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Abstract

The problem-solving performance of most people improves with experience.
The performance of most expert systems does not. People solve unfamiliar
problems slowly, but recognize and quickly solve problems that are similar
to those they have solved before. People also vemember probiems that they
have solved, thereby improving their performance on similar problems in the
future. The thesis describes a system, CASEY, that uses case-based reasoning
to recall and remember problems it has seen before, and uses a causal model

of its domain to justify re-using previous solutions and to solve unfamiliar
problems.

CASEY overcomes some of the major weaknesses of case-based reasoning
through its use of a causal model of the domain. First, the model identi-
fies the important features for matching, and this is done individually for each
case. Second, CASEY can prove that a retrieved solution is applicable to the
new case by analyzing its differences from the new case in the context of the
model. CASEY overcomes the speed limitation of model-based reasoning by
remembering a previous similar case and making small changes to its solution.
It overcomes the inability of associational reasoning to deal with unanticipated
problems by recognizing when it has not seen a similar problem before, and
using model-based reasoning in those circumstances.

The techniques developed for CASEY zre shown to result in solutions identical
to those derived by a model-based expert system for the same domain, but
with an increase of several orders of magnitude in efficiency. Furthermore, the
methods used by the system are domain-independent and should be applicable
in other domains with models of a similar form.

Thesis Supervisor: Peter Szolovits

Title: Associate Professor, Electrical Engineering and Computer Science

2



Acknowledgements

I would like to thank the following people who helped make this thesis possible:

My thesis supervisor, Peter Szolovits, for seven years of support and good
advice, for encouraging me to keep going when I was ready to give up, and for
giving me the intellectual freedom to let my ideas develop and grow.

Ramesh Patil, who as teacher, reader, and friend, taught me about artificial
intelligence, medicine, engineering, and life in general.

William Long, whose knowledge, good nature, and patience inspired me,
and whose Heart Failure program is a challenging and impressive body of work
that I was extremely fortunate to have as a resource for my own research.

Patrick Winston, who did exactly what he promised, and whose comments
during my thesis defense made it quite a pleasant experience.

Janet Kolodner, to whom I owe an irnmense intellectual debt, for reading
this thesis although under no official obligation to do so, and for supporting
me in so many ways.

Robert Jayes, who provided the test cases for my program.

The members of the Clinical Decision Making Group, past and present,
especially Tom Russ, Elisha Sacks, Mike Wellman, Alex Yeh, Robert Granville,
and Isaac Kohane, for many years of camaraderie, peer review, and good ideas,
and Nomi Harris for making our office such a fun place.

Paul Resnick, for some very illuminating discussions.

My friends David Goddeau and Kent Pitman for all-around good advice
since the time we were undergraduates.

And of course, my family: my daughter Jaclyn, my husband Ben (a merci-



less editor), and my parents, without whose love, support, time, and sacrifices

I could never have finished this thesis.

The work reported herein has been supported in part by National Institutes
of Health grants R0O1 LM 04493 from the National Library of Medicine and
RO1 HL 33041 from the National Heart, Lung, and Blood Institute.




Contents

1 Introduction

1.1
1.2
1.3
1.4
1.5

2.1
2.2
23
2.4

2.5
2.6

Background . . .. .. ... ... . L oL
Associational vs. model-based reasoning . . . ... ... ...
Using past problem-solving experience . ... ... ... ...
The domain of medical decision making . . . . ... ... ...

Asimpleexample . . . . .. ... ... ... ... ... ..

Design and operation

Overview of the memory system . . . . . ... .........
Overview of the Heart Failure Program . . . ... .. ... ..
Overviewof CASEY . . .. ... ... ... ... .......
Mafching and Retrieval . . . . ... ... ... ... .. ...,
2.4.1 Determining the relative importance of features

2.4.2 Choosing the Best Match . . .. .. ..........
Justification . . . . . ... ... oL o
Adapting the solution . . . . .. .. ... ... ... ...
2.6.1 Explanation Repair Strategies . . . . ... ... .. ..

11
13
16
17



2.6.2 Diagnosis and therapy repair. . . . . . .. .. ... ..

2.7 Storage and feature evaluation . . . . . ... ... ..., ...

Implementation
3.1 Interface with the Heart Failure program . . . ... .. .. ..

3.2 Implementation of the memory nodes . . . . ... ... ....

3.2.1 Generalizations . . .. ... ... ............
322 Cases. . ... .. i e e
3.3 Complexity of the memory scheme . ... ... ........

3.4 Constructing a similarity metric . . . .. ... ... ... ...

3.5 Implementation of the justifier . . . . . ... ... ... ....

3.6 Implementation of the repair strategies . . . . . ... .. ...

Results

4.1 A detailedexample . . ... ... ... ... ... .. ...

4.2 Analysis of CASEY’s performance . . . . .. ... .......

Discussion

5.1 Strengths of the method . . .. .. .. ... ... .......

52 Limitations . ... .... .. ... .. ... .. 0.,

53 Learning . . . .. .. .. ... ...
5.3.1 Learning by generalization . . . . ... .........
5.3.2 Improving on the Heart Failure program . ... .. ..

54 Indexing . . ... ... ... .. . . ... .
5.5 Defaults and exceptions . . . . ... ... ... ........

5.6 Relation to formal theories of diagnosis . . . . . ... ... ..

56
57
59
59
61
64
66
68
69

70
71
82



5.7 CBR vs. generate-and-test . . . . ... ... .......... 102

5.8 Generality of the Method . . . . . .. .. ... .. ....... 104
5.8.1 Requirements . ... ................... 104
5.8.2 Other aspects of generalization .. ... ........ 105
5.8.3 Application to more complex models . . . ... .. .. 106

59 FutureWork. .. ... .. ... ... ... ... .. 109

5.10 Conclusions . . . . . . .. .. .. .. ... e 118



Chapter 1

Introduction



The problem-solving performance of most people improves with experience.
The performance of most expert systems does not. People solve unfamiliar
problems slowly, but recognize and quickly solve problems that are similar
to those they have solved before. People remember problems that they have
solved, thereby improving their performance on similar problems in the future.
People also learn from their mistakes. Research in artificial intelligence has
resulted in techniques that exhibit some of these capabilities. Associational
reasoning solves common problems quickly. Model-based reasoning! can be
used to solve unfamiliar problems, but it does so slowly. Memory-based rea-
soning [22] techniques can be used to remember previously solved problems
and to learn from experience. However, no current system demonstrates all
three capabilities. A reasoning system that (1) used associational reasoning
for efficiency, (2) used model-based reasoning for robustness, and (3) learned
from experience, could combine the advantages of each technique while com-
plementing their individual limitations. Such a method would represent a
substantial enhancement of current technology. This thesis presents the the-

ory, implementation, ard evaluation of such a system, CASEY.

1.1 Background

Much of the recent research in artificial intelligence has becn directed towards
the development of high-performance, domain-specific problem solving sys-

tems, called ezpert systems or knowledge-based systems. Such systems can be

by which I mean reasoning from a causal model of some domain.



classified according to the type of reasoning used by the program.? The vast
majority of current expert systems rely on associational reasoning (associating
data with solutions via heuristics, empirical associations, or “rules of thumb”).
The alternative approach, which solves problems by reasoning about a model
of the behavior of objects in the domain, is known as model-based reasoning.’
Each approach has its advantages and disadvantages, but neither approach
allows expert systems to learn from experience. Although work in machine
learning has developed techniques that allow computer programs to learn, bar-
ring few exceptions (e.g., AQ11 [31]) these techniques have not been applied to
expert systems. Furthermore, this work has concentrated on the development
of rule sets through training examples, after which learning ceases.

People seem to use both associational and model-based reasoning. For fa-
miliar problems, we use associational reasoning, taking advantage of the speed
of this approach. When confronted with unfamiliar or difficult problems, peo-
ple can refer to a more detailed knowledge base, much like the type used by
model-based systems. The human ability to exploit both types of reasoning
requires us to (1) recognize a new problem as being of a type we have en-
countered previously, and to (2) constantly update our knowledge; that is, to
learn from experience. Current knowledge-based systems rely on knowledge

painstakingly compiled from human experts, a prccess that is time-consuming

2This dichotomy had previously been identified as “shallow vs. deep” knowledge. How-
ever, the difference is in the method of reasoning, since the distinction between deep and
shallow knowledge is relative [25], and deep knowledge can.be employed with techniques
traditionally considered shallow [15].

3Also known as “reasoning from first principles” [9].
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and labor-intensive. When faced with the same problem twice in succession,
they work just as hard to solve the problem the second time. The development
of a technique that integrates associational and model-based reasoning with
the ability to learn from experience could result in improved system perfor-

mance.

1.2 Associational vs. model-based reasoning

Associational reasoning reduces long chains of inferences in the underlying
“deep” knowledge to shorter, often uncertain, links between data and solu-
tions. This approach has the advantage of efficiency, because the alterna-
tive of following all of the intermediate links and choosing among alternate
paths in the problem space can be slow and is often unnecessary. However,
programs using associational reasoning have their limitations. Because such
programs solve problems by matching the current situation against a set of
predetermined situations, the knowledge base must anticipate situations that
may arise. If the program is presented with an unanticipated, peripheral, or
difficult problem, it may be unable to solve it [8] or worse, appear to solve it
but yield a solution that is incorrect [24]. Also, associational knowledge typi-
cally must contain maay implicit assumptions. For a complicated domain, it
might be infeasible or impossible to explicitly enumerate the exact conditions
under which the knowledge is applicable. Such systems, therefore, cannot
ensure that their knowledge will be applied correctly.

Models provide a different kind of knowledge for reasoning in many do-

mains. Knowledge about the domain that might be excluded from an associ-
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ational reasoning system is often explicitly represented in the model. Models
are typically combined with a general reasoning method, such as simulation
or search, affording the model-based system more flexibility than an associa-
tional system for the same domain [9], [24], [44]. However, the more explicit
knowledge and more general problem solving method creates longer inference
chains. For this reason, model-based systems are slower, more complicated,
and less widely employed than associational systems. Also, if the relationships
in the model are uncertain, long inference chains may generate too much un-
certainty to draw conclusions. Associational reasoning allows the relationships
to be summarized at a manageable level of uncertainty.

There have been a few previous attempts to combine associational rea-
soning with model-based reasoning. ABEL [34], a program for diagnosing
acid-base and electrolyte disturbances, maintained a description of a patient’s
illness at five levels of detail. The least-detailed level represented associational
knowledge and the more-detailed levels were used for model-based teasoning.
However, rather than choosing when to solve a problem using associational rea-
soning and when to use model-based reasoning, ABEL always reasoned about
the patient at every level of detail. GORDIUS [45] combined associational
reasoning and reasoning from a causal model for hypothesis generation in the
geology domain. It also was incapable of deciding when to use each type of
knowledge. It always used its associational rules to generate hypotheses, and

always used its causal model to test proposed hypotheses.
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1.3 Using past problem-solving experience

The ability to identify similar problems, recall previous problems, and store
newly-solved problems could enhance a knowledge-based system’s performance
in several ways. Common problems could be solved more efficiently because
the system could recognize that it already knew how to solve them and apply
previously derived solutions. By remembering problems after it solved them,
the system could continually increase the collection of problems that it knows
how to solve. The system could also modify its knowledge by allowing the
user to override the program’s solution, and remembering the solution that
the user preferred.

There have been several machine learning techniques developed that allow
identification and recall of similar problems, for example case-based reason-
ing [23], memory-based reasoning [47), and derivational analogy [7]. These
paradigms all rely on a memory of previously solved cases. Case-based reason-
ing and derivational analogy have the same basic framework when presented
with a new problem. The programs recall a previous solution, adapt it to the
current problem, and remember the new problem and its solution. Memory-
based reasoning is used to remember a similar previous problem, but does
no adaptation. These paradigms are fundamentally associational: they asso-
ciate features of a problem with a previously-derived solution to that problem.
However, neither case-based reasoning nor memory-based reasoning have been
used with a strong causal model, and so their adaptations of previous solutions
are basically ad hoc. Derivational analogy goes to the other extreme: it is so

careful about justifying its use of each step in a previous solution that it loses
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the efficiency advantage of associational reasoning. Winston’s work on anal-
ogy [50, 51, 52] uses the causal explanation of a previous situation to produce a
solution for a new problem. However, this work does not address the issues of
remembering, determining the applicability of, and choosing among previous
similar problems.

Case-based reasoning was the most applicable to CASEY’s goals of com-
biring associational reasoning, model-based reasoning, and learning from ex-
perience. By their ability to match the features of a new problem against
a memory of previously-solved problem, case-based reasoning systems achieve
the efficiency of associational reasoning. If no previous case is recalled, it could
serve as a signal that the problem is unfamiliar to the program and that model-
based reasoning should be used. By their ability to remember new problems
and their solutions, case-based reasoning systems continually increase their
collection of easily solved problems. Most importantly, as several similar cases
are solved, most programs that use case-based reasoning (e.g., citeKolo, [46],
[48]) make and remember generalizations about the problems that they have
solved and the solutions to these problems. These generalizations represent
new associational knowledge which links the common features of a group of
problems with a solution to that type of problem.

Until now, case-based reasoning has been applied only to domains without
a strong causal model (e.g., SHRINK [21] in psychiatry, MEDIATOR [46] in
dispute mediation, PERSUADER [48] in labor negotiations, JUDGE [5] and
HYPO [4] in legal reasoning, PLEXUS (2] in real-world planning, SWALE [16]
in newspaper story explanation). The lack of an explicit causal model gives

case-based reasoning programs a problem commonly seen in other associational
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reasoning systems: they cannot ensure that their knowledge will be applied
correctly. There is one underlying reason for this: without an explicit causal
model, case-based reasoning programs depend exclusively on coincidence in
selecting similar previous problems* and in making generalizations. A second
problem, also seen in associational reasoning systems, is that when an adequate
match is not found, case-based reasoners are unable to fall back on model-
based reasoning and must still use the best inatch available to arrive at a
solution. A consequence of these two limitations is that a retrieved solution
sometimes leads a case-based reasoner down the wrong path. A previous
case-based reasoning program which did use a causal model was CHEF [13],
a planning program in the domain of cooking. CHEF’s causal model was
extremely simple. Moreover, its causal reasoning consisted solely of chaining
rules backward from an observed failure to a cause. This approach could not
scale up to a reasonably sized domain. Furtlermore, his causal model was not
used to derive a solution de novo;

Integrating associational, model-based, and case-based reasoning results
in a program which has the strengths of each approach while compensating
for their weaknesses. The model-based reasoning component solves compli-
caied and unfamilar problems, and releases the case-based component from
its dependeiice on coincidence. The case-based reasoning component uses as-
sociational knowledge to recognize problems that the system already knows
how to solve, and allows the constant creation of new associational knowledge

by the program. The combination is synergistic.

‘memory-based reasoning programs also have this drawback.
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1.4 The domain of medical decision making

As a complex real-world domain, medical decision making is particularly well-
suited as a testbed for combining associational reasoning, model-based reascn-
ing, and learning techniques. Medical decision making involves an experiential
component as well as reasoning from causal models. Physicians start with a
large basic and clinical science knowledge base. Then, the accumulation of
cases seen over a physician’s career improves his day-to-day problem-solving
ability. Making generalizations about previous patients lets a physician make
predictions about future similar patients; remembering how an unusual past
case was resolved can be helpful the next time a similar case is seen. How-
ever, when a good physician confronts an unfamiliar problem he refers to his
knowledge of pathophysiology — his model.

Medical reasoning is more challenging than some other diagnosis domains
that typically deal with “single faults” and have an underlying model that
is small and well-characterized (e.g. digital circuit diagnosis). The models
used in the medical domain are often large and complex. They are incomplete
and therefore uncertain. Medical problems can include multiple interacting
diseases with partially overlapping symptoms, which are problematic for many
diagnosis programs.

For these reasons, the ideas developed for CASEY were tested in the do-
main of managing patients with heart failure. The techniques do not depend
on any specific domain information and therefore should be applicable to other

domains with similarly designed models.
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1.5 A simple example

The input to CASEY is a description of a patient. CASEY produces its
solutions using a memory of cases that it has already solved and a causal
model of the cardiovascular system. CASEY’s output is a causal explanation
of the patient’s symptoms. The causal explanation relates items in the patients
description to states in the model. This section gives a simple example of
CASEY’s operation.

A new patient, Uri, is presented to the program. Uri is a 67-year-old
male with dyspnea (shortness of breatk) on exertion and a history of anginal
chest pain. His blood pressure is 135/80, his heart rate is 87, his respiration
rate is 14, and his temperature is 98.4. His chest x-ray reveals aortic valve
calcification. The rest of his physical examination is normal.

The best match CASEY finds for Uri is a patient named Sarah. She was a
72-year-old woman with a history of angina, complaining of unstable anginal
chest pain. Her blood pressure was 138/81, her heart rate was 76, her respi-
ration rate was 14, and her temperature was 98.4. The rest of her physical
examination was normal.

The causal explanation for Sarah’s findings retrieved from the memory is
shown in Figure 1.1.5 It indicates that her chest pain was caused by a fixed

coronary obstruction. She was suffering from both exertional angina (which

5In this and all subsequent causal explanation diagrams, items in upper case indicate
states in the model of the cardiovascular system. Items in bold face are diagnosis states.
Items in lower case are inputs to the program. An arrow from item A to item B indicates
that A causes B. A lack of connection between items indicates that they are not causally

related.
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FIXED CORONARY
OBSTRUCTION

'

REGIONAL FLOW DEFICIT ———p UNSTABLE ANGINA

} )

EXERTIONAL ANGINA unstable anginal chest pain

'

history of anginal chest pain

Figure 1.1: Causal explanation for Sarah.

explained her history of angina), and unstable angina (which explained her
unstable anginal chest pain).

CASEY’s next task is to determine whether the solution for Sarah can be
adapted to fit Uri. The differences between the patients, shown in Table 1.5,
might make the solution unsuitable. One of Sarah’s symptoms that was used as
evidence in the solution (unstable angina) is absent from Uri’s case. Similarly,
Uri exhibits symptoms that are absent from Sarah’s case and which must be
explained. Using information in its causal model and a set of principles for
reasoning about causal explanations, CASEY makes the following judgements

about the d;fferences between Sarah and Uri:

1. No state in the model of the cardiovascular system uses the sex or age

of the patient in any way, so these differences are insignificant.

2. Dyspnea is a significant symptom. CASEY knows this because the model

contains the information that when a patient has dyspnea on exertion,
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Feature: Sarah Uri

Sex female male

Age 72 67

Dyspnea none on exertion

Chest pain unstable angina  none

Blood pressure  138/81 135/80

Heart rate 76 87

Chest x-ray normal aortic-valve calcification

Table 1.1: Differences between Sarah and Uri.

it can be explained by the model 70% of the time.

3. Uri does not have any evidence for unstable angina. This part of the

diagnosis does not fit Uri.
4. The difference between the two patient’s blood pressures is insignificant.

5. Uri’s heart rate is slightly high, while Sarah’s is normal. However, a
slightly high heart rate does not strongly suggest any disease, so it can

be ignored.

6. Aortic valve calcification has only one cause: aortic valve disease. Aortic

valve disease must be part of the solution for Uri.
CASEY can repair Sarah’s solution to fit Uri by
1. adding dyspnea on exertion as an unexplained feature,

2. removing the diagnosis of unstable angina,

19



AORT!C VALVE DISEASE FIXED CORONARY dyspnea on exertion

l OBSTRUCTION
aortic vaive calcification REGIONAL FLOW DEFICIT
EXERTIONAL ANGINA

b

history of anginal chest pain

Figure 1.2: Causal explanation for Uri.

3. adding the diagnosis aortic valve disease to account for the aortic valve

calcification.

The results of these repairs are shown in Figure 1.2 This is identical to the
causal explanation for Uri produced by the Heart Failure program. CASEY’s
explanation, however, is derived without running that program, but by adapt-

ing the solution of the past case. This method is significantly more efficient.
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Chapter 2

Design and operation
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2.1 Overview of the memory system

CASEY remembers cases it has seen by storing them in a self-organizing mem-
ory system [17]. A self-organizing memory system records and organizes ex-
periences or cases. The memory system also creates generalizations, which
are structures that hold knowledge describing a group of similar cases.! A
generalization is created from the similarities between the cases that it orga-
nizes. Individual cases that are stored in a particular generalization structure
are indexed by the features that distinguish them from the other cases in the
same generalization structure. As a new case is integrated into a generaliza-
tion, it “collides” with the cases in the generalization that share its differences.
This is termed reminding [42]. Two cases are said to be similar if they are
integrated into the same generalization and share a set of differences with the
generalization.

The implementation of the memory structure is based on the memory de-
scribed by Kolodner [17]. Following Kolodner’s scheme, the memory structure
is represented as a discrimination net in which each node is either an indi-
vidual case or a generalization structure (called a GEN). Each pointer to a

subnode is labeled (indexed) by a feature of the subnode that differentiates it

1A note om terminology: Kolodner [17] used the terms Memory Organization Packet
(MOPs), features, and norms to describe the structures in a self-organizing memory. The
same structures can be thought of as frames, slots, and typical values; or concepts, roles,
and prototypes. A MOP is a specialization of a frame that, in addition to holding general
(i.e. prototypical) information (that which is true of a typical episode organized by this
MOP), also contains a hierarchical structure that indexes all the episodes organized by this

MOP. Kolodner later [19] began referring to MOPs as “generalized episodes.”
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from the parent node. Indexing requires two levels (see Figure 2.1). The first
level indicates the category of the index (e.g., syncope/near-syncope). The
second level indicates the values that the feature takes on in the subnodes
(e.g., syncope/near-syncope on- exertion; syncope/near-syncope at-rest).

The set of indices defines a set of paths through the memory structure. At
each point in the path, one of three conditions obtains. If exactly one case
is stored at this point, the stored case and the new case are compared, their
similarities placed in a new generalization, and they are indexed beneath the
generalization by their differences from each other. Also, the stored case is
returned (the program is “reminded” of it). If there is a generalization at
the point, the new case is indexed in the existing generalization. If there is
no further information that distinguishes the new case from the other cases
stored in the GEN, the common features of the GEN are returned.? If no other
case is stored at this point, the new case is simply installed there, and the

common features of the GEN directly above this point are returned.

2.2 Overview of the Heart Failure Program

CASEY is designed around an existing model-based expert system (the Heart
Failure program [30]) that diagnoses and suggests therapy for patients with
heart failure. The building blocks of the Heart Failure model are measures,
measure values, and states. Measures correspond to observable features, such

as heart rate, or laboratory results. Measure values are the input values of

2In medicine, this would be an instance of a case being a “classic presentation” of some

disease.
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GEN °FEATURE-GEN®

FEATURES
(auscultation s2)
(angina unstable)
(sex male)

CAUSAL nil

DIFFS  acute-mi

NODES: 46

syncope/near-syncope ...

1o

acute-mi-age

postural

NODES: 23

FEATURES
(cardiomegaly lv)
(apex-impulse sustained)
(s2 single)
(characteristic-murmur as)
(pulse slow-rise)
(chest-pain anginal)
(dyspnez on-exertion)

CAUSAL

limited-cardiac-output general-flow-deficit
exsrtional angina fixed-high-outflow-resistance
slow-ejection aortic-stenosis

DIFFS

known diagnoses heart-rate ausculitation ...

