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Abstract

One of the challenges faced by clinical engineers is to support the connectivity and interoper-
ability of medical-electrical point-of-care devices. A system that could enable plug-and-play
connectivity and interoperability for medical devices would improve patient safety, save hos-
pitals time and money, and provide data for electronic medical records. However, existing
medical device connectivity standards, such as IEEE 11073, have not been widely adopted
by medical device manufacturers. This lack of adoption is likely due to the complexity of
the existing standards and their poor support for legacy devices. We attempted to design a
simpler, more flexible standard for an integrated clinical environment manager. Our stan-
dard, called the ICEMAN standard, provides a meta-model for describing medical devices
and a communication protocol to enable plug-and-play connectivity for compliant devices.
To demonstrate the capabilities of ICEMAN standard, we implemented a service-oriented
system that can pair application requirements with device capabilities, based on the ICE-
MAN device meta-model. This system enables medical devices to interoperate with the
manager in a driverless fashion. The system was tested using simulated medical devices.
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Chapter 1

Introduction

Preventable adverse events are a leading cause of death in the United States.
When extrapolated to the over 33.6 million admissions to U.S. hospitals in 1997,
the results of these two studies imply that at least 44,000 and perhaps as many
as 98,000 Americans die in hospitals each year as a result of medical errors.

To Err Is Human: Building a Safer Health System [33]

Hospitals are under increasing pressure to reduce medical errors, including errors that

occur at the point of care. However, it is difficult to determine the source of many medical

errors. Although most errors are explained away as “human error”, it is often the case that

such errors are the result of a chain of system failures rather than a single human mistake

[11]. To improve patient outcomes, it is therefore necessary to address the hospital system

and clinical environment as a whole, and to identify the latent errors and inefficiencies that

eventually contribute to medical errors.

1.1 The Operating Room of the Future

One clinical environment that has been especially targeted for improvement is the operating

room. This is likely due to the quantity and complexity of surgical equipment, the high

cost of equipment and staff time, and the inherent risk involved in many surgeries. The

term “operating room of the future” has been applied to various academic and commercial

projects that attempt to improve operating room safety and efficiency through technology.

Even small improvements can have a large impact on patient outcome and hospital income.

For example, a 5% improvement in operating room turnover times can save a hospital
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thousands of dollars a year [26]. As a result, many operating room of the future projects,

or ORF projects, focus on improving human factors and workflow. These improvements

include reorganizing operating room layouts, redesigning perioperative procedures, and in-

creasing staff training. Other projects have attempted to use sophisticated equipment to

improve patient safety and reduce surgeon workload; however, this approach relies heavily

on the incorporation of next-generation medical-electrical devices.

To assist in the development of future medical-electrical devices, the medical device com-

munity has tried to collaborate to establish common requirements and goals. These efforts

have been realized through workshops such as OR2020, held in 2004 [46], and HCMDSS

in 2005 [21]. A common theme identified by these workshops is the need for standards for

devices and their usage, which will enable the interoperability of devices.

Another popular strategy for exploring the the use of new medical-electrical devices is

to test them within an ORF. An example of a recent ORF project is the Operating Room

of the Future at the Massachusetts General Hospital (MGH), developed collaboratively

with the Center for Integration of Medicine and Innovative Technology (CIMIT) and the

Telemedicine and Advanced Technology Research Center (TATRC). The CIMIT ORF was

designed as a working laboratory for integrating advanced intra- and perioperative technol-

ogy into a single operating room. The goal was to reduce medical errors through the use

of “intuitive communications and sensor technologies”, and to improve clinician awareness

and teamwork [55].

Experience in the CIMIT ORF has also suggested that a unified user interface for devices

is critical for improving safety and efficiency. This interface ought to receive data from and

have control over medical-electrical devices, allowing a clinician to effectively manage the

clinical environment from a single location [55].

The need for improved equipment connectivity is even more apparent in operating rooms

of the present. A survey of Australian surgeons in 2003 revealed that the biggest operating

room deficiency was equipment. The surgeons complained that their equipment was often

outdated, bulky, and overly complex. They also commented that their equipment was

difficult to connect properly. The survey editor noted:

Surgeons wanted “plug-and-play” components like those for computers, or a

20



Figure 1-1: The Operating Room of the Future at MGH

bioengineer in the OR, or their own copy of shorter and more usable instruction
manuals. There was a lack of standardisation between brands. [50]

Clearly, there is a need for improved device connectivity, as indicated by the workshops,

ORF experimentation, and surveys described above. Connectivity will result in reduced

surgeon and clinical engineer workload, as well as a simplified interface for device monitoring

and control. This, in turn, will help to reduce errors by providing clinicians with better

management of their equipment.

1.2 The Medical Device Plug-and-Play Initiative

Medical device connectivity presupposes that medical devices have an interface to which a

computer or network can be connected. Perhaps surprisingly, medical electronics manufac-

turers have been providing computer interfaces on their devices since the 1970s. However,

there has traditionally been little demand for these interfaces outside of academia; as a

result, the interfaces are unstandardized and “immature” [7].
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To enable practical device connectivity and interoperability, device interfaces need to be

standardized. This standardization effort is being led by the Medical Device Plug-and-Play

Initiative, initiated in 2004 by CIMIT and MGH [17]. The Initiative, referred to as MDPnP,

aims to create plug-and-play device standards for use by device manufacturers and hospitals,

enabling medical-electrical devices to achieve seamless connectivity and interoperability.

Their first action was to gather use cases from clinical engineers and physicians, to provide

examples of how connectivity could solve current problems or improve safety and efficiency

[16]. These use cases are currently being used to help the MDPnP members define the

purpose and requirements for the PnP standard.

1.3 Motivations for Interoperability

By combining the use cases collected by the Medical Device Plug-and-Play Initiative with

other research into medical device connectivity, it is possible to identify some of the general

motivations for device connectivity and interoperability.

1.3.1 Patient Safety

The most important benefit of interoperability is improved patient safety. For example,

consider the case where a patient on a ventilator needs to have an x-ray taken. To prevent

the ventilator from interfering with the x-ray, the ventilator is usually turned off while the

x-ray is activated. This can lead to a dangerous situation if the ventilator is not turned

back on, either because the anesthesiologist forgets or because they are distracted by the

x-ray equipment (in fact, such a situation has lead to the death of a patient in multiple

cases [37] [14]).

Because the ventilator and the x-ray are separate systems, they have no way to com-

municate with one another or to understand the context of the situation. If both devices

were connected to an integration system, the procedure could be made less dangerous. The

anesthesiologist would be more aware of the state of the ventilator, because this information

would be available on the common interface of the system. Furthermore, the system could

be programmed to automatically turn the ventilator back on, in case the x-ray procedure
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was taking too much time.

A standard for device interoperability would enable the development of such an integra-

tion system. Current device interfaces use proprietary protocols, provide partial access to

information and offer little support for controlling device settings or actuation. A connec-

tivity standard would make an integration system feasible to implement and easy to setup

and use.

1.3.2 Improved Alarming

A special case of patient safety is intelligent device alarming. Many anesthesiologists and

ICU nurses disable device alarms because they are too sensitive, or because they trigger

due to non-physiological phenomena. This results in dangerous situations such as the x-

ray/ventilator use case described above.

By enabling devices to communicate with each other or with an integration system, it

would be possible to reduce the number of false alarms. This could be accomplished by

taking advantage of redundant data from other sensors, or by enabling a sensor to be aware

of disruptive actions taken by an actuation device. Intelligent alarms would be less likely

to be disabled, improving patient safety and sparing clinicians from the inconvenience of

frequent false alarms.

1.3.3 Decision Support

Decision support systems evolved from medical expert systems, such as MYCIN and Com-

pas. These early systems were used to handle restricted problem domains, such as automat-

ing ventilator control in an ICU. This was found to be an appropriate domain because of

the need for constant patient monitoring, and because of the lengthy timescales afforded to

the systems [58].

As these projects became more sophisticated, they quickly ran into difficulties due to the

complexities of medical monitoring. Researchers noted that, to be successful, their systems

needed to have “robust interfaces to monitoring, treatment, and laboratory instruments,

and to heterogeneous clinical databases” [41]. Clearly, contextual awareness and reasoning

can only be achieved through the integration of a variety of knowledge sources, all of which
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need to be effectively represented within the system.

1.3.4 Electronic Medical Records

One of the major tasks of an ICU clinician is to chart a patient’s physiological data. Chart-

ing is often performed manually by a nurse at regular intervals. Research has shown that

automatic data collection can improve charting efficiency and reduce errors [59]. Further-

more, automatic data collection can be performed more frequently and in a variety of clinical

environments, such as in the OR or at home.

The biggest barrier to automatic data collection is the diversity and complexity of med-

ical device connections. For example, setting up the monitoring of an ICU patient might

require designing custom interfaces to half a dozen different devices, then processing the

device data such that it is compatible with the hospital information system (HIS). Standard

device interfaces would eliminate the need for custom interfaces and would streamline the

integration of the data with the HIS.

1.3.5 Remote and Automated Device Actuation

Improved device interfaces will allow for the control and management of medical-electrical

devices, rather than just the monitoring of these devices. Current integration projects aim

to put all device data into one place, or onto one display. The next step would be to put

all of the device controls and settings into one place. This will allow a clinician to more

efficiently manage the state of the clinical environment, even from a distance.

Controlling devices via their communication interface will also allow for autonomous,

closed-loop control over medical devices. In a present-day ICU, the clinician is responsible

for “closing the loop” with medical devices: the clinician monitors the output from various

medical sensors, makes a decision about how to proceed, then changes the settings on

the medical actuators. With improved connectivity, it will be possible to implement a

system that can utilize the enhanced interfaces to replace the clinician in some loop-closing

situations. For example, imagine that an ICU patient is receiving some analgesic from

an infusion pump. If the heart and respiration monitors detect weakening physiological

metrics, it would be convenient if they could alert the pump and have it slow the analgesic
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infusion. Rather than setting off an alarm to have a clinician address the problem, the

devices themselves could remedy the situation. Again, this type of closed-loop control is

dependent on sophisticated and reliable communication interfaces.

1.4 Thesis Overview

The motivations above all share two features. First, they demand improved connectivity

and interoperability between medical-electrical devices. This will increase the capabilities

of the devices, enabling them to better share information and support remote control.

Second, the described applications all rely on some system to take advantage of the improved

connectivity and to manage the devices.

This management system could be distributed across each medical device, allowing them

to connect pairwise or to form an ad hoc network. However, this solution is impractical;

it would require that every medical device have the hardware and knowledge required to

interoperate with every other device. Instead, it is more practical to assume a hub architec-

ture, where devices are plugged into a central integration system. This is the architecture

used by PCs and their peripherals, such as keyboards, printers, monitors, and so on.

This thesis describes two components designed to satisfy the user requirements of clin-

icians for device connectivity, including plug-and-play interoperability. The first compo-

nent is a standard for interoperability, called the integrated clinical environment manager

(ICEMAN) standard. The second is a partial implementation of a system based on the

ICEMAN standard. The implemented component, called the service-oriented device archi-

tecture (SODA) system, enables devices to connect to and communicate with the ICEMAN

system, even if the devices are not compliant with the ICEMAN standard.

The ICEMAN Standard We have designed a standard that will enable medical devices

to connect to a central integration manager. By adhering to this standard, devices will

be able to seamlessly connect to and interoperate with the manager. This is achieved by

incorporating self-describing device models into medical devices, which are exported to the

manager upon device connection. The manager can then use the device model to identify

the capabilities of the device and to communicate with the device in a semantically-enriched
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manner.

The standard is designed to be descriptive rather than prescriptive; this means that the

standard avoids prescribing how a device must be constructed or programmed. Instead, the

standard offers a way for the device to describe itself to the managing system, offloading

much of the communication workload onto the manager rather than the device. This makes

it simpler for device manufacturers to adhere to the standard, which will hopefully promote

its adoption. The standard is also designed to be technology and platform independent,

such that the manager is not dependent on any current technology or software.

The SODA System We have also designed and partially implemented a piece of the ICE-

MAN system. The ICEMAN system is a specialized computer that interfaces with medical

devices, clinicians, and the hospital information systems. The system contains application

programs that address the motivating use cases described above. These applications will

likely consist of rule-based systems, physiological models, and clinical workflows. The SODA

system enables applications to interface with devices through the use of service objects. By

generating service objects from the device models and application requirements, the SODA

enables the applications to interoperate with the devices without requiring configuration by

the clinician. This enables the system to function without requiring device drivers as an

interface between devices and manager applications.

It is important to note that, although plug-and-play interoperability is only ensured for

devices that adhere to the ICEMAN standard, non-compliant (or, legacy) devices can still

interact with the SODA system. To handle legacy devices, the SODA system addresses

two additional issues. First, the communication protocol used by the legacy device must be

described within its device model. The protocol description enables the SODA to synthesize

protocol drivers for the device on the fly, avoiding the need for pre-installed driver software.

Second, the device model (along with the device’s protocol description) must be physically

provided to the SODA. This is achieved by having a third party load the device model

onto the system, such as via a CD or a model repository. Compliant devices avoid these

two issues by using a standardized communication protocol and by uploading their device

models directly from the device.
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The SODA system implemented for this thesis was tested against multiple existing

device protocols, proving that it is capable of allowing non-compliant medical devices to

communicate with ICEMAN applications without the use of device drivers. This is an

important feature because it allows ICEMAN systems to interoperate with any device, not

just ICEMAN-compliant devices.

Chapter Overview The rest of this thesis is structured as follows. Chapter 2 provides

some background on related projects, including plug-and-play efforts, medical device stan-

dards, and current solutions for simplifying medical device connectivity. Chapter 3 gives an

overview of the Integrated Clinical Environment Manager standard and addresses how it

can be used to solve various use cases. Chapter 4 describes the device meta-model, which is

the modeling language used to build device models within the ICEMAN standard. Chapter

5 describes the messaging protocol used by the standard, covering association and data

transfer for both compliant and legacy devices. Chapter 6 describes our implementation

and testing of part of the ICEMAN system. We designed a service-oriented device archi-

tecture, or SODA, that generates service objects from application requirements and device

models. These services are then automatically paired to enable plug-and-play, driverless

connectivity between ICEMAN software and medical devices. Chapter 7 shows how our

implementation is able to support legacy devices through protocol synthesis. Chapter 8

describes the testing of our implementation, through the use of simulated medical devices.

Finally, Chapter 9 summarizes our results and offers suggestions for future improvements.
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Chapter 2

Background

If we assign software error as the cause of the Therac–25 accidents, we are
forced to conclude that the only way to prevent such accidents in the future is to
build perfect software that will never behave in an unexpected or undesired way
under any circumstances (which is clearly impossible) or not to use software at
all in these types of systems.

“An Investigation into the Therac-25 Accidents”

The design of medical device software is inherently a risky business. Failures in medical

devices can lead to disastrous results; the Therac-25 accidents noted above are an excellent

example. In response to this risk, industry regulation personnel are very reluctant to adopt

new technologies or explore poorly understood domains [36].

Medical device integration is directly influenced by this necessary caution. By allowing

two medical devices to interact, an entirely new “medical device” is produced. The resulting

system may have unpredictable behavior, making it unsafe to use without explicit validation

and testing. As such, medical device integration has only seen limited success, confined to

devices produced (and validated) by the same manufacturer. However, other industries

have had huge successes with device integration; consider the universal serial bus (USB)

used in the PC peripheral domain, or the TCP/IP protocols used for computer networking.

It may be possible that, with the incorporation of standardized integration mechanisms,

medical devices could safely and successfully interoperate in a plug-and-play manner.

In this chapter, we will look at general examples of plug-and-play interoperability, as

well as existing standards and systems for interoperability within the medical domain.
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2.1 Plug-and-Play Systems

A plug-and-play system is one that automatically tells system software (such as drivers)

where to find attached hardware, and how to interoperate with the hardware. This often

requires that the attached hardware is able to announce and describe itself when first

connected to the system. In many cases, the plug-and-play system will also configure the

device for the user. Plug-and-play represents a vast improvement over previous connectivity

solutions, as it removes the burden of device integration from the user, allowing devices to

interoperate with minimal effort.

In this section, we discuss what it means for devices to be interoperable, and provide

descriptions of modern plug-and-play systems.

2.1.1 Interoperability

Interoperability refers to the ability of devices to communicate and work with other systems.

The ISO/IEC definition of interoperabilty describes it as “the capability to communicate,

execute programs, or transfer data among various functional units in a manner that requires

the user to have little or no knowledge of the unique characteristics of those units”1. This

definition highlights the fact that the user need not be aware of the details of the device

communication; the devices are simply designed to communicate in some standardized

fashion. The IEEE definition makes special note of the fact that both syntax and semantics

must be communicated, defining interoperability as “the ability of two or more systems or

components to exchange information and to use the information that has been exchanged”2.

Our goal for medical device interoperability will be to achieve a system that can:

• Network medical devices, allowing them to share data

• Connect medical devices to a central system which can monitor and control devices

• Interchange medical devices that have sufficiently equivalent capabilities, without im-
pacting the operation of other networked devices

To achieve this level of interoperability, it is usually necessary to define a common

standard or protocol for device communication.
1ISO/IEC 2382-01; see http://old.jtc1sc36.org/doc/36N0646.pdf, page 9
2Institute of Electrical and Electronics Engineers. IEEE Standard Computer Dictionary: A Compilation

of IEEE Standard Computer Glossaries. New York, NY: 1990.

30



2.1.2 Industry Examples

The following are descriptions of software architectures and protocols designed to promote

interoperability between devices and “driverless” systems. These protocols either explicitly

describe themselves as plug-and-play, or offer unique solutions for device discovery and

connectivity.

Universal Plug-and-Play (UPnP) UPnP3 was designed to support networking be-

tween common household items. It allows intelligent devices and PCs to interoperate using

existing Internet protocols such as TCP, UDP, XML, and HTTP. The goal of UPnP is to

support zero-configuration, “invisible” networking between devices made by a variety of

vendors. This requires that devices can automatically join a network and detect other com-

patible devices. No device drivers are used; instead, common protocols enable distributed

communication. The UPnP standard is very flexible, as it is language, media, and OS

independent.

Rather than relying on a central service registry, the UPnP architecture focuses on

the interaction between control points and device services. A control point is a piece of

management software, present on either a PC or on another device, which sends commands

to UPnP enabled devices. Device services are descriptions of the capabilities of an UPnP

enabled device. By broadcasting messages whenever a control point or UPnP device is added

to the network, control points can keep track of other control points and the capabilities of

the networked devices.

Jini Jini4 (pronounced “genie”) is a standard for developing distributed systems using

Java objects and the Java Virtual Machine. The standard takes advantage of the flexibil-

ity of the Java environment’s code and data, allowing networked components to remotely

call Java methods across different machines. These methods, referred to as services, are

maintained as a hierarchical list by a special lookup service. Once services are discovered,

they can be accessed through Java’s remote method invocation (RMI) mechanisms, which

manage the details of finding, activating, and garbage collecting remote object groups. The

3www.upnp.org
4www.sun.com/jini
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use of services as device interfaces eliminates the need for device drivers. Jini also supports

messaging security, events, and service “leasing”.

Although Jini is flexible and powerful, its strengths are also the source of its weakness; it

makes the assumption that every device is running a Java Virtual Machine. Simpler devices

which cannot support the JVM must utilize a proxy to connect to the Jini network.

OLE for Process Control (OPC) OPC5 is an open standards organization which

enables connectivity between industrial and automation systems. The organization supports

a certification program which ensures that OPC devices and servers are completely plug-

and-play. The organization was created to address the problem of communication between

management applications and industrial sensors and actuators. Early solutions to this

connectivity problem involved custom drivers and network hardware, resulting in redundant

work across the industry and inconsistencies between vendors.

The problem was solved through the use of Microsoft’s COM (Component Object Model)

platform. COM specifies a way to create language-neutral and machine-neutral objects,

called components. Because COM components have explicit, powerful interfaces, they are

convenient for creating flexible, interoperable drivers. Using COM, the creators of OPC

defined a set of objects, interfaces and methods to enable interoperability in process control

and automation. However, the COM platform has received criticism due to its complex

operation, involving message pumping, reference counting, and DLL management.

OPC is based around a standard called the Data Access Specification, which describes

a framework for retrieving data from sensors and actuators using COM and vendor-specific

device servers. The servers, called OPC servers, act as translators between device protocols

and a network bus. This enables management systems running OPC client software to

communicate with servers on the network, which in turn communicate with the automation

devices. The basic Data Access message returns a single device parameter or value, along

with the quality metric and timestamp associated with the value.

Service Location Protocol (SLP) SLP, which is described in RFC 2608 [20], is a

decentralized, lightweight protocol for local service discovery within a site. It is based upon
5www.opcfoundation.org
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the coordination of three kinds of agents:

User Agent (UA) A software entity allows the user application to request services.

Service Agent (SA) An entity that broadcasts the services available on a device.

Directory Agent (DA) A centralized service repository that manages the requests and
advertisements from the UA’s and SA’s. The DA is optional for smaller networks.

When a UA needs a service, it sends a description of its requirements to the DA. The

DA then returns a list of SA’s that match the UA’s requirements. An interesting feature of

the SLP is the powerful nature of its service queries, which can include operators such as

AND, OR, comparators (=,≤,≥), and substring matching. For example, a UA can search

for any printer on the network, or for a color printer, or for a color printer that can print

at least 10 pages a minute, and so on. Other service discovery protocols, such as the ones

used in Jini, only allow for equivalence queries with respect to service attributes [35].

The above protocols offer connectivity solutions for various domains, including household

devices, networked computer services, and industrial machinery. With minimal user effort,

they enable devices to connect to a dynamic network, advertise or request services, and

access services in a robust and secure manner. The protocols all build on existing standards,

such as TCP/IP and XML, reducing the workload for system designers. While UPnP and

Jini are relatively new and still being adopted, OPC has been widely implemented by

providers of control systems, instrumentation, and process control systems. SLP has also

been very successful, and is used for printer networking and Mac OS file sharing (however,

it was recently replaced by Bonjour).

The success of each of these protocols depended on various tradeoffs made by the de-

signers. For example, the OPC system guarantees plug-and-play connectivity, but requires

certified drivers for each device and special OPC servers to serve as gateways between de-

vices and management software. The Jini system is powerful and easy to work with, but

relies on the Java language, making it difficult to use with devices that cannot support the

JVM. The use of open internet standards initially led to security issues with the Windows

XP UPnP software. The SLP has a simple and intuitive architecture, but directory agent

represents a single point of failure for the protocol; the SLP society is addressing this issue

by exploring ways to have multiple DA’s interact for increased reliability.
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A plug-and-play protocol for medical devices would need to be especially concerned with

reliability and security. Ideally, the protocol would also be able to run on simple devices,

and would not require specialized drivers per each device. Efforts to meet these criteria for

medical device connectivity are discussed in the following sections.

2.2 Medical Standardization Efforts

Standards enable industries to achieve high levels of productivity and interoperability by

providing binding agreements about how parts and interfaces should fit together. In the

past two decades, many groups and standards bodies have tried to develop standards for

medical data exchange.

2.2.1 IEEE 11073

With respect to the contents of this thesis, IEEE 11073 is an extremely important standard,

as it is the only existing standard explicitly designed for medical device plug-and-play inter-

operability. Specifically, 11073 proposes an open systems communications model providing

an interface between bedside medical instrumentation and healthcare information systems,

focusing on the acute care environment [30]. The standard addresses all seven layers of the

open systems interconnection (OSI) model, from the data model used by the application

layer down to the connector plugs used at the physical layer. Also known as the Medical

Information Bus (MIB), IEEE 1073, and as CEN/TC251 in Europe, 11073 represents over

20 years of standards development.

Despite the immense amount of effort and expertise devoted to IEEE 11037, the standard

has been all but ignored by the medical device community. There are several explanations

for its lack of success.

Complexity The biggest problem with the IEEE 11073 standard is its comprehensive-

ness; it attempts to address every aspect of medical device communication, resulting in a

complicated and confining standard. A 1994 study of developing medical data exchange

standards theorized that the simpler standards, which focused on practicality and message

contents rather than completeness and protocol layers, would be the most successful [1].
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Over a decade later, this prediction seems to have come true: standards such as HL7 and DI-

COM, which only focus on messaging formats and semantics, have flourished, while 11073,

which defines custom nomenclatures and specific hardware, has not. Furthermore, the 11073

standard is still growing and evolving, adding to the confusion of potential implementers.

Instead of a clear 1.0 version, there is only a proliferation of drafts [7].

Lack of facilitators The complexity of 11073 could be alleviated through the availability

of facilitating tools, such as example implementations, verification services, software devel-

opment tools, and so on. Unfortunately, such facilitators do not exist at this time. This

greatly increases the cost of implementing an 11073-compatible device or system, making

the standard far less attractive to device manufacturers. Only one major device manufac-

turer (Philips) has adopted 11073, and even their implementation is limited [15].

Poor business case Aside from complexity and cost, major medical device vendors are

also reluctant to adopt 11073 because it threatens their current business models. One

medical device consultant writes, “It seems medical device vendors prefer proprietary ar-

chitectures that lock in customers by erecting high changing costs. An increase in customer

choices created by standards-based interoperability is inconsistent with traditional industry

strategy” [15]. By allowing for greater interoperability, smaller device vendors would be

better able to compete for hospital contracts, because their devices would be compatible

with larger vendor’s devices.

2.2.2 IEC 60601

One way to promote standard adoption, regardless of complexity or economic factors, is to

require the standard for safety purposes. The IEC standard 60601 has this advantage, as

it describes safety regulations for medical electrical equipment. As the governing standard

for electrical medical products, compliance with 60601 is a prerequisite for approval by

government regulatory agencies, such as the FDA in the US. The standard is organized

by specific hazards and device types, specifying required measured for addressing device-

specific hazards. These hazards may include electrical shock, exposed mechanical parts,

radiation and energy output, and fire risks. For each hazard, the standard defines at least
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two layers of protection that the device must implement in order to protect the operator

and the patient [28].

2.2.3 Medical Data Exchange

While the IEEE 11073 standard focuses on medical data exchange between point-of-care

devices and hospital information systems, there are other medical systems that also need

to exchange data and can benefit from standardization.

DICOM One of the biggest success stories in the domain of medical data exchange is

the Digital Imaging and Communications in Medicine standard, commonly abbreviated as

as DICOM. As its name suggests, this standard addresses the formatting and transfer of

digital images, especially radiology images. Since its initial publication in 1985, DICOM

has been adopted by device manufacturers and hospital information systems worldwide.

