlying model wereaquired based on published study results and subjetive estimates. The model and solutionshave been tested on few inital and follow-up senarios. Despite some of the de�ienies (mostly178



due to the model simpli�ations) we were able to observe reasonable therapeutial hoies inmany instanes and these were in onordane with linial pratie.The aquired result is important both from the perspetive of the appliation area, andthe framework. In the �rst ase it gives us hope that we might be able to solve and analyseomplex medial deision problems. In the seond ase it represents an example of a real-worldappliation domain and thus helps to prove the relevane and plae of the methodology insolving real-world problems.7.3 Challenges and further researh diretionsThere are many interesting problems that are ruial for further developments in POMDPsand their appliations. Two of the most important are related to appliations of the POMDPframework to large size domains and to learning of POMDP models from temporal datasets.7.3.1 Attaking large problem domainsDespite eÆient value funtion approximations, the standard POMDP framework (with hiddenproess states) is still suitable to handle problems of relatively small size (our best guess onthe size of the problems would be around 100 states, but this an also vary with appliationsand their spei�ities). The problem of having large proess states an be resolved when theunderlying proess state spae onsists of both observable and hidden omponents. Then newideas and tehniques developed in Chapter 6 that ombine MDPs and POMDPs frameworksand use two omponent information states an be applied. However these tehniques does nothelp to redue the omplexity introdued by hidden omponents (e.g. one still needs to workwith belief states over all possible ombinations of hidden variable values). Thus solutions forreduing the omplexity assoiated with hidden proess states are of our main interest.Limitations of fatored POMDPsOne of the approahes suggested for dealing with large models in the fully observable MDPframework was to rely more on the struture of the model. The approah works with a fatoredMDP model that aptures independenies and regularities that hold among model omponents(represented using graphial models) and use these diretly to �nd optimal or approximatesolutions. Unfortunately, the planning methods that exploit fatored models and underlyingstrutural dependenies work �ne for the MDP ase mostly thanks to perfet observability. Thisis beause all proess state variables, one observed, make all past and future states independentof eah other. Contrary to this in the POMDP ase one works with information states, that arehard to break along the fatored omponents. This is illustrated in the following: Assumingthat all state variable values at urrent time are given (MDP ase), all future instanes of statevariables (and their values) beome independent of past state variables instanes and theirvalues. In graphial models language all future state variable values are d-separated from paststate variables. However, not knowing values of the urrent state variables with ertainty, futureand past state variables are not independent of eah other. Then for example, two observationvariables in the future an beome dependent, whenever both of them share a ommon hiddenstate variable in the past. Or in other words two observation variables that are d-separated bysome hidden state variables of the Markov hain in the past an be dependent.The major onsequene of this is that the Markov property of information state proessan be violated when one would use \fatored" information states that are blindly related to179



the underlying fatored state representation. Of ourse, one an always apply the idea to theobservable omponent of the proess state whenever two omponent information states are used.Model redution tehniquesThe approah well suited for attaking large size POMDPs is based on model redution teh-niques. We desribed it in setion 4.10 but we did not explore it to the depth. The model redu-tion methods an target either information state MDPs or diretly original POMDP models.The main idea is to merge states, observations or ations to aggregate entities and work withsuh aggregates. The typial representatives of suh an approah are various feature extrationmappings [Tsitsiklis, Van Roy 96℄, or methods that work with trunated information histories[White, Sherer 94℄. In the ideal ase one would like to have tehniques that an automati-ally selet omponents of the model that an be aggregated and inuene the solution to thesmallest extent.Open and hallenging problems related to the model redution idea inlude:� tehniques for �nding appropriate aggregation methods (or feature extration mappings)with the smallest e�et on the resulting approximate ontrol;� the exploration of relations between redutions of the original POMDP model and anassoiated information-state MDP;� the trado� between model approximation and value funtion approximation approahess.Speeding up high dimensional belief state updatesThere are other approahes that an be used to speedup omputations for the large POMDPproblems. The fat that one needs to work with POMDPs with a large number of partiallyobservable states auses a signi�ant slow down of information state updates. This is alsobeause one needs to work with high dimensional belief states that need to be updated of-ten. One approah aimed to redue the omputational and spae omplexity assoiated withbelief state updates is based on the idea of stohasti simulation (see [Shahter, Peot 89℄[Kanazawa et al. 95℄). The idea of the method is: assuming that one knows the urrent be-lief state then the next belief state approximation under ation a and observation o an beomputed using the following steps:1. selet k random world states based on the urrent belief state distribution;2. simulate the transition for the seleted state, ation a and observation o via Monte Carlomethod;3. merge simulated results (from frequeny ount) and produe a new belief state.The approximation of a belief state update is suitable when there is a small number ofregions with higher probability (weight). Then one an approximate the probability distributionover belief spae by onsidering and remembering only higher probability regions. There areother options for making the simulation work. In the outlined approah one needs to omputeP (s0js; o; a) for all possible s0 �rst, then to selet next state via Monte Carlo simulation andafter that to ompute frequenies for all outomes. However it is possible also to use the fatthat P (s0js; o; a) = P (s0js; a)P (ojs0; a). Then one an selet s0 from P (s0ja; s) by the simulation,give it weight of P (ojs0; a), and sum all results for the same s0 to aquire the overall weight fors0 (after normalization). 180



