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Abstract

Extensive bedside monitoring in hospital Intensive Care Units (ICU) has resulted
in a deluge of information on patient physiology. Consequently, clinical decision
makers have to reason with data that is simultaneously large and high-dimensional.
Mechanisms to compress these datasets while retaining their salient features are in
great need.

Previous work in this area has focused exclusively on supervised models to predict
specific hazardous outcomes like mortality. These models, while effective, are highly
specific and do not generalize easily to other outcomes.

This research describes the use of non-parametric unsupervised learning to dis-
cover abstract patient states that summarize a patient’s physiology. The resulting
model focuses on grouping physiologically similar patients instead of predicting par-
ticular outcomes.

This type of cluster analysis has traditionally been done in small, low-dimensional,
error-free datasets. Since our real-world clinical dataset affords none of these luxu-
ries, we describe the engineering required to perform the analysis on a large, high-
dimensional, sparse, noisy and mixed dataset.

The discovered groups showed cohesiveness, isolation and correspondence to natu-
ral groupings. These groups were also tested for enrichment towards survival, Glasgow
Coma Scale values and critical heart rate events. In each case, we found groups which
were enriched and depleted towards those outcomes.
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Chapter 1

Introduction

1.1 Overview

The creation of medical models used to be hobbled by the dearth of data to work

with. Since data had to be collected specifically for each task, data collection was an

expensive and time-consuming affair. As a result, the key challenge for researchers

was to create medical models based on small datasets that were still statistically

significant and had statistical power.

In the past decades, there has been an explosive growth in amount collected

passively by monitors in hospitals. In particular, bedside monitors in the Intensive

Care Units of hospitals now record a gamut of information ranging from blood pressure

to lab results on a continuous basis. As a result, we now have a wealth of information

on tens of thousands of patients. The development of models using these datasets is

an attractive proposition since the cost of data acquisition is effectively nil.

Unfortunately, this type of “ambient” data is frequently recorded directly from the

monitoring devices with minimal human intervention, and is therefore noisier than

hand-collected data. Thus, medical decision makers are now faced with the problem

of reasoning with a dataset that is large, high-dimensional, and noisy. Mechanisms

that could reduce the size of the dataset in a noise-resilient manner, while retaining

the salient features of the data would go a long way in aiding both reasoning and

creation of medical models on these datasets.
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This thesis discusses the use of non-parametric unsupervised learning to discover

abstract patient states to summarize the condition of a patient. We try to capture the

entire physiological state of all organ systems of a patient at a single point in time by

analyzing parameters pertaining to the entire body. Since this type of learning has

traditionally been limited to smaller error-free datasets, we also describe the steps

taken to perform the learning in a real-world medical dataset. We then discuss the

validation of the discovered patient states by checking for three outcomes: survival,

Glasgow Coma Scale values, and Critical Heart Rate Events.

1.2 Related Work

Previous work with such “ambient” medical datasets has focused almost exclusively

on the use of supervised models that predict the onset of hazardous outcomes. For

example,

• Hug [23] describes the creation of a model that can predict the trajectory and

survival probability of patients in Intensive Care Unit

• Hug [24] expands the work in Hug [23] and describes models to predict the onset

of outcomes such as Mortality, Septic Shock and Kidney Injury

• Celi [8] describes a model for mortality that performs significantly better on

patients with Acute Kidney Injury than the traditional SAPS score

While these models have been spectacularly successful, they are highly specific to

the task and do not generalize. For example, the models trained for Septic Shock

prediction are specific to Septic Shock and do not perform as well when predicting a

different outcome such as Mortality. As a result, the gains in dimensionality reduction

of the dataset using these types of models are limited to specific tasks.

This thesis explores the use of techniques from unsupervised learning to “com-

press” the dataset by discovering abstract patient states that summarize the condi-

tion of a patient in Intensive Care Unit. In other words, we do not train a model that
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is tuned to predict any specific outcome such as mortality. Instead, we let the data

speak for itself and try to find groups of patients who are physiologically similar. The

hope is that this compressed dataset could then be used as a basis to create other

models, such as a model for the temporal evolution of patient state in response to

interventions in the Intensive Care Unit.

This type of non-parametric “compression” of data has been successfully per-

formed in a number of fields. In the following sections we describe a few examples

from different areas that served as an inspiration for this work.

1.2.1 Clustering in Critically Injured Patients

The direct inspiration for this work comes from Cohen et al. [11] who used hierarchical

clustering to group 52,000 minute-by-minute data points with 40 numeric variables

of 17 patients in a surgical intensive care unit. Our work differs in several important

ways.

Our work is performed on a substantially larger dataset with over 1 million data

points corresponding to over 10,000 patients. Our dataset is also more complex in

that it has hundreds of variables and is not restricted to continuous and complete

features. Thus, part of the contribution of the thesis is the description of the engi-

neering required to perform cluster analysis on a large, high-dimensional, mixed and

incomplete dataset.

We are also more principled in our methodology:

• We account for differences in scales and variance of different features by per-

forming normalization

• We use techniques from the clustering literature to both select the number of

clusters to discover and to validate the discovered results

• The k clusters discovered by cutting off the dendrogram discovered by hierarchi-

cal clustering is generally suboptimal compared to the k clusters discovered by

flat clustering [15, 28]. As a result, we use model selection to find the optimal

17



value of k and use partitional clustering to discover the best clustering of size

k.

1.2.2 Topic Modeling

The Topic Modeling problem from Natural Language Processing [38, 5] involves

grouping documents that cover similar topics. More precisely, the input to the prob-

lem is a corpus of n documents, d1, · · · , dn and a parameter describing the number

of groups (either a fixed number k, or a hyperparameter that describes the genera-

tive process that is assumed to have created these documents). The topic modeling

algorithm needs to group the n documents so that the documents in each group are

similar to each other. For example, given a set of news articles, the topic modeling

algorithm would be expected to group the international news articles in one group,

the sports news articles in another and so on.

This problem is very similar to ours in a number of ways. First, it involves the

discovery of groups for a set of data points. These groups are intuitive and easy

to explain (e.g. documents that discuss the same topic, patients who have similar

physiology) but are not as well-defined mathematically (e.g. What is a topic? What

does “similarity” in the context of ICU patients mean?).

Second, both problems involve data in large dimensions. Topic Modeling is tradi-

tionally done with the bag-of-words model where the count of each word (or sequence

of words) is considered an independent feature. Thus, the dimensionality of these

datasets can easily be in the tens of thousands.

However, popular topic model algorithms generally assume that the documents

are generated according to some simple probability distribution, like the Dirichlet

distribution. It is not clear whether human physiology can be described using a

similarly simple probability distribution. In this thesis, we choose to work in a non-

parametric manner and do not assume that the data is generated by some overarching

simple probability distribution1.

1The use of model-based clustering methods is briefly discussed in Chapter 5
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1.2.3 Vector Quantization

Vector Quantization [22] is a technique for compressing images so that the resulting

image looks similar to the original while requiring much less storage.

Images are represented by a two-dimensional array of “pixels”, which represent

the color at a point. A pixel traditionally requires 32-bits to represent the color:

8-bits each for Red, Blue and Green components and a further 8-bits to represent

transparency information. Thus, a typical high-resolution image with 1920-by-1080

pixels would require 1920× 1080× 32 = 66355200 bits = 7 megabytes to store.

The idea behind vector quantization is to reduce the size of the image by reducing

the number of bits required to describe each pixel. More precisely, the colors are

partitioned into K groups (usually a few hundred) so that similar colors are grouped

together. Then, each color is replaced by the arithmetic mean of the colors in the

group. As a result, we can now store the K “representative” colors in K ∗32 bits and

use log2K instead of 32 bits per-pixel to describe the color.

The work in the thesis is similar to Vector Quantization since it also uses non-

parametric unsupervised learning techniques to reduce the size of the dataset by

grouping similar items together. Just as the quality of image compression is judged

by similarity between the compressed image and the original, we judge the quality of

our groups by ensuring that the groups found are medically significant and that the

compression hasn’t led to a loss of the salient features of the dataset.

1.3 Thesis Organization

The thesis is organized as follows:

• Chapter 2 introduces the MIMIC II database and describes the creation of the

dataset which we work with. It also describes the problems with the dataset

and the techniques applied to ameliorate them.

• Chapter 3 describes clustering, the non-parametric unsupervised learning tech-

nique used in this thesis. It introduces the technique and describes the refine-
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ments required to use it on our dataset.

• Chapter 4 describes the selection of the clustering model and its validation. The

model is validated by checking goodness of clustering with a statistical measure

and by checking if the resulting clusters are enriched towards some medically

significant outcomes.