DICOM specifies a set of network protocols, message syntax and semantics, media storage

services and a medical directory structure for imaging systems. By complying with these

specifications, devices within a hospital picture archiving and communication system (or

PACS) can easily and efficiently interoperate. Unlike the 11073 standard, DICOM uses

existing networking and imaging standards, such as TCP/IP and JPEG, instead of defining

custom components. Furthermore, DICOM does not constrain the hardware or implemen-

tation details of compliant systems; instead, it constrains what data should be stored, how

it should be configured, and what messages should be used for sharing information between

systems [42].

Health Level 7 Health Level 7 is a standards developing organization that focuses on

clinical and administrative data exchange. The organization’s name refers to the seventh

layer of the OSI model (the Application layer), which addresses data exchange structuring,

semantics, message timing, and security checks [24]. The self-titled HL7 Messaging Standard

is the most widely adopted healthcare information standard in the world. The latest version

of the standard, HL7 v3.0, is based on a data model called the Reference Information Model

(RIM), which provides an object model for all of the messages used to communicate data

within a healthcare environment. RIM objects are grouped into templates for use in specific
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messaging contexts. These contexts include patient administration, order entry, financial

management, observation reporting (especially for lab data), medical records, and hospital

room scheduling. HL7 v3.0 uses XML to structure its messages, unlike previous versions

that used a proprietary character string format.

Despite the popularity of HL7 and the promises of its latest version, critics point out that

the flexibility and comprehensiveness of the standard may be fatal flaws. One such critic

argues that the RIM is poorly constructed and documented, making it difficult to implement

[56]. Others have noted that customizable nature of the standard prevents interoperability

between hospitals, as different hospitals may use different configurations for HL7 messaging.

CDA and CCR Aside from its messaging standard, HL7 is also developing a Clinical

Document Architecture (CDA) for transferring patient data. The CDA uses the RIM to

specify the structure and semantics of clinical documents, encoded as human-readable XML.

The goal of the CDA is to provide a foundation of document types for use in electronic

medical records.

A competing clinical document standard is the Continuity of Care Record (CCR), devel-

oped by the American Society for Testing and Materials (ASTM). The CCR is designed for

exchanging patient data between healthcare institutions, such as when a patient is trans-

ferred from one hospital to another. The goal was to design simple, human-understandable

XML structure, with support and advice from end-users and medical practitioners. Com-

pared to the CDA, which is based on the massive and obtuse RIM, the CCR has a compact

and clear representation.

One argument in favor of the CDA is that it is a more general, powerful representation

of medical record data. While the CCR is only designed for single-use data transfer, CDA

documents can be maintained and extended as part of a persistent medical record [13].

2.2.4 Medical Nomenclatures

The above standards all rely on standardized dictionaries of medical terms, referred to as

medical nomenclatures. These nomenclatures provide a common set of semantics for medical

systems, ensuring that the exchanged data can be correctly interpreted. Important medical
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nomenclatures include the Logical Observation Identifiers Names and Codes (LOINC) for

laboratory data, the Systematized Nomenclature of Medicine (SNOMED) for clinical terms,

and the International Classification of Disease (ICD-9) for diseases. Larger standards such

as DICOM and HL7 also define their own nomenclatures, as well as incorporating the

nomenclatures mentioned above.

The National Library of Medicine has attempted to harmonize the dozens of existing

medical nomenclatures, resulting in the Unified Medical Language System (UMLS). The

UMLS provides mappings between equivalent medical terms across many different nomen-

clatures, resulting in a superset of nomenclatures. This provides an extremely useful tool

for software designed to understand biomedical literature and terminology.

2.3 Existing Solutions

Despite the standardization efforts described above, a standard for point-of-care device in-

teroperability has not been adopted. As such, the medical device community has found

alternative ways to support device connectivity. Currently, there are two kinds of solutions

used to address device connectivity. The first solution is available only to device manu-

facturers, who have direct control over the communication protocols used by their devices.

This control enables device manufacturers to simply use the same proprietary protocol in

all of their devices. As a result, companies such as Draeger, Philips and Olympus offer

complete operating room suites, containing sets of devices which were explicitly designed

to interoperate. While this provides plug-and-play interoperability within the suite, it is

hardly an extensible solution.

The second solution is utilized by third-party companies, which do not have control

over device protocol implementation. Instead, these companies take it upon themselves to

design connectivity hardware and software for each device manufacturer’s protocol, enabling

devices with differing protocols to interoperate. While this solution is dependent on writing

custom drivers for each device, it at least offers hospitals some flexibility in choosing where

to buy their devices. In the following sections, we will examine some of the recent third-

party solutions, in order to better understand the challenges involved in medical device
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integration.

2.3.1 Remote Monitoring

One company’s solution to device integration is to enable humans to remotely integrate de-

vice data, providing a second set of eyes to monitor patient progress. Visicu is attempting

to change the ICU care model by providing off-site, continuous monitoring of patients by

intensive care specialists, or intensivists. Their ICU monitoring system, eICU, is analogous

to an air traffic control center, in that it offers remote management of a complicated en-

vironment. To gather ICU data, Visicu uses special integration servers that communicate

with bedside monitors and devices, as well as with hospital information systems. This in-

formation is displayed to intensivists at an eICU Center, and is sent to decision support

software that checks physiological data against thresholds and trend patterns. With the

help of the eICU specialists and software, the on-site clinicians can more efficiently and

effectively care for their patients. The eICU system has been very successful; in a study

of 68 eICU-enabled hospitals, researchers found that the system improved ICU mortality

rates by about 27% compared to traditional hospital performance [62].

While Visicu provides a valuable telemedicine service, they do not directly address

the problem of physical device integration. Their system supports open standards such

as HL7 and common networking standards, and they specify the necessary interfaces for

the hospital’s monitoring and information systems. However, they do not provide the

hardware or software for retrieving data from ICU devices. Instead, their applications

specify interfaces that must be supplied by the hospital itself.

2.3.2 Integrated Displays

Another approach to device data integration is to visually integrate the clinical environ-

ment’s data, displaying it in a single location. LiveData offers a system called the OR-

Dashboard, which is featured in the Operating Room of the Future at MGH. The OR-

Dashboard communicates with LiveData RTI (real-time integration) servers, which extract

data from devices and the HIS for display on a large plasma screen in the operating room.

This provides clinicians with a single access point for much of the relevant data within the
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Figure 2-1: LiveData OR-Dashboard

OR. The system could also be used in ICU settings, where many physiological values are

monitored and recorded. LiveData proposes that the system will help reduce medical errors

by improving communication and by making it easier for clinicians to keep track of the

state of the clinical environment in real-time.

Aside from utilizing common standards such as HL7 and XML/SOAP, LiveData works

with individual medical device vendors to develop driver software for their devices. The

drivers are then installed on their RTI Servers, which collect and integrate the data for

display on the Dashboard. While this is a very straightforward solution, it restricts the

Dashboard’s interoperability to devices which have been specifically addressed by LiveData

software engineers.

2.3.3 Device Connectivity

The purpose of many device integration systems is to collect device data for storage in a

hospital database, as part of a patient’s electronic medical record. As described above, Live-

Data’s solution to device integration was to use proprietary RTI Servers and device drivers.

Other companies have created similar solutions with a focus on the ease of connectivity, or
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on particular clinical domains.

One such company, Capsule Technologies (CapsuleTech), specializes in biomedical de-

vice integration solutions. Their DataCaptor Interface Server is similar to the LiveData

RTI Server, in that it uses a proprietary software engine to collect, integrate and distribute

device data. To support their servers, CapsuleTech also offers connectivity hardware for

interfacing with medical devices and multiplexing data from multiple devices. Their con-

nectivity hardware enables plug-and-play connectivity for a wide range of devices. Like

LiveData, CapsuleTech partners with medical device vendors and writes custom drivers for

their devices. As of 2007, CapsuleTech currently supports over 330 devices from 50 different

device manufacturers.

Another data integration company, Picis, offers a solution similar to CaspuleTech’s (so

similar, in fact, that a patent infringement lawsuit was initiated by Picis against Cap-

suleTech in 2004, with respect to their connectivity engine). Picis focuses on high-acuity

care environments, such as emergency rooms, ICUs, and operating rooms, offering com-

plete management and automation systems. To support these systems, Picis has developed

database software that works with HIS to automate clinical data collection, workflow and

business practices management.

2.3.4 Decision Support

While various companies have addressed the problems of device connectivity and data man-

agement, many academic projects have focused on designing tools for utilizing collected

device data. One recent example of such a project is the Computer Assisted Resuscitation

Algorithm (CARA) infusion pump control system, developed at the University of Pennsyl-

vania [2]. The CARA system manages trauma-related hypotension by controlling the rate

of fluid infusion for an infusion pump. The system, depicted in Figure 2-2, uses a blood

pressure monitor to provide feedback to the infusion pump. The CARA system itself pro-

vides interoperability between the two devices. Although only two devices are integrated,

it is an interesting system because it enables closed-loop control of the patient’s blood pres-

sure. This kind of intelligent medical device control might be considered the “holy grail”

of medical device integration; if it could be performed reliably for general devices, patient
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Figure 2-2: CARA Infusion Pump System

care could be vastly improved.

Another example of a closed-loop control system is the Ventilator Manager (VM) project

conducted at Stanford University in the late 1970s. The Ventilator Manager is a real-time

rule-based system for ventilator control, based on expert medical systems such as MYCIN

[12]. The Ventilator Manager system has five kinds of rules, including rules that:

1. characterize measured data as reasonable or spurious

2. determine the therapeutic state of the patient (currently the mode of ventilation)

3. adjust expectations of future values of variables when the patient state changes

4. check physiological status, including cardiac rate, hemodynamics, ventilation, and
oxygenation

5. check compliance with long-term therapeutic goals

These rules are run at each time-step, when new data from the ventilator and physio-

logical monitors arrives. The key observation made by the developers of VM was that the
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physiological data provided to the system, as well as the conclusions made by the system,

needed to be time stamped and saved for further analysis in the data set. Time stamped

data enabled rules that took into account temporal factors, such as duration and freshness

of data. For example, a rule which determined the stability of the patient’s hemodynamics

is shown in Figure 2-3.

STATUS RULE: STATUS. STABLE-HEMODYNAMICS
DEFINITION: Defines stable hemodynamics based on

blood pressures, heart rate
APPLIES TO: patients on VOLUME, CMV, ASSIST, T-PIECE
COMMENT: Look at mean arterial pressure for changes in blood pressure

and systolic blood pressure for maximum pressures.

IF
HEART RATE is ACCEPTABLE
PULSERATE does NOT CHANGE by 20 beats/minute

in 15 minutes
MEAN ARTERIAL PRESSURE is ACCEPTABLE
MEAN ARTERIAL PRESSURE does NOT CHANGE by 15

torr in 15 minutes
SYSTOLIC BLOOD PRESSURE is ACCEPTABLE

THEN
The HEMODYNAMICS are STABLE

Figure 2-3: Example Rule from the VM System

Although the VM system was developed nearly 30 years ago, modern ventilators only

offer basic closed-loop control, enabling them to modify their actuation to match clinician-

specified respiratory parameters. These modern systems rarely incorporate external device

parameters for control purposes, and offer limited decision support.

While CARA and VM are interesting examples of applications that utilize medical

device data, these projects do not explicitly address the mechanisms required for medical

devices to interoperate with one another or with an intelligent device manager. Creative

applications such as these would be difficult to implement commercially, unless a simple

solution for device connectivity were provided.
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2.4 Operating Room Use Cases

From the discussion of existing standards and technologies provided above, it is clear that

there is a need for improved device connectivity. In particular, hospitals would greatly

benefit from a plug-and-play solution that is reliable and universal, and that does not rely

on custom drivers or hardware. To explore this need, the Medical Device Plug-and-Play

Initiative collected a set of use cases from surgeons and clinical engineers, describing their

requirements for an ideal plug-and-play solution.

Each use case describes a clinical scenario, a particular hazard associated with the

scenario, and a proposed solution that addresses the hazard. The use cases are valuable

because they represent actual clinical needs, as described by the potential users of a medical

device plug-and-play system.

Although the use cases describe a diverse set of operating room improvements, many of

them fall into one of the categories described below.

Sensor Fusion By allowing medical devices to be aware of each other’s actions, it would

be possible to perform data management and filtering of physiological metrics in real-time.

Sensor information could be improved by comparing it against related information from

other devices. This would improve the quality of device-reported metrics, which would in

turn improve clinician confidence in device metrics.

For example, sensor data is often corrupted by the actions of other devices in the op-

erating room. Blood oxygen saturation readings may be affected by the inflating of an

automatic cuff. Electrocardiogram data may be temporarily rendered useless due to elec-

trostatic interference from an electrosurgical unit (ESU). During laparoscopic procedures,

chest insufflation may result in unreliable blood pressure measurements. By combining

information from multiple devices, it would be possible to detect and flag these kinds of

device interference. It might even be possible to mask the corrupted data: in the electro-

static interference example, a centralized display could be made to report heart rate data

from a pulse oximeter, rather than from an EKG, during ESU operation. Because the pulse

oximeter is less likely to be affected by the interference, the display can take advantage of

the redundant information and report pulse information more reliably.

44



Contextual Awareness Related to the concept of sensor fusion is the need for contextual

awareness, where devices can be made aware of clinical state. This was the theme of the

x-ray/ventilator example described in Section 1.3.1; because the devices did not understand

the current procedure, they had no way to assist with minimizing the risk to the patient.

If, instead, there were a scripted procedure provided to both devices, they could have

automatically stopped ventilation, taken the x-ray, then resumed ventilation. This would

reduce the risk to the patient and would simplify the job of the clinician. Devices would also

benefit from contextual knowledge of seemingly non-medical devices. For example, blood

pressure measurements can be affected by the height and angle of the operating table, or

by the height of an IV bag. If a blood pressure monitor was aware of table and IV bag

movements, it could account for these movements when reporting blood pressure data.

Some clinicians wanted their devices to automatically configure themselves for certain

procedures or patient types, reducing setup time. For example, different devices and device

settings are required for larger patients, and different lighting arrangements are optimal for

certain procedures.

Wiring and Connectivity One common complaint was the “malignant spaghetti” of

wires found in many operating rooms, restricting surgeon movement and causing a potential

trip hazard. This problem is complicated by the fact that each device may use a different

kind of wire and connector, making it harder to setup devices and manage operating room

wiring. In addition, patients and their devices need to be mobile, as they are moved about

the hospital for tests and operations. Clinicians suggested that this situation could be

improved by standardizing the wires used by medical devices, or by implementing wireless

devices.

Another compliant was that it was very difficult to change devices in the middle of

a procedure. Clinicians wanted “hot-swappable” devices, enabling them to exchange a

malfunctioning device for a new one in the middle of a procedure.

Device Management Clinicians also hoped that improved device connectivity would

give them greater control of device information. For example, improved data logging would

enable clinicians to “play back” a procedure, allowing them to perform comprehensive root-
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cause analysis in the case of a medical error. This would also help to verify the proper

functioning of a device, and to discern human error from device error.

Improved connectivity would help with resource tracking, such as keeping track of where

each device is located within the hospital. It would also help to ensure that each device

used in a procedure was associated with and configured for the correct patient, preventing

medical errors.

Centralized Control and Display Finally, clinicians would like to have centralized con-

trol over device functions, as well as a central display for device data. Currently, information

display is limited by “device geography” within the operating room. A centralized display

that is easy to see and understand would greatly reduce cognitive load for surgeons and

anesthesiologist. Other clinicians complain that the controls for devices such as OR tables,

lasers, and x-rays are overly complicated, and are inconvenient to operate via touch or foot

pedals. They suggested that voice commands or virtual keyboards would be more appropri-

ate, and that remote device control would be useful for operating hazardous devices, such

as x-rays, from outside of the operating room.

By analyzing the common use cases described by the interviewed clinicians, it is clear

that a central manager for medical devices, with simple, standardized connectivity, would

be very useful in an operating room environment. Our design of such a central manager,

inspired by existing systems and the collected use cases, is the focus of the next chapter.

46



Chapter 3

ICEMAN - Integrated Clinical

Environment Manager

Interoperability presents a major challenge to integrating medical devices from
different manufacturers. It will require the development of standards and archi-
tectures not only for medical records but also for devices that actively use that
information to monitor and regulate patients medical conditions.

“High-Confidence Medical Device Software and Systems” [36]

The current solutions for medical device interoperability rely on communication protocol

ownership or on custom hardware and device drivers. While these solutions simplify the

process of integrating devices and provide a means for collecting device data, they cannot

be considered “plug-and-play” solutions. A new device can only connect to the system after

driver software has been written for that device, reducing the utility and flexibility of the

system. Furthermore, most current solutions are only designed for data acquisition; they do

not provide any interface for remote or autonomous control of the device. As a result, they

do little to improve patient safety through real-time decision support, intelligent alarming,

remote device operation and closed-loop control.

We propose a standard for a system that will offer true plug-and-play connectivity, and

will provide interfaces for remote and autonomous control over device settings and actions.

Although our primary focus is the operating room, the system will be flexible enough to

handle a wide range of devices and clinical environments.
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3.1 Overview

The Integrated Clinical Environment Manager, or ICEMAN, is a model-based control sys-

tem that communicates with and controls medical devices. It uses a clinician-scripted work-

flow plan and context appropriate rules in order to help manage an operation, or any other

clinical environment [61]. The purpose of the ICEMAN is to provide secure, ubiquitous

connectivity to medical devices, and to provide interfaces, safety locks, and autonomous

control for these devices.

3.2 Functional Requirements

To effectively manage a clinical environment, the ICEMAN needs to be aware of and have

some control over the state of the clinical environment. This imposes a set of functional

requirements on the ICEMAN, as described by the ICEMAN standard.

Workflow, Rules, and Models The ICEMAN is governed by a set of workflow scripts,

rules, and models, which determine the behavior of the manager. A workflow is a set

of ordered clinical activities to be performed in a clinical environment. For example, a

workflow might contain the steps involved in a laparoscopic operation, or activities related

to the care of a patient in the ICU. The workflow determines the context through which

the device data is interpreted, and provides an expected flow of events that the system can

try to maintain.

Rules are safety and best-practice measures defined by the clinician which constrain

the actions of the ICEMAN. A rule might define a relationship between device parameters,

or define the requirements for allowing a device to take a specific action. Rules may be

persistent, meaning that they apply in all situations, or context-dependent, meaning that

they only fire at certain points in the scripted workflow.

Models provide the ICEMAN with an understanding of the devices and patient, enabling

it to predict the consequences of some action. A device model describes the functionality

of a device, while a physiological model describes a relationship between device actions and

patient physiology. The ICEMAN uses these models for autonomous, plug-and-play device
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operation.

Device Interfaces The ICEMAN standard does not impose a specific communication

protocol or hardware interface for medical devices. Instead, it is designed to support a

number of low-level protocols and interfaces, including TCP/IP, RS-232, USB, 802.11 wire-

less, and CANBus. The standard does, however, specify an upper-level communication

protocol, in terms of the format and ordering of device messages. In terms of the OSI

communication stack, the ICEMAN supports various solutions for layers 1–4, but provides

a single specification for layers 5–7. This constraint constitutes the difference between a

compliant device and a non-compliant device; a compliant device is one that conforms to

the ICEMAN standard, and has one of the low-level interfaces supported by the standard.

All other devices are non-compliant, also called legacy devices. Legacy devices can still

operate with the ICEMAN system, but cannot do so in a plug-and-play fashion.

Semantic Libraries The messaging constraint described above helps to ensure that the

ICEMAN can parse and interpret the data from a device. To assist in the data transfer

process, devices messages must specify a medical nomenclature term along with their data

values. These terms must come from one of the medical nomenclatures recognized by

the ICEMAN system. Just as with low-level communication protocols, the ICEMAN will

support a variety of medical nomenclatures, serving to relax the requirements placed on

individual devices. These nomenclatures act as semantic libraries that enable the ICEMAN

to interpret the data coming from a device. Together with the device interface requirements,

the ICEMAN is able to understand the syntax and semantics of the device messages from

any compliant medical device.

Human Interfaces Aside from communicating with medical devices, the ICEMAN is

also designed to interact with humans. The primary means of human interaction is through

a graphical user interface (GUI), which allows the clinician to monitor the state of the

clinical environment as captured by the ICEMAN. This includes viewing device settings,

patient physiology, workflow items, and clinical data, all from a single display. This interface

is analogous to the display designed by LiveData, as described in Chapter 1. In addition
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to viewing the state of the clinical environment, the clinician can also use the GUI to alter

the clinical environment by changing device parameters or adding clinical data. This can

even be done remotely, allowing clinicians to access patients over long distances.

On the back end, there is an interface for adding workflow scripts, rules, and models to

the manager. This would likely be performed by a clinical engineer, prior to an operation.

Data Logging Along with device and physiological data, all clinician and ICEMAN ac-

tions will be recorded by the system. This is both for liability purposes (in case a mistake

is made by a clinician or the system), and to support playback of procedures for forensic

analysis.

Security The ICEMAN must be HIPAA compliant, meaning that it must consider the pri-

vacy and security standards laid out by the Health Insurance Portability and Accountability

Act. The HIPAA security rules are designed to protect electronic protected health infor-

mation (ePHI) that is transmitted or maintained by electronic media. Electronic protected

health information can exist on biomedical devices as well as IT networks; the ICEMAN

lies at the intersection of these two domains [19]. As such, an ICEMAN system will require

mechanisms for restricting access to ICEMAN data, implementing login and automatic log-

off procedures, and encrypting data stored on the system or sent across the hospital network

[23]. This last requirement warrants special consideration if an ICEMAN implementation

utilizes wireless communications. HIPAA compliance is based on a case-by-case risk anal-

ysis, which must be performed by both the system manufacturer and health care provider

[34].

Hand-off Because the patient may move through different clinical environments (includ-

ing the emergency room, operating room, intensive care unit, or home), the state of the

clinical environment needs to be transferable as well. This can either be achieved by moving

the ICEMAN hardware with the patient, or by supporting a protocol that transfers patient

data from one ICEMAN system to another.

The hand-off mechanism may actually be one of the biggest benefits of the ICEMAN

system. It is estimated that the average hospital patient is transfered twice a day and is
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cared for by numerous parties. However, hand-off procedures are rarely standardized, lead-

ing to miscommunication and medical errors [6]. This issue was addressed by the JCAHO in

the 2007 National Patient Safety Goals, in which the JCAHO suggests that hospitals imple-

ment a standardized approach to hand-off communications [45]. By supporting a hand-off

process with the ICEMAN, it is more likely that patient information will be accurately and

reliably transfered along with the patient.

3.3 Safety Requirements

Because the ICEMAN system processes medical data and controls medical devices, it is

considered to be a medical-electrical device itself. The safety of medical-electrical devices

is regulated by the Food and Drug Administration (FDA), which provides software design

and validation recommendations. In addition, the IEC provides the 60601-1 standards,

which address the safety of medical electrical devices. Particularly relevant standards in-

clude 60601-1-4 (Programmable electrical medical systems), 60601-1-8 (Alarm systems), and

60601-1-10 (Physiologic closed-loop controllers). These standards were designed to address

and mediate the risks associated with medical-electrical devices. The ICEMAN standard

must comply with both the FDA and IEC standards to be used in U.S. hospitals.

3.4 Architecture

The ICEMAN is implemented as a specialized computer, compliant with the requirements

listed above. It must provide interfaces for devices, integrated displays, control consoles, and

hospital information systems. It must have software for handling device connectivity and

data transfer; an engine to process the predetermined workflow, rules, models, and activity

templates; and an executive that mediates between human control and autonomous control.

Figure 3-1 shows how the ICEMAN might be configured in an operating room en-

vironment. In particular, the figure shows the interaction between the pluggable medical-

electrical devices, the clinicians, and the ICEMAN. Because the clinicians and the ICEMAN

share control of the devices, it is important that the ICEMAN places a higher priority on

clinician input than on the input from its own engine. This will prevent any “power strug-
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Figure 3-1: ICEMAN in an Operating Room Environment

gles” between the manager and the clinician, in case there is a disagreement about how to

use a device setting or function.

The figure also shows how the various inputs to the ICEMAN are combined with the

workflow, models and rules, through the use of the executive and the engine. The executive

coordinates the processing of ICEMAN inputs and outputs, while the engine is responsible

for monitoring the connected devices and generating device commands.

3.5 Applications

One of the features that differentiates the ICEMAN from existing integration solutions

is that it is designed to be “reprogrammed” by changing its workflow, rules, models and

templates. This allows the ICEMAN to support a variety of clinical tasks and situations.

Some of the possible ICEMAN applications are suggested below. While the ICEMAN

does not explicitly provide solutions for these applications, it does act as a platform that

facilitates their implementation by providing a rule- and model-based engine that has access
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to device interfaces and hospital information systems.

3.5.1 Monitoring and Alarming

Existing systems are capable of integrating device data for storage in EMRs or for immediate

viewing on an integrated display. The ICEMAN extends these capabilities by supporting

intelligent device monitoring and alarming. Device alarms are often turned off by clinicians

because the alarms are overly sensitive, superfluous, or simply annoying. The ICEMAN

rules and models can address this problem by assuming responsibility for managing device

alarms, and filtering out alarms which are redundant or due to contextual events rather

than patient physiology. The system could also “repair” device data before exporting it to

a display or HIS, to account for contextual artifacts.

For example, some surgical tools, such as diathermy and electrocautery equipment, cause

significant electrical interference when used. This may affect sensitive monitoring devices

such as BIS monitors and EKGs, causing them to produce noisy or incorrect data [22].

Device interference of this sort can result in clinician confusion or inappropriate alarming.

Because the ICEMAN is aware of the actions taken by all of the medical-electrical devices,

it can be supplied with rules that anticipate and react to these situations. If also supplied

with appropriate models of the interference, the ICEMAN could even correct or filter the

noisy data.

3.5.2 Safety Interlocks

At the OR 2020 workshop in 2004, the Systems Integration working group expressed interest

in software that would improve patient safety by supplying safety interlocks. For example,

they suggested that the physiological monitors and patient table actuators be integrated,

preventing the surgeon from tilting the table head-up if the patient were hemodynamically

unstable [46]. Again, this is a problem that could be addressed by rules and models within

the ICEMAN. Because the ICEMAN has access to workflow context and device data, it

could be programmed determine when a patient was hemodynamically unstable; an example

of such a rule is provided in Figure 2-3. And because it has control over device actuators

and displays, the ICEMAN could warn the surgeon when the table was tilted or even lock
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the table actuators. Safety interlocks which take advantage of the ICEMAN’s integrated

data and device control could help to prevent many clinical errors.

3.5.3 Decision Support

The ICEMAN will have a real-time rule-based system, similar to that of the Ventilator

Management system described in Section 2.3.4. This will enable the ICEMAN to make

decisions about patient care, based on device data and workflow. Because the ICEMAN is

also connected to the HIS, it will be able to send messages concerning a patient’s status.

This will enable the ICEMAN to mimic the behavior of an Arden MLM rule-based system.