7.3.2 Learning in partially observable stohasti ontrol domainsMost of the disussion related to the ontrol in partially observable stohasti domains assumedthat a POMDP model was always available, so the ontrol agent or ompiler ould use it toompute the optimal or approximate ontrol. This ompletely ignores problems assoiated withthe aquisition of POMDP models, that an turn out to be hard task itself. For example theassignment of rewards or other parameters of the model must be done onsistently and reetintended preferenes and/or objetive frequenies. Therefore the possibility of learning under-lying ontroller knowledge diretly from observed ontrol sequenes and/or temporal datasetsis often of high importane. In the following we will briey go over the main ideas one anpursue to ahieve these objetives. However there are still many opened problems that need tobe investigated.The basi learning senario in the ontrol domain is that the learner observes sequenesof ontrol ations, observations and reinforements. Reinforements represent either osts orrewards and quantify the goodness of the transitions that ourred with regard to the ontrolgoal. The learner an either be ombined with the ontroller with the apability to performations or it may be only a passive observer. Using ative learning an often lead to shorterlearning times due to the fat that the ontroller an explore those ontrol sequenes it onsidersmore relevant. On the other hand passive learning assumes that the learner is given informationabout a ontrol ase without any ative intervention, whih an be ruial in some domains likemediine.In general, depending on what we want to learn, we an speak about two main learningapproahes in ontrol domains :� learning of POMDP models� learning of ontrol poliiesLearning of the modelThe �rst approah is trying to learn the underlying domain model from observed data andreinforements. Suh a model is then used to ompute the optimal or approximate ontrolin the obvious way. Learning of the model an onsist of learning the omplete model (bothstruture and parameters) or learning model parameters only. The problem of learning modelparameters is far easier and methods for learning parameters of probabilisti networks withhidden variables, like EM [Rabiner, Juang 86℄ [Spiegelhalter et al. 93℄[Lauritzen 94℄ or gradientdesent methods [Russell et al. 95℄, an be applied.The agent with a built-in parameter learning mehanism an be the basis of an adaptiveontrol agent that adapts its behavior with regard to spei�ities of the ontrol ases that havebeen solved. The adaptation of the model parameters an be important, e.g., when there is anatural variation in ases the ontrol agent repeatedly solves, and when one an inorporate inthe model initially only population estimates.The learning of a omplete POMDP model is a far harder task, as one is supposed to go be-yond learning of parameter values and also derive the underlying hidden struture. The learningof POMDP models has not been explored to a suÆient depth so far and muh work need tobe done here. Two approahes published are the preditive distintion approah [Chrisman 92℄and the utile distintion approah [MCallum 93℄. Both of these operate under various simpli-fying assumptions (restrited value funtion form) and gradually inrease the number of statesneeded to �t the observed ontrol data. 181



Learning of ontrol poliiesThe seond approah is based on the assumption that one an build a good ontroller withoutthe detailed underlying model by building ontrol poliies diretly based on ation-observationsequenes. This is in many respets related to the approah of feature-based approximationwith trunated histories [Platzman 77℄ [White, Sherer 94℄. Control poliies that use trunatedhistories an be learned, e.g., using reinforement learning tehniques (see, e.g., [Watkins 89℄,[Barto et al. 91℄, [Hauskreht 94℄, [Kaelbling et al. 96℄). The problems with this are that thenumber of items in the history is not known in advane, and that not all observations and ationsare equally relevant to ontrol. An approah that attempts to dynamially identify the relevanthistory items to be used in the ontrol poliy de�nition was presented in [MCallum 95℄.
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Appendix ATest problemsA.1 Maze20 problemProblem: in�nite disounted horizonOptimization: MAXDisount: 0.9States orrespond to rooms in the maze. They are numbered from 0 to 19 (see �gure A-1).Ations: numbered from 0 to 5.0 move north; 3 move west;1 move south; 4 make observation (north-south);2 move east; 5 make observation (east-west).Observations: numbered from 0 to 7.0 no-observation (unknown); 4 both north and south walls;1 no wall; 5 east wall;2 north wall; 6 west wall;3 south wall; 7 both east and west walls.
Moves Sensors