• Finally, Chapter 5 summarizes the contributions of the thesis and discusses

some avenues for future research.
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Chapter 2

The MIMIC Dataset

This chapter describes the creation of a dataset from the Multiparameter Intelligent

Monitoring in Intensive Care (MIMIC II) database [37]. The MIMIC II database

contains detailed deidentified physiological information on patients in the Intensive

Care Units (ICU) of the Beth Israel Deaconess Medical Center collected over a seven

year period from 2001. The data contains information on the patients in five adult

ICUs (Coronary, Trauma, Surgical, Medical and Cardiac) and the Neonatal ICU.

This data was gathered to enable research in patient monitoring techniques and has

successfully been used to create models that predict the onset of hazardous events

such as mortality, organ failures and septic shock [8, 23, 24].

The MIMIC database is further divided into two sub-databases: the High-Resolution

Waveform Database and the Clinical Database. The Waveform Database consists of

data recorded from bedside monitors such as Electrocardiograph Monitors (ECG),

Ambulatory Blood Pressure Monitors (ABP) and Respiratory Monitors for over 2000

patients. This data is collected at a frequency of 125 Hertz and has a 8-10 bit reso-

lution.

The Clinical Database consists of time-series data collected from the Philips Care-

Vue monitors and the Hospital Archives for over 32,000 patients. This database is

organized around the concept of an event, which is a record of an activity such as ad-

ministration of medication or measurement of vitals along with a timestamp. Thus,

the Clinical Database can be viewed as a time-series data of patients that records
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medications administered, fluid input and output events, nursing notes, and lab re-

sults of the patients.

This thesis focuses on performing unsupervised learning in data extracted from

the Clinical Database since there is very little overlap in the techniques and concepts

between clustering of continuous high-frequency signal data and the clustering of

more discrete data. Some suggestions for performing unsupervised learning in signal

data are presented in Chapter 5.

2.1 The Clinical Database

The Clinical Database is organized as a relational database that contains information

on both patients and their caregivers. The data for each patient is identified by a

combination of the following IDs:

• Subject ID which distinguishes between different patients

• Hadm ID which distinguishes between different hospital admissions of the same

patient

• ICUStay ID which distinguishes between stays in different ICUs during a hos-

pital admission

The patient data is grouped by type of data and stored in the following tables:

• Chart data from a patient’s medical chart such as nurse-validated readings,

severity scores and ventilator settings

• Demographics such as age, sex, ethnicity, height and admission weight.

• Fluids administered and withdrawn from patients

• Laboratory test data such as blood gas and chemistry

• Medications administered intravenously to patients

• Notes written by the nurses in free-text format
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The data in these tables are organized around the concept of an event. For ex-

ample, when a patient is given Insulin (a medication), a new event is created that

contains the patient’s ID, the type of medication administered, the time of administra-

tion and other details such as dosage and administration method. While the columns

used to record extra detail varies by table, each table has the following information:

• Subject ID, Hadm ID, and ICUStay ID to identify the patient

• ItemID of the medication, laboratory test, fluid input output type, demographic

detail or chart item

• ChartTime the time at which the event occurred

• Value of lab result, dose of medication, amount of fluid input output.

The different items in each table are distinguished by ItemIDs. For example,

Insulin in the medications table has an ItemID of 45 while Integrelin has an ItemID

of 142. Unfortunately, there are a few dozen features that have multiple ItemIDs (for

example, the medication Neosynephrine has ItemID 127 as well as 128). We used the

table in [10] to identify these features and took care to combine their observations.

2.2 Feature Selection

Every ItemID in the database corresponds to a feature that can be used to build a

model. In order to understand the dimensionality, we counted the number of unique

ItemIDs in the database. These counts are presented in Table 2.1. The table shows

that the database has roughly 13,000 features and is thus very high dimensional.

In order to understand the sparsity of the data, we counted the number of patients

who had a value for each ItemID. We found that the counts followed a power-law

distribution with a few features being present in a significant number of patients and

most features restricted to a handful of patients.

This combination of high dimensionality and sparsity is problematic for several

reasons. First, as we will see in Chapter 3, the time taken to cluster a dataset
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increases linearly with the number of features. So, the presence of a large number

of features increases the time to create a model. Second, missing values in a feature

have to be accounted for somehow when comparing two data points to understand

their similarity1.

Thus, we applied some heuristics to reduce the number of features considered by

the model. First, we retained each of the roughly 400 features used by [23, 24] in

his models to predict hazardous events because they showed good predictive power

towards medically significant outcomes. We then supplemented this feature set by

adding a handful of features discussed in the medical literature as being medically

relevant. Finally, we retained any feature that was present in a significant number of

patients. For example, the cutoff for the Medications table was 1000 patients. The

selected features are listed in Tables 2.2 – 2.8. The columns for “Type” and “Hold

Limit” in these tables are explained in Chapter 3.

These features were augmented by incorporating two types of derived variables

as was done in [24]. First, we computed the slope of a feature over a course of time

(usually 240, 1440 or 1680 minutes). Second, we counted the number of minutes a

variable was out of normal range. These variables allow us to capture evolutionary

trends in the feature, and allow us to incorporate some of the information from the

patient history. A more principled approach to incorporating time series informa-

tion would be to use techniques from non-parametric time series clustering such as

Dynamic Time Warping2.

2.3 Data Reshaping

Clustering algorithms require the input data to be represented by a n × f matrix

where the n rows are the observations and the f columns are the features of the

dataset. Thus, we had to extract the data from the relational form into this format

1Missing variables refers to measurements which are absent, such as the absence of fluid input
output measurement at a certain time. It does not, for example, refer to the lack of administration
of a certain medication; these are simply marked as False.

2This and other techniques are suggested in Section 5.2.
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Table Number of features
Chart 4832
Demographics 88
Fluids 6808
Laboratory 713
Medications 405
Total 12846

Table 2.1: The number of features available in the MIMIC II Clinical Database. This
table illustrates the high dimensionality of the dataset.

to develop our models.

The extraction was done in two steps. First, we transformed each table so that the

selected features were now the columns of the table. For example, the transformed

Medications table had the following columns: Subject ID, Chart Time, Integrelin,

Ephinephrine, Lasix, Vasopressin, Nitroprusside, and so on. That is, each type of

medication is now a column in the table whose values are True if the medication was

administered and False otherwise.

We then performed a table join operation on the transformed tables to obtain a

single table that contained all the columns. The rows for the same Subject ID from

different tables were combined using the following strategy:

• Rows for the same ChartTime were merged into a single row

• Rows for different ChartTime were not merged; instead, NULL values were

placed in the other columns. For example, if we have Medication data for a

certain patient at a certain time but no data on Fluids, all values in the fluid

column would be NULL.

2.4 Problems with the Dataset

We will now discuss problems with the extracted dataset and discuss some measures

taken to mitigate these problems. Further measures to ameliorate these problems are

discussed in Chapter 3.
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Feature ItemID Type Hold Limit (Hours)
Integrelin 142 Binary (Asymmetric) —
Epinephrine 119, 44 Binary (Asymmetric) —
Lasix 123 Binary (Asymmetric) —
Vasopressin 51 Binary (Asymmetric) —
Nitroprusside 50 Binary (Asymmetric) —
MorphineSulfate 126 Binary (Asymmetric) —
Amiodarone 112 Binary (Asymmetric) —
Midazolam 124 Binary (Asymmetric) —
Dopamine 43 Binary (Asymmetric) —
Fentanyl 118, 149 Binary (Asymmetric) —
Levophed 120, 47 Binary (Asymmetric) —
Heparin 25 Binary (Asymmetric) —
Nitroglycerine 121, 49 Binary (Asymmetric) —
Insulin 45 Binary (Asymmetric) —
Neosynephrine 127,128 Binary (Asymmetric) —
Propofol 131 Binary (Asymmetric) —

Table 2.2: Features selected from the Medications table. The “Type” column is
explained in Section 3.2.3. The “Hold Limit” column is explained in Section 2.4.2.