Figure 2.1: A fragment of the memory structure.
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(defnode mitral-stenosis

goal diagnosis

causes (primary (.003 (if (female sex) .01 .001))
P+ (mitral-valve-disease :prob .1)
D- (mitral-valve-replacement))

measure ((characteristic-murmur (prob ms .5))
(murmur (prob diastolic-rumble .5))
(history-findings (prob hemoptysis .1))
(cxr (prob kerley-b-lines .2))
(EKG (prob (or first-degree-block wenckebach) .1))
(s1 (prob loud .75))
(auscultation (prob lv-s3 (p- 1.0)))
(auscultation (prob opening-snap .7))
(valvular-disease (prob MS 1.0))))

Figure 2.2: Information about mitral stenosis.

the measures, for example, “68” for the patient’s heart rate, and are entered
by the user. The combination of a measure and a measure value is referred to
as a finding. States can represent three types of information: specific qualita-
tive assessments, of physiological parameters, for example HIGH LEFT ATRIAL
PRESSURE; the presence of diseases (“diagnosis” states), for example PERI-
CARDITIS; and therapies given to the patient, for example NITROGLYCERIN.
Some states are distinguished as “goal states”. These are states that can be
treated. The Heart Failure program’s information about the state MITRAL
STENOSIS is-shown in Figure 2.2.3 The model recognizes two kinds of relation-
ships. It can indicate that one state causes another with a given probability.

It can also indicate that a state is associated with a particular finding with

3goal diagnosis indicates that this is a diagnosis state. P+ indicates an uncertain cause;
D~ indicates a definite correction. The measure slots indicate the probability with which a

patient with mitral stenosis will have the given finding.
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a given probability. There are over 400 findings and about 140 states defined
in the model. The model is represented as a causal inference network. States
in the model are shown as nodes. They are connected by links indicating
the direction of causality, whether the influence is positive or negative, and
probabilities associated with the link.

The Heart Failure program takes as its input a list of findings that describe
the patient. A patient description typically consists of about 40 findings. The
description for a new patient presented to the system, Larry, is shown in
Figure 2.3. From the input, the Heart Failure program produces a solution
consisting of a causal explanation, a diagnosis, and therapy suggestions for the
patient. The causal explanation describes the relationship between physiolog-
ical states in the model and observable features of the patient. The diagnosis
and the therapy suggestions are derived from states in the causal explanation.

The causal explanation consists of a set of findings, states, and directed
links (Figure 2.4). A link between two states, or a state and a finding, indi-
cates that one causes the other. Only abnormal findings are explained, but
the program may not explain all abnormal findings. If a diagnosis state is
established in the causal explanation, the name of the state is added to the
patient’s diagnosis. If a goal state is established, the therapy associated with
that state is added to the list of therapy suggestions for the patient.

The prototypical concept of a causal model in artificial intelligence is one
that contains descriptions of a set of primitive objects and a set of operations
that exist in some domain. In order to derive the overall behavior of the system,
programs which use this kind of model (e.g., [12], [24], [49], [13], [45], etc.)

compute the effects of applying the operations to the objects until some end-
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(DEFPATIENT ‘"Larry"
HISTORY
(age . 65)
(sex male)
(dyspnea on-exertion)
(orthopnea absent)
(chest-pain anginal)
(anginal within-hours unstable)
(syncope/Near-syncope on-exertion)
(palpitations none)
(nausea/Vomiting absent)
(cough absent)
(diaphoresis absent)
(hemoptysis absent)
(fatigue absent)
(therapies none)
VITAL-SIGNS
(blood-pressure 138 80)
(heart-rate . 90)
(arrhythmia-monitoring normal)
(resp . 20)
(temp . 98.4)
PHYSICAL-EXAN
(appearance nad)
(mental-status conscious)
(jugular-pulse normal)
(pulse slow-rise)
(apex-impulse normal)
(parasternal-impulse normal)

- (chest clear-to-auscultation-and-percussion)
(abdomen normal-exam)
(extremities normal-exam)
LABORATORY-FINDINGS
(ekg 1lvh normal-sinus)

(cxr calcification)
(calcification mitral aortic-valve))

Figure 2.3: Patient description for Larry
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Figure 2.4: A causal explanation produced by the Heart Failure Program.
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state or goal is achieved. This computation often takes the form of a simulation
or search. The trace from initial state to end-state of the effects of operations
on the objects in the system is called a causal ezplanation of the observed end-
state. When the effects of applying an operation cannot be determined (as
when computing the combined effects of two opposing influences of unknown
magnitudes) such systems usually create multiple “possible worlds,” one for
each uncertain conclusion. For simple systems this method can be useful.

For some other domains, and in particular the cardiovascular domain in
which the Heart Failure program operates, the cost of simulation is prohibitive
due to the presence of approximately 270 feedback loops in the portion of the
domain that the model covers. Furthermore, the cost of maintaining multiple
possible worlds is also high in this particular domain. Much of the data needed
for simulation can only be obtained invasively,! so it is not usually available.
This results in an explosion of possible worlds [29]. The Heart Failure program
therefore uses a different approach. When the information about states, their
causes, and their effects is loaded into the Heart Failure program, the program
precomputes the trace of the system under various conditions. The diagnos-
tic task, then, is to work backwards from features in the patient description
through the trace of potential causes and effects, to find the states which ulti-
mately caused the symptoms. The paths from ultimate (or primary) cause to
observed features is the causal explanation.

The causal explanation is derived through a complicated process which

involves causal, probabilistic, and heuristic reasoning. The Heart Failure pro-

4that is, by inserting measurement devices into or otherwise invading the patient’s body.
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gram propagates evidence backward from the findings to the states that cause
them. Some findings have definite causes; those states are established imme-
diately. For each remaining unexplained finding, the system examines every
pathway through the model from every diagnosis that could cause the find-
ing. The process of producing an explanation is complicated by the presence
of the 270 feedback loops in the model. It is further complicated because the
links between findings and the states that cause them are frequently uncertain,
so several possible explanations for the patient’s findings must be considered
simultaneously. The system allows for multiple diseases, and attempts to find
a set of diagnoses that “cover” the findings. Each of these covering sets is
evaluated and the most probable is selected.

The Heart Failure program was designed to deal with complex clinical situ-
ations. Its model has evolved painstakingly over several person-years of effort.
Like other model-based programs, it is capable of solving difficult and unusual
cases. However, like other model-based programs, its reasoning is extremely
expensive computationally. For this reason, the Heart Failure program was an

excellent testbed for enhancement through the use of experience.

2.3 Oyerview of CASEY

CASEY attempts to produce the same causal explanation, diagnosis, and ther-
apy suggestions for a new patient (the case that CASEY is currently trying
to solve) as the Heart Failure program. It does so by integrating model-based
reasoning, associational reasoning and case-based reasoning, in a five-step pro-

cess:
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o Reirieval. CASEY finds a case similar to the new patient in its case

memory. This is called the retrieved case.

o Justification. CASEY evaluates the significance of any differences be-
tween the new case and the retrieved case using information in the Heart
Failure model. It significant differences are found, the match is invali-
dated. If all differences between the new case and the retrieved case
are judged insignificant or if the solution can be repaired to account for
them, the match is said to be justified. The precedent case is a retrieved
case that has been justified and from which solution transfer will occur.

The precedent solution is the solution associated with the precedent case.

e Adaptation. If none of the differences invalidate the match, CASEY
adapts a copy of the precedent solution (called the transferred solution)
to fit the new case. If all matches are ruled out, or if no similar previous
case is found, CASEY uses the Heart Failure program to produce a

solution for the case de novo.

e Storage. The new case and its solution are stored in CASEY’s memory

for use in future problem solving.’

o Feature evaluation. Those features that were causally important in the

solution of this problem are noted in the memory.

The model-based reasoning component of CASEY employs the model of

the cardiovascular system developed for the Heart Failure program. Other

5The user has the option of rejecting CASEY’s solution, in which case Heart Failure

program is used to produce a causal explanation, which is then stored in memory.
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programs which integrate associational reasoning with causal models (e.g.
CHEF and GORDIUS) use their causal model to simulate a proposed solution.
The complexity of the Heart Failure program’s model precludes simulation.
CASEY therefore analyzes its proposed solution with respect to the causal
model, by examining the relationships between evidence in the new case and
states in the model.

Associational reasoning is used in CASEY through the association of de-
scriptions of new patients with previously derived solutions for similar patients.
This type of association is created with each new patient by the case-based rea-
soning component (see below). New associational knowledge is also constantly
being created through generalizations.

The case-based reasoning component uses a self-organizing memory system
[17] to store descriptions of every patient the program has seen, and generaliza-
tions derived from similarities between the patients. The patient description
is comprised of features, such as signs and symptoms, test results, history
and current therapy information, and solution data, such as the causal expla-
nation for the patient, the diagnosis, therapy recommendation and outcome
information.

Retrieving, adapting, and storing cases are standard procedures of a case-
based reasoner. CASEY differs from previous case-based reasoning systems

because it incorporates reasoning from its causal model in each of these steps.

e Most case-based reasoning systems use a fixed and often a priori ranking
that indicates which features of a new case are important for matching

against cases in the memory (e.g., [5], [13], [46]). It is not always possible
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to determine in advance which features are going to be important, and
furthermore, the important features may vary from case to case. CASEY
therefore matches a new case against cases in its memory using every
feature in the patient description. Using knowledge of which features
were important in determining the causal explanation of previous cases,
CASEY then determines the important features of the new case, and

gives these features greater weight for matching.

e During justification, model-based reasoning is used to judge the signif-
icance of differences between the new and previous cases. Because the
match between a new problem and a previously solved problem usually
is only partial, there may be differences between the two cases that pre-
clude using even a modified version of a retrieved solution for a new
problem. The justification step proves that a retrieved solution can be

supported by the features of the new problem.

e Feature evaluation uses the causal explanation of the new case to de-
termine its important features. These are then recorded as part of the
case’s representation in memory. Determining which features of the new
problem were important to the solution helps the program make bet-
ter matches in the future, because it allows the program to distinguish

between extraneous and important features.

CASEY demonstrates that combining a memory of past cases with reason-
ing from a causal model can have significant advantages over either method

used alone.
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CASEY combines the efficiency of associational reasoning with the im-
proved problem-solving ability of model-based reasoning. It can recog-
nize when a case is routine and when it is not. It efficiently solves routine
cases by making small local changes to an existing solution. CASEY can
recognize that it does not know how to solve a particular problem. When

this occurs, it can solve the case by using the Heart Failure program.

CASEY’s performance improves with experience. It learns to solve more
problems efficiently as it is given more problems to solve, because it
remembers what it has done in the past. It can improve its knowledge

by being corrected.

CASEY can acquire new knowledge automatically by making generaliza-
tions about problems that it has solved. It automatically acquires new
associational knowledge by making generalizations about each new case

presented to it.

CASEY’s model-based reasoning component is enhanced by the abil-
ity of the case-based component to learn new associations and compile
detailed reasoning structures into simple associations between features
and scilutions. This results in both improved performance speed and in

improved accuracy of the program as new information is added.

CASEY'’s case-based component is improved by the use of a causal model
because the model can prove that a retrieved solution will be helpful for a
new case. Also, the model can be used to identify important features for

matching. This results in the elimination of a major limitation of previ-
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ous case-based reasoning system, the need to fix the important features

for matching.
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2.4 Matching and Retrieval

2.4.1 Determining the relative importance of features

When presented with a new problem, CASEY searches its memory for a similar
case. [t compares a new case against cases in its memory using all the features
in the patient description. However, all features are not equally important in
matching a new case to a previous case. Furthermore, the important features
for matching may vary from case to case. For example, the cardiac rhythm
might be important and the heart rate unimportant for one case, whereas for
another case, the opposite may be true. Therefore, unlike previous case-based
reasoning programs, that use a fixed, and often a priori, measure of impor-
tance, CASEY’s similarity metric allows the important features for matching
to be determined for each retrieved case individually. CASEY performs this
determination using information in. the Heart Failure model. CASEY then
compares the important features of the retrieved case with the features of the
new case to determine similarity. Thus, although CASEY retrieves cases from
mermory on the basis of all features, it matches cases based on features known
to be important. For CASEY, important features are defined as those that
played a role in the causal explanation of previous similar cases.®

6 A similar reluctance to fix a set of important features for matching is seen in HYPO [4],

a case-based reasoning program for the domain of law. However, CASEY’s causal model
allows it to easily identify the important aspects of each precedent case. HYPO has no such
model, and therefore must retrieve every precedent that partially matches the new case.
It then ranks the precedents according to the number of dimensions [4] in common, and

examines them in that order.
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CASEY’s justifier does not requize that the new case be identical to a pre-
vious case in order to use the latter’s solution. In real-world domains, several
different pieces of evidence may have equivalent implications. For example,
LV strain on EKG and LV enlargement on chest x-ray are both evidence for
the same state, Lv HYPERTROPHY, even though they represent different fea-
tures ir a patient description. CASEY can repair a causal explanation that
includes the state Lv HYPERTROPHY to fit a new patient whose description
includes evidence of Lv HYPERTROPHY, say from an EKG, even if the evidence
in the previous case came from a different source, such as a chest x-ray. For
matching, therefore, it is sufficient to have features in both cases that are ev-
idence for the same states in the model. CASEY generalizes features in the
new case to refer to the states for which they are evidence.” These generalized
features are called evidence-states, because they are states for which there is
evidence in the patient. Later, at the time of storage, features of the new case
that were used in that patient’s causal explanation are generalized to refer
to the states which they supported generalized causal features.® For example,
LV HYPERTROPHY ON EKG supporting the state Lv HYPERTROPHY becomes

EVIDENCE-OF LV HYPERTROPHY.

"Thus, CASEY incorporates a form of explanation-based generalization [33], [11], be-
cause CASEY-generalizes the evidence to the level that retains the same causality. This is

discussed further in section 2.7.
8The difference between evidence-states and generalized causal features is exactly that

evidence-states are states which might be in the causal explanation, whereas generalized

causal features refer to states that are in the patient’s causal explanation.
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2.4.2 Choosing the Best Match

An input case may have similarities with many previous cases. Most case-
based reasoning systems use some sort of similarity metric to determine how
similar two cases are, and to choose the “best” match from among the similar
cases. A good similarity metric gives a high value for cases that are similar
and a low value for cases that are dissimilar. CASEY typically recalls betweer
one and four cases similar to a new case, and places them in a list ordered
according to a novel similarity metric. The score for each retrieved case is
calculated using the evidence-states of the new case, the generalized causal
features of the retrieved case, and the total number of features that the new
case and the retrieved case have in common.

CASEY’s task is to produce a causal explanation that links evidence and
states in the model by finding previous cases that are similar to the new
one and would thus have a causal explanation similar to the new case’s causal
explanation. The relationship between the evidence-states of the new case and
the generalized causal features of the retrieved case is thus vital to identifying
a good match. The generalized causal features of a past case essentially tell the
matcher: “Here are the states for which I need evidence in order to generate
this causal explanation.” The evidence-states of a new case essentially tells the
matcher, “These are the states for which I can provide evidence.” A retrieved
case that finds evidence for many of its generalized causal features in the new
case will be a better precedent than a retrieved case in which few generalized
causal features are matched by evidence-states in the new case.

CASEY’s similarity metric thus orders matches according to the cardinality
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of the intersection of the evidence-states and the genreralized causal features,
minus the number of generalized causal variables that are not matched by
evidence-states. The purpose of the latter adjustment is to avoid matching
relatively simple cases with large, complicated cases whose explanations cover
the simple case but also have many extra states that will have to be removed
(Figure 2.5).2 When two retrieved cases have the same score, the number of
features in common is used to break the tie. The reason for this choice is
that although the Heart Failure program ignores most normal values, there
are many cases in which normal values are important in establishing or ruling
out a diagnosis.

Similarity metrics that match cases on the basis of generalizations of causally-
related features are superior in case-retrieval to those that match cases on the
basis of the causally-related features themselves. Typically, many different fea-
tures can provide evidence to support the existence of the same state, so many
different combinations of features can give rise to the same causal explanation.
A system that requires the same causally-related features for matching can-
not retrieve a case whose causal explanation would be identical except for the

particular features used as evidence for the states in the causal explanation.

9There is no point in considering the number of evidence-states which go unmatched by
generalized causal features. This is because each feature in the patient description generates
anywhere from zero to more than 10 evidence-states, so the number of unmatched evidence-
states is unrelated to the quality of the match (except when no evidence-states are matched
at all; this is detected separately). An interesting possibility would be to calculate how
many of the new case’s features had been covered by a generalized causal feature which
matched some evidence-state in the set generated by that feature. This is left for future

work.
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Figure 2.5: A match with many superfluous states.
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Figure 2.6: A good match with no features in common.

For example, Figure 2.6 shows the causal explanations for two patients who
have no causally-related features in common. The two explanations, however,
are identical, and therefore these cases represent a goed match. The purpose
of a matcher is to retrieve cases whose causal explanations will be useful for
the new case. Generalizing the causally-related features increases a matcher’s
chances of finding relevant past cases, and this is the approach used in CASEY.

CASEY first examines the retrieved case with the highest rank. If this
match is ruled out (see section 2.5) and there is another retrieved case with a
close score (currently, within 10% of the highest score), that case is examined.

This continues either until a match is accepted or there are no remaining
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high-scoring matches.

If the features of a new case are not evidence for any states that have
been used to explain the findings of previous patients, CASEY can recognize
that it does not know how to solve the case. This is analogous to a physician
encountering a patient with a constellation of symptoms the physician has not
seen before. Just as the physician would then consult his pathophysiology
books, CASEY solves such a problem by invoking the Heart Failure program

to find a solution for the new patient.
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2.5 Justification

A kev question that physicians as well as other problem solvers must answer
is whether different constellations of findings still support the same solution.
Likewise, CASEY determines whether different features in the patient descrip-
tion can still support the same solution by examining the relationship between
evidence and physiological states in the Heart Failure model. The module in
CASEY that performs this evaluation is called the justifier because it must
justify using a retrieved case as a precedent for the new case. The justifier
relies on a set of domain-independent heuristics for reasoning about, evidence,
termed evidence principles. The evidence principles reason about such con-
cepts as alternate lines of evidence for states, additional supporting evidence
for states, and inconsistent evidence. The first evidence principle is used to
determine whether a state in the retrieved causal explanation is ruled out by
evidence in the new case, the next four determine whether the difference in
question is insignificant or repairable, and the last three handle features that

have special values.

1. Rule out. A state must be eliminated from the transferred solution if
there is some feature in the new case that is incorpatible with that state.
Incom;)atibility is defined as zero probability of a feature coexisting with
some state in the retrieved solution. ¥or example, a heart rate of 40 beats
per minute is incompatible with the state HIGH HEART RATE. Ruling

out a state does not necessarily mean that the match is ruled out (see

below).
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2. Other evidence is used when a feature present in the retrieved case is
missing in the new case. This principle tries to determine if there is
another feature of the new case that supports the same state that the

missing feature supported.

For example, if the feature opening-snap supported the state MITRAL-
STENOSIS in the retrieved case, but was absent in the new case, CASEY
would consult the causal model to find other findings that could be ev-
idence for MITRAL STENOSIS, such as loud S1 or diastolic rumble.
CASEY would then search for these other findings among the features

in the description of the new case (see Figure 2.7).

MITRAL STENOSIS MITRAL STENOSIS
-
- -
«
opening snap opening snap diastolic rumble
Retrieved case New case

Figure 2.7: Using the evidence principle other evidence.
3. Unrelated oldcase feature is used when a feature is present only in the
retrieved case. If the feature was not used in the causal explanation,
its absence has no effect on any states in the explanation, so it can be

ignored.
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4. Supports ezxisting state is used when a feature is present in the new case
but not in the retrieved case. This principle determines whether it is
possible to attribute the feature to some state in the retrieved causal

explanation.

For example, if the feature ejection-click, which is evidence for the
states PULMONIC STENOSIS and AORTIC STENOSIS, appeared only in the
new patient, CASEY would check for the presence of either of these two
states in the retrieved causal explanation. If one or more of these states
were present, CASEY would attribute the new feature to that state (see

Figure 2.8).

AORTIC STENOSIS AORTIC STENOSIS —————p tjection
l l click
FIXED HIGH OUTFLOW FIXED HIGH OUTFLOW
RESISTANCE RESISTANCE
Retrieved case New case

Figure 2.8: Using the evidence principle supports existing state.

5. Unrelated newcase feature is also used when a feature is present only
in the new case. This principle identifies a feature that is abnormal,
but does not provide evidence for any existing state and is not strongly
suggestive of a new state. Such a feature is added it to the explanation

as an “unexplained feature.”
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For example, the feature single S2 is abnormal, so it cannot be ig-
nored. It is evidence for the states FIXED-HIGH-OUTFLOW-RESISTANCE
and COPD-OR-CHRONIC-BRONCHITIS. But single S2 alone does not
strongly suggest either of these states, sc if neither of them are already
present in the causal explanation, it is added to the causal explanation

as an unexplained feature.!®

6. Normal. Normal values are not explained by the Heart Failure program,
so a normal value in the new case is not explained. (Note that if a model

did reason using normal values, this rule could be changed).

7. No information. If there is no information given about a feature in one
of the cases and it is known to have a normal value in the other case,

then it is also assumed to have a normal value in the former case.

8. Same qualitative region. CASEY evaluates differences between features
with numerical values by translating them into physiologically equivalent
ranges. For example, a blood pressure of 180/100 becomes “high blood
pressure.” Features whose values fall into the same range are judged not
to be significantly different. Information in the Heart Failure model is

used to determine physiologically equivalent ranges.

10The information that CASEY uses to determine the advisability of ignoring a particular
feature is called the specificity of the finding by the Heart Failure program. It indicates the
percentage of time the finding is explained by the model. The same number is called the
“import” of a finding in the Internist-1/QMR [32] system. CASEY can also determine

specificity experientially by examining the role the feature played in similar past cases.
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The use of the evidence principles is not guaranteed to result in the same
solution as the Heart Failure program. This is because they do not reason
about the relative likelihoods of findings. This is discussed in more detail in
section 5.2. However, any solution they do produce is guaranteed to be a valid
possible explanation for the patient’s symptom complex.

The changes that CASEY proposes to the retrieved solution are small and
local to the difference being considered, and therefore they are computationally
inexpensive. However, CASEY evaluates each change in the context of the
entire solution. This prevents it from being oblivious to unwanted interactions
that might be created by its changes.

CASEY rejects a match either if a significant difference cannot be explained
or if all the diagnosis states in the retrieved solution are ruled out. If all
differences between the new case and the retrieved case are insignificant or
repairable, then solutions are transferred from the precedent to the current

case.
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2.6 Adapting the solution

CASEY uses repair strategies to adapt a previous solution to a new case.
There are three types of repair strategies corresponding to the three parts of

the solution: causal explanation, diagnosis, and therapy.

2.6.1 Explanation Repair Strategies

Associated with each type of repairable difference detected by the evidence
principles is an explanation repair strategy which modifies the precedent causal
explanation to fit the new case. Repair strategies modify the transferred causal
explanation by adding or removing nodes and links. CASEY makes seven types

of repairs:

1. Remove state. This strategy can be invoked in two circumstances: either
the state is known to be false, or all of the evidence that previously
supported the state has been removed (the removed evidence could be
either features missing in the new patient, or states ruled out during
justification). In the first case, this strategy is invoked by the rule out
evidence principle. In the second case, when all the evidence for a state is
missing in the new case, or if the only cause of a state has been removed
from the transferred causal explanation, CASEY removes that state from
the explanation. CASEY also determines whether states caused by this

state must now be removed.

2. Remove evidence. This repair strategy is invoked by the principles other

evidence and unrelated oldcase feature. When a piece of evidence that

48



was used in the retrieved case is absent in the new case, this removes the

feature and any links to it.

. Add evidence. This repair strategy is invoked by the principles other
evidence and supports ezisting state. It adds a piece of evidence to the

causal explanation, and links it to those states for which it is evidence.

. Substitute evidence is invoked by the same qualitative value principle.
When two numerical values have the same qualitative value, this repair
strategy replaces the cld value with the new value as evidence for some

state.