The use of device and physiological models will further enable the ICEMAN to make

predictions about the effects of device actions. For example, if the system contains models

describing the cardiovascular system and various therapeutic drugs, it would be able to

make recommendations or even take actions to prevent cardiogenic shock in a patient [9].

3.5.4 Remote Monitoring and Control

Clinical environments exist where ever the patient is located, including the home or on

a battlefield. The human interfaces to the ICEMAN do not have to be located near the

medical devices or the ICEMAN itself; instead, they can be miles away with the clinician.

By populating a health record or providing long-distance control over medical devices, the

manager can enable the clinician to monitor or treat patients remotely.

3.5.5 Closed-Loop Control

A final example of an ICEMAN application is to provide physiological closed-loop control.

Many medical devices currently provide closed-loop control over physiological parameters.

For example, a ventilator is given respiratory rates and characteristics as inputs. It pumps

air into a patient’s lungs and monitors the resulting rates and characteristics, and then tries

to modify its actuation so as to meet the desired input settings.

This kind of closed-loop control is possible because the ventilator monitors and controls

a group of physiological values, and contains algorithms that enable it to match its out-

put with a desired input. By integrating multiple devices and providing the manager with
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the appropriate algorithms, it is possible to close loops across multiple devices. This was

the objective of the CARA infusion pump system described earlier [2]. A similar appli-

cation would be a patient-controlled analgesia system, which integrates an infusion pump

containing analgesics with a pulse oximeter and ventilator. One of the dangers of patient-

controlled analgesia is that the patient (or their families) may inadvertently overuse the

analgesic, causing their vital signs to drop to dangerous levels. By integrating the pump

with the appropriate monitoring devices, it will be possible to “lock out” the pump when

the patient’s heart or respiratory rate declines to some threshold.
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Chapter 4

Device Meta-Model

A message to mapmakers: highways are not painted red, rivers don’t have county
lines running down the middle, and you can’t see contour lines on a mountain.

William Kent, Data and Reality

4.1 Overview

The Device Meta-Model (or, DMM) provides a standard for device representation. It cap-

tures the device’s communicable capabilities and properties, such as sensor values, alert

types, actuator functions, and status messages. The model is based on an abstract repre-

sentation of a generalized medical device.

Using the generalized medical device structure and the 11073 Domain Information Model

as references, we developed a set of modeling elements that could be used to describe

the capabilities of most medical-electrical devices. By organizing these elements into a

hierarchical object model, we formed a device meta-model from which device models can

be created.

4.1.1 Purpose

As was described in Chapter 2.1, one of the requirements of a plug-and-play system is a

standard way to communicate the capabilities of the device to the system. In particular,

the following information must be shared between the communicating systems:
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• Functionality: The systems must understand the allowable message types and the
effect caused by each message type

• Data Semantics: The values transmitted from the device must to be interpretable by
the receiver

• Message Format: The receiver must be able to parse the message values, along with
their semantics and the message type

• Communication Protocol: The devices must know how and when to send messages

The first two requirements refer to the meaning and usage of device messages. The

managing system must be able to understand the meaning of the values it receives, as well

as the effect of the commands it sends to the device. The third and fourth requirements

deal with the structure of the messages and the communication interface. In terms of the

OSI model, the message format is handled at levels 5–7, while the communication protocol

handles levels 1–4. With these requirements in mind, there are two problems that the

plug-and-play system must address. The first is how to organize and represent the device

description; we will refer to this as the device representation problem. The second is how

to get the device description to the managing system, assuming that the managing system

has no a priori knowledge of the device’s structure and protocols; we will refer to this as

the transfer problem. In this chapter, we address the first problem of device representation

through use of a device model. In Chapter 5, we will address the second problem of model

transfer.

These problems are easily solved if every device shares a fixed, relatively small set

of parameters, and if every device uses the same communication protocol and message

structure. This is the case for USB Human Interface Devices (HIDs) - there is a list of

usage types for each device type and data value, which are communicated in a standardized

HID report. Using the HID standard eliminates the need to write device driver software

for USB mice, keyboards, and other such devices [4]. In terms of the four requirements

listed above, the HID usage tables define the data semantics; the HID report structures the

message format and provides the only message type; and the USB protocol itself provides

the communication protocol.

Unfortunately, medical devices cover a much broader domain than PC input peripher-

als. The list of possible parameters is a huge and constantly increasing, as is the list of

proprietary communication protocols. To make the problem more tractable, it is necessary
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to first identify the scope of the medical device domain in terms of data semantics, message

formats, and communication protocols. This results in the formation of a large list of device

properties, functions, and protocols. After this list is created, it is possible to classify simi-

lar properties together, yielding generalized structures common across all medical devices.

These structures can then be used to build device descriptions for specific devices.

The device meta-model is the result of the enumeration and classification exercise de-

scribed above. By identifying the common elements across all devices, it is possible to

design a language for describing specific devices, which is the language necessary for com-

municating device functionality to a managing system such as the ICEMAN.

4.1.2 Model Domain

The model domain is the domain of knowledge that the DMM must capture. By examining

many examples of medical devices, and by analyzing the model proposed by the 11073

standard [31], we determined that medical devices contain some or all of the following

elements (from [61]):

• Actuators for influencing physiological parameters of a patient (e. g. ventilators),
the physical parameters of the patient (e. g. surgical tools), and/or the position and
orientation of the patient or parts of the patient such as arms, legs, and head (e. g.,
surgical positioning devices)

• Sensors for measuring physiological parameters of a patient

• Sensors for measuring the physical location and orientation of the patient, or parts of
the patient, e. g., arms, legs, head (actuator state sensors)

• Sensors for measuring the physical location and orientation of a medical device actu-
ator relative to the patient, e. g., a laparoscope (actuator state sensors)

• Internal logic to allow the clinician to specify device behavior (including control of
sensors, actuators, and data processing within the device)

• Internal memory to store clinician commands, sensor data, device status data, pro-
cessed sensor data, and other miscellaneous data

• An interface by which a clinician can operate the device, observe its status, and read
its internal data

• An interface by which a managing system or printer can communicate with the device
to control its operation or to read data

• An interface to which a subordinate medical device can be attached
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Figure 4-1: Generalized Medical Device Structure

An illustration of a generalized medical device is provided in Figure 4-1. The illustration

shows how the elements listed above might be organized within the device, based on their

function and dependencies.

4.2 IEEE 11073 Domain Information Model

The ICEMAN device meta-model is an adaptation of 11073 domain information model, or

DIM, which is described in IEEE standard 11073-10201 [31]. A closely related standard is

the VITAL standard for vital signs representation [10], which is the European counterpart

to 11073.

The DIM is an object-oriented model in which the objects are abstractions of entities

within the domain of point-of-care medical-electrical devices [3]. The objects within the

model contain attributes and methods which capture the properties and functionality of

the modeled device component. When a set of objects from the DIM are selected and

organized to describe a specific device, the objects form the medical data information base,
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Figure 4-2: Domain Information Model - Package Structure

or MDIB, for that device. The MDIB represents the vital signs information provided by a

medical-electrical device [31].

The objects within the DIM are organized into eight packages, or subjects. The DIM

packages include:

• System: Contains the top level object, called the Medical Device System object, which
represents the union of all of the device functions.

• Medical: Represents data channels and metrics, where metrics are defined as abstract
biosignal measurements.

• Alert: Provides physiological alerts for the Medical package.

• Control: Manages the remote control of the device by the clinician or managing
system.

• Extended Services: Contains Scanner objects, which monitor device properties and
enables data polling.

• Communication: Handles the low-level communication protocol.

• Archival: Supports the logging of device data.

• Patient: Contains miscellaneous patient demographics.

The structure of these packages, along with the primary object for each package, is

provided in Figure 4-2.
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A definition table containing attributes, behaviors and generated notifications is defined

for each object within the DIM.

4.3 ICEMAN Device Meta-Model Structure

The device meta-model is the ICEMAN adaptation of the Domain Information Model. A

comparison of the IEEE model and our model is given in Section 4.4.

Like the DIM, the device meta-model is organized as a hierarchy of device functionality.

A high-level view of the device meta-model is shown in Figure 4-3. The meta-model is

depicted as a UML object model; in practice, we have stored it as an XML Schema, such

that device models can be written as XML documents. This combination of UML and XML

representations was found to be helpful in describing and implementing the VITAL model

[3].

Figure 4-3: ICEMAN Device Meta-Model

As with the DIM, the objects within the DMM are grouped into packages. The package

structure of the DMM is outlined below:
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• Device: Contains the top-level Device object. Analogous to the DIM’s System pack-
age.

• Sensor: Describes device sensors, using Metric and Setting objects.

• Actuator: Describes device actuators, using Action and Setting objects. Overlaps
with the DIM’s Control package.

• Data: Contains device data, such as device health information, logged data and non-
medical miscellaneous data.

• Trigger: Contains objects for processing data, and for returning asynchronous events
and alerts.

• Communication: Describes device communication interfaces and protocols. Analogous
to the DIM’s Communication package.

Because the DIM and DMM cover the same model domain and have similar functionality,

there is a loose mapping between their package structures. The following sections provide

detail on the DMM packages and objects.

4.3.1 General Structure

The device meta-model was designed to be easily encoded as an XML Schema. The XML

concepts of element and element tag directly map onto the DMM concepts of object and

object type. The XML attribute concept is identical to the DMM attribute.

Figure 4-4: General Object and Parameter Structure

Objects The device meta-model is built out of objects, which are grouped into packages.

Objects are assigned an object type, along with three attributes and at least one parameter.

Objects may also contain other objects, resulting in a hierarchy of object types. A listing

of some of the object types is provided in Table 4.1, while the three object attributes are

listed in Table 4.2. The objName and objDescription attributes provide a human readable

description of the object, while the objID provides a unique identifier for the object within

the device model.
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Object Type Child Objects Parameters
Device Communication, Actuator,

Sensor, Setting, Device
Health, Log, Misc. Data,
Subdevices

protocolName, manufacturer,
deviceID, deviceCode, com-
plianceLevel, semantics

Sensor Metric, Setting status, mode, location, cali-
brationState

Actuator Action, Setting status, mode, location, cali-
brationState, safeState

Communication serialProtocol, tcpProtocol,
udpProtocol, . . .

status, numProtocols, active-
Protocol, dateFormat, time-
Format

Log LogEntry —
Misc. Data — CodedEntry, UncodedEntry
Device Health — status, dateTime, bat-

teryLevel, powerStatus,
. . .

Table 4.1: Top-Level Object Types

Parameter Most of the information associated with an object is found within its pa-

rameters. Each parameter contains a data value, along with a set of attributes. The list of

parameter attributes is provided in Table 4.3. Note that some parameter attributes are only

used with specific parameter types. While the set of object types and attributes is closed, a

device model may define its own parameter types and parameter attributes; however, this

threatens the manager’s ability to interpret the device model, and should only occur in

special cases.

Attributes Attributes are used to provide additional information on objects and pa-

rameters. Both objects and parameters have unique identifier attributes, called objID and

paramID respectively, which distinguish each parameter and object across the device model.

Aside from their identifier, objects only contain name and description attributes, which pro-

vide a human readable description of the object.

Parameters may have many more attributes. The dataType attribute describes the

format of the data within the parameter. The access attribute indicates whether the data

is static (meaning that it is a constant property of the device), or whether it can be read,
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written, or executed in the case of action parameters. The modifiedBy attribute indicates

whether the clinician, the managing system, or the device itself last changed the data

value. Finally, the handle attribute contains the handle used by the device’s communication

protocol when reading or writing the data value.

Attribute Data Type Properties
objID Integer Required
objName String Required
objDescription String Required

Table 4.2: Object Attributes

Attribute Data Type Properties
paramID Integer Required
dataType dataTypeType Optional; Default = Unknown
handle String Optional
access accessType Optional; Default = S
modifiedBy actorType Optional
codeName medicalCodeType Coded Parameter Only
codeValue String Coded Parameter Only
pow10 Integer Unit Parameter Only
minIncrement Integer TimeInterval Parameter Only

Table 4.3: Parameter Attributes

Example Object The structure of a generic object is shown in Figure 4-4, using a modi-

fied version of the UML class structure. The figure shows how the object contains attributes

with attribute values, as well as parameters with parameter values and their own sets of

attributes.

A concrete example of a Metric object is provided in Figure 4-5. Here, all three ob-

ject attributes are provided; they explain that the Metric represents the amount of fluid

remaining in an infusion pump cartridge. A set of five parameters contain the actual value

of the Metric and provide more detail on its properties. The parameters used to describe

the example Metric are unique to Metric objects.
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Figure 4-5: Example Metric Object with Attributes and Parameters

4.3.2 Device

The Device package contains the Device object, which is the top-level meta-model object

and represents the device as a whole. The objects within the other packages comprise

the children of the Device object, giving rise to the top-down tree structure of the DMM.

The parameters of the Device object describe device-level properties, such as the device’s

manufacturer, device ID, semantics libraries used, and so on. The Device attributes provide

a name and description of the device.

Simple medical-electrical devices will have only one Device object in their model. A

more complicated device, such as a patient monitor, might be connected to other sensing

devices in a hierarchical fashion. In this case, the model for the patient monitor would have

a Device object to describe the patient monitor, and a Subdevices section containing a list

of child Device objects describing the devices attached to the monitor. This enables the

model to describe various device topologies.

4.3.3 Sensors

The Sensor package contains the Sensor, Metric and Setting objects, which describe the

physiological sensor measurements taken by the device. The Sensor object represents a

physical sensor on the device, with Metric objects for each of the individual measurements
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Figure 4-6: Example Model for a Simple Infusion pump

taken by that sensor. For example, the finger clip sensor on a pulse oximeter may be

responsible for providing heart rate and oxygen concentration metrics. Such a sensor would

be modeled as a Sensor object with two child Metric objects.

The Sensor object has parameters which describe the status, mode, and location of

the physical sensor. Its children objects include Metric objects and Settings objects. The

Metric object represents a channel of data coming from a device sensor. A Setting object

describes sensor parameters and modes. Both Metrics and Settings may contain objects

from the Trigger package, such as Alerts and Timed Triggers. Trigger objects enable the

model to describe asynchronous messages that may be received from the device, as explained

in Section 4.3.7.

Metrics use a variety of parameters to define the range, accuracy, and rate of the data

being returned from the device. All Metrics must contain a Value parameter and a Units

parameter, where the Value parameter is typically coded using a medical term. These

parameters give semantic meaning to the value returned by the device. Other parameters
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include Minimum Value, Maximum Value, Precision, Accuracy, and Sample Rate.

4.3.4 Actuators

Like the Sensor package, the Actuator package contains an Actuator object that describes a

physical actuator on the device, such as a pump, a motorized valve, or a cautery tool. The

Actuator object has two types of child objects, including Action objects, which represent

action commands that can be sent to the actuator, and Settings objects, which describe

actuator settings and modes. Note that the Setting object used here is identical to the

Setting object used in the Sensor package. In fact, the same Setting object is used to

describe the settings for Device, Sensor and Actuator objects.

Action objects contain an ActionType parameter, which provides the semantic coding

for the object; this is similar to the function of the Value parameter in the Metric and

Setting objects. The ActionType parameter represents the executable action; as a result,

it has an access type of “Executable”.

4.3.5 Data

Unlike the other packages, the Data package does not contain a self-titled object. Instead,

the Data package contains a set of objects that provides storage for device data and other

non-physiological data. The package contains three top-level objects:

1. Device Health: Describes the health and status of the device

2. Miscellaneous Data: A repository for non-physiological data, such as patient name
and operating room number

3. Log: Stores physiological data generated by the device, along with settings or actions
modified by the clinician or the ICEMAN

The Device Health object contains a collection of special parameters, which report on

device properties such as battery level, clock, hardware problems, and so on. Miscellaneous

Data contains generic parameters which are either coded (meaning they can be categorized

using a medical term) or uncoded. These parameters represent data that can be stored on

the device to help associate it with a patient. The Log object describes how information is

stored in the device’s logs, and how the logged data can be reported to the manager.
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4.3.6 Communication

The Communication package contains a Communication object, which enumerates the com-

munication protocols accepted by the device. This is especially important for legacy devices,

which need to provide greater detail on their communication protocols. A compliant de-

vice only needs to provide a set of CommProtocol objects, each of which describes the

low-level (OSI layers 1–4) interface to the device. For example, a CommProtocol object

might describe a UDP interface on a specific socket, or an RS-232 interface with a specific

baud and port number. The upper layers of the OSI stack are subsumed by the ICEMAN

communication protocol.

Non-compliant devices need to provide CommProtocol objects, along with descriptive

grammars for their message formats and their abstract protocol. The details of these gram-

mars are discussed in Chapter 6.

4.3.7 Triggers

Like the Data package, the Trigger package defines a set of objects for describing device

data. Rather than helping to store and organize device data, the Trigger package contains

trigger mechanisms for reporting data asynchronously. Metric, Setting, Log and Device

Health objects may contain child Trigger objects. As such, these four object types form a

special subset called Reportable Data objects.

The Trigger object has three implementable extensions, including the Event Trigger,

Timed Trigger, and Alert. The Event Trigger is a Trigger which sends a message to the

ICEMAN when some event occurs, such as a Value parameter reaching a certain level. A

Timed Trigger reports data at some fixed rate. An Alert is an Event Trigger which is

specific to limits on a Metric Value or to alert messages sent by the device.

4.3.8 Future Expansions

Two model objects still under development are Transfer Functions and Data Processors.

Although these objects are shown in the meta-model in Figure 4-3, they are not yet fully

implemented in the XML Schema.
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Transfer Function objects connect Action and Metric objects, describing the anticipated

device reaction in response to an Action as measured by a device Metric. The Transfer Func-

tion object references Metric and Setting Value parameters using parameter IDs, or it can

reference unmeasured physiological metrics via medical codes. It then provides equations

describing how a referenced action will affect the referenced metrics. This equation takes

into account the structure and timing of the device, along with the expected physiology of

the patient. The ICEMAN can take advantage of these equations by using them to predict

the effect of an action on the patient, and consequently on the metrics monitored by the

device. This will enable the system to intelligently close the loop on a device’s metrics and

actions.

The Data Processor object provides a description of the processing the device performs

on the raw metric data. For example, a pulse oximeter might average heart rate values over

a 30-second interval, and return a processed metric called “averaged heart rate”. The Data

Processor object would describe the processed value by referencing the original metric and

describing the averaging process. This would give the managing system a much greater

understanding of the data returned by a medical device.

Both of these objects require the modeling of potentially complicated processes, such

as actuation timing, physiological responses to actuation, sensor response, and arbitrary

data processing. While it may be too difficult or even impossible to describe any transfer

function or data processing method, it should be practical to describe a subset of simpler

cases. Even with this constraint, the addition of Transfer Function and Data Processing

objects would be valuable for device modeling.

4.4 Comparison to IEEE 11073

The 11073 Domain Information Model is the result of years of expert input and develop-

ment, yielding a comprehensive model for describing medical devices. It features flexible

abstractions capable of handling complex monitors and multi-tiered topologies. It covers

remote and autonomous control of devices. It logically breaks the device into distinct com-

ponents, simplifying the modeling language. Because of the many strengths of the 11073
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model, our device meta-model was designed to resemble the structure of the DIM. How-

ever, we identified some of the weaknesses of the DIM, and tried to account for them while

designing the device meta-model.

Lack of flexible implementation language The DIM was not designed with a specific

implementation language in mind. Instead, the 11073-10201 document provides ASN.1

structures to describe each object and their attributes. This abstract description, along with

the massive and complicated coding system used to enumerate and name each component

in the model, makes the DIM rather difficult to understand and to implement. In fact,

various implementation attempts have led to different interpretations of the DIM, as seen

in [43] and [3].

By aligning our device models and device meta-model with XML documents and schema,

we have made our modeling language easier to understand and to use than the IEEE lan-

guage. The DMM itself is available as an XML schema, available in Appendix A. Models

created against this schema can be quickly and easily validated, using standard XML vali-

dation tools. Most importantly, using a human-readable and widely-implemented standard

such as XML makes it much easier to read and understand the resulting meta-model and

device models.

Overly complicated objects and attributes One of the reasons that few device man-

ufacturers have adopted 11073 is that they find the standard too complicated to imple-

ment. For example, consider the treatment of device alerts, which are extremely common

in medical-electrical devices and are, to an extent, standardized by IEC 60601 [28]. In the

DIM, there are three kinds of Alert objects which form a hierarchy of alert management.

Alert events are reported by Alert Scanners, which extend the Unconfigurable Scanner class

within the Extended Services package. Each Alert object contains multiple attribute groups,

detailing the many possible configurations of parallel alarms, latched alarms, alarm priori-

ties, and so on. While this certainly provides a comprehensive coverage of device alerts, it

is overkill for what most devices actually require. Many devices we examined had a simple

interface for describing and communicating their alarm states, and so did not require the

level of management and classification anticipated by the 11073 standard.
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The Alert object in the DMM is designed to simply and conveniently handle one of

the the most common device alerts, physiological limit alerts, and provides extensions for

receiving alert messages related to metrics, device health or device state. The model makes

no assumptions about how the alerts are processed, prioritized or displayed. Instead, it

relies on the device itself and the ICEMAN application to handle these details. This results

in a less powerful alert abstraction, but one which is much easier to implement while still

being flexible enough to convey different alert types.

Assumes devices are compliant Like most standards, 11073 was designed to allow

devices and systems conforming to the standard to communicate. As such, it makes no effort

to consider interoperability with non-compliant legacy devices. This is especially seen in the

other parts of the standard, where unique cables and association protocols are required to

enable communication. It is also seen in the DIM, which makes assumptions about device

capabilities. For example, the notion of Scanner objects being used for association and

asynchronous messaging places a requirement on the software of the device. In this way,

11073 is a prescriptive standard; the DIM designed to not only describe device capabilities,

but also to specify certain capabilities that a device must possess.

Disregarding interoperability with legacy devices is a dangerous strategy in the medical

device domain. Medical devices have life cycles of 10 to 20 years, and are very expensive

to replace. For a hospital to take advantage of the benefits of the 11073 standard, they

would need to replace ALL of their devices with 11073-compatible devices. To alleviate this

transitional burden, the DMM defines a descriptive rather than a prescriptive model. This

allows the model, and the ICEMAN system as a whole, to be compatible with most legacy

devices.
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Chapter 5

Device Communication

The nice thing about standards is that you have so many to choose from.
Andrew Tanenbaum, Computer Networks

5.1 Overview

To achieve interoperability between multiple arbitrary devices, it is necessary to explicitly

specify the structure messages which will be passed between the devices. In the case of

medical device interoperability, the messaging specification needs to characterize all of the

possible data requests and commands that could be sent between the manager (or host)

and an agent (a point-of-care medical device). The IEEE 11073 standard defines such a

messaging protocol; however, the protocol has a prescriptive communications stack and data

structures which force devices to communicate in a specific way. This chapter describes the

issues involved in designing a medical device messaging protocol which is flexible, complete,

and easy to implement. It also specifies such a messaging protocol, similar to the 11073

protocol, which complements the ICEMAN device model. Finally, consideration is given

to how communication might be achieved between the ICEMAN and a legacy device, with

respect to the additional requirements placed on the ICEMAN.
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5.2 IEEE 11073 Messaging Protocol

The IEEE 11073 messaging protocol is described in the 11073-20101 document, entitled

“Application profiles - Base standard” [32]. The protocol described therein is based on

standard ISO/IEC 8327-1, which is the standard for OSI layer 5 [29].

5.2.1 Rationale

There are three major design concerns addressed by the 11073 messaging protocol:

1. Communication stack efficiency, in terms of complexity, bandwidth requirements, and
resource requirements.

2. Accommodation of low-end devices with simple messaging capabilities, as well as
high-end devices with higher data rates and bandwidth requirements.

3. Reduction of the complexity of message generation and parsing, by using fixed data
structures without optional or variable elements.

To address these concerns, the 11073 messaging format is based on a specialized encoding

of ASN.1 data structures, called MDER (Medical Data Encoding Rules, related to the Basic

Encoding Rules). MDER is used to encode data structures within the Domain Information

Model (the object model) while optimizing formatting and parsing, as well as minimizing

bandwidth usage. The designers’ intent was to provide “canned” message templates, which

could be easily generated and parsed, to further optimize communications.

Encoded data is wrapped in a series of header layers, which contain information con-

cerning the origin and the intended usage of the data. This wrapped data package forms

a message, encapsulating the core PDU (protocol data unit), which is ultimately sent over

the network to the receiving device.

5.2.2 Device Model

Device capabilities are communicated to the manager in the form of a device model. The

model is constructed according to the 11073 meta-model, called the Domain Information

Model, or DIM [31]. The model is used as an abstract representation for the properties

and functionality of the device. During device association, the model is exported from

the device to the manager, such that both systems have an identical representation of the
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device. Using the shared model, the manager knows what device properties exist for reading

and writing, enabling it to effectively communicate with the device. It is assumed that the

device has an internal mapping between the provided model and its underlying hardware,

such that it can process model-based commands from the manager.

The mirrored model which is maintained within the manager also represents the current

device state. To keep the manager’s version of the model up to date, any messages sent to

or from the device are passed through the manager’s model. In this way, changes to device

state are reflected in the manager’s device model. The next section describes the details of

11073’s messaging protocol.

5.2.3 Communication Model

The many layers of data on top of the encoded device message form the MDSE (Medical

Device Service Element), which serves as the interface between the application level and

transport level of the communication stack. A high-level diagram of the MDSE is displayed

in Figure 5-1.

One of the main functions of the communication model is to provide and maintain a

transparent replication of the device model within the manager. The device model serves

two functions: it details the capabilities and structure of the device, and it acts as a data

structure for storing and accessing device properties, such as sensor values, status flags,

modes, and so on. When the manager needs data from the device, it queries the appropriate

value in its local representation of the device model, which was previously exported to the

manager from the device during association. It is then the communication system’s job to

ensure that data within the manager’s duplicated device model matches the data within

the device’s own data structures. For example, when the manager requests to GET a data

value from the device model, the communication system requests the particular data value

from the device, and updates the manager’s device model with the appropriate value.

The layers of the communication stack are organized as follows:

1. Application Level Processes. This layer represents the high-level software being
run by either the manager system or the device. In the manager, this layer represents
the software that performs actions on the duplicated object model, and which inter-
prets the data coming from the device. In the device, this level manages the device
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Figure 5-1: IEEE 11073 communication stack and corresponding OSI layers
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sensors and actuators, as well as device state.

2. MDIB - Medical Data Information Base. This level stores the device model,
which is the abstract representation of the device’s capabilities and state. The model
is exported to the managing system during association, enabling the manager to ap-
propriately communicate with the device.

3. CMDISE - Common Medical Device Information Service Element. This
element provides a mapping between the device model and high-level 11073 messages,
such as GET, SET, ACTION, CREATE, and so on. It is based on the ISO/OSI
CMISE (Common Management Information Service Element).