Feature ItemIDs Type Hold Limit (hours)
Systolic Blood Pressure 455 Numeric 4
Diastolic Blood Pressure 455 Numeric 4
Mean Arterial Pressure 456 Numeric 4
NBP 1149 Numeric 4
Arterial Blood Pressure (Systolic) 51 Numeric 4
Arterial Blood Pressure (Diastolic) 51 Numeric 4
Arterial Blood Pressure (Mean) 52 Numeric 4
Heart Rate 211 Numeric 4
Oxygen Saturation 646, 1148 Numeric 4
Central Venous Pressure 113, 1103 Numeric 4
PAP Mean 491 Numeric 4
PAP Standard Deviation 492 Numeric 4
Cardiac Index 116 Numeric 4
SVR 626 Numeric 4
CO (thermodilution) 90 Numeric 4
CO (fick) 89 Numeric 4
PCWP 504 Numeric 4
PVR 512 Numeric 4
Cardiac Murmur 3353 Numeric 4
Vitamin K 3685 Numeric 4

Table 2.3: Cardiovascular features selected from the Charts Table

26



Feature ItemIDs Type Hold Limit (Hours)
Sodium 837, 1536 Numeric 28
Potassium 829, 1535 Numeric 28
Chlorine 788, 1523 Numeric 28
Phosphorous 827 Numeric 28
Lactic Acid 818, 1531 Numeric 28
Carbon Dioxide 787 Numeric 28
Glucose 811 Numeric 28
Blood Urea Nitrogen 781, 1162 Numeric 28
Creatinine 791, 1525 Numeric 28
Magnesium 821, 1532 Numeric 28
Calcium 786, 1522 Numeric 28
Ionized Calcium 816 Numeric 28
ALT 769 Numeric 28
AST 770 Numeric 28
Troponin 851 Numeric 28
Fibrinogen 806 Numeric 28
Total Bili 848, 1538 Numeric 28
Direct Bili 803, 1527 Numeric 28
Total Protein 849, 1539 Numeric 28
Albumin 772, 1521 Numeric 28
Lactic Acid 818, 1531 Numeric 28

Table 2.4: Chemistry features selected from the Charts Table

Feature ItemIDs Type Hold Limit (Hours)
Arterial Base Excess 776 Numeric 28
Arterial CO2 777 Numeric 28
Arterial PaCO2 778 Numeric 28
Arterial PaO2 779 Numeric 28
Arterial pH 780, 1126 Numeric 28
Venous PvO2 859 Numeric 28

Table 2.5: Blood Gas features selected from the Charts Table
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Feature ItemIDs Type Hold Limit (Hours)
FiO2 Set 190 Numeric 28
PEEP Set 506 Numeric 28
Respiration Rate 618 Numeric 28
Respiration Rate Total 615 Numeric 28
Respiration Rate Set 619 Numeric 28
Respiration Rate Spon 614 Numeric 28
Peak Insp. Pressure 535 Numeric 28
Plateau Pressure 543 Numeric 28
Tidal Volume (Observed) 682 Numeric 28
Tidal Volume (Set) 683 Numeric 28
Tidal Volume (Spont) 684 Numeric 28
SaO2 834 Numeric 28
Lung Sounds 428, 425 Nominal 28

Table 2.6: Ventilation features selected from the Charts Table

Feature ItemIDs Type Hold Limit (Hours)
Hematocrit 813 Numeric 28
Hemoglobin 814 Numeric 28
INR 815, 1530 Numeric 28
Platelets 828 Numeric 28
PT 824, 1286 Numeric 28
PTT 825, 1533 Numeric 28
White Blood Cells 861, 1127, 1542 Numeric 28
Red Blood Cells 833 Numeric 28
Temperature 678, 679 Numeric 28

Table 2.7: Hematology features selected from the Charts Table
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Feature ItemIDs Type Hold Limit (Hours)
Heart Rhythm 212 Ordinal (Symmetric) 3
Ectopy Type 161 Ordinal (Symmetric) 3
Ectopy Frequency 159 Ordinal (Symmetric) 3
Code Status 128 Ordinal (Symmetric) 3
Risk for Falls 1484 Ordinal (Symmetric) 3
Orientation 479 Ordinal (Symmetric) 3
Level of Consciousness 432 Ordinal (Symmetric) 3
Eye Opening 184 Ordinal (Symmetric) 3
Motor Response 454 Ordinal (Symmetric) 3
Riker SAS 1337 Ordinal (Symmetric) 3
Ventilator Type 722 Ordinal (Symmetric) 3
Ventilator Mode 720 Ordinal (Symmetric) 3
Pacemaker Type 516 Ordinal (Symmetric) 3
Trachea Size 690 Ordinal (Symmetric) 3
Skin Color 643 Ordinal (Symmetric) 3
Skin Integrity 644 Ordinal (Symmetric) 3
Service Type 1125 Ordinal (Symmetric) 3

Table 2.8: Categorical features selected from the Charts Table

2.4.1 Large Size

The dataset as we’ve extracted contains over 10,000 patients and 1 million rows. We

followed the lead of [24] and performed several operations to restrict the patients we

considered.

First, we considered only those patients who were admitted into the adult intensive

care units since the physiology of neonates is markedly different from the physiology

of adults. The comparatively smaller number of data for neonates would mean that

these would simply manifest themselves as outliers.

Second, we removed patients who were discharged within a few hours of admission

into the ICU, or did not have information for the following very common variables:

• Blood Urea Nitrogen

• Hematocrit

• Heart Rate

• At least one Medication Event
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These measures helped remove spurious patients from the dataset. However, we

still have a large number of rows due to the way the rows were merged when the table

join was performed. We only merged rows which corresponded to exactly the same

ChartTime. Since the ChartTime has a granularity of seconds, only a few rows were

actually merged. We decided to change the granularity of the records to 30 minutes3,

and merged rows in 30 minute windows using the following strategy:

• If there was no reading in any of the rows for a particular feature, we set the

value as NULL

• If there was only one row with a value for a particular feature, we used that

value

• If we had more than one value for the same feature, we used the extreme val-

ues. This meant taking the largest value for numeric values except for features

measuring the low values such as Diastolic Blood Pressure. The use of extreme

values increases our susceptibility to noise and outliers, but these extreme val-

ues could indicate problems which would be hidden if we used a central value

such as median.

2.4.2 Missing and Irregularly Sampled Data

The frequency at which the data is collected is dependent on a variety of factors such

as the monitor type, medical personnel availability and the patient’s condition. For

example, a patient in critical condition has more frequent lab results than someone

in stable condition. This means that the data is not Missing Completely at Random

and thus, traditional strategies to deal with missing data such as interpolation or

imputation will not yield good results unless they explicitly model the reasons why

the data is missing [10].

3This is an arbitrary choice, and other values such as 60 minutes or even 10 minutes would be
valid. We wanted to strike a balance between reducing the number of rows in the table and retaining
information in the dataset
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We cannot simply ignore the missing data either, since the absence of a value for

a particular test could indicate that the physician did not think that the test would

give insight into the patient’s condition. In other words, the absence of a value for

a feature could influence the model by incorporating the physician’s understanding

of the patient’s condition. We tried to minimize this creep-in by discarding the very

rare features. For example, we ignored medications that were given to fewer than

1000 patients.

We also used the sample-and-hold technique used by [24] to reduce the number

of missing data. The idea behind sample-and-hold is to assume that measurements

are valid for a certain period of time, which allows us to replace missing values from

past measurements. The period for which a measurement is considered valid was

determined empirically by determining the frequency at which the measurement was

performed. For example, we found that the patient’s Glucose chemistry was measured

roughly every 24 hours. So, we treated a measurement of Glucose as valid for the

next 28 hours. The hold values used for the variables are listed in Tables 2.2 – 2.8.

Sample-and-hold is a form of simple-minded imputation where we assume that

the variable stays constant during the period we don’t have the data for and that

the variable moves in a step-wise fashion. The use of more sophisticated models of

physiological variable evolution could lead to better results.

2.4.3 Bias and Noise

While the MIMIC developers have made a considerable effort to improve the quality

of the dataset with each release, the dataset still has noise due to causes ranging from

improper instrument calibration to incorrect data entry.

This noise could appear in the dataset as outliers (for example, when a temper-

ature is stored as 30 degrees Fahrenheit instead of Celsius), or as small changes in

magnitude called bias. Suppose a temperature monitor is incorrectly calibrated and

always adds 1 degree to the actual temperature. The added noise is small enough

that the data points are not detected as outliers, but still represent incorrect mea-

surements.
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We perform two operations to minimize the effects of outliers. First, we removed

observations which are more than 3 standard deviations away from the observed mean.

This three-sigma rule is well-accepted statistical technique of removing outliers in the

data [7].

Second, we use robust measures whenever possible. For example, we use median as

the measure of central tendency instead of mean when finding representative objects

during clustering, and mean absolute deviation instead of sum of squares deviation

to measure dispersion. This is discussed in greater detail in Chapter 3.

2.4.4 Non-Numeric Features

Another problem is that the dataset is not entirely numerical. For example, Table

2.8 lists several ordinal variables like Ectopy Frequency, which takes on the values

“Rare”, “Occasional”, “Frequent”. These variables are not ratio-scaled so the dif-

ference between “Rare” and “Occasional” is not the same as the difference between

“Occasional” and “Frequent”. Thus, a naive mapping of these features into the nu-

meric scale would lead to incorrect results.

We deal with this mixture of features by developing a metric that can handle

mixed data in Chapter 3.