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19Figure A-1: Maze20 robot navigation problem.183



Transition model (ation, previous state, next state)Ation: 00.15 0.15 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 00.15 0.7 0.15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0.15 0.7 0.15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0.15 0 0.15 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 00 0 0 0.15 0.85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0.15 0.15 0 0 0 0.7 0 0 0 0 0 0 0 0 00 0 0 0 0 0.15 0.15 0 0 0 0 0.7 0 0 0 0 0 0 0 00.3 0 0 0 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.40 0 0 0 0 0 0 0 0.85 0.15 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0.15 0.15 0 0 0 0 0.7 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0.15 0.15 0 0 0 0.7 0 0 0 00 0 0 0 0 0 0 0 0 0 0.15 0.85 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0.3 0 0 0 0 0.7 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0.15 0 0 0 0.7 00 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0.85 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.85 0.15 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0.7 0.15 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0.7 0.15 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0.7 0.150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0.85Ation: 10.85 0.15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00.15 0.7 0.15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0.15 0.7 0.15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0.15 0.7 0.15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0.15 0.85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00.7 0 0 0 0 0.15 0.15 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0.15 0.85 0 0 0 0 0 0 0 0 0 0 0 0 00.3 0 0 0 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.40 0 0 0.7 0 0 0 0 0.15 0.15 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0.15 0.85 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0.7 0 0 0 0 0.15 0.15 0 0 0 0 0 0 0 00 0 0 0 0 0 0.7 0 0 0 0.15 0.15 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0.7 0 0 0 0 0.3 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0.85 0.15 0 0 0 0 00 0 0 0 0 0 0 0 0 0.7 0 0 0 0.15 0.15 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0.15 0.15 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0.7 0.15 0 00 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0.15 0 0.15 00 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0.15 0 0.150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0.85Ation: 20.15 0.7 0 0 0 0.15 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0.3 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0.3 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0.15 0.7 0 0 0 0.15 0 0 0 0 0 0 0 0 0 0 00 0 0 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00.15 0 0 0 0 0 0.7 0 0 0 0.15 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0.85 0 0 0 0 0.15 0 0 0 0 0 0 0 00.3 0 0 0 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.40 0 0 0.15 0 0 0 0 0.15 0.7 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0.85 0 0 0 0 0.15 0 0 0 0 00 0 0 0 0 0.15 0 0 0 0 0 0.7 0 0 0 0.15 0 0 0 00 0 0 0 0 0 0.15 0 0 0 0 0.85 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0.15 0 0 0 0 0.7 0 0 0 0 0.15 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0.7 0 0 0 0.15 00 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0.85 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0.15 0.7 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0.7 0 00 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0.15 0.7 00 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0.15 0.70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0Ation: 30.85 0 0 0 0 0.15 0 0 0 0 0 0 0 0 0 0 0 0 0 00.7 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0.7 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0.7 0.15 0 0 0 0 0.15 0 0 0 0 0 0 0 0 0 0 00 0 0 0.7 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00.15 0 0 0 0 0.7 0 0 0 0 0.15 0 0 0 0 0 0 0 0 00 0 0 0 0 0.7 0.15 0 0 0 0 0.15 0 0 0 0 0 0 0 00.3 0 0 0 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.40 0 0 0.15 0 0 0 0 0.85 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0.7 0.15 0 0 0 0 0.15 0 0 0 0 00 0 0 0 0 0.15 0 0 0 0 0.7 0 0 0 0 0.15 0 0 0 00 0 0 0 0 0 0.15 0 0 0 0.7 0.15 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0.15 0 0 0 0 0.7 0 0 0 0 0.15 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0.85 0 0 0 0 0.15 00 0 0 0 0 0 0 0 0 0.15 0 0 0 0.7 0.15 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0.85 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0.3 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0.7 0.15 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0.7 0.15 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0.3184



Ation: 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1Ation: 51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1Observation model (ation, state, observation)Ation: 0 Ation: 11 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0Ation: 2 Ation: 31 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0185