4. ROSE - Remote Object Service Element. The ROSE provides a linkage between
“invoke” and “result” messages through the use of identifier and message-counting
fields. This helps the systems to verify that their messages have been received, and
to detect when messages are received out of order.

5. Presentation Layer. The Presentation layer defines whether the standard data encod-
ing is being used (MDER), or an alternate encoding (HL7, BER, DICOM). This is
described as “negotiating the abstract syntax and transfer syntax between systems”.

6. Session Layer. The Session layer defines the highest-level purpose of the message,
which is either intended for managing the connection or performing data transfer.

All of these layers are present in each message, each with their own fixed structure,

intended to simplify the generation and parsing of the message. To reduce bandwidth, the

MDER defines a set of byte codes for encoding the information within each layer.

5.2.4 Message Types

The message types defined in the CMDISE are described in the standards document 11073-

10201, which also describes the object meta-model[31]. The message types defined are as

follows:

• GET(Invoke ID, Object Class, Object Instance, Attribute ID List)
The Get method enables the manager to request the values of specified object model
attributes from the medical device. The Get Result message returned by the device
contains a paired listing of attribute IDs and their associated values.

• SET(Invoke ID, Mode, Object Class, Object Instance, Modification List)
The Set method enables the manager to change the values of specified attributes. The
Mode argument indicates whether a reply is to be sent by the device. If a reply is
requested, it matches the structure of the Get Result message.

• ACTION(Invoke ID, Mode, Object Class, Object Interface, Action Type,
Action Info)
Like Set, the Action method causes a change in the device. Instead of acting upon an
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attribute, the Action method invokes a device-defined operation, defined by Action
Type. The Action Result message may include a reply field, indicating the result of
the action.

• CREATE(), DELETE()
These methods are used for the creation and deletion of objects within the model.

• EVENTREPORT(Invoke ID, Mode, Object Class, Object Instance,
Event Time, Event Type, Event Info)
The Event Report is the only message which is initiated by the device, rather than by
the manager. It is an asynchronous message, indicating some change in device state
or the triggering of a device alarm.

5.2.5 Issues

There are a number of issues with the IEEE 11073 approach to device messaging. First,

it does not provide sufficient rationale for many of the layers in its communications stack.

Although it explains that some of the fields are redundant or optional, it is unclear why such

redundancy has been incorporated or when to use the optional fields. This makes message

generation and parsing, from a human standpoint, very difficult. In fact, the obscurity of

the protocol causes it to have various oversights and safety issues, as discovered by Mooji

et al. in [40].

Second, it does not consider communication with non-compliant devices. The provided

message set is powerful, as it allows the manager to request or set multiple attributes

simultaneously, request reply messages, create new objects, and so on. However, many

medical devices (certainly most currently available devices) may not have such sophisticated

capabilities. It is unclear how the messaging protocol can be adapted to accommodate

simpler devices.

Finally, the overhead imposed by the many stack layers and fixed message formats

greatly increases message size, negatively impacting the goal of optimizing bandwidth. If we

assume that the manager will have a sophisticated parser and will keep track of information

within the mirrored device model, it may be possible to reduce the size of the message

headers and save messaging bandwidth.
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5.3 ICEMAN Device Association

The ICEMAN messaging protocol has two primary functions. The first is to enable data

transfer to occur between an ICEMAN and a device; this process is described in the data

transfer protocol later in this chapter. The other function is to initiate a communications

session between the ICEMAN and a device. This process, called device association, has a

number of steps:

1. Device Discovery

2. Security Negotiation

3. Message Protocol Negotiation

4. Model Export

5. Connection Monitoring

After a communications session has been established through the association process,

data transfer can begin. Meanwhile, the association process continues to monitor the state

of the communication link, checking for device dropout, detecting packet loss or corruption,

and sending heartbeat (or, presence) signals.

5.3.1 Device Discovery

Device discovery is the process of notifying the ICEMAN that a new device is present,

either directly attached to the ICEMAN or on a common network. In the latter case,

discovery also involves relaying the device’s network address to the ICEMAN to enable

further communication. One solution to device discovery would be to manually notify the

ICEMAN after attaching a new device; however, this is not a plug-and-play solution, as it

requires the user to alert the ICEMAN each time a new device is attached.

There are various physical connections supported by the ICEMAN, including RS-232,

Ethernet, and wireless. Connections can be classified into two types: point-to-point connec-

tions, and network connections. In point-to-point connections, such as RS-232 and USB,

the device is directly attached to the ICEMAN hardware; this makes device discovery very

simple because the ICEMAN can be notified of device attachment automatically by the

connector hardware. Network connections are more complicated, because the device is not
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directly attached to the ICEMAN. In this case, the ICEMAN needs to discover that the

device has joined the network, and then needs to get the device’s address.

Regardless of the connection type, the discovery protocol begins with the device sending

a DISCOVERY message to the ICEMAN. This message will contain the name, manufacturer

and serial number of the device, along with the device’s address for network connections.

After receiving the DISCOVERY message, the ICEMAN will reply with a CONNECT

message, which will assign an ID to the device and, if applicable, supply the device with

the ICEMAN’s network address. The ID number serves to enumerate and name the devices

attached to the ICEMAN. This will help to detect and prevent duplicate devices from

being attached to the ICEMAN. If the device does not receive a reply to the DISCOVERY

message, it should resend the message periodically (every second) until a response arrives.

This will ensure that discovery will occur whenever the ICEMAN is made available.

When a device is attached through a network connection, it must broadcast a short

discovery announcement to a globally static address, such as a fixed UDP address and port.

The ICEMAN will listen on this address, enabling it to detect new devices. Using a fixed

address for discovery simplifies the protocol and promotes plug-and-play connectivity.

5.3.2 Security Negotiation

After device discovery, the device must send an authentication message to the ICEMAN.

This message must include a certificate of compliance, verifying that the device has been

registered with a regulating authority that has verified that the device can safely operate

within the ICEMAN system. It is important that the security protocol be HIPAA compli-

ant so that the ICEMAN system can be used in U.S. hospitals. There are two technical

safeguards required by HIPAA for systems transmitting patient data. The first requires

that integrity controls be in place, to ensure that the transmitted data is not improperly

modified. The second requires that encryption is used to prevent unauthorized users from

intercepting and reading patient data; encryption is especially important when wireless

transmissions of patient data are used.

One strategy for ensuring message integrity, as well as handling user authentication and

authorization, is to use a public key infrastructure, or PKI; this is usually accomplished
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through the use of certificates. PKI is HIPAA compliant, as it is a mature and trusted

electronic signature capability [25]. A popular framework for PKI often used for wireless

and point-to-point communications is the Extensible Authentication Protocol, or EAP [53].

EAP-TLS (Transport Layer Security) and PEAP (Protected EAP) are widely-supported

and secure implementations of EAP [51]. EAP-TLS requires that certificates are present on

both the client and server systems, making it a more secure but harder to deploy in existing

systems. PEAP requires only server-side certificates.

5.3.3 Protocol Negotiation

At this stage, the device will inform the ICEMAN of how it will perform model export and

data transfer. This includes describing the device’s communication protocol version, medical

nomenclatures, flow control and message priority requirements, encryption protocols, and

so on. For a compliant device, a set of standard messages can be used to achieve protocol

negotiation. For a non-compliant device, the protocol must be described within the device

model, which, by the definition of a non-compliant device, is loaded into the ICEMAN

before the device is connected.

5.3.4 Model Export

Now that the device has associated with the ICEMAN, it is ready to export its device

model. The model is sent to the ICEMAN in an encoded XML format, reducing the size

of the model on the wire. The preferred binary encoding for the model is the WAP Binary

XML encoding, or WBXML. This encoding preserves the tree structure of the XML file

without any loss of functionality or semantic information [60].

5.3.5 Connection Monitoring

At this point, data transfer can begin between the device and the ICEMAN. However,

the association process continues to monitor the health of the connection between the two

systems.

Because device disconnections can sometimes occur within an OR, it is important to

periodically check that a device is still responding. This can be accomplished using presence
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Figure 5-2: State machine for ICEMAN Association Protocol
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messages, also known as “heartbeat” messages. These are short messages periodically sent

from one system to another, to check if the receiving device is still on the network. By

sending a presence message from the ICEMAN to a device every 10 seconds, it is possible

to detect device disconnections without congesting the communication channel.

5.4 Data Transfer

Messages sent from devices to managing systems are often built from handle/value pairs.

For example, a data-logging message sent by a pulse oximeter might contain a handle

corresponding to “heart rate” along with of “90”, meaning that the patient’s heart rate is

90 beats per minute. The handle property is likely to be encoded as an integer, or as a

position in the message format, depending on the device communication protocol. On the

managing system end, there must be an application that is looking for a heart rate value,

and that can interpret the handle/value pair sent by the device. In the ICEMAN, this data

transfer process relies on two components of the system.

First, we require that the device model’s communication protocol enables the ICEMAN

to identify and extract the handle/value pair. We also require that the device model contains

a Metric object describing the handle/value pair, such that there is an object available for

handling heart rate data.

Second, we use a semantic database provided by the National Library of Medicine, called

the UMLS, or Unified Medical Language System. Values in the device model, especially

metric values and settings, are associated with codes from the UMLS. Values in the device

model are also associated with device message handles. This results in an implicit mapping

between device message handles and value codes. Because the UMLS database can translate

between semantically equivalent types across different libraries, it is not a requirement that

the applications within the ICEMAN and the device model use the same code for “heart

rate”, or even the same medical library. It is only a requirement that both the application

and device model possess semantically equivalent coded values. In Chapter 6, the UMLS

and how it is used by the ICEMAN is discussed in more detail.

The data transfer process is dependent on whether the device is ICEMAN-compliant
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or non-compliant. The following sections describe the data communication needs of the

ICEMAN system. Protocols for handling both ICEMAN-compliant and non-compliant

devices are described.

5.4.1 Compliance of Devices

A compliant device is a device which is capable of associating with the ICEMAN, export-

ing its model, and using the messaging protocol described below to communicate with the

ICEMAN. There are two forms of compliance, namely, messaging compliance and model

compliance. A device which is messaging compliant is capable of associating with the

ICEMAN and uses the data transfer messages described below. A device which is model

compliant is capable of being modeled using the ICEMAN meta-model. A device is unlikely

to be model non-compliant, unless it uses proprietary metrics not described in any nomen-

clature, or if it describes some data which is unaddressable by the device meta model. To be

considered fully compliant , a device must be capable of both forms of compliance. A fully

compliant device can also be described as a plug-and-play device, meaning that nothing

needs to be changed or added to either the device or the ICEMAN in order for the two to

communicate.

A device which is not model compliant contains hardware, nomenclatures, or software

that is outside of the scope of the ICEMAN meta-model. For example, it may use custom

units on its data, or it may use an outdated physical connector for communication. To

interoperate with the ICEMAN, these devices need to be modified or extended to allow for

compliant communication. For example, a proxy device could be used to translate between

nomenclatures or physical interfaces.

A device which is not messaging compliant can interoperate with the ICEMAN if cus-

tom messages are defined within the device model, enabling data transfer to occur. Non-

compliant messaging is described in Section 5.5.

5.4.2 Rationale and Considerations

As in 11073, messaging between medical devices which are compliant with the ICEMAN

standard will be accomplished with simple operations on the device object model. Relying
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on the device model will help to simplify message generation and parsing. Compliant

messages will use a protocol similar to that of the Simple Network Management Protocol

(SNMP v3) [52]. Non-compliant devices will also need to provide an object model to the

manager, perhaps through a 3rd-party source. This model will not only describe the data

structures within the device, but will also detail the format of the messages accepted by

the device. The message descriptors will form a model extension, which will be added onto

the Communication branch of the model tree. This will allow for plug-and-play operability

between the manager and compliant or non-compliant devices, given that the manager is

provided with non-compliant device models in advance.

For both compliant and non-compliant models, it will be important to explicitly label

which object attributes are readable, writable, or static (meaning, fixed properties that only

need to be read during model export). This can be done by tagging each model element

with an access attribute, which will describe the accessibility of that element. For this

strategy to work, all of the device settings will need to be represented as XML elements,

with XML attributes describing each setting’s accessibility. Another XML attribute might

describe whether the setting had been most recently modified by the ICEMAN or by the

clinician; this will help to prevent the ICEMAN from fighting with the clinician to set a

device variable. Such an attribute might be called the modifiedBy attribute.

Another important consideration is the representation and encoding of the message. In-

stead of using straight XML or custom text strings, it might be advisable to use ASN.1/BER

(like 11073) or something similar to SNMP (a popular and simple messaging protocol).

While ASN.1/BER focuses on compact encoding and flexible representation, we believe it

is more important to have a messaging protocol which is easy to understand and is some-

what human-readable. This is because bandwidth is unlikely to be an issue for most device

topologies and because complicated syntaxes such as ASN.1 may have slowed the adoption

of standards such as 11073. As such, the compliant messaging protocol for ICEMAN will

probably be a blend of XML and SNMP v3, so as to best work within the object model

and to support the lowest number of messages and level of message complexity.
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5.4.3 Message Types

The compliant messaging protocol will use 4 types of message transactions, using messages

similar to the ones found in the 11073 and SNMP standards. A transaction is an exchange

of data between the manager and a device, consisting of an invocation message and an

optional reply message. The messages will be sent as encoded protocol data units (PDUs),

independent of the lower levels of the communication stack. Any data compression or

encryption must be defined by the object model; otherwise, it will be assumed that the

messages are sent and received as byte packets using the encoding described below, in

Message Encoding.

Messages can be viewed as queries that act upon the device model. To facilitate the

lookup of attributes within the model, each attribute is assigned a handle, which is an integer

that uniquely identifies the attribute. When a message is sent to the device, it includes the

handle of the attribute in question, and may also contain a value to be assigned to that

attribute (such as a SET message). Depending on the value associated with an attribute,

the attribute will have either “read”, “read/write”, or “execute” access. For example, a

sensor value can be read, but not written; a setting value can be read or written; and

a calibration procedure can be executed, but not read or written. These access tags are

included in the device model.

All transactions are initiated by the device manager, with the exception of Event trans-

actions, which are initiated by the device in response to device triggers. Invocation mes-

sages initiate the transaction by sending a series of device model attribute handles, or han-

dle/value pairs, along with a command which specifies what the receiving system should

do with the attributes. For example, a GET message will send a list of attribute handles,

and the GET command will instruct the receiving device to reply with a list of attribute

handle/value pairs. Transactions may be confirmed with a reply message, depending on

the state of the confirmation bit in the message header. A reply message is always sent in

response to a GET invocation message.

The four transaction types are described in detail below:
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GET Transaction: GET transactions are requests for information initiated by the man-

ager. They can query one or more model values at a time, and must specify the number

of model values to retrieve in the numAttributes field. Only model attributes or attribute

groups that are tagged as having “read” or “read/write” access can be queried using the

GET transaction; otherwise, an error will be returned. A message counter on the man-

ager keeps track of how many messages have been sent to a particular device, creating a

unique ID for manager-initiated messages. This is used to help pair GET messages with

their responses. The reply to a GET message provides an attribute/value pair for every

object attribute requested by the message. If there is an error processing the message, the

REPLY message returned will contain an error code/status pair instead of the expected

attribute/value pairs, and the replyType will be set to ReplyError.

Format:
GET(messageNum, numAttributes, handle1, . . .)
→ REPLY(messageNum, replyType, numAttributes, handle1, value1, . . .)

Example:
GET(199, 2, 3256, 4123)
→ REPLY(199, getReply, 2, 3256, 120, 4123, 2005-6-10T09:00:00)

SET Transaction: The SET transaction is very similar to the GET transaction in that

it sends a list of attributes as arguments. Instead of querying for attribute values, SET

specifies object attributes and provides new values for those attributes. Only attributes

marked as “writable” can be dynamically set using this method. The resulting REPLY

message, if requested, only returns the message number and a reply type.

Format:
SET(messageNum, numAttributes, attribute1handle, value1)
→ REPLY(messageNum, replyType)

Example:
SET(199, 3256, 120)
→ REPLY(199, SetReply)
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ACTION Transaction This method is similar to the SET method, but instead of acting

upon a “writable” attribute, it invokes the device function specified by action1 within a

device model Action object. If the action method requires any arguments, they can be

provided using the optional argList field within the method call. The REPLY may also

provide some method-specific output data. Only model attributes tagged as “executable”

can be invoked using the ACTION method.

Format:
ACTION(messageNum, actionHandle, argList [Optional])
→ REPLY(messageNum, replyType, dataOut [Optional])

Example:
ACTION(199, 3271, mode 1)
→ REPLY(199, actionReply)

EVENT Transaction: The EVENT transaction is the only transaction initiated by the

device rather than by the manager. It is used to inform the manager of alerts or triggered

events, such as device errors or periodically scheduled log reports. The EVENT message

provides the trigger type (either ALERT, TIMED, or NOTIFY), the handle and data value

associated with the event, and a timestamp of when the event occurred. If a confirmation is

requested, the manager sends a REPLY message back to the device; this REPLY message

contains a replyValue which may not be the same as the value sent by the EVENT.

Format:
EVENT(messageNum, trigType, handle, value, timestamp)
→ REPLY(messageNum, replyType, replyValue [Optional])

Example:
EVENT(312, ALERT, confirmed, 150:Lvl2, 2005-2-3T11:45:00)
→ REPLY(312, eventReply, alarmOn)

REPLY message The REPLY message is sent in response to invocation messages, pro-

viding acknowledgment that the first message was received and possibly providing some

data as feedback. The first two fields in every REPLY message are the same - messageNum
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Figure 5-3: Byte structure of compliant messages

matches the message number of the initiating message, and replyType refers to the type

of transaction. replyType also defines the format of the remaining fields in the REPLY

message. The range of reply types are described in the previous message descriptions, but

are listed below for convenience:

Format:
REPLY(messageNum, replyType=getReply, attribute1, attributeValue1, . . .)
REPLY(messageNum, replyType=setReply)
REPLY(messageNum, replyType=actionReply, dataOut [Optional])
REPLY(messageNum, replyType=eventReply, replyValue [Optional])
REPLY(messageNum, replyType=errorReply, errCode, errStatus)

Note that the errorReply message can be sent in response to any initiating message type,

and indicates that the initiating message was improperly formatted, failed to execute, etc.
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5.4.4 Message Encoding

To minimize the size of packets sent across the network, messages are encoded into a series

of byte values rather than being sent as Unicode text strings on the wire. Because ICEMAN

supports a number of physical connection types (such as RS-232, Ethernet, and wireless),

this section will only deal with the encoding of the data specific to the messages described

above, and not with the encoding of the entire network packet.

Each message consists of a header section and a data section. The data section will

always contain a list of attribute handles or handle/value pairs. The header section contains

the message type; the message number; a list of message options, such as whether the

message is confirmed; and a count of the number of handle/value pairs in the data section.

The structure of the header and data sections is displayed in Figure 5-3.

5.5 Legacy Device Communication

In terms of device messaging, a “non-compliant device”, or legacy device, is one that does

not adhere to the messaging specification described in the previous sections. This is most

likely because it is an older device that uses a proprietary messaging protocol. To com-

municate with such a device, the ICEMAN needs to be informed of the device’s messaging

protocol, including the syntax of each message and the mapping of the message fields to ob-

ject attributes within the device model. This makes the assumptions that the non-compliant

device is at least model-compliant, and has been described by an object model; that the

model has been communicated to the ICEMAN; and that the non-compliant messages di-

rectly map onto accessible attributes in the device model.

The problem of handling non-compliant communications without using a driver can be

broken into three parts. The first part is to establish the communication hardware, along

with its low-level configuration. For example, the manager needs to know if a device is

using a serial interface, and if so, what data rate and parity to use. This information is

already included within the device model.

The second part is the problem of parsing and constructing messages. For example,

when the manager receives a device message, it needs some strategy for identifying the
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message type and separating the message fields.

The final part is the problem of dealing with the device’s communication protocol. This

may include messages or procedures for handshaking, initialization, presence detection, mes-

sage configuration, timeouts, error handling, and communication termination. Depending

on the communication hardware and the elegance of the protocol design, this can either be

a trivial or a complex problem to address.

We claim that the parsing problem can be solved by supplying a grammar file along with

the device model file. This grammar file will describe the characters, fields and sequences

used by the device for communication. The manager can then generate a parser from the

grammar file, enabling it to parse and construct device-compatible messages. Similarly,

a protocol problem can be solved by supplying a protocol file that describes the message

exchanges expected by the device. This will enable the manager to generate a protocol

manager that can handle the messaging requirements of the device, as well as provide an

interface to the application to enable device-application communication. A detailed solution

to these problems, including specific implementations for the grammar file and protocol file,

is provided in Chapter 7.
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Chapter 6

Service-Oriented Device

Architecture

. . . every application must have an inherent amount of irreducible complexity.
The only question is who will have to deal with it.

Larry Tesler, Law of Conservation of Complexity

6.1 Overview

The remainder of this thesis describes an implementation of part of the ICEMAN system.

The implemented component will be referred to as the ICEMAN service-oriented device

architecture, or SODA. The purpose of this component is to provide an interface to compli-

ant and non-compliant medical-electrical devices, allowing them to interact with ICEMAN

applications in a plug-and-play fashion. Conceptually, the SODA acts as a middleware

bridge between devices and applications. The described implementation focuses on non-

compliant device communication, as there are no existing ICEMAN-compliant devices, and

because compliant devices can be treated as a special class of non-compliant devices1. In

this sense, the non-compliant device communication problem is a superset of the compliant

device communication problem.

1For the remainder of this thesis, a “non-compliant device” will be defined as a medical-electrical device
that is model-compliant, but not necessarily message-compliant, as defined in Chapter 5.
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A novel feature of the ICEMAN SODA is that both the applications and devices generate

service objects which are paired by the system. An application service defines requirement

for some device capability or function, while a device service object defines a description

of a device capability. For example, an application service might describe a type of heart

rate measurement that the application requires. This service could then be paired with

a matching heart rate device service, assuming that a device with with such a heart rate

metric were available.

The ICEMAN SODA is written in Java 1.4.2 using the Eclipse IDE. The source code

consists of approximately 8,000 lines of Java, but may increase in size during operation; this

is because the SODA may dynamically generate Java code to handle the communication

protocol and message parsing. The device meta-model is encoded as an XML Schema (see

Appendix A), and the models themselves as XML documents (Appendix B). Grammars

containing abstract protocol descriptions and message parsing descriptions are included in

separate files. Abstract protocols are stored in *.ap files (Appendices E and C), and message

parsing grammars are stored in *.g files (Appendix D). Third-party software includes the

ANTLR parser generator by Terence Parr [47], the UMLS Knowledge Sources nomenclatures

and SQL database by the National Library of Medicine [8], and grammars adapted from

the Austin Protocol Compiler (APC) source code by Tommy McGuire [38].

6.2 Rationale for Service-Oriented Architecture

Traditionally, services within a SOA provide an interface between applications and enter-

prise systems. The ICEMAN SODA pushes this abstraction down to the device commu-

nication level. Within the ICEMAN, services provide an interface between devices (which

supply data and controls) and ICEMAN applications (which consume data and use the

controls). By providing two layers of service objects between the applications and devices,

the applications can refer to generalized data and controls, rather than to device-specific

parameters. Similarly, the device interface objects can use the device services as managed

interfaces to device parameters, regulating their interaction with the devices. Additional

benefits of this architecture are described below.
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6.2.1 Application Validation and Regulatory Concerns

The decoupling of device capabilities from application software makes it feasible to validate

an application and an associated set of application services, independent from the devices.

The application services can then set minimum functionality requirements for potential

device parameters. By validating the application and application services against a set of

minimum requirements, it is reasonable to assume that any group of devices that meets

the set of requirements can safely and effectively perform the operations defined by the

application.

6.2.2 Organizing and Controlling Access to Device Parameters

The application services define atomic procedures on device parameters, which can be vali-

dated along with their associated applications. The device services define atomic access to

parameters (device data, settings, actions), preventing multiple applications from control-

ling a setting, and allowing similar parameters to be combined within a single service.

This architecture has the disadvantage of creating additional layers between the ap-

plications and devices. However, it has the advantage of simplifying the structure of the

services. The application services need only be concerned with specifying the type of data

and control necessary for an application, while device services only handle the access to

and organization of device data. This leads to simpler requirements for each set of services,

and makes it so that services only need to be faced in one direction. Consequently, the

complexity and responsibility of the Application and Device Interface objects are greatly

reduced.

6.3 Concept of Operation

The ICEMAN SODA is the middleware that enables ICEMAN applications to communicate

with medical devices, without relying on platform- or technology-dependent device drivers.

Instead, the SODA generates middleware code for each device, based on the device’s model.

This enables existing legacy devices that are model-compliant to connect to the ICEMAN

system. Most legacy devices ought to be model-compliant, unless they contain semantics
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or functionality that cannot be described by the Device Meta Model.

The SODA has two interfaces - an application interface and a device interface. The

application interface allows applications to request specific device services, such as device

metrics, settings, and alarm information. The device interface enables communication hard-

ware to communicate with the SODA. When a legacy device is connected to the ICEMAN,

the SODA must be told that the device is connected and provided with its device model2.

The goal of the SODA is to compare the application data requirements with the device

model contents, and to “match” requirements with compatible device capabilities. This

matching process serves to confirm that the applications are compatible with the connected

devices, and creates semantically valid links between the applications and the devices.

For the SODA to establish communication between an application and a device, the

following actions are performed (note that the italicized items are only required for legacy

device connectivity):

1. Application is introduced to the ICEMAN: The SODA provides an API which allows
the application to describe its requirements.

2. Device is connected to the ICEMAN: The device is physically plugged into the ICE-
MAN.

3. Device model is loaded into SODA: The device model is introduced and associated
with the appropriate device.

4. Services are generated: The device model and application requirements are translated
into device services and application services

5. Services are paired: Application services are paired with compatible device services.
Checks if all application services are satisfied.

6. Message parser is generated : A message parser is generated from a grammar contained
within the device model.

7. Dynamic protocol is generated : A protocol manager is generated from a grammar
contained within the device model.

8. Application is started: Communication begins between the application and its asso-
ciated devices.

To illustrate these steps, we describe an example scenario in which a patient-controlled

analgesia application uses the SODA to interface with an infusion pump, a respiration

monitor (such as a ventilator) and a heart rate monitor (such as a pulse oximeter device).
2In an ICEMAN-compliant device, device detection and model uploading would occur automatically,

enabling full plug-and-play connectivity
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Figure 6-1: ICEMAN SODA Architecture

The clinical environment is the ICU. The goal of the application is to monitor the patient’s

heart and respiratory rate, and to reduce the bolus setting on the infusion pump if these

metrics drop below a predefined threshold. This architecture is illustrated in Figure 6-1.