2.5 Summary

This chapter described the MIMIC II database, the source of the data used in this

thesis. We described the organization of the Clinical database and the notion of

events. We noted the high dimensionality of the dataset and discussed the techniques

used to reduce it. We then discussed other problems with the dataset like its large

size, missing data, irregularly sampled data, noise, presence of non-numeric measures

and described some measures taken to mitigate their effects.

32



Chapter 3

Clustering

3.1 Introduction

Clustering is an unsupervised learning problem where we are given unlabeled data

points and we need to group the data so that data points that are similar to each

other are placed in the same group.

For example, consider the “Old Faithful” dataset [2] shown in Figure 3-1. The

data describes the time in minutes to the next eruption (y-axis) and the eruption

duration in minutes (x-axis) of the Old Faithful geyser in Yellowstone National Park.

We see two distinct groups of data; one located in the bottom-left of the plot,

and another in the top-right of the plot. Figure 3-2 shows the result of k-means, a

clustering algorithm on this dataset, when asked to find 2 clusters in the data. The

discovered clusters are plotted with different symbols.

3.1.1 The K-means algorithm

We now discuss the k-means algorithm in order to understand the way clustering

algorithms work.

The idea behind k-means is to identify k centroids in the dataset and assign each

data point to the nearest centroid. The K-means algorithm tries to find centroids

and assignments that minimize the sum of squares of the distances between the each
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Figure 3-1: Old Faithful data

centroid and the points assigned to it.

Formally, the input of the k-means algorithm are the n data points x1, · · · , xn ∈ X,

distance function d : X ×X → R and the number of desired clusters k. The output

is the set S of k-centroids µ1, · · ·µk and clusters s1, · · · , sk such that:

S = arg min
s

k∑
i=1

∑
xj∈sj

(d(xj, µi))
2 (3.1)

and

X =
k⋃

c=1

(x ∈ sc) (3.2)

Since this optimization problem is NP-hard in a general Euclidean space, it is

traditionally solved using an iterative approximation algorithm1. The algorithm is

1This algorithm is very similar to the Expectation Maximization algorithm [13] used to estimate
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Figure 3-2: Clusters in the Old Faithful data

initialized with k random points, which are the initial guesses of the centroids. It

then improves the guess for centroids by alternating between two steps: assignment

and update.

In the assignment step, each data point is assigned to the closest centroid. In the

update step, new centroids are computed using all the data points that were assigned

to the same centroid. These two steps are repeated either for a fixed number of

iterations or until convergence.

However, this algorithm can get stuck in a local optima, so it is necessary to run

the algorithms several times with different starting points.

the parameters in statistical models.
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3.1.2 Structure of the chapter

We can identify three critical components of a clustering algorithm from the descrip-

tion of the k-means algorithm:

• The distance metric d(xi, xj) used to quantify the distance between two points

• The number of clusters to be found (k)

• The optimization criteria and the algorithm to solve the optimization problem

We will now discuss each of these components in turn.

3.2 Distance Metrics

We begin by formalizing the notion of dissimilarity and describing the dissimilarity

metrics for homogeneous data. We will then enhance these metrics to allow them

to deal with heterogeneous features, features in different scales, and features with

missing data.

3.2.1 Quantifying Dissimilarity

The notion of dissimilarity or distance between two data points is captured by the

notion of metric from topology [36, 32]. A metric on a set X is a function d : X×X →

R that satisfies the following conditions:

• Symmetry d(x, y) = d(y, x)

• Non-negativity d(x, y) ≥ 0, with equality when x = y

• Triangle Inequality d(x, z) ≤ d(x, y) + d(x, z)

The use of distance functions that are not valid metrics to perform clustering

yields meaningless results.
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3.2.2 Metrics for Numeric Features

We start by assuming that the dataset contains p features, all of which are numeric.

The data points will be denoted by x1, · · · , xn and the value of the f th feature in the

jth data point will be denoted by xi,f .

Metrics used for numeric data can be broadly categorized into those that are

based on distance and those that are based on correlation [15]. We will focus on

distance-based metrics in this thesis because of their widespread-use and conceptual

simplicity.

A commonly used numeric metric is the Euclidean distance2:

d(xi, xj) =

√√√√ p∑
f=1

(xi,f − xj,f )2 (3.4)

The Euclidean distance can be interpreted as the distance between two points in

a p-dimensional Euclidean space.

3.2.3 Metrics for Nominal Features

Nominal features take on a finite number of unordered values. For example, the

feature “Sex”, which in the MIMIC dataset has two possible values “Male” and

“Female”, is a nominal variable. This feature is unordered because we cannot say

that “Male” is greater than “Female” or vice-versa.

In order to compute a distance between two data points, x and y whose features

are all nominal, we use metrics derived from contingency tables [7]. For simplicity,

we assume that each feature can only take on two possible values, arbitrarily labeled

0 and 1. The contingency table for x and y is shown in Table 3.1.

We obtain metrics from the contingency table by combining the counts of the

times x and y had similar values (a and d) with the count of times they had different

2This metric is a specific instance of the Minkowski-distance with k = 2:

d(xi, xj) = (
p∑

f=1

|xi,f − xj,f |k)
1
k (3.3)
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y = 1 y = 0
x = 1 a b
x = 0 c d

Table 3.1: A contingency table for two data points x and y. Each cell contains the
count of features where x and y had the specified value. For example, “a” is the
number of features where both x and y are 1.

values (b and d). The Simple Matching Coefficient [28, 41] is one such metric:

d(x, y) =
b+ c

a+ b+ c+ d
(3.5)

It returns the percent of features where the two data points had different values.

It also has the desirable property that it returns the same value even when some or

all of the labels are swapped.

There is a slight complication when we have features which have outcomes of

different weights. For example, the feature “AIDS” has values “False” and “True”

indicating the absence (and presence) of AIDS in the patient. How do we encode our

expectation that two patients who have AIDS are more similar than two patients who

do not have AIDS?

One way to do it is to assign weights to the different outcomes. Jaccard’s Coeffi-

cient [28, 25] deals with this asymmetry in outcomes by assigning a 0 weight to the

less-informative outcome3:

d(x, y) =
b+ c

a+ b+ c
(3.6)

Comparing this to 3.5, we see that the value d which corresponds to the x = 0, y =

0 outcome has been omitted.

So, we can compute distance between two points in a dataset that contains only

nominal variables using the Simple Matching Coefficient when the features have

equally informative outcomes and Jaccard’s Coefficient when the features have out-

comes that are not equally informative.

3A more sophisticated approach is to use real-valued weights (obtained using techniques like
regression) instead of just ignoring uninformative outcomes.
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3.2.4 Dealing with Data in Different Scales

The MIMIC dataset contains information pertaining to a wide variety of medical

measurements. As a result, the numeric values reflected in different columns are in

different scales. For example, the “Temp” column, for patient temperature, ranges be-

tween 80 and 108 degrees Fahrenheit, while the “AmiodaronePerKG” column ranges

between 0 and 3.5. We need to prevent the larger values of temperature from over-

whelming the smaller values from AmiodaronePerKG when we compute the distance.

Besides a difference in units, we also find a difference in the variance of different

columns. For example, even though AmiodaronePerKG and AmicarPerKG have the

value that are in the same range and unit, values in AmiodaronePerKG are more

dispersed. This means that the same magnitude of change in is more significant in

AmicarPerKG than in AmiodaronePerKG.

The differences in scale and dispersion are typically dealt with by standardizing

the values so that each feature has 0 mean and unit standard deviation. The result

values are called Z-scores.

More precisely, suppose x1, x2, · · ·xn ∈ X are the data points, f is a particular

feature (for example, temperature) whose mean is µf and standard deviation is σf .

Let xi,f denote the value of feature f in the ith data point, and zi,f denote the z-score

of feature f for the ith data point. Then,

zi,f =
xi,f − µf

σf

(3.7)

A problem with the Z-Score is that it relies on mean and standard deviation, which

are not robust [7, 28]. The lack of robustness is problematic because our dataset is

noisy. We follow the advice of [28] and use the more robust Mean Absolute Deviation

measure [19] instead of standard deviation. The Mean Absolute Deviation (madf ) of

a feature f is defined as follows:

madf =

∑n
i=1 |xi,f − µi,f |

n
(3.8)

Thus, we deal with the difference in scales among different features by normalizing

39



to the following robust variant of the Z-score:

z′i,f =
xi,f − µf

madf

(3.9)

3.2.5 Dealing with Mixed Data

We now relax the assumption that the dataset is composed of homogeneous features

since it is inconsistent with our dataset. We discuss the construction of a new metric

that works with heterogeneous features.

Suppose we group our features into numeric, symmetric nominal, asymmetric nom-

inal and compute distances for each type using Euclidean distance, Simple Matching

Coefficient and Jaccard’s Coefficient respectively.