. Add state. The only time CASEY adds a state to the causal explanation
is when the feature it is attempting to explain has only one cause. This
repair strategy is invoked by the principle supports ezisting state, because
the fact that a feature has only one cause is discovered while CASEY is
searching for existing states that cause this feature. When the evidence
has only one possible cause, that state is added to the causal explanation.
CASEY then tries to link it to existing states and features in the causal
explanation (using add link).

. Add link is invoked by the add state repair strategy, and is used to add

a causal link between two states.

. Add measure is invoked by unrelated newcase feature. This adds an

abnormal feature which CASEY cannot link to the causal explanation.
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Figure 2.9: Causal explanation with associated diagnosis of fixed coro-

nary obstruction, unstable angina, and exertional angina.

After explanation repair has been completed, CASEY can perform diagno-

sis and therapy repair.

2.6.2 Diagnosis and therapy repair

Because the diagnosis and therapy suggestions are deduced from a patient’s
causal explanation, diagnosis and therapy repair take place after causal ex-
planation repair. The diagnosis for a patient is simply a list of the diagnosis
states in the patient’s causal explanation. For example, the causal explana-
tion in Figure 2.9 indicates a diagnosis of fixed coronary obstruction, unstable
angina, and exertional angina. Diagnosis repair stritegies add and remove
diseases from the transferred diagnosis. If # diagnosis state was removed from
the transferred causal explanation during explanation repair, the correspond-

ing diagnosis is removed from the patient’s diagnosis list. If a diagnosis state
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was added to the causal explanation, that diagnosis is added to the patient’s
diagnosis list.

Therapy suggestions are derived from the goal states of the patient’s causal
explanation. They are indicated in the Heart Failure model as states whose
presence decreases the effects of state they directly affect. For example, the
causal explanation in figure 2.9 produces only one therapy suggestion, coronary
artery bypass graft, which is associated with the state fixed coronary obstruc-
tion. The therapy repair strategies add a therapy suggestion if a treatable
state is added to the causal explanation. They remove a therapy suggestion if
the state that was asscociated with that therapy suggestion is removed from

the causal explanation.
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2.7 Storage and feature evaluation

CASEY stores each case it solves and its solution in its case memory for use
in future problem-solving. New cases are stored in the memory indexed both
by the input features that describe the case and the solutions (the causal
explanation, diagnosis, and therapy suggestions) that were derived for the
case. This is true whether the solution was produced by CASEY or by the
Heart Failure program.

There are three structures in CASEY that are used to store generaliza-
tions: the FEATURE-GEN, the CAUSAL-GEN, and the THERAPY-GEN. In the
FEATURE-GEN, cases are retrieved and stored by the features that describe
them. Cases are stored in the FEATURE-GEN at the time a new case is pre-
sented to the system. In the CAUSAL-GEN, cases are retrieved using their
evidence-states. They are stored in the CAUSAL-GEN using their generalized
causal features after the causal explanation for the case has been determined.
In the THERAPY-GEN, cases are retrieved and stored according to the therapy
recommended for the patient.

An individual case is indexed in memory by the all features that describe
it. In previous work on case-based reasoning, major effort was expended on
selecting these features of the case which were to be used as indices for storing
and retrieving the case. CASEY indexes a case by every feature that describes

it. This approach has two advantages:

1. One can not always determine the usefulness of a feature in advance. My
scheme allows useful features to be determined by experience. For each

case it solves, CASEY increases the importance weight of the features
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that were important in reaching the solution. Because random features

should occur only rarely, less useful features fall into the background.

2. The indexing mechanism is very simple, because it always indexes a case
by every feature, and does not have to decide which ones are significant

or predictive.

CASEY makes generalizations about the cases it has solved by finding sim-
ilarities between the new case and cases already in its memory [17]. This is
known as similarity-based generalization [27). Generalizing the patient descrip-
tions allows CASEY to make predictions about patients who share features [19]
by recognizing co-occurrences. In the FEATURE-GEN, CASEY generalizes all
the features in the patient description, not just the causally-related features.
Some features that describe a patient are not used for analysis by the Heart
Failure model, and therefore will never be considered important. Some of these
features may be related to (and therefore can predict) states in the model. For
example, no state in the Heart Failure model uses the information on how a
murmur changes with valsalva as evidence, although there is a known causal
relation for why a systolic murmur associated with the disease IHSS inc1eases
upon valsalva maneuver. Normal values for findings are another example.
The Heart Failure program ignores most normal findings, even though they
can be used to rule out many states. By using similarity-based generalization
to learn new associations between features and solutions, CASEY can aug-
ment the knowledge in the Heart Failure system. At the same time, making
generaiizations about groups of similar patients reduces the effect of noise (ran-

dom, unimportant features in the patient description) on the performance of
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the program. This is because spurious features are likely to occur randomly,
whereas important features will tend to recur with some regularity in cases
presented to the program [28].

CASEY also generalizes the new case by creating a description of it using
only its observable states (i.e. ignoring the specific evidence for those states,
and ignoring internal states with no direct evidence). These are the gener-
alized causal features introduced in section 2.4. The new case is indexed in
the CAUSAL-GEN by its generalized causal features. This is an improvement
over simply using the input features as indices for storage because it puts
the emphasis on the states in the patient’s causal explanation rather than on
the specific evidence for those states. Since CASEY will accept any evidence
for a state as a substitute for any other piece of evidence for that state, it
makes sense to allow it to remember and match cases on the basis of classes
of evidence.

Separating the generalized causal features and giving them priority in
matching has the effect of determining the importance of features by expe-
rience. This is reasonable because the usefulness of a feature cannot always be
determined in advance. This also allows the problem solver to adapt to changes
in the types of problems it is presented over time. Giving extra weight to
causally-related features is reasonable because causality often indicates which
features are important in the case for matching [51}, [43].

Re-evaluating the importance of features is of value if the types of problems
presented to the program can change over time. For example, a program
designed like CASEY for the domain of general medicine might reasonably be

expected to form a generalization that represents a new cluster of simultaneous
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occurrence of lymphadenopathy, fever, malaise, and immunosuppression in
young men (i.e. AIDS), based on its exerience, if it were presented with several

such cases.
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Chapter 3

Implementation
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Figure 3.1 shows a block diagram of the program. The memory structure con-
tains three organizing structures for the cases, the FEATURE-GEN, the CAUSAL-
GEN, and the THERAPY-GEN, described in section 2.1. The memory organizer
selects the indices from the input cases, organizes the indices to reflect their
relative frequencies and importance, integrates cases into the memory struc-
tures, creates new generalized episodes, and modifies and refines the knowledge
stored in the memory structure. The justifier produces justifications using in-
formation from the Heart Failure model, as described in section 2.5, and the

adapter modifies past solutions, as described in section 2.6.

3.1 Interface with the Heart Failure program

CASEY is invoked via and takes its input from the Heart Failure program’s
input screen. The input is translated into C/ SEY’s internal representation in
order to search the case memory. If the search is not successful and the Heart
Failure program must be run for the patient, the data is still available in the
Heart Failure program’s representation fiom the input screen. CASEY uses
the Heart Failure program’s representation for causal explanations, and can
display its results using the Heart Failure program’s graph-drawing utilities.

CASEY also has routines that let it examine the Heart Failure model.
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Figure 3.1: Module diagram of CASEY
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3.2 Implementation of the memory nodes

3.2.1 Generalizations

GENS are data structures used to hold generalizations created by the program.
Each GEN holds information about the two or more cases indexed by this
GEN. The features list stores the features present in the description of at
least 2/3 of the cases in this GEN.! Each element of the features list is a 3-
tuple consisting of the name of the feature, the value of the feature, and the
number of cases indexed in this GEN that share this feature. The diffs list
holds the indices that are used to differentiate among the cases indexed in
this GEN. The causal list holds a list of states that are common to the causal
explanation of all the patients indexed in this GEN. Finally, the node-count
records how many cases are indexed in this GEN. An example of a GEN created
by CASEY is shown in Figure 3.2. This GEN organizes cases that included the
feature syncope/near-syncope on exertion. CASEY saw 23 patients with this
feature. The patients had other features in common, including anginal chest
pain, dyspnea on exertion, and sustained apex impulse (normal values are not
shown in the figure). Patients organized by this GEN all shared the causal
explanation fragment listed under the heading “causal” in the figure. This

-

generalization represents a substantial number of the cases solved by CASEY.

1The fraction of cases that a feature in the features list represents is determined by the

system designer.
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GEN 888 NODES: 23

FEATURES
(cardiomegaly Iv)
(apex-impulse sustained)
(s2 single)
(characteristic-murmur as)
(pulse slow-rise)
(chest-pain anginal)
(dyspnea on-exertion)

CAUSAL

limited-cardiac-output general-flow-deficit
exertional angina fixed-high-outflow-resistance
slow-ejection aortic-stenosis

DIFFS

known diagnoses heart-rate auscultation ...

Figure 3.2: A typical generalization structure (GEN)

60




3.2.2 Cases

The CASE data structure holds information about the individual cases pre-

sented to the program. Each CASE holds the following information:

1.

10.

The name of the patient.
A unique number that identifies this case (the node-id).
The date and time the case was entered.

The description of the patient. This is represented as a list of fea-

ture/value pairs.

The causal explanation derived for this patient. This is represented as a

list of nodes and links.

The generalized causal features for the case. (Before a causal explanation
has been derived for the case, this slot holds the evidence-states for the

patient.
The patient’s diagnosis.

Any therapy suggestions made for this patient.

. The source of the solution for this patient (either the Heart Failure pro-

gram or another case). If this patient’s causal explanation was trans-
ferred from another case, the precedent case and any substitutions made

in adapting the precedent solution to the current case are recorded.

Any follow-up information available for this patient. -
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PT-NAME:
NODE-ID:
SESSION-AT:
DATA:

CAUSAL-EXPLANATION:

Natalie

node-75

10/30/87 8:55:00

age 62, sex female, dyspnea on-exertion, orthopnea absent,
chest-pain anginal, anginal unstable,

syncope/near-syncope none, palpitations none,

cough absent, diaphoresis absent, hemoptysis absent,
nausea/vomiting absent, fatigue absent, therapies none,
heart-rate 86, resp 14, teinp 98.3, mean-arterial-pressure 103,
appearance anxious, mental-status conscious,

jugular-pulse normal, pulse slow-rise, parasternal-impulse normal,
auscultation murmur, murmur systolic-ejection-murmur,
auscultation s2, s2 soft-a2, apex-impulse laterally-displaced,

cxr cardiomegaly, cardiomegaly lv,

cxr calcification, mitral calcification, aortic-valve calcification,
ekg sinus-rhythm, ekg lv-strain, arrhythmia-monitoring sinus-rhythm
extremities normal-exam, abdomen normal-exam,

chest clear-to-auscultation-and-percussion
limited-cardiac-output, slow-ejection, unstable-angina
general-flow-deficit, lv-systolic-function, cardiac-dilatation,
iv-systolic-function-chronic, lv-hypertrophy, lv-press-chronic
fixed-high-outflow-resistance, aortic-stenosis, anxiety,
aortic-valve-disease, mitral-valve-disease, (dyspnea on-exertion),
(unstable anginal chest pain), (appearance anxious),
(arterial-pressure 103), (heart-rate 86), (pulse slow rise), (s2 soft-a2),
(ekg lv-strain), (cardiomegaly lv), (calcification mitral),
(calcification aortic-valve), (apex-impulse laterally-displaced),

Figure 3.3: An example of the CASE data structure.
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GEN-CAUSALS: (present aortic-vaive-disease), (present mitral-valve-disease),
(present cardiac-dilatation), {piesent lv-hypertrophy),
(present fixed-high-outflow-resistance), (present slow-ejection),
(present anxiety), (present unstable-angina),
(present limited-cardiac-output)

DIAGNOSIS: unstable-angina, aortic-stenosis,
aortic-valve-disease, mitral-valve-disease
THERAPY: (aortic-valve-replacement aortic-valve-disease)

TRANSFERRED-FROM: node-64
(same-qualitative-region (mean-arterial-pressure:103
mean-arterial-pressure:104) rule: (high blood-pressure))
(definite-cause (calcification mitral) mitral-valve-disease)
(new-state mitral-valve-disease)
(definite-cause (calcification aortic-valve) aortic-valve-disease)
(new-state aortic-valve-disease)
(causes aortic-valve-disease aortic-stenosis)
(other-evidence (pulse slow-rise) slow-ejection)
(other-evidence (s2 soft-a2) fixed-high-outflow-resistance)
(other-evidence (apex-impulse laterally-displaced) cardiac-dilatation)
(other-evidence (cardiomegaly lv) cardiac-dilatation)
(supports-existing-state (cardiomegaly lv) lv-hypertrophy)
(no-evidence high-sympathetic-stimulation)

OUTCOME: nil

Figure 3.4: More of the CASE data structure.
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An example of the CASE data structure is shown in Figures 3.3 and 3.4.

The patient name, date, and time together serve to uniquely identify the
session with the patient. The follow-up information® is useful for making
predictions about patients similar to this one. For example, if the patient did
not respond to the therapy recommended by the program, this information
could be used by the physician when considering the therapy for a future

patient.

3.3 Complexity of the memory scheme

As more cases are added to the memory, concerns might be raised about the
size of the case memory and the increase in retrieval time. The memory re-
trieval scheme used by CASEY never examines all the nodes in the memory. It
only follows those paths specified by features in the new patient’s description.
The time to follow a path in memory is proportional to the depth of the search
tree, which in turn is dependent on (at most) the number of features in the
longest patient description. It is independent of the number of cases stored in
the memory.

A small experiment was performed to determine how retrieval time changed
as the number of cases in the memory increased. Four GENs were built us-
ing increasing numbers of cases. Then the time to retrieve matches for two
cases was measured, one from the FEATURE-GEN and one from the CAUSAL-

GEN. The results, given in Table 3.1, indicate that the time (in seconds) to

2none is shown in the example.
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Number of cases in memory
10 20 30 44
feature-gen 7.06 7.00 7.40 7.58
causal-gen .02 .11 .14 .09

Table 3.1: Results of a timing experiment.

retrieve a case from memory was indeed almost constant as the number of
cases increased.

The growth in size of the case memory is highly dependent on the nature of
the cases stored in it. If the program were presented with one thousand iden-
tical cases, the case memory would consist of exactly one GEN whose features
would be the features in their description, with no diffs and thus no individual
cases stored in the memory. If the memory were presented with one thousand
cases that had no features in common, it would consist of a single GEN whose
features list was empty, and a diffs list that held every feature in each of the
cases’ description. At the end of each diff would be a single case. In ordi-
nary use, the nature of the cases presented to the system will most likely fall
between these two extremes.

When the memory is in its early stages of use, there are many features
that it has never encountered before. A new feature is entered as a diff in the
top-level GEN and increases the breadth of the memory structure. Subsequent
cases that have this feature in their description will create generalizations
below the diff, and thus increase the depth of the memory structure.

When CASEY is presented with a case whose features are identical to the
features of a GEN, there is no way to distinguish the case from the GEN and

thus there is no need to remember the case, since it is already completely
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described by the generalization. As more and more cases are seen by the
program, GENs representing common types of problems seen by the program
are formed and refined. The cases from which those GENs were derived are
no longer accessible. When a case is no longer distinguishable by any feature
from a generalization, it is discarded. The only cases that are explicitly stored
are exceptions to these “prototypical” problem types. (Cases that are not
stored because they are identical to a generalization are still used to increment
the importance weights in the memory. This ensures that CASEY keeps its
importance weights current.) Creating generalizations reduces the depth of
the tree because a case is indexed into the memory structure beneath a GEN
only by those features that are different from the features in the generalization.
After the memory has seen a variety of cases, therefore, it grows more slowly,

and may even compact itself.

3.4 Constructing a similarity metric

Two similarity metrics were implemented for CASEY, although only one is
used. One used a combination of usage counts and causal importance of fea-
tures, the other, presented in section 2.4.2, used generalized causal features.
To implément the first metric, each index is given two slots for maintaining
usage information. The first slot, usecount, is incremented each time the fea-
ture is seen in a case. The second, priority, is incremented every time a feature
is found to be used in a causal explanation. The ratio priority/usecount basi-
cally determines the importance ordering of the indices, although it is adjusted

for frequency (see below). If the ratic is low compared to that of other indices,
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it indicates that a feature is common without being causally important so its
usefulness is low. This scheme allows rare but causally important features to
be considered more useful than simple frequency would indicate (since they
are rare, their usecount is low, so their ratio is high). The weighting scheme
is somewhat more sophisticated than a simple ratio. For example, a feature
whose ratio = 1 but whose usecount = 100 is considered more important than
a feature whose ratio and usecount are both 1. Similarly, the system ranks a
feature whose ratio = 0 and whose usecount = 100 lower than one whose ratio
= 0 but whose usecount is only 3. The result of this similarity metric is that
important features are recognized, while spurious feature; are downplayed.

Although I had originally intended to use the above metric, an analysis of
the best match for several cases determined that generalized causal features
were most important in determining the best match for a case (the metric is
described in section 2.4.2). This is because a decision was made to always
attempt to reproduce the Heart Failure program’s solution (rather than allow-
ing CASEY to potentially find a better solution). Generalized causal features
group features that are evidence for the same state, so using generalized casual
features groups cases that have evidence for the same states. Therefore the
second metric is the one that is used in the current implementation.

The first metric would be more useful than the second if the Heart Failure
program were allowed to be overridden. In that case, CASEY would be cal-
culating new “evoking strengths” of features for d’agnoses, whereas currently

CASEY keeps the Heart Failure program’s probability weights.
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3.5 Implementation of the justifier

Before the system can attempt to justify a match between two cases, it must
first identify the differences between them, and then decide which ones are
significant. Identifying any differences is simple, because the memory organizer
indexes the two cases by their differences in the GEN that is created when the
similar case is found. CASEY can identify the following types of differences:
features missing in the new case, extra features in the new case, and features
that have different values. The justifier then evaluates each difference using the
evidence principles. Whenever a difference is judged insignificant or a repair
can be made to account for the difference, the justification for the change is
recorded in a list of justifications. Some features of the new case may remain
unexplained after this step. The justifier examines all the causes in the Heart
Failure model for each unexplained feature. If the feature has a definite cause,
or only one cause, that cause is added to the causal explanation. Otherwise,
the feature remains unexplained. Next, the justifier tries to find support for
states in the causal explanation that have no support, either because all the
evidence for the state is missing in the new case, or because the cause of that
state was removed. Again, if the state has a definite cause, or only one cause,
that cause ig added to the causal explanation. The justifier also examines the
causal explanation for any evidence that can be used to support the state. If
no support for the state is found, it is removed from the causal explanation.
Finally, the justifier checks for the two failure states. If all diagnosis states
have been removed from the causal explanation, or if some feature in the new

case remains unexplained, the match fails. Otherwise, the match is accepted
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and the list of justifications is returned.

3.6 Implementation of the repair strategies

The implementation of the explanation repair strategies is quite simple: each
evidence principle generates a list containing the objects in the old causal ex-
planation that must be changed or added, and a tag indicating the change that
must be made to the explanation. For example, (add (anginal experiencing)
unstable-angina) or (substitute mean-arterial-pressure 102 103). The
repair strategies are called according to the change that must be made, and
the causal explanation is incrementally mcdified. This process is not very
expensive because all changes to the causal explanation are local to the state
named in the input string. The repair strategies are independent of the partic-
ular implementation of the domain model. In order to use these on a different
model, only the lowest-level routines (the ones that actually add states and
links to the explanation) need be changed.

Diagnoses and therapy suggestions are both determined by the presence
of distinguished states in the causal explanation. Thus, diagnosis and ther-
apy repairs are both linked to the explanation repair strategies add-state and
remove-state. As described in section 2.6.2, when a diagnosis state is added
or removed, a diagnosis repair strategy modifies the diagnosis appropriately.
When a treatable state is added or removed, a therapy repair strategy adds or

removes a therapy suggestion .
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Results
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4.1 A detailed example

A new patient, Natalie, is presented to the system. She is a 62-year- old
female complaining of dyspnea on exertion and unstable anginal chest pain.
She appears anxicus. Her blood pressure is 146/81 and her heart rate is
86 beats per minute. Auscultation reveals soft A2 and a systolic ejection
murmur. She has a laterally displaced apex impulse. Her EKG shows LV
strain, and her chest x-ray shows LV cardiomegaly and mitral and aortic valve
calcification. The rest of her examination is normal. The exact input presented
to CASEY is shown in Figure 4.1. renewcommandl1.5 As a prelude to
retrieval, CASEY generalizes all features in Natalie’s description to determine
the states for which there is evidence in this patient. These are Natalie’s
evidence-states. [lor example, the feature “LV cardiomegaly” is evidence for
the states Lv HYPERTROPHY and CARDIAC DILATATION. According to the
model, Natalie has evidence for 66 states. In order to find a previoas case
similar tc Natalie, CASEY searches the CAUSAL-GEN for cases that have the
evidence-states in their causal explanation. It also searches for patients similar
to Natalie in the FEATURE-GEN. This is the retrieval step. CASEY retrieves
two cases that are similar to Natalie, Cal and Margaret. CASEY uses its
similarity metric to rank the retieved cases. Asshown in Table4.1, all of Cal’s
seven generalized causal features are covered by Natalie’s evidence-states. One
of Margaret’s eight generalized causal fea.ures, “evidence of high sympathetic
stimulation,” is not covered by Natalie’s evidence-states. In terms of number
of generalized causal features in common, these two cases rank equally. The

number of total features in common is used to break the tie. Cal and Natalie

71



(defpatient

”Natalie”

(age . 62)

(sex female)

(dyspnea on-exertion)
(orthopnea absent)

(chest-pain anginal)

(anginal unstable)
(syncope/near-syncope none)
(palpitations none)
(nausea/vomiting absent)
(cough absent)

(diaphoresis absent)
(hemoptysis absent)

(fatigne absent)

(therapies none)

(blood-pressure 146 81)
(heart-rate . 86) ‘
(arrhythmia-monitoring normal)
(resp . 14)

(temp . 98.3)

(appearance anxious)
(mental-status conscious)
(jugular-pulse normal)

(pulse slow-rise)

(auscultation 82 murmur)

(s2 soft-a2)

(murmur systolic-ejecticn-murmur)
(apex-impulse laterally-displaced)
(parasternal-impulse normal)
(chest clear-to-auscultation-and-percussion)
(abdomen normal-exam)
{extremities normal-exam)

(ekg lv-strain normal-sinus)

(cxr calcification cardiomegaly)
(calcification mitral aortic-valve)
(cardiomegaly 1v))

Figure 4.1: Patient data for Natalie
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Generalized Causal Features Evidence States

Cal Margaret Natalie
mitral valve disease — yes
aortic valve disease — yes
unstable angina unstable angina yes
slow ejection slow ejection yes
limited cardiac output limited cardiac output yes
LV hypertrophy LV hypertrophy yes
fixed high outflow resist. fixed high outflow resist. yes
— cardiac dilatation yes
— anxiety yes
— high sympathetic stim. no
total: 7/7 total: 7/8

Table 4.1: Match analysis of Cal and Margaret for Natalie

have 28 features in common, whereas Margaret and Natalie have 27 features
in common. Therefore the match with Cal ranks higher than the match with
Margaret, and CASEY firsi tries to justify the match with Cal.

Cal’s causal explanation is shown in Figure 4.2. In the justification phase,
CASEY determines that Cal’s explanation can be modified to account for all
of Natalie’s findings except for the laterally displaced apex impulse. This
finding is not accounted for by any state in Cal’s explanation and it has no
easily determined cause (as does Natalie’s finding of anxious appearance, which
has only one cause, anxiety). The justification thus fails, and CASEY next
considers Margaret as a precedent.