Moves Sensors

0 1 2 3 4

5 6 7 8 9 10

11 12 13 14 15

16 17 18 19Figure A-2: Maze20B problemAtion: 4 Ation: 50 0.14 0.01 0.8 0.05 0 0 0 0 0.14 0 0 0 0.01 0.8 0.050 0.05 0.1 0.1 0.75 0 0 0 0 0.89 0 0 0 0.05 0.05 0.010 0.05 0.1 0.1 0.75 0 0 0 0 0.89 0 0 0 0.05 0.05 0.010 0.14 0.01 0.8 0.05 0 0 0 0 0.89 0 0 0 0.05 0.05 0.010 0.05 0.1 0.1 0.75 0 0 0 0 0.14 0 0 0 0.8 0.01 0.050 0.89 0.05 0.05 0.01 0 0 0 0 0.14 0 0 0 0.01 0.8 0.050 0.14 0.01 0.8 0.05 0 0 0 0 0.14 0 0 0 0.8 0.01 0.050 0.14 0.01 0.8 0.05 0 0 0 0 0.05 0 0 0 0.1 0.1 0.750 0.14 0.8 0.01 0.05 0 0 0 0 0.14 0 0 0 0.01 0.8 0.050 0.14 0.01 0.8 0.05 0 0 0 0 0.14 0 0 0 0.8 0.01 0.050 0.89 0.05 0.05 0.01 0 0 0 0 0.14 0 0 0 0.01 0.8 0.050 0.14 0.8 0.01 0.05 0 0 0 0 0.14 0 0 0 0.8 0.01 0.050 0.89 0.05 0.05 0.01 0 0 0 0 0.05 0 0 0 0.1 0.1 0.750 0.14 0.01 0.8 0.05 0 0 0 0 0.14 0 0 0 0.01 0.8 0.050 0.14 0.8 0.01 0.05 0 0 0 0 0.14 0 0 0 0.8 0.01 0.050 0.14 0.8 0.01 0.05 0 0 0 0 0.14 0 0 0 0.01 0.8 0.050 0.05 0.1 0.1 0.75 0 0 0 0 0.89 0 0 0 0.05 0.05 0.010 0.14 0.8 0.01 0.05 0 0 0 0 0.89 0 0 0 0.05 0.05 0.010 0.14 0.8 0.01 0.05 0 0 0 0 0.89 0 0 0 0.05 0.05 0.010 0.05 0.1 0.1 0.75 0 0 0 0 0.14 0 0 0 0.8 0.01 0.05Expeted one step reward (ation, state)3.4 1.2 1.2 4.0 0.6 3.4 3.4 150.0 0.6 3.4 3.4 0.6 2.8 3.4 0.6 0.6 1.2 1.2 1.2 0.60.6 1.2 1.2 1.2 0.6 3.4 0.6 150.0 3.4 0.6 3.4 3.4 2.8 0.6 3.4 3.4 1.2 4.0 4.0 0.63.4 2.8 2.8 3.4 0.0 4.0 0.6 150.0 3.4 0.6 4.0 0.6 1.2 3.4 0.6 3.4 2.8 3.4 3.4 0.00.6 2.8 2.8 3.4 2.8 1.2 3.4 150.0 0.6 3.4 1.2 3.4 1.2 0.6 3.4 0.6 2.8 3.4 3.4 2.82 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2A.2 Maze20B problemProblem: in�nite disounted horizonOptimization: MINDisount: 0.95States: rooms in the maze, numbered from 0 to 19 (see �gure A-2).Ations and observations: same as for the Maze20 problem.186