Each of these distances are then rescaled to lie between 0 and ft where ft is the

number of pairwise-complete features considered when computing the distance of the

type t4. This ensures that the final distance has a contribution proportional to the

number of features from each type of data. We can now define a new metric, similar

to the coefficient developed by Gower [18], that is simply a linear combination of

these metrics:

d(xi, xj) = Dnumeric(xi, xj) +Dsymmetric(xi, xj) +Dasymmetric(xi, xj) (3.10)

where Dnumeric(xi, xj) is the scaled Euclidean distance between all the numeric fea-

tures of xi and xj rescaled to lie between 0 and 1 (Dsymmetric and Dasymmetric are

similarly defined). This function satisfies the requirements of a metric function men-

tioned in Section 3.2.1.

4The Simple Matching Coefficient and Jaccard’s Coefficient are already normalized since the
score for each feature lies between 0 and 1.
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3.2.6 Dealing with Missing Data

As mentioned in Section 2.4.2, missing data is pervasive in “found” datasets such

as MIMIC. This is true even after using techniques like holding and getting rid of

extremely rare features (discussed in Section 2.4.2). In denser datasets, we could

remove all the data points with missing data and still be left with a sizable dataset,

but the MIMIC data is sparse enough that this type of removal would result in an

empty dataset.

A slightly more sophisticated solution would be to remove all the “rare” features in

the dataset before removing data points with missing values. This approach doesn’t

work well either; if we were to keep only the features which were present in over 90%

of the data points, we would end up losing around 150 of the 450 features. Following

this by removing data points with any missing value removes 25% of the available

data.

Since it is unacceptable to lose so many columns and data points, we use the

strategy proposed by [28]. First, we compute the per-feature distance (as described

in 3.2.5) for each pairwise-complete feature, that is, features for which we have values

for both xi and xj. If q out of the p features are pairwise complete, we weigh compute

the sum of the distance between each feature and multiply it by q
p
. For example, the

formula for euclidean distance with missing data is:

d(xi, xj) =

√
p

q
((xi,1 − xj,1)2 + · · ·+ (xi,p − xj,p)2) (3.11)

This formula blows up when two data points don’t have any pairwise-complete

features ( q = 0). However, in this case we don’t have any common measurements

between two data points, so the data points are incomparable. To prevent problems of

this type, we remove pairs of data points which don’t have pairwise-complete features

in a greedy manner starting with data points which have the largest number of missing

features.

It is important to note that this metric becomes increasingly inaccurate as q

increases. As such, it is not a silver bullet to the problem of missing data and
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should be used in conjunction with more sophisticated techniques such as holding

and imputation.

3.3 Number of Clusters in a Dataset

K-means is a partitional clustering algorithm; it partitions the dataset into k clusters

where k is specified by the user. How do we determine the right value of k to use?

In the Old Faithful clustering example (3.1), we simply eyeballed the data plot and

found 2 natural clusters. There are several problems with this eyeballing technique.

First, it is ill-defined because it relies on subjective groupings discovered by humans;

even reasonable people can disagree on the number of groups when the data is less

obviously demarcated.

Second, our intuitive notion of distance between two points in a plane is the Eu-

clidean distance. However, things that are close according to the Euclidean distance

need not be close according to a different metric. Thus, the eyeballing technique

would force us to use the Euclidean distance while clustering.

Third, it relies on the visualization of data points in the feature space. It is easy

to visualize points in a 2-dimensional space as in the Old Faithful data, but much

harder to do the same in a dataset in hundreds of dimensions.

Clearly, we need a more principled method to find the number of clusters in a

dataset. One way to do this is to try different values of k and compare the quality

of clusters that are produced5. Unfortunately, the indices to measure cluster quality

are a dime a dozen [28, 40, 31, 17] and the literature provides no guidance on the

appropriate index.

I used one index to determine the value of k during model selection, and then

validated the choice by using a different metric. I will now describe the index used

during construction (the other indices will be described as they are introduced in

5Another way is to assume that the data is generated by a generative process and use an infinite
relational model such as the Chinese Restaurant Process [4]. Instead of taking a fixed number k as
input, these models take in parameters that control the creation of new clusters/groups. Thus, these
methods can use “as many clusters as necessary.” One of the problems is that these techniques are
very inefficient compared to the more pedestrian methods.
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Chapter 4).

3.3.1 Silhouettes

I decided to use the Silhouette Coefficient [34, 28] during model construction based

on the recommendation of [28]. The Silhouette Coefficient of a clustering is derived

from the Silhouette Width of points in each cluster. Silhouette Widths compare the

average distance between a point and other points in its cluster with the average

distance between the point and other points in the next nearest cluster. This allows

us to identify situations where we have points that could just as well be in a different

cluster (which is typically the case when k is both too small or too large).

Mathematically, the Silhouette Width s(i) of a point i is defined as follows. Let

a(i) be the average dissimilarity between the point i and all other points in the same

cluster as i. Let d(i, C) be the average dissimilarity between i and points in a cluster

C, where C 6= A. Then, b(i) = minC 6=Ad(i, C) represents the average dissimilarity

between i and the next nearest cluster to i. Then, s(i) is:

s(i) =
b(i)− a(i)

max(a(i), b(i))
(3.12)

So, the silhouette width of a point is a number between -1 and 1. Positive values of

the width imply that the within cluster dissimilarity is smaller than the dissimilarity

with the next best index, suggesting good clustering. Negative values suggest that

the clustering could be improved by placing this point in a different cluster.

We define the Silhouette Width of a cluster to be the average of the silhouette

widths of each point in the cluster, and we define the Silhouette Width of a clustering

assignment to be the average of the Silhouette Widths of each cluster. We prefer

clustering assignments with higher Silhouette Widths. Thus, we can select the best

value of k using:

k∗ = arg max
k
sclustering(k) (3.13)
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3.3.2 Example: Silhouette Coefficients with Old-Faithful data

Figure 3-3: Silhouette Coefficients for various values of k in the Old Faithful dataset.
Silhouette Coefficient values range from +1 to -1 with large values indicating good
clustering. We see the maximum value at k = 2 which validates our intuition that
the dataset has two clusters.

Figure 3-3 shows the values of silhouette coefficients for different values of k when

clustering the Old Faithful dataset using k-means with Euclidean distance. The best

value, 0.7241, is obtained at k = 2, which is what we expected based on eyeballing

the data. Furthermore, according to [28], silhouette values higher than 0.70 indicate

the discovery of a strong structure, so we can be reasonably confident in our choice

of k.
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3.4 The Clustering Algorithm

We now discuss the clustering algorithm used in the thesis. We begin by discussing

some limitations of the simple k-means algorithm discussed in Section 3.1.1. This

discussion leads us to the Partitioning Around Medoids algorithm [28]. We then

describe the time and space efficiency of clustering algorithms based on the distance-

matrix approach such as k-means and partitioning around medoids. This discussion

leads us to Clustering Large Applications algorithm [28] which is an approximation

of partitioning around medoids.

We motivate the development of the Partitioning Around Medoids algorithm [28]

by discussing two problems with the k-means algorithm. First, k-means uses centroids

(mean values) instead of medoids (median values). This is problematic because the

mean is more sensitive to outliers, and hence less robust than median [7, 19]. Fur-

thermore, unlike the median, the mean of a set of points need not be a point in the

set. This means that we cannot interpret the discovered cluster centers as “repre-

sentative elements” of the clusters. Thus, the partitioning around medoids algorithm

uses medoids instead of centroids.

Second, the k-means algorithm tries to minimize sum of square of distance between

a point and its cluster center. As in Section 3.2.4, we note that methods based on

minimization of sums of squares are less robust than methods that minimize sums

or averages [7, 28, 19]. For this reason, the optimization criterion of the partitioning

around medoids algorithm minimizes average distance to cluster center.

3.4.1 The Partitioning Around Medoids Algorithm

We now present the Partitioning Around Medoids [28, 26] algorithm that is the foun-

dation of the clustering algorithm used in the thesis. The algorithm works in two

stages, called BUILD and SWAP. We will discuss each stage in turn.

During the BUILD phase, the algorithm identifies the set of k most centrally located

points. The pseudo-code of the algorithm is shown in Algorithm 1. The inputs to

the algorithm are the data matrix data, the number of central points to locate k and
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the distance function dist. BUILD first selects the most centrally located point (lines

2-6), and then tries to find the other k − 1 points that would minimize the sum of

distances to nearest central point (lines 7-19). It then returns the selected points.