Margaret’s causal explanation is shown in Figure 4.3. The differences be-
tween patients Natalie and Margaret, which CASEY must explain by justifying
the match, are shown in Table 4.2.

CASEY makes the following inferences about the differences between pa-
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syncope/near syncope on <«—— LIMITED CARDIAC OUTPUT AORTIC VALVE DISEASE __, aortic valve cakification

exertion

MITRAL VALVE DISEASE

}

mitral calcification

mean arterial pressure: 103

l

single s2 AORTIC STENOSIS
|
GENERAL FLOW DEFICIT FIXED HIGH OUTFLOW _____ HIGH LV PRESS CHRONIC
l RESISTANCE
; l
UNSTABLE ANGINA SLOW EJECTION LV HYPERTROPHY
unstable anginal chest pain sustained apex impulse lv cardiomegaly  ¢kg: lv strain

Figure 4.2: Causal explanation for Cal.
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dyspnea on exertion o

experiencing anginal
chest pain \
ANXIETY

HIGH SYMPATHETIC
STIMULATION

diaphoresis

mean arterial pressure: 104

LIMITED CARDIAC OUTPUT

single s2 AORTIC STENOSIS systolic ejection murmur
GENERAL FLOW DEFICIT FIXED HIGH OUTFLOW HIGH LV PRESS CHRONIC _, LOW LV SYSTOLIC
l RESISTANCE 1 FUNCTION CHRONIC
UNSTABLE ANGINA SLOW EJECTION LV HYPERTROPHY LOW LV SYSTOLIC
l l l FUNCTION
unstable anginal chest pain sustained apex impulse ekg: v strain
CARDIAC DILAYTATION
appears anxious l
generafized cardiomegaty

- Figure 4.3: Causal explanation for Margaret.
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Feature name Value for Natalie = Value for Margaret

ag: 62 67
temperature 98.3 98.7
heart rate 86 90
blood pressure 146/81 148/unknown
apex impulse laterally-displaced sustained
parasternal impulse normal unknown
pulse slow-rise normal
s2 soft A2 single
chest x-ray mitral and aortic none
calcification
LV cardiomegaly  generalized cardiomegaly
angina unstable unstable
experiencing
appearance anxious anxious
diaphoretic

Table 4.2: Differences between patients Natalie and Margaret.

tients Natalie and Margaret:

e No rule in the Heart Failure model uses age as evidence, so Margaret’s
age is judged to be insignificant by the rule unrelated oldcase feature, and
Natalie’s age is judged to be insignificant by the rule unrelated newcase

feature.

o Both patients’ heart-rates are in the same qualitative region (moderately

high heart rate) so the difference is considered insignificant.

e Both temperatures are in the “normal” qualitative region so the differ-

ence is considered iusignificant.

¢ Both patient’s blood pressures are in the “high” qualitative region so the

difference is insignificant.
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Margaret’s finding of sustained apex impulse supports the state SLow
EJECTION. Natalie does not have a sustained apex impulse, but she
does have a slow rise pulse. This is other evidence for the state SLOW

EJECTION.

Natalie’s finding of a laterally-displaced apex-impulse supports the ex-

isting state CARDIAC DILATATION.

Natalie’s parasternal impulse is normal and does not have to be ex-

plained.

Single S2 and soft A2 both support the existing state FIXED HIGH OUT-

FLOW RESISTANCE.

LV cardiomegaly in Natalie is evidence for the same states that gen-
eralized cardiomegaly supports in Margaret’s causal explanation. LV
cardiomegaly also supports the existing state LV HYPERTROPHY, so a
link must be added between the finding and the state.

Mitral valve calcification and aortic valve calcification on chest x-ray are
both definite evidence for the states MITRAL VALVE DISEASE and AORTIC

VALVE DISEASE, so theses states are added to the causal explanaiton.

Natalie does not have the finding “experiencing unstable angina,” but
she has other evidence, namely “unstable anginal chest pain,” to support

the state UNSTABLE ANGINA,

Natalie’s finding of “appears anxious” supports the existing state ANXI-

ETY. There is no longer any evidence for the state HIGH SYMPATHETIC
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STIMULATION so it is removed.

All the differences between Margaret and Natalie are insignificant or repairable,
so the match is said to be justified.
In order to adapt the explanation transferred from Margaret to fit the data

for Natalie, the following repair strategies are invoked by the justifier:

(substitute-evidence mean-arterial-pressure 103 104)
(remove-evidence unstable-angina experiencing)

(add-state (mitral-valve-disease))

(add-evidence (calcification mitral) mitral-valve-disease)
(add-state (aortic-valve-disease))

(add-evidence (calcificatior aortic-valve) aortic-valve-disease)
(add-link aortic-valve-disease aortic stenosis)
(remove-evidence (apex-impulse sustained) slow-ejection)
(add-evidence (pulse slow-rise) slow-ejection))

(add-evidence (s2 soft-a2) fixed-high-outflow-resistance)
(remove-evidence (s2 single) fixed-high-outflow-resistance)
(add-evidence (apex-impulse laterally-displaced) cardiac-dilatation)
(remove-evidence (cardiomegaly generalized) cardiac-dilatation)
(add-evidence (cardiomegaly 1lv) lv-hypertrophy)

(add-evidence (cardiomegaly lv) cardiac-dilatation)
(remove-evidence diaphoresis high-sympathetic-stimulation)

(remove-state diaphoresis)

The changes that must be made to Margaret’s causal explanation to fit

the details of Natalie’s description are shown in graphically in Figure 4.4. The
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Figure-4.4: Modifications to Margaret’s causal explanation.
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Figure 4.5: Causal explanation for Natalie.

causal explanation produced by CASEY for Natalie is shown in Figure 4.5. It

is identical to the causal explanation produced de novo by the Heart Failure

program.

CASEY then identifies the states in the causal explanation of the new case

that are directly linked to findings (the generalized causal features), and in-

dexes the new case in memory using these features. In the case of Natalie,

these states are limited cardiac output, unstable angina, slow ejection, lv hy-

pertrophy, aortic valve disease, mitral valve disease, cardiac dilitation, fixed

high outflow resistance, and anxiety. Future cases that contain evidence to

support these states will retrieve Natalie’s case as a potential precedent.

In

retrospect, Cal’s causal explanation is quite close to the one finally de-

rived for Natalie. However, CASEY can be much more certain about removing

states

for which there is no evidence than about adding states to explain a
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feature (except for those instances in which the feature has a definite cause).
CASEY therefore takes a conservative approach and only adds a state when
there is definite evidence for the state, or when the evidence only has one
cause. The difficulty in adding states is that CASEY would be required to
choose the “best” cause from among several likely causes of the feature. There
are two ways in which this could be accomplished. First, CASEY could use
heuristic methods to select what it thinks is the most likely cause. The advan-
tage of this approach is that it would be fairly efficient. The problem with the
heuristic approach is that CASEY could not be certain that the state it added
was indeed the most likely. An alternative approach would be to run the Heart
Failure program in a limited manner, only using it incrementally explain the
unexplained features. This approach, while requiring more computation that
the heuristic method, would have the advantage that the state selected by the
Heart Failure program in fact would be the most likely cause of the feature,

given the rest of the explanation.
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4.2 Analysis of CASEY’s performance

CASEY'’s performance was evaluated on two counts: efficiency, and quality of
the solution. The program was tested on a set of 45 patients with symptoms
of heart failure. Twenty of the cases represented patients with coronary artery
disease or aortic stenosis. This set of test cases was specifically designed by
a physician for testing CASEY. The remaining 25 cases were designed to test
the range of the Heart Failure program, and described patients with various
causes of heart failure.

Each case was first evaluated by the Heart Failure program, and that solu-
tion was saved. The 45 cases were then used to test CASEY in the following

manner:

1. The test patient was removed from the test set.

2. The FEATURE-GEN and CAUSAL-GEN were built up using the other pa-

tients in the test set.

3. CASEY was invoked on the test patient.

The quality of CASEY’s solution was evaluated by comparing its output
to the Heart Failure program’s output for the same patient. A solution was
considered .;uccessful if it was identical to the Heart Failure program’s solu-
tion. A solution was considered satisfactory if it was identical to the Heart
Failure program’s solution except for the features which CASEY could not
explain. In these latter cases, CASEY had already performed most of the task
of deriving the causal explanation, and the Heart Failure program could be

used to incrementally account for the remaining features.
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CASEY produced a solution identical to the Heart Failure program’s solu-
tion in 14 out of the 45 test cases. It produced a satisfactory explanation for
an additional 18 test cases. It gave up on six of the test cases, and produced an
incorrect causal explanation for seven test cases. Of the twenty cases specifi-
cally chosen for testing CASEY, eleven were solved identically and nine were
solved satisfactorily. None of theses were solved incorrectly or were unsolved.
An examination of the test cases for which CASEY failed to reproduce even
part of the Heart failure program’s solution revealed that each one of these
cases had a causal explanation that was completely different from any other
patient in the memory. Even on these cases, CASEY could often produce
part of the causal explanation, but could not account for the combination of
features seen in the patient. CASEY failed to produce a solution in precisely
those cases for which it had never seen a similar patient. Since the purpose of
this thesis was to develop a system which improved with experience, it is nei-
ther surprising nor disappointing that the system failed to produce a solution
for unfamiliar cases. When CASEY produced an incorrect causal explanation,
it was often the result of attributing a mostly-correct causal explanation to an
incorrect primary cause.! CASEY should have an additional evidence prin-
ciple that uses the Heart Failure program to determine whether a particular
primary cause is still the most likely primary cause given the new evidence.

CASEY’s efficiency was evaluated by comparing the number of states (of
the Heart Failure program) it examined to the number states examined by the

Heart Failure program for the same patient. The number of states examined by

lthe state at the beginning of the causal chain.
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HF CASEY
Patient states  states
Adam 7K 126
Andrea 600 15
Bertha 7K 836
David 76K 674
Edith 13K 649
Francis 30K 486
Heywood 1700 123
Jethro 43K 366
Kalman 13K 1034

Karl 25K 952
Larry 7K 578
Natalie 13K 13
Thadeus 65K 2
Uri 18K 1100

Table 4.3: Efficiency comparison for identically-solved cases.

CASEY was calculated by counting all calls made to Heart Failure program
procedures that access data structures representing states. The number of
states examined by the Heart Failure program was approximated by counting
the number of causal paths evaluated in reaching its solution, and multiplying
that number by eleven, which is both the mode and mean of the number of
states in a path. The results of the efficiency analysis are shown in Table 4.3
for the cases in which which CASEY’s solution was identical to the Heart
Failure program’s solution. CASEY always examined fewer states than the
Heart Failure program by at least an order of magnitude, and often by two or
three orders of magnitude.

Cases that required relatively more effort by CASEY to solve did not nec-
essarily correspond to cases that the Heart Failure program required a lot of

effort to solve. Problems that can be solved quickly by the Heart Failure pro-
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gram have features which are specific to only one (or a small number) of states.
Problems that require a lot of effort for the Heart Failure program are those
with many symptoms that are evidence for a iarge number of states, which
generate a large number of possible explanations that must be evaluated. By
contract, a simple case for CASEY is one in which there are few differences
between the precedent and the new case. A difficult case for CASEY is one in
which many differences between the precedent and the new case must be an-
alyzed. A consequence of this difference is that as the number of cases solved
by CASEY increases, it requires less effort to solve subsequent cases because
it is more likely to find a close match. The Heart Failure program, conversely,
cannot increase its efficiency except by re-implementation.

A complete analysis of CASEY’s solution for each test case is given in the

appendix.

85



Chapter 5

Discussion
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5.1 Strengths of the method

CASEY demonstrates that combining 2 memory of past cases with reasoning
from a causal model can have significant advantages over either method used

alone.

o CASEY combines the efficiency of associational reasoning with the im-
proved problem-solving ability of model-based reasoning. It can recog-
nize when a case is routine and when it is not. It efficiently solves routine
cases by making small local changes to an existing solution. CASEY can
recognize that it does not know how to solve a particular problem. When

this occurs, it can solve the case by using the Heart Failure program.

e CASEY’s performance improves with experience. It learns to solve more
problems efficiently as it is given more problems to solve, because it
remembers what it has done in the past. It can improve its knowledge

by being corrected.

e CASEY can acquire new knowledge automatically by making generaliza-
tions about problems that it has solved. It automatically acquires new
associational knowledge by making generalizations about each new case

preserted to it.

e CASEY’s model-based reasoning component is enhanced by the abil-
ity of the case-based component to learn new associations and compile
detailed reasoning structures into simple associations between features
and solutions. This results in both improved performance speed and in

improved accuracy of the program as new information is added.
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e CASEY’s case-based component is improved by the use of a causal model
because the model can prove that a retrieved solution will be helpful for a
new case. Also, the model can be used to identify important features for
matching. This results in the elimination of a major limitation of previ-
ous case-based reasoning system, the need to fix the important features

for matching.

CASEY can produce the same solutions as the Heart Failure program but
more efficiently. CASEY’s ability to improve the efficiency of the Heart Failure

program hinges on two characteristics of the latter program.

¢ The Heart Failure program is deterministic, so when presented with two
patients whose descriptions are the same, it will produce the same causal
explanation. If retrieval is faster than recomputation, and it almost
always is, CASEY can save time by remembering a causal explanation

rather than generating one.

e The Heart Failure program does not represent all the actual relation-
ships between findings and states in the model.! CASEY can learn to
identify which findings are important to the solution of the case and
which can be ignored, thus developing “essential” descriptions of various
diseases: these are the combinations of features for which the Heart Fail-
ure program will always produce the same solution. In essence, CASEY

memoizes® the Heart Failure model. But because generalization allows

1The Heart Failure program is still under development, so its model is incomplete.
2“Memoization is a technique that enables a procedure to record ...values that have

been previously computed. This technique can make a vast difference in the performance
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it to ignore features unimportant to the solution, it memoizes the model
using partial descriptions of cases. This is an improvement over the basic

memoization scheme because it does not require identical matches.

CASEY learns new associations between features and solutions. As was
noted in section 2.7, the Heart Failure model does not represent all the rela-
tionships that exist between features and states in the model. Sometimes the
relationship between a feature and a state in the model is not known, or is on a
more detailed level than the Heart Failure model uses. In this case, the Heart
Failure model represents the probability of the feature being associated with
a state without actually representing the causal mechanism involved. These
are the same types of associations that CASEY can discover. For example, in
section 2.7 we saw the example of the feature (systolic-murmur increases
with valsalva), which is not associated with any state in the model. In a
patient with IHSS, a systolic murmur is heard which increases with valsalva. If
a number of patients with this symptom were presented to the program, and
subsequently found to have IHSS, CASEY would make a GEN representing
patients with a systolic murmur that increases with valsalva and the disease
THSS. If enough patients with the feature and the disease were seen (currently,
if > 2/3 of_the patients with the feature had IHSS) it would use the infor-
mation in the GEN for prediction. CASEY would predict that patients with a

of a program. A memoized procedure maintains a .. .table in which values of previous calls
are stored using as keys the arguments that produced the values. When the memoized
procedure is asked to compute a value, it first checks the table to see if the value is already
there and, if 8o, just returns that value. Otherwise, it computes the value in the ordinary

way and stores this in the table.” [1]
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systolic murmur that increases with valsalva also have IHSS.

CASEY can in principle produce a causal explanation even for problems
that the Heart Failure program cannot solve. A problem could lack sufficient
information for the Heart Failure program to calculate a solution (i.e. not have
enough necessary features in the patient description to deduce any solution),
but still have enough information for CASEY to find a matching case (by
matching using whatever causal features are present, as well as correlated but
non-causal features).

Since determination of important features is based on information in the
causal model, it is reasonable to ask why the Heart Failure model is not simply
“compiled” to produce all this information in the form of associational rules
relating important symptoms and physiological states. In fact, that is exactly
what CASEY is doing, but it is compiling the knowledge incrementally, asso-
ciating features of problems with solutions for the cases it has seen. Also, the
Heart Failure program can generate solutions involving multiple diagnoses. To
compile all of the Heart Failure program’s knowledge taking into account mul-
tiple diagnoses would be computationally intractable. CASEY compiles the
Heart Failure model for combinations that are observed to occur. The Heart
Failure model provides the relative importance of features only for single di-
agnoses. Because CASEY also makes generalizations about patients who have
multiple diagnoses, it can create associational knowledge relating features to
solutions involving multiple diseases.

CASEY'’s causal reasoning ability lets it produce a complete causal anal-
ysis of the new case, not simply a reference to a previous solution. As noted

in section 2.5, case-based reasoners with no method for evaluating the contri-
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bution of different pieces of evidence to a solution cannot guarantee that the
retrieved solution is appropriate for the new case. Evaluating differences by
use of a causal model improves the likelihood that the retrieved solution ap-
plies to the new case. When CASEY justifies the match between the old case
and the new case, it demonstrates that although there are differences between

the cases, the causal model still supports the retrieved solution.

5.2 Limitations

CASEY’s current implementation has some limitations. Most problems pre-
sented to the system have a large number of “reasonable” explanations. CASEY
does not use all the quantitative information available in the Heart Failure
model that would allow it to distinguish between statistically more- and less-
likely solutions.

For example, the program is parsimonious about adding additional states
to the causal explanation. If a new feature could be attributed to two different
physiological states, one of which is already included in the transferred expla-
nation, CASEY will use the state that is already there rather than add a new
state. It is possible that a feature has a higher probability of being caused by
the state not already in the explanation. The model contains information that
CASEY could use to discover this circumstance. CASEY works by modifying
one particular solution, rather than by generating many solutions and com-
paring them, as the Heart Failure program does. This makes it more difficult
for CASEY to evaluate the likelihood of its solution being correct compared to

other possible explanations for the same data. The Heart Failure program, on
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the other hand, calculates the probabilities of all possible causal explanations
that fit the data, and chooses the one with the highest probability. For certain
applications (e.g. geological interpretation [44]), any explanation for the input
features is acceptable. In the Heart Failure domain, the users require the most
likely explanation. CASEY’s justifier could be extended to recognize when
the solution it is creating is not the most likely one, in which case it could
reject the match. This would require invoking the Heart Failure program in a
limited capacity to evaluate the probability of the change being made.

An objection that might be raised by the statistically-minded reader is
that CASEY can make predictions based on too few cases. (This is only an
issue for generalizations of non-causal features, since the causal features are
generalized using the Heart Failure model and therefore are accurate according
to the model.) A simple solution to this is to make the program wait until
it has seen a desired minimum number of cases before being allowed to make
predictions. On the other hand, CASEY’s ability to make generalizations
could be viewed as “learning quickly.” If the program were suddenly placed in
the middle of an epidemic, or confronted with a new disease, CASEY would |
soon realize that it was seeing many similar cases of the same thing, whereas
a static program (such as Heart Failure) would be bound by its fixed prior
probabilities. A similar complaint is that when it has seen a relatively small
number of cases, CASEY can introduce incorrect biases in the importance
weights of features, for obvious reasons. The probabilities used in the Heart
Failure program are based on studies with larger numbers of patients than have
been presented to CASEY. If CASEY were given a larger number of cases (for

example, the same number as were used to develop the statistics used in the
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Heart Failure program), it would overcome biases in its importance weights
that were due to the small sample size of patients that it had encountered.
Finally, some readers may be uncomfortable with the notion of reasoning from
a single case, believing that this is “anecdotal”. In fact, CASEY never reasons
from a single case unless it has a perfect match. The retrieved solution is
always evaluated for the new case in the context of the Heart Failure model,

which represents information distilled from a large number of cases.

5.3 Learning

CASEY learns in several different ways. First, by remembering cases it has
already solved, CASEY increases the collection of problems that it can recog-
nize and quickly solve. However, this type of learning is not particularly useful
because the knowledge acquired can only be applied to cases exactly like those
already seen. CASEY can also make generalizations of the problems it knows
how to solve. This is more useful because it allows the progran to solve prob-
lems that is has not seen before. CASEY uses two generalization techniques,

similarity-based generalization and explanation-based generalization.

5.3.1 Learning by generalization

In similarity-based generalization, a program acquires new information by
comparing a number of examples and making a generalization defined by their
similarities. The assumption in similarity-based generalization is that if a new

example matches some features of a generalization, the other features of the
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generalization might hold also. There is no requirement for any specific domain
knowledge in this paradigm. CASEY performs similarity-based generalization
when it groups cases together on the basis of some similarity in features. The
groups (GENs) allow CASEY to make predictions about certain aspects of new
cases that match the common features of the GEN, even though the new cases’
descriptions may not be completely specified. The system also learns new as-
sociations between fzatures and states as a result of noting similarites between
cases.

In explanation-based generalization, features of a single example are “ex-
plained” (analyzed) using detailed knowledge of the domain, then the details
of the particular example are generalized so that the explanation of their re-
lationship still holds, but unrelated features are ignored. The generalized
description can then be used to analyze (presumably more efficiently) sub-
sequent examples presented to the program. The specific example on which
explanation-based generalization is performed is usually discarded. CASEY
performs explanation-based generalization when it determines the generalized
causal variables from a patient’s causal explanation and uses these to describe
a class of patients. For example, from the causal explanation of the patient
Sarah (given in section 1.5), CASEY produces the general class of “patients
with symptoms of exertional angina and unstable angina”.

Similarity-based and explanation-based generalization are both useful in
CASEY. Similarity-based generalization relies on coincidence to identify im-
portant features of a description, and is essent.al in domains without a strong
causal model — the type of domain to which case-based reasoning has tra-

ditionally been applied. Generalizations based on coincidence are less likely
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to be true than explanation-based generalizations which have been created
by reasoning about the underlying model of the domain. Because CASEY
has a causal model at its disposition, it can do better than relying solely
on similarity-based generalization, as other case-based reasoning programs
must. CASEY, where possible, uses its causal model to identify and gen-
eralize causally-important features (using explanation-based generalization).
However, for some features the model gives no information. Because the model
is known to be incomplete, CASEY has no way of determining whether those
features are irrelevant or whether they are important but simply missing from
the model. Previous explanation-based generalization programs have either (1)
been used in domains with small, complete models (e.g. chess, logic design,
mathematical integration), (2) used incomplete models with the closed-world
assumption, or (3) relied on input descriptions that were noise-free. The effect
of all of these restrictions is to ensure that the generalizer is correct in deciding
that a feature is irrelevant to the causal explanation. In CASEY’s domain, as
in most real-world problems, the data is noisy and the models are incomplete.
The combination of explanation-based generalization to identify important as-
pects of the case where possible with similarity-based generalization to fill in
gaps in the model and reduce the effects of noise is a logical choice.

-

5.3.2 Improving on the Heart Failure program

The assumption made during the implementation of CASEY is that there are
two kinds of knowledge used by the program: associational knowledge (as, for

instance, between a symptom set and a disease) which can be modified by
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experience, and basic science or “first principles” knowledge, which cannot.
The Heart Failure program was assumed to embody first principles knowl-
edge, and therefore was not to be overridden. In fact, the Heart Failure model
does contain many basic principles of physiology, but it also contains uncer-
tain knowledge (the probabilities), and its solution method includes heuris-
tics. Thus, it is not always guaranteed to produce the correct solution. If
the standard to which CASEY is held were changed instead to that of an ex-
pert user/physician, CASEY could learn to do better than the Heart Failure
program. This would work in the following way: If the user did not like the
answer produced by CASEY (or the Heart Failure program), she could enter
her own solution, which would be stored. The next time a similar case was

encountered, CASEY would remember the solution preferred by the user.

5.4 Indexiag

Indexing refers to choosing the features of a case that will be used as pointers
to it in the memory structure. Selecting the indices of a case for storage
determines the ways a case will be stored in the memory structure. When
retrieving past similar cases, the indices selected determine which aspects of
the case will be matched against the cases in memory.