Transition model (ation, previous state, next state)Ation: 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00.15 0.15 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0.3 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 00 0 0 0.15 0.15 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0 00 0 0 0.15 0.15 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0 00 0 0 0 0 0.85 0.15 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0.15 0.7 0.15 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0.15 0 0.15 0 0 0 0 0.7 0 0 0 0 0 00 0 0 0 0 0 0 0.15 0 0.15 0 0 0 0 0.7 0 0 0 0 00 0 0 0 0 0 0 0 0.15 0.15 0 0 0 0 0 0.7 0 0 0 00 0 0 0 0 0 0 0 0 0 1.0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0.15 0.15 0 0 0 0.7 0 0 00 0 0 0 0 0 0 0 0 0 0 0.15 0.7 0.15 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0.15 0.7 0.15 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0.15 0 0 0 0.7 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0 0 0 0.70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.85 0.15 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0.85 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.85 0.150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0.85Ation: 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00.15 0.85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0.85 0.15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0.15 0.85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00.7 0 0 0 0 0.15 0.15 0 0 0 0 0 0 0 0 0 0 0 0 00 0.7 0 0 0 0.15 0 0.15 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0.15 0.7 0.15 0 0 0 0 0 0 0 0 0 0 00 0 0.7 0 0 0 0 0.15 0 0.15 0 0 0 0 0 0 0 0 0 00 0 0 0.7 0 0 0 0 0.15 0.15 0 0 0 0 0 0 0 0 0 00 0 0 0 0.7 0 0 0 0 0 0.3 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0.85 0.15 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0.15 0.7 0.15 0 0 0 0 0 00 0 0 0 0 0 0 0.7 0 0 0 0 0.15 0 0.15 0 0 0 0 00 0 0 0 0 0 0 0 0.7 0 0 0 0 0.15 0.15 0 0 0 0 00 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0.3 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0.15 0.15 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0.85 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0.15 0.150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0.15 0.15Ation: 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0.85 0 0 0 0 0.15 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0.85 0 0 0 0 0 0.15 0 0 0 0 0 0 0 0 0 0 00 0 0 0.15 0.7 0 0 0 0 0.15 0 0 0 0 0 0 0 0 0 00 0 0 0 0.85 0 0 0 0 0 0.15 0 0 0 0 0 0 0 0 00.15 0 0 0 0 0.15 0.7 0 0 0 0 0 0 0 0 0 0 0 0 00 0.15 0 0 0 0 0.15 0.7 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0.15 0.7 0 0 0 0 0.15 0 0 0 0 0 00 0 0.15 0 0 0 0 0 0 0.7 0 0 0 0 0.15 0 0 0 0 00 0 0 0.15 0 0 0 0 0 0.7 0 0 0 0 0 0.15 0 0 0 00 0 0 0 0.15 0 0 0 0 0 0.85 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0.15 0.7 0 0 0 0.15 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0.3 0.7 0 0 0 0 0 00 0 0 0 0 0 0 0.15 0 0 0 0 0 0.15 0.7 0 0 0 0 00 0 0 0 0 0 0 0 0.15 0 0 0 0 0 0.7 0 0 0 0.15 00 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0 0.7 0 0 0 0.150 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0.15 0.7 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0.15 0.70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0.85Ation: 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00.7 0.15 0 0 0 0 0.15 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0.85 0 0 0 0 0 0.15 0 0 0 0 0 0 0 0 0 0 00 0 0 0.85 0 0 0 0 0 0.15 0 0 0 0 0 0 0 0 0 00 0 0 0.7 0.15 0 0 0 0 0 0.15 0 0 0 0 0 0 0 0 00.15 0 0 0 0 0.85 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0.15 0 0 0 0.7 0.15 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0.7 0.15 0 0 0 0 0 0.15 0 0 0 0 0 00 0 0.15 0 0 0 0 0.7 0 0 0 0 0 0 0.15 0 0 0 0 00 0 0 0.15 0 0 0 0 0.7 0 0 0 0 0 0 0.15 0 0 0 00 0 0 0 0.15 0 0 0 0 0 0.85 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0.85 0 0 0 0 0.15 0 0 00 0 0 0 0 0 0 0 0 0 0 0.7 0.3 0 0 0 0 0 0 00 0 0 0 0 0 0 0.15 0 0 0 0 0.7 0.15 0 0 0 0 0 00 0 0 0 0 0 0 0 0.15 0 0 0 0 0.7 0 0 0 0 0.15 00 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0 0.7 0 0 0 0.150 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0.85 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0.3 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0.85 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0.7 0.15187



Ation: 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1Ation: 51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1Observation model (ation, state, observation)Ation: 0 Ation: 11 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0Ation: 2 Ation: 31 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0188