Algorithm 1 BUILD phase of Partitioning Around Medoids

1: selected← ∅
2: for all i ∈ data do
3: costi ←

∑
j∈data d(i, j)

4: end for
5: best← arg mini costi
6: selected← {best}
7: for c = 2 to k do
8: for all i ∈ data, i /∈ selected do
9: savingsi ← 0

10: for all j ∈ data, i 6= j, i /∈ selected do
11: Dj ← mins∈selectedd(s, j)
12: if Dj > d(i, j) then
13: savingsi ← savingsi +Dj − d(i, j)
14: end if
15: end for
16: end for
17: best← arg maxi savingsi

18: selected← selected ∪ {best}
19: end for
20: return selected

During the SWAP phase, the algorithm considers swapping a selected point i with

a non-selected point j to further reduce the distance to nearest central point. The

pseudo-code is shown in Algorithm 2. It takes in as input the output of BUILD

(selected), data, and the distance function d. This algorithm computes the cost of

swapping each selected data point s with some other point i. To do this, it looks at

every other point j and sets a cost value based on the following distances:

• d(j, s), where s is the representative point we’re thinking of swapping, and j is

an arbitrary non-representative point.

• d(i, j), which is the distance between i, the point we’re thinking of using as

representative instead of s, and j

• Dj, which is the distance between j and the closest representative point.
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• Ej, which is the distance between j and the second closest representative point.

If the value of costi is negative (line 22), then there is a net benefit in replacing

the point s with j, so we perform a swap (line 23).

Algorithm 2 SWAP phase of Partitioning Around Medoids

1: for all s ∈ selected do
2: for all i ∈ data, h /∈ selected do
3: costi ← 0
4: for all j ∈ data, j /∈ selected, j 6= h do
5: currentcost← 0
6: Dj ← mint∈selectedd(t, j)
7: BestRepresentativej ← arg mint∈selected d(t, j)
8: Ej ← mint∈{selected\BestRepresentativej}d(t, j)
9: if d(s, j) > Dj and d(i, j) > Dj then

10: currentcost← 0
11: else if Dj = d(j, s) and d(i, j) < Ej then
12: currentcost← d(i, j)− d(j, s)
13: else if Dj = d(j, s) and d(i, j) ≥ Ej then
14: currentcost← Ej −Dj

15: else
16: currentcost← d(i, j)−Dj

17: end if
18: costi ← costi + currentcost
19: end for
20: end for
21: best← arg mini costi
22: if costbest < 0 then
23: selected← selected ∪ {best} \ {s}
24: end if
25: end for
26: return selected

3.4.2 Time and Space Complexity of Partitioning Around

Medoids

In this section, we will analyze the time and space complexity of the Partitioning

Around Medoids algorithm. This discussion motivates the creation of the approxima-

tion algorithm which is used in the thesis. We will assume that the data has n data

points and f features, and we are tasked with finding k clusters.
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It is traditional for clustering algorithms to use a distance matrix D where D(i, j)

gives the distance between data points i and j. This leads to huge savings in time

because we frequently need the distance between data points. Building the distance

matrix has the following costs:

• Normalizing the data takes O(nf) time because we need to first look at every

value of every feature to compute the statistics like mean absolute distance

and then update each value to its standardized score. If update is performed

in-place, this step requires O(1) space.

• Computing the distance between any two points takes Θ(f) time because we

consider each feature in the two data points. This is done for each pair of points

in the data set, so we require Θ(n2f) time. This requires an additional Θ(n2)

storage.

So, computing the distance matrix takes O(nf +n2f) = O(n2f) time, but we can

now answer every distance query in O(1) time.

We now consider the cost of the BUILD phase. Selecting the initial point (lines 2-4)

requires computing the sum of distance from a point to every other point. This takes

O(n2) time. We then consider every pair of non-selected points and compare their

distance to the distance to the nearest selected point. The actual act of computing

distances and comparing costs O(1) time per pair because we use the precomputed

distance matrix. However, this computation is done for each of the O(n2) pairs and

repeated for each value of k. Thus, the total time cost of BUILD is O(n2k).

Similarly, the SWAP phase performs a distance comparison computation, which

costs O(1), for each of the O(n2) pairs. This computation is repeated for each of the

O(k) selected poitns. Thus, the total cost is O(n2k).

Thus, the total time complexity of the Partitioning Around Medoids algorithm is

O(n2f) + O(n2k) + O(n2k) = O(n2f + n2k). We require O(n2) space to store the

distance matrix6. This is an unbearably high cost on a dataset of our size.

6If we choose not to compute the distance matrix, each distance computation takes O(f) time.
So both BUILD and SWAP take O(n2kf) time. Since f ≈ 400 in our dataset, this is a significant
burden
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3.4.3 The Clustering Large Applications Algorithm

We now discuss Clustering Large Applications [28, 27] an approximation to Parti-

tioning Around Medoids that has much better performance characteristics. The basic

idea of the algorithm is to perform Partitioning Around Medoids on smaller randomly

selected samples of the data.

The algorithm is described in Algorithm 3. It takes as input the data matrix data,

the number of clusters to produce k, the distance function d, the number of samples to

use nsamples, the size of each sample sampsize. It generates a random sample of data

of size sampsize using some built-in procedure RandomSample, performs clustering

on the sample, assigns the remainder of the points to the discovered medoids, and

computes the quality of this clustering using some metric ClusterQuality (such as

Silhouette Index discussed in 3.3.1). It then compares the quality of clustering of

each of the samples and picks the best clustering assignment.

Algorithm 3 The Clustering Large Applications algorithm

1: for s = 1 to nsamples do
2: sample← RandomSample(data, sampsize)
3: clusters← PartitionAroundMedoids(sample, k, d)
4: for all x ∈ data, x /∈ sample do
5: assign x to the closest medoid from clusters
6: end for
7: qualitys ← ClusterQuality(clusters)
8: end for
9: bests ← arg maxs qualitys

10: return bests

We now analyze the performance of Clustering Large Applications. There are four

steps in the inner loop (lines 2-7), whose costs are:

Sample Generation which requires Θ(sampsize) time and Θ(sampsize) space.

Partition Around Medoids which requires Θ(sampsize2f+sampsize2k) time and

Θ(sampsize2) space.

Assigning Points to Closest Medoid requires distance computation (Θ(f) time)

between each medoid O(k) and each point O(n). Total cost is O(nkf).
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Computing Cluster Quality whose cost depends on the exact quality metric used.

With the recommended Silhouette metric, it takes O(n) time.

So, the total cost of the inner loop is O(sampsize + sampsize2 + nkf + n) =

O(sampsize2 + nkf) time. This loop is performed nsamples time, so total cost is

O(nsamples · (sampsize2 + nkf)) time. The time is now quadratic in sample size

instead of quadratic in size of entire data set!

Of course, this improvement didn’t come for free. The algorithm is no longer de-

terministic since it relies on randomly generated samples. It is also an approximation

to Partitioning Around Medoids since we pretend that the clustering found from the

sample is the clustering of the entire dataset. In this thesis, we do the following to

minimize the approximation error:

• Use large samples. We used the 30,000, which was the largest sample size that

we could work with.

• Use high value of nsamples. We used 50 in order to be reasonably confident

that the clusters that were discovered weren’t needlessly bad.

3.5 Summary

This chapter used a simple example to introduce clustering. We identified the critical

components of clustering: the distance metric, the number of clusters to identify, and

the algorithm to perform the clustering and discussed each in detail. We started by

formalizing the notion of metric and introduced some simple metrics. These met-

rics were successively improved to handle missing values, heterogeneous features and

different scales. We briefly discussed the idea of a clustering validation metric, and

defined the Silhouette Index which will be used for model selection. We then discussed

the limitations of the venerable k-means algorithm that motivated the development

of the partitioning around medoids algorithm. We analyzed the performance of parti-

tioning around medoids saw that it was too high for a dataset of our size. Finally, we
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developed Clustering Large Applications, an approximation to Partitioning Around

Medoids based on randomized sampling.
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Chapter 4

Results

This chapter discusses the creation and validation of the clustering model. We begin

by discussing the different parameters of the clustering algorithm and the selection of

the number of clusters based on two measures of cluster quality: the Silhouette Index

[28] and the Gap Statistic [40]. However, we aren’t simply interested in grouping cases

that are similar in some abstract feature space; we want to connect these groups into

external features such as outcome measures. Therefore, we investigate the extent

to which the cases in the clusters found by our algorithm are enriched for specific

outcomes such as Survival, Glasgow Coma Scale and Critical Heart Rate Events.

4.1 Model Selection : Parameters

The Clustering Large Applications algorithm described in Section 3.4.3 has the fol-

lowing parameters:

• k, the number of clusters to produce

• d, the distance function

• nsamples, the number of random samples of the data to use

• samplesize, the size of each of those random samples
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The parameters samplesize and nsamples only affect the convergence of results

and were set to 30000 and 50 respectively, which were the largest values that were

computationally tractable. As discussed in Section 3.4.3, the Clustering Large Appli-

cations has a time and space complexity that grows quadratically with samplesize,

and we found that values of samplesize larger than 30000 exhausted the 28 Giga-

bytes of memory available on our computer. We set nsamples to 50 because we found

that 50 repetitions of clustering on a samplesize of 30000 was sufficient to ensure a

consistency in the medoids discovered.