Previous case-based reasoning systems have emphasized constraining the
number of indices (e.g. [17], [14], (13]). If the system designer decides a priori
that certain indices will be discarded, the program will never have a chance to
use those indices. The importance of an index may not be apparent in advance.

That is why CASEY uses all the features of a case for indexing. Some may
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turn out not to be useful and are discounted, but none are eliminated a priori.

When case-based reasoning was first developed, memory constraints were
such that total indexing resulted in unacceptably slow performance. Changes
in technology have resulted in greatly increased memory capacity, while at
the same time advances in parallel computing allow greatly reduced retrieval
times with less memory usage [20]. Indexing by every feature is feasible from

the technological point of view, as well as from the cognitive point of view.

5.5 Defaults and exceptions

The term default reasoning is commonly used in Artificial Intelligence to refer
to the type of reasoning of the form “Unless there exists evidence to the con-
trary, assume ... holds.” Ezceptions refer to examples of a class which in some
way violate the description of the class. For example, consider the question:
“If Tweety is a bird, can Tweety fly?” In the absence of any other evidence, we
answer this question using our default knowledge of birds and answer “yes.”
However, if we are told that Tweety is a penguin, we use our knowledge of
exceptions to the rule that “birds fly” and answer “no.”

CASEY’s group-and-differentiate memory structure [17] provides a conve-
nient represéntation for reasoning about defaults and exceptions. The memory
structure automatically provides a representation for creating knowledge about
defaults and exceptions. GENs hold information that is common to a substan-

tial portion of® the cases that are indexed under that GEN. Any exceptions

3The exact fraction is implementation dependent. In CASEY, it is 2/3.
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Figure 5.1: “Penguins don’t fly” represented in a typical inheritance hierarchy.

that the memory knows about are explicitly represented by the diffs of the
gen. The diffs distinguish those cases (or more specific generalizations) in-
dexed within the GEN that do not fit some the default knowledge held in the
GEN. Furthermore, diffs specifically idertify the ways in which the exceptions
differ from the GEN. In typical knowledge representation hierarchies, Reiter
[38] observes that there is no way to establish inheritance from any node above
an exception to any node below one. For example, in the hierarchy shown in
Figure 5.1, there is no way to establish that a penguin is an animal. By con-
trast, the same information is easily represented in a group-and-differentiate
memory structure, as shown in Figure 5.2. The exact way in which penguins
differ from the default bird knowledge is identified. Thus there i. no prob-
lem determining which aspects of the default bird knowledge that penguins do
inherit. The diffs precisely indicate where the system knows that its defzult

knowledge fails to hold. Since the generalizations are created in response to
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Figure 5.2: “Penguins don’t fly” represented in a group-and differentiate mem-

ory structure.
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examples presented to the program, they do not necessarily reflect reality. If
the program were only presented with bird examples penguin, ostrich, emu,
and dodo, it would conclude that the typical bird uses walking as its means
of locomotion. This is a reasonable default given the information it has. The
behavior of the memory system represents a form of commonsense default

reasoning.

5.6 Relation to formal theories of diagnosis

Recently, a number of techniques have been developed which describe methods
for diagnosing systems with multiple disorders or faults [37, 10, 39]. In each
of these systems, competing diagnostic hypotheses are represented as sets of
individual diagnoses. Each individual diagnosis identifies faulty components.
When the individual diagnoses in a set are censidered together, they explain
all of the observed symptoms. In {10, 39], only the minimal sets which cover
the observations (minimal conflict sets) are considered during diagnosis. A
set is said to be minimal if no subset of the set can account for all the symp-
toms. A diagnosis in (10, 39] is defined as a minimal cover set for the findings.
The requirements of a minimal cover set are that it accounts for all the ob-
served symptoms, and no subset of it accounts for all the symptoms. All these
techniques claim to be general. [10, 39] are demonstrated in the domain of
electrical circuit troubleshooting, while [37] has been applied to medical diag-
nosis. As they are quite similar, we will enly discuss one technique in general,
that of Reiter [39].

CASEY’s set of evidence-states for a given input feature is clearly equiva-
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lent to Reiter’s conflict set. CASEY’s set of generalized causal features appears
to corresponds to Reiter’s minimal cover set. However, they are different.*
There are two characteristics of CASEY’s problem domain, and in fact of
many real-world domains, which directly rule out use of the the set cover
technique. First, the generalized causal features need not account for every
observed symptom. This is because some features are noise and need not be
explained (covered) by the diagnosis. Second, the set cover technique assumes
set additivity of observations [35]. It does not take into consideration the case
in which features interact so as to mask each other. For example, a patient
may display two or more simultaneous physiological processes, one acting to
raise his blood pressure and a compensatory mechanism acting to lower it. A
set may appear to be non-minimal precisely because the additional hypothe-
ses are acting to explain findings whose net effect is to cancel each other. For
these reasons, CASEY’s generalized causal features need neither account for
all observed symptoms, nor be minimal.

Thus the techniques developed for relatively straightforward domains are
not adequate to reason about ‘he noise and complexities of real-world prob-

lems.

4We will ignore for the purposes of this discussion the obvious difference, which is that
CASEY has causal chains that extend backwards from the generalized causal features, and

diagnosis states are often found higher up in the causal chain.
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5.7 CBR vs. generate-and-test

In many traditional associational reasoners, an initial solution is generated by
combining the results of many nearly-independent associational rules, which
map features of the problem onto fragments of solutions. If parts of the prob-
lem interact, there is no coherence guaranteed in the hypothesis. It must be
tested to ensure that the parts add up to a plausible whole. CASEY starts out
by finding a complete solution to a similar problem. This solution is guaran-
teed to be coherent for the problem it originally solved. The problem CASEY
must answer is, “is this solution still valid for a slightly different input?” By
checking the relationship between the evidence in the old case and the evidence
in the new state with respect to states in the model, CASEY can prove that
the new evidence can be explained by the repaired solution. There is no need
for a separate test step.

The test step in generate-and-test systems involves running the entire ini-
tial solution through a simulator based on the model of the domain to make
sure that it results in the same state observed in the problem statement (the
goal state). Of course, verifying through use of the model that a hypothesized
solution results in the goal state is less work than generating that solution us-
ing the model. However, it still requires more work than is done in CASEY’s
justification step. Using CASEY’s method, only parts of the solution which
depend of features which differ in the old and new problem must be evaluated.
If CASEY judges the differences insignificant or repairable, it means that the
Heart Failure model allows the causal path to the findings described in the

solution. This holds as long as the evidence principles make no assumptions
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not sanctioned by the CHF model (and in fact, they are more conservative
than the model in this respect). Conversely, if CASEY judges a difference to
be irrepairable, it means that within limits of the assumptions made by the
evidence principles, the two problems are not equivalent, and the retrieved

solution should not be used.
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5.8 Generality of the Method

Although CASEY was designed for providing causal explanations, diagnoses,
and therapy recommendations in the domain of heart failure, the memory
structure and evidence principles used in the system do not depend in any
way on the specific domain information in the Heart Failure model. The
evidence principles, however, do depend on the form of the model, namely a
causal inference network. The techniques in CASEY could be generalized to

apply to models of the same form as the Heart Failure model.

5.8.1 Requirements

CASEY requires the following information for its reasoning:
o a set of features that can be used to describe some problem,
e a set of states that can explain these observations,
e specific information about features:

— the set of possible values for this feature,

— the set of states that use this feature as evidence,

e specific information about states:

— the set of features that are evidence for this state,
— features that rule this state out,

— a list of states that cause this state,
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— a list of states that this state causes.

Formally, in order to use CASEY, a model must provide the following
information:

S, a finite set of states.

F, a finite set of features which can be evidence for the statesin S. f € F
is what up till now has been referred to as a feature-value pair.

CC (S xF)U(S xS). The relation C in the Heart Failure model is used
to imply causality. In fact, it is not even necessary that the relation be causal.
For CASEY’s evidence principles it is sufficient that (s, f) € Cis associational
and s temporally preceed f (similarly for (s;,s;) € C).

The problem presented to CASEY is then

Ft C F, some subset of the features which has been observed.

There is other information which CASEY can use (and does) in its rea-
soning, in particular probabilistic knowledge of the relative likelihooods of
different diagnoses (which it can get from the Heart Failure model), however

these are not essential to its reasoning.

5.8.2 Other aspects of generalization

The criteria™y which a match is ruled out can be made more or less stringent.
For example, a match could be ruled out if any state in a retrieved case was
ruled out. CASEY is very accommodating of differences between new and
retrieved cases because the system currently does not have enough cases to
allow very stringent similarity requirements. A more conservative criterion

might be implemented if the system acquired a great many more cases. Having
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a more conservative criterion might increase the number of times that CASEY
failed to find an acceptable match. Conversely, more cases would increase
the chances of CASEY’s finding a matching case, and matches would tend
to be closer, meaning that CASEY would do less modification to a retrieved
causal explanation. Also, with more cases CASEY would call the Heart Failure
program less often, which would make the system more efficient.

The ability of the technique to produce a good solution depends in part on
selecting a good precedent case. Much research has been done in this area (for
example [18], [43], [46], [47], [16]). CASEY uses a novel matching algorithm

specifically designed for reasoning about causal explanations.

5.8.3 Application to more complex models

An issue related to the generalizability of the method is tke applicability of the
techniques developed in CASEY to different models. Specifically, as models
change, can CASEY adapt?

One way in which models might change is by becoming more precise. As
models become more precise, features which were different but roughly equiv-
alent may no longer be acceptably substituted. CASEY will have to refine its
evidence principles to reflect the increased precision of the model.

Techniques are being developed that allow qualitative models to predict the
long-term behavior of a system rather than the immediate behavior [26], [41].
CASEY could adapt to this type of model by acquiring new vocabulary to
describe the long-term behaviors. This could be qualitative result (i.e. oscil-

lation) or quantitative result. Such a system would attempt to predict long
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term behavior by recognizing certain features in the problem.

Whereas the Heart Failure program describes its domain model through
a combination of associations and equations, many systems are described by
models consisting completely of equations. If this were the basis of the model,
CASEY would require additional techniques to match a new case to a prece-
dent. The behavior of these equations is predicted from their initial conditions.
After solving a case, CASEY would have to do an “analytical generalization”
of the model, wherein it determined the intervals of initial variables for which
the model’s equations give the same result (much as CASEY currently does
for numerically-valued features). The criterion for matching a case would not
be identical initial conditions, but the features would have to be in the same
interval. This analysis could become very complicated if the features of the
model interact.

An examp!e of a purely quantitative domain in which CASEY’s techniques
might be applied is in remembering the results of past linear programming (LP)
optimization model executions. CASEY handles numerically-valued features
by determining the ranges of those features which, according to the model,
result in the same final state. In LP optimization, the ranges over which the
solution holds for a particular model can be derived by parametric analysis (a
different form of model-based reasoning). CASEY could generalize a particular
model to describe the class of models which will result in the same solution.
Of course, this would require an exact match between the new case and the
class since evaluating the results of changes outside the range would require
pivoting.

Models are increasing being called upon to handle temporal data (e.g.
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” “pneumonia one month ago”). CASEY

“worsening high blood pressure,
would most likely be able to handle this issue by using qualitative time regions
such as “in the recent past”, “immediately preceding admission”, and “in the
past”, to qualify features in the patient description. The significance of the
qualitative region may be disease-dependent (e.g. tuberculosis one year ago is
seen differently than pneumonia one year ago). This technique was also used

in PIP [36], another medical reasoning program. But for more sophisticated

models of time, a further analysis will be required.
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5.9 Future Work

There are many ways in which the work described in this thesis could be

extended in the future. This section describes several of them.

Using book-knowledge. An important feature of CASEY’s memory struc-
ture is that it can be used to store “book knowledge” as well as experiential
knowledge. CASEY’s memory does not have to start out totally empty, but
could take advantage of pre-existing sources of medical knowledge to create

prototype cases of diseases.> This would have several advantages.

1. It would save CASEY the effort of learning known causal explanations

for common problems.

2. In the case of rare problems, the program would not have to wait until

it had been presented with a case before gaining the needed knowledge.

3. CASEY would perform better faster because fewer cases would be needed

to ensure coverage of the domain.

Book knowledge would be stored in GENs as the framework throughout which
cases are distributed. The cases would represent unusual presentations and
combinations of discases. CASEY would still learn from cases that fit the
classic descriptions, because those cases would strenghten the association be-

tween symptoms and the disease.

5Much like a medical student at the beginning of the third year, who has book knowledge

but no clinical experience.
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{defnode constrictive-pericarditis

goal diagnosis

causes (primary .01
P+ (pericardial-calcification :prob .5))

measure ((EKG (prob non-specific-t-changes .8))
(EKG (prcb low-qrs .5))
(echocardiography (prob pericardial-thickening .7))
(calcification (prob pericardial .3))
(cat-scan (prob pericardial-thickening .7))
(abdomen (prob (or ascites hepatosplenomegaly) .3))
(jugular-pulse (prob inspiratory-increase .7))
(known-diagnoses (prob constrictive-pericarditis .5))))

Figure 5.3: The Heart Failure model’s information about constrictive
pericarditis.

The book knowledge in CASEY would be stored in the same way as GENs
derived from experience. A difference would be that the weights for the com-
mon features of the GEN could be set initially to reflect the probability of
seeing the feature in the given state. Also, the weight of the path to each such
GEN could be set initially to be the a priori probability of this state in the
population.

Long® points out that all the book knowledge necessary to creat prototype
cases is available in the Heart Failure model. It is possible to generate the
prototype cases directly from the model, by building a compiler that reads
the information in the Heart Failure model, extracts the relevant information,
and creates GENs that hold that information. For example, the knowledge
about the disease constictive pericarditis contained in the Heart Failure model

is shown in Figure 5.3. A compiler could automatically produce the GEN

6personal communication
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GEN CONSTRICTIVE-PERICARDITIS NODES: ¢

FEATURES

(ekg non-specific-t-changes)
(echocardiography pericardial-thickening)
(cat-scan pericardial-thickening)
(jugular-pulse inspiratory-increase)

CAUSAL

DIFFS
EKG CALCIFICATION ABDOMEN KNOWN-DIAGNOSES

Figure 5.4: A disease prototype created from information in the Heart

Failure model.

shown in Figure 5.4. Notice that only measures with a probability greater than
0.6 (which indicates the probability that patients with constrictive pericarditis
have this finding) would be placed in the GEN as features, since these are
meant to represent features present in the description of at least 2/3 of the
cases stored in this GEN. The other measures could be stored as diffs; these

represent ways in which cases could vary from the classic presentation.

-

Reasoning on multiple levels of detail. The process of abstracting from
specific evidence for states to generalized causal features is recursive.” The
generalized causal features can be be further generalized to be evidence for

states at another level of description, as is shown in Figure 5.5. For example,

"William Long, personal communication.
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dyspnea on-exertion is generalized to “evidence-of limited cardiac output,”
which in turn is evidence for left-sided heart failure, a pathophysiological state
not represented in the model’s current level of description. This is similar to
the multiple-level patient-specific model representation pioneered in ABEL,
but which has not been used extensively due to the difficulty of constructing
multiple models. The techniques in CASEY provide a means by which these
multiple-level models could be generated automatically.

In order to reason on multiple levels of description, CASEY would require
additional indices, one for each generaliz - iption that could be used to
describe each new level. Cases could be indexed at all levels of description
in the same generalization structure (which is the equivalent of reasoning on
multiple levels of detail simultaneously), or each level could be stored in a sep-
arate structure (in the same way as the separation between the FEATURE-GEN
and the CAUSAL-GEN is currently maintained). This would give the problem

solver more control over the level of detail being usec’ at a given time.

Combining retrieved solutions. CASEY could not solve several test cases
that involved multiple, non-interacting diagnoses because it had not seen a
case with the particular combination of diagnoses before. For most of these
test cases, CASEY found precedents which could account for diferent parts
of the solution, but it had nc way of combining them. The ability to combine

solutions from several precedents is a logical next step for the program.

Integrating multiple models. Generalizing the causal explanations pro-

duces partial explanations that explain features that the new case and retrieved
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case have in common. CASEY can thus produce a partial solution for a prob-
lem even in the absence of enough information to explain the whole problem.
This suggests using CASEY to integrate several causal models developed for
different domains, where no one model could account for all the features in

the problem.

Other tasks. The evidence principles and similarity metric in CASEY have
been optimized for the task of finding a case with the same causal explanation.
If CASEY were applied to a different task, the same reasoning structure would
hold, but it would need different details. For example, it would probably
still be true that the important features for each case should be individually
determined, but these features would not necessarily be the generalized causal
features that are used in CASEY. Similarly, it would still be a good idea
to justify solutions before transferring them, even if the task were different
(e.g. the robot-planning task in NODDY (3], geometry problem-solving in
[6]). CASEY’s evidence principles were designed to justify transferring causal

explanations; other tasks may require different types of justifications.

Learning evidence principles. A challenging extension of the system would
be to present CASEY with two cases that are known to be similar, and have
it develop the evidence principles itself, by examining similarities between the
cases. This would probably require a combination of both similarity-based and

explanation-based learning techniques.
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Learning more from mistakes. When the user rejects a solution produced
by CASEY, the program stores the preferred solution. Storing the solution
preferred by they user is one way in which CASEY learns from its mistakes,
because on a future similer patient it will return the solution that the user
preferred. It does not, however, make use of the information to determine
what mistake it made in arriving at the faulty solution. If the user provided
the correct causal explanation, CASEY could find the differences between the
correct solution and the incorrect one, and examine the model to determine
what knowledge it had used to make a faulty substitution, and then remember
that the substitution was not allowable. This would reduce the chances of

CASEY making an incorrect substitution.

Improving the Heart Failure model. Occasionally the Heart Failure pro-
gram gives incorrect answers (as judged by the physician user). A interesting
use of CASEY would be to program it to identify the information in the Heart
Failure model that might have led to the faulty conclusion. Again, this would
require CASEY to examine the the two solutions and determine what knowi-

edge in the Heart Failure program was responsible.

Comparing alternatives. CASEY currently retrieves a number of prece-
dents for each new case, and only evaluates them one at a time, until it has
found a satisfactory match. An alternative would be for CASEY to justify
all the retrievec cases for a new case. Some will be ruled out and some will
remain. Among the ones that remain, the causal explanations might not all

be the same.
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e CASEY could present the various causal explanations as alternatives
(because there really is a variety of reasonable explanations for most

patient descriptions.)

e Also, CASEY could find the overlap among the different causal expla-
nations. The part of the causal explanation in the overlap is strongly

indicated in the patient, because it is common to all the explanations.

e If there are different treatments depending on different causal explana-
tions, for example systolic vs. diastoclic failure, CASEY can suggest that

these are the states that must be distinguished.

e If there is no difference in the treatment consequence of the different
causal explanations, the user could feel confident in his recommendations

even if he isn’t sure that the causal explanation is exactly right.

Critiquing. A final suggestion is to use CASEY for critiquing. CASEY
could be used to critique a user’s diagnosis or therapy plan for a patient by
commenting on the similarity (or dissimilarity) between that patient and a
similar case recalled by the program. For example, the user could propose
a therapy plan for a new patient. CASEY could find similar therapy plans
by looking in the THERAPY-GEN. This structure stores patients according to
the therapy recommended for them. CASEY could critique the user’s plan by
comparing the new patient to the retrieved patient, and using additional infor-
mation in the model, if applicable. For example, CASEY might state, “This
plan was used on patient X but the new patient has the following differences

which make that plan inappropriate...”. This use of CASEY would be similar
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to ROUNDSMAN [40], but would have the advantage of being able to examine
differences between patients in the context of the Heart Failure model. This

application of CASEY would be especially useful in physician training.
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5.10 Conclusions

CASEY integrates associational reasoning, model-based reasoning, and learn-
ing techniques in a program which is efficient, can learn from its experiences,
and solves commonly-seen problems quickly, while maintaining the ability to
reason using a detailed knowledge of the domain when necessary. Further-
more, the methods used by the system are domain-independent and should be
generally applicable in other domains with models of a similar form.

CASEY starts out with a model and an empty memory; it develops all its
associational knowledge of the domain through experience. New associational
knowledge can be derived from remembering past cases and by generalizing
from many similar past examples. CASEY uses both similarity-based gen-
eralization and explanation-based generalization. Explanation-based general-
ization takes advantage of the causal information in the Heart Failure model.
Similarity-based generalization is also useful because the Heart Failure model
is incomplete and noisy.

CASEY overcomes some of the major weaknesses of case-based reasoning
through its use of a causal model of the domain. First, the model identifies the
important features for matching, and this is done individually for each case.
Second, CASEY can prove that a retrieved solution is applicable to the new
case by analyzing its differences from the new case in the context of the model.

CASEY overcomes the speed limitation of model-based reasoning by re-
membering a previous similar case and making small changes to its solution.
It overcomes the inability of associational reasoning to deal with unanticipated

problems by recognizing when it has not seen a similar problem before, and us-
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ing model-based reasoning in those circumstances. Because of its “group and
differentiate” representation of previous cases, CASEY knows exactly how the
new problem and the retrieved problem differ. It can then evaluate the sig-
nificance of these differences in the context of the model. Determining that
a difference is significant based on the model is equivalent to an associational
system determining that a piece of its knowledge does not apply. Other as-
sociational reasoning programs, however, do not have a way to identify that
the problem to which the associational knowledge currently is being applied
differs from the situation in which that knowledge was intended to apply.
The group-and-differentiate memory structure used by CASEY lets the
program know where its associational knowledge might not apply. The model
lets CASEY determine whether the flaw is indeed fatal, and if not, repair
strategies let CASEY adapt a solution to the new case. If CASEY indeed
cannot solve a problem itself, it can recognize this and call upen its model-

based component to solve the problem.
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Patient: ANDREA
Heart Failure program’s selution:
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mean : 107 Pg;{?&?:;‘“‘ ® m STENOSS (0. ll) murmur of as (0.03)
GE| ACIT -—-—-\uﬁxm mon oum.ow
0.06 "“"
au.ow u!c'non

LMITED CANDIAC OUTPUT

Mﬁ.’
syncofe/near. syncope
oa exeron a0
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Patient: BERTHA
Heart Failure program'’s solution:

.21
too'ggc STENOSIS single 82 (0.21)
10 %
esrf:m. FLOW DEFICIT -—-ﬁ)éel&%om&ow " HIgH LV PRESS
10 08
EXERTIONAL ANGINA SLOW EJECTION LV HYPERTROPHY ——— = ekg: Ivh (0.27)
dl ly (.06
gl:ltnot('aafq )anglnal chest &'5‘.'832')'“ elow rise Iv cardiomegaly (| )
&?;59 CARDIAC
Wu on exertion
CASEY'’s result: identical.
Unexplained features: none.
Tranferred from patient: Adam
A ———=a
D O calgh 0.07)

JO.Q

single 82 (0.21) AORTIC STENOSIS
(0.02)
‘Hjm
GENERAL FLOW DEFICIT XED_HIGH OUTFLOW €~ HIGH LV PRESS
pyd RESTOTANCE HiRoNIC

10 0.9 .
EXERTIONAL ANGINA SLOW EJECTION LV HYPERTROPHY — v caedio ‘“‘3‘*“]
hjstory - of ivh
prrarapsn (‘;lsalr;al susts ulse kg: dv-otrein-{Ev68)
&‘)"832’)‘“ siow rise &W;E? CARDIAC —.?3.5%“. on exertion

Pl
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Patient: CAL
Heart Failure program’s solution:

ADRTIC VALVE DSEASE ——= aortic vaive cakification mesa arterial pressurs : 183
(o.u) (0.07) (0.1)
singie 52 (0.29) mrm (0.82) murmur of as (0.03)
ozmw. Low omcwx% D P.Oﬂ OUTFLOW HIGH LY PREBS CHRAONIC
M&OT 09
MAI.! ANOINA m.ow UEOTION LV HYPEATROPHY ————————== v cardiomegaly (0.08)
:mnu- anginal chast pain sustained apex impulsa ekg: lv strain (0.03)

UMITED CARDIAC OUTRUT
MITRAL VALYE DIIEASE
(0.85)

syncope/near s;mcopo on

axartion (0.00
witral caicification (0.016)

CASEY’s result: satisfactory.