First, the application provides its requirements to the SODA, using the provided API.

In our example, the application requires control over the pump settings, metrics from a

respiration monitor, and metrics from a heart rate monitor. The requirement descriptions

are used to generate application services. Next, the devices are attached, and their device

models are provided to the SODA. Each device model describes the device capabilities,

and contains grammars describing a communication protocol and message structures. The

device capabilities within the model are used to generate device services.

At this point, the services are paired based on their compatibility. For example, the
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application might require a heart rate metric that is refreshed at least once a second. This

puts a set of constraints on potential device service matches. If a device service exists

which satisfies the application service, the two are paired. Each service maintains a list

of their paired matches; the pairs are also stored in a service directory within the SODA.

For example, in Figure 6-1, the application service which manages the infusion pump is

connected to two of the pump’s device services, including an action service and a setting

service.

To enable legacy communication, the SODA must determine how to communicate with

the legacy device. Instead of using device drivers, the SODA generates message parsing and

protocol stack code from the grammars included within the device model. The generated

code is encapsulated within a protocol manager object, which manages the data transfer

between the communication port connected to the device and the device’s services.

Finally, the application can begin communicating with each of the three devices. Device

data is sent from a device to an ICEMAN communication port, where the appropriate pro-

tocol manager parses the device message. The parsed contents are sent to the appropriate

device services, which then update their associated application services. After receiving

device information via its application services, the application might send a setting com-

mand to the device. This command would be propagated down through the appropriate

application and device services, then to the protocol manager for translation, and finally to

the device itself.

While the overall concept of operation for the SODA is relatively straightforward, each

architecture component requires careful consideration. The following sections provide de-

tails on the SODA interfaces; the translation of the device model; the creation and pairing

of application and device services; and message semantics translation, using the UMLS

Metathesaurus.

6.4 Interfaces

Because the SODA functions as middleware between ICEMAN applications and medical

devices, it must provide interfaces to both of these components.
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6.4.1 Application Interface

The application interface is only partially implemented by the current ICEMAN system.

A complete interface would consist of an API allowing applications to register with the

SODA and to provide a description of their requirements. In the currently implemented

system, applications are represented as Application objects, which contain methods for

returning requirement description objects. The current implementation is a simplification

of the desired implementation, as it couples Applications with the SODA system instead

of providing an interface for independent application software. However, the interaction

between the SODA and the applications is otherwise the same: in both cases, the SODA

requests a list of requirements from the application, generates application services from the

requirements, and allows the application to send and receive messages to the application

services.

The requirements described by the applications are represented as Application Service

objects, each of which contains one or more Service Requirement objects. Each Service

Requirement must be paired with a complementary device service to enable the Application

to function properly. The Application Service also serves as the communication interface

for the Application. See Section 6.6 for more details on Application Service creation and

service association.

6.4.2 Device Interface

The SODA allows any device to be connected to the ICEMAN in a plug-and-play manner,

given that an appropriate description of the device is provided to the system. If the device

is “fully compliant”, it will automatically upload its model when connected; otherwise, the

model must be uploaded by a clinical engineer prior to connecting the device. The current

SODA implementation expects the device model files to be manually linked to the system.

The device meta-model supports a variety of communication interfaces, including a serial

port (RS-232); an ethernet port (TCP or UDP); a USB port; or a wireless connection such

as 802.11b. Because most legacy devices use a serial port for connectivity, this is the only

interface implemented within the SODA system. In addition, the system defines various

simulated device interfaces, as described in Chapter 8.
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Figure 6-2: Device Meta-Model Object Model

6.5 Device Model Translation

To make it usable by the SODA, the device model is translated from its XML represen-

tation into a Java object model. The objects within the device model are instantiated

as Abstract Model Element (AME) objects, while model parameters are instantiated as

Parameter objects. The structure of the DMM Java object model is displayed in Figure

6-2.

Just as in the device model, each AME and Parameter has a Type, a unique ID, and a

set of attributes. Hash maps are used to efficiently store and query attributes. Reportable

Data Elements extend the AME class, and represent device model objects that may contain

Triggers. The Triggers themselves are also extensions of the AME class.

The AME and Parameter objects within the translated object model are not used for

communication with the device. Instead, they represent a more convenient representation

of the device model, from which it is easier to generate devices services. These resulting

device services are then used by the SODA to enable message passing. The translation
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from XML to objects also serves to validate the XML file, allowing the system to catch any

errors or device-specific parameters within the model.

6.6 Services

The services used in the ICEMAN SODA are similar to the services used in traditional

Web SOAs. Both kinds of services use standardized messages to enable communication

between loosely coupled systems, and both provide a producer/consumer abstraction for

system resources. However, ICEMAN services are dynamic, as they are generated from

applications and devices attached to the system at runtime; this means that the resulting

services are not truly reusable, whereas traditional web services are designed to promote

reusability. Furthermore, ICEMAN services do not operate across a network. Instead, the

services are maintained within the ICEMAN system and facilitate communication between

local components.

SODA services are paired and maintained by an Association Engine, which acts as a

central directory server. However, the services do not communicate via the directory server;

instead, they message each other directly, utilizing the Observer design pattern (also known

as the Publish/Subscribe pattern). This mix of point-to-point communication and directory

server subscription is similar to the hybrid communication model described in [27]. Using

message passing within a middleware system is sometimes described as message-oriented

middleware, or MOM. Like MOM architectures, the ICEMAN SODA utilizes asynchronous

messaging to deal with response delays imposed by medical device communication. This

is a more efficient solution than a synchronous messaging model, which would likely cause

blocking as applications waited for device responses [39].

The SODA contains two kinds of service objects, Application Services and Device Ser-

vices, as shown in Figure 6-3. Both kinds of service extend an abstract Service object, which

contains data structures for mapping to other service objects and update/publish methods

for passing messages. Services also contain a service type, which defines the intended use

of the service and plays a role in service pairing.
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Figure 6-3: Services Object Model

6.6.1 Device Services

A Device Service object is a collection of Parameters and Triggers that define an interface to

a single, atomic device capability, as described by the device model. Device Service objects

are generated from either Abstract Model Elements or Parameters within the translated

device model. To generate a Device Service from an AME, the Parameters and Triggers

within that AME are copied into the Device Service. To generate a Device Service from a

Parameter object, the Parameter changes its Type to “Value” and is copied into the the

Device Service; the resulting Device Service then contains only a Value Parameter and no

Triggers, which is the minimal Device Service construction.

In addition to the data provided by the AME or Parameter, the Device Service is

assigned a Service Type. The Service Type defines what kind of functionality the Device

Service provides; for example, a Metric-type Device Service provides a physiological value,

while a Device Health-type Device Service provides some device status value. The Service

Types used by the SODA service generator are listed in Table 6.1. Note that most Service
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Types map directly onto Device Meta Model elements. The Alert Limit Service Types are

special cases of the Alarm Service which are given their own Service Types for purposes of

convenience.

Device Service Types
Metric Service Misc. Data Service
Setting Service Alarm Service

Device Health Service Alert Upper Limit Service
Action Service Alert Lower Limit Service
Log Service

Table 6.1: Listing of Service Types

Value Caching A Device Service provides an interface between a medical device and

any number of Application Services. As such, it is uniquely positioned to function as a

single-element cache of device data. This enables asynchronous messaging to occur between

an application and a device: data received from the medical device is timestamped and

stored within the Device Service. When an application sends a request to a Device Service

for device data, the Device Service first checks the timestamp to see if the stored value

is sufficiently fresh. If so, the stored value is immediately returned to the application.

Otherwise, nothing is returned to the application, and Device Service records the handle

of the requesting Application Service. In either case, the service requests an updated value

from the device. Upon receiving the new data value, any Application Services which are

still awaiting updates are sent the new value.

Using the Device Service as a cache in this way assures that Application Services re-

ceive device data in a timely matter, independent of the timing constraints of the device

communication protocol or hardware.

Medical Value Type The medical term associated with a Value Parameter has a special

function in identifying a Device Service. Every Parameter within the service is associated

with the this medical term; this is what we refer to as the Value Type of a Parameter (which

is distinct from its Parameter Type and Value). For example, the SampleRate Parameter

in Figure 6-4 does not have a medical term, but it is associated with the Value Parameter’s
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medical term, which is the SNOMED term corresponding to “pulse rate”. In this way, it is

understood that the SampleRate Parameter is referring to the refresh rate of the pulse rate

value.

Device Parameter Access Because Device Services are created from both device model

Parameters and Elements, they either contain a single Value Parameter, or a set of Param-

eters consisting of a Value Parameter and other descriptive Parameters. Device Services

are constructed such that the Types and Handles for each of their Parameters are unique.

As such, a Device Service Parameter can be looked up using its unique ID, Type or Handle

as a key. Each of these three keys are used for specific purposes by the SODA software:

• The unique ID serves as the only globally unique identifier (across all of the Device
Services), and is used to access Parameters across multiple services.

• Applications identify parameters by Parameter Type, as they are unaware of device-
specific Handles. The Parameter Type is also used when checking a Service Require-
ment against the capabilities of a Device Service, as a Service Requirement may require
specific descriptive parameters (for example, a sufficiently high MinValue Parameter
associated with a Setting-type Device Service).

• Parameter Handles are used by the device to update values within the Device Service,
as Handles map to value headings used by the device’s communication protocol.

As is indicated by their usage, a Parameter Type represents a Parameter’s application-

side key, while a Parameter Handle represents the device-side key. Because not all Parame-

ters are accessed by a device (some are static and have their values provided by the device

model), not all Parameters have a Handle; however, all Parameters contain a unique ID

and a Parameter Type.

To illustrate the use of these Parameter keys, refer to the Units parameter in Figure

6-4. This parameter has a unique ID number (104), a Parameter Type (“Units”), and a

Handle (23). The Parameter’s Value is “Hz”, which is standardized using SNOMED term.

An Application Service would access this Parameter using the Parameter Type, whereas a

device would update the Parameter using the Handle. On the other hand, the SampleRate

Parameter has no Handle, because it has a static Value; the device does not change this

value, so no Handle is necessary. However, the Application Service can still access this

Parameter using its Parameter Type (“SampleRate”).
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Figure 6-4: An Example of a Device Service matched with an Application Service
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Device Service Keys The Device Service itself is also accessible through a set of keys.

On the application side, the combination of a Service Type and a Value Type uniquely

identifies a Device Service. On the device-side, the combination of a Service Type and

a Parameter Handle is used for message routing by the Device Interface object. Because

Service Types are used in conjunction with either a Value Type or a Parameter Handle, it

is not necessary that Value Types or Parameter Handles are unique across the entire device;

instead, it is only required that they are unique per Service Type. For example, the same

Handle can be used to refer to an alert message value and a metric value, because an Alert

Device Service has a different Service Type than a Metric Device Service. However, the

device communication protocol would need to specify the appropriate Service Type along

with the Handle when updating a data value. This is actually practiced by the Medibus

protocol, which sends a codepage handle (or, Service Type) along with each value heading

(or, Parameter Handle).

6.6.2 Application Services

An Application Service is the interface between an ICEMAN application and any number

of Device Services. An Application Service contains a set of Service Requirements, each

of which must be matched with a compatible Device Service. Each Service Requirement

consists of three parts:

• Service Type: As described in the Device Services section. Specifies the type of Device
Service that this Service Requirement will be matched with.

• Parameter Requirements: A set of constraints on the device parameter provided by a
Device Service. Parameter Requirements may specify a particular Parameter Type, a
value range defined by MaxValue and MinValue Parameters, access type, etc.

• Trigger Requirements: Requires that device service is able to send asynchronous event
messages to the Application Service, such as timed events or alerts.

Note that Application Services, unlike Device Services, do not have a single Service

Type. Instead, each of their Service Requirements specifies a Service Type. This allows an

Application Service to be matched with multiple Device Services of differing types.

An Application Service is “satisfied” when each of its Service Requirements have been

matched with an appropriate Device Service. In turn, an Application is satisfied only when
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Figure 6-5: Device Interface Engine Object Model

all of its Application Services are satisfied. This provides a simple method for verifying that

the set of device capabilities provided by the attached medical devices is sufficient for the

proper functioning of the Application.

6.6.3 Device Interface Engine

The Device Interface Engine (or DIE) object is the main entry point into ICEMAN SODA.

It contains a set of Factory and Translator objects that are responsible for the creation

and configuration of SODA components. The architecture of the DIE package is shown in

Figure 6-5.

When a device is connected to the ICEMAN, the DIE creates a Device Interface object.

A Device Interface object contains all of the components necessary for interfacing with a

single device, including a set of Device Services; a copy of the translated device model;

a Communication Interface object which manages the communication hardware; and a

Protocol Manager object. If the device is a legacy device, the Protocol Manager source code

is dynamically generated from the device model files, as described in Chapter 7; otherwise,

the static ICEMAN-compliant Protocol Manager is used. In terms of message passing,

Device Interface also serves as an interface between the Device Services and the Protocol
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Manager object.

The DIE contains a Factory object which produces each Device Service from the trans-

lated device model. The following pseudocode describes the procedure used by the DIE to

create Device Services and assign their service types:

for each element e in device model:
if e is a setting,

create a Setting Service
if e is an actuator,

for each action a in e : create an Action Service
for each setting s in e : create a Setting Service

if e is a sensor,
for each metric m in e :

create a Metric Service
for each alert upper limit u in m : create an Alert Upper Limit Service
for each alert lower limit l in m : create an Alert Lower Limit Service
for each alarm message a in m : create an Alert Service

for each setting s in e : create a Setting Service
if e is a device health element,

for each parameter p in e : create a Device Health Service
if e is a miscellaneous data element,

for each parameter p in e : create a Misc. Data Service

After the Device Services are created from the translated device model, the DIE registers

them with the Association Engine.

6.6.4 Association Engine

The Association Engine manages the Service Directory object, which creates and stores the

mapping between Device Services and Application Services. The Service Directory supports

mapping and re-mapping operations, which cause Application Services in the directory to be

compared against each Device Service. Compatible services are paired, using the constraints

described in the Service Requirements objects. The Association Engine determines when

such mapping operations are performed, such as after a device connection or disconnection.

Any service mappings determined by the Service Directory are passed to the Service

objects, causing them to update their list of matched services (as dictated by the pub-

lish/subscribe model). This enables the Service objects to directly communicate with com-

patible services, eliminating the need for a central messaging engine.
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6.7 Message Passing

For data transfer to occur between a legacy medical device and an ICEMAN application,

messages must be passed between the two systems. However, we do not want to require that

the message formatting and semantics used by the device and the application are identical.

It is the responsibility of the SODA to translate between device messages and application

messages, allowing flexible, driverless communication to take place. To accomplish this

task, the SODA defines of a set of message types and methods for translating between each

type. It also utilizes a module for translating between standardized medical nomenclatures,

as described in Section 6.8.

6.7.1 Message Types

There are four types of messages in the ICEMAN system. Each message type has roughly

the same data content as the other types, but represents the data in a different format.

These different formats are necessary for the processing and interpretation of message data

as it traverses the levels of the ICEMAN system.

To help explain the need for all four message types and to describe their function,

consider the following example: A message containing heart rate information is sent from a

pulse oximeter device to the ICEMAN. The message is sent in a proprietary, non-compliant

format, and consists of a value heading (denoting that the message contains heart rate

data) and a data value (the patient’s heart rate, as an integer). This message is called the

Raw Message , because it represents the message data in a raw, on-the-wire form. A Raw

Message does not have a specific structure; the structure is either proprietary to the device,

or it matches the ICEMAN compliant message structure defined in Chapter 5.

The Raw Message is then parsed by the Protocol Manager, which either uses the com-

pliant message parser or the grammar-generated parser to semantically tag the elements

within the message. This tagging converts the message into a Tree Message, in which the

sections of the message are organized as an abstract syntax tree (AST). A tree structure is

used because it is the output format of the parsing software, and because it is a convenient

format to manipulate: because a Raw Message may contain an arbitrary number of values,
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Figure 6-6: Message Passing in the SODA
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Figure 6-7: Device Message and Application Message Structures

the Tree Message may be broken into a set of smaller Tree Messages before being sent to

the Abstract Protocol object. This makes it possible that each message can later be sent to

the appropriate Device Service. To make it easier to divide up, the original Tree Message

is organized such that its subtrees can be broken off and recast as new Tree Messages.

The Protocol Manager converts the Tree Messages into Device Messages, which are

sent up to the manager’s parent Device Interface. The sent Device Message contains the

information from the Tree Message, including the value heading and data value from the

original Raw Message. The Device Interface uses the translated device model to populate the

Device message with device model information. Specifically, the Device Interface matches

the value headings with the Parameter Handle values in the device model, and then uses

the Handle to look up Parameter and Element information associated with the data value.

Using this additional data, the Device Message is fleshed out such that it contains data

values and semantic attributes describing the values.

Finally, the Device Message is published to the appropriate Device Service, and onward

to an Application Service. Before reaching the Application Service, the Device Message

needs to be put into a device-independent form which is understandable by the Application.

Application Messages are keyed by the following three values:

1. Service Code: The type of Device Service the message is sent to, or received from; see
Table 6.1

2. Value Code: A medical nomenclature term associated with the Value of the Device
Service

3. Parameter Type: The type of parameter requested or returned. May be of type Value,
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or a meta-data type such as MaxValue, MinValue, Units, etc.

The Device Service converts the Device Message to an Application Message by append-

ing these values to the message structure. Note that each value refers to either the Device

Service itself, or to the Parameter which serves as the protocol data unit (PDU) for both

the Device Message and the Application Message.

6.7.2 Message Translation

Messages passed from a device to an application (or vice versa) must undergo three message

translations. We will consider the translations from Raw Message to Application Message,

then the reverse set of translations.

The conversion from a Raw Message to a Tree Message is handled by the Parser within

the Protocol Manager. The two messages have the same content; only their formats are

different. To convert a bit string into a binary tree, the Parser looks for chunks of informa-

tion (data values, handles, etc.), extracts the chunks, and arranges them in a hierarchical

fashion. The structure of the binary tree is designed to facilitate message processing by the

Abstract Protocol, and is described in more detail in Chapter 7.

To convert a Tree Message to a Device Message, the Abstract Protocol extracts the

Value, Handle, Message Command and Timestamp information from the Tree Message.

The Value, Handle and Timestamp are used to create a Parameter object, which is the

basic data unit of a Device Message. The Parameter and Message Command are then

stored in a minimal Device Message. The Abstract Protocol makes the assumption that

these values are available in every Tree Message, except for the Date/Time value; this can

be generated if not supplied by the Tree Message. This is a reasonable assumption because

these elements are the fundamental data units of every device communication. The Value

and the Handle provide the interesting data and its semantics, while the Message Command

is either explicitly provided or defaults to an “Update” message. Other Message Commands

include “Error”, “Reply”, “Alarm”, “Set”, and “Get”. After passing the minimal Device

Message to the Device Interface, the Device Interface uses the Handle to add additional,

static meta-data from the device model to the Device Message. This results in a full Device

Message.
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Converting between a Device Message and an Application Message requires adding

information found in a particular Device Service. Because an Application Message refers to

a particular Service Type and Value Type, the Device Service must be queried for its Type

and the Type of its Value Parameter. Note that the Device Message’s Parameter may, in

fact, contain an update of the Device Service’s Value Parameter; otherwise, it contains some

other Parameter, and the Value Parameter information must be queried from the Device

Service. The rest of the Device Message information can just be copied directly into the new

Application Message; see Figure 6-7 for an illustration of the common elements between

Device Messages and Application Messages.

The process of translating from an Application Message to a Device Message similar to

the process just described, but in reverse. The one major difference is that the Tree Message

is skipped completely. Instead, the Abstract Protocol converts the Device Message directly

to a Raw Message, using information described in the abstract protocol grammar. Again,

Chapter 7 provides the details on this transformation.

6.8 Semantics Database - UMLSKS

The message translations described above help to decouple applications from devices by

relaxing the constraints on their message formatting. For example, an Application does not

need to know the device name or the Parameter Handle for a desired value; instead, it just

needs a generic Parameter Type, Value Type and Service Type.

The Semantics Database module further decouples applications and devices by allowing

them to use a variety of medical nomenclatures to describe their data. For example, suppose

a pulse oximeter device model describes its “pulse rate” data using a term from a particular

nomenclature, such as SNOMED. Also suppose that an Application wants to query a “heart

rate” value, which it has described using a LOINC nomenclature code. The resulting Service

Requirement will fail to be matched with the pulse oximeter’s Device Service, because the

nomenclatures and codes are not identical! Ideally, we would like the SODA to determine

that these two medical terms are, in fact, equivalent, allowing the services to be matched.

The National Library of Medicine has developed a database called the Unified Medical
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Language System Knowledge Sources (or, UMLSKS). This database is a unified collection

of popular medical nomenclatures, as well as mappings between nomenclatures. In partic-

ular, the UMLSKS Metathesaurus identifies each term with a Concept Unique Identifier

(CUI). Equivalent terms across different nomenclatures will be assigned the same CUI [8].

The Metathesaurus also imposes a tree-like hierarchy on its medical terms, enabling queries

for parent terms, children, siblings, and so on. This provides a rich environment for es-

tablishing relationships between medical terms across multiple nomenclatures. See [44] for

documentation on the UMLSKS version used in this thesis.

Because not all of the terminologies included in the UMLSKS are applicable to ICEMAN

messaging, only a subset of the available terminologies were included in the ICEMAN

Semantic Database. The included terminologies are listed in Table 6.2.

Abbreviation Name
CPT Current Procedural Terminology
HL7 Health Level Seven v2.5, v3.0
LOINC Logical Observation Identifiers Names and Codes
MedDRA Medical Dictionary for Regulatory Activities
SNOMED CT Systematized Nomenclature of Medicine, Clinical Terms
UMDNS Universal Medical Device Nomenclature System

Table 6.2: Listing of Medical Nomenclatures in Semantic Database

The UMLSKS is stored as a MySQL database. The ICEMAN Semantic Database mod-

ule contains methods that send SQL queries to the database, allowing the ICEMAN to

compare medical terms. The module defines two terms as “equivalent” if they share the

same CUI, or if their CUIs are classified as related or parent/child within the Metathesaurus.

While this is a very simple heuristic, it performs well for most queries. For example, the

LOINC term “BREATH RATE”, the SNOMED term “Respiratory rate”, and the Med-

DRA term “Respiratory rate” are all found to be equivalent by the module. The SNOMED

terms for “Blood Pressure” and “Systolic Blood Pressure” are equivalent due to their par-

ent/child relationship, but “Diastolic Blood Pressure” and “Systolic Blood Pressure” are

inequivalent, as they share a sibling relationship.

Obviously, a more sophisticated set of heuristics would be required for a commercial

ICEMAN system. In particular, considering parent/child concepts to be equivalent might
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not always be appropriate, leading to dangerous service mismatching. The current Semantic

Database module only provides a proof of concept, and was adequate for the purpose of

testing the SODA implementation.
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Chapter 7

Protocol Synthesis

Why program by hand in five days what you can spend five years of your life
automating.

Terence Parr, “An Introduction to ANTLR” [48]

7.1 Overview

Possibly the biggest obstacle to enabling driverless, plug-and-play interoperability with a

legacy medical device is dealing with the communication protocol. Because there have been

no widely adopted standards for medical device communication, proprietary communication

protocols have proliferated. Worse yet, because medical devices are usually only designed to

interoperate with other devices from the same manufacturer, the protocols are often poorly

documented and obtuse. Regardless, it is important to address legacy device communication

because it will likely impact whether or not a standard such as the ICEMAN standard

will be adopted; hospitals can’t afford to scrap all of their existing devices, and not all

manufacturers will adopt the compliant communication protocol defined by the standard.

But how can we achieve interoperability without having to write a custom driver for each

protocol?

The solution can be found in the domains of parser generation and communication pro-

tocol synthesis. A parser generator is a piece of software that uses a language description to

generate a parser for that language. Also called “compiler-compilers”, parser generators are
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Figure 7-1: Dynamic Protocol Design Model, from Tan et al.

traditionally used to generate software compilers from descriptive grammars. By treating

a device communication protocol as a language, we can write a grammatical description of

the protocol and use a parser generator to create software that can parse device messages.

In this way, we replace a platform-dependent driver with a platform-independent grammar,

using a parser generator to transform that grammar into a device message parser.

After parsing the message so we can understand its contents, we need to know what to

do with the contents. For this task, we use a technique called protocol synthesis. Protocol

synthesis is the process of generating protocol software from a higher level specification.

The “protocol” described here is the algorithm that manages the communication between

multiple protocol entities. These protocol entities can communicate both with external

sources (such as devices, applications, and user interfaces) and with one another to manage

protocol state and to perform various checks [54]. Again, we will use a descriptive grammar

and a generator to achieve platform-independence.

The protocol synthesis model used in this thesis closely reflects the work of Tan et al.

in [57]. They separated protocol logic from implementation by using an engine to interpret

an external protocol description file. This allowed them to implement dynamic protocols

that could be interchanged for use with different networks or applications. As shown in

Figure 7-1, their protocol engine consisted of two modules, a state machine and a parser

generator, both under the control of a protocol manager. This same architecture was used
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in the SODA, and is described in more detail below.

7.2 ANTLR Parser Generator

ANTLR, or “ANother Tool for Language Recognition”, is a parser generator tool developed

and maintained by Terence Parr, a Professor of Computer Science at the University of

San Francisco. ANTLR provides a framework for converting grammatical descriptions of

languages into recognizers, compilers, and translators [47]. ANTLR is an especially powerful

tool due to its use of pred–LL(k) grammars, meaning predicate-enhanced LL(k) grammars

for k > 1. An LL(k) grammar is a context-free grammar that is read Left to right with a

Leftmost (top-down) derivation of a sentence, and allows for k tokens of lookahead. This

can be contrasted with LL(1) grammars, which are only designed to support one token of

lookahead, or LR grammars which are parsed bottom-up. The incorporation of semantic

and syntactic predicates enable the pred–LL(k) grammars to handle some context-sensitive

languages. These features enable ANTLR to describe complex languages using simple,

human-readable grammars [49].

ANTLR also includes many other desirable features, including:

• Integration of lexical and syntactic specifications

• Usage of Extended Backus-Naur Form (EBNF) grammar constructs

• Automatic syntax tree construction

• Construction of fast, compact, and readable recursive-decent parsers in a variety of
languages, including C, C++, Java, and Python

• Error recovery and reporting capabilities

For these reasons, ANTLR is arguably the most popular parser generator tool currently

available, with thousands of users in both academia and industry.