In Chapter 3, we described a distance function that was capable of dealing with

missing data, data of different types, and numeric data of different scales. This dis-

tance function is itself parametrized by distance functions for numeric data types,

symmetric nominal variables and asymmetric nominal variables. In this thesis, we

picked three simple and ubiquitous distance metrics: Euclidean distance for numeric,

Simple Matching coefficient for symmetric nominal and Jaccard’s distance for asym-

metric nominal variables.

In order to determine the appropriate value for the final parameter, k, we first

considered the hypothesis space. Theoretically, k can take on any value between 1

and N , the number of data points in the dataset. Practically, we are interested in

smaller values of k for the following reasons:

Compression The smaller the value of k, the more compressed the dataset is. One

of the primary goals of the thesis is to ease reasoning by reducing the size of a

dataset that has to be considered without losing salient features. Thus, large

values of k are explicitly against the stated goals of this thesis.

Robustness Since the dataset is noisy, larger values of k might result in clustering

models that are overfit to the noise present in the dataset.

Learnability We want the resulting labels from clustering to be usable by subsequent

models. An output of a large number of labels increases the state space and

hampers learnability of these models.
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In this thesis, we considered a values of k less than 100. For comparison, similar

work on patient state discovery on a smaller dataset discovered 10 clusters in their

dataset [11].

In order to determine the best value of k, we used the Silhouette Index criteria

(3.3.1) first and then validated the choice using the Gap Statistic. Both Silhouette

and Gap measure only the structural soundness of the discovered clusters and do not

consider the fitness of clusters towards any specific outcome. This is in line with our

aim to discover “natural” grouping of data that is generally useful across a spectrum

of outcomes.

4.2 Model Selection using the Silhouette Index

The Silhouette Index is introduced in Section 3.3.1. Recall that the Silhouette In-

dex is a quantity that determines goodness of clustering by comparing the average

dissimilarity between a point and other points in the same cluster to the average

dissimilarity between the point and the next best cluster. Unlike most other metrics

for cluster quality, values of the Silhouette Index do not increase monotonically with

k; it penalizes large values of k as well as small values. Values of the Silhouette Index

range between -1 and 1 with larger values indicating better clustering. The creators

of the Silhouette Index suggest the following interpretation of the value [28]:

0.71–1 Strong structure discovered by clustering

0.51–0.70 Reasonable structure discovered

0.26–0.50 Weak, possibly artificial, structure discovered

-1–0.25 No substantial structure discovered

Figure 4-1 shows the value of the Silhouette Index for clusters discovered for

values k between 2 and 100. The clustering was performed on the dataset described

in Chapter 2. The other parameters of the clustering algorithm were set as described

in the previous section. Table 4.1 shows the best values of the Silhouette Index and
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Figure 4-1: The Silhouette Index values for clusters discovered with different settings
of k, the number of clusters. Higher values indicate better clustering. The best value
is at k = 11.

Figure 4-2 shows the values of the index for k less than 20. The best value is 0.7384

at k = 11, which suggests the discovery of a strong structure. However, the values

between 7 to 15 all have scores above 0.70, suggesting that the dataset contains

between 7 and 15 clusters.

Figure 4-3 shows the size of each cluster. We see that the clustering has produced

three large clusters and five smaller ones.

4.3 Model Validation using the Gap Statistic

In order to verify that the value of k obtained by optimizing the value of the Silhouette

Index, we used the Gap Statistic [40], a different method to determine the correct
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Figure 4-2: Silhouette Index values for clusters focusing on k. This plot is otherwise
the same as Figure 4-1 except that it shows values of k between 1 and 20.

number of clusters in a dataset.

The Gap Statistic is based on the observation that the within-cluster dissimilarities

(Wk) initially decreases monotonically as k increases, but starts flattening after a

certain value of k = k0. While the exact value of k0 depends on the dataset, this

value represents the point beyond which quality of clustering cannot be improved

dramatically simply by adding more clusters. It is commonly accepted that this

value of k represents the number of clusters in the dataset [22, 40]. The Gap Statistic

is a method of determining the k where the Wk curve starts to flatten.

More formally, the pooled within-cluster dissimilarity is defined as follows:

Wk =
k∑

r=1

1

2nr

Dr (4.1)
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k Silhouette Index
7 0.7082571
8 0.7164445
9 0.7326193
10 0.7210056
11 0.7384862
12 0.7205812
13 0.7211385
14 0.7069354
15 0.7021224
16 0.6628145

Table 4.1: The values of k that have the largest Silhouette Index. Largest possible
value is 1, and values larger than 0.70 suggest the discovery of strong structure.

where nr is the number of items in the rth cluster and Dr is the sum of distances

between all pairs of points in the rth clusters.

The Gap Statistic first normalizes values of log(Wk) by comparing it with log(W ∗
k ),

its expected value under a null reference distribution. For computational simplicity,

the authors suggest using the uniform distribution over a box that is aligned with the

principal components of the data instead of the Maximum Likelihood Estimate of the

data. In order to obtain the estimate, B bootstrap samples of data from the reference

distribution are generated and clustered to obtain the log(W ∗
kb), the estimate of the

log(W ∗
k ) for the bth bootstrap sample. Then, the Gap Statistic is computed using the

following formula:

Gap(k) =
1

B
(
∑

b

log(W ∗
kb))− log(Wk) (4.2)

The authors suggest selecting the number of clusters in the dataset, k̂ using Tib-

shirani’s criteria, which is defined as:

k̂ = arg min
k
Gap(k) ≥ Gap(k + 1)−

√
1 +

1

B
sd(log(W ∗

kb)) (4.3)

In other words, select the smallest k where the Gap is larger than the Gap of the

k + 1. The last term in the equation are error terms that account for error accrued

58



Figure 4-3: Number of items in each cluster.

during bootstrap estimation.

We computed the values of the Gap statistic on our dataset for k between 1 and

100 with number of bootstrap samples B = 50. The results are shown in Figure 4-4

and Figure 4-5. Using Tibshirani’s criteria, the best value of k is 11, the same value

picked using the Silhouette Index.

4.4 Model Validation by Verifying Enrichment

In this section, we analyze the clusters discovered for biological significance by verify-

ing enrichment towards specific outcomes. In other words, we compare the probability

of an outcome, such as survival, in the entire dataset1 with the probability of the same

1This corresponds to the null hypothesis that there is only 1 cluster in the data
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Figure 4-4: Values of the Gap statistic for k between 1 and 100. Tibshirani’s Criteria
recommends picking the k where Gap(k) is greater than Gap(k+ 1) (after accounting
for estimate errors). In our dataset, this corresponds to k = 11

outcome in the different clusters.

We say that a cluster is enriched for an outcome when it has a higher probability

than the entire dataset2. We say that a cluster is depleted towards an outcome when

it has a lower probability. Enrichment and depletion of clusters suggest that the

clustering results are biologically significant because a uniform random partition of

the data into clusters would not affect the probability of an outcome.

More concretely, to verify enrichment or depletion we first compute the baseline

value of the dataset using the following formula:

2For statistical significance, the number of points in the cluster has to be sufficiently large
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Figure 4-5: Values of the Gap statistic for k between 1 and 20. This figure is the
same as Figure 4-4 except that it shows values between 1 and 20.

probability(outcome) =
Number of data points belonging to patients with the outcome

Total data points in the dataset
(4.4)

We then compute the probabilities per cluster:

probability(outcome|cluster = k) =
Number of data points in cluster k with outcome

Total data points in cluster k
(4.5)

The two probability values are then compared to see if the cluster probabilities are

markedly higher (enrichment) or lower (depletion). We will now discuss the result of
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testing for enrichment for three outcomes. We have arbitrarily labeled the 11 clusters

are with numbers 1, · · · , 11.

4.4.1 Survival

As in [24], we say that patients have “survived” if they are alive 30 days after being

discharged from the ICU. The value of the baseline for survival rate in our dataset

was found to be 0.8329. This baseline along with values for each of the 11 clusters

are shown in Figure 4-6.

Figure 4-6: Fraction of points in each cluster belonging to patients who were alive
after 30 days of being discharged from the ICU. The dashed line shows the baseline
for the entire dataset.

The survival data has the following characteristics:

• Clusters 1 and 2 are composed exclusively of data points belonging to patients
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that survived. This is significant because clusters 1 and 2 are quite large.