Ation: 4 Ation: 50 0.14 0.01 0.8 0.05 0 0 0 0 0.14 0 0 0 0.01 0.8 0.050 0.14 0.01 0.8 0.05 0 0 0 0 0.14 0 0 0 0.8 0.01 0.050 0.14 0.01 0.8 0.05 0 0 0 0 0.05 0 0 0 0.1 0.1 0.750 0.14 0.01 0.8 0.05 0 0 0 0 0.14 0 0 0 0.01 0.8 0.050 0.14 0.01 0.8 0.05 0 0 0 0 0.14 0 0 0 0.8 0.01 0.050 0.14 0.8 0.01 0.05 0 0 0 0 0.14 0 0 0 0.01 0.8 0.050 0.14 0.8 0.01 0.05 0 0 0 0 0.89 0 0 0 0.05 0.05 0.010 0.14 0.01 0.8 0.05 0 0 0 0 0.89 0 0 0 0.05 0.05 0.010 0.89 0.05 0.05 0.01 0 0 0 0 0.89 0 0 0 0.05 0.05 0.010 0.89 0.05 0.05 0.01 0 0 0 0 0.14 0 0 0 0.8 0.01 0.050 0.14 0.8 0.01 0.05 0 0 0 0 0.05 0 0 0 0.1 0.1 0.750 0.14 0.01 0.8 0.05 0 0 0 0 0.14 0 0 0 0.01 0.8 0.050 0.05 0.1 0.1 0.75 0 0 0 0 0.89 0 0 0 0.05 0.05 0.010 0.14 0.8 0.01 0.05 0 0 0 0 0.89 0 0 0 0.05 0.05 0.010 0.89 0.05 0.05 0.01 0 0 0 0 0.14 0 0 0 0.8 0.01 0.050 0.89 0.05 0.05 0.01 0 0 0 0 0.05 0 0 0 0.1 0.1 0.750 0.14 0.8 0.01 0.05 0 0 0 0 0.14 0 0 0 0.01 0.8 0.050 0.05 0.1 0.1 0.75 0 0 0 0 0.14 0 0 0 0.8 0.01 0.050 0.14 0.8 0.01 0.05 0 0 0 0 0.14 0 0 0 0.01 0.8 0.050 0.14 0.8 0.01 0.05 0 0 0 0 0.14 0 0 0 0.8 0.01 0.05Expeted one step ost (ation, state)0 21.5 23.0 21.5 21.5 28.5 27.0 20.0 20.0 21.5 30.0 21.5 27.0 27.0 21.5 23.0 28.5 28.5 28.5 28.50 28.5 30.0 28.5 28.5 21.5 20.0 27.0 20.0 21.5 23.0 28.5 27.0 20.0 21.5 23.0 21.5 28.5 21.5 21.50 28.5 28.5 21.5 28.5 21.5 21.5 21.5 20.0 27.0 28.5 21.5 23.0 21.5 27.0 27.0 21.5 30.0 21.5 28.50 21.5 28.5 28.5 21.5 28.5 21.5 21.5 20.0 20.0 28.5 28.5 23.0 21.5 20.0 27.0 28.5 23.0 28.5 21.50 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 200 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20A.3 Shuttle doking problemDue to Chrisman [Chrisman 92℄.Problem: in�nite disounted horizonOptimization: MAXDisount: 0.95States: numbered from 0 to 7. Represent positions of the Shuttle with regard to the leastreently visited (LRV) and the most reently visited (MRV) station.0 Doked in LRV; 4 Just outside spae station MRV,bak of ship faing station;1 Just outside spae station MRV,front of ship faing station; 5 Spae faing LRV;2 Spae faing MRV; 6 Just outside spae station LRV,front of ship faing station;3 Just outside spae station LRV,bak of ship faing station; 7 Doked in MRV.Ations: numbered from 0 to 2.0 TurnAround; 1 GoForward; 2 Bakup.Observations: numbered from 0 to 4.0 see LRV forward; 3 see nothing;1 see MRV forward; 4 doked at LRV.2 doked at MRV; 189



Transition model (ation, previous state, next state)Ation: 0 Ation: 1 Ation: 20.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.00.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.3 0.0 0.3 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.8 0.0 0.0 0.1 0.00.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.3 0.0 0.0 0.0 0.00.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.70.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.1 0.0 0.0 0.8 0.1 0.0 0.00.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.3 0.0 0.3 0.4 0.00.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0Observation model (ation, state, observation)Ation: 0, 1, 20.0 0.0 0.0 0.0 1.00.0 1.0 0.0 0.0 0.00.0 0.7 0.0 0.3 0.00.0 0.0 0.0 1.0 0.00.0 0.0 0.0 1.0 0.00.7 0.0 0.0 0.3 0.01.0 0.0 0.0 0.0 0.00.0 0.0 1.0 0.0 0.0Expeted one step reward (ation, state)0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 -3.0 0.0 0.0 0.0 0.0 -3.0 0.00.0 0.0 0.0 7.0 0.0 0.0 0.0 0.0
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