ANTLR is used for two purposes within the ICEMAN SODA, enabling the system to

handle legacy device communications. First, it is used to describe and parse messages sent

by legacy devices, replacing part of the functionality of a traditional device driver. Second,

it is used to create a parser generator for the device’s abstract protocol description, enabling

the SODA to generate protocol driver software on the fly.
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7.2.1 Message Parser

Input Grammar files describing the structure of device messages

Output Parser which translates device messages into specifically structured abstract syn-
tax trees

Usage Translates Raw Messages into Tree Messages, which can then be translated into
individual Device Messages by the Protocol Manager

The primary use of ANTLR within the ICEMAN SODA is to generate a parser for

device messages, converting them into manageable abstract syntax trees, or ASTs. By

appropriately constraining ANTLR’s automated AST construction within the grammar, it

is possible to generate trees which are easily broken into Device Messages by the Protocol

Manager.

Although ANTLR is intended to recognize or translate programming languages, it is

powerful enough to handle the recognition of device messaging protocols as well. One

challenge of device message parsing, as compared to programming language parsing, is

identifying token boundaries. In most programming languages, tokens are separated by

whitespace or by symbols such as brackets or parentheses. As such, these elements can

be identified by the ANTLR-generated lexical analyzer (or, lexer) to help separate tokens.

Communication protocols, on the other hand, often used fixed widths to determine token

boundaries; for example, a data value might be assigned four bytes in a message, followed

by a two byte identifier, followed by an eight byte string, and so on. This makes automated

message parsing quite difficult, especially when using context-free grammars. However,

ANTLR’s pred–LL(k) grammars allow for arbitrary lookahead, allowing the lexer to read

in as many bytes as necessary to determine the type of message and the locations of the

values within the message.

Another potential issue was the speed of the generated parser, as traditional language

parsing is certainly not intended to be a real-time application. In my simulations, how-

ever, the ANTLR-generated lexers and parsers proved to be very efficient. This is because

ANTLR intelligently generates efficient if/then/else rules based on its grammar input,

creating parsers which perform similarly to a hand-crafted parser.

120



Figure 7-2: ANTLR Usage: Message Parser and Timed Abstract Protocol Generation

7.2.2 Protocol Generation

Input Static grammar file describing a modified version of the Timed Abstract Protocol
(TAP) language (see Section 7.3 for TAP description)

Output Parser which translates protocol description grammars into Java source code

Usage Dynamically creates a Java driver program for a device, based on a protocol de-
scription written in the modified TAP notation

The SODA also uses ANTLR to generate a translator for the legacy device protocol.

This protocol is written using the Timed Abstract Protocol language, described in Section

7.3. In order to make use of the protocol description grammar, the SODA needs to translate

the grammar into executable code, such as a Java class. This is accomplished by providing

the SODA with a static, ANTLR-compatible description of the TAP language, which is

used to create a TAP parser; this parser is then used to translate the device-supplied

protocol grammar into Java source code. The Protocol Manager then dynamically loads

the generated Java code, creating a driver for the device.

This process, as well as the message parsing process, is illustrated in Figure 7-2. The

static SODA infrastructure is labeled in green, with blue inputs and yellow dynamically gen-

erated code. ANTLR is used to translate the device message description file into a message
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parser, and the static TAP description file into a TAP parser. The message parser takes

Raw Messages as inputs, and produces ASTs for the Protocol Manager. The TAP parser

takes a device protocol description file as an input, and produces protocol management

software as an output.

7.3 Timed Abstract Protocol

While ANTLR is useful for parsing and translating messages, the Protocol Manager still

needs to know what to do with the messages. For some protocols, very little is required

of the Manager; device messages just need to be passed up to the Device Services, and

ICEMAN messages are passed down to the device. However, more complicated protocols

involve initialization messages; error message handling; timed presence, or “heartbeat”,

messages; checksum calculations; and so on. These aspects of the protocol must also be

described by the device model, so that they can be implemented by the Protocol Manager.

Just as with the ANTLR message grammars, we will use a special language to describe the

protocol in a grammar file, and then use tools to translate the file into executable code.

The language we will use to describe the protocol is a modified version of the Timed Ab-

stract Protocol (TAP), designed by Tommy McGuire at the University of Texas at Austin.

The TAP is a small, domain-specific language designed to describe asynchronous message-

passing network protocols [38]. It is based on the Abstract Protocol (AP) notation, as

described by Gouda in [18]. Because much of medical device messaging is based on device-

generated events and timeouts, the TAP is a reasonable choice for the ICEMAN domain.

7.3.1 TAP Structure and Modifications

A TAP file contains a set of Messages, which describe the type and structure of each network

message, and a set of Processes, which maintain the state of the protocol and describe the

protocol’s behavior. In this section, we will provide a brief overview of the TAP notation

and describe the modifications made to the notation for use within the ICEMAN.
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// Outgoing MediBus NOP Message
// Translates a Device Message into a Raw Message
message NOP
begin
esc : 8 bits = "x1B",
id : 1 byte = "0",
chk : 2 bytes = "46",
cr : 8 bits = "x0D"

end
// Incoming Data Message; parsed using ANTLR-generated parser
// Assumed to be a Tree Message
external message DATA1

Figure 7-3: Example TAP Messages

7.3.2 Messages

A TAP Message contains a sequence of fields which are sent as a message between processes

in network. Messages may contain protocol control information, which is handled by the

receiving TAP Process, or data, which must be sent to some network address. Within the

ICEMAN system, there are only two addresses in each TAP network: the device address

and the ICEMAN address. In other words, messages are only sent point-to-point between

a device and the ICEMAN; the TAP is not used to broadcast messages.

The TAP Message is intended to describe the field structure of a Raw Message; how-

ever, we do not use the TAP in this way. As shown in Chapter 6, the Abstract Protocol

object derived from the TAP grammar receives Tree Messages from the device, and Device

Messages from the Device Services (on behalf of the Application). Therefore, our modified

TAP notation needs to be able to handle Tree Messages and Device Messages. Examples

of simple Message definitions are provided in Figure 7-3.

To handle Tree Messages received from the device, we need a Tree Message data type

and functions for manipulating the abstract syntax tree. For example, the rename function

changes the data within a tree node, and append function is used to join two trees. The

example code in Figure 7-4 receives a Tree Message called DATAMSG containing data from

the device, including a date subtree, a time subtree, and set of metric subtrees. The code

extracts the date and time subtrees, then appends these subtrees to each of the metrics
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mdate : tree;
mtime : tree;
mmetric : tree
...
rcv DATAMSG from devAdr ->

foreach DATE in DATAMSG ->
mdate := DATE

endfor;
foreach TIME in DATAMSG ->

mtime := TIME
endfor;
foreach METRIC in DATAMSG ->

mmetric := METRIC;
rename mmetric UPDATE;
append mmetric mdate;
append mmetric mtime;
send mmetric to iceAdr

endfor
[]

Figure 7-4: Handling Tree Messages using the TAP

within the message. Each timestamped metric subtree is then sent to the ICEMAN. The

subtrees are instantiated using the tree data type, and are manipulated using the foreach,

rename, and append functions.

Because the original structure of the Tree Message is determined by the ANTLR gram-

mar file, we do not redefine the structure using a TAP Message description; instead, device

messages are defined as external to the TAP.

We also need to define special functions for manipulating Device Messages sent by the

ICEMAN. We use the $ symbol to access Device Message parameters. For example, the

Message Command within the Device Message can be referenced using $command. The code

in Figure 7-5 shows how a Device Message can be parsed, allowing the TAP to select an

appropriate Message structure to send to the device. The code sends a getData Message if

the Device Message is requesting a metric, or a getStat Message if it is requesting a setting.

Although getData and getStat are static TAP Messages, it is also possible to use Device

Message data to populate a TAP Message, allowing the ICEMAN to send customizable

messages to a device.
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rcv msg from iceAdr ->
if msg.$command = "GET" ->

if msg.$parentType = "METRIC" ->
send getData to devAdr

[] msg.$parentType = "SETTING" ->
send getStat to devAdr

fi
fi

[]

Figure 7-5: Handling Device Messages using the TAP

7.3.3 Processes

A TAP Process contains state variables and three types of Guards:

Receive Guard Triggered when a specific Message is received, from either the device or
ICEMAN address. This usually results in some data within the received message
being forwarded to the other address.

Time Guard Uses a timer to trigger a set of actions, such as sending a heartbeat message
or resending a request.

Local Guard Triggers based on the state of a local variable. This is often useful for
initialization sequences or for reacting to protocol state.

Each Guard contains a set of Statements which are executed when the Guard is trig-

gered. Statements either send messages or perform simple computations such as assignment

or basic arithmetic. The TAP supports if/then conditionals and do loops; to simplify

the handling of Tree Messages, a foreach command was added which loops over specific

branches of a Tree Message. Examples of a Receive Guard and a Local Guard are provided

in Figure 7-6.

One problem with the TAP is that it is not intended to be a complete, standalone lan-

guage. As such, it was designed to allow externally-defined C functions to be called on TAP

variables, enabling the protocol to handle complicated computations such as encryption and

checksum verification. Our modified version of the TAP generalizes this process by using

a macro function definition, allowing the programmer to define external functions in some

arbitrary language. The example code in Figure 7-7 shows how a checksum macro is used

to compute a checksum for a message being sent to a device.
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// Receive Guard - Triggered by a SETTINGS message from the device
// Breaks the SETTINGS message into individual SETTING Tree Messages,
// renames each message, and sends it up to the ICEMAN
rcv SETTINGS from devAdr ->
foreach SETTING in SETTINGS ->

treemsg := SETTING;
rename treemsg UPDATE;
send treemsg to iceAdr

endfor
[]
// Local Guard - Triggered when state_startup is set to TRUE
// Used to manage state of handshaking process
state_startup ->

state_startup := false;
// send ICC to devAdr; //
state_wait4ICC := true

[]

Figure 7-6: Example TAP Guards

macro checksum;
...
rcv ID from devAdr ->

IDresp.name := "ICEMAN";
IDresp.idnum := "0161";
IDresp.chk := "";
IDresp.chk := checksum ( IDresp.toBytes() );
send IDresp to devAdr

[]

Figure 7-7: Example of a TAP Macro
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The usage of macro functions suggests that there is language-specific code associated

with a TAP file. However, we do not want to supply such software with the TAP file,

because the whole purpose of the TAP is to avoid committing to a specific implementation

language! Because macro usage can be limited to a narrow domain, such as computing

checksums and performing encryption, it is reasonable to assume that an ICEMAN system

will provide a library of common macro functions. This will allow the TAP to have extended

capabilities, without requiring the TAP to include language-specific code.

7.3.4 TAP Parser

The modified TAP notation provides a language that can be used to describe medical

device protocols and to handle ICEMAN message types. The notation is formally described

within the SODA as an ANTLR grammar, which is used to produce a TAP parser. This

parser accepts a protocol description written in the modified TAP notation, and produces

a specially-formatted syntax tree that conveniently organizes the protocol. The SODA uses

the TAP syntax tree to generate Java source code that acts as a protocol driver. The

generated Java code extends the Abstract Protocol class, allowing the SODA to use the

generated code as an Abstract Protocol object. The process of generating protocol code is

described in the next section.

7.4 Protocol Compilation

As shown in Figure 7-2, legacy device communication protocols are described to the SODA

on two levels. First, the message structure is described using an ANTLR grammar, resulting

in a message parser object. This message parser accepts Raw Messages from the device and

outputs Tree Messages. Second, the protocol behavior is described using a TAP grammar,

which is parsed by an ANTLR-generated TAP parser to produce a syntax tree. The TAP

syntax tree is then fed into a TAP Compiler object, which transforms the tree into executable

Java source, extending the Abstract Protocol object. In this way, two descriptive files

are used to dynamically generate two pieces of device-specific Java code - a Parser and a

Protocol. These pieces of code are then used by a Protocol Manager object to manage the

127



communication between a device and its Device Service objects.

The Protocol Manager uses Parser Generator and TAP Generator objects to generate

Java code from the grammar files. Both Generators use the java.lang.reflect package

to dynamically load the generated source. Because the rest of the SODA software needs

to be able to interact with the dynamically loaded objects, a set of Java Interfaces are

implemented by the dynamic objects. These Interfaces include ILexer, IParser, and IPro-

cess, for the Lexer, Parser, and Process objects, respectively (the Abstract Protocol object

contains Message and Process objects, as described by the modified TAP). The IProcess

Interface defines methods that allows the Protocol Manager to send Device Messages and

Tree Messages to the Abstract Protocol. Similarly, the ILexer defines methods that allows

the Protocol Manager to pipe Raw Messages into the Lexer object.

The compilation description above references Java packages and interfaces; however,

the protocol complication technique could just as easily be implemented in a wide variety

of languages. In fact, dynamically loading generated code would have been simpler in a

dynamic language such as Perl or Python than it was in Java. Again, the objective of our

protocol synthesis technique is to enable the ICEMAN to generate protocol management

software, in any language it chooses, from an abstract description of a device communication

protocol.

Although it may seem complicated to define modified protocol languages, to use a parser

generator to translate device messages, and to dynamically load Java code, the resulting

solution provides a simple and flexible interface for describing legacy device communications.

Rather than having to design and implement device drivers for every device and every

platform, our protocol synthesis solution allows devices to describe their protocol messages

and behavior in a single pair of grammar files. This provides a more powerful and extensible

solution than device drivers. Furthermore, it facilitates the verification of the protocol (the

TAP was initially designed for protocol verification) and makes it easier for manufacturers

to change message formatting or protocol details, due to the decoupling of the message

description, protocol description and driver implementation. Although the modified TAP

notation used in this thesis is far from a final product, it provides a proof of concept for the

protocol synthesis solution described above.
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Chapter 8

Simulation and Testing

Foolproof systems do not take into account the ingenuity of fools.
Gene Brown

To demonstrate the functionality of the ICEMAN SODA software, two testing strategies

were used. First, individual components of the software, such as the service matching

algorithm and the semantic database lookup, were tested using JUnit regression testing.

This helped to ensure that fundamental pieces of the architecture continued to function as

the code was developed. Second, the entire system was tested against simulated medical

devices, demonstrating the end-to-end messaging capabilities of the SODA. Both sets of

tests were ultimately successful, providing strong support of the viability of the SODA and

its protocol synthesis strategy.

8.1 Unit Testing

The two aspects of the SODA which were most heavily tested by JUnit were the semantics

database interface and the service creation and matching algorithms. These two components

represented complicated element of the SODA which needed to produce reliable, determin-

istic results, making them excellent candidates for regression testing. Many of the other

components did not require heavy testing, or did not lend themselves well to regression

testing. For example, the protocol synthesis components, which generated Java files, were

tested by hand; checking that the resulting Java files were compilable was a much simpler

test than writing huge test cases to verify each generated file.
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Semantic Database Tests The semantic database interface provided methods for look-

ing up nomenclature codes within the UMLS SQL database. More importantly, it provided

methods for comparing nomenclature codes, to check for semantic equivalence. By grouping

identical concepts under Concept Unique Identifiers (CUIs), the UMLS provides a simple

way to determine if terms are equivalent. In addition, the UMLS provides mappings be-

tween related terms, allowing for term relationships such as “similar”, “parent”, “child”,

“sibling”, and so on.

Correctly identifying equivalent terms is important for the ICEMAN SODA, as services

are matched based on their semantic types. Two related terms must be identified as related,

or a necessary service association might not be established. Similarly, two unrelated terms

must be identified as different, to prevent dangerous service mismatches.

The unit tests defined sets of medical terms that we believed should be treated as

equivalent or inequivalent by the SODA. The tests allowed us to verify the proper operation

of the SQL queries and the semantic matchings. The semantic database code was then tuned

based on the outcomes of the unit testing, so as to maximize appropriate pairings and to

minimize inappropriate pairings.

Unit tests were also used to test the performance of the interface, in terms of query

speed. Because there might be hundreds of services paired for each device, and because the

UMLS database contains millions of entries, it was important to check the speed of each

query. To help alleviate the lookup time issue, the interface caches the result of each query,

making future queries on the same term much cheaper.

The tests found that each query only required a few milliseconds to execute, and that

cached values could be returned in less than a millisecond. As a result, the rate limiting

step in device association is parser generation using ANTLR, rather than service generation

and matching.

Service Creation and Matching Tests At the heart of the SODA are the processes of

Device Service creation from a device model; Application Service creation from application

requirements; and service matching based on the requirements and capabilities of each

service. Unit testing was used to ensure that these processes were implemented correctly,
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by accounting for the many service configurations that might allow matches or mismatches.

First, the device model translator was tested to ensure that all parameters and attributes

were being properly extracted from the device model XML file. Then, the Service Require-

ment and Parameter Requirement objects were tested to verify that resulting Application

Services would be able to specify appropriate matches. Next, the functionality of the ser-

vice generators and services themselves was tested. Finally, the operation of the service

directory matching algorithm and service messaging was checked, showing that the services

were successful in their intended purpose of data exchange.

Sufficiently demonstrating the functionality of the SODA services allowed the rest of

the testing to focus on the protocol synthesis code and on the end-to-end messaging of the

system. As these elements involve multiple components and dynamic code generation, we

decided to test these parts of the system using simulated devices and applications.

8.2 Simulation Testing

To test the end-to-end performance of the SODA, we simulated the interaction between

various medical devices and simple monitoring applications. The purpose of the simulations

was to demonstrate the functionality of the protocol synthesis software, as well as the

functionality of the message translation and service matching components.

Instead of using actual devices, we simulated devices using device “stubs” which could

send and receive Raw Messages. The stubs were based on existing protocols for actual

medical devices; as such, they mimicked the message structure and timing of actual devices.

Stubs were based on capability and protocol descriptions found in device manuals. The

simulated devices all used RS-232 as their communication medium.

Each simulation focused on handling the particular timing and messaging capabilities

of the simulated device. For example, one simulated device only returned metrics at a

fixed rate, while the others allowed the user to request specific metrics. Device models

and protocol grammars were created to accompany each device stub, just as models and

grammars would be supplied with an actual device. As such, the only “simulated” aspect

of the tests was the stub itself.
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Figure 8-1: Real-Time Trend Data from the Nellcor N-560 Pulse Oximeter

The following sections describe the simulated devices and the unique features of their

communication protocols. The model and grammar files are also discussed, as well as their

ability to enable driver-independent communication between the SODA and the stub.

8.2.1 Nellcor Pulse Oximeter Protocol

The first and simplest simulated device was the Nellcor N-560 pulse oximeter. The protocol

was designed to output trend data to a printer; as such, the device does not accept any com-

mands from the connected system. Instead, the device outputs printer-friendly data every

2 seconds, and outputs heading lines (including alarm limit settings) every 25 lines. While

this makes for a very simple protocol, it is not directly compatible with the request/reply

messaging format preferred by the ICEMAN.

The N-560 sends a metric report containing pulse rate, pulse amplitude, and blood

oxygen saturation (SpO2) every two seconds. Each metric report also contains a timestamp

and a status value, which reports device errors and alarms. The heading contains SpO2 and

pulse rate information, as well as a mode based on patient age. This data is reported every

25 lines, or when a setting is changed.
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Because the protocol is meant to be printable and human readable, the data is easy to

parse; metrics are separated by tabs, and the settings have fixed heading names. These

delimiters simplify the structure of the parser grammar. Similarly, the TAP grammar only

needs to handle the reception and rerouting of trend data to the SODA.

Device model translation results in the creation of seven services, including the three

Metrics and a pair of Alarm Limits for both the pulse rate and SpO2 metrics. A complete

device model would also need to include a read-only Setting for the device mode, and Device

Health or Alarm services for the status data. These were left out of the device model to

simplify the simulation.

The goal of the simulation, aside from demonstrating the efficacy of the device model,

grammar files and SODA, was to test the use of the Timed Trigger within the device model.

A Timed Trigger, which is associated with a Metric or any Reportable Data object, enables

the application to control how data is returned to the Application Service. When the Trigger

is off, the application must explicitly request data from the device. When the Trigger is on,

data is automatically sent to the Application Service in a synchronous manner.

Although the N-560 does not explicitly offer this level of control (its Timed Trigger is

always “on”), the Device Service can simulate this functionality for the Application Service.

When the Timed Trigger off, the Device Service will just store each update in its single-

element parameter cache, until the Application Service requests the latest value. When the

Trigger is on, the Device Service forwards each metric update to the Application Service.

This gives the application more control over the device, despite the limited capabilities of

the protocol.

8.2.2 Draeger LUST Protocol

A slightly more complicated protocol is the Draeger LUST protocol (German acronym for

List-controlled Univeral Interface Driver) used for the Evita XL ventilator1. The Evita XL

is a long-term ventilator for intensive care. Because ventilators are far more complicated

than pulse oximeters, the Evita XL LUST protocol describes dozens of metrics, settings,

1Manual available: www.draeger.com/MT/internet/download/trainer/evita/evita_trainer_large.

zip
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modes and alarm values. For the sake of simplicity, the device model only implements a

handful of metrics, settings, and modes.

Despite the complexity of the ventilator, the LUST protocol is very simple. It consists of

four message types, called “telegrams”. With the exception of the alarm telegram, telegrams

are sent in response to a request character sent by the system. The four telegrams are as

follows:

1. Identification: Contains device name and ID, along with a description of all measured
values to be sent in Data telegrams

2. Status: Contains values for all settings, alarm limits, and mode values

3. Data: Contains values for all updated metrics, as well as status messages

4. Alarm: Asynchronous messages that report alarm status changes

The LUST protocol is designed to be very compact; as such, telegram fields either have

fixed lengths or are delimited by special ASCII characters. The condensed nature of the

protocol makes it nontrivial to parse with a context-free grammar, but not impossible. The

TAP-generated protocol is only responsible for forwarding system requests to the ventilator,

and then routing telegram elements to the system. The generated protocol is made even

simpler by ignoring the Identification telegram, which contains information already present

in the device model. As a result, the protocol need only consider the other two synchronous

telegrams and the alarm telegram.

The goal of the system application was to test the end-to-end requesting of device

data, from the Application Service down to the device and back. The test application

demonstrates that the system can successfully request a metric, request a setting value, and

gracefully handle queries for non-existent parameters. The erroneous query is caught by

the Application Service, which is unable to find an associated Device Service that matches

the queried parameter.

8.2.3 Draeger MEDIBUS Protocol

The final simulated device is Draeger’s Apollo anesthesia machine, which uses the MED-

IBUS protocol. The MEDIBUS protocol is by far the most complicated of the simulated

device protocols. It is designed to allow multiple devices to connect to a PC on the same
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( DATA_MSG
( HEADER

( IDNUM 050 )
( CHANNEL 0 )

)
( METRIC

( HANDLE 01 )
( VALUE 34 )

)
( MODE

( HANDLE 02 )
( VALUE Flow monitoring on )

)
)

Figure 8-2: Example LUST Telegram after Parsing

serial line, and utilizes a complex multiplexing scheme that enables low-rate requests and

high-rate waveforms to be sent simultaneously over the line. Other features of the MED-

IBUS protocol include:

• Heartbeat messages, for device presence detection

• Initialization and handshaking message sequences

• Configurable metric messages

• Checksum verification of message integrity

• Interwoven high-rate and low-rate messages

• Multiple code pages, allowing handles to be reused to accommodate the large number
of communicable parameters

The device stub does not currently support high-rate messaging or message configura-

tion. However, it does support heartbeats, the initialization sequence, checksum creation

and the use of multiple code pages.

The MEDIBUS protocol has a command/response structure, meaning that messages are

sent by the device in response to system commands. Both the command and response mes-

sages are built from arrays fixed-length byte fields. The TAP-generated protocol manager

is used to handle heartbeat messages and the initialization sequence. A macro function is

used to handle checksum verification and creation, using a proprietary algorithm. Because

the TAP handles the low-level management of the MEDIBUS protocol, the application only
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needs to concern itself with requesting and receiving device data. Although only part of

the protocol is described by the TAP grammar, it ought to be a sufficient amount to enable

the ICEMAN to interact with an actual Apollo machine.

The purpose of the MEDIBUS simulation was to test the limits of the TAP grammar,

in order to ensure that the TAP was sufficient to handle complicated protocols as well as

simple ones. The test application only sends simple requests to the device, similar to the

LUST test application. Meanwhile, the TAP-generated protocol manager deals with the

requests while also managing the heartbeats and handshaking messages.

8.3 Performance

The SODA implementation described in this thesis was designed as a proof-of-concept sys-

tem. As such, very little effort was made to address the performance of the software. Re-

gardless of implementation, the architecture itself imposes computational overhead through

its layered processing and translating of device messages. The system also generates a great

deal of protocol code and instantiates large numbers of service objects. For these reasons,

it is worthwhile to briefly address the performance of the system.

The simulations described above were used to test the round-trip messaging performance

of the system. Because the simulated device stubs responded instantly to queries, the tests

only measured the time required for a message to pass from the Application down to the

communication layer and back. During this process, SODA messages undergo multiple

translations and request least one semantic lookup. The tests revealed that the round-trip

messaging time was approximately 30 milliseconds. This is probably tolerable for most

devices, considering that communication latency and device response times are probably on

the same order of magnitude.

The most time-intensive aspect of the simulations was the synthesis and loading of pro-

tocol code using the ANTLR parser generator. Synthesizing and loading both the message

parser and protocol manager required a few seconds, depending on the complexity of the

protocol. However, these expensive operations only occur during startup, when a new device

is introduced to the SODA.
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The memory required by the simulations was also very reasonable. The Eclipse SDK

allocated about 18 MB for the SODA simulations, regardless of which device was simulated.

However, the device stubs themselves were allocated about 6 MB of memory, which is

surprising given their simplicity. This suggests that the SODA simulations have a relatively

small memory footprint.

It is worth noting that the tested simulations were somewhat simplistic. A real-world

device model and application would likely place much higher demands on the SODA system,

with huge numbers of generated services and frequent message passing. The tests above only

indicate that the SODA is likely to be a reasonable solution for medical device monitoring,

assuming that moderate messaging latency is acceptable and that a modern computer is

used to run the ICEMAN software.

8.4 Results

The outcomes of the unit testing and simulations were favorable. The unit tests ensured that

nomenclature lookup and service matching operated reliably. This allowed each simulation

to start up with a solid foundation of semantically-linked services.

Each of the simulated devices helped to stress test part of the SODA. The Evita XL

ventilator’s LUST protocol used long, complicated “telegrams” with arbitrary numbers of

fixed-width and character-delimited fields. Successfully handling these messages demon-

strated the ability of the generated message parser to parse complicated Raw Messages.

The N-560 pulse oximeter protocol only returns device data in a synchronous, low-rate

fashion. Using the Timed Trigger mechanism available in the device meta-model helped

to decouple the Application Service queries from the constraints on the device protocol.

Furthermore, the Device Service caching and request queuing helped to alleviate issues

with query latency.

Finally, the MEDIBUS protocol was a big challenge to describe using the TAP grammar,

due to its use of message multiplexing, checksums, heartbeats, and initialization sequences.