• Clusters 6, 10 and 11 are composed exclusively of data points belonging to

patients that expired

• Clusters 7, 8, and 9 show survival rates that are significantly lower than baseline

• Clusters 3, 4, and 5 have survival rates that are close to baseline

4.4.2 Glasgow Coma Scale

The Glasgow Coma Scale [39] measures the patient’s consciousness by testing eye,

verbal and motor responses. The score varies between 3 and 15 with lower scores

indicating greater severity. The scores are typically interpreted as follows:

• Severe Brain Injury: GCS ≤ 8

• Moderate Brain Injury: GCS 9− 12

• Minor Brain Injury: GCS ≥ 13

The expected value of GCS in our dataset was 11.343. The expected value of GCS

for each of the 11 clusters are shown in Figure 4-7.

The following clusters contain values that are significantly different from baseline:

• Clusters 1 and 2 both have expected GCS value of over 14, suggesting a popu-

lation with minimal brain injuries

• Clusters 6, 8, 10 and 11 all have expected GCS of 3, which is the most severe

value.

• Clusters 7 and 9 have GCS values close to 7 suggesting severe brain injury

3The value was missing in 51,831 data points. These points were omitted during the computation
of expectation.
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Figure 4-7: Expected value of Glasgow Coma Scale (GCS) in each cluster. The dashed
line shows the baseline for the entire dataset.

4.4.3 Number of Critical Heart Rate Events in Past 24 Hours

Finally, we analyze the distribution of the number of critical heart rate events in the

past 24 hours (abbreviated HRCritEvents). A heart rate value is said to be critical

if it is:

• Less than 50 beats per minute, or

• Systolic Arterial Pressure is less than 60 mmHg, or

• Mean Arterial Pressure is less than 50 mmHg

The distribution of critical events is very long tailed with the mean at 6.665, third

quartile at 5 and the maximum at 223. The expected values of HRCritEvents for

each of the 11 clusters are shown in Figure 4-8.
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Figure 4-8: Expected Number of Critical Heart Rate Events in the past 24 hours.
The dashed line shows the baseline for the entire dataset.

The following clusters contain values significantly different than baseline:

• Clusters 1 and 5 have an expected value of 0 and contain points that had very

few or no critical events

• Clusters 2, 3, and 4 have expected values less than 5, and contain points with

few critical events.

• Clusters 7, 8, 10 and 11 have expected values well above the baseline. In

particular, the expected value of Cluster 10 is over 80 critical heart rate events

in the past 24 hours.
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4.5 Conclusion

We set the number of clusters to be 11 by optimizing the Silhouette Index as suggested

in [28]. This clustering assignment has a Silhouette Index of 0.7384 which suggests

strong structure discovery. This choice of the number of clusters was verified by using

the Tibshirani’s Criteria of Gap Statistic. Finally, we compared the expected value

of Survival rate, Glasgow Coma Scale, and Number of Critical Heart Rate Events in

the past 24 hours in each cluster to the value in the entire dataset. We found clusters

with values significantly different from baseline, suggesting that our clustering had

done better than a simple random partition of the data into 11 clusters.
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Chapter 5

Conclusion

This thesis discussed the use of a non-parametric clustering technique to identify

abstract patient states. As a conclusion, we will first review the work done in the

thesis and then discuss areas of further research.

5.1 Summary of Contributions

We started the thesis by discussing the problem of reasoning with large, high-dimensional,

noisy and heterogeneous datasets. We stated our goal of producing a compressed ver-

sion of the dataset that still retained the salient features. We described the success

of clustering, an unsupervised learning technique, in achieving the goal in a variety

of fields.

In Chapter 2, we delved deeper into the MIMIC II database. We described the

different types of data available and the features that were eventually selected for

the dataset. We then discussed the problems with the dataset such as large size,

high dimensionality, sparsity, and noise along with some measures to mitigate the

problems such as feature selection and holding.

In Chapter 3, we identified the components of partitional clustering: metric, pa-

rameter for number of clusters, and the clustering algorithm. We developed a metric

capable of dealing with the missing data, heterogeneous features and measurements

in different scales. We discussed the use of clustering indices to measure quality of
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clustering and the use of such indices to select the right number of clusters. We then

discussed a robust and computationally efficient algorithm to perform clustering.

Chapter 4 discussed the results of clustering with the best k as determined through

Silhouettes. The choice of best k was verified using Gap Statistic, a different metric.

We then evaluated the discovered clusters for biological significance by checking for

enrichment towards survival, Glasgow Coma Scale values, and Number of Critical

Heart Rate Events. In each case, we found clusters whose values were significantly

higher and lower than the baseline.

To summarize, this thesis developed a fast, scalable clustering capable of dealing

with large, high-dimensional, noisy, incomplete data with mixed variables. The results

obtained by this method showed biological significance.

5.2 Future Work

We will now discuss avenues for future research in the areas of data processing, dis-

similarity calculation and clustering.

5.2.1 Data Processing

As mentioned in Chapter 2, we only used the nurse-verified clinical dataset portion

of the MIMIC II dataset in this thesis. Incorporating the nursing notes data using

techniques like topic modeling [5] and the waveform data using waveform clustering

[35] would allow us to discover much richer structures.

Although the MIMIC dataset is a time series, we didn’t exploit this property in

any way other than to perform holding to fill in missing values. We could use time

series alignment to compute clusters at different times in a patient’s stay to get a

temporal model of the patient’s state evolution.
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5.2.2 Dissimilarity Computation

The Euclidean distance used in the thesis is one of many possible metrics for nu-

meric dissimilarity. Unlike the Mahalanobis distance [29], it does not incorporate the

information on the correlations between the different features of the dataset. As a

result, the distances obtained by Euclidean distance are not corrected for correlations

between different variables. Equivalently, this means that the discovered clusters

correspond to hyperspheres around the central object instead of the more general

hyperellipsoids.

Furthermore, we have assigned equal weights to features of the dataset even though

they differ in their predictive power. For example, the amount of Fentanyl admin-

istered to a patient can predict patient survival time better than the amount of

Dobutamine administered [23]. We could perform the same type of analysis on other

hazardous outcomes such as organ failures to obtain a better idea about the predictive

power of different features. This information could be used to weight the different

features in the distance computation.

5.2.3 Clustering

Experience with clustering in different fields [28, 15, 22] has shown that the par-

ticular technique used to discover clusters can have a large effect on the quality of

clusters discovered. This is in contrast to supervised learning, where experience has

shown that the particulars of the algorithm do not dramatically change the quality of

model learned. Thus, even though the algorithm used in the thesis has demonstrably

produced good clusters, it is hard to claim that it has discovered the best clusters.

Experimentation with different clustering algorithms, particularly those that make

radically different assumptions, would be useful. In the following paragraphs, we will

discuss a few such algorithms.

The algorithm in the thesis assigned each data point to a single cluster, so it be-

longs to a class of hard clustering algorithms. In contrast, fuzzy-clustering algorithms

assign a fractional membership value of each point to a cluster, which specifies how
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well a point can be said to belong to a specified cluster. Since these algorithms are

free to assign points to multiple clusters, they can perform better than hard clustering

algorithms [28, 15]. However, these algorithms are generally much less efficient than

hard clustering algorithms, which is a problem in a large dataset such as ours.

Similarly, the algorithm in the thesis is partitional since it partitions the dataset

into a fixed number of clusters. Hierarchical clustering algorithms, on the other

hand, produce a hierarchy of clusters with all the data points in one end and a single

cluster containing them all in the other. Since finding the best possible hierarchical

grouping in an arbitrary dataset is NP-complete [3, 12] greedy algorithms are used

to generate the hierarchy. As a result, the k clusters obtained from a hierarchical

clustering algorithm could be worse than the k clusters discovered by a partitional

clustering algorithm [28, 12]. Furthermore, hierarchical algorithms are worse with

regard to both time and space complexity than partitional algorithms, and getting

them to work with a large dataset like ours will require some ingenuity.

Co-clustering [21, 14] algorithms, which perform clustering on features (columns)

and data (rows) simultaneously, have been successfully used to discover clusters in

gene expression data [9]. A co-clustering algorithm would, in theory, automatically

perform feature selection in the “best” way as far as clustering the data is concerned,

making it easier to work with a high-dimensional dataset like ours. Another way to

reduce the dimensionality is to use Spectral clustering algorithms [33] which perform

clustering with respect to the eigenvectors corresponding to the top few eigenvalues of

the distance matrix. These algorithms have yielded good results in computer vision

[30] and could do the same here.

Finally, ideas from sketching and streaming algorithms [16] could be used to de-

rive approximate clustering algorithms for use with large datasets. For example, [6]

performed clustering on 30 million documents using sketches of documents. Similarly,

[20] describe an approximation algorithm for k-means and k-median clustering based

on coresets [1].
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