Unexplained features: none.

Tranferred from patient: Natalie

Note: Included one extra state, CARDIAC DILATATION.

single §2

CARDIAC DRATATION

AORTIC VALVE DISEASE ——= aortic valve calcification
(8.08) (0.07)

0.8
AORTIC STENONS (0.02) tv cardiomegaly (0.08) x
10 '
0.5 0.9
GENERAL FLOW DERCIT FIXED HIGH OUTFLOW HIGH LV PRESS LV HYPERTROPHY
0.08 REBISTANCE
.0 0.28
UNSTABLE ANOINA 8LOW EJECTION LOW LV 8YSTOLIC a
AN okg: tv strain (0.03)
J10
unstable anginal chest pain puise-hep-slow-rise~0000) LOW LV 8YSTOUC MITRAL V. DISEASE
(0.008) ush‘;«‘qj apex FUNCTION (0.85) ave
UMITED CARDIAC OUTPUT mitral cakcification (0.0 18)

SY0PRea-ar-anertion{irb)
yncope /neos - Syncope
on-exertis n
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Patient: CHIP
Heart Failure program’s solution:

DEHYDRATION (0.01) ——— A hemey (0.86)

e
l \

HIGH METASOUC STATE
0.16

TACHYPNEA

m 32 LOW BLOOD PAEBS orthestatic cha
> 20 mmHg (0.08
jm
ol'!‘oﬂ SYMPATHETIC maan artarlal prassure ; 63
T: 1020 STIMULATION (0.08)
dlaphoresis fatigue (0.28) \otq: sinus tachycardia
h 120

CASEY’s result: wrong.
Tranferred from patient: Egbert
Note: Attributed patient’s symptoms to pneumonia.

oD M (0.2)

0.8
LOW LV 8YSTOUC
PUNCTYN

o
LOW LV EMPTYING o8

1.0

M OW BLOOD PRESS $8w canomc outrut
. ’ jo.e

mean arterfal t

Pesn arcerial prassore 6.‘; EL(!B

:13) HIGH BYMPATHETIC
STRAULATION

e
)

okg: sinus tachycardia faticue (0.26)

T@)
>



Patient: CODY
Heart Failure program’s solution:

are oid ol

oD M0 (8.2) known dlage
old infarct (0.008)

NITROGLYCERS (8. 1)

on nitrogiycerin

maan arteriel presewre : 107
(8.1)

CASEY’s result: satisfactory.

FRCEL) CORONARY
C3STAUCTION (0.2)
0o

REGIONAL FLOW DEMCIT ————= known dlagnoses are
coronary heart disease

0.2
UNSTADLE ANGINA ——= unstabie anginal chast pain
(0.008) pe
within hours anginal chest
pain (39 L .

ANXETY (0.06)
(sﬁ)ﬂc ajection murmur

appaars anxlous (0.009) PROPRAMDLOL (0.2)

on propranciol

™ 20 (8.1)

Unexplained features: systolic ejection murmur, mean arterial pressure: 107.

Tranferred from patient: Karl

!ﬁloanl.l. (8.2) on propranoiot g:n WA:‘.YJ,
o8
3 diag are AEGIONAL FLOW DEACIT 2o LSTABLE AMTENA
coronary heart disease 09
P‘ wn n(:&ggg;o anginal chast pain
ENTRCAR ANXIETY - W
SETeeT (o000 - O NITRDEANCERIN
33‘)* ejaction murmur Qxlm‘m mean arterial pressure : 107 on nitrogycedn
“peen > D e
| e it
W
Kown-diagnoses
Cre ou#
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Patient: DAVID
Heart Failure program’s solution:

l(u.u'l’u arterial prosssre @ 107 AORTIC STENOSS (0.02) murmur of as (0.03)
. 1.0
0.8
GENERAL FLOW DEFICIT <+————FIXED HIGH OUTFLOW HIGH LV PREBS CHAOMIC
AESIBTANCE
0.08 09
J10
UNSTAILE ANOINA BLOW EJECTION LV HYPEATROPHY
unstable anginai chest pain tv strain (0.03)
(0.008) i
UMITED CARDIAC OUTPUT

dyspnea on exertion (0.8)

CASEY’s result: identical.
Unexplained features: none.
Tranferred from patient: Cal

M —_—2 fication mean arterial proseure 1 400
(0.1) '°7

‘0.0

W AORTIC STENOMS (0.02) murrur of as (0.03)
\. 1 1.0
0.8
GENERAL FLOW DERICIT FIXED HIGH OUTRLOW HIGH LV PRESS CHRONIC
0.08 RESISTANCE
X 0.9

|10
UMESTABLE ANOINA SLOW EJECTION LV HYPERTROPHY ———————atn |y .08)
unstable anginal chest paln sust : lv straln (0.03
{0008 gin pal ekg (0.03)

SUMITED CARDIAC OUTRUT

Mﬂ dyspnea. on-exertion

132



Patient: DORIAN
Heart Failure program’s solution:

orthopnea (0.09) AY CONGESTION

FIXED CORONARY
GESTRUCTION (0.2)
08
GIONAL FLOW DERCIT
02

STABLE ANGENA unstable anginal chast pain
1 02 ~ (0.00¢) P
MYOCARDIAL ISCHEMIA
NT 0.008
1.0

basiar rales (0.08) {.arz ) vascular redistribution

within hours anginal chast

In!
:0‘5) x1Wu fiitrate gty rid

dyspnea on exertion (0.8) (n nn) anginal cuast pain

known diagnoses are copd OW LV COMPUANCE anterior Ischemia (0.009)

he 110 inferior Ischemia (0.01)

3 (0.081) systoic ajaction mwurmur
l 1.0 : (0.8)
HIGH LY PREBS CHAONIC auscultation ravealed s4
(0.16)

LOW LvVEDV
10

os
WGH BYMPATHETIC %< W BLOOD PRESS —<~mean arterial pressure : 63
STIMULATION (0.05)

okg: sinus tachycerdia orthostatic chcnrc pulse Is weak (0.13)

> 20 mmHg (0.08

CASEY’s result: satisfactory.
Unexplaineq features: systolic ejection murmur, $4.
Tranferred from patient: Sam
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i'o 0.0
REGIONAL FLOW DEFICIT
vnstable nol
02 chm A
UNSTANE ANGINA “——————= within hours anginal chast
02 pain (0.029)
04
dlaphoresis - YOCARDIAL ISCHEMIA ~———a= Known - diagnoses
kg 5105 tacuankie STIMULATION CURRENT w0 ate. Co ";3

LOW CARDIAC OUTPUT €l ! LOW LV COMPLIANCE ml@c 1
]“ b / o8 COPD-0R-CHRONIC
‘ i BRONCIHTIS

l

d o on-exerdion

PULMONARY CONGESTION

SYOCLRRDIAL orthopnea (0.
INFRRCTION ~ Dasilar voles s 059
x(: polmonary
evelving infarct (nh ltrale
eXY :Vasculac
fedstnbution
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Patient: EDITH
Heart Failure program’s solution:

mean arterial presewre : 188 AORTIC STENONS (0.02)
(0.1) 1.0
O.& 0.9 0.258
GENEHAL ALOW DERCIT €D HIGIH OUTFLOW ———== HIGH LV PREES CHRONIC ———=LOW LV 8YSTOUC
RESIOTANOC FgNCTlON CHRONIC
0.06 X J 09 0.
1.0 l 1.0
i t pain *———UNSTABLE ANOINA SLOW EJECTION LV HYPEATROPHY LOW LV 8YSTOUC
?8““;. anginal chast pi EAVRY A
within hours anginal chest puise has slow rise (0.022) okg: Ivh (0.27)
pain (0.029)
UMITED CARDIAC OUTPUT dyspnea on axertlon (0.5) CARDIAC DILATATION
synccpa/near syncope on neralized cardiomegaly
oxmol?o: (0.007) ?5.07)

CASEY’s result: identical.
Unexplained features: none.
Tranferred from patient: Jethro

M‘ M CARDIAC DHATATION
l
. Mkmm""* g </ S

en\cgls.)
ween arterial preseure : 109 GENERAL FLOW DEFICIT nxm mn ou'rn.ow 29 HIGH LV PRESS oo
e < CHA LV HYPERTROPHY
026
vnstable l
vostoble an gi M\ € DERTINAL ANOINA su.ow ucﬂou Low Lv svatouc ~° akg: .J!h.«m,
FUNCTION CHRONIC
Crest pain j ‘JI 10
within hours anginal chast le has dow '
Mg Pe R T Eavpamer®
UMITED CARDIAC OUTPUT
dyspnea on exertion (0.5) - N.ofe/ l\?}‘[-
Hon
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Patient: EGBERT

Heart Failure program’s solution:

FURGIEMIDE (0.3)

on furosamide

appears ashen (0.04) —7LOT BLOOD PRESS
m)mcdll prassure : 68 puise Is wask (0.13

CASEY’s result: gives up.

oD M (0.2)
05

LOW LV 8YSTOUC
FUNCTION

Jos
LOW LV EMPTYING
1.0

0.5
LOW CARDIAC CUTFUT
’ lo.a
) HIGH BYMPATHETIC
STIMULATION

ekg: sinus tachycardia

0.8

diaphoresis

:&5 :1g|;lmnlry inflitrate

(e.1)

high wbe (0.018)

HIGH MYOCARDIAL
CONSUMPTION

dyspnea at rast
orthopnaa (0.09)
hypoxemia

fatigua (0.28)

cough (0.08)

localized rales (0.014)
T: 1010

he: 110

Note: CASEY is reminded of several cases with pneumonia, nonpulmonary
infection, or old-mi, but it cannot account for all of this patient’s findings

with any precedent.
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Patient: FARLEY
Heart Failure program’s solution:

VENTRICULAR SEPTAL CONDESTIVE .
di
DEFECT (6.001) BATINYGAI’W (98.9) congutlvn'urdlo’m?op.thy
1.0
systofic ejaction murmur 29
(g.‘) LO;J Ly BY&T"ﬂOg&c AﬂglaA)c OHATATION ~—————= diffure apax impulse (0.04)
1.0
FURDSEMIDE (0.3) FIXED COROHARY LOW LV 8Y;
R‘ \0.2) W 8YSTOUC m’ahu cardiomagaly NITROCLYCERIN (0.1)
oe Jos
on furosemide REGIONAL FLOW DERCIT ng LV EMPTYING on nitroglycerin
0.1 1.0

acute infarct (0.0004) *——i
ret ( ) HIYOCARDIAL INFARCTION gw 8LOOD PRESS ——oz;ag)unuhl pressure : 63

HIGH SYMPATHETIC
WMULATION

o puise is weak (0.13)

0.9
J0.0S
LOW LY COMPUIAN: VENTAICULAR ECTOPY diaphoresis
os (0.05)
0.7
PULMONARY CONGESTION HIGH LA PRESS rare pvcs (0.09) racent history of
09 paipitations (0.05)
basiiar rales (0.05) HIGH LVEDP ALIS (0.2)
(ctl’l'acst;lutlon revealed lv s3 on digitalls

orthopnea (0.u9)

CASEY’s result: satisfactory.
Unexplained features: systolic ejection murmur, lv-s3, diffuse apex impulse,

generalized cardiomegaly.
Tranferred from patient: Mac
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MITROOL YCERM (0.1) FED CORONARY known dlagnoses are
PBW {9.2) congestive cerdiomyopaghy
08
on nitrogiycerin REGIONAL RLOW DERCIT ———= WRIwrdagatgertts | oRA TRy woesa T &
0.1
oute infarct A
Nevory-ut-enginakehaye-pein =—7MYOCARDIAL INFARCTION  », LI OXT Y CONGES
(0.04) 09 D e CANDIOMYOPATHY (8.1)
ho-3 \ 1o
M ISCHEMIC LV DYSFUNGTION dw, LV 8YSTOLIC 18 Lv svsTouc
09 ‘ 0 FUNCTION CHRONIC
LY ]
LOW LV COMPLIANCE oW LV EMPR(NG T
0.8 l 10
0.8 o DlG\TAL\S
HIGH LA PRESS Vi CARDIAC OUTPUTN SO,
07 g o8 0.3
baskar rates (0.06) <——————PULMONAAY GONGESTION e avwnnmc ‘ VENTRICULAR ECTOPY
/ l BTIMULA (0. 05) \ rare wcs
M“\ ' L XPY polpi-cadiperitiito e \ recent history of
. m palpitations (0.08)
J—— P o)) 08w sLooo mses
3 l \, vise \5
furesemige M maan arterlal prassure :ﬁ
” of digitalis (0.08) 3

digphonsio ¢
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Patient: FRANCIS
Heart Failure program’s solution:

on exertien

FOED m::.z’ dysgaze (8.85)

0.8
REGIONAL FLOW DERICIT

0.2

maan artorial pressurs : 108

mI'n\n.: ANGINA (8.1)
unstabie
iy anginal chast pain

(CCASEY’s result: identical.
Tranferred from patient: Sarah.

dyspreo. on eyerhion

ORSTIMCTION (8.2
Jos @ Mean -arterial- Pressure - 106
PEGIONAL FLOW DERCIT 2o UNSTASLE ANDINA
09
ANGINA a(msub;o anginal chast pain

b o i
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Patient: FRANK
Heart Failure program’s solution:

ANXETY (0.05) ADATIC STENDSES (0.02)
10
appaars anxlous (0.009) murmur of as (0.09 AIXED HGH OUTFLOW ——n GENERAL FLOW DEACIT
HEMTANCE
08 ; 10 0.9
recent histsry of 3 32 (0.21 8LOW EJECTION EXERTIONAL ANOINA
pajpitations (0.05) Ingle 32 (021)
dyspnea on exertion (0.5) =-—~——LMITED CARD:AT OUTPUT sustained apex impulse %sll_&r)y of anginal chast pain
fail 0.26 3yncope/near syncope on \ se has siow rise (0.022
res 2€ (0.9) Igua ( ) "mlzn (01)07{0 pe pul se ( )

CASEY'’s result: identical.
Unexplained features: recent history of palpitations.
Tranferred from patient: Jethro

MUrMUr of-as J“

Ohﬁ 0.9
IXED HIGH QUTFLOW

GENERAL FLOW DERCIT
RESIBTANCE
09
10
EXERVIONAL ANDRLL. ™ 8LOW EJEGTION wﬁ)

-of ) 10
ST sttt o\ Pougen® e

ANXIETY w LMTED CARDIAC OUTPUT
\ w l > fatigue
agpenss anxiovs dyspnea on exartlon (0.5)

e
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Patient: GERTRUDE

Heart Failure program’s solution:

0.
dlastolic ratio : 0 (0.1) =————AORTIC AEDURCITATION ‘—A&m VALVE IRIEASE ———= aortic vaiva calcification

(8.01) (0.08) (0.07)
1.0 0e
m VALVE DISEASE LARGE STROKE VOLUME AORTIC STENOSMS (0.02) sg!toﬂc ejaction murmur
1.0 ( ")
mitral cakification (0.018) GENERAL RLOW DERCIT ‘——-oﬁsxlb HIGH OUTRLOW 4 HIGH LY PRESS CHAONIC
0.05 RESISTANCE
J 10
UNISTABLE ANOINA SLOW EJECTION LV HYPEATROPHY
?.-'o)n artarie) presswre : 107 l
3 unstable | chast pain
Py anginal chast pal kgt ivh (0.27)

CASEY’s result: satisfactory.
Unexplained features: diastolic ratio: 0, heart rate: 88.
Tranferred from patient: Cal

AGATIC VALVE DSEASE —= aortic vaive cakification mean arterial
(0.08) (0.07) (0.1)
08 ausio\ic Hen
M AORTIC STENONS (8.92)
10

0.
GENERAL FLOW DEFICIT FIXED HIGH OUTFLOW G~ HIGH LV PRESS CHAONIC

RESISTANCE .

0.05 09
1 10
UNSTASLE ANGINA 8LOW EJECTION LV HYPERTROPHY ——————= L CXNNmeyet IO}
l vh

unstable anginal chest pain TS eSS akg: nssasin={0.03)

(0.008)

::?% —— w

awsiens,, —all

mitral caicification (0.0 16)

141
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Patient: HAROLD
Heart Failure program’s solution:

FLED COMONARY
Lossm (0.2)
~Jo.e

0.2

unstable anginal chast pain =—TUNSTABLE ANOINA
(0.008)

0.9

LOW LV COMPLIANCE
o8

dyspnea at rast HIGH LA PRESS

0.7

orthopnaa (0.09) PULMONARY CONGESTION

basitar rales (0.05) fg; ) vascular redistridution

VINTOCULAR SEPTAL
OEFECT (9.001)

sgstok ejection murmur
(Q.6)

HIOH BLOGD PESE CHROMIC  —= known
(0.28) hymm "
10

HIGH LV PRESS CHROMIC

CASEY’s result: gave up.

REGIONAL FLOW DEFICIT ﬂ—.

known dlagnoses are oid ml

g within hours anginal chast
0.029)

</ paln(

D M (9.2)
0.6

<\

1 ol.gw CARDIAC OUTRUT

» \ Iu
okg: sinus nu. ueu SYMPATHETIC
“ STIMULATION

ANXETY (0.88)
appaars anxious (0.009) rare pves (0.08)

recent history of

known dla
palpitations (0.08) L] groses are acute

FLUD THERAPY (0.06)

on fuid therapy

MITROGLYORRM (8.1)

on nitroglycerin

Note: CASEY recalled several precedents each of which could account for some
of Harold’s findings, but no one precedent covered all the diagnoses.
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Patient: HEYWOOD
Heart Failure program’s solution:

FIXED CORONARY
b:ssnmmn (0.2}
~los8

REGIONAL FLOW DEFiCIT

0.1

(0.16) 09 pain (0.029

lon r lad s4 MYOCARTIAL INFARCTION iwltmn houn) anginal chest
N

ISCHEMIC LV DYSFUNCTIO!
09

evoiving infarct (0.0008)

LOW LV COMPUANCE
08

MNIGH LA PRESS
0.7

PULMONARY CONGESTION

basilar ralas (0.05)

CASEY’s result: identical.
Unexplained features: none.
Tranferred from patient: Saladin

FIXED CORONARY
| OBSTRUCTION (0.2)
o8
auseunnlon ravealed s4 REGIONAL FLOW DEACIT a
0.1 [ 58
W gngtécl chest HAYOCARDIAL INFARCTION
pain (0.02
0.9
SEPEm—estmLID.04) ISCHEMIC LV DYSFUNCTION
0.9
ST erD.0Q04) LOW LV COMPUANCE
oloving infacct 0s
HIGH LA PRESS
10.7
PULMONARY CONGESTION
(0.1)
i bosilac roles

s 8 02)
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Patient: HORATIO

Heart Failure program’s solution:

m REGURGETATION ~ ——— diastolic ratlo : 0 (0.1)

J 1.0
LARGE STROKE VOLUME

diffuse apax impulse (0.04)

mean arterial preseurs : 103
(0.1)

CASEY’s result: satisfactory.

FIXED CORONARY MITRAL VALVE DSEASE
OSSTRUCTION (0.2) (0.05)
08
REGIONAL FLOW DERCIT mitral calcification (0.016)
0.9
EXERTIONAL ANGINA dyspnes on exsrtion (8.5)
within hours anginal chest
pain (0.029)

Unexplained features: anginal chest pain within hours.

Tranferred from patient: Gertrude

dlastokc ratio : 0 (0.1) =————ACAITIC AEIUMGITATION  ~———AGRTIC VALVE DRSEASE ——-5
(0.01) (0.08) M
— |10 08
m(.‘“) DISEASE umz STROKE VOLUME 02) M
a«mm impulse

witral caicification (0.018) 0—— w
0.9
duspnea on
aeghm !
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Patient: INDIRA
Heart Failure program’s solution:

ANEMIA (0.05) systolic ejection murmur
0.5 (0.6)

LOW ARTERIAL POR e 0.3) GENERAL RLOW DEACIT AORTIC STENGSIS (0.02)
[+ X:] 0.05 1.0
HIGH 8YMPATHETIC UNSTABLE ANOINA fls)(ED HIGH OUTFLOW
STIMULATION oﬂgSIBTANCE
Jos ®l10
HIGH SYSTEMIC YASCULAR unstable anginal chest pain BLOW EJECTION
RESISTANCE (0.006)
l 05
HIGH BLOOD PRESS HIGH LY PRESS CHRON
0.9
mean arteria! pressure : 112 LY HYPERTROPHY ekg: Iv strain (0.03)

CASEY’s result: satisfactory.
Unexplained features: high blood pressure.
Tranferred from patient: Oprah

high blood pressure
(. r mean arterial presewrs : m soft 2 \m STENOSRS (0.02) (sga;)ollc sjection murmur
1 1.0 :
UMSTABLE ANGINA = oa%hnm. FLOW DERCIT OHSXED HIGH OUTALOW HIGH LY PRESS CHRONIC
MESISTANCE
l Ji
umnbh anginal chest pain 8LOW EJECTION LV HYPERTAOPHY akg: vk (0.27)
j 1 V'stmin
n Iv cardlomagaly (0.08)
pu. UMITED CARDIAC OUTPUT

dyspnaa on exertlon (0.5)
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Patient: JETHRO
Heart Failure program’s solution:

ADRTIC VALVE DISEASE ———= Aog;c) valve calcification

(0.08) (o.
[+ X.]
ssstouc ejaction murmur ADRTIC STENOSES (0.02) Iv cardiomegaly (0.06)
©e 1 10
0.5 0.9
GENERAL MLOW DERCIT FIXED HIGH OUTFLOW .= HIGH LV PRESS CHAONI
RESISTANCE
09 0.25
|10
EXERTIONAL ANGINA 8LOW EJECTION LOW LV 8YSTOLIC

FUNCTION CHROMNIC
10

LOW LV 8YSTOLIC

within hours anginal chest
gina FUNGTION

pain (0.026)

UMITED CARDIAC OUTPUT

MITRAL VALVE DISEASE
(0.06)

dyspnea on exartion (0.5)
mitrai caicification (0.018)

arverial :
m presvsre : 108

CASEY’s result: identical.
Unexplained features: cxr: dilated aortic root.
Tranferred from patient: Natalie

e

AORTIC VALVE DISEASE —= gortic vaive caicification
(0.03) (0.07)

0.8
systolic ejaction mu AORTIC STENOSS (0.02) v cardiomegaly (0.08)
(e 10
0.5 0.9
GENERAL FLOW DETICIT AXED HIGH OUTFALOW HIGH LV PRESS CHRONI
AESIBTANCE
0.05 ‘ 1.0 0.28
ANSVAREE m - 8LOW EJECTION LOW LV 8YSTOUC
l FUNCTION CHRONIC
Withia-hours 0
~assabis anginal chest pein Mo.oaa) LOW LV 8YSTOUC
(0.006) FUNCTION

UMITED CARDIAC QUTPUT

'-TW'N‘L

L s D))

dyspnea on exertlon (0.5)

m arterial presewre :.g

146

CARDIAC DItATATION

lateratly displaced apex
impuise (0.019)

LY HYPERTROPHY

akg: Iv straln (0.03)

cxr : diated asrtic rest
(0.021%)