By using the timed guards and macros available in the modified TAP, much of this difficult

protocol was successfully implemented.
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All three protocols were at least partially implemented by the simulation files, allow-

ing basic communication to occur with each of the simulated devices. This demonstrates

that the ICEMAN SODA is certainly capable of enabling plug-and-play interoperability

for simpler medical devices, and is likely capable of handling complicated medical devices

as well. The success of the SODA was largely dependent on the successes of the service

matching and protocol synthesis software. By demonstrating that these two components

can allow a device to communicate with a management system without driver software, we

can convincingly argue that the ICEMAN provides a potential solution for plug-and-play

interoperability.
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Chapter 9

Conclusion

Everything that can be invented has been invented.
Charles H. Duell, Commissioner, U.S. Office of Patents, 1899

This thesis describes a standard for interoperability between point-of-care medical-

electrical devices and a central management server. The standard, called the ICEMAN

standard, is designed to simplify device connectivity and to provide easier access to device

data and controls. The standard utilizes a device meta-model, which is used to build de-

scriptions of device capabilities, and a messaging standard, which supports plug-and-play

connectivity.

In addition to the ICEMAN standard, this thesis also describes a partial implementation

of an ICEMAN system. The implemented component, called the ICEMAN SODA, supports

legacy device connectivity through the use of a protocol synthesizer and service generation

and matching. The functionality of the SODA was demonstrated by testing it against three

simulated devices, each with very different capabilities and communication protocols.

9.1 Discussion

Although the ICEMAN SODA’s solution for legacy device connectivity shows promise, its

unorthodox design may concern some medical device engineers. For example, existing plug-

and-play systems do not use protocol synthesis to handle communication with proprietary

protocols; neither do they use double-layered “service” objects to provide an interface be-

tween applications and devices. Existing medical device connectivity systems use driver

139



software because drivers are easier to implement (at least individually) and arguably easier

to verify than dynamic connectivity software. If protocol synthesis is a plausible solution,

why hasn’t it been done before? And if device models and service objects are a solution to

device interfaces, why hasn’t the IEEE 11073 standard been more successful?

Our answer is that the protocol synthesis solution, if carefully implemented, can be made

to work reliably and safely for most medical devices. However, it is not intended to be a long-

term solution. Eventually, the medical device community needs to adopt communication

standards, such as the one described in Chapter 5, to enable more reliable connectivity.

The adoption of standards will also enable the device modeling approach used in this thesis

(and in 11073) to be more effective; this is because devices will be more model-compliant

if device manufacturers are referring to the modeling language standards while designing

their devices.

Until standardization is achieved, there needs to be an intermediate standard providing

a step between zero compliance and full compliance. Unlike 11073, the ICEMAN and the

ICEMAN SODA directly address this need. There are many reasons why it is necessary to

provide support for legacy devices until a standard is adopted, and there are also enabling

factors which make it practical for medical devices to support a “dynamic” legacy standard.

Some of these reasons and enabling factors are described below.

Life cycle of medical device One reason for providing support for legacy devices is the

long life cycle of medical devices. Unlike personal computers, which are often replaced every

few years, medical devices are expected to last up to 15 years. They are also very expensive

to replace, often costing anywhere from a thousand to tens of thousands of dollars. This

makes it hard to replace hospital equipment in large volumes. A standard which is flexible

enough to work with both compliant and non-compliant devices is therefore much more

likely to be successful in most hospitals.

Standards should be realized, not invented Another reason for implementing a par-

tial standard is to elicit feedback from clinicians and device manufacturers. Although many

parties contributed to the development of 11073, the final product was not appealing to

device manufacturers, as they found the standard too complicated and constraining. By
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allowing manufacturers to create device models without having to change their devices, the

manufacturers will be more likely to experiment with the device meta-model and to offer

feedback. Likewise, hospital clinical engineers will be more likely to utilize the ICEMAN

standard if they can do so without having to acquire new devices or alter their current

business practices. By making it easier for both parties to adopt the legacy standard, best

practices can emerge which will contribute to the formation of a full connectivity standard.

This follows the advice of technology strategist Gordon Benett in [5], that the best stan-

dards are not the ones which are invented; they are the ones which naturally evolve from

best practice.

Constrained nomenclature Protocol synthesis and dynamically generated interfaces

are impractical and unwieldy in domains that have poorly constrained semantics. For

example, USB devices generally require device drivers, because there is no limit to the

kind of information that a USB device might exchange with a computer. However, USB

devices that are classified as human-interface devices (HIDs) do not typically require drivers

because their communication is constrained to inputs from keyboards, mice, joysticks, and

other such devices. The semantics for these devices can be enumerated and standardized,

eliminating the need for complicated driver software.

Similarly, medical devices have a somewhat constrained nomenclature. Although there

are a huge range of medical devices with complicated capabilities and data, the information

communicated by medical devices is quite limited. Medical devices typically communicate

physiological values and waveforms, either synchronously or asynchronously, as well as de-

vice settings and alarms. Models such as the 11073 DIM and the ICEMAN DMM are

feasible because of these assumptions made about medical device communication.

Well-developed nomenclature Although the set of semantics needed for medical de-

vice communication is far greater than the set needed for USB HIDs, medical devices can

take advantage of the well-developed medical nomenclatures developed over the past few

decades. While the HID standard specifies huge tables of proprietary terms for PC periph-

eral communication, the ICEMAN standard can leverage existing nomenclatures found in

the UMLS Knowledge Sources. Even better, the UMLS provides mappings between many
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nomenclatures, further simplifying the task of providing semantically-enriched data. This

makes it practical to implement a service-based middleware, as medical terms are already

provided and can be compared for equivalence.

The motivators and facilitators for a dynamic legacy device protocol provide a rationale

for the ICEMAN design. In particular, they show that a standard similar to 11073 can be

successful, but only if it is made flexible enough to support gradual adoption by industry and

clinicians. Furthermore, they show that the medical device domain is uniquely positioned

to allow for model-compliant interoperability as a stepping stone toward fully-compliant

interoperability.

9.2 Future Work

While the ICEMAN standard and SODA implementation described in this thesis are valu-

able as proofs of concept, they both require further development. In particular, the following

items would be required for a finalized ICEMAN system.

Device Meta-Model Transfer Functions and Data Processors As described in

Chapter 4, the device meta-model is not complete. In order to support closed-loop control

applications, the DMM needs to contain Transfer Function elements that describe the timing

and characteristics of an actuation command. It also requires Data Processor elements to

allow the model to describe any processing or computation performed by the device. Both

of these elements require sophisticated mathematical descriptions of device processes; for

the sake of simplicity, they were left out of the current version of the DMM. However, they

could probably be captured in the XML device model using an extension such as MathML1.

Generalized Message Parsing Protocols such as MEDIBUS allow messages to be in-

terwoven in complex ways. A single context-free parser, such as the parsers generated by

ANTLR, may not be capable of determining which bytes belong to which message. To han-

dle complicated legacy messaging protocols, it would be necessary to implement multiple

1See http://www.w3.org/Math/
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parsers, and perhaps multiple TAP protocol managers. Some parsers would be responsible

for routing bytes belonging to the same message “stream”, while other parsers would parse

the resulting streams and generate Tree Messages. By organizing the multiple parsers and

TAP managers in a hierarchy corresponding to each message stream, it would be possible

to handle complicated protocols with arbitrary amounts of multiplexing. Such a strat-

egy would also be required to handle networked protocols, such as multiple devices on an

Ethernet connection.

Complete Modified TAP Language While the current version of the modified TAP

is able to handle the N-560 and the LUST protocols, it is only capable of handling part

of the MEDIBUS protocol. For example, it cannot handle high-rate messaging or message

configuration, and the checksum macro was hard-coded into the Java software. A complete

TAP language would require a library of checksum and encryption macros, as well as a more

powerful set of mathematical functions. High-rate messaging could probably be addressed

with multiple TAP Process objects, and message configuration state could be handled with

state variables; however, more testing would be necessary to confirm the efficacy of the TAP

language.

9.3 Summary

Plug-and-play interoperability is only possible through the proper application of constraints.

By standardizing the hardware, messaging protocol, and semantics used by a connection,

it becomes relatively straightforward to implement a plug-and-play system. However, it is

not always practical to constrain all aspects of a communication interface.

The Achilles’ heel of the IEEE 11073 standard is that it constrained every level of device

connectivity, resulting in a lack of adoption by device manufacturers. In comparison, the

ICEMAN standard only standardizes a meta-model for describing devices, and an optional

messaging standard to support true plug-and-play connectivity. Connection hardware, pro-

tocols, and semantics are left unconstrained. Instead, the ICEMAN system is responsible

for resolving these components and allowing application software to seamlessly interoperate

with medical devices.
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We believe that the ICEMAN’s flexibility in accepting any model-compliant device is

its greatest strength. Its flexibility allows it to support connectivity with legacy devices,

easing the adoption process by manufacturers and hospitals. As a result, a standard such as

the ICEMAN may be the key step toward a full standard for medical device plug-and-play

interoperability.
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Appendix A

Device Meta-Model

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

<xs:annotation>

<xs:documentation> This XML schema defines the meta-model for medical devices.

Models derived from this schema are used to communicate the device’s

capabilities when interfacing with the Integrated Clinical Environment Manager

(ICEMAN). Model objects are instanciated as XML elements, and are defined by the

complexType "Classes" defined below. Abstract model objects are defined by

"Instances", and model data types and enumerations are defined by "Types."

For example, "SensorClass" defines the data structure of a Sensor object, and

"TriggerInstance" defines the abstract Trigger object. </xs:documentation>

</xs:annotation>

<!-- Include support schemas for body sites, units of measurement, etc -->

<xs:include schemaLocation="units.xsd"/>

<xs:include schemaLocation="commProtocols.xsd"/>

<xs:include schemaLocation="codes.xsd"/>

<xs:include schemaLocation="MDProperty.xsd"/>

<!-- TOP LEVEL ELEMENT -->

<xs:element name="model">

<xs:annotation>

<xs:documentation> Model is the top-level object which represents

the device model specification. It contains exactly one device object,

which describes the device structure.

</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:all minOccurs="1" maxOccurs="1">

<xs:element name="device" type="deviceClass" minOccurs="1" maxOccurs="1"/>

</xs:all>

</xs:complexType>

<!--Global unique IDs (GUIDs) for all elements in schema; objID serves as GUID.-->

<xs:unique name="uniqueIDs">

<xs:selector xpath=".//*"/>

<xs:field xpath="@objID | @propID" />

</xs:unique>

</xs:element>
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<!-- Model Elements -->

<xs:complexType name="deviceClass">

<xs:annotation>

<xs:documentation> The Device Class defines the structure of the

Device object, which is the root of the object model. </xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="MDOInterface">

<xs:sequence maxOccurs="1" minOccurs="1">

<xs:element name="protocolName" type="xs:string" minOccurs="0"/>

<xs:element name="manufacturer" type="MDProp_String"/>

<xs:element name="deviceID" type="MDProp_String"/>

<xs:element name="deviceCode" type="MDProp_Coded" minOccurs="0"/>

<xs:element name="complianceLevel" type="MDComplianceLevelType"/>

<xs:element name="semantics" type="MDProp_String"/>

<xs:element name="setting" type="settingClass" minOccurs="0"

maxOccurs="unbounded"/>

<xs:element name="sensor" type="sensorClass" minOccurs="0"

maxOccurs="unbounded"/>

<xs:element name="actuator" type="actuatorClass" minOccurs="0"

maxOccurs="unbounded"/>

<xs:element name="communications" type="communicationsClass"

minOccurs="1" maxOccurs="1"/>

<xs:element name="deviceHealth" type="deviceHealthClass"

minOccurs="0" maxOccurs="1"/>

<xs:element name="log" type="logClass" minOccurs="0"

maxOccurs="1"/>

<xs:element name="miscData" type="miscDataClass" minOccurs="0"

maxOccurs="1"/>

<xs:element name="subDevices" type="subDevices" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="subDevices">

<xs:annotation>

<xs:documentation> Lists children devices which are attached to this

device. The models for these devices may also be included in the current

device’s model. </xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="device" type="deviceClass" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<!-- Device Elements -->

<xs:complexType name="sensorClass">

<xs:annotation>

<xs:documentation> Sensor attached to the patient; a physiological

sensor, with associated physiological metrics and sensor settings.

</xs:documentation>
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</xs:annotation>

<xs:complexContent>

<xs:extension base="MDOInterface">

<xs:sequence>

<xs:element name="status" type="statusType" minOccurs="0"/>

<xs:element name="mode" type="MDProp_String" minOccurs="0"/>

<xs:element name="location" type="MDProp_Coded" minOccurs="0"/>

<xs:element name="calibrationState" type="MDProp_String"

minOccurs="0"/>

<xs:element name="metric" type="metricClass" minOccurs="1"

maxOccurs="unbounded"/>

<xs:element name="setting" type="settingClass" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="actuatorClass">

<xs:annotation>

<xs:documentation> Actuator attached to the patient -

something that can change the patient’s state. </xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="MDOInterface">

<xs:sequence>

<xs:element name="status" type="statusType" minOccurs="0"/>

<xs:element name="mode" type="MDProp_String" minOccurs="0"/>

<xs:element name="location" type="MDProp_Coded" minOccurs="0"/>

<xs:element name="calibrationState" type="MDProp_String"

minOccurs="0"/>

<xs:element name="safeState" type="MDProp_String" minOccurs="0"/>

<xs:element name="setting" type="settingClass" minOccurs="0"

maxOccurs="unbounded"/>

<xs:element name="action" type="actionClass" minOccurs="1"

maxOccurs="unbounded"/>

<xs:element name="transferFunction" type="transferFunctionClass"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="logClass">

<xs:annotation>

<xs:documentation> Represents the logging and general status

reporting functionality of the device. Contains a list of LogEntry

objects, which describe the formatting of data within the device log.

</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="reportableDataInterface">

<xs:sequence>

<xs:element name="logEntry" type="logEntryClass"

minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>
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</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="miscDataClass">

<xs:annotation>

<xs:documentation> Any non-reportable data that is written to the

device (such as patient information, bed number, etc) is stored within

the Miscellaneous Data object. </xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="MDOInterface">

<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="codedEntry" type="codedEntryType"/>

<xs:element name="uncodedEntry">

<xs:complexType mixed="true">

<xs:attributeGroup ref="MDPropertyAttributes"/>

</xs:complexType>

</xs:element>

<xs:any namespace="##other" processContents="lax"/>

</xs:choice>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="deviceHealthClass">

<xs:annotation>

<xs:documentation> Monitors the status and health of the device, and

reports any device errors. Also contains device battery and

clock information. </xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="reportableDataInterface">

<xs:sequence>

<xs:element name="Status" type="DeviceStatus"/>

<xs:element name="DateTime" type="MDProp_DateTime"

minOccurs="0"/>

<xs:element name="PowerStatus" type="PowerStatus"

minOccurs="0"/>

<xs:element name="BatteryLevel" type="BatteryLevel"

minOccurs="0"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<!-- Actuator/Sensor Elements -->

<xs:complexType name="communicationsClass">

<xs:annotation>

<xs:documentation> Lists all available communication protocols

(such as, serial, ethernet, wireless, etc) </xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="MDOInterface">

<xs:sequence>

<xs:element name="status" type="statusType" minOccurs="0"/>

<xs:element name="numProtocols" type="MDProp_Int"/>
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<xs:element name="activeProtocol" type="MDProp_Int"/>

<xs:element name="dateFormat" type="MDProp_String"

minOccurs="0"/>

<xs:element name="timeFormat" type="MDProp_String"

minOccurs="0"/>

<xs:element name="serialProtocol" type="serialProtocolClass"

minOccurs="0" maxOccurs="255"/>

<xs:element name="tcpProtocol" type="tcpProtocolClass"

minOccurs="0" maxOccurs="255"/>

<xs:element name="udpProtocol" type="udpProtocolClass"

minOccurs="0" maxOccurs="255"/>

<xs:element name="stubProtocol" type="stubProtocolClass"

minOccurs="0" maxOccurs="255"/>

<xs:element name="deviceDriver" type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="settingClass">

<xs:annotation>

<xs:documentation> Defines a numerical setting for a sensor or an actuator.

</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="MDOInterface">

<xs:sequence>

<xs:element name="value" type="MDProp_Coded"/>

<xs:element name="units" type="unitsType" minOccurs="0"/>

<xs:element name="minValue" type="MDProp_Int" minOccurs="0"/>

<xs:element name="maxValue" type="MDProp_Int" minOccurs="0"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="actionClass">

<xs:annotation>

<xs:documentation> Defines an action that can be executed by an actuator.

</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="MDOInterface">

<xs:sequence>

<xs:element name="actiontype" type="MDProp_String"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="metricClass">

<xs:annotation>

<xs:documentation> A Metric is a type of reportable data specific

to patient sensor values. </xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="reportableDataInterface">

<xs:sequence>
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<xs:element name="value" type="MDProp_Coded"/>

<xs:element name="units" type="unitsType"/>

<xs:element name="minValue" type="MDProp_Int" minOccurs="0"/>

<xs:element name="maxValue" type="MDProp_Int" minOccurs="0"/>

<xs:element name="accuracy" type="MDProp_Float" minOccurs="0"/>

<xs:element name="precision" type="MDProp_Float" minOccurs="0"/>

<xs:element name="confidenceLvl" type="MDProp_Int" minOccurs="0"/>

<xs:element name="sampleRate" type="MDProp_Float" minOccurs="0"/>

<xs:element name="averagingPeriod" type="MDProp_Int" minOccurs="0"/>

<xs:element name="startTime" type="MDProp_DateTime" minOccurs="0"/>

<xs:element name="stopTime" type="MDProp_DateTime" minOccurs="0"/>

<xs:element name="compression" type="MDProp_String" minOccurs="0"/>

<xs:element name="DispResolution" type="MDProp_String" minOccurs="0"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="transferFunctionClass">

<xs:annotation>

<xs:documentation> The mathematical relationship between an actuator action and some output (either actuator output or sensor metric). </xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="MDOInterface">

<xs:sequence>

<xs:element name="inputObjHandle" type="xs:positiveInteger"/>

<xs:element name="outputObjHandle" type="xs:positiveInteger"

minOccurs="0"/>

<xs:element name="TF-equation">

<xs:complexType>

<xs:sequence>

<xs:any minOccurs="0" maxOccurs="unbounded"

processContents="lax"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<!-- Reportable/Trigger Elements -->

<xs:complexType name="alertClass">

<xs:annotation>

<xs:documentation> A trigger which monitors the values of a metric.

</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="triggerInterface">

<xs:sequence>

<xs:element name="alertLowerLimit" type="MDProp_Coded" minOccurs="0"/>

<xs:element name="alertUpperLimit" type="MDProp_Coded" minOccurs="0"/>

<xs:element name="alertMessage" type="MDProp_Coded" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:extension>
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</xs:complexContent>

</xs:complexType>

<xs:complexType name="eventTriggerClass">

<xs:annotation>

<xs:documentation> A trigger which is fired when an event occurs, such as

a value change or data reception. </xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="triggerInterface">

<xs:sequence>

<xs:element name="eventType" type="MDProp_String"/>

<xs:element name="eventFlags" type="MDProp_String"/>

<xs:element name="eventTriggerCondition" type="MDProp_String"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="timedTriggerClass">

<xs:annotation>

<xs:documentation> A trigger which fires at a fixed rate, based on

device’s internal clock. </xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="triggerInterface">

<xs:sequence>

<xs:element name="timeInterval">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:positiveInteger">

<xs:attributeGroup

ref="MDPropertyAttributes"></xs:attributeGroup>

<xs:attribute name="minIncrement"

type="xs:positiveInteger"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

<xs:element name="timeTilNextTrigger" minOccurs="0">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:positiveInteger">

<xs:attributeGroup ref="MDPropertyAttributes"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="dataProcessorClass">

<xs:annotation>

<xs:documentation> Provides a description of the data formatting

and manipulation of which the device is capable. </xs:documentation>

</xs:annotation>
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<xs:complexContent>

<xs:extension base="MDOInterface">

<xs:sequence>

<xs:element name="status" type="statusType"/>

<xs:element name="input" type="MDProp_String"/>

<xs:element name="output" type="MDProp_String"/>

<xs:element name="mode" type="MDProp_String"/>

<xs:element name="type" type="MDProp_String" minOccurs="0"/>

<xs:element name="timeDelay" type="MDProp_Int"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="logEntryClass">

<xs:annotation>

<xs:documentation> Format for log entries. </xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="MDOInterface">

<xs:choice maxOccurs="unbounded">

<xs:element name="timeStampToken" type="MDProp_String"/>

<xs:element name="dataValueToken" type="codedEntryType"/>

<xs:element name="tokenSeparator" type="MDProp_String"/>

<xs:element name="codedToken" type="codedEntryType"/>

</xs:choice>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<!-- Communication Elements -->

<xs:complexType name="serialProtocolClass">

<xs:annotation>

<xs:documentation> Specifies a single implementation of an RS-232

protocol (lower 4 layers of OSI stack). </xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="MDOInterface">

<xs:group ref="serialProtocolList"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="tcpProtocolClass">

<xs:annotation>

<xs:documentation> Specifies a single implementation of a

communication protocol (lower 4 layers of OSI stack). </xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="MDOInterface">

<xs:group ref="tcpProtocolList"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="udpProtocolClass">

<xs:annotation>

<xs:documentation> Specifies a single implementation of a
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communication protocol (lower 4 layers of OSI stack). </xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="MDOInterface">

<xs:group ref="udpProtocolList"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="stubProtocolClass">

<xs:annotation>

<xs:documentation> Specifies a single implementation of a

communication protocol (lower 4 layers of OSI stack). </xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="MDOInterface">

<xs:group ref="stubProtocolList"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<!-- Define interfaces for Medical Device Object elements -->

<xs:complexType name="MDOInterface" abstract="true">

<xs:annotation>

<xs:documentation> Defines an abstract medical device object interface,

which is extended by all of the device model objects. This ensures that

every object has a handle, a name, and a description. </xs:documentation>

</xs:annotation>

<xs:attributeGroup ref="MDOAttributes"/>

</xs:complexType>

<xs:attributeGroup name="MDOAttributes">

<xs:attribute type="xs:positiveInteger" name="objID" use="required"/>

<xs:attribute type="xs:string" name="objName" use="required"/>

<xs:attribute type="xs:string" name="objDescription" use="required"/>

</xs:attributeGroup>

<xs:complexType name="CodedObjectInterface" abstract="true">

<xs:annotation>

<xs:documentation> Defines an abstract medical device object that

includes support for external medical codes, such as LOINC, SNOMED,

ICD-9, and so on. </xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="codedObjectClass">

<xs:attributeGroup ref="MDOAttributes"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="reportableDataInterface" abstract="true">

<xs:annotation>

<xs:documentation> Interface for any data value that is generated

by the device, and is able to work with triggers for data reporting.

</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="CodedObjectInterface">

<xs:sequence>
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<xs:element name="alert" type="alertClass" minOccurs="0"

maxOccurs="unbounded">

<!-- xs:unique name="uniqueTriggerSourceNames">

<xs:selector xpath=".//triggerSource"></xs:selector>

<xs:field xpath="@varname"></xs:field>

</xs:unique> -->

</xs:element>

<xs:element name="eventTrigger" type="eventTriggerClass"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="timedTrigger" type="timedTriggerClass"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="dataProcessor" type="dataProcessorClass"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="triggerInterface" abstract="true">

<xs:annotation>

<xs:documentation> Interface for any time or event driven trigger.