CARDIAC DILATATION

laterally displaced a|
hpulu);o.o%) pox

LV HYPEATROPHY

ekg: tv strain (0.03)
MITRAL VALVE DESEASE
(0.05)

mitral caiclfication (0.016)



Patient: KALMAN
Heart Failure program’s solution:

inean artwlal pressure : 101 AORTIC STENOSS (0.02)
(0.1) 1.0
0.5
singie 32 (0.21) FIXED HIGH OUTFLOW —— GENERAL FLOW DEACIT
RESISTANCE
08 0.08
J10

dyspnea on axertion (0.5) <+——LIMITED CARDIAC OUTPUT 8LOW EJECTION UNSTABLE ANGINA

syncope/naar syntope on ulse has slow risa (0.022 unstable anginal chast pain
cxlnign (0.007) P ) (0.008)

CASEY’s result: identical.
Unexplained features: none.
Tranferred from patient: David

arverial 4 ADRTIC STENOSS (0.02 0.09
e prosmurs ; 408 o (0.02) ST 000

0.5
GENERAL FLOW DEFICIT =————FIKED HIGH OUTALOW
RESISTANCE

0.c8 l "0 0.8
UNSTABLE ANDINA 8LOW EJECTION L
B unstable anginul chest pain ha‘ Mom)
(0.008) ow nse

LUMITED CARDIAC OUTPUT

SW/ near dyspnea on exertion (0.5)

m‘:ﬁonon
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Patient: KARL
Heart Failure program’s solution:

FOCED CORONARY
OS3TRUCTION {0.2)
o8

0.2
known dlagnoses are =—————REGIONAL FLOW DEFICIT ————= UNSTABLE ANOINA

coronary heart diseass 0.9

EXERTIONAL ANOEA
VENTRCULAR SEPTAL
DErECT (8.031) history of anginal chest pain
(0.04)
systolic ejection murmur
(o8 ::I‘l)l arterial prossure : 187

CASEY’s result: identical.
Unexplained features: none.
Tranferred from patient: Cody

FOUED CORONARY
OBSTRUCTION (0.2)
08

exerhiona) ¢ PEGIONAL FLOW DERICT ——— known dlagnosas are

angina 02

history of

“&?‘?‘ ‘M“\ chest

(0.009)

LD M (0.2) ——— WY diegnoseraruront-wl
RonSpAIAC T changes

148

USESTABLE ANCEINA ——————= unstable anginal chast gain
(0.008) o

known diagnoses are =—————480H BLOOD PRESS CHAONIC
hypertension (0.25)

1.0
HIGH LV PRESS CHRAONIC

unsuglu anginal chast pain

unstan! OLD Ka (0.2)

('3?63" specific t changes

PROPRANOLOL (8.2) —————= on propranoiol
0.2

LOW HEART RATE

hr: 80

VENTRICULAR SEPTAL
DEFECT (0.001)
ccronary heart disease zgset)oue ¢haction

PROPRANOLOL (0.2)

urnmq) propeancial
I
oubet

T ryveed
W
)

ey

‘\f:ko



Patient: KYLE
Heart Failure program’s solution:

3 INSUFFICEENCY ————= known dlagnoses are chronic rare pves (0.08)
CHRONIC (0.1) renal insufficlancy

l 0.6
WATER RETENTION
0.5

s anxious (0.009) ANXIETY (0.05)
0.9

ekg: sinus tachycardia HIGH SYMPATHETIC HIGH BLOOD VOLUME
?STIJMULATION 08

HIGH VENOUS VOLUME
09

hr: 102

0.7

09 02
HIGH LA PRESS PULMONARY CONGEBTION idyspnu ac rest

HIGH RA PRAESS ——————= jvp: 13 cmH20 /r.lu 1/2 way up

X

CONOESTIVE
CARINOMYOPATHY (©.1)
10

LOW LY 8YSTOUC
FUNCTION CHRONIC

09

HIGH LVEDP :srz ) vascular redistribution orthopnea (0.08)

l 10 0.9

LOW LV 8YSTOUC auscuitation ravealed iv s3
FUNCTION (0.05)

|os
LOW LV EMPTYING
10

diffuse apex Impuise (0.04)

LOW CARDIAC OUTROT NITROOLYCEMN (0.1)

fatigue (0.28) on nitroglycerin

CASEY’s result: wrong.

Tranferred from patient: Peter

Note: CASEY got most of this causal explanation right, but incorrectly at-
tributed the patient’s renal problems to heart failure due to an old myocardial
infarction.
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arterial prossure : 107 RENAL- INSUFRICIENY CW—!\ENAL PERFUSION

mean OLD 5% (0.2) — CONDESTIVE
*-n CHome 08 06 chmvopl " ATHY (0.1)
ANKIET knowa diagnoses HIGH RENIN ANGIOTENSIN LOW LV 8YSTOUC 18w Lv 8YSTOUC
@ A hronic kenad 05 FUNCTION FUNCTION CHRONIC
w onxiovs it Jo'a (W Bg)
WATER RETENTION LOW LV EMPTYING CARDIAC DILATATION
05 1o
NITROSINCERIN 2 genenalized
roalucesi BLOOD VOLUME JLOW CARDIAC OUTPUT " .
o™ nitroglycenn : o8 Camiomegaly
Mu *————HIGH VENOUS VOLUME HIGH BYMPATHETIC fatigue (0.26
" ame 09 STIMULATION —_—t e'k;";‘(n v s) ndia
|3 J 0.8 1 '
orthopnea (0.09) Jvp: MFCMH20 ————————14GH NA PRESS HiGH HEART RATE —*hr:
\ 07 1.0
0.7
aymnr :s-z’-m (0.5) PULMONARY couoeanouMOL: PRESS glggs n;g%mow. OXYGEN ;
(vpy ‘
CER-eTE. baviies rales (0.05) HIGH LVEDP TACHYPNEA Ise
Y2 way vp
M.O 13) auscuitation revealed iv s3 ma826 fare pvcs
ax" : Vas (0.05)
redistnbuhon
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Patient: LARRY
Heart Failure program’s solution:

dyspnea on axertion (0.5) <+———UMITED CARDIAC OUTPUT ml"l): VALVE DISEASE ——* (.gg_l’c) vaive calcification
08
METRAL VALVE DISEASE syncope/near syncope on ACRTIC STENOSS (0.02)
(0.05) exartlon (0.007) 10
.8 0.9
mitral calcification (0.016) GENERAL RLOW DERCIT XED MIGH OUTFLOW ——— HIGH LV PRESS CHRONIC
RESISTANCE s
0.08 0.
}10
unstable anginal chast pain +——UNSTABLE ANONA SLOW EJECTION LV HYPERTROPHY
(0.006)
within hours anginal chast puise has slow rise (0.022) akg: ivh {0.27)
pain (0.029)

CASEY’s result: identical.
Unexplained features: none.
Tranferred from patient: Cal

ACRTIC VALVE DISEASE —————= aortic val
Ao (.0.07) valve caiification W 1 183

08

M 1) AORTIC STENOMS (0.02) murmur of as (0.03)
\‘ l 10
0.5
GENERAL FLOW DERICIT FIXED HIGH OUTFLOW
REBISTA

HIGH LV PRESS CHRONIC

0.08 l 0 NCE 0.9
UNSTASLE ANGINA SLOW EJECTION LV HYPEATROPHY ————— Mo.oe)
lv

unstable anginal chest pain W okg: »«hb.(o.oa

(0.006) prvsze has stow )

S within hovrs \ UMITED CARDIAC OUTPUT

%mﬂ‘ chesy METRAL VALVE DIEASY
n (0.05)
syncope/near syncope on d‘ﬂ‘ a .
mitral caicification (0.018) exertion (0.007) on exérhien
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Patient: LEN
Heart Failure program’s solution:

FIXED COMONARY ANXETY (0.06)
OBSTRUCTION (0.2)
o8
REGIONAL FLOW DEAICIT appears anxious (0.009)
0.1
axperiancing anginal chest INFARCTION OLD M (6.2) known dlag are old mi
pain (0.028) l 04 u i‘ lo.z
0.e
acute Infarct (0.0004) MYOCARDIAL ISCHEMIA VENTRICULAR ECTOPY ————a sym:ogclnnr syncope at
CURRENT (0.05) rast (0.006)

10

LOW LV COMPUANCE recent history of

anterfor ischemla (0.009)
palpitations (0.05)

ATIAL SEDTAL OEFECT
(e.801)

systolic ejection murmur
(g-")

CASEY’s result: satisfactory.
Unexplained features: syncope/near syncope at rest, systolic ejection murmur,

recent history of palpitations.
Tranferred from patient: Umberto

[ ) diag arc old mi

s (0.09)

th ; disease <——FIXED CORONARY -—
cath JBWiagsel disease oy mmlc m]!w (0.05)

os |
m:sg&; -——ncoc:f:AL FLOW DERCIT TUef's appears anxlous (0.009)

MM(M (0.029) -—(—/—wrxml wearcon 22 ;:mm angina! chest
infaeck MYOCARDIAL ISCHEMIA anterlor ischenia (0.009)
CUMRENT

J 1.0
LOW LV COMPUANCE
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Patient: MARY
Heart Failure program’s solution:

0.3 0.8
ERIAL PO2 HIGH BYMPATHETIC
LOW ART OGJIMUI.ATION

orthopnea (0.09)

diapheresis

dyspnea on exartion (0.5)

cough (0.08) HIGH HEART RA

chast revaaled decreasad HIGH MYOCARDIAL OX chast ravaaied whaezas dyspnea at rest
breath sounds (0.0 15) CONSUMPTION (0.08)

INFECTION ' T: 101.0 fatigue (0.26)
(0.1)

hr: 110

CASEY’s result: wrong.

Unexplained features: none.

Tranferred from patient: Egbert

Note: reminded of Egbert, another patient with pneumonia and nonpulmonary
infection.

LOW Ly 8YsTouc 28
one - 9 LOW LV EMPTVING HIGH LA PRESS d
M v o __? ; yspnea at rest
appears Pufen (0.04) M Press < GARDIAC OUTRUT orthopnea (0.09)
L8
| H 9
mg) prassure : 68 p)(mk (0.13) :1901 SYL:&}'KTIG MA

.0

Rieggichycardia TACHYPNEA

(0.3)
maa2

ddanhorss) 0.3

fatigue (0.28)

p YPREUMONIA (9.95) cough (0.08)
0.95
cxr?’ Infiitrate FEVER localized rales (0.014)
(m IO-G\
f 4
NOMPULMONARY HIGH HEART RATE T: 1010
(.‘f ) " \
(0.016) HIGH MYOC,
Spewg ARDIAL OXYQEN hr 110
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Patient: MAC
Heart Failure program’s solution:

NITROGLYCERIN (0.1) FOED CORDNARY known dlagnosas are
Dog:mmm (0.2) congestive cardiomyopghy
' 10.3
on nitroglycaerin REGIONAL ALOW DERCIT & known dlag are known diagnoses are oid mi
0.1 coronary haart dizease

oD M (0.2)

history of anginal chast pain *—J#SYOCARDIAL INFARCTION
(0.04) J l 09

z\ovm diagnoses ara recent {SCHEMIC LY DYSFUNCTION

09 FUNCTION CHRONIC

LOW LY COMPUANCE oid infarct (0.008)

08
HIGH LA PAESS b0 T haanr: (0.01)
07 09

baslar rales (0.05) @——————PULMONARY CONGEBTION HIGH BYMPATHETIC

8TIMULATION
l 08
HIGH HEART RATE
1.0

VENTRICULAR ECTOPY
(0.085)

recent history of

cxr : vascular radist
(0.2) paipitations (0.06)

.9
fatigue (0.26) LOW BLOOD PRESS

CONSUMPTION

FUROSEMIE (0.3) cl: 2.8 (0.05) on dobutamine

mean arterial prassure ; 86

CASEY’s result: satisfactory.
Unexplained features: heart rate: 102.
Tranferred from patient: Farley
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1)
nawn dy
( omer A mW?m
FUROSEMIDE (0.3) CORDNARY
l (8.2)
on furosemide
an 7
Vecent M,
sto
':Ql& 3"!
pan
PULMONARY CONGESTION HIGH LA PRESS
08
baskar rales (0.05) HEweete,

Wrﬂuh‘ Ivs3

CONOESTIVE known dlag are
CARDIGMYOPATHY (0.1) congestive cardiomyopathy

1o

LOW LV BYSTOUG —-= ATION —————e- WP impuise (0.04)
FUNCTION CHRONIC

J10
LOW LV 8Y8TOUC sly NITROOL. YCZRN (0.1)
FUNCTION

]o.a
OW LV EMPTYING on nitrogiycerin

1.0 &h-s“

ng CARDIAC OUTRUT LOO0D PrEss —-—-———-m;rs-)nnml pressure ;: 00

recent hstory of
pnlplndonf?o.os)
DOBUTAMING

MW«W hr: 1oL

Tecany, hidtory

palpitabions

: red 5ot
oxr vasw)lu edisinbution
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Patient: MELANIE
Heart Failure program’s solution:

FOXED COMOMARY FURQZEMIOE (0.3)
OBSTRUCTION (0.2)
08
rales /2 way up laterally displaced apax AEGIONAL FLOW DERCIT * known dlage are on furosamide
lmpulse (0.019) 0.1 coronary heart disease

PYPULMONARY CONGESTION

dyspnea at rest MYOCARDIAL INFARCTION ——?g(t&r)y of anginal chast pain MSTHOOLYCERN (8.1)

0.2

orthopnea (0.09) ISCHEMIC AV DYBFUNCTION DIIITALIS (0.2) on nitroglycarin

1.0
cxr : vascular redistribution LOW AV 8YSTOUC on digitalls
(0.2) FUNCTION

lo.a

old Infarct (0.006) HIGH RA PRESS ——————————™mean rap : 10

0.7

0.6

known dlagnese FHIGH LA PRESS ——————— HIGH PA PRESS

0.§

TACHYPNEA moan pap : 52

diffuse apex impuise (0.04) murmur of as (0.03)

on debutamine mg)mnml prassure : 68 cl: 1.4 puise has slow rise (0.022)

CASEY’s result: wrong.
Note: CASEY gets much of this causal explanation correct, but is attempting

to transfer it from “Mac,” and so it mistakenly uses ISCHEMIC LV DYSFUNC-
TION instead of ISCHEMIC RV DYSFUNCTION.
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AORTIC STENDSIS ~— O3 OIFFUSE HPEX INPULLE
IMED HGH OVTPLOW o ooicmur ofas

ow rise
( L m"enmou -~ PU‘“ ha: sl 1
‘ ~ TS L M &— MITRAL -REGV LG ITWTION
NITROOL YCEMN (3. 1 FOED CORONARY N » Qurokic
o ORSTRUCTION (8.2) 0GeetIVE CardRmyephehy
od infarct
on pitroglycerin mgams‘ known diagnosas are old mi
:-‘I’s’;‘w)y of anginal chest pain INFARCTION ! uli:s(o.z) - J ATHY (8.4)
\ 1.0
wt Bt':joo?c LV DYSFUNCTION f\- _o LV 8vaTouC\g gr\:o:'vuouc
08
hapoxemia. °~2w:: EMP G oid infact (0.008)
ALTERIAL 8w canouc ouTPy ] - (0.81)
%91’ ' o8 . l
ous
innr rales (0.05) nnu avuum*rlc !cTOPV
way ve
orthopnea
06‘
%spnea
REN I.SVI BLOOD PAESS
FUROSEMIE (6.3)
‘ on debutaming m)muhl pressure : 66
on furosemide
(™

157



Patient: MARGARET
Heart Failure program’s solution:

single 32 (0.21) AORTIC STENOYS (0.92) zgl‘;)oﬂc ejection murmur l(lnl) arterial presewre : 104
10 : ' )
0.8 j 0.28
GENERAL FLOW DEFICIT FIXED HIGH OUTFLOW HIGH LV PRESS CHAONIC ——=-LOW LV 8YBTOULC
0.08 REBISTANO! ICTION CHRONIC
. 0. 0.9
1.0 1.0
unstable angina: chast pain =——~UNSTAILE AMGINA BLOW EJECTION LV HYPERTAOPHY LOW LV 8YSTOUC
(0.008) FUNCTION
ANKIETY (0.05 e a | chast sustained apex se Iv strain (0.03
ol (s.05) ’m ngina apex imput o*g: (0.09)
HIGH SYMPATHETIC UMITED CARCIAC OUTPUT CARDIAC DRATATION
BSTIMULATION
dlaphorasls dyspnez on exertlon (0.5)

appears anxious (0.009)

CASEY’s result: satisfactory.
Unexplained features: diaphoresis.
Tranferred from patient: Natalie

2irse

|os
a"x)odc ajection ADRTIC STENDSS (0.82)
10
« GENERAL FLOW DERCIT D HIGH CUTALOW 2.8
0.05 RESISTANCE
L 10
(-2 UBESTABLE ANGIHA 8LOW EJECTION
o
9“'" ;muh;- anginal chest pain W(DM)
IMAAsSe
AEETY (0.08)
appears anxlous (0.008)
diaphoresis
msen artorisl prosews | 998
(s.1) 104

158

T —— it

m)uzu cardiomegaly

CARDIAC DILATATION

ralized
mmw (0.08) W) apax
0.9

HIGH LY PRESS LV HYPEATROPHY

0.26
LOW LY 8YSTOLIC v X
FUNGTION ekg: tv straln (0.00)

1.0
LOW LV 8vY8TOUC
FUNGTION W

LMWITED CARDIAC OUTRUT -

SEATwweitvasy, (0.0 16)

dyspnea on exertion (0.6)



Patient: NATALIE
Heart Failure program’s solution:

ANXETY (0.06) soft a2

appears anxlous (0.008) zgsé)oll: sjection mui

GENERAL FLOW DERCIT
0.058

mean arterial preseurs : 103
(0.1)

UNSTASLE ANOINA

unstable anginal chest pain
(0.0086)

CASEY’s result: identical.
Unexplained features: none.

Tranferred from patient: Margaret

0.21)
razr
GENERAL FLOW DERACIT
0.05
unstable anginal chest pain “+—UNSTABLE ANGINA
(0.006)
ANXIETY (9.05) Wﬂﬁ:‘hm
0.9 ’

UMITED CAADIAC OUTAUT

Wﬂc
st

dyspnea on exartion (0.5)

appears anxious (0.009)

ADRTIC VALVE DISEASE ——— a0
(0.98) (0.

AORTIC STENGSS (0.02)

.5 0.
FIXED HIGH OUTFLOW
RESISTANCE

Jos

1.0

UMITED CARDIAC QUTPUY

rtic vaive calcification
07)
lv cardiomegaly (0.08)

—& HIGH LYV PRES8 CHRONI!

CARDIAC DILATATION

latarally displaced apex
impuise (0.018)

LV HYFERTROPHY

0.28
l 10
BLOW EJECTION LOW Lv 8YsTOUC / ekg: Iv straln (0.03)
FUNCTION CHRONIC
10
pulse has siow rise (2.022) LOW LV BYSTOLIC METRAL VALVE DISEASE
FUNCTION (0.n5)

mitial calclfication (0.018)

dyspnea on axerticn (0.6)

ADRTC VA\VE DISEASE ~»

{

AOBTIC STENOSIS (0.02)

] 10 :
0.8
FIXED HIGH OUTFLOW

HgﬁlSTANCE
0.
1.0
8LOW EJECTION

sy o

vise

MITRAL VALVE
Disense

¥
'gw&mkon

159

aprtic valve cakification

:&aet)ollc ejaction murmur prossure : LM

mean arterial
(0.1) (03

0.28
HIGH LY PRESS CHAONIC ———LOW LV BYBTOLIC

0.9 DFBNGTION CHRONIC
l 1.0
LY HYPERTROPHY LOW LV 8YBTOUC

FUNCTION

akg: lv strain (0.03)

CARDIAC DRATATION

kv
rnuhd cardlomegaly
0.07)

apex impuse

S



Patient: NATE
Heart Failure program’s solution:

LOW LVEDV CONSTRICTIVE ascltes (0.008
10 PERICARDITIS (0.0 * (0.009)
w0t 10
fatigue (0.26) @—————————LOW CARDIAC OUTPUT MYOCARDIAL CONSTRAINT hepatosplanomegaly (0.013)

0.8 %0
LOW RENAL PERFUSION FIXED AV ALLING {uguur pulse shows
08 10 nspiratory incraase

HIGH RENIN ANGIOTENSIN HIGH RA {7508 == jyp: 12 cMH20

0.5 0.7
WATER RETENTION HIGH LA PRESS dyspnea on exartlon (0.6)
0.5 l 0.7 ;
HIGH BLOOD YOLUME PULMONARY CONGESTION
OLD M (9.2) X} J
HIGH VENOUS VOLUME orthopnea (0.09)

moderate padal edema

CASEY’s result: gives up.

Unexplained features: jugular pulse, hepatosplenomegaly, ascites,

Tranferred from patient: Peter

Note: CASEY gets most of this causal explanation correct, but it mistakenly
attributes the primary cause to CONGESTIVE CARDIOMYOPATHY.

0.1
W : 107 LOW RENAL PERFUSION
o8

HiIGH RENIN ANGIOTENSIN
[+X]

CONGESTIVE
CARDIOMYOPATHY (0.1)
10

LOW LV 8YSTOLIC ‘—-—-—-ng LV 8YSTOUC
FUNCTION FUNCTION CHAOMC

IO.B

W
ng LV EMPTYING ”—-s Al\glAG DRATATION

Jlgw CARDIAC OUTPUT \ od apex
fatigue (0.26)

WATER RETENTION
08

HIGH BLOOD VOLUME
o8

modsrate pedal edema *————HIGH VENOUS VOLUME
09

orthopnesa (0.09) ‘\ Jvp: 12 SWHZ0 @——————————HIGH AA PRESS
07

0,
IONARY CONGESTION ‘)JGH LA PRESS MKVG[N

dyspnea on exertion (0.5)
S oe)
nocTREP IS TRapa (0.013)

auy eaied Iv 53 m28



Patient: NIGEL
Heart Failure program’s solution:

ANDEETY (0.05) known diagnoses are uppar <+——U/PR (I DISEASE (0.02) t /vomiting (0.029)
lo.s \ gl disease l 0.06

LIVER DISEASE
(0.03)

HIGH SYMPATHETIC appears anxious (0.008) ACUTE BLOOD LOSS (0.82) ——# known diagrosas are acite kn.wn dlagnoses are primary
STIMRRATION 0.5 biood loss liver disease
l“" (P~ 0.9)
HIGH HEART RATE TRANSFUSION (G.08) ————— LOW BLOOD VOLUME + orth tic ch (0.001)
> 20 mmHg (0.08)
1.0 1.0
HIGH MYOCARDIAL OXYREN on transfusion postural syncope/near systolic ejaction murmur, HIGH LY PRESS CHRONIC
CONSUMPTION syncopa (0.039) {0.8) /
.0
akg: sinus tachycardia FLUID THERAPY (0.05) mtgm PRESS
hr: 116 on fiuld tharapy known dlagnozes
hypertansion
fatigue (0.26) —ANEMIA (0.05)

known dlagnoses are anemia

CASEY’s result: gives up.

Unexplained features: meany symptoms unaccounted for.
Tranferred from patient: Chin

Note: Nigel is the only patient with this diagnosis in the memory.
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Patient: OPRAH
Heart Failure program’s solution:

MoaA arterial prossure : 108 soft a2 AORTIC STENOSSS (0.02) systolic ejection murmur
(0.1) l "0 (2.6)

0.06 0.5
UNSTABLE ANOINA =~ @———————QENERAL FLOW DEFICIT FIXED HIGH QUTFLOW HIGH LV PRESS CHRONIC

RESISTANCE
09 8 0.9
10 I

zsuotsebh anginal chast pain EXERTIONAL ANCINA 8LOW EJECTION LV HYPEATAOPHY ———————— ekg: Ivh (0.27)

?&s&r)y of anginal chest pain sustained apex impulse Iv cardiomegaly (0.06)

pulse has slow rise (0.022) UMITED CARDIAC OUTRUT

dyspnea on axertion (0.5)

CASEY’s result: satisfactory.

Unexplained features: unstable anginal chest pain.

Tranferred from patient: Adam

Note: CASEY included an additional state, high blood pressure.

M‘é 3 e S (0.07)

AOBTIC STENOSIS

0 20 \ 0N MUV
%m:u L GEIEHAL FLOW DEFICIT ﬁ)&E HIGH OUTFLOW Ei:_’in%}é PRESS
09 .
EXERTIONAL ANGINA SLOW EJECTION LV HYPERTROPHY == v Curduomegxhj
w, ] -
ad’n’r P‘“‘ histe 2‘ inal sustained apex impulse akg: +w=stramn (0.03)
ohast pain (0:099)

HUMI!;E? CARDIAC ————-zja/.g;nn on exertion

wl&z?ac slow rise
HIGH R 'B op
heart rate —> mean osterial pressure :\08 M'('o. 0
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Patient: PATRICK
Heart Failure program’s solution:

NITROGLYCERIN (0.1)
on nitroglycaerin

mean arterial precsure : 87
(9.085)

ADULY RESPIRATORY cl : 2.8 (0.05)
IXSTRESS SYNOROME

800

PULMANARY CONGESTION

orthopnea (0.09)
/l Jos
radistribution LOW ARTERIAL PO2

exr : vascular
©2 / l 09
fatigue (0.26) TACHYPNEA

m 17 (0.1)

dyspnea at rest c;rg:cudc m

basilar ralies (0.C5)

FIXED COROMARY
OB3TRUCTION (0.2)

o8
REGIONAL FLOW DEFICIT
0.1

0.2
avolving Infarct (0.0006) INFARCTION ———& |SCHEMIC RV DYSFUNCTION

0.8 1.0
known diagnoses are acute VENTRICULAR ECTOPY LOW RV S8YSTOLIC
mi (0.08) FUNCTION
10.8
fraquant pvcs (0.11) HIGK AA PRESS

Jvp: 16 cmH20

CASEY’s result: gives up.

Note: CASEY chooses precedents with the diagnoses FIXED CORONARY OB-
STRUCTION, MYOCARDIAL INFARCTION, and PULMONARY CONGESTION, but
each of them leaves meany symptoms unaccounted for.
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Patient: PETER
Heart Failure program’s solution:

0.1
o M (0.2) ———————+

0.5

l(?l; arterial presoure : 107 LOW RENAL PZRFUSION
.1

0.8
10

HIGH RENIN ANGIOTENSIN
0.8

Jos (

WATER RETENTION

HIGH BLOOD VOLUME
ce

modarate pedal edema “*—————HIGH VENOUS VOLUME k
STIMULATION

0.9
’ 08
orthopnea (0.09) Jvp: 12 cmH2D 4——————————HIGH RA PRESS HIGH HEART RATE — ———»hr: 110
\ 07 10
0.7
dyspnea on exartion (0.5) PULMONARY CONGESTION <—>~1iiGH LA PRESS HIGH MYOCARDIAL OXYGEN
CONSUMPTION
0.9
cough (0.08) basiiar rales (0.05) HIGH LVEDP TACHYPNEA
noctumal dyspnea (0.013) zg;c;)lutlon revaaled Iv s3 m 28

CASEY’s result: wrong.

Unexplained features: cough.

Tranferred from patient: Kyle

Note: CASEY gets most of this causal explanation correct, but it mistak-
enly attributes the primary cause of the HIGH VENOUS VOLUME to RENAL
INSUFFICIENCY CHRONIC.

164

CONGESTIVE
CARROMYOPATHY (0.1)

LOW LV 8YSTOLIC #———————[OW LV 8YSTOLG
FUNCTION FUNCTION CHRONIC

w3
LOW LV EMPTYING <———————CARDIAC DILATATION

.8
LOW CARDIAC OUTPUT laterally displaced apex
X3 j \lmpuln (0.019)
oe
HIGH SYMPATHETIC fatigue (0.26)



2 m——-Wc TEyesalH)
CHADMIC (0. 1)

05
agRaAVPITRGL; (0.009) *—— .08) WATER RETENTION
0.9 05
g rdia HGH SYMPATHETIC HIGH BLOOD VOLUME
?sfiwumu 08
08
1
b 1 b 1aH venous vouwme =2 Modemte pedal edema.
X 09
l 1 ilar
OXYGEN HIGH RA PRESS jvp: ¥@rcmH20 ralas 4MR~way-up
07 /
CONGESTIVE GiaH La Press 22— MIMONARY CONGESTION dyspnes e beess
CARDIOMYOPATHY (0.1) 4 a9 on exerhon
10
LOW LV SYSTOUC HIGH LVEDP onrTvaToslonsadistsiuien orthopnea (0.09)
FUNCTION CHRONIC (02) eough
11.0
nocturnel

LOW LV 8YSTOUC
FUNCTION

1 08
LOVII LY EMPTYING

\ﬁ“m ravealed Iv 53 dw nec
shadisslie,
-} 1.0

w\i'cmc outglT ¥ T-‘;u) mean arlerial pressuve : 107

fatigue (0.26)
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Patient: POLO
Heart Failure program’s solution:

FOED CORONARY appears anxious (0.009) <————ANXETY (0.065) ey D00 PRESS CHROMC
CESTRUCTION (0.2) (0.26)
08 1.0
08 E
REGIONAL FLOW DEFICIT MGH SYMPATHETIC HiGH LV PRE3S CHAONIC
0.2 STIMULATION 09
UNSTABRLE ANGINA ——'*.‘E[gsotaeb;. anginal chast pain diaphoresis LY HYPERTROPHY
oxruhncln anginal chest MITRAL VALVE DISEASE kg Ivh (0.27)
pain (0.028) (0.05)
AORTIC VALVE DISEASE mitrat calcification (0.018) e arterial pressure : 100
(e.08) 9.1)
(cgg.l'c valve calcification dyspnoa on exertion (8.8)
.07)

CASEY’s result: satisfactory.
Unexplained features:diaphoresis, ekg: 1vh, dyspnea on exertion.
Tranferred from patient: Cody

RITRICTION (9.2) w maan artaril proamrs &9
08

REGIONAL FLOW DERCIT —*m Wﬂmﬁ

lo.a ¢

(
UNSTABLE ANGINA bie anginal chest pain (0.2) ©.1)
l . (0.006)
in
amn‘nsmchgst oR Prpprengll

wishinehaucs
pain (0.029)
ANDGETY (0.05) o)
MIRAL VALVE
appears anxious (0.009) d‘a‘)‘wmﬂ" d‘,’i‘ﬂm on exertisn DEETE
mitral calaficahon

TM T e—— ABKTIC VANE

Disense  — aorhcvalve ca\cificahion

RIpsar(T (0.008)
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Patient: RANDY

Heart Failure program’s solution:

/tv cardiomegaly (0.06)

&£ 93w v svsTouc
CAROIAC DILATATION LOW Ly SYSTOUC

TION I
j10

faterally displaced apex LOW LV 8YSTOUC
hpu::’zo.cﬁg) FUNCTION
FOCED COPTMARY
OBSTRUCTION (©.2)

08
AEGIONAL FLOW DERCIT

02

UMSTABLE ANOINA —————- unstabis anginal chest pain

(0.00€)

within hours anginal chast
paln (0.029)

CASEY’s result: satisfactory.

#80M BLODD PAESS CHRONIC
(0.26)

02410
HiGH LV PRESS CHRONIC
09

LY HYPERTROPHY

akg: Ivh (0.27)

ANDIETY (8.05)

appears anxious (0.009)

Unexplained features: dyspnea on exertion, soft a2.

Tranferred from patient: Thadeus

v cardiomegaty (0.08)
0.
CARDIAC DILATATION W LY 8YSTOUC
FUNCTION CHAONIC
J10
laterally displaced } LOW LV 8YSTOUC
Impuise (o.ogg) spe FUNCTION
FIXED CORONARY
ORSTRUCTION (3.2)
0.9
AEGIONAL FLOW DERICIT
0.2
UNSTABLE ANOINA unstable anginal chast pain

(0.008)

0.7
HI0H SLOOD FRESS CHROMIC —= HIGH SYSTEMIC VASCULAR

(0.26)
10

H LV PRESS CHAONIC
0.9

LY HYPERTROPHY

okg: W (0.03)
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0.7
—a- MIGH BYSTEMIC VASCULAR OR CHROMC
RESISTANCE BRONCHITES (8.1)
lo.s
HIGH BLOOD PRESS soft a2
mean arterial prassure : 116
dyspnea on exertion (0.5)
dyspnea en exertien (0.5)

RESIST,

Jos

HGH BLOOD PRESS ~———————= mean arteria! prassure ;48
1]

-



Patient: SALVATORE

Heart Failure program’s solution:

.0
%00
auscultation revealad s4 REGIONAL FLOW DEACIT ———== known dlagnosas are
{0.16) o1 coronary heart disease
axperiancing anginal chest PMYOCARDIAL IXFARCTION ANXETY (0 06) ————————= appears anxlous (0.009)
paln (0.028) 09 \ 0
appears ashen (0.04) 1BCHEMIC LV DY3FUNCTION HGH BYMPATHETIC
3 STIMULATION
09
acute Infarct (0.0004) LOW LY COMPUANCE dlaphoresls
[+X.}
HIGH LA PRESS CONOESTIVE
07 CARDIOMYOPATHY (0.1)
10 0.9
METROOL'/CERIN PULMONARY CONQGESTION LOW LV 8YSTOLC ————— CARDIAC DRATATION
) 1 FUNCTION CHRONIC
‘ J 1.0
cxr : vascular redistribution LOW LV 8YSTOUC alized cardomegaly
on nitrogiycerin (0.2) FUNCTION $507)

CASEY’s result: satisfactory.

Unexplained features: generalized cardiomegaly, diaphoresis.
Tranferred from patient: Heywood

FIKED CORONARY
oasTRUCTION (0.2)
08 .
REGIONAL FLOW DERCIT ~—y KYIOLUN
appeors ashen o &MWM
\ iencing
dtatlon r led s4 FTYOCAADIAL INFARCTION anginal chast
(0.18) 09 pain (0.029)
ovte
ISCHEMEC LV DYSFUNCTION evolving infarct (0.0008)
09
mmfwmn LOW LY COMPUANCE ANXIETY Wﬁ
X L0
on nitroglycerin > . .
HIGH LA PRESS diaghoresis
) 07 generalized cosdicuegaly
PULMONARY CONGESTION

0.05)
KX
vedistnbution
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Patient: SAM
Heart Failure program’s solution:

rare pves (0.08) foen mugz)
o8
hr: 120 §, REGIONAL FLOW DERCIT

0.2

appears anxious (0.009) <—————ANDGETY (0.08) BTACLE ANGINA ——————— within hours anginal chest

09 02 pain (0.029)
0.4
diaphoresis ¢———0—. 11GH SYMPATHETIC MYOCARDIAL ISCHEMIA ~———— |SCHEMIC AV DYSFUNCTION
8TIMULATION 1.0
j o.e 1.0
LOW CARDIAC OUTPUT HIGH HEART RATE LOW LY COMPUANCE LOW AV 8YSTOULC
FUNCTION
0.8 0 0.8
0 07108
LOW BLOOD PRESS HIGH MYOCARDIAL OXYGEN HiGH LA PRESS HIGH RA PRESS
CONSUMPTION
0.9
puise is weak (0.13) cool/clammy axtramities TACHYPNEA Jvp:
(0.04)
murmur of mr m 30 PULMONARY CONGESTION dyspnea at rest

diffuse rales orthopnea (0.09)

appears ashen (0.04)

CASEY’s result: satisfactory. o
Unexplained features: murmur of mitral regurgitation.

Tranferred from patient: Doyle . .
Note: CASEY’s solution is almost correct, however it cannot link the state

HIGH RA PRESS to the state MYOCARDIAL ISCHEMA CURRENT.
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orthop (0.09) PULMONARY CONGESTION

FDED CORONARY
ORSTRUCTION (8.2)

use Jos
4‘& rales (0.05) M REGIONAL FLOW DEFICIT
) o2
W- within houu anginal chest W&
) pain (0.029,
{
dyspnea M-(o.s) Qar on o " Mv‘ocmow. IBCHEMIA W
10
ML ATOTer e s :oub;%\ LOW LV COMPLIANCE m MeH RA PRESSURE
lo,o & 08 agpedss osh
»n 0‘360 H T RATE WGH LA PRESS Jjvp: Wemh2o
1 09
LOW LVEDV ACHYPNEA 5 ~————— M
l 10 c 10 \ 8)
LOW CARDIAC OUTPUT = HAYOCARDIAL BFARCTIOIN ! !8(30.01) W

0.8

HIGH 8YMPATHETIC ) ) 384 BL000 Press ———-Wa
s’rru'non .08)
okg: sinus tachycardia W‘ puise Is weak (0.13) dlaphoresis
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Patient: SARAH
Heart Failure program’s solution:

FIXED CORONARY
OB3TRUCTION (0.2)
08

0.2
REGIONAL FLOW DERCIT ——-& UNSTABLE ANGINA
0.9
EXERTIONAL ANGINA unstabie anginal chast pain

(0.008)

history of anginai chest pain
(0.08) o P

CASEY’s result: satisfactory.
Unexplained features: unstable anginal chest pain.
Tranferred from patient: Uri

ST (0-5) OeemxcTION (8.2)

0.8
REGIONAL FLOW DERCIT

o T

a Pon m of anginal chest pain
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Patient: TAKIS
Heart Failure program’s solution:

DIUNTALIS (0.2) CONGESTIVE * known dlag are
CARDIOMYOPATHY (0.1) congestive cardiomyopathy
1.0
on digitalis 99
LOW LV 8YSTOUC
S AN AL T (SA?E,A)O DILATATION ————— ditfyse epex impuise (0.04)
DOBUTAMINE (0.0 1) mww‘:{ 8Y8T
Low L ouc ﬁ%o;)aﬂnd cardiomagaly dyspnea on exertlon (0.5)
10.8 8
on dobutamine LOW LV EvPTYING &~ HIGH LA PRESS HIGK LVEDP
1.0 0.7
B VS —
fatigue (0.26) LOW CARDIAC OUTPUT PULMONARY CONGESTION auscultation ravealad Iv 53
08 (0.06)
on b hodilator < ——SRONCHOOILATOR (0.085) HIGH 8Y hronlc
X MPATHETIC cxv : vascular redistrib know
: n dlagnosas are
jo'z / %njwuﬂou (0.2) bronchitis © ¢
hr 120 <— HIGH HEART RATE

chast revealed whe:
(0.08) wheezes

ekg: sinus tachycardla OR CHRONIC
l 1.0 /,7..%'"' (9.1)
HIGH MYOCARDIAL OXYGEN
oo knawn dlagnoses are copd

Han cxr ; hyperaeration (0.025) mogl:or: occasional pacs
"

(©.

orthopnea (0.09)

CASEY'’s result: wrong.

Unexplained features: none.

Tranferred from patient: Kyle

Note: CASEY’s solution correctly accounts for all of this patient’s symptoms.

However, it does not get rid of the diagnosis of CHRONIC RENAL INSUFFI-
" CIENCY and its associated states that link to HIGH LA PRESSURE.
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J u?or::mcv ———OWcMmIc 'M

apoaBweliRus (3.009) ~—— 0.05) WATER RETENTION POBLUTAMINE DiGtTALIS
09 0.5 ¥
ekg: sious tachycardia —72119'»! H SVMPATHETIC woza.ooo VOLUME oty debutawine on digitalis
[ &D ' 1 | » HIGH VENOUS VOLUME
l 09
disancees HGH RA PRESS —————= [ 0-waRy -%&-wwn
COSEUYE Cbralo myapay 07 / cezes
COMDESTIVE ¥aH L PrEss 22T mULMONARY GONGEBTION dyspnea avvese
CARINOMYOPATHY (0.1) exerton
10
Lovll Lv 8YSTOLIC cxr : vascular redistribution orthopnaa (0.09)
Micnou CHRONIC 0.0 (0.2)
10

LOW LV 8YSTOUC
FUNCTION

Jos
LOW LV EMPTYING

lm
m\ifmmc ouTRdT ¥ 1) SRONCH 0D LATOR
fatique (0.26) on bronchodilator
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Patient: TED
Heart Failure program’s solution:

ercrhnclng atypical chest <4——~MYOCARDIAL ISCHEMIA
pain CURRENT

FOED CORONARY
0.011 OBSTRUCTION (0.2)

1.0 08
LOW LV COMPLIANCE REGIONAL FLOW DEFICIT
“loa 0.2
LOW LVEDV ~ ABLE ANGINA
10 08

fatigue (0.26) @————————110W CARDIAC OUTPUT
05

dyspnea at rest 4*‘-!“0" LA PRESS

VENTRICULAR ECTORY ANETY (0.08)
\4 Jo.s
0.0
ra T8 svmpaTeTIC

09 S8TIMULATION
Jos
TACHYPNEA HIGH SYSTEMIC VASCULAR
REBISTANCE
l 06
m 26 HIGH BLOOD PRESS

mean arteriai pressure ; 123

CASEY'’s result: wrong.

Tranferred from patient: Sam

Note: CASEY incorrectly attributes this patient’s findings to the
state MYOCARDIAL ISCHEMIA CURRENT.

Ay (0.99 FIXED CORCNARY
) OSSTRUCTION (8.2)
o8
g RAEGIONAL FLOW DEFICIT
02
appears anxi 9 BTABLE ANGINA = ————> within hours anginal chest
02 pain (0.029)
0.4
pagis YOCARDIAL ISCHEMIA ———— ISCHEMIC AV DYBFUNCTION
CURRE 0
| 1 1.0
- LOW LY COMPUANCE LOW AV 8YSTOLC
LOW CARDIAG OUTPUT (4 i Low v o
l“ - 0 07 Joo
LOW BLOOD PRESS o 1iGH LA PrESS HIGH NA PAESS
09
pise Is weak (0.19) T = TACHYPNZA
ety mae 25 ‘ dyspnea at rost
L] tradepmAlTL,08)

appears ashen {0.04) 174



Patient: THADEUS

Heart Failure program’s solution:

HaH
(0.25)
10

/lv cardiomsgaly (0.08)

0.8
CARDIAC DLATATION LLOW LV 8Y8TOUC
FUNCTION CHRONIC

1.0
LOW Lv 8YSTOUC
FUNCTION

0.9

lataraity displaced apex
impuise (o.o't,s) P

FOED CORONARY
OSSTRUCTION (9.2)
0.8
REGIONAL FLOW DERCIT
0.2

UNSTABLE ANOGINA ————— ynstabie anginal chast pain

(0.006)
:m anginal chest

CASEY’s result: identical.
Unexplained features: none.
Tranferred from patient: Randy

iv cardiomegaly (0.06 0
(0.08) (0.25)
0 024 '°
CARDIAC DLATATION LOW LV 8YSTOUC
FUNCTION CHRONIC

0.9

0.7
SLOOO PRESS CHROMIC  —# HIGH BYSTEMIC VASCULAR
HIGH LV PRESS CHRONIC

LV HYPERTRAOPHY

LV PRESS CHAONIC

RESISTANCE
05

loud a2

ekg: Iv strain (0.03)

0.7
PRESS CHRONIC —= HIGH SYSTEMIC VASCULAR
RESISTANCE

‘O.S
HGH BLOOD PRESS

1.0

lateraily displaced apex LOW LV 8yaTOUC LY HYPERTROPHY mean arterlal pressure '.!3( ‘OUA ol
Impuise (0.019) FUNCTION /
PIED COROKARY akg: i (0.27) S nsss-enanensiL].5)
anltmm (0.2) v stvain

08
REGIONAL FLOW DERICIT 0.08)

02

UNSTABLE ANCINA ———————== unstable anginal chest pain
B _ (0.008)
e . i

W anginal chast

SEEDeys (0.009)
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dyspnea on axertien (0.5)

HIGH BLOOD PRESS ~—————> mqan arteriat prassure : 116



Patient: UMBERTO
Heart Failure program’s solution:

rars pves (9.89) OLD M (0.2) K diag ara oid mi

05
LOW LV 8YSTOUC
FUNCTION
Jos
LOW LY EMPTYING
10

LOW CARDIAC QUTPUT —= cocl/clammy axtremities

08 (0.04)
cath : multivassel disease ‘—-fl:n emng.z) my&mm "——%Y (9.05)
0.8
axercise 's:g ’t:s( ) ‘——MG‘:I:AL ROW DERCIT diaphoresis appears anxlous (0.009)
nausea/vomiting (0.029) =————AMYOCARDIAL INFARCTION ax anginat chest
0.4 (002
gmﬁ?om 18CHEMIA anterior Ischemia (0.009)

110
LOW LV COMPUANCE

CASEY’s result: satisfactory.
Unexplained features: cold, clammy extremities, diaphoresis.

Tranferred from patient: Len
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FReD commany | — + multivessel ANETY (0.95)

sQase
08 . tess st
nMuses Nﬂﬁ“‘\, ntc‘nom FLOW DEFICIT =y ww cise fes ponse. appears anxlous (0.009)

xr-hncha anginal chest

o INFARCTION OLD M (8.2) known diag are oid ml
pain (0.02 l f 0.2

0.6
acilmiegglft (0.0004) MYOCA!_!I_DML ISCHEMIA VE A ECTOPY —————e- 3y

b 3y m syncope at
|

LOW LV COMPUANCE tory of
paietfatians (0.05)

anterior ischamia (0.009)
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Patient: URI
Heart Failure program’s solution:

:A.-.T'l): VALVE DISEASE

FOXD CORNARY .
OBSTRUCTION (0.2}

‘o,g a;g_l,c valva caicification
REQIONAL FLOW DEFICIT ¢ )

10.9
EXERTIONAL ANOINA

dyspnea on sxsrtion (0.5)

history of a
© 'o:r)y nginal chest pain

CASEY’s result: identical.
Unexplained features: none.
Tranferred from patient: Sarah

dyspnea. on exestion

DERTIONAL ANJINA uns: | chest pain

history of al chest pain
(°~0°4")’ angin, pai

BDR“£ VAWE DIseftt
oortic valve calakeation
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Patient: WILLIAM
Heart Failure program’s solution:

0.9 1.0

oLD 18 {8.2) murmur of ms 3 STENOSES (0.003) HIGH PA PRESS CHRONIC AV HYPERTROPHY
10 1.0 0.1

%Ssmn specific t changes cxr : kerley b lin HIGH LA PRESS CHRONIC HIGH PA PRESS ATRIAL FIBRILLATION

(0.08) 09 PAROXYSMAL (0.05)

o4

n_l,an LA PRESS sustained parastarnal ATAIAL FIBRILLATION
09 Inputse AHYTHM
dyspnea on exertion (0.5) UMITED CARDIAC OUTPUT TACHYPNEA recent history of atrial fiorillation
paipitations (0.08)
/near on fati d
fyncope (omgm:opc atigue (0.26) m 22 ATRIAL STRETCH FURCSEMIDE (0.3)
PROPRANDLOL (6.2) PULMONARY CONGESTION orthopnaa (0.09) la cardiomegaly (0.05) on furosamide
on pregranciol basilar raies (0.05) DIOITALIS (0.2)
on cigitals

CASEY’s result: gives up.
Note: CASEY could not account for many of the findings in this case. No
other case of MITRAL STENOSIS was in the case memory.
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