</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="MDOInterface">

<xs:sequence>

<xs:element name="status" type="statusType" minOccurs="0"/>

<xs:element name="triggerSource" type="MDProp_String"

minOccurs="0" maxOccurs="1"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<!-- Define special data types -->

<xs:simpleType name="deviceStatusType">

<xs:restriction base="xs:string">

<xs:enumeration value="On"/>

<xs:enumeration value="Off"/>

<xs:enumeration value="Paused"/>

<xs:enumeration value="Disconnected"/>

<xs:enumeration value="Stand-by"/>

<xs:enumeration value="Not-Ready"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="DeviceStatus">

<xs:simpleContent>

<xs:extension base="deviceStatusType">

<xs:attributeGroup ref="MDPropertyAttributes"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<xs:complexType name="statusType">

<xs:simpleContent>

<xs:extension base="simpleStatusType">

<xs:attributeGroup ref="MDPropertyAttributes"/>
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</xs:extension>

</xs:simpleContent>

</xs:complexType>

<xs:simpleType name="simpleStatusType">

<xs:restriction base="xs:string">

<xs:enumeration value="On"/>

<xs:enumeration value="Off"/>

<xs:enumeration value="Standby"/>

<xs:enumeration value="Silenced"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="powerStatusType">

<xs:restriction base="xs:string">

<xs:enumeration value="onBattery"/>

<xs:enumeration value="onMains"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="PowerStatus">

<xs:simpleContent>

<xs:extension base="powerStatusType">

<xs:attributeGroup ref="MDPropertyAttributes"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<xs:simpleType name="percentageType">

<xs:restriction base="xs:decimal">

<xs:minInclusive value="0.0"/>

<xs:maxInclusive value="100.0"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="BatteryLevel">

<xs:simpleContent>

<xs:extension base="percentageType">

<xs:attributeGroup ref="MDPropertyAttributes"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<xs:complexType name="MDComplianceLevelType">

<xs:simpleContent>

<xs:extension base="complianceLevelType">

<xs:attributeGroup ref="MDPropertyAttributes"></xs:attributeGroup>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<xs:simpleType name="complianceLevelType">

<xs:restriction base="xs:string">

<xs:enumeration value="Level 0"/>

<xs:enumeration value="Level 1"/>

<xs:enumeration value="Level 2"/>

</xs:restriction>

</xs:simpleType>

</xs:schema>
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Appendix B

Example Device Model

<?xml version="1.0" encoding="UTF-8"?>

<model xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="file:/C:/Documents%20and%20Settings/mqh2755/

My%20Documents/ICEMAN%20Sim/models/ICEMAN%20Schema/icemanSchema.xsd">

<device objID="4614" objName="PulseOximeter" objDescription="N-560 Pulse Oximeter">

<protocolName>N560</protocolName>

<manufacturer paramID="7315">Nellcor</manufacturer>

<deviceID paramID="5103">N-560</deviceID>

<deviceCode paramID="5104" codeName="UMD" codeValue="12853">Oximeter</deviceCode>

<complianceLevel paramID="5010">Level 0</complianceLevel>

<semantics paramID="719">SNOMED; ICEMAN</semantics>

<setting objID="4329" objName="DeviceMode" objDescription="Determines if device

is in Adult or Child Mode">

<value handle="10" paramID="1234" access="R" codeName="UNKNOWN"

codeValue="Patient Type" >Adult</value>

</setting>

<sensor objID="8012" objName="FingerSensor" objDescription="Measures the

patient pulse rate and saturation">

<location paramID="9912" codeName="SNOMED" codeValue="58-27163">finger</location>

<metric objID="3176" objName="PulseRate" objDescription="The patient’s

pulse rate in beats per minute">

<alert objID="8071" objName="PulseRateAlert" objDescription="Triggers alarm

when rate goes outside range">

<status paramID="9012">On</status>

<triggerSource paramID="2387">9589</triggerSource>

<alertLowerLimit handle="14" paramID="4512" access="R" codeName="SNOMED"

codeValue="78564009">40</alertLowerLimit>

<alertUpperLimit handle="15" paramID="4513" access="R" codeName="SNOMED"

codeValue="78564009">170</alertUpperLimit>

</alert>

<timedTrigger objID="1196" objName="ReportPulseRate" objDescription="Reports

the patient’s pulse rate in a periodic fashion">

<status paramID="5883">Off</status>

<triggerSource paramID="2979">9589</triggerSource>

<timeInterval paramID="4646">2000</timeInterval>
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</timedTrigger>

<value handle="2" paramID="9589" access="R" dataType="Integer" codeName="SNOMED"

codeValue="78564009">65</value>

<units paramID="6182">BPM</units>

<minValue paramID="9923">20</minValue>

<maxValue paramID="7753">250</maxValue>

<accuracy paramID="160">3</accuracy>

<precision paramID="6428">2</precision>

<confidenceLvl paramID="6734">2</confidenceLvl>

<sampleRate paramID="6735">0.5</sampleRate>

</metric>

<metric objID="119" objName="PulseAmplitude" objDescription="Pulse Amplitude">

<timedTrigger objID="1197" objName="ReportPulseAmplitude" objDescription="Reports

the patient’s pulse amplitude in a periodic fashion">

<status paramID="5884">Off</status>

<triggerSource paramID="2981">1036</triggerSource>

<timeInterval paramID="4647">2000</timeInterval>

</timedTrigger>

<value handle="3" paramID="1036" access="R" dataType="Integer" codeName="SNOMED"

codeValue="248642002">123</value>

<units paramID="1037">unitless</units>

<minValue paramID="1040">0</minValue>

<maxValue paramID="1041">254</maxValue>

<sampleRate paramID="1042">0.5</sampleRate>

</metric>

<metric objID="115" objName="SpO2" objDescription="Measures blood oxygen saturation">

<alert objID="8072" objName="SaturationAlert" objDescription="Triggers alarm when

saturation goes outside range">

<status paramID="9013">On</status>

<triggerSource paramID="2389">1030</triggerSource>

<alertLowerLimit handle="12" paramID="4516" access="R" codeName="SNOMED"

codeValue="250554003">85</alertLowerLimit>

<alertUpperLimit handle="13" paramID="4517" access="R" codeName="SNOMED"

codeValue="250554003">100</alertUpperLimit>

</alert>

<timedTrigger objID="116" objName="SpO2" objDescription="Reports SpO2 values at a

fixed rate">

<status paramID="5885">On</status>

<triggerSource paramID="1024">1030</triggerSource>

<timeInterval paramID="1025">2000</timeInterval>

</timedTrigger>

<value handle="1" paramID="1030" access="R" dataType="Integer" codeName="SNOMED"

codeValue="250554003">98</value>

<units paramID="1031">percent</units>

<minValue paramID="1133">0</minValue>

<maxValue paramID="1134">100</maxValue>

<accuracy paramID="1032">3</accuracy>

<sampleRate paramID="1135">0.5</sampleRate>

</metric>

<setting objID="6543" objName="SatSeconds" objDescription="Amount of time that the

%SpO2 level may fall below the alarm limit before an audible alarm sounds.">

<value handle="11" paramID="6544" access="R" codeName="UNKNOWN"

codeValue="SatSeconds">50</value>

<units paramID="6545">SatSeconds</units>

<minValue paramID="6546">1</minValue>
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<maxValue paramID="6547">99</maxValue>

</setting>

</sensor>

<communications objID="130" objName="Communication" objDescription="Lists

comm options">

<status paramID="131">On</status>

<numProtocols paramID="132">1</numProtocols>

<activeProtocol paramID="133">135</activeProtocol>

<dateFormat paramID="888">dd-MMM-yy</dateFormat>

<timeFormat paramID="889">kk:mm:ss</timeFormat>

<serialProtocol objID="134" objName="SerialProtocol" objDescription="RS-232 trend

data printout">

<serialPort>1</serialPort>

<serialBaud>9600</serialBaud>

<dataBits>8</dataBits>

<startBits>1</startBits>

<stopBits>1</stopBits>

<parity>None</parity>

</serialProtocol>

<stubProtocol objID="135" objName="ProtocolStub" objDescription="Simulates

Nellcor device">

<stubName>Stub_Nellcor_PulseOx</stubName>

</stubProtocol>

</communications>

<deviceHealth objID="140" objName="DeviceStatusMonitor" objDescription="Monitors

device status">

<Status paramID="1060">Disconnected</Status>

<DateTime paramID="1061">2002-05-30T09:00:00</DateTime>

<PowerStatus paramID="1062">onBattery</PowerStatus>

<BatteryLevel paramID="1063">67</BatteryLevel>

</deviceHealth>

</device>

</model>
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Appendix C

Example TAP Grammar

// LUST Protocol

//

// Contains the handshaking/control aspects of protocol

// Message parsing is done externally, presumably by an

// ANTLR-generated parser.

//

// LUST is a simple protocol, so there is very little control

// involved. Basically, this acts as a transparent channel

// between the device and the ICEMAN engine.

// These two endpoint addresses are referred to as

// devAdr and iceAdr (for the device comms and ICEMAN engine,

// respectively).

//

// Assumes apiMsg messages have an interface that supplies a

// "type" field, indicating what kind of message is being sent

// to the device. Messages can be of type "GetID", "GetData",

// and "GetStat"

message getID begin

command : 8 bits = 6 //ACK

end

message getData begin

command : 8 bits = 5 //ENQ

end

message getStat begin

command : 8 bits = 21 //NAK

end

external message ID_MSG

external message DATA_MSG

external message STATUS_MSG

external message ALARM_MSG

external message apiMsg

process lust

var devAdr : address; // Device address

iceAdr : address // API address
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begin

rcv apiMsg from iceAdr ->

if apiMsg.$command = "GET" ->

if apiMsg.$parentType = "METRIC" ->

send getData to devAdr

[] apiMsg.$parentType = "SETTING" ->

send getStat to devAdr

fi

fi

[]

rcv ID_MSG from devAdr ->

skip

[]

rcv DATA_MSG from devAdr ->

foreach METRIC in DATA_MSG ->

send METRIC to iceAdr

endfor;

foreach SETTING in DATA_MSG ->

send SETTING to iceAdr

endfor;

foreach MODE in DATA_MSG ->

send MODE to iceAdr

endfor

[]

rcv STATUS_MSG from devAdr ->

foreach SETTING in STATUS_MSG ->

send SETTING to iceAdr

endfor;

foreach MODE in STATUS_MSG ->

send MODE to iceAdr

endfor

[]

rcv ALARM_MSG from devAdr ->

foreach ALARM in ALARM_MSG ->

send ALARM to iceAdr

endfor

end
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Appendix D

Example ANTLR Grammar

// Lust Protocol - ANTLR Grammar

// --------------------------------------------

// This is the most reasonable grammar for the LUST protocol. Here, only

// the simplest primitives (such as numbers and characters) are tokenized by

// the lexer, allowing the parser to perform the position-dependent groupings.

// While this results in some fields being stretched across multiple tokens

// (for example, channel # = "050" would be found in three adjacent tokens,

// "0", "5", and "0"), this can be accounted for in the AST-walking code.

//

// ANTLR was written and is maintained by Terence Parr, at the

// University of San Francisco

//

// This grammar was designed to be as language-independent as possible.

// The only language-dependent aspects are as follows:

// JAVA-SPECIFIC CODE:

// Line 23: "package protocol" specified for generated file header

// Line 25: language generation option set to "Java"

// Line 30, 211: Superclass specified as a Java file, in a package

header {

package protocol;

}

options {

language = "Java";

mangleLiteralPrefix = "TOKEN_";

}

class lustParser extends Parser("antlrInterfaces.IParser");

options {

k=3;

buildAST = true;

}

// Define some methods and variables to use in the generated parser.

{
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}

// -----------------------

// Start Parser Rules

// -----------------------

// start

// highest level lexical object

start

: toplevel

;

toplevel

: telegrams

;

telegrams

: /* nothing */

| telegram telegrams

| error telegrams

;

// TODO: are errors even possible in LUST? for now, use this:

error

: "Error!"

;

telegram

: identificationTelegram

//| statusTelegram - included in dataTelegram

| dataTelegram

| alarmTelegram

;

idNumber

: CHAR CHAR CHAR //DIGIT DIGIT DIGIT

{ #idNumber = #([IDNUM, "IDNUM"], #idNumber); }

;

signalNumber

: CHAR CHAR //DIGIT DIGIT

{ #signalNumber = #([SIGNALNUM, "SIGNAL"], #signalNumber); }

;

s_signalNumber

: CHAR CHAR //DIGIT DIGIT

{ #s_signalNumber = #([SIGNALNUM, "HANDLE"], #s_signalNumber); }

;

channelNumber

: CHAR // DIGIT

{ #channelNumber = #([CHANNELNUM, "CHANNEL"], #channelNumber); }

;
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identificationTelegram

: identificationHeader (identificationBlock)* EOT!

{ #identificationTelegram = #([IDTEL, "ID_MSG"], #identificationTelegram); }

;

identificationHeader

: STX^ idNumber channelNumber ESC! devName

;

identificationBlock // long name short name unit minval maxval

: ESC! signalNumber RS! signalDescLong RS! signalDescShort RS! units RS! minvalue RS! maxvalue

{ #identificationBlock = #([IDBLOCK, "DATA_DESC"], #identificationBlock); }

;

devName

: (CHAR)*

{ #devName = #([DEVNAME, "DEVNAME"], #devName); }

;

signalDescLong

: (CHAR)* //STRING RS!

{ #signalDescLong = #([SIGNALDESCLONG, "LONG"], #signalDescLong); }

;

signalDescShort

: (CHAR)* //STRING RS!

{ #signalDescShort = #([SIGNALDESCSHORT, "SHORT"], #signalDescShort); }

;

units

: (CHAR)* //STRING

{ #units = #([SIGNALDESCUNITS, "UNITS"], #units); }

;

s_units

: (CHAR)* //STRING

{ #s_units = #([UNITS, "UNITS"], #s_units); }

;

value

: (CHAR)+ //(DIGIT)* (DOT (DIGIT)*)?

{ #value = #([VALUE, "VALUE"], #value); }

;

minvalue

: (CHAR)+

{ #minvalue = #([MINVALUE, "MINVALUE"], #minvalue); }

;

maxvalue

: (CHAR)+

{ #maxvalue = #([MAXVALUE, "MAXVALUE"], #maxvalue); }

;
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//statusTelegram

// : dataHeader (statusBlock)* EOT!

// { #statusTelegram = #([DATATEL, "STATUS_MSG"], #statusTelegram); }

// ;

statusBlock

: (GS s_signalNumber statusString EQUALS_SPACE)=> GS! s_signalNumber statusString

EQUALS_SPACE! statusData (s_units | " : " statusData)

{#statusBlock = #([STATBLOCK, "SETTING"], #statusBlock); }

| GS! s_signalNumber modeString

{#statusBlock = #([MODEBLOCK, "MODE"], #statusBlock); }

;

statusString

: (CHAR)*//STRING EQUALS_SPACE!

{ #statusString = #([STATSTRING, "NAME"], #statusString); }

;

modeString

: (CHAR)*

{ #modeString = #([MODESTRING, "VALUE"], #modeString); }

;

statusData

: FS! value FS!

;

dataTelegram

: (dataHeader (dataMeasured)+ statusBlock)=>dataHeader (dataMeasured | statusBlock)* EOT!

{ #dataTelegram = #([DATATEL, "DATA_MSG"], #dataTelegram); }

| dataHeader (statusBlock)* EOT!

{ #dataTelegram = #([STATUSTEL, "STATUS_MSG"], #dataTelegram); }

;

dataHeader

: SOH^ idNumber channelNumber

;

dataMeasured

: ESC! s_signalNumber value

{#dataMeasured = #([DATABLOCK, "METRIC"], #dataMeasured); }

;

alarmTelegram

: alarmHeader ESC (

{ LA(2)>=’\60’ && LA(2)<=’\71’ }? CHAR

| ~CHAR

)

signalNumber // alarm #

(CHAR)* //STRING // alarm text

EOT

{ #alarmTelegram = #([ALARMTEL, "ALARM_MSG"], #alarmTelegram); }

;

alarmHeader
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: BEL^ idNumber channelNumber

;

// -------------------------------------

// TAPLexer - TAP Scanner

// -------------------------------------

class lustLexer extends Lexer("antlrInterfaces.ILexer");

options {

charVocabulary = ’\0’..’\377’;

testLiterals=true; // don’t automatically test for literals

k=2; // three characters of lookahead

}

// Tokens

tokens {

IDTEL;

DATATEL;

STATUSTEL;

ALARMTEL;

IDBLOCK;

STATBLOCK;

MODEBLOCK;

STATSTRING;

MODESTRING;

DATABLOCK;

IDNUM = "IDNUM";

SIGNALNUM;

SIGNALDESC;

UNITS;

CHANNELNUM;

VALUE;

MINVALUE;

MAXVALUE;

SIGNALDESCLONG;

SIGNALDESCSHORT;

SIGNALDESCUNITS;

DEVNAME;

}

// "Token references in the lexer are treated as rule references";

// This means that tokens are really just simple lex rules.

ACK : ’\6’ ; // ASCII 6 = ACK (request identification)

NAK : ’\25’ ; // ASCII 25 = NAK (request status)

ENQ : ’\5’ ; // ASCII 5 = ENQ (request data)

DC1 : ’\21’ ; // ASCII 17 = DC1 (enable telegrams)

DC2 : ’\22’ ; // ASCII 18 = DC2 (enable alarm telegrams)

DC3 : ’\23’ ; // ASCII 19 = DC3 (halt output)

DC4 : ’\24’ ; // ASCII 20 = DC4 (halt alarm telegrams)

SOH : ’\1’ { $setText("HEADER"); } ; // ASCII 1 = SOH (Status/Data telegram header)

STX : ’\2’ { $setText("HEADER"); } ; // ASCII 2 = STX (Identification telegram header)

BEL : ’\7’ { $setText("HEADER"); } ; // ASCII 7 = BEL (Alarm telegram header)

EOT : ’\4’ { $setText("END"); newline(); } ; // ASCII 4 = EOT (End-of-telegram char)

ESC : ’\33’ ; // ASCII 27 = ESC (Delimiter)

RS : ’\36’ ; // ASCII 30 = RS (Delimiter)

GS : ’\35’ ; // ASCII 29 = GS (Delimiter)
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FS : ’\34’ ; // ASCII 28 = FS (Delimiter)

// Symbols (exclusive from legal STRING characters)

COLON : ’:’ ;

SEMI : ’;’ ;

GT : ’>’ ;

LT : ’<’ ;

EQUALS : ’=’ ;

EQUALS_SPACE : "= " ;

//DOT : ’.’ ;

CHAR // upper case _ lower case

: (’\40’..’\71’|’\100’..’\177’)

;

// End of file
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Appendix E

ANTLR Grammar for TAP Parser

// Timed Abstract Protocol (TAP)- ANTLR Grammar

// --------------------------------------------

// Adapted from apgrammar.y and aptokens.l from the

// Austin Protocol Compiler (APC) source code, written

// by Tommy McGuire

//

// Both the TAP and APC are Copyright (c) 2002 by Tommy M. McGuire,

// at the University of Texas - Austin

//

// ANTLR was written and is maintained by Terence Parr, at the

// University of San Francisco

//

// Based in part on ANTLR tutorial provided by Scott Stanchfield,

// available at http://javadude.com/articles/antlrtut

header {

package tap2java;

//import protocol.*;

}

options {

language = "Java";

mangleLiteralPrefix = "TOKEN_";

}

class tapParser extends Parser("antlrInterfaces.IParser");

options {

k=4;

buildAST=true;

}

// Define some methods and variables to use in the generated parser.

{

// Engine methods in separate file, Main.java

}
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// -----------------------

// Start Parser Rules

// -----------------------

// start

// highest level lexical object

start

: toplevel

;

toplevel

: elements

;

elements

: /* nothing */

| element elements

| error elements

;

// TODO: Can’t find ’error’ definition in APC grammar files

// Has something to do with BisonModule.h usage...

// for now, just pretend that all errors = "Error!"

error

: "Error!"

;

element

: ( STRING

| message

| macro

| process

)

;

macro

: MACRO! ID

{ #macro = #([MACRO_OBJ, "MACRO"], #macro); }

;

message

: external MESSAGE! name (messagebody | LPAREN ID COMMA ID RPAREN messagebody)?

{ #message = #([MESSAGE_OBJ, "MESSAGE"], #message); }

;

external

: /* empty */

| EXTERN

{ #external = #([EXTERNAL, "EXTERNAL"], #external); }

;

name

: ID

{ #name = #([NAME, "NAME"], #name); }
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;

messagebody

: BEGINMARK! fields ENDMARK!

;

fields

: field (COMMA! fields)?

| error

;

field

: ( (ID COLON fieldtype)=>ID COLON! fieldtype (EQUALS! expression)?

| ID COLON! ID)

{ #field = #([FIELD, "FIELD"], #field); }

;

fieldtype

: expression (BITS | BYTES | BIT | BYTE)

;

process

: PROCESS! name constants variables BEGINMARK! actions ENDMARK!

{ #process = #([PROCESS_OBJ, "PROCESS"], #process); }

;

constants

: /* empty */

| CONST! declarations

{ #constants = #([CONST_DEFS, "CONSTS"], #constants); }

;

variables

: /* empty */

| VAR! declarations

{ #variables = #([VAR_DEFS, "VARS"], #variables); }

;

declarations

: declaration (SEMI! declarations)?

| error

;

declaration

: ids COLON! type (EQUALS! const_value)?

{ #declaration = #([DECL, "DECL"], #declaration); }

;

const_value

: NUMBER

| TRUE

| FALSE

;

ids
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: (ID COMMA)=> ID COMMA ids

| ID

;

type

: INTEGER

| BOOLEAN

| TREE

| NUMBER RANGE! NUMBER

{ #type =#([RANGETYPE, "range"], #type); }

| ADDRESS

| ARRAY^ LBRACK! (NUMBER)? RBRACK! OF! type

// { #type =#([ARRAY], #type); }

;

actions

: a:action (BOX! actions)?

| error

;

action

: (expression)=> actionGate ARROW! statements

{ #action = #([ACTION_EXPR, "ACTION_EXPR"], #action); }

| (RCV)=> actionGate ARROW! statements

{ #action = #([ACTION_RECV, "ACTION_RECV"], #action); }

| actionGate ARROW! statements

{ #action = #([ACTION_TIME, "ACTION_TIME"], #action); }

;

actionGate

: (expression

| RCV ID FROM ID

| TIMEOUT ID

)

{ #actionGate = #([GUARD, "GUARD"], #actionGate); }

;

primitiveElement

: (ID LBRACK)=>arrayreference

| ID

| NUMBER

| STRING

| TRUE

| FALSE

| SIZE

| (ID (DOT ID)? LPAREN)=> functioncall

| fieldreference

| (LPAREN LPAREN AS)=>

LPAREN LPAREN AS (BYTE|BIT|INTEGER|TREE|BOOLEAN) RPAREN expression RPAREN

| LPAREN expression RPAREN

;

expression

: relationalExpression ((OR | AND) relationalExpression)*

;
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protected relationalExpression

: addingExpression ((EQUALS|GT|LT|ATLEAST|ATMOST|NOTEQUAL) addingExpression)*

;

protected addingExpression

: multiplyingExpression ((PLUS | MINUS) multiplyingExpression)*

;

protected multiplyingExpression

: signExpression ((MULT | DIV | MOD) signExpression)*

;

protected signExpression

: (MINUS)* negExpression

;

protected negExpression

: (NOT)* primitiveElement

;

fieldreference

: ID DOT (ID | SIZE)

| ID DOT arrayreference

;

// Changed - added (DOT ID)? to help with apiMsg param lookup

functioncall

: ID (DOT ID)? LPAREN (expressions)? RPAREN

;

arrayreference

: ID (LBRACK expression RBRACK)+

// | ID LBRACK expression RBRACK

;

statements

: statement (SEMI! statements)?

// | error // already an option in statement

;

statement

: ( SKIP

| (ID LPAREN)=>functioncall

| (ID (DOT ID)? LPAREN)=>functioncall

| (leftside ASSIGN)=> leftside ASSIGN expression

| leftside PLUSEQ expression

| SEND ID TO expression

| ACT ID IN expression

| RESET ID

| APPEND ID ID

| RENAME ID ID

)

{ #statement = #([STATEMENT, "STATEMENT"], #statement); }

| IF! guardedstatements FI!
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{ #statement = #([STATEMENT_IF, "STATEMENT_IF"], #statement); }

| DO! guard ARROW! statements OD!

{ #statement = #([STATEMENT_LOOP, "STATEMENT_LOOP"], #statement); }

| FOREACH! forheader ARROW! statements ENDFOR!

{ #statement = #([STATEMENT_FOR, "STATEMENT_FOR"], #statement); }

;

forheader

: ID IN! ID

{ #forheader = #([FOR, "FOR"], #forheader); }

;

leftsides

: leftside

| error

;

leftside

: ID

| fieldreference

| arrayreference

;

expressions

: expression (COMMA expressions)?

;

guardedstatements

: guardedstatement (BOX! guardedstatements)?

| error

;

guardedstatement

: guard ARROW! statements

{ #guardedstatement = #([IFBLOCK, "IFBLOCK"], #guardedstatement); }

;

guard

: expression

{ #guard = #([GUARD, "GUARD"], #guard); }

;

// -------------------------------------

// TAPLexer - TAP Scanner

// -------------------------------------

class tapLexer extends Lexer("antlrInterfaces.ILexer");

options {

charVocabulary = ’\0’..’\377’;

testLiterals=true; // don’t automatically test for literals

k=4; // three characters of lookahead

}

// Keywords, Tokens

tokens {

// Tokens with external (Java) object definitions
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MESSAGE_OBJ = "MESSAGE" ;

EXTERNAL = "EXTERNAL";

MACRO_OBJ = "MACRO";

PROCESS_OBJ = "PROCESS" ;

CONST_DEFS = "CONSTS" ;

VAR_DEFS = "VARS" ;

FIELD = "FIELD" ;

NAME = "NAME" ;

DECL = "DECL" ;

FOR = "FOR" ;

RANGETYPE = "range" ;

ACTION_EXPR = "ACTION_EXPR" ;

ACTION_RECV = "ACTION_RECV" ;

ACTION_TIME = "ACTION_TIME" ;

STATEMENT = "STATEMENT" ;

STATEMENT_IF = "STATEMENT_IF" ;

STATEMENT_LOOP = "STATEMENT_LOOP" ;

STATEMENT_FOR = "STATEMENT_FOR" ;

GUARD = "GUARD" ;

IFBLOCK = "IFBLOCK" ;

// Internal tokens

AS = "as" ;

ACT = "act" ;

ADDRESS = "address" ;

APPEND = "append" ; // TreeMessage keyword

ARRAY = "array" ;

BEGINMARK = "begin" ;

BOOLEAN = "boolean" ;

CONST = "const" ;

DO = "do" ;

ENDFOR = "endfor" ; // For-loop keyword

ENDMARK = "end" ;

EXTERN = "external" ;

FALSE = "false" ;

FI = "fi" ;

FOREACH = "foreach" ; // For-loop keyword

FROM = "from" ;

IF = "if" ;

IN = "in" ;

INCLUDE = "include" ;

INTEGER = "integer" ;

MACRO = "macro" ;

MESSAGE = "message" ;

OD = "od" ;

OF = "of" ;

PROCESS = "process" ;

RENAME = "rename" ; // TreeMessage keyword

RESET = "reset" ; // reset ACTION keyword

RCV = "rcv" ;

SEND = "send" ;

SINCE = "since" ;

SIZE = "size" ;

SKIP = "skip" ;

TIMEOUT = "timeout" ;

TO = "to" ;

175



TREE = "tree" ; // TreeMessage keyword

TRUE = "true" ;

VAR = "var" ;

BITS = "bits" ;

BIT = "bit" ;

BYTES = "bytes" ;

BYTE = "byte" ;

}

// Dynamic tokens

// ID

// A letter, followed by any number of letters or numbers.

ID

options {testLiterals=true;} // protected keywords (literals) can’t be IDs

: (’a’..’z’|’A’..’Z’|’$’) (’a’..’z’|’A’..’Z’|’0’..’9’|’_’)*

;

// STRING

// A quote-delimited string which does not span lines. Internal

// quotes and newlines can be escaped by a backslash, however.

STRING

: ’"’!

( ~(’"’|’\n’|’\r’)

)*

( ’"’!

| // nothing -- write error message

)

;

// NUMBER

// One or more decimal digits.

NUMBER

: (’0’..’9’)+

;

// Symbols

ARROW : "->" ;

ASSIGN : ":=" ;

PLUSEQ : "+=" ;

GT : ’>’ ;

LT : ’<’ ;

ATLEAST : ">=" ;

ATMOST : "<=" ;

BOX : "[]" ;

LBRACK : ’[’ ;

RBRACK : ’]’ ;

EQUALS : ’=’ ;

NOTEQUAL : "<>" ;

RANGE : ".." ;

SEMI : ’;’ ;

COLON : ’:’ ;

COMMA : ’,’ ;

LPAREN : ’(’ ;

RPAREN : ’)’ ;
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OR : ’|’ ;

AND : ’&’ ;

NOT : ’~’ ;

PLUS : ’+’ ;

MINUS : ’-’ ;

MULT : ’*’ ;

DIV : ’/’ ;

MOD : ’%’ ;

DOT : ’.’ ;

//TREEREF : ’$’ ;

WS

: ( ’ ’

| ’\t’

| ’\f’

// handle newlines

| NEWLINE

)

{ $setType(Token.SKIP); }

;

protected NEWLINE

: ( "\r\n" // DOS

| ’\n’ // UNIX

)

{ newline(); }

;

COMMENT

: ( "//" (~(’\n’|’\r’))*

| "/*"

(

options {

generateAmbigWarnings=false;

}:

{ LA(2)!=’/’ }? ’*’

| ’\r’ ’\n’ {newline();}

| ’\r’ {newline();}

| ’\n’ {newline();}

| ~(’*’|’\n’|’\r’)

)*

"*/"

)

{ $setType(Token.SKIP); }

;
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MDER, Medical Data Encoding Rules, 74
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ROSE, Remote Object Service Element, 